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Abstract
Recommender Systems have become an essential part of today’s online services, providing
entertaining content to each individual user of a service. However, these systems require
a vast amount of user data, making them vulnerable to privacy attacks. The focus
of this thesis is on the attack that manages to infer a user’s gender based on a set of
recommended movies for that given user. Even though earlier works have indeed focused
on privacy in recommender systems, there is limited research on privacy-preserving
techniques for recommender lists. The goal of this thesis is thus to experiment with
obfuscation techniques, techniques that replace original items with new and "noisy" items,
to prevent an adversary from being able to infer users’ genders.

To do so, a set of obfuscation techniques discussed in earlier research, along with
techniques traditionally used to introduce serendipity, are performed on recommender
lists. These recommender lists are generated based on the MovieLens100K dataset. For
each particular technique, the average gender leakage and recommender performance is
measured.

The final contributions of this work include an awareness of the missing privacy
preservation in Recommender Systems, along with the techniques that can be used to
lower the accuracy of gender inference attacks. The results of the thesis reveal that
the serendipity-introducing technique based on the concept of "K furthest neighbors"
is able to lower inference performance while simultaneously preserving some degree of
personalization. Moreover, the results also show that an increasing degree of obfuscation
that decreases the degree of personalization does not necessarily correspond to better
privacy preservation.
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Sammendrag
Flesteparten av dagens digitale tjenester benytter en eller annen form for et anbefa-
lingssystem. En stor ulempe med disse anbefalingssystemene er at de baserer seg på
store mengder med persondata, noe som gjør dem utsatte for personvernangrep. Denne
masteroppgaven tar for seg scenarioet der en angriper klarer å finne en brukers kjønn,
utelukkende basert på brukerens filmanbefalinger. Det finnes verk som tar for seg person-
vern i anbefalingssystemer, men blant disse verkene er det manglende fokus på personvern
i selve anbefalingslistene. Målet med denne oppgaven er derfor å finne og eksperimentere
med teknikker som bytter ut "items" i anbefalingslister for å se om disse byttene kan
vanskeliggjøre kjønnsklassifisering.

Teknikkene som brukes for å endre på anbefalingslistene er basert på tidligere per-
sonvernarbeid i anbefalingssystemdomenet. I tillegg eksperimenterer arbeidet med en
teknikk som er mer knyttet opp mot "tilfeldige funn" (kalt serendipity på engelsk). Denne
teknikken baserer seg på å anbefale en bruker u "items" som er mislikt av brukere som
er ulike bruker u, preferansemessig. Mer spesifisert kalles "tilfeldige funn"-teknikken for
"k-Furthest Neighbor (kFN)". Anbefalingslistene som modifiseres er generert ved bruk av
en filmdatabase ved navn MovieLens100K.

Selve resultatene fra masterarbeidet fås ved å undersøke hvor relevante de modifiserte
anbefalingslistene er, samt hvor bra de skjuler brukerens kjønn (kun mann og kvinne
er tatt hensyn til). Resultatene viser at strategien som baserer seg på "tilfeldige funn"
er den som gjør det best generelt, både med tanke på angrepsbeskyttelse og relevanse
i anbefalingene. Videre peker resultatene også på at en høyere grad av modifisering,
der modifiseringen medfører mindre personalisering, ikke nødvendigvis resulterer i mer
personvernvennlige anbefalingslister.

Masterens bidrag er dermed en utforskning av mangelen på personvernfokus i an-
befalingslister, i kombinasjon med brukbare teknikker som kan danne grunnlaget for
fremtidige tiltak.
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1 Introduction
This introductory chapter describes the background of the research conducted, along
with the motivation for this master thesis. Furthermore, it introduces the goals and
research questions, followed by the research methodology. Lastly, the introduction chapter
contains an overview of the thesis structure.

1.1 Background and Motivation
Most, if not all, of the large online services in use today are either based on or influenced
by recommender systems. A recommender system is a tool helping customers or users
navigate among the abundance of items in an online service’s item catalog. This catalog
may contain items such as books, movies, and grocery items, or social media posts
such as videos on TikToks. In addition to being a great help to the users of a system,
recommender systems are useful tools for the services that implement them. For example,
if an online video-sharing platform has a good recommender algorithm, which shows its
users videos they find interesting or entertaining, the users keep coming back for more.
On the other hand, if the platform fails to provide the users with the content they want,
they will move on to a different platform. In other words, recommender systems may
strengthen or weaken the position of a service in the market.

Another example of why recommender systems are important for online services is
that they also help match niche items with interested users (Silveira et al., 2019). Before
personalization was introduced into online systems, it was seldom profitable to promote
niche items. However, with personalized systems that may present different items to
different users, niche items can also be promoted. As a result, personalized systems and
recommender systems increase the proportion of items that are publicized along with the
number of users being shown items that they actually enjoy.

Despite being a great tool for finding relevant and interesting items, concerns regarding
the privacy aspect of recommender systems have been raised in recent years. With the
growing user interest in digital services, these services are able to collect an increasing
amount of data. The vast collection of users’ personal information and historical behavior
is what makes data leakage a vulnerability. There exist regulations trying to affect the
recommender systems in a privacy-preserving way, such as GDPR 1 and CCPA 2. Some
general principles that can be taken out of the privacy regulations are data minimization
and the right of a user to control the storage of personal data. Today, service providers
comply to the regulations by making the users agree to their terms before accessing the

1https://gdpr-info.eu/
2https://oag.ca.gov/privacy/ccpa
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1 Introduction

service. Eventually, what this results in, is the concept of "all-or-nothing" (Chen et al.,
2022), dividing potential users into two groups. The first one is the "yes-group" that allows
all (legal) data collection and thus are provided with good personalization. The other
group is the "no-group", which either gets no personalization at all or is denied access to
the service. Anyhow, some users want a certain degree of privacy and personalization,
which suggests a need for more privacy-aware services.

For recommender systems, it has been proven that the recommender lists leak sensitive
information (Slokom et al., 2022). It is possible to acquire information about a user’s
gender, location, or age based on that same user’s recommended items. An attack that
infers user information based on recommender lists is a type of attribute inference attack
(Ge et al., 2022). Even though the recommender list leakage problem is identified, research
on how to mitigate the problem is still lacking. Yet, there exists research on a similar
leakage problem in recommender systems: the leakage of personal information from users’
historical ratings. These historical ratings are often stored in so-called user-item matrices.
To protect these matrices from attribute inference attacks, obfuscation has proven to be
an effective method. Therefore, this research focuses on the possibility of using similar
obfuscation techniques to mitigate attribute inference attacks in recommender lists.

1.2 Goals and Research Questions
In short, the main goal of this thesis can be summed up as follows:

Goal Explore techniques for developing more privacy-preserving recommender lists (re-
commender system output).

This goal is very general, difficult to measure, and without any definition of done.
Therefore, the following research questions are defined as smaller, more specific, and
measurable steps toward achieving the main goal:

Research question 1 To what extent is it possible to obfuscate recommender lists in
order to lower the accuracy of attribute inference attacks by using techniques proven
effective in the obfuscation of user-item matrices?

Research question 2 In terms of recommendation performance, how do the obfuscated
recommendation lists perform compared to the originals? Moreover, are there
considerable differences between the explored obfuscation techniques?

1.3 Research Method
To answer the presented research questions, a set of experiments were conducted. The
experiments consist of different strategies that modify the output of a recommender
system. Each of the experiments concerns a given replacement strategy that replaces
items in the original recommender list with new items.

The implementation of the work can be found on GitHub.
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1.4 Contributions

1.4 Contributions
The main contributions of this thesis can be summed up into the following:

1. This work has proved that serendipity techniques may be effective in privacy-
preservation of user attributes.

2. The work has also shown that an obfuscation that results in lower personalization
(measured with offline metrics) does not necessarily lead to protection against
inference attacks.

3. This thesis has discussed that there is a need for further research into protection
against attribute inference attacks on recommender lists.

1.5 Thesis Structure
This section provides an overview and description of all the chapters in this thesis.

Chapter 1 - Introduction Introduces the problem in the field along with how and why
the work presented tries to solve it.

Chapter 2 - Background Theory Introducing and describing well-establish theories and
techniques relevant to this master thesis.

Chapter 3 - Related Works An overview of recent relevant works published in the field
of privacy in recommender systems.

Chapter 4 - Datasets An introduction and description of the dataset used in the exper-
iments.

Chapter 5 - Method and Experiment This chapter explains the experiments of the
thesis, along with the tools and methods used to conduct them.

Chapter 6 - Results Here are the results of the experiments presented.

Chapter 7 - Evaluation and Discussion A chapter for looking at the results in more
detail, allowing both evaluation and discussion of them.

Chapter 8 - Conclusion and Future Work Concludes the findings and contributions of
this master thesis along with introducing further possibilities for the field.
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2 Background Theory
This chapter attempts to introduce relevant concepts for this thesis. The chapter is
heavily based on Barthold (2022), a report from the NTNU Specialization Project in
Computer Science. First, some general theory about recommender systems is presented,
before privacy-related theories and techniques are introduced.

2.1 Recommender Systems

A recommender system is, as the name suggests, a system that generates recommendations
for a user. A visual example of the user side of a recommender system implementation
can be seen by visiting the video-sharing platform YouTube1, as in Figure 2.1. Based
on a user’s previous clicks, searches, and likes, YouTube provides a list of videos that
are likely to be found interesting by the user. In short, a good recommender system is a
system that provides users with entertaining items that they did not know they were
looking for.

Figure 2.1: A recommendation list from YouTube.

The general behavior of recommender systems is rooted in the concept of a feedback
1https://www.youtube.com/
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loop. The feedback loop has two components: the recorded user interactions (user ratings
and activity), and the recommended items. Both elements are visualized in Figure 2.2.
As the figure further illustrates, the user interactions lead to a set of recommended items
that, in turn, give the user more items to interact with. Most likely, each new iteration
of recorded interactions is based on the previously presented recommender list, hence the
loop. The main goal of the recommender is to predict ratings for items the user has not
seen yet and use that to decide which items to present next.

Figure 2.2: The life cycle of the feedback loop in recommender systems. Each list of
recommended items leads to a new set of user interactions, and each set of
user interactions leads to a new set of recommendations.

Modern recommender systems collect and process various data, from online behaviors
such as browsing history and explicit ratings to private information such as addresses
and age. What information a recommender system prioritizes, is different from system
to system. We can sort the types of data the recommender systems require for optimal
performance into three groups: user information, item information, and context informa-
tion. The first group, user information, includes preferences, personal information, and
historical behaviors in the application. This user information can be further partitioned
into Personal Identifiable Information (PII), Quasi-Identifiers (QIDs), and Sensitive
Attributes (SAs), depending on the sensitivity and traceability of the data (Saleem et al.,
2021). Table 2.1 explains the named partitions in more detail.
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Table 2.1: Terms describing different user attributes
Name Abbreviation Description
Personal Identifiable
Information

PII Attributes that uniquely identify a user
without being accompanied by other attrib-
utes (e.g. email, phone number, ID number)

Quasi-Identifier QID Attributes that with the help of some auxili-
ary information (e.g other quasi-identifiers)
can identify a user

Sensitive Attribute SA Attributes that the user wants to hide or that
are vulnerable to unfair treatment, such as
gender and political orientation.

The item information, which makes up the second group, describes the individual items
in the catalog. This can be explicitly defined attributes in the form of metadata, or it
may be information extracted from the item itself. E.g. for written texts, information
about each text can be automatically extracted tags that describe the theme and content
of that document.

Context information consists of extra information about the user’s action. Examples
of such information are time, place, and location. Context information is important
because such factors may affect the users’ preferences. For instance, users may want to
watch Christmas movies because it is December, or listen to "focus music" because they
are at the university.

To predict the likelihood of whether a user will like an item or not, different strategies
have been proposed. Three popular such strategies, as presented in Aggarwal et al.
(2016), are Collaborative Filtering, Content-Based Filtering, and Hybrid Systems.

2.1.1 Collaborative Filtering

Collaborative filtering focuses on the idea that similar users unveil similar rating patterns
- as illustrated in Figure 2.3. The calculations of similarity and predicted ratings are
performed by looking at previous ratings for all the users in the system. Users that have
rated the same items in a similar manner are said to be similar. The focus of collaborative
filtering can also be translated to hold for item similarity because also similar items
unveil similar rating patterns.

The recorded ratings are traditionally stored in what is called a "user-item matrix".
Each "coordinate" (userID, itemID) in the matrix corresponds to the rating of itemID
given by userID. User-item matrices may either be filled with implicit or explicit ratings.
Implicit ratings are traditionally presented as binary values where 1 denotes "interacted
with", e.g. "clicked on" or "watched", and 0 means "not interacted with". On the other
hand, explicit ratings are values describing how much a user liked an item. The latter of
the rating methods is more informative, but today, most of the recorded data are implicit
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Figure 2.3: An illustration of the idea that users are recommended items that are liked
by similar users.

ratings.
Another characteristic of today’s recorded data is that the distribution of ratings

among items forms the shape of a long tail when presented on a graph based on the
number of times each item is rated. This long tail shape is shown in Figure 2.4. The
figure shows that few items are rated frequently, and the rest, which consists of the
majority of items, are rarely rated. A result of the long tail property is that popular
items (head-items) are recommended more often than non-popular items (tail-items).

One of the advantages of collaborative filtering is that it is transferable to all domains,
as it is domain free (Koren et al., 2009).

2.1.2 Content-Based Filtering

Content-based filtering compares characteristics (attributes, keywords,..) of items a user
has liked in the past with the characteristics of unseen items. This method is particularly
effective if the data and metadata, along with user preferences, are structured or easy
to retrieve. One of the strengths of content-based filtering is that cold-start items -
meaning new items that are not yet interacted with - can be recommended even though
no historical ratings exist. Also, new users can get relevant recommendations from
content-based systems, as long as they provide some kind of information regarding their
interests. In Figure 2.5, the general idea of content-based filtering is illustrated. Here,
the user has previously liked dystopian books, and thus another popular dystopia is
recommended to the user.
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Figure 2.4: The long tail property.

