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Abstract

With the rapid advancement of machine learning, predictive modeling has emerged as
an attractive avenue for optimizing energy usage in the context of building performance.
This thesis delves into the exploration of different modeling paradigms for forecasting
the indoor temperatures of buildings, with the ultimate goal of optimizing electricity
consumption.

The thesis investigates three prominent modeling paradigms: Physics-Based Modeling
(PBM), Data-Driven Modeling (DDM), and Hybrid Analysis and Modeling (HAM).
PBMs leverage mathematical equations derived from physical laws to forecast the dy-
namics of a system, whereas DDMs exploit patterns in historical data to make forecasts.
Finally, HAMs aim to incorporate the best of both worlds, combining physics-based
models with data-driven components.

The study conducts a comprehensive comparison, assessing each paradigm’s ability to
accurately forecast indoor temperatures for electricity optimization purposes. From the
comparative analysis, DDMs, particularly the Long Short-Term Memory (LSTM) model,
outperform the other models regarding accuracy and reliability.

However, despite the success of the LSTM, this study identifies the model’s inherent
“black box” nature as a weakness. Furthermore, the model’s low interpretability can
hinder its trustworthiness and its subsequent real-world application, marking an area for
further development.

On the contrary, although the HAM model implemented in this study does not provide
satisfactory results, it showcases significant potential in enhancing the interpretability
and trustworthiness of accurate forecasting models. Thus, the thesis underlines the need
for a more extensive exploration of the HAM paradigm.

Finally, the study emphasizes incorporating indoor temperature forecasting models into
optimization algorithms as a pivotal direction for a more sustainable future. Such a
model would need to handle control inputs like radiators, ventilation systems, and fire-
places, enabling it to forecast indoor temperatures based on different control input se-
quences. Implementing a confidence measure to assess the reliability of the forecast is
also suggested.

In conclusion, the thesis sheds light on the substantial potential of predictive model-
ing, particularly the DDM and HAM paradigms, for optimizing electricity consumption
and reducing electricity costs toward a sustainable future. Finally, the thesis highlights
areas that need further exploration and development.
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Sammendrag

Med den raske fremgangen i maskinlæring har prediktiv modellering dukket opp som
en attraktiv metode for å optimalisere energibruk, ogs̊a innen bygningssektoren. Denne
avhandlingen utforsker ulike modelleringsparadigmer for å forutsi temperaturen i byg-
ninger, med det ultimate m̊alet om å optimalisere energibruken.

Avhandlingen undersøker tre fremtredende modelleringsparadigmer: fysikkbasert model-
lering (PBM), datadreven modellering (DDM) og hybrid analyse og modellering (HAM).
PBMer benytter matematiske ligninger avledet fra fysiske lover for å forutsi systemets
dynamikk, mens DDMer utnytter mønstre i historiske data for å forutsi fremtidig utvik-
ling. HAMer tar sikte p̊a å kombinere det beste fra begge verdener ved å sl̊a sammen
fysikkbaserte modeller med datadrevne komponenter.

En omfattende sammenligning blir utført for å vurdere hvert paradigmes evne til å
nøyaktig forutsi innendørstemperaturer med tanke p̊a å optimalisere strømforbruket.
Fra den komparative analysen utmerker DDMene seg, spesielt Long Short-Term Memory
(LSTM) modellen, som overg̊ar de andre modellene i form av nøyaktighet og p̊alitelighet.

Til tross for LSTMens suksess, blir modellens iboende “black box”-natur identifisert som
en svakhet. Modellens lave tolkbarhet kan hindre dens troverdighet og dens p̊afølgende
anvendelse i den virkelige verden, og markerer et omr̊ade for videre utvikling.

P̊a en annen side viser HAMen implementert i denne studien, til tross for utilfreds-
stillende resultater, betydelig potensial for å forbedre tolkbarheten og p̊aliteligheten til
slike prediktive modeller. Derfor understreker avhandlingen nødvendigheten av mer om-
fattende utforskning av HAM-paradigmet.