Figure 2.5: An illustration of how content-based filtering works.

2.1.3 Hybrid Methods

Hybrid systems combine characteristics from multiple recommender systems to build on
their different strengths. There are various ways in which the systems are used together.
Firstly, one can combine the existing recommender systems as they are and produce
a single output. This method is called an ensemble design. A monolithic system, on
the other hand, combines the different systems into one unified system, where there
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is no clear distinction between the original systems. This method often requires some
modification of the existing systems. Lastly, there is a method called mixed systems.
This method simply presents recommendations from different systems side by side. For
further explanations of the hybrid methods, see Aggarwal et al. (2016).

2.2 Factorization Machines

The preceding section on recommendation systems, section 2.1, introduced recommender
systems and different recommender models in general. In contrast, this section elaborates
on a specific type of recommender called Factorization Machines (FMs), introduced in
Rendle (2010). Compared to other classification and regression models, such as Support
Vector Machines and Matrix Factorization, FMs are effective in situations with very
sparse data and they have linear complexity. These two strengths make Factorization
Machines a good fit for recommender systems.

Factorization Machines are supervised learning models that, for the 2-way FMs, are
described by the model equation Equation 2.1. The designation "2-way FM" means that
the factorization machine is able to capture single and pairwise interactions between the
variables. ŷ(x) is the function that predicts the rating behavior of a given user for a
given item, where the input x contains real-valued feature vectors. In addition to the
traditionally contained information - user, item, and rating -, the input vector of FMs
may hold arbitrary auxiliary features such as last interaction or gender. These auxiliary
features allow for the inclusion of information relevant to the interactions.

The parameters in Equation 2.1 are described as the following: w0 ∈ R is the global
bias, wi ∈ Rn is the strength of the i-th variable and V ∈ Rn×k contains the rows vi

describing the i-th variable with k factors. All of these parameters are to be estimated
based on the training samples during the training of the model.

ŷ(x) := w0 +
n∑

i=1
wixi +

n∑
i=1

n∑
j=i+1

< vi, vj > xixj (2.1)

In terms of applicability, FMs are a good fit for different prediction tasks. In the
context of recommender systems, these prediction tasks generally include regression tasks
that predict the rating of an item, binary classification to predict if an item is relevant or
not, and ranking tasks where the goal is to order the vectors x based on the score of ŷ(x).

2.3 Privacy in Recommender Systems

The collection and processing of user data, both personal and behavioral, lead to privacy
concerns. As mentioned in the introduction, this increasing collection has resulted in
rules and laws. Consequently, there has been interest in fair and ethical recommender
systems in recent years. With regards to privacy, this means a focus on the concepts
of threat awareness, privacy protection, and authorized access to private information
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(Ge et al., 2022). These concepts coincide with the definition of information privacy as
formulated in Kang (1997).

Information privacy is “an individual’s claim to control the terms under which
personal information – information identifiable to the individual – is acquired,
disclosed or used.” (Kang, 1997)

This section will focus on the privacy threats of recommender systems and how to
mitigate them. Moreover, the attack named attribute inference attack is described in
detail, as this is the attack this master thesis tries to prevent.

2.3.1 Privacy Threats

This subsection is inspired by threats identified and described in "A Survey on Trustworthy
Recommender Systems" (Ge et al., 2022) and "Latest trends of security and privacy in
recommender systems: A comprehensive review and future perspectives" (Himeur et al.,
2022).

The main concept that is discussed in the context of privacy threats is privacy breaches.
This general term concerns information that is accessed by someone who does not have
permission to access that information. Without permission, access to the information is
achieved by breaking into the systems with the help of hacking and monitoring. Generally,
this threat contains both a security breach - when a protected computer is entered - and
private information disclosure - when the user data is exposed. A further privacy threat
related to data access is missing access control. Missing access control describes a lack of
policies that ensure limitations on what the users of a system can access. In the field
of computer science, this is tightly connected to the principle of least privilege, where a
user (in this case) should only be able to access the information and resources necessary
for him/her to carry out his/hers legitimate purpose.

For recommender systems and personalized systems, disclosing data to third parties
or the public is not new but can be seen as a threat. Examples, where data sharing
might occur, is for research purpose, targeted advertising, or, as a more specified example,
when patient data is being shared between health researchers. In most of these cases, it
can be assumed that the data is anonymized, meaning that the PII (see Table 2.1) are
removed and anonymization techniques - as described in subsection 2.3.2 - are applied.
However, there are multiple attacks that can de-anonymize user identities. For example,
linkage attacks concatenate different datasets, where at least one of the datasets is not
anonymized, such that one can disclose the identity of each user. Another attack is the
homogeneity attack which can disclose sensitive attributes when there is homogeneity
in the dataset. Often, this attack requires some kind of background information about
the target user, such as age or city of residence. In some situations, data disclosure for
legitimate purposes may also be a reason for data sharing, and in this case, the data
could be un-anonymized. Although this data disclosure is lawful, the sharing is usually
done even though there is no given consent from the users. This is a trade-off between
law enforcement and privacy.
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As mentioned, a reason for sharing data from personalized systems may be the selling
of data for the purpose of advertising. Targeted advertising is a lucrative business, where
advertisers utilize characteristics or user preferences to target different user groups in their
advertisement campaigns. If the user is not formally informed about- and has accepted
the selling of his or her data, this is a violation of the information privacy noted earlier in
this section. One of the risks of targeted advertising, which also applies to recommender
systems in general, is that it might alter a user’s preferences. A harmful example of this
lack of autonomy is targeted advertising for elections, where the advertisements affect
the users voting behavior.

An inference attack is an attack that fits into the "false privacy" category. This attack
is able to infer sensitive attributes for users, only by using public information. One could
therefore think that one is protected when only public and insensitive information is
shared. However, the inference attacks may also predict your private attributes with
high probability, thereby the "false privacy". Even in systems that do not store or
collect private information, private information could be accurately predicted. There are
different types of inference attacks, but one of them - namely, attribute inference attack -
is described more in detail in section 2.4.

2.3.2 Privacy Preserving Techniques

Himeur et al. (2022) lists three approaches to mitigate the discussed privacy threats in
recommender systems. The first of these approaches is architecture-based protection,
which aims to protect against privacy breaches and data theft. An example of how the
architecture can be used to protect against data theft is by creating the system as a
federated learning system. With federated learning, the user data is stored over multiple
different devices, such as locally on each of the users’ devices, without the raw data being
transferred to the central server. Instead, the distributed devices send model weights to
the central server that eventually updates the global model(Yang et al., 2019).

Other proposed approaches to make recommender systems better at preserving privacy
are by introducing laws and regulations, or by using algorithmic privacy-preserving
techniques. Regulations and algorithmic privacy-preserving techniques are presented
more in detail in this subsection.

Rules and Regulations

To conduct and administer the advancements of services such as recommender systems,
regulations have been proposed. GDPR, mentioned in the introductory chapter, is one
of these sets of regulations. GDPR stands for General Data Protection Regulation
and aims to increase the right of self-determination by giving users control and rights
over their personal data. Although being made for the protection of EU citizens, the
GDPR has been a model for similar protection regulations all around the world. Further
guidelines, also proposed by the EU, is the Digital Service Act, which among other
things, directly regards recommender systems by requiring more transparent systems.
Moreover, it demands that larger platforms will allow users to choose whether or not
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to have recommendations based on profiling, along with restricting targeted advertising
based on users’ special characteristics and for children in general.

Anonymization

Anonymization is the technique of hiding a user’s identity in its user data. This can
be described as de-identification or pseudonymization. A naive solution is to simply
remove PIIs such as email or national ID numbers. Nowadays, this removal is combined
with more mathematical and secure anonymization procedures, such as k-anonymity.
k-anonymity as a privacy measure was defined by Samarati and Sweeney (1998) as
the concept where an attempt to use QIDs (see Table 2.1 for definition) to identify an
individual should result in at least k entries. Further anonymization techniques have
been proposed since the introduction of k-anonymity in 1998, as a result of discovered
loopholes in the ever-improving anonymization techniques. For example, l-diversity was
introduced after the detection of missing attribute disclosure protection in k-anonymity
Machanavajjhala et al. (2007).

Differential Privacy

Differential Privacy was created for the purpose of protecting the privacy of individuals
in a statistical database, in addition to being able to learn general properties about
the population as a whole Dwork (2006). The essence of differential privacy is that the
statistical outcome of a given query should be unaffected by the presence or absence of an
individual entry. In the recommender system environment, differential privacy protects
against membership inference and is thus used as a protection mechanism. Differential
privacy is achieved by mathematically applying noise to the original data.

Cryptography

Cryptography entails the concept of "secret writing", where the secret writing is a result of
a transformation of the original text given a certain secret. Cryptography is generally more
related to security than privacy, but if user data is secured such that only confidential
users can access it, that may lead to the protection of user privacy. Homomorphic
encryption is one of the most applicable encryption systems for recommender systems, as
it allows for mathematical operations on the encrypted data. In other words, data can
be processed while being unreadable to adversaries, while the general user of a system is
unaffected by the encryption. Even though the concept of cryptographic recommender
systems is good, it is resource extensive and may therefore be slow and energy-demanding.

Obfuscation

Obfuscation is the concept of adding noise to original data with the purpose of hiding
user preferences. "Obfuscation" describes creating something that is obscure and indis-
tinct. Strategies used when performing obfuscation often include a combination of data
randomization, insertion, and removal. In recommender systems, obfuscation is used to
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model noise based on existing signals to make the available data less valuable for an
attacker. Obfuscation is described in more detail in section 2.5.

2.4 Attribute Inference Attacks
One attack of importance in this work is the attribute inference attack. Attribute
inference attack describes the attack where an adversary uses publicly available data to
infer information about users of a system, e.g. sensitive attributes. Research has found
that this publicly available data can be everything from rating behavior (Bhagat et al.,
2013) and recommendation lists (Finjord, 2021) to social relations (Dey et al., 2012) and
writing style (Rao et al., 2010). To perform the attack, the attacker first needs to train
its classifier. This can be done by using sensitive attributes that some people choose to
make public, in this case, gender, along with the data that is made public by all users.
Eventually, the attacker will be able to predict the gender of users that would rather not
share it. In other words, attribute inference attacks can be summed up as a method of
using some users’ public attributes to derive the private attributes of other users.

Attribute inference attacks can be grouped into two general types (Gong and Liu, 2018).
The first type utilizes social links to infer information because the publicly available
attributes of the people you are connected to often correspond to similar attributes for
you. As an example, presented by Gong and Liu (2018), if more than half of the friends
of a user u major in computer science at a certain university, the probability that that
user u also majors in computer science at the same university is high. The other type
of attribute inference attacks are attacks that base their predictions on your behavior.
Similarities between users are based on similarities in their user interactions, resulting in
the prediction that if you act similarly to another user, it is likely that the two of you
share attributes. Interestingly enough, this is exactly the assumption that recommender
systems are built upon: it is likely that users who behave similarly will like the same
items.

2.5 Obfuscation Techniques and Synthetic Data
In the field of computer science, obfuscation is a term used interchangeably with an-
onymization, tokenization, encryption, and masking techniques. However, in the context
of this thesis, obfuscation concerns the task of controlled data substitution and noise
insertion. This is in line with the definition presented by Brunton and Nissenbaum
(2015): "Obfuscation is the deliberate addition of ambiguous, confusing, or misleading
information to interfere with surveillance and data collection." Obfuscation is a technique
that can be used to make it more difficult to infer private attributes because it presents
real user data along with misleading user data.

What an obfuscation essentially does is introduce synthetic data into the original data,
either by insertions or replacements. If we look at an example relevant to recommender
systems, we can examine the user preferences before and after an obfuscation, as seen
in Figure 2.6 and Figure 2.7, respectively. In the first figure, the historical user activity
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only contains movies that are so-called "chick flicks" - movies typically liked by teenage
girls. In the second figure, however, the watch history is infected with a more diverse set
of movies, where it is less obvious that the user account belongs to a female. Nonetheless,
the second figure does still contain both romantic movies and comedies popular around
the same time period, because the recommender’s main goal is still to provide the user
with relevant items.

Figure 2.6: Watch history from a typical female user before obfuscation.

Some general characteristics that should be fulfilled when doing a user-oriented ob-
fuscation, as presented in Slokom et al. (2021), are understandable, unobtrusive, and
useful. The term understandable means that it should be possible to understand why
there is a need for synthetic data and why the specific set of items have been added. As
for unobtrusive, the user should not perceive the obfuscation as problematic, disturbing,
or limiting. For example in a recommender system for movies, children should not be
recommended movies created for adults only. Another example of a problematic situation
that is against the concept of unobtrusiveness is if users get recommended something they
find totally unethical, e.g. movies that romanticize animal abuse. Lastly, the obfuscation
should be useful and not be in the way of relevant recommendations.

The task at hand when obfuscating data is to balance the trade-off between privacy and
utility - how close to the original data can the synthetic data be without compromising
the original data? And furthermore, how does one choose what entries to keep, remove
and insert? There are different proposed strategies at hand. Following in this section,
obfuscation by replacement is presented. Firstly strategies for selecting items to be
removed are presented before some strategies for adding items are introduced.
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Figure 2.7: A user profile that is obfuscated to be less gender indicative.

2.5.1 Removal Strategies

In general, the more items we remove, the more difficult it becomes to infer correct user
data. However, by removing items, it is likely that the user experienced utility decreases
too. Table 2.2 presents a collection of different selection strategies.

The first and simplest selection is the random selection, which samples a random
set of items that make up the x items that are to be removed. This strategy does
not implement any special methods to maximize the increase in privacy or minimize a
decrease in personalization. However, it is a naive way to bewilder a potential attacker.
The importance-based strategy, on the other hand, considers the fact that it is likely
that removing items decreases user utility. By selecting items that are less important to
the user, we can still keep the items that we are almost certain the user will like. The
importance-based strategy can be implemented in different ways, where the simplest idea
is based on the fact that recommender lists are sorted from best to worst, meaning that
if we select the lower items in the list first, we are likely to keep the most personalized
items. The last strategy in Table 2.2 is the class-based strategy. This strategy is based
on the fact that some items are more indicative of a class than others. If we select the
most class-indicative items, the idea is that the inference performance will decrease.

2.5.2 Insertion Strategies

Insertion strategies concern the selection of items from the catalog to be inserted into the
original set of items. This is the synthetic data. One thing to note is that the synthesized
data can also be or become indicative of a class. For example, by naively adding the same
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Table 2.2: Removal strategies for user profiles.
Strategy Description
Random Items to be removed are selected at random.
Importance Based The least important items are removed first. These

are typically the items that relate the least to a user’s
preferences.

Class-Based The items that indicate a given class the most are selec-
ted first. E.g. if we want to hide the gender of a female,
the most female-indicative items are removed first.

male indicative item over and over in a female user profile, this inserted male indicative
item may become indicative of a female. Moreover, if this naive obfuscation is performed,
it is also possible to identify that the data is obfuscated based on unnatural values and
occurrences in the data. Examples of insertion strategies are presented in Table 2.3.

In the table, the term classes are used. Each attribute we want to protect has two or
more different classes, e.g. the attribute age may contain classes such as child, teenager,
adult, and elder. The point of many of the insertion strategies presented in the table is to
insert an item from a different class than which the user belongs to. Therefore, there is a
need for classification methods that categorizes all users and items accordingly. If one
were to hide more than one attribute, the insertion items chosen have to be from a class
different from all the target classes for all the attributes to be protected. The class-based
strategies presented in Table 2.3 are the majority strategy, random class-based, greedy,
and sample. The two other presented strategies, popularity, and random, are selections
based on the whole item catalog, without being restricted by specific classes.

Table 2.3: Selection strategies for insertion of items in user profiles.
Strategy Description
Popularity Choosing items that are rated by the largest number of

users.
Random Choosing a random item from the whole catalog.
Majority Choosing items that are rated by the largest number of

users in a specific class.
Random Class Based Choosing a random item from a different class than the

class of the user.
Greedy Choosing the items that correlate best to a different

class than the class of the user.
Sample The items are sampled based on how well they corres-

pond to a given class.
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2.6 Classification Models
Classification models aim to use a set of known examples to fill in missing fields in data
that look like the examples. By using such models, predicting classes and labels for data
entries that are missing those classes or labels is made possible.

2.6.1 Logistic Regression

Logistic Regression (LogReg) is a classification model that can be used to estimate the
probability of whether an instance is related to a class or not (Kleinbaum et al., 2002).
The logistic function P (X), which estimates the likelihood of the classification given a
set of independent variables X1, X2,..Xn, is formulated in equation (2.2).

P (X) := 1
1 + e−(α+

∑
βiXi)

(2.2)

The constant terms α and β represent initially unknown weights that need to be fitted
according to the training samples. The training samples consist of values for each of the
independent variables, along with the target value that symbolizes whether the instance
belongs to the target class or not. All the βi values are trained such that the model can
differentiate between the importance of each of the independent variables.

Figure 2.8: The Sigmoid Function.

A characteristic of the logistic function, also known as a Sigmoid function, that makes
it fit for classification tasks, is that it converges around 0 and 1, making the range of
the function 0 <= P (X) <= 1. First of all, this range can also be used to describe a
probability as this also is a number between 0 and 1. In detail, the Sigmoid function
describes a probability that approaches 0 when −(α +

∑
βiXi) is −∞, and 1 when

−(α +
∑

βiXi) is ∞. Secondly, the convergence identity gives the graph a distinctive
S-shape where the lower bend symbolizes a threshold that is often evident in e.g. disease
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conditions affected by a set of independent variables. The shape of the Sigmoid Function
can be seen in Figure 2.8. After the lower threshold is reached, the probability of whether
the item belongs to the target class increases much faster for each increase in the value
of

∑
βiXi.

2.6.2 Naive Bayes

The Naive Bayes (NB) classifier is, as the name suggests, a classifier based on Bayes
Theorem. Bayes Theorem describes the probability of an event A as given by the prior
known and related event B - described by Equation (2.3). The theorem assumes that all
included events are independent, which for the classifier translates to all features being
independent.

P (A|B) = P (B|A) ∗ P (A)
P (B) (2.3)

For classification tasks based on Bayes Theorem, the A in the equation represents
the target variable - meaning the final classification, and B the all the features - B =
(x1, x2, ..., xn) where each xi is a feature. With these new terms, the theorem can be
described as shown in Equation (2.4). The classification is now reduced to the probability
given the set of other similar events.

P (A|x1, x2, ..., xn) = P (x1|A)P (x2|A)...P (xn|A)P (A)
P (x1)P (x2)...P (xn) (2.4)

2.7 Data Splitting
In the scenario of classification, whether that is a classification of user attributes or
assumed likings of items, a model is trained to perform the classification. To do this we
need a set of labeled data that the model can learn from. This collected labeled data is
often divided into three different sets: the training set, validation set, and test set.

As the name suggests, the training set is used for training the model parameters. This
means updating the model weights such that when the training data is inserted as input
data, the target values of the training data are returned as output data. The training set
is traditionally the largest proportion of the whole dataset, compared to the validation
and test set.

Where the training set is used to train the model parameters, the smaller set called
the validation set is used to tune other kinds of parameters, called hyperparameters.
Hyperparameters are typically set when the model is created, for example the selection of
loss function or regularization strength. During hyperparameter tuning, however, different
configurations of these hyperparameters are tested to find the best hyperparameters for
the given task. The "best" model is selected based on the performance of a selected
evaluation metric, such as accuracy or F1.

Following this phase of hyper-tuning, the model is to be tested. The test data should
be separated from the other data such that is "unseen" when the final model is tested
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with this data. If we were to test our model with the data from which the model was
trained, we would not be able to test the generalizability of the model. The test set can
also be used to compare different trained models to each other.

There are different strategies for splitting a dataset to use it for training, hyper tuning,
and testing. Two such strategies are fixed splits and K-fold cross-validation.

2.7.1 Fixed Split

A fixed split is a separation of the complete dataset where the subset is kept from each
other and not altered after the split. One way of splitting the dataset in recommender
systems is by keeping the oldest interactions in the training and validation set and newer
interactions in the test set - known as a temporal split. This will reflect the real world
because based on earlier interactions, we try to predict future interactions.

Another way of dividing into subsets is by randomly selecting data to be added to
each of the sets. This can be useful when we either lack temporal data or when time is
irrelevant. One important thing to think about with random splits is to make the subsets
as similar to the original dataset as possible. For example, if the dataset used for binary
classification is skewed and there are a lot more instances belonging to the "yes"-class
compared to the "no"-class, we might end up with only "yes"-classes in the training set.
As a result, the model only learns about these "yes"-classes. To mitigate this problem,
we can stratify the split to make sure that there is approximately the same proportion of
"yes"-classes in the training set as there is in the complete dataset.

2.7.2 K-Fold Cross-Validation

In K-fold cross-validation, the dataset is split into k subsets that alternate between being
the training set and the test set. This strategy is especially useful when you want to
evaluate a machine-learning model but have limited data. The alternation is done by
having k rounds of testing and evaluating, where a new set serves as the test set for each
round, as seen in Figure 2.9.

When using K-fold cross-validation to evaluate a model, the general performance can
be found by averaging the evaluation metrics over all the K-folds. The advantage of
this way of training and testing is that the final results are less likely to be victims of
overfitting and bias.

2.8 Evaluation Metrics

When creating recommender systems and tools for them, there is a need for measuring
performance. Since the recommendation of items can be modeled as a classification
problem, the metrics used for recommender system evaluation are similar to those used
in classification and regression modeling (Aggarwal et al., 2016). This section has two
parts, where the first presents metrics that fit the recommender problem and the second
one the attack scenario.
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Figure 2.9: Illustration of K-fold cross-validation.

2.8.1 Evaluation of the Recommendations

The methods used for evaluating recommender systems can be separated into online and
offline evaluation methods. Online evaluations are performed by exposing real users to
the system, making it possible to measure the direct impact on the user. Examples of
such online metrics are click-through rate and watch time. Although online evaluations
are best to reveal user perception, most research either lacks an online platform where
the system can be tested or they are restricted by the potential revenue loss of a system
performing poorly (Krauth et al., 2020). As a result, offline methods are the most
commonly used evaluation method. Offline methods look at historical datasets when
evaluating the performance of a system. One of the advantages of offline evaluation is
that it can better test the generalizability of a system by evaluating a system on different
types of data. Additionally, it is a greater tool for benchmarking than online evaluation
is (Aggarwal et al., 2016).

Since this thesis concerns top-K recommendations and not predicted ratings, the
evaluation is based on these binary "relevant" or "not relevant" categories. Some metrics
suitable for top-K recommendations are Precision, Recall, and normalized discounted
cumulative gain (nDCG). Furthermore, a recommender system’s performance is not only
restricted to whether it can recommend items a user likes or not. It is also feasible that the
system is able to recommend a diverse set of items and that it can recommend more than
only the most rated items. A disadvantage of only recommending the top-rated items is
that the recommender system only serves a small percentage of the items, meaning that
a large proportion of the total item catalog is never presented. Consequently, metrics
such as Item Coverage and Shannon Entropy should be considered.
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Precision

Precision measures the proportion of relevant items among the set of top-K retrieved
items, illustrated through the formula in Equation 2.5. Relevant items are items that
are included as "liked" in the test set. Furthermore, the notation tp stands for true
positives and fp for false positives. For simplicity, Precision@K - meaning precision at K
recommendations - is written as P@K in this thesis. The metric is calculated per user,
and can later be averaged over all users.

P@K = |Recommended items ∩ Relevant items|
|Recommended items|

= tp

tp + fp
(2.5)

Recall

Recall is the number of relevant items successfully retrieved from the whole set of relevant
items. Similarly to precision, this metric is calculated per user but can be averaged over
all users to find recall for the recommendation algorithm as a whole. Equation (2.6)
displays the formula for calculating recall for K recommendations, denoted R@K. The
notation fn in the formula represents the false negatives.

R@K = |Recommended items ∩ Relevant items|
|Relevant items|

= tp

tp + fn
(2.6)

nDCG

As opposed to precision and recall, Normalized Discounted Cumulative Gain considers the
position of items in the recommender list. The metric penalizes wrongly recommended
items placed early in the list more than wrongly recommended items on the bottom of
the list. In other words, to get a high nDCG score, highly relevant items should appear
early in the top-K list. To understand nDCG it is helpful to know DCG first, shown in
Equation 2.7. The function of DCG returns the sum of the relevance of each item in
the recommender list L for user u. The relevance is calculated as the ratio of the rating
itself relative to the discount function d(i). Typically, the discount function is defined as
d(i) = log2(i + 1) where i represents the placement in the list.

DCG(L, u) =
|L|∑
i=1

rui

d(i) (2.7)

The normalized DCG is defined as the DCG divided by the ideal DCG value - as
seen in equation (2.8). This ratio will have a value between 0 and 1, where higher
values symbolize a better top-K list. The advantage of nDCG over DCG is that the
former simplifies comparing different queries. E.g. if we have two recommender lists with
different lengths, normalizing the DCG value makes it easier to compare the two list’s
utilities.
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nDCG(L, u) =
|L|∑
i=1

DCG(L, u)
DCG(Lideal, u) (2.8)

Item Coverage

Item coverage is the fraction of different items that the recommender system is able to
serve its users. In other words, it is the number of unique items across all recommender
lists provided by the system.

Shannon Entropy

Shannon Entropy (shown in Equation 2.9) quantifies the inequality in item selection, and
thus measures diversity. For this metric, we will get a number close to 0 if only the same
items are shown in the recommender lists and log(n) when all n items are occurring
equally often (Gunawardana et al., 2012). The optimal value for Shannon Entropy is
achieved when the distribution of recommendations is uniform, giving the value of log(n).

SEntropy = −
n∑

i=1
p(i) ∗ log(p(i)) (2.9)

2.8.2 Evaluation of the Inference Attack

As mentioned, metrics that measure the performance of a recommender list can also
be used to measure an inference attack. However, one has to consider the nature and
characteristics of the data before choosing a fit metric. E.g. if your dataset is imbalanced,
and most of the observations only involve users of one target class, a pitfall when
evaluating the classification task is that a high number for one specific metric may not
necessarily relate to a well-performing classifier. This is because we will get a high score
even though the model only predicts the majority class in all cases. An example of a
metric that works well on imbalanced datasets is F1-score, presented in this subsection.
The metrics accuracy and AUC are also presented because even though they might not
predict the inference performance as well in an imbalanced task, they give an indicator
of the predictions.

F1-score

F1 is the harmonic mean of precision and recall. The reason why F1 is better for
imbalanced datasets than precision and recall can be identified through a simple example.
Let’s say that in a group of 100 students, only five students are female. If our model
always predicts a student to be a female this will give us precision = 5% and recall =
100%. Even though these metrics can be completely fine for some predictions, they are
not fit for this skewed binary classification task. However, by finding the harmonic mean
we will get a low performance score if one of the values is low. In our example case, the
F1 score would be 9.5%.
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Equation (2.10) displays the formula for calculating the F1-score. When it comes to
the returning scores of F1, the closer we get to 1 the better is the prediction.

F1 score = 2 ∗ Precision ∗ Recall

Precision + Recall
(2.10)

AUC

AUC is a metric that measures the separability of a classifier, meaning how well it predicts
0-classes as 0-classes and 1-classes as 1-classes. AUC stands for "Area under the ROC
curve", where ROC is an abbreviation for Receiver Operating Characteristics. To explain
AUC further, the concept of the ROC curve is essential to understand.