Til slutt fremhever studien inkorporeringen av prediktive bygningsmodeller i en opti-
maliseringsalgoritme som en viktig retning for en mer bærekraftig fremtid. Modellen m̊a
da endres slik at den kan h̊andtere kontrollinnganger som radiatorer, ventilasjonssyste-
mer og peisovner, noe som gir den evnen til å forutsi temperaturer basert p̊a forskjelli-
ge sekvenser av kontrollinnganger. Implementeringen av et konfidensm̊al for å vurdere
p̊aliteligheten til prediksjonen er ogs̊a foresl̊att.

For å konkludere kaster avhandlingen lys over det betydelige potensialet til predik-
tiv modellering, spesielt paradigmene DDM og HAM, for å optimalisere energiforbruk
og redusere strømkostnad for en bærekraftig fremtid. Til slutt fremhever avhandlingen
omr̊adene som trenger videre utforskning og utvikling.
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This thesis marks the culmination of my Master of Science degree in Cybernetics and
Robotics at the Norwegian University of Science and Technology (NTNU), which con-
cludes 18 years of education. The journey that led to the writing of this thesis has been
both challenging and rewarding. I have genuinely appreciated the opportunity to work on
a real and opportune problem with real-life time-series data, thereby expanding my un-
derstanding of the intricacies within predictive modeling of indoor temperatures, which
potentially can transform the way electricity is used in the building sector. The goal
was ambitious – to evaluate various modeling paradigms and their efficacy in forecasting
the indoor temperatures of a building, with the ultimate aim of optimizing energy usage.

This work would not have been possible without the support and guidance of my ad-
visor, Professor Adil Rasheed, from the Department of Engineering Cybernetics. His
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In this thesis, I have endeavored to comprehensively compare different modeling paradigms,
hoping to add value to the ongoing conversation about predictive modeling of indoor tem-
peratures and its potential applications for energy optimization. Furthermore, I believe
this research will contribute toward the development of indoor temperature forecasting
models for energy optimization, paving the way for a more sustainable future.

Writing this thesis has been an enlightening adventure that has enriched my under-
standing and honed my research skills. I hope readers find this work informative and
inspiring as they navigate the complex yet captivating world of predictive modeling for
indoor temperature forecasting.

For the sake of completeness, this thesis includes the following material from the spe-
cialization project leading up to this thesis[1]. Additionally, chapter 1 is inspired by the
introduction from the same project.

• Sections 2.1 and 2.2

• Figure 4.5 and table 4.4

Trondheim, May 2023
Henrik Larsson Hestnes
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1. Introduction

The ongoing energy crisis plaguing Europe has prompted a stronger emphasis on
sustainability and reducing electricity consumption. The building sector is a major
contributor to both of these issues, accounting for 30% of the global energy consumption
and 27% of the global CO2 emissions from the energy sector[2]. Providing thermal
comfort and acceptable indoor air quality alone accounts for a considerable 35% of the
energy consumed by buildings[3].

To tackle this issue, it is imperative to improve buildings’ energy efficiency while
maintaining the desired level of thermal comfort. One appropriate solution is the
utilization of accurate predictive models of indoor temperature evolution as a corner-
stone for optimizing the electricity used for providing thermal comfort. Even minor
enhancements in energy efficiency in the building sector would lead to significant global
energy savings and environmental benefits.

The material in this chapter is inspired by the introduction from the specialization
project leading up to this thesis[1].

1.1. Background and Motivation

The energy crisis currently affecting Europe has led to a surge in the energy price in 2022
and 2023[4]. This surge has been further exacerbated by the intentional reduction of gas
supply from Russia, which is closely linked to electricity prices in the European Union’s
internal market. The recent conflict between Russia and Ukraine has highlighted vul-
nerabilities in our energy systems, including supply, consumption, and pricing[4]. Both
individuals and companies are facing significant costs associated with maintaining indoor
climate control, such as heating, cooling, and ventilation.

These challenges are not limited to Europe, and the increasing global demand for energy
has led to similar issues in other regions[5, 6]. Thus, a comprehensive and sustainable
approach is necessary to address these problems and ensure our energy systems’ long-
term stability and security.

The traditional way to reduce the energy consumption of buildings is to improve their
insulation through design or refurbishment, which reduces heating or cooling loss. This
reduction can be accomplished by installing double- or triple-glazed windows and using
better thermal insulation in outer walls or roofs, among other techniques[7]. However,
many modern countries, such as Norway, already have strict regulations regarding the
insulation of buildings, and the room for improvement may be minimal. This traditional
approach also comes with a significant expense.

A more innovative approach involves equipping buildings with digital tools that allow

1



1. Introduction

for automatic adjustments of heating, lighting, and other systems based on the num-
ber of people present at any given time. This approach requires real-time monitoring,
analysis, and action, utilizing objective tools to measure and calculate when and how
to act[7]. Due to the steady price decrease of sensors and computing power over the
past few decades, this approach has the potential to be significantly cheaper and, due
to recent breakthroughs in the machine learning paradigm, also more efficient than the
traditional method.

The optimization of energy usage for climate control necessitates the development of
advanced control systems, with accurate and reliable indoor temperature forecasting
models providing the basis for the control algorithms. Such models can forecast the im-
pact of different control inputs on the temperature, allowing the control system to make
informed decisions. By combining an indoor temperature forecasting model with a con-
trol algorithm that optimizes the given cost function, which comprises energy prices or
energy consumption, significant energy cost or consumption savings for individuals and
companies can be achieved. For example, Nest Labs reported that their smart learning
thermostat resulted in an average of 10%-12% savings on heating usage and 15% savings
on cooling usage for homes with central air conditioning[8].

Pairing such a control algorithm with an accurate indoor temperature forecasting model
of the building could lead to even more significant energy savings. Electricity prices are
inherently fluctuating, and an examination of the electricity price in eastern Norway on
the 23rd of May 2023 proved a decrease of 95% between the highest and lowest electricity
price during the day[9]. Furthermore, with the increasing penetration of wind energy
and its inherent volatile nature, which can cause fluctuations in the cost of electricity[10,
11], the ability to optimize the timing of electricity usage based on these price fluctua-
tions becomes even more valuable.

At present, indoor temperature forecasting models can be categorized into two types:
Physics-Based Models (PBM) and Data-Driven Models (DDM). PBMs are constructed
based on fundamental physical principles and reasoning, making them interpretable and
applicable to a wide range of problems, including those involving different buildings
with similar physics. These models can also handle extrapolation based on fundamental
physics[12, 13]. However, they require numerous assumptions regarding factors such as
the heat capacity and heat transfer coefficient of walls, the heat emitted by occupants,
radiators, and fireplaces, and the opening and closing of doors and windows. Any slight
inaccuracy in these assumptions can accumulate and offset the forecast. These models
are also prone to numerical instability and are often computationally expensive.

On the other hand, DDMs employ historical data and experiences to learn the sys-
tem’s dynamics and make forecasts. Once trained, they are highly stable within their
interpolation range and computationally efficient for forecasting. However, when extrap-
olating, the models are unable to confine the errors or uncertainties, which may lead to
unreliable forecasts. Moreover, these models are influenced by bias in the data, and their
performance is limited by the quality of the data on which they are trained. Finally,
such models are generally challenging to interpret due to their “black box” nature[12].

A third emerging paradigm capable of modeling indoor temperatures is Hybrid Anal-
ysis and Modeling (HAM). The HAM paradigm seeks to combine the PBM and DDM

2
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approach to leverage and retain their individual strengths while minimizing their weak-
nesses[12]. By doing so, the PBM can be designed as a more general PBM applicable
to numerous buildings, while the DDM can be trained to resemble the unique dynam-
ics of the building’s temperature. Moreover, this approach is capable of handling the
cold-start issue often seen in DDMs. This problem arises during the initial period when
the system has not yet gathered sufficient data to accurately model the DDM. In the
early stages, the model can lean more heavily on the PBM. As the DDM starts to learn
the unique dynamics of the building’s temperature, it gradually provides increasingly
accurate forecasts over time.

The specialization project leading up to this thesis investigated how a state-of-the-art
PBM developed in the simulation software ESP-r can be utilized for indoor temperature
forecasting[1]. This thesis will therefore look into how DDM and HAM can be utilized
for the same purpose. Two different DDMs, Long Short-Term Memory (LSTM) and
Transformer, will be developed and examined. Additionally, the novel yet promising
HAM architecture CoSTA will be explored.

The physical asset for this study is a smart house located by Jonsvatnet, Trondheim,
Norway. This asset already has an existing digital twin, and one of the aims of this work
is to expand upon this digital twin by forecasting the indoor temperatures of the asset.
The asset has over a year of outdoor and indoor temperature measurements in seven
rooms, which will serve as the dataset for the DDMs and HAM. The measurements will
also serve as the ground truth for evaluating and assessing the forecasts produced by the
models.