TPR = tp

tp + fn
(2.11)

FPR = fp

tn + fp
(2.12)

The ROC curve is a graph that plots the true positive rate (TPR, see Equation 2.11)
against the false positive rate (FPR, see Equation 2.12). Figure 2.10 illustrates an example
of how this graph may look. The value for TRP and FRP will vary for different sizes of
the variable K, where K is the number of items in the recommender list (thereby called
top-K recommendation). We can plot all these values for different Ks as a monotone
graph. A characteristic of the ROC curve is that it is restricted by the coordinate points
(0,0) and (1,1) because when K = 0 both FRP and TRP are 0, and the highest possible
value for FRP and TRP are 1. This results in the maximum value of 1 for the Area
Under the Curve (AUC), which occurs when all the true positives are correctly identified.
In Figure 2.10 the AUC is illustrated as the blue shaded area.

Accuracy

In short, accuracy is the fraction of items that the model predicted correctly. This can,
for binary tasks, be formally described as in Equation 2.13.

Accuracy = tp + tn

tp + tn + fp + fn
(2.13)
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Figure 2.10: An illustration of a ROC curve with the AUC shaded in blue.
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3 Related Work
This section is an introduction to recent work related to this thesis. Specifically, this
includes a short introduction to privacy in recommender systems, attribute inference
attacks, and how synthetic data has been added as a privacy measure in recommender
systems.

3.1 Privacy in Recommender Systems

With the widespread use of recommender systems, personalization has become an essential
part of several sectors. However, the type and amount of information collected are in
conflict with the privacy of the users of the systems. Jeckmans et al. (2013) lists a number
of concerns that arises when we allow the system to store and process this increasing
amount of data. In summary, these concerns consist of but are not limited to, users
not being aware of the vast information collection, the sale of user information being
lucrative, and, as is the focus in this work, the recommendations may reveal information
about the users.

The work of Martin and Palmatier (2020), discussing the consumer-retailer relationship,
indicates that the two groups consisting of A) users demanding personalization and B)
privacy-concerned users that are studied, are not mutually exclusive. (Bright et al., 2021)
discusses the "privacy paradox" regarding the fact that social media users are actively
sharing personal information while simultaneously being concerned about privacy. This
paradox is also discussed in Psychoula et al. (2018), where it is found that users would
continue using a given service they like, despite being aware of the privacy risk of that
given service. Consequently, personalized systems themselves should implement some
kind of privacy preservation to help the user with minimizing privacy risks.

3.2 Attribute Inference Attack in Recommender Systems

The efficiency and simplicity of attribute inference attacks have been studied widely. For
example, Bhagat et al. (2013) used matrix factorization to learn information about a user’s
private attribute based on the rating of items. This is relevant for recommender systems
because most of the collected data is historical ratings. The possibility of successfully
completing an attribute inference attack based on user ratings is also presented in other
works. One such example is Weinsberg et al. (2012) which proves the possibility of
inferring a user’s gender with the help of historical user ratings and a small amount of
gender-labeled data.
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Equally important are the findings where other data have been used to correctly infer
sensitive attributes. A descriptive behavior of users, other than rating behavior, is their
writing style. As a result, Rao et al. (2010) was able to foresee the sensitive attributes
of gender, age, regional origin, and political orientation based on users’ Twitter writing
style. In the work, they used a stacked Support Vector Machine-based classification
algorithm to do the classification, and in their results, they showed that gender could
be predicted with an accuracy of 72.33 %. Moreover, at a recent competition held in
2019 (PAN, 2019) - where the task was to sort Twitter accounts into bots, females,
and males - the accuracy of the prediction of gender was as high as 83.56% for tweets
written in the English language. This indicated that the models have improved since
the paper of Rao et al. (2010) was released. The improvement in the tweet classification
environment is likely to apply to other classification tasks, as the models have improved
in the last few years. In other words, without privacy measures implemented in systems
that handle user information, with each machine learning improvement, it becomes easier
to execute attribute inference attacks. Under these circumstances, it becomes essential
to incorporate strategies for mitigation of attribute inference attacks in recommender
systems.

What is more relevant for this thesis’ work is the realization that also the recom-
mender lists generated leak private information. In the master thesis of Finjord (2021),
recommender lists are used to infer the location of users. The thesis utilizes well-known
classification models such as Support Vector Machine, Logistic Regression, Random
Forest, and ZeroR to predict the area of residence. The work of Slokom et al. (2022) is
similar, by experimenting with and discussing the fact that private information "survives"
from training data passed into a context-aware recommender to the system output (the
recommendation list).

Another paper that looks at how the recommender list of a recommender system might
leak information about the user is Xin et al. (2022). However, they differ from both
other works and this work as they predict the historical behavior of a user, rather than
sensitive attributes. To predict the historical behavior, they propose an attacker based
on the transformer architecture that exploits the successful concept of self-attention.

3.3 Synthetic Data as Obfuscation Technique

A technique used to prevent attribute inference attacks is introducing synthetic data and
noise into the original data. Hiding sensitive attributes evident in the user-item matrices
by adding noise has been discussed and proposed in a vast amount of earlier works. The
work of Weinsberg et al. (2012), after identifying the privacy issue of simple gender
inference, attempts to make user-item matrices more privacy-preserving by adding ratings
for items that are typical for the opposite gender. As a follow-up to this mentioned
privacy approach, Strucks et al. (2019) extends the obfuscation by making sure that it is
less obvious that obfuscation has taken place. To do this, they restrict the number of
times an item can be added as an artificial rating. Furthermore, as a second improvement,
Slokom et al. (2021) introduces "PerBlur". PerBlur implements a personalization of
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the synthetic data added to better balance the privacy-utility trade-off. Slokom et al.
(2021) also shows the potential of using obfuscation as a tool for improving fairness and
diversity in recommender systems. These three mentioned works relates to this thesis’
work as they all want to introduce obfuscation techniques to mitigate gender inference in
recommender systems.

Liu et al. (2022) aims to obfuscate user-item matrices according to both privacy in
general and users’ privacy preferences. This is implemented by using a synthetic data
generation module which takes in a selected item from the original user-item matrix and
uses this item to synthesize a new item to be inserted. To select an item to be synthesized,
the researchers utilize an attention mechanism to find the item that relates the least to
the user preference. The results of this work show that removing items that contribute
less to a user’s preferences may be a way to minimize utility loss while decreasing privacy
issues.

To support continuous and customizable obfuscation, Yang et al. (2018) proposes a
two-phased obfuscation strategy for user activity preservation. The first phase is the
obfuscation of a collection of historical data, which is executed when a user wants to
start sharing its data with a third party. Instead of sharing the original user activity
vector, the system uses a vector of a similar user, whose activity vector has less privacy
leakage. The second phase is the online sharing phase, which enables real-time access to
user data for the third party. Another approach that utilizes neighbors’ data to provide
privacy is the work of Luo and Chen (2014). Their work clusters users into neighborhoods
before performing a perturbation technique on the aggregated user interests. Eventually,
this data is fed into the recommender system. As a result, malicious attackers are left
with only the group’s preference data with high deviations if they get access to the data.
However, these results are not applicable to the work in this master thesis, as a group’s
preferences may help with the attribute classification if there is more than a certain
degree of homogeneity in each group.

The aforementioned obfuscation techniques concern obfuscation of historical data
created by users. However, this thesis focuses on the fact that system-generated
data may leak sensitive user data. Therefore, exploring the less explored field of
obfuscation of recommender lists is relevant. Beigi et al. (2020) builds a model they call
Recommendation with Attribute Protection (RAP), where the purpose is to recommend
relevant items while simultaneously mitigating inference attacks of private attributes.
Their experiment is conducted as a min-max game between two components: a private
attribute inference attacker and a Bayesian personalized recommender. The work that is
closest to this work however is the work of Xin et al. (2022). They perform obfuscation
on the exposure data of a recommender system, meaning the recommender list, with the
purpose of hiding the users’ historical behaviors. The obfuscation is performed with
two steps that each have their own set of strategies. First is the task of selecting which
positions in the recommender list to be replaced, where they found that choosing the items
that correspond the least to the user interests was best. Secondly is the task of choosing
which items to add to the recommendations. The proposed strategies for the insertion are
random selection, or to choose the items that are most interacted with (popularity based).
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In this thesis, the dataset MovieLens-100k1 (ML100K) is used. To carry out the experi-
ments of the thesis, the original dataset is processed and recommendations are generated
beforehand. The following sections of this chapter present the dataset in general and
also how it was pre-processed.

4.1 The MovieLens Dataset

There exist different variations of the MovieLens datasets (Harper and Konstan, 2015).
First and foremost, the size of the datasets differ from each other, but also the time
period of the retrieval and the attributes describing the users and items are varying.
As the name may reveal, MovieLens contains rating data from a movie database, more
specifically the MovieLens website 2. The MovieLens website was developed as a tool
for experimenting with recommendation services, with the goal of advancing the art of
recommendations (PAN, 2019). As a result, the MovieLens datasets are heavily used in
recommender system research.

MovieLens-100k was released in 1998, meaning that it is beginning to get old. However,
it is one of the datasets from MovieLens containing demographic information, thus making
it relevant for this thesis. The dataset contains 100,000 ratings of 1682 movies rated by
943 unique MovieLens users.

Table 4.1 presents the user attributes available in the dataset. The sensitive attributes
"Age", "Gender", "Occupation" and "ZIP code" are attributes that may be inferred based
on a user’s generated recommendations. To anonymize the users, the UserIDs are an
unidentifiable integer between the number 1 and 943. Among the 21 occupation groups,
there are groupings such as "administration", "engineer", "librarian" and "student".

In Table 4.2 we find information about the movies in the MovieLens-100K dataset.
There are 1682 different movies in the dataset, each described by its title, the release
date, and a URL that links to the IMDB site of the movie. Furthermore, the movies
are described by a set of genres such as action, documentary, and thriller. There are no
limits on how many genres a movie can correspond to, but the list of possible genres
consists of only 18 (19 if we include unknown) different genres.

The last informational table for the dataset, Table 4.3, presents each rating action.
The ratings are collected as explicit ratings on a five-star scale, meaning that the values
are an integer between 1 and 5. As seen in the rating distribution diagram in Figure 4.1,

1https://grouplens.org/datasets/movielens/100k/
2https://movielens.org/
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Table 4.1: User attributes available in the dataset.
User Data

Attribute Description
UserID An integer between 1 and 943.
Age The age of the user.
Gender "M" for male and "F" for female
Occupation One of 21 different occupation groups.
ZIP-code The ZIP-code of the user.

Table 4.2: Movie attributes available in the dataset.
Movie Data

Attribute Description
MovieID An integer in the range between 1 and 1682.
Title The title of the movie along with the year of release.
Release date The full date of the movie release
IMDB URL The IDMB URL.
Genre A list of genres that corresponds to the movie.

the most occurring rating is four stars. The figure also displays that the ratings recorded
from the MovieLens platform include mostly positive ratings and not many bad ratings.
Each rating action is also described by the time of the rating, which is useful when
performing a temporal splitting.

Table 4.3: Attributes describing each rating available in the dataset.
Rating Data

Attribute Description
UserID Integer
MovieID Integer
Rating An integer between 1 and 5 (five-star scale).
Timestamp Seconds since the Epoch. Data is in the format of

an integer.

In terms of gender diversity, the dataset is extremely unbalanced. The number of
women present is under half of the number of men, as visualized in Figure 4.2. Although
this might not affect the results of the obfuscations performed, it might affect the result
of the recommendations. Another statistic for the dataset is the rating count of the
15 most rated items in the catalog, see Figure 4.3. The top four most-rated movies,
corresponding Star Wars (1977), Contact (1997), Fargo (1996), and Return of the Jedi
(1983), are rated by close to 2/3 of the user base. In contrast, the least-rated movies,
consisting of around 140 movies, are only rated by a single user.
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Figure 4.1: The distribution of the different numbers of stars given to the items in the
dataset.

Figure 4.2: The gender balance of the
MovieLens 100k dataset.

Figure 4.3: The most rated items in the
dataset.

4.2 The Pre-processed Dataset

Because the work of this paper concerns the obfuscation of recommendation lists, the
original dataset is processed to generate a set of recommendations for each user. This
processing includes both an exclusion of some elements and a recommendation generation.
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The methods presented in this section, along with the final recommendation lists, describe
the work of the pre-processing of data as performed for the work of Slokom et al. (2022).
The pre-processed data is obtained from the authors of that same paper.

Originally, as seen in the previous section, the original dataset consists of explicit
ratings. However, to make the data fit the recommender model used, the ratings are
transformed into implicit ratings. To do this, a threshold is set at the three-star rating
score. For ratings r >= 3, the items are defined as relevant, leaving r < 3 as irrelevant
items. To ensure that there are sufficient ratings provided by each user for predicting and
testing their recommendations, users with less than 20 ratings are cut off. This leaves
the subset containing 80962 interactions of 845 users and 1574 items. The distribution of
ratings between males and females is very unbalanced, as seen in Figure 4.4.

Figure 4.4: The distribution of the ratings from different genders in the processed dataset.

The recommendations are generated by using the RankFM implementation of Factor-
ization Machine (FM). To reduce errors in the predictions, the model weights are learned
with Weighted Approximate-Rank Pairwise as the loss function via Stochastic Gradient
Descent. The data is split with a temporal splitting strategy, where the 10% most recent
rating actions are used as the test set, whereas the rest is split such that the validation
set consists of 10% of the data and the training set 80%.

In Slokom et al. (2022) it was found that the ML100K dataset had the best recom-
mendation performance when the user attribute gender was used as side information in
the FM. Moreover - and likely as a result - in a classification task of user attributes, the
classifier performed best when trying to infer gender from recommendations generated
with that same user attribute as side information. This is compared to the classification of
age, occupation, and state based on recommendations generated with the respective user
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attribute as side information. Consequently, as this thesis focuses on gender inference
attacks, the recommendations generated with the gender attribute are used.