1.2. Contribution, Research Objectives and Research Questions

1.2.1. Contribution

The main contribution of this work is to develop and examine different architectures for
indoor temperature forecasting. The work will thoroughly analyze, examine and discuss
the performance of two DDM architectures, namely LSTM and Transformer, and one
HAM architecture, CoSTA, and compare their performance with a state-of-the-art PBM.

Even though the concept of Transformers is well-known and widely used in the field
of Natural Language Processing (NLP), its application outside the NLP field has been
minimal[14]. This work intends to contribute to filling this knowledge gap by examining
its performance on time-series data from a physical system. LSTMs are already known to
be effective in modeling various physical dynamics[14], and this work intends to expand
on this knowledge by examining its performance in forecasting the indoor temperatures
of a building.

This work will also look into the paradigm of HAM, more specifically the CoSTA architec-
ture, and examine how this architecture performs in forecasting the indoor temperatures
of a physical asset. To the best of the author’s knowledge, this has not been done before,
and the work intends to address some of the existing knowledge gaps in this paradigm.
This architecture has several advantages over purely data-driven architectures and has
the potential to outperform DDMs on the proposed problem. Earlier studies have shown
great promise for CoSTA[12, 13].
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1. Introduction

1.2.2. Objectives

To guide this study, a set of research objectives are formulated. In addition, research
questions leading to the research objective are presented.

Primary Objective: Develop, examine, and juxtapose indoor temperature forecasts from
different architectures and assess their applicability as cornerstones for electricity opti-
mization.

Secondary Objectives:

• Develop a thorough understanding of PBM, DDM, and HAM for indoor tempera-
ture forecasting.

• Assess the strengths and weaknesses of PBM, DDM, and HAM for indoor temper-
ature forecasting.

• Evaluate and assess the suitability of PBM, DDM, and HAM as cornerstones for
electricity optimization.

1.2.3. Research Questions

The following research questions govern the research produced by this study.

• Which PBM, DDM, or HAM architecture forecasts the evolution of the indoor
temperatures of a building most accurately?

• How reliable are the forecasts from the most accurate model?

• Are the forecasts from the most accurate model applicable as a cornerstone for
electricity optimization?

1.3. Structure of the Thesis

The structure of this thesis is organized into six chapters that cover different aspects of
the research.

• Chapter 1 introduces the study and presents its motivation. It provides an overview
of the research topic and the problem being addressed. In addition, it presents the
objectives and research questions of the study, which are used throughout the
thesis.

• Chapter 2 presents the background theory that this work is built upon, which
mainly has been taken from existing literature after the proper citation. First,
dynamic systems modeling in the context of PBM, DDM, and HAM is intro-
duced before fundamental theory and specific approaches for the different modeling
paradigms are presented.

• Chapter 3 introduces the dataset utilized in this study and the preprocessing steps
performed in order to obtain a more suitable dataset.

• Chapter 4 presents the proposed methods for indoor temperature forecasting. The
chapter is split up into the three modeling paradigms, and further data prepro-
cessing and specific implementation details for each paradigm are presented.
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1.3. Structure of the Thesis

• Chapter 5 presents the forecasts from the proposed architectures and discusses the
results. After that, their applicability as cornerstones for electricity optimization
is discussed. Finally, any lessons learned are presented and discussed.

• The final chapter, chapter 6, concludes on the research questions proposed in
section 1.2.3 and briefly discusses the implications and potential applications of
the findings. Finally, further work is presented and briefly discussed.
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2. Theory

This chapter presents the relevant theory for the work done in this thesis. First, the
concept of dynamic systems modeling and three of its modeling paradigms will be in-
troduced, namely PBM, DDM, and HAM. After that, the three paradigms will be fur-
ther delved into, and specific approaches for indoor temperature forecasting from each
paradigm will be presented.

In this chapter, the material in sections 2.1 and 2.2 is primarily from the specializa-
tion project leading up to this thesis[1] and is included for completeness.