From this described pre-processing of the ML100K dataset, a list of the top 10
items is generated for each user. The recommendations are sorted such that the top
recommendations are the items that it is most likely that the user will enjoy.
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5 Method and Experiment
The goal of this section is to concretize the experiments conducted. This includes a
presentation of tools and libraries utilized in the implementation, along with a more
detailed description of the selected obfuscation strategies. Since the purpose of this
master’s thesis is to identify whether the obfuscation strategies do protect the user
attributes or not, the inference attack strategy is also presented.

5.1 Tools, Libraries, and Repositories

Elliot Elliot is a recommender system framework that offers tools for handling the whole
recommender problem, from dataset loading to performance measuring. As for
performance measuring, Elliot generates reports that consider the experimental
results.

NumPy Numpy is a Python library useful for scientific computing. The library of-
fers numerous operations on arrays and matrices, in addition to comprehensive
mathematical tools such as random number generation.

Pandas Pandas is a Python library developed for data analysis and manipulation. The
library can be used as a tool to simplify, structure, and clean up datasets for simpler
visualization and management.

PyCaret As stated on their website (PyCaret), PyCaret is a low-code machine learning
library for Python that automates machine learning workflows. What this means
is that it simplifies the implementation of machine learning algorithms, and speeds
up the development cycle. PyCaret makes use of other popular machine learning
libraries and frameworks such as, but not limited to, scikit-learn and XGBoost.

Scikit-learn The Scikit-learn machine learning library for Python provides a set of
algorithms for classification, regression, clustering, and dimensionality reduction.
Moreover, it includes other tools such as cross-validation splitting, evaluation
metrics, and tools used for pre-processing.

User-based-Collaborative-Filtering The Git repository User-based-Collaborative-
Filtering by ZwEin27 (2015) is an Open Source project that provides code for
generating recommendations based on the User-Based collaborative filtering tech-
nique.
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5.2 Attack Implementation

As the objective of this master thesis is to explore the mitigation of attribute inference
attacks, there is a need for an attack implementation to test the success of an attack.
By applying this attack to both the original and obfuscated recommendation lists, the
degree of whether the obfuscations help or not can be measured.

It is assumed that the attacker holds a collection of recommendations and the cor-
responding user genders, such that he is able to train a classification model. This
classification model is, in this thesis, first of all, considered to be a Logistic Regression
(LogReg) model. The selection of the attacker is based on the results of Slokom et al.
(2022), which found that the LogReg model performed well on gender inference attacks
based on the same generated recommendations as used in this work. However, by using
PyCaret, different classification models can fast and easily be compared to each other.
In Figure 5.1, the performances of a set of different models (trained on the same recom-
mender lists) are presented. The yellow cells indicate the best classifier based on the
metric in that given column. The comparison in Figure 5.1 shows that in terms of F1,
which is a good metric to look at when dealing with imbalanced data as this data, Naive
Bayes (NB) is a good alternative. Thus, NB is also evaluated as one of the attacker’s
available models.

Figure 5.1: Performance of a set of different classifiers in the task of predicting gender
based on recommender lists. The cells marked in yellow symbolize the best-
performing classifier for that given metric.

To train and test the attacker of this work, the data is split into two parts: the training
data and the test data. It is ensured that both the training and test set reflect the gender
distribution of the original dataset, which is of importance since the dataset is highly
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imbalanced. The training set consists of 80% of the users, while the test set consists of
the remaining 20%.

After splitting the data, the model is trained and hyperparameter tuned by using a
stratified k-fold with 10 folds on the training set. The hyper tuning is performed using
the random grid search from scikit-learn with the F1 metric as optimize parameter. The
results after hyperparameter tuning are visualized in Figure 5.2 for the LogReg model
and Figure 5.3 for the NB model.

Figure 5.2: Performance after the hyperparameter tuning for the Logistic Regression
model.

Since the goal is to test whether the obfuscated items leak user genders, the trained
model is tested with both the original recommendations and the corresponding obfuscated
recommendations.

5.3 Protection Strategies

The general strategy used to protect the gender user attribute in this thesis is recommender
list obfuscation. Specifically, some items of the originally generated recommender lists
are removed, and thus new items are added, with the goal of preserving privacy. This
replacement strategy is selected because previous works, presented in chapter 3, have
suggested that introducing noisy and new data into sensitive data can lessen the simplicity
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Figure 5.3: Performance after the hyperparameter tuning for the Naive Bayes model.

of extracting sensitivity characteristics. Furthermore, as this thesis concern recommender
lists, it is relevant that all lists are of the same length - resulting in a replacement
being the appropriate choice as opposed to only removal or insertion. However, since
replacement can be seen as a combination of removal and insertion, removal and insertion
are presented separately in this section.

5.3.1 Traditional Obfuscation Strategies

The traditional obfuscation strategies are the strategies that are applied as obfuscation
strategies in user-item matrices in previous work. The implemented strategies are a
sample of the presented strategies from section 2.5.

Removal Strategies

The first part of replacement is to find items to be removed. Characteristics that are
advantageous for the items to be removed are that they are the least user-typical items
in the recommender list and the most gender-typical. For the selection of x items to
be removed, defined as a percentage of the original recommender list length of 10, the
following strategies are implemented.

Random Removal The random strategy is very straightforward. x items from the
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original recommender list are chosen randomly.

Gender-Based Removal With the gender-based removal, the x items to be replaced are
chosen based on the strength of the items’ correlation to the user’s gender. A
prerequisite for this implemented strategy is a classification of typical male and
female items. To separate the gender-indicative items into female and male items,
users’ historical ratings and their corresponding gender is fed into a LogReg model.
The average coefficients based on 10 folds of the LogReg model fitting determine
the degree to which each item correlates to one of the two genders - male and
female. The items that correlate the most to female users are added to a list Lf ,
and the items that correlate the most to male users are added to a list Lm. This
separation of genders is based on the code implementation of Slokom et al. (2021).
Lm and Lf are ordered according to the strength of the correlation between a given
item and the gender class.

The more gender indicative an item is, the more likely it is that this item is
removed. There are two implemented options for gender-based removal, either
gender-random or gender. The former option will select items randomly if there,
eventually, are no more items existent in the intersection of the gender list and
the user’s recommender list. The latter only selects gender-indicative items, and if
there are no more gender-indicative items, no more items are replaced, even if less
than x items are selected.

Insertion Strategies

Insertion strategies are strategies for selecting new items to be inserted into the recom-
mender list. The main goal for these strategies is to make the modified recommendation
list less gender indicative, but it is also preferable that the inserted items correspond to
the users’ interests. Whenever we are using a presumed ideal recommender algorithm,
the top k recommended items are sorted based on user relevance, where items higher
in the list correspond to a more likable item for the user. With this knowledge, it is
reasonable to assume that inserting the new items at the end of the recommender list
will yield the best recommendation result.

Random Insertion With the random insertion strategy, items are selected randomly from
the item catalog. This strategy has no guarantee for adding user-relevant items, as
it inserts uncontrolled noise to the lists.

Popularity Insertion For popularity insertion, items are sampled based on the number of
times they are rated. Items that are rated more often are more likely to be inserted
into the new recommendation lists. There is often a reason why popular items, in
this case, movies, are popular, and it is therefore likely that these added items are
enjoyed by the users. By sampling the items, the same most popular item is not
always chosen, making it a little less obvious that an obfuscation has taken place.
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5.3.2 Obfuscation with k-Furthest Neighbors

To obfuscate on a less naive level, obfuscation with the help of k-Furthest Neighbors
(kFNs) is proposed. The idea of kFN was first presented in Said et al. (2012), aiming to
increase diversity in the recommendations - not focusing on privacy preservation. kFN is
based on the phrase "The enemy of my enemy is my friend". The general idea is that
items disliked by users that are dissimilar to you can be relevant to you. It is likely
that these items are less known items - not the typical top items that most users have
rated - thus resulting in a more diverse set of recommendations. The intention of adding
kFN-based obfuscation is that it adds unexpecting items while simultaneously including
some degree of personalization.

As presented in chapter 4, the pre-processed dataset used to generate the original
recommendations in this thesis only considers the positive ratings, meaning ratings >=
3. Consequently, when implementing the kFN algorithm, the ratings under 3 need to be
included. Therefore, for all users present in the processed dataset, any existent rating
r < 3 for items present in that same dataset is retrieved. The retrieved bad ratings
are then appended to the pre-processed dataset for the kFN-generation. The number
of unique items and users in the dataset is thus preserved, but the number of total
interactions has increased.

kFN is a modification of the more known k-Nearest Neighbor (kNN) algorithm, which
is widely used in memory-based collaborative filtering. kNN finds the k most similar
users to a user u, and based on these neighbors’ highly rated items, the ratings for items
unseen by user u are predicted. To calculate the similarity between two users, similarity
formulas such as adjusted Cosine similarity and Pearson correlation is employed.

kFN is mostly used in the context of serendipity, where the goal is to recommend
unexpected and relevant items. In this experiment, the hope is that this "unexpectedness"
introduces less gender-indicative and known items. In terms of the performance of kFN,
Said et al. (2013) conducted an experiment where they compared kFN to kNN based on
precision/recall and a questionnaire answered by the users of the system. The results
showed that in terms of precision and recall, kNN outperforms kFN. However, in their
questionnaire, they found that a high predictive accuracy does not always correspond to
high perceived usefulness for the end user, supporting that kFN is a suitable alternative.

Pearson =
∑

i∈Iuv
(rui − ru)(rvi − rv)√∑

i∈Iuv
(rui − ru)2

√∑
i∈Iuv

(rvi − rv)2
(5.1)

For the implementation of kFN, the dissimilarity between two users is calculated based
on the inverse Pearson similarity. Instead of inputting neighbor v’s real ratings rvi and
rv in the formula for Pearson correlation, as seen in Equation 5.1, the inverse ratings
of user v, r′

v are inserted. r′
v is calculated as shown in Equation 5.2, where rmax is the

maximum possible rating value, rmin the minimum value, and r the true rating.

r′ = rmax − r + rmin (5.2)

The recommendation generation based on the kFN algorithm in this thesis is performed
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with the help of the presented User-Based-Collaborative-Filtering repository ZwEin27
(2015). As that project only handled the prediction of a given item for a given user
based on kNN, the code had to be modified to fit the experiments in this thesis. These
modifications included adding the kFN-algorithm and making the input parameters
match the dataset of the thesis.

As it is desirable that the dissimilar users have opposite interests, the concept of
minimum co-rated items is introduced. In contrast, if we only looked at dissimilar rating
habits, two users would be seen as dissimilar if they have no ratings of common items.
This is not in our interest, as we require rating pairs between dissimilar users. Hence,
throughout this experiment, the minimum co-rated items variable is set to 3. This ensures
that for each dissimilar user pair, both users must have rated at least three of the same
items.

When it comes to the selection of which items to remove to make room for the new
recommendations, the naive solution of removing the x last items in the recommender
list is used. As recommendations traditionally are arranged in descending order - based
on predicted rating -, this leads to removing the less relevant items from the original
recommender lists. Then, the top x items of the kFN-generated recommendations are
appended to fill the now remaining spots in the top-10 list.

5.4 Hypotheses
In short, the research questions consider the ability to use obfuscation of recommender lists
to mitigate the simplicity of attribute inference attacks while simultaneously protecting
the degree of personalization. The hypotheses for the presented protection strategies and
attack scenario are summarized into the following:

1. As the goals of personalization and privacy are conflicting, the first hypothesis
is that decreased inference attack performance - as a result of the obfuscations -
comes with the drawback of decreased recommendation accuracy.

2. Since a property of popular items is that many people like it, it is assumed that
insertion based on popularity will create a more well-performing recommender list
than random item insertion.

3. Furthermore, as an extension to the previous hypothesis, since adding the most
popular items presumably adds typical male items, based on the knowledge that
around 60.000 ratings are provided by men and only 20.000 by women, the attack
performance is assumed to be higher for the popularity item insertion.

4. For kFN, one can assume that less popular - meaning both lower-rated and less-
rated - items will be added to the recommender lists, resulting in more diverse
ones. With more diverse recommender lists, the hypothesis is that the classifier
cannot draw a conclusion as easily as when users have similar recommender lists.
Moreover, since related works of kFN have shown that it performs decently in terms
of accuracy, it should do so in this experiment as well.
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5. When it comes to the side effects, it is expected that both coverage and diversity
will increase when new less personalized items are added.

5.5 Experiments

The experiments of this thesis investigate the possibilities of using obfuscation as a
privacy tool for recommendations. Figure 5.4 illustrates the different combinations of
removal and insertion strategies that are tested.

First of all, as this thesis’ research questions reveal, the idea is to use previously known
obfuscation methods. One such familiar strategy, used in e.g. Xin et al. (2022), is the
popularity-based insertion. Additionally, popularity-based insertion is simple and a naive
way to incorporate items that are liked to some degree by most users. This is similar to
how a user can find new movies to watch without a personalized system. If a user looks
at sites like IMDb 1, he can assume that a movie rated highly by a lot of users is a movie
he will enjoy - although he has no knowledge of whether the other users are like him or
not. In essence, this strategy aims at protecting personalization more than mitigating
inference attacks.

When it comes to the selection of gender-based removal, one of the reasons why it is
implemented is that this work is similar to the gender-based user-item obfuscation that
is found in, among other works, Weinsberg et al. (2012) and Strucks et al. (2019). Their
works introduce gender removal and/or insertion and have luck with it. Moreover, the
hope is that this strategy will lower the attack performance by removing items that are
highly correlated to a specific gender. To maintain some degree of personalization, this
protection strategy is combined with popularity insertion.

The reason why gender-based removal is parted into two strategies is that for some
users, the number of gender-indicative items is less than the items we want to remove.
Consequently, it is interesting to compare the exclusively gender-based removal with a
strategy that removes an additional amount of random items such that the same amount
of items is replaced for each user.