2.1. Dynamic Systems Modeling

Dynamic systems modeling models complex systems over time, used to describe and
forecast interactions between multiple system components. It involves representing the
relationships among the various components of a system to understand how the system
behaves and evolves. One key feature of dynamic systems modeling is using linear and
non-linear equations to describe the system’s behavior. Non-linear equations are equa-
tions that, unlike linear equations, do not have a constant rate of change. Non-linear
equations are often used to model systems that exhibit complex behavior, such as oscil-
lations or chaotic behavior[15]. Another key feature of dynamic systems modeling is the
use of feedback loops. Feedback loops are mechanisms by which the outputs of a system
are fed back into the system, thus influencing its future behavior. For example, in a
simple thermostat, the temperature inside a building is measured and used to control
the heating system. When the temperature falls below a certain threshold, the heating
system is turned on, and when it rises above a certain threshold, it is turned off. This
feedback loop helps to maintain a stable temperature inside the building[16].

Dynamic systems modeling has been used in various fields, including biology, economics,
and engineering. For example, in biology, dynamic systems models have been used to
study the behavior of populations, ecosystems, and the spread of diseases. In economics,
dynamic systems models have been used to study the behavior of financial markets and
the effects of economic policies. Finally, in engineering, dynamic systems models have
been used to design control systems for complex systems such as aircraft and power
plants[15, 17].

Overall, dynamic systems modeling is a powerful tool for understanding and forecast-
ing the behavior of complex systems over time. By representing the interactions and
feedback loops among the components of a system, dynamic systems models can provide
insight into the causes of complex behavior and help to design effective control strategies.

2.1.1. Physics-Based Modeling - PBM

PBM is a method of modeling complex systems using the principles of physics and rea-
soning to describe the behavior of the system[13]. This approach is commonly used in
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2. Theory

engineering to simulate the behavior of physical systems, such as the motion of objects,
the flow of fluids, and the interactions of forces. By utilizing the laws of physics to
describe the behavior of a system, PBMs can, with some accuracy, forecast the motion
of objects, the flow of fluids, and the effects of forces on a system. This approach has a
wide range of applications, including modeling blood flow, heat transfer, mass transfer,
and flow around wind turbines, to name a few[12].

One advantage of PBM is its ability to provide interpretable, generalizable, and trust-
worthy simulations of large and complex systems[12]. By using the principles of physics
to describe the interactions among the various components of a system, PBMs can sim-
ulate the behavior or evolution of systems over time. This can be useful in fields such
as civil engineering, where the behavior of large structures such as bridges and buildings
needs to be simulated and analyzed, or any other physical system subject to be simulated
and analyzed. PBM is a powerful tool for understanding and forecasting the behavior of
complex physical systems[12]. By using the laws of physics to describe the behavior of a
system, PBMs can provide insight into the underlying mechanisms that drive a system
and help to design effective control strategies.

However, there are some limitations to PBM. One of the main challenges of this type of
modeling is the need to derive governing equations for the system being studied. These
equations are often not fully descriptive of the system, as unknown physics may not
be accounted for. Furthermore, deriving these equations almost always involves making
assumptions, which can result in a loss of accuracy or completeness. Additionally, these
equations may be difficult to solve analytically, requiring numerical techniques, which
can also introduce errors or inaccuracies. Another limitation of PBM is that it can be
computationally demanding, making it less efficient than other modeling paradigms[13].
Additionally, PBMs are typically not able to adapt to real-time measurements of physi-
cal states, which can limit their usefulness in some situations. Despite these limitations,
PBM can still be a valuable tool for understanding and forecasting physical systems,
particularly when the underlying physical principles are well understood, and the model
is carefully constructed and validated[12].

2.1.2. Data-Driven Modeling - DDM

DDM is a modeling approach that uses data to build and train models. DDMs prosper
on the premise that large quantities of data manifest both known and unknown physics
and seek to learn the complete physics of a system by utilizing large quantities of data to
identify complex patterns and relationships[13]. This approach differs from traditional
physics-based approaches, which typically rely on assumptions and theoretical founda-
tions to develop models, as described in section 2.1.1. DDM has become increasingly
popular in recent years due to several advances in the development of powerful machine
learning algorithms and the increased accessibility of large quantities of data. These
algorithms can automatically identify and learn complex patterns and relationships in
data and can be used to build forecasting models that can be used for a wide range of
applications[12].

One example of DDM is the use of Feed-Forward Neural Networks (FFNN) or Recurrent
Neural Networks (RNN) for predictive modeling. In this type of modeling, data is used
to train a model to make predictions about future events or outcomes. For instance, a
model might be trained on data about historical temperatures to make predictions or,
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2.1. Dynamic Systems Modeling

more specifically, forecasts about future temperatures. Another example of DDM is the
use of clustering algorithms to identify patterns and relationships in data. Clustering
algorithms can be used to group data into clusters based on similar characteristics and
can be helpful in various applications, such as market segmentation and anomaly detec-
tion.

Overall, DDM is a powerful tool for uncovering patterns and relationships in vast
amounts of data and can be used to build models that make accurate forecasts and
facilitate better decision-making. One of the significant advantages of DDMs compared
to PBMs is their ability to automatically identify and learn complex patterns and re-
lationships in data, allowing them to model known and unknown underlying physics
without any explicit information about the underlying physics. The models are also
highly computationally efficient once trained, and if trained properly, can achieve high
accuracy even for very challenging problems[12]. DDMs can also easily be retrained with
new data, enabling them to adapt and model even newly introduced physics in an online
and self-adapting manner[18].

However, DDMs also have some limitations. One of the main drawbacks of DDMs
is that they often take the form of an uninterpretable “black box”. It is not possible to
determine the bounds on errors or uncertainties in DDMs, and these models do gener-
ally not perform well when extrapolating beyond the range of data they were trained
on, which limits their usefulness in high-stakes and safety-critical applications[19]. No
sound theory exists for model stability analysis, which further dilutes the trustworthi-
ness of the model[13]. Additionally, DDMs are only as good as the data on which they
were trained, meaning that any biases or weaknesses in the data will be reflected in the
model, which sets requirements for the quality of the data[19].

2.1.3. Hybrid Analysis and Modeling - HAM

HAM is an emerging modeling approach combining different techniques to better un-
derstand and forecast the behavior of complex physical systems. This approach can be
useful in various fields, including engineering and physics, and seeks to combine PBM
and DDM to leverage and retain their strengths while minimizing their weaknesses. The
HAM paradigm, therefore, contains powerful tools for modeling physical systems[13].

For example, DDMs often lack generalizability and struggle to account for intricate
physical phenomena, and their interpretability is generally low. Yet, these are areas
where PBM shines, boasting both generalizability and interpretability. On the flip side,
PBMs can be computationally expensive and may require detailed input data, which
can be challenging to obtain[12]. Additionally, PBMs are often based on significant
assumptions, which will offset the model if the assumptions do not reflect the actual
system. These shortcomings of PBM are where DDMs excel. HAM overcomes these
limitations by integrating the knowledge gained from both approaches and playing on
their individual strengths, leading to more accurate and reliable forecasts.

A promising example of a hybrid model is the Corrective Source Term Approach (CoSTA).
CoSTA utilizes a PBM in conjunction with a DDM responsible for modeling the source
term or error in the underlying equations of the PBM. More specifically, CoSTA utilizes
the DDM to predict the source term of the governing equations of the PBM and then
adds this source term to the discretized PBM. By doing so, the model can account for
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unresolved physics in the PBM, which the PBM could not model independently. CoSTA
seeks to use the PBM to the greatest extent possible to retain interpretability and achieve
excellent accuracy. The most recent results for CoSTA have been promising[12].

The following table sums up the strengths and weaknesses of the three modeling paradigms
with the indoor temperature forecasting task in mind. Note that this table not serves
as a general comparison and highly depends on the specific situation or applications.

Characteristic PBM DDM HAM

Generalizability Good Bad Good
Interpretability Good Bad Good
Computational Efficiency Bad Good Neutral
Accuracy Bad Good Good
Requires Domain Knowledge Yes No Yes

Table 2.1.: Strengths and weaknesses of PBM, DDM, and HAM

2.2. Physics-Based Building Temperature Modeling

Physics-based building temperature modeling is a method of modeling the temperature
of a building by taking into account the physical properties of the construction, such as
thermal conductivity and specific heat capacity, as well as environmental factors, such as
temperature, humidity, and solar radiation. This modeling approach is based on the laws
of thermodynamics, a set of fundamental principles that describe the physical behavior of
systems involving heat and energy[20]. Before presenting the proposed model for indoor
temperature forecasting, this work introduces some essential concepts of thermodynamics
utilized in this study.