The random strategies - both for insertion and removal - create a "baseline". First,
we want the obfuscated strategies to perform better than the original, but we also want
the goal-oriented strategies to perform better than a "zero strategy"-strategy, which
randomness is. With random insertion and removal, we have no control over what is
added or discarded. Nevertheless, it is likely that the strategies clear away human-based
patterns that the attacker is trained on, lowering the attack performance. Likewise to
gender-based removal, random removal is therefore combined with the personalization
strategy "popularity insertion".

Lastly, kFN-based obfuscation is a way of introducing more structured and personalized
recommendations into the recommender lists. Because the focus is on personalization,
the items that correlate the least to the users’ historical activity are removed first - this
means the last items in the recommender lists. The assumption is furthermore that the

1https://www.imdb.com/
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"nature" of kFN enables it to add unknown items that break the gender pattern existent
in the original recommender lists. Overall, the strategy aims to increase privacy with the
insertion strategy instead of the removal strategy, as contradictory to for example the
"gender-based removal & popularity-based insertion".

For each of the cells in Figure 5.4 with a number inside, the number denotes the exper-
iment ID. Black cells symbolize no conducted experiment. For each of the combinations,
an obfuscation of 20%, 40%, and 60% is performed.

After the different obfuscations are performed, they are evaluated based on their
recommendation accuracy (presumed user likability) and how well a gender inference
attack performs on the obfuscated recommender lists. For comparison purpose, both the
evaluation of recommendations and the inference attack is also performed on the original
user recommendations.

Figure 5.4: The combinations of configurations for the experiments. A black cell denotes
that this combination will not be used.

In terms of performance measuring for the recommendations and attack, the following
metrics are used to determine whether the obfuscations are useful.
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5.5.1 Recommendation Performance

The following performance metrics are used to evaluate the performance of the obfuscated
recommendations. They are all implemented with Elliot 2.

Precision Precision is selected as a performance metric because it describes the size of
the relevant proportion of the recommender lists. The precision metric answers the
question, "How many relevant items do the new recommender lists hold?".

Recall The recall metric gives an indicator of to which degree the new recommender lists
manage to retrieve the relevant items from the test set.

nDCG To also evaluate the order of the recommendations, where the top relevant items
should be presented first, nDCG is included in addition to precision and recall.

Item Coverage and Shannon Entropy (SEntropy) These metrics measure the diversity
and coverage of the recommender lists. Adding random or semi-random items to
recommender lists may also result in side effects. In this work, the potential side
effects are measured in terms of diversity and coverage.

5.5.2 Inference Attack Performance

The attack performance is measured with the metrics described in this subsection, all
implemented automatically with the help of PyCaret.

Accuracy Accuracy simply measures the number of correct predictions and is thus a
relevant metric for classification tasks.

F1 Score Accuracy alone is not a good way to measure the performance of a system.
Especially in these experiments, where the genders are highly imbalanced, high
values for accuracy could mean that only the majority class is predicted. Con-
sequently, the attack performance is also measured with an F1 score that better
reflects prediction results on imbalanced datasets.

AUC Score AUC score is a metric that also looks at the falsely predicted items in its
calculation. However, as the AUC score can be optimistic on skewed datasets, it
should not stand alone as a metric in an imbalanced classification task.

2https://elliot.readthedocs.io/en/latest/
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6 Results
The results from the experiments in this thesis are separated into two. The first part is
the results from the recommendations with regard to the recommendation accuracy, and
the second part the results of the attribute inference attack. In each of the separations,
the results are presented in one table for each obfuscation strategy pair (removal and
insertion). The tables display the results for the three different replacement proportions,
namely 20%, 40%, and 60%.

6.1 Recommendation Performance

This section presents the results of the recommender performance for each of the con-
ducted experiments. First of all, Table 6.1 illustrates the performance of the originally
generated recommendations, for comparisons. The succeeding tables present the different
obfuscation methods and the impact of the varying number of items replaced. Generally,
we can see that a low degree of obfuscation results in more accurate recommendations
for the users compared to a high degree of obfuscation. Simultaneously, the results show
that with a higher degree of obfuscation, the recommender lists display more of the items
in the catalog, thereby increasing the coverage.

Table 6.1: Recommendation performance of the original user recommendations.
Original Recommendations

Precision Recall nDCG Item Coverage SEntropy
0.0818 0.110 0.110 422 7.66

6.1.1 Random Insertion

Table 6.3, Table 6.4, and Table 6.2 presents the results of the obfuscation strategies where
new items are selected randomly from the whole item set. The first table, Table 6.3,
illustrates the random removal case, whereas Table 6.4 displays the results where items
are removed based on how related they are to the user’s gender. Lastly, the results
in Table 6.2 also present a gender-based removal selection, but here random items are
removed if there are no more gender-specific items present in the recommender list.
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Table 6.2: Recommendation performance of the random-random obfuscation of user
recommendations.

Random Removal & Random Insertion (Ex. 1)
Replacement Precision Recall nDCG Item Coverage SEntropy
0.2 0.0684 0.0927 0.0982 1125 8.57
0.4 0.0520 0.0686 0.0805 1371 9.30
0.6 0.0359 0.0470 0.0629 1461 9.86

Table 6.3: Recommendation performance of the gender-random obfuscation of user re-
commendations.

Gender Removal & Random Insertion (Ex. 2)
Replacement Precision Recall nDCG Item Coverage SEntropy
0.2 0.0659 0.0886 0.0936 1150 8.55
0.4 0.0533 0.0696 0.0777 1368 9.17
0.6 0.0422 0.0566 0.0672 1426 9.49

Table 6.4: Recommendation performance of the gender with random-random obfuscation
of user recommendations.

Gender w/ Random Removal & Random Insertion (Ex. 3)
Replacement Precision Recall nDCG Item Coverage SEntropy
0.2 0.0659 0.0894 0.0938 1138 8.54
0.4 0.0521 0.0687 0.0774 1377 9.24
0.6 0.0337 0.0454 0.0566 1455 9.81

6.1.2 Popularity Insertion

The tables presented in this section concern the obfuscation strategies where new items are
inserted based on the general popularity of the item. Similarly to the former subsection,
Table 6.6 concerns random item removal, Table 6.6 gender-based removal, and Table 6.7
the gender-based with added random removal.

Table 6.5: Recommendation performance of the random-popularity obfuscation of user
recommendations.

Random Removal & Popularity Insertion (Ex. 4)
Replacement Precision Recall nDCG Item Coverage SEntropy
0.2 0.0696 0.0930 0.0970 709 8.14
0.4 0.0549 0.0761 0.0820 891 8.58
0.6 0.0419 0.0577 0.0675 962 8.94
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Table 6.6: Recommendation performance of the gender-popularity obfuscation of user
recommendations.

Gender Removal & Popularity Insertion (Ex. 5)
Replacement Precision Recall nDCG Item Coverage SEntropy
0.2 0.0672 0.0902 0.0942 710 8.11
0.4 0.0554 0.0727 0.0796 846 8.46
0.6 0.0464 0.0619 0.0702 906 8.65

Table 6.7: Recommendation performance of the gender-random-popularity obfuscation
of user recommendations.

Gender w/ Random Removal & Popularity Insertion (Ex. 6)
Replacement Precision Recall nDCG Item Coverage SEntropy
0.2 0.0671 0.0901 0.0942 723 8.11
0.4 0.0535 0.0710 0.0786 849 8.49
0.6 0.0379 0.0506 0.0609 957 8.91

6.1.3 k-Furthest Neighbor-based obfuscation

The results for the k-Furthest Neighbor-based obfuscation are presented in Table 6.8 .

Table 6.8: Recommendation performance of the kFN-based obfuscation of user recom-
mendations.

kFN Obfuscation (Ex. 7)
Replacement Precision Recall nDCG Item Coverage SEntropy
0.2 0.0708 0.0929 0.100 740 8.28
0.4 0.0570 0.0751 0.0888 801 8.65
0.6 0.0418 0.0544 0.0739 866 8.92

6.2 Attack Performance

In terms of the attack performance, two models were used to perform the attribute
inference attack: a Logistic Regression (LogReg) and a Naive Bayes (NB) model. For
the original recommendations, Table 6.9 displays the metric scores of the classification
task performed by the two models. As can be seen from this table, the LogReg model
performs significantly better than NB. The same performance gap is seen in the results
for the obfuscated recommendations, and consequently, the NB results are presented
in the appendix (chapter 8.0.4) for better readability. When it comes to the results of
the attack performance, the general trend is that increased obfuscation leads to more
incorrect guesses of gender.
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Table 6.9: Attack performance on the original user recommendations.
Original Recommendations

Model Accuracy AUC F1
LogReg 0.8284 0.9199 0.7212
NB 0.5503 0.7265 0.5280

6.2.1 Random Insertion

Table 6.10, Table 6.11, and Table 6.12 presents the attack performance on the different
obfuscation strategies where new items are inserted randomly.

Table 6.10: Attack performance on the obfuscated recommendations with random removal
and random insertion.

Random Removal & Random Insertion (Ex. 1)
Replacement Accuracy AUC F1
0.2 0.7515 0.8279 0.6111
0.4 0.7396 0.7764 0.5111
0.6 0.7278 0.6802 0.4250

Table 6.11: Attack performance on the obfuscated recommendations with gender removal
and random insertion.

Gender Removal & Random Insertion (Ex. 2)
Replacement Accuracy AUC F1
0.2 0.8284 0.9013 0.7071
0.4 0.8757 0.9297 0.7789
0.6 0.8521 0.9008 0.6988

Table 6.12: Attack performance on the obfuscated recommendations with gender-random
removal and random insertion.

Gender w/ Random Removal & Random Insertion (Ex. 3)
Replacement Accuracy AUC F1
0.2 0.8284 0.9241 0.7129
0.4 0.8462 0.9165 0.6829
0.6 0.7751 0.8518 0.4722
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6.2.2 Popularity Insertion

Table 6.13, Table 6.14, and Table 6.15 presents the attack performance on the different
obfuscation strategies where new items are inserted based on their popularity.

Table 6.13: Attack performance on the obfuscated recommendations with random removal
and popularity insertion.

Random Removal & Popularity Insertion (Ex. 4)
Replacement Accuracy AUC F1
0.2 0.7870 0.7881 0.6538
0.4 0.7219 0.7323 0.5053
0.6 0.6036 0.5680 0.3232

Table 6.14: Attack performance on the obfuscated recommendations with gender removal
and popularity insertion.

Gender Removal & Popularity Insertion (Ex. 5)
Replacement Accuracy AUC F1
0.2 0.8521 0.9219 0.7525
0.4 0.8225 0.8696 0.7000
0.6 0.8343 0.8696 0.6818

Table 6.15: Attack performance on the obfuscated recommendations with gender-random
removal and popularity insertion.

Gender w/ Random Removal & Popularity Insertion (Ex. 6)
Replacement Accuracy AUC F1
0.2 0.8343 0.9041 0.7255
0.4 0.8225 0.8671 0.6875
0.6 0.7633 0.7972 0.5238

6.2.3 k-Furthest Neighbor-based obfuscation

The attack performance for the k-Furthest Neighbor-based obfuscation is presented in
Table 6.16.
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Table 6.16: Attack performance of the kFN-based-based obfuscation of user recommend-
ations.

kFN Obfuscation (Ex. 7)
Replacement Accuracy AUC F1
0.2 0.7574 0.7918 0.6095
0.4 0.7101 0.7241 0.4615
0.6 0.6864 0.6603 0.3614
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7 Evaluation and Discussion
The presentation of results in tables is useful in itself, but to better generalize and
compare the results, the attack performance measured in F1 score and recommender
performance measured with nDCG are visualized Figure 7.1 and Figure 7.2, respectively.
This chapter will describe and discuss the presented results and relevant findings.

7.1 Evaluation

The evaluation of the results from chapter 6 is in this section described in the light of
the hypotheses from section 5.4, along with the obvious and interesting characteristics
of the performance graphs. For simplicity, Table 7.1 summarizes whether the presented
hypotheses hold or not.

Figure 7.1: Attack performance measured with the F1 metric for the different obfuscation
strategies.
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Figure 7.2: Recommender performance measured with the nDCG metric for the different
obfuscation strategies.

By looking at Figure 7.1 and Figure 7.2 in conjunction, it is apparent that for this
set of experiments, decreased inference attack performance is generally in accordance
with less personalized recommendations (measured with recommendation performance).
This supports the first of the hypotheses, that brings up the trade-off between privacy
and personalization - an increase in privacy preservation corresponds to decreased
recommendation accuracy. Nonetheless, by investigating Figure 7.1 further, it can be
seen that an increased degree of obfuscation does not automatically lead to more privacy-
preserving recommender lists. For experiments 2, 5, and 6, the inference attack performs
better on some of the more obfuscated recommender lists than the original lists, on
average. To conclude, even though there is a trade-off between utility and privacy, lower
utility in the recommendations does not automatically mean higher privacy.

Although increasing the degree of obfuscation generally results in lower assumed user
utility, some of the strategies perform better than others. This thesis’ second hypothesis
implies that inserting popular items will lead to better performance than adding random
items will. The popularity strategies correspond to experiments 4, 5, and 6. If we compare
each of these experiments with the experiments with the corresponding removal strategy,
but the opposite insertion strategy (e.g. "random removal & popularity insertion" with
"random removal & random insertion", etc.) we see that this hypothesis holds. To
conclude, it is evident that the popularity-based insertion strategies outperform the
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random-based insertion with regard to personalization.
Even though experiment 6 - "removal with gender-random and insertion based on

popularity" - performs better than the corresponding strategy with random insertion, the
recommender performance is worse than all other strategies. Moreover, the combination
of gender and random removal (into the gender-random removal strategy) performs poorly
also in terms of protection against inference attacks. The only removal strategy that
gets higher inference accuracy, meaning less privacy protection, is gender-based removal.
In essence, this is likely because both strategies remove the same gender items, but the
strategy that does not remove an additional number of randomized items has a lesser
obfuscation degree. On the other hand, this shortage of replaced items is advantageous
for recommender performance. Altogether, it can be concluded that the implemented
"gender"- and "gender-random"-based strategies are not beneficial strategies for privacy
protection.

The third hypothesis questions the dataset’s rating imbalance. It suggests that adding
popular items will result in higher inference attack accuracy because many males have
rated these popular items. Guessing male for all user’s in the classification task will
result in high attack accuracy because most users are men. In terms of the F1 metric,
which can be seen in Figure 7.2, there is no indication of this hypothesis being correct.
Since F1 is designed to work well on imbalanced data, looking at the accuracy metric to
see whether popularity-based insertion performs worse in terms of privacy protection is
also interesting. What the results show is that the accuracy of the inference attack is
generally lower for popularity insertion, compared to random insertion. Consequently,
hypothesis three can be rejected.

Experiment 7 - the "smarter" obfuscation method that tries to add personalized and
unexpected items with the help of k-Furthest Neighbor (kFN) - gets some of the highest
Shannon Entropy values compared to the other strategies. This high diversification
score can imply that there is indeed some kind of unexpectedness and novelty in the
recommendations. To clarify, diversity does not necessarily mean unexpectedness, but
if users are shown different kinds of items in their recommender lists, it might result
in them getting recommendations that they would not expect. Hypothesis four first
assumes that this diversification may lead to lower accuracy of the inference attack.
Figure 7.1 supports this, as the line for Experiment 7 is in the lower section of the attack
scores. Furthermore, the hypothesis also refers to earlier works and indicates that the
recommender performance for kFN obfuscation should be comparable to the original
recommendations. Also, this part of the hypothesis holds, as the kFN-based obfuscation
outperforms all the other strategies in terms of recommender performance.

What is interesting in Figure 7.1 is that even though Experiment 7 seems to be the
lower bound of the attack score in each of the obfuscation proportions, at 60% obfuscation
degree, Experiment 4 scores lower. Additionally, with reference to the recommendation
performance, Experiment 4 does not perform badly. Anyhow, experiment 4 implements a
"random removal strategy", meaning that for each randomly generated removal, we might
remove either good or bad items. This means that even though this implementation
and random item selection performs well in total, it does not explicitly ensure good
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recommender performance or attack protection for each individual user.
Lastly, the side effects evident in the results of chapter 6 should be evaluated. The

hypothesis that concerns these side effects implies that when we add new items, this will
lead to more diverse recommendation lists, that use a larger set of the item catalog. When
looking at the trend of item coverage and Shannon Entropy for increased obfuscation
proportion, this hypothesis holds.

Table 7.1: Summary of whether the hypotheses hold or not.
Hypothesis Result
H1 Holds.
H2 Holds.
H3 Does not hold.
H4 Holds.
H5 Holds.

7.2 Discussion
This section brings up topics that are relevant to this work, considering both the
experiments with results and the general field of privacy in recommender systems. The
goal is to discuss this thesis’ findings in the context of earlier works and how they might
be limited or affected by the choices taken.

7.2.1 Limitation of Offline Testing

Offline testing does not automatically measure the correct user opinions, because the
assumed "likes" are only based on items that the user has interacted with, historically.
Figure 2.2 from section 2.1 illustrates, in general, how users find new items to rate, which
is by looking at items that the recommender system provides them. Often, the total item
catalog is so large that it is difficult for a given user to navigate through the items. As a
result, finding unknown items that are not presented by the recommender system is rare,
but that does not mean that these unknown and not-shown items are all irrelevant to
the user.

To repeat the property of the long tail, presented in subsection 2.1.1, there exists a
few items that are rated extremely often while most items are rarely rated. Since many
recommender systems utilize, at least to some degree, the concept of similarity between
users, it is an inherent property that popular items are recommended more often. Under
these circumstances, the probability that the historical data prove a long-tail item to be
relevant is low. This affects offline testing because it results in test sets mainly consisting
of ratings for popular items. As a result, it is difficult to measure the performance of
serendipitous recommendations.

The kFN-generated items are based on the concept of serendipity and do therefore
fall short in offline evaluations. As mentioned in subsection 5.3.2, the paper that this
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implementation of kFN is inspired by, conducted a user study in combination with
the traditional evaluation metrics. In their user-centric results, they found that the
usability and relevance of the kFN-generated items scored similarly to those who were
generated based on k-Nearest Neighbor (kNN). However, as earlier presented, the kNN-
generated recommendations outperformed kFN in terms of precision and recall (traditional
evaluation metrics). As a result, the generated inserted items of this work may be of
more relevance to the user than what the traditional metrics suggest.

7.2.2 The Necessity of Obfuscation

Now, is it really necessary to modify people’s recommendations at the expense of the
recommendations’ relevance? It is important to note that the collection of experiments in
this thesis only presents a simplified example from the real world, which can be extended
to more sensitive domains. For most people, revealing their gender is not something they
worry about. However, if we are considering the health or news domain, and sensitive
attributes such as health status or political orientation, it gets more serious. In light
of this thesis’ results, it can be seen that an attacker is able to infer gender with high
probability, based on generated recommendations. The binary inference of gender is
simple compared to, for example, disease inference where there are numerous different
classes to predict. However, when combining user interactions with some background
information, such as publicly known correlations about health, e.g. that obese people
have a higher risk of getting diabetes type 2, an adversary may discover the person’s
health status.

To conclude, gender reveals based on movie history may seem harmless. Instead of
removing stereotypical items, one can think that "stereotypical items are stereotypical
for a reason, so why change recommendations?". Yet, if recommendations of a medical
help site were revealed, and an attacker got access to conditions that were relevant to
your earlier click history of the site, that could be harmful. As shown in this thesis,
obfuscation could be a tool to better preserve the privacy of users.

7.2.3 Poor Performing Gender Removal

As commented in section 7.1, the gender removal strategy did not perform as well as
intended. When it comes to recommender performance, it is intuitive that removing
gender-based items may lower the user-perceived utility of the recommendations. As
stated in the last subsection, stereotypical items are stereotypical for a reason. The
purpose of this thesis is not about diving deep into the psychology of the different genders,
so the stereotypical male and female behavior is not further elaborated. However, one
theory behind the lack of personalization is that typical gender-indicative items are items
relevant to the user.

In addition to reducing user-perceived likability, removing gender-based items also
increased the attack accuracy. One assumption of why this happens is that when we insert
new items, either based on popularity or randomly, the probability of these being typical
male-rated items is high since the dataset consists of mostly male ratings. However, this
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assumption alone does not hold, as all of the combination strategies also implement either
popularity- or random-based insertion.

Figure 7.1 shows that by selecting "random removal" instead of "gender-based removal",
the attack performance can be lowered. For each new obfuscation proportion, a new
removal and insertion is carried out. This means that in six out of six randomized
removals (Ex. 1 at 0.2, 0.4, and 0.6 in addition to Ex. 4 at 0.2, 0.4, and 0.6), the random
removal strategy outperforms the gender-based removal. Altogether, the gender-based
removal implemented in this thesis is not to be recommended.

A reaction to the poor privacy performing gender removal was to inspect the lists of
gender-indicative items. The naive inspection performed was to make sure that the items
of the gender indicative lists consisted of items that, for the human eye, looked fitting to
each of the genders. Note that this is an extremely naive verification, as classification
models may be able to extract information that is not as gender biased as the human eye
is, in addition to finding correlations that are not as clear. The top three male indicative
items found by the Logistic Regression (LogReg) model were "The American President
(1995)", "Four Rooms (1995)" and "A Fish Called Wanda (1998)". For females, the top
movies as presented by the item’s coefficients were "Raise the Red Lantern (1991)", "The
First Wives Club (1996)," and "I Shot Andy Warhol (1996)". The reader can look at the
respective movie covers to either agree or disagree on what genders these movies have as
their target group. Overall, it seems like the problem is rooted in the implementation of
"gender-based removal", not the gender indicative lists Lm and Lf alone.

To sum up, the results and discussions indicate that items the attacker finds gender-
indicative are not the same items that the female-male item-separator, presented in
subsubsection 5.3.1, finds gender indicative. The two of them are both implemented as
LogReg-models. However, they differ from each other because the attacker is trained on
recommendations, while the item separator used in the gender-based obfuscation strategy
is trained on historical ratings. This is likely why the gender-based removal strategy
performs poorly in terms of attack mitigation.

7.2.4 Choice of Classifier

Compared to the work of Xin et al. (2022), the attacker in this thesis is very simple.
There is no implementation of new and advanced statistical models; only the simple and
traditionally used LogReg is utilized. If we look at what the work of Xin et al. (2022)
tries to predict, it is a prediction of the sequence of earlier interactions. This ordered
sequence requires a more advanced model than the binary gender classification of this
work. There is no need to over-complicate the works, and the results of this thesis show
that LogReg is sufficient and fit for the purpose of binary gender classification. As seen
in chapter 6, in almost every obfuscation strategy and proportion, the LogReg predicts
the correct gender for over 70% of the users. Consequently, for the sake of the purpose of
this thesis - experimenting with the effect of different obfuscation strategies - LogReg is
sufficient. However, what earlier works along with this thesis show is that there exists
potential for attackers that want to infer more complicated information about users.
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7.2.5 The Privacy Paradox

In chapter 3, the concept of "privacy paradox" is introduced. Users are sharing more
information while simultaneously being more privacy-concerned. If one would like to
participate in the digital world today, with the products and services that includes, it
cannot be done without paying with your privacy. As mentioned in the introduction,
there is an all-or-nothing mentality, where you either have to accept all terms or be
unable to use the system. The paper discussing the all-or-nothing mentality, Chen et al.
(2022), therefore proposes user control over personal data. This user control, which
enables more selectable privacy protection, can be achieved by implementing different
degrees of obfuscation for different users. The results of this thesis have shown that if one
is willing to sacrifice recommendation utility, one can achieve more privacy protection.

However, this thesis only covers a small and simplified part of the possible inference
attack implementations. For example, also discussed in chapter 3 is the vulnerability that
lies in the relationship between users. If user u shares no personal information, but their
friend, user v, shares everything, earlier works reveal that one can identify attributes of
user u. This should be taken into consideration when implementing obfuscation, or other
privacy-preserving strategies, into a system. Even though movie streaming services do
not consider social relations traditionally, there exist other systems that build on the
social structure of users.

7.2.6 Understandable, Unobtrusive, and Useful

Inspired by the reflections of Slokom et al. (2021) and mentioned in section 2.5, re-
commendations - and especially important when adding synthetic data - should be
understandable, unobtrusive, and useful. Even though the experiments of this thesis
have not directly focused on these three requirements, they are met to some degree.
First of all, the obfuscation should be understandable. The reason why obfuscation is
applied initially is to preserve users’ privacy, which is understandable in itself. By adding
fewer items that reflect the users’ interactions, one can restrict the user characteristics
that may be inferred through user recommendations. However, understanding why the
specific items have been added can be more complicated. The implementation of intuitive
obfuscation methods, as implemented in this thesis, can help to ease the understanding.
First of all, for the item removal, removals are performed either by selecting the most
gender-indicative items, by randomly picking a percentage of the recommender list, or by
removing the last x items from the list. With the exception of randomly picking, these
strategies can be justified and understood easily. If you want to hide your gender, you
could hide the most gender-typical traits, and if you want to remove items that matter
the least to you, simply remove the items that match the least to your preferences.

Over to the next concept, the concept of unobtrusive. There is no work in this thesis
that ensures non-problematic or non-disturbing added items. In fact, at least one of
the implemented strategies might actually increase the likelihood of adding problematic
items. With the strategy of "k Furthest Neighbors", the goal is to find items that are
disliked by a dissimilar user. If user u and user v have opposite interests, recommending
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items disliked by v to user u may introduce user u to things he likes. However, some
items are simply bad items - that would be disliked by everyone. These items may
romanticize problematic topics or be of very bad quality. By introducing such items into
the user u’s recommender list, the recommendations for u may get obtrusive. For the
popularity strategy, on the other hand, we have the reversed case. If an item is approved
by numerous users, it is likely that the item is of good quality and non-problematic.

The last term presented is useful. One of the goals of this thesis is to preserve user
utility in recommendations, meaning to preserve the usefulness of the recommender lists.
The results of the obfuscations show that even though the usefulness of the recommender
lists, measured in nDCG, has decreased compared to the non-obfuscated recommender
lists, the recommendations are still somewhat useful. The definition of useful can also be
extended to more than the traditionally measured match between historical ratings and
generated recommendations. For example, increased diversity or more item-introducing
recommender lists may also count as useful. In that case, the obfuscated recommendations
in this thesis can be said to be useful.

7.2.7 Side Effects of Obfuscation

Visible in all tables in the recommender performance results, see chapter 6, is the fact
that an increasing degree of obfuscation leads to a higher item coverage. This means that
our obfuscation insertion strategies - including random insertion, popularity insertion,
and kFN-based insertion - all manage to retrieve a higher percentage of the total item
catalog compared to the original recommendations. High item coverage is favorable
because it signifies that the items in each recommender list are different from each other
and that the users get different items recommended than their neighbors. Moreover,
a system that is able to present both popular items and less-rated items is a system
that evades the pitfalls of the long tail. Despite the positive notions of coverage, if the
coverage overrides performance measured by traditional metrics such as precision and
recall, that is not favorable.

The item coverage of the original recommendations is 422, meaning that less than
27% of the item catalog is presented in the total of all users’ recommender lists. For
comparison, take a look at the catalog coverage of the overall best-performing obfuscation
technique, meaning kFN. By replacing only two items in each of the recommender lists
of length 10, this percentage is increased to 47%.

One reason why kFN manages to retrieve less known items is that popular good items
are rated more often than popular bad items. In other words, if a system looks at items
rated highly by users similar to you, it is likely that there exist many other users with
neighbors who have rated the same items highly. Contrarily, if a system looks at items
rated with a low score by users dissimilar to you, it is less likely that other users have
neighbors with low ratings on the same items. The statistics of the pre-processed dataset
consisting of both good ratings (>=3) and bad ratings (<3) show that the 3 items that
have gotten the most 5-star ratings are rated by 300, 214, and 198 users, respectively. On
the opposite side of the scale, the items that have gotten the most 1-star ratings are only
rated by 39, 34, and 34 users. To conclude, the obfuscation strategies - here exemplified
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as kFN - are able to contribute to increased item coverage.
Also to be mentioned in terms of item coverage is the high scores of random insertion.

However, a high item coverage is not impressive if one randomly selects items. For the
best-performing item coverage, found by implementing the "random removal and random
insertion", replacing six items results in the total of all recommender lists presenting
almost 93% of all items in the catalog. The relevance of items for this implementation
(recommender performance), on the other hand, does not make up for the high item
coverage score.

The other metric used to measure the side effects is Shannon Entropy (SEntropy).
Similarly to coverage, the diversity also increases when there is an increase in the
obfuscation degree. The same explanations used for item coverage can be applied to
describe the increasing values for Shannon Entropy. With the increasing number of new,
introduced items, some of the items in the original recommender lists are removed.

As the item coverage of the original recommendations reveals, the 845 users’ recom-
mender lists are filled with 10 of the in total 422 different items. In other words, the
same items are repeatedly recommended for the different users. Altogether, when more
items are introduced into the recommender lists (higher item coverage), the appearance
frequency of the items will decrease.

There is a gap between the diversity score for the random-based and popularity-based
insertion strategies, where the random-based strategy is superior. This is intuitive
because adding random items is more likely to give diverse recommender lists than when
adding popular items. This is also reflected in the item coverage. kFN-based obfuscation
performs similarly to the popularity-based insertion strategy. kFN does not really operate
similarly to the popularity-based insertion strategies, so it is more relevant to discuss
why it performs worse than the random-based insertion strategy. First of all, this can
be a result of the kFN-implementation removing the least relevant items first. If we
follow the concept of the long tail, it is likely that the top items for each user are also
recommended to a large number of other users, meaning that we remove the least overall
popular items. Secondly, it can also simply be a result of the random insertion strategy
being able to introduce a more diversified set of items, thereby being superior to kFN.

7.2.8 Research Questions

The goal of this thesis is summed up in the abstract description of "exploring techniques for
more privacy-preserving recommendation lists". This main goal can be said to be fulfilled,
as different techniques that have proven to create less gender-leaking recommender lists
are proposed and tested. Moreover, the research questions presented in the introduction
were the following:

1. To what extent is it possible to obfuscate recommender lists in order to lower the
accuracy of attribute inference attacks by using techniques proven effective in the
obfuscation of user-item matrices?

In terms of the first research question, first of all it is possible to utilize the given
obfuscation techniques. However, not all of the tested obfuscation strategies justified
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themselves to be useful, thereby resulting in different degrees of suitability. For example,
the promising gender-based obfuscation technique discussed in Weinsberg et al. (2012),
Strucks et al. (2019), and Slokom et al. (2021) did not perform well. In fact, for some
degrees of obfuscation the attack performance of recommendations with gender removal
performed worse than the original recommendations. In contrast to the previous works,
this work exclusively removes gender-specific items. For comparison, Weinsberg et al.
(2012) only adds ratings based on the typical items for the opposite gender. Yet, Slokom
et al. (2021) also remove items based on the most gender-indicative items, which in
their case leads to lower gender inference results. The differences between this work and
Slokom et al. (2021) are that their work concerns user-item matrices, they use another
dataset (Movielens-1M), and they also add items to the recommender lists by inserting
items from the opposite gender’s indicative list. A decisive comparison between my work
and Slokom et al. (2021) is difficult to perform, because of the differences in data format
and size. Whereas this work concern replacement of 20%, 40%, and 60% of lists of length
10 (the sum of all the lengths of recommender lists in the dataset is 8450), the other
work replaces 1%, 2%, 5%, and 10% of the total user-item matrix (which contains one
million ratings).

Another comment regarding this research question is that the introduced kFN-based
obfuscation strategy was the overall best for minimizing the attack performance. This
strategy is not included in the "existing techniques proven effective in the obfuscation of
user-item matrices", but it is relevant to mention that it is an existing technique used for
recommendation generation that is transferable to the protection domain. It was also
apparent that the Random Removal-based strategies (Experiments 1 and 4) perform
comparably to kFN, making also these fit for attribute inference attack protection.

2. In terms of recommendation performance, how do the obfuscated recommendation
lists perform compared to the originals? Moreover, are there considerable differences
between the explored obfuscation techniques?

Similarly to the previous research question, the kFN-based obfuscation performs best in
terms of the overall presumed user evaluation. If we look at the precision of recommender
lists obfuscated with kFN, we see that the obfuscation of 60% manages to present 4,2%
relevant items per user on average. This number might seem very low, as this means less
than half of a relevant item per user, but the original recommendations only come up with
the average of 8.2% relevant items per user. Whether the obfuscated recommendations
perform well enough or not depends on the acceptance of the recommender’s performance.

When comparing the different strategies, one can first identify that seemingly all of the
obfuscation strategies follow a linear graph that decreases with constant speed based on
the proportion of replaced items. This makes it easier to compare the strategies to each
other because the highest rate of decrease is the least favorable strategy. The gender-
random replacement strategies perform the worst, along with Experiment 2: "Gender
Removal & Random Insertion", whereas kFN is relatively superior to the other strategies.
In the upper middle, we find strategies such as "Random Removal & Popularity Insertion"
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and "Gender Removal & Popularity Insertion", where the popularity insertion makes
itself useful by showing that popular items are indeed liked.

If we look at the answers to the research questions in combination, the overall best-
performing obfuscation strategy, considering both low attack accuracy and high recom-
mendation utility, is the kFN-based obfuscation. When 60% of the original recommender
list is being replaced, the kFN based protection of the gender attribute achieves 50% of
the original attack score, measured in F1. In terms of recommendation performance, this
same obfuscation achieves 67% of the original score in terms of nDCG. The randomized
removal strategies also perform well, but as they are randomized one cannot ensure that
they perform well for each individual user.

Returning to the general goal and purpose of this thesis, are the techniques used in
user-item matrices transferable to the recommender list domain? Yes, one could use the
traditionally used obfuscation methods such as popularity insertion, random removal,
etc. But, the most favorable is to look to serendipity and novelty research instead.
Serendipity techniques, such as kFN is, balances unexpected and relevant in a way that
looks promising also for the privacy domain.

7.3 Contributions
In this master thesis, I have presented a study of different obfuscation techniques used in
recommender systems. The work has contributed to the understanding of how obfuscation
can be used to protect user privacy in recommender lists. An important factor of the
obfuscations was to avoid modifications that largely harmed the accuracy or quality of
recommendations.

Through the research, I have identified several methods of obfuscation that can be
used in recommender systems, where the most promising method is the kFN-based
method. Moreover, the results also point out that an increased degree of obfuscation,
where the obfuscation decreases personalization, does not necessarily correspond to more
privacy-preserving recommender lists.

Overall, the work can be valuable as a starting point for a needed further research into
the privacy protection of recommender lists.

63





8 Conclusion and Future Work

This Master Thesis concerns the privacy issue in recommender lists. Previous research
has shown that recommender lists are vulnerable to attribute inference attacks, and thus
this work has experimented with various obfuscation strategies to mitigate the accuracy
of these attacks. More specifically, it tries to prevent gender inference attacks.

The implemented obfuscation strategies consisted of a set of formerly presented obfus-
cation techniques used in the obfuscation of user-item matrices. These strategies included
random-based and popularity-based insertion of items, and removal strategies that in-
clude gender-based and random-based strategies. In addition to these simple obfuscation
implementations, a technique for inserting serendipitous items was introduced. The
reasoning behind this introduction is that serendipity in recommender systems is summed
up in the two words "unexpected" and "useful". Unexpectedness of recommendations does
affect the attacker because it results in less distinct gender patterns in the recommender
lists. The serendipity strategy implemented is based on k-Furthest Neighbor (kFN),
which builds on the idea that "The enemy of my enemy is my friend".

The findings from the results show that most of the presented and tested obfusca-
tion strategies can be applied to recommender lists to lower inference accuracy. The
strategies that performed badly were the gender-based removal strategies, because the
implementation of them leads to higher gender inference accuracy along with a noticeable
decrease in the recommender performance. On the other hand, in terms of good results,
the serendipity strategy turned out to give a good decrease in inference accuracy while
simultaneously giving little decrease in recommender performance, compared to the other
strategies. Explained in percentages, the attack score for kFN, measured in F1, is as
low as 50% of the F1 score for an attack performed on the original recommendations.
In terms of recommendation performance, this same obfuscation achieves 67% of the
original score in terms of nDCG.

Future Work

The work presented in this thesis is not a final answer to the privacy issue in the
recommender system field, and there are numerous directions in which further development
can follow. The future works proposed in this section suggest four tracks of various
difficulties that could be interesting to look deeper into.
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8.0.1 More Advanced Inference Attackers

Consistent with what was mentioned in the discussion, the attack strategy used in this
thesis is not particularly advanced. It is a simple binary classifier that takes in a set of
recommendations, and during training also the gender. However, one could look more
into an advancement in the attacker, for example by utilizing context. Some recommender
systems do differ between different contexts for the user, e.g. where there is a separation
between recommendations given in the morning and recommendations given late at night.
Moreover, one could utilize social relations more, given that the recommender system is
used by a system that handles these relations. Such an advanced attacker is not relevant
to the recommendations and data used in this thesis, but it could be relevant in real-world
implementations of recommender systems. To implement this attacker, the adversary
needs to know what type of contexts the recommender system differentiates between and
whether it utilizes social relations. Finally, the purpose of this advanced attacker is to
further test the effect of new obfuscation strategies.

8.0.2 Other Domains

Considering the binary, and for a lot of people insensitive, data that gender is, it would
be interesting to look more into how obfuscation affects other domains. For example,
what happens when obfuscations are employed in a news recommender system? Are the
users still served relevant articles? Relevant for the news domain is that A) the article’s
time of publication matters, B) some articles should be presented to all users and C)
the recommendations may leak more attributes that are classified as "sensitive personal
information". Are requirements related to these properties fulfilled when obfuscation is
added to the recommendations?

Another domain that might not fit with the obfuscation strategies presented in this
thesis is location-based recommender systems. Looking at if it is possible, and in that case
how, to use replacement strategies to hide users’ location evident in their recommender
lists. For location-based systems, adding recommended items that are far from the user
is highly irrelevant, making it difficult to hide the location property.

8.0.3 Improve Obfuscation Strategies

Most of the obfuscation strategies in this thesis are based on very naive premises. A further
direction for work within the field of privacy in recommender lists is therefore further
development of obfuscation techniques. Since the serendipitous strategy introduced
both more privacy and new, interesting recommendations, there could be more relevant
techniques to be found in the field of serendipitous recommender systems.

Furthermore, improving the gender-based strategy is a possible direction. Since the
gender-based implementation in this thesis seemingly failed to provide privacy-preserving
recommender lists but has shown to be useful in previous work, it could be worth the try
to further improve this technique for recommender lists.
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8.0.4 Test in Online Evaluation

As a last proposed continuation of this work, testing the serendipitous obfuscation, along
with the other strategies as well, in an online environment could be interesting. By
conducting a user study or finding the conversion rates, that work could measure the
real recommender performance concerning user likability.
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Appendix
Attack Performance with Naive Bayes

Table 1: Attack performance on the obfuscated recommendations with random removal
and random insertion.

Random Removal & Random Insertion (Ex. 1)
Replacement Accuracy AUC F1
0.2 0.5266 0.7122 0.5122
0.4 0.5562 0.6230 0.4606
0.6 0.5444 0.5691 0.4122

Table 2: Attack performance on the obfuscated recommendations with gender removal
and random insertion.

Gender Removal & Random Insertion (Ex. 2)
Replacement Accuracy AUC F1
0.2 0.5325 0.6065 0.4698
0.4 0.5444 0.6758 0.5096
0.6 0.5444 0.6273 0.4460

Table 3: Attack performance on the obfuscated recommendations with gender-random
removal and random insertion.
Gender w/ Random Removal & Random Insertion (Ex. 3)
Replacement Accuracy AUC F1
0.2 0.5562 0.6798 0.4966
0.4 0.5266 0.6147 0.4118
0.6 0.5444 0.5466 0.3840
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Table 4: Attack performance on the obfuscated recommendations with random removal
and popularity insertion.

Random Removal & Popularity Insertion (Ex. 4)
Replacement Accuracy AUC F1
0.2 0.5858 0.6448 0.4853
0.4 0.5503 0.5963 0.4154
0.6 0.5148 0.5148 0.3492

Table 5: Attack performance on the obfuscated recommendations with gender removal
and popularity insertion.

Gender Removal & Popularity Insertion (Ex. 5)
Replacement Accuracy AUC F1
0.2 0.5917 0.6691 0.5036
0.4 0.6154 0.6580 0.4882
0.6 0.5858 0.5924 0.4167

Table 6: Attack performance on the obfuscated recommendations with gender-random
removal and popularity insertion.

Gender w/ Random Removal & Popularity Insertion (Ex. 6)
Replacement Accuracy AUC F1
0.2 0.5562 0.6428 0.7255
0.4 0.6746 0.6836 0.5378
0.6 0.5917 0.5845 0.3784

Table 7: Attack performance of the kFN-based obfuscation of user recommendations.
kFN Obfuscation (Ex. 7)

Replacement Accuracy AUC F1
0.2 0.5444 0.6379 0.4762
0.4 0.5444 0.6027 0.4296
0.6 0.5562 0.5477 0.3902
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