U-Value

The U-value, also known as the heat transfer coefficient, is a measure of heat transfer
through a material or system of materials. It is defined as the quantity of heat lost or
gained through a given surface area per unit of the temperature difference between the
two sides of the material or system. The U-value is measured in units of Watts per square
meter per Kelvin, W/m2K, and is directly proportional to the thermal conductivity of
the material[21, 22].

The U-value is inversely proportional to the thermal resistance, or R-value, which mea-
sures a material or system’s ability to resist heat transfer[21]. Hence, materials with
a lower U-value are better at insulating and preventing heat loss or gain. As a result,
U-values are often used in building design to ensure energy efficiency. For example, the
U-value of a single-glazed window is typically about 5.8 W/m2K, while the U-value of a
triple-glazed window ranges from around 1.7 W/m2K down to around 0.4 W/m2K[23].
This demonstrates that triple-glazed windows are far more effective at insulating than
single-glazed windows, making U-values a critical factor in indoor temperature forecast-
ing.
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2.2. Physics-Based Building Temperature Modeling

Heat Capacity

Heat capacity is another fundamental concept in building temperature modeling. The
heat capacity quantifies the ability of a material to store and exchange thermal energy.
It is defined as the quantity of heat required to raise the temperature of a substance by
a certain amount, typically in the unit of J/K[24].

In building temperature modeling, the specific heat capacity is often more relevant.
The specific heat capacity is defined as the heat capacity per mass, with the SI-unit
J/kgK. In other words, the specific heat capacity quantifies the ability of a material to
store and exchange thermal energy per its mass[24]. Therefore, this coefficient plays a
crucial role in modeling and accurately forecasting the indoor temperatures of a building.

2.2.1. Building Temperature Forecasting Model

Several methods can be used to calculate transient heat transfer in buildings. The most
used methods can be classified as follows[25].

1. Explicit solution of the heat diffusion equation, by finite difference and control
volumes, or response function methods.

2. Model reduction techniques.

3. Model simplification techniques, such as a resistance-capacitance(RC) network.

The explicit solution by finite differences and control volumes is described in detail in
the book “Energy Simulation in Building Design” by Joseph Clarke[26], upon which
the building energy performance simulation software of ESP-r is based. This method
involves dividing the continuous system into discrete nodes at preselected points of in-
terest, then developing conservation equations for each node in terms of its surrounding
nodes. The equations are then solved simultaneously for successive timesteps to obtain
the future states of the nodal variables[26].

Clarke also suggests using an electrical RC network to better visualize and understand
the system[26]. In the RC network approach of modeling building systems, the building
is represented as an electrical network of time-dependent resistances and capacitances
subject to time-dependent potential differences. Many authors commonly use this ap-
proach because it allows for easy visualization of the thermal simulation process[25].

In this model, nodes represent different construction elements, rooms, or glazing systems
and are characterized by their capacitance. The connections between nodes represent
thermal connections and are characterized by their conductance. The resulting currents
in each network branch are equivalent to the heat flows between different building parts.
Nodes denote state variables, in this case, temperature, which is analogous to voltage in
an electrical circuit[25].

Since nodes have different capacitances, the problem is inherently dynamic, with each
node responding at a different rate as it competes with its neighbors to capture, store,
and release energy analogous to current in an electrical circuit. This distributed dynamic
behavior, accompanied by the non-trivial nature of the branch flow and network param-
eters, makes building temperature modeling a complex task. The number of nodes in
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the model depends on the analysis objectives and can vary widely. Generally, the more
nodes included in the model, the more detailed and accurate the simulation will be[25].
However, increasing the number of nodes also increases the complexity of the model,
making it more challenging to solve. Therefore, it is crucial to strike a balance between
accuracy and complexity when constructing an energy model for building simulation[26].
Using this electrical network approach, the system can be visualized as in fig. 2.1, which
makes it easier to understand the interactions between different parts of the system.
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Figure 2.1.: Thermal PBM depicted as an electric circuit

Abbreviation Explanation

Text Temperature of the outdoor air[°C]
Rext Conductance of the thin air layer at the exterior wall exterior surface[W/K]

Continued on next page
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Abbreviation Explanation

ToutWall Temperature of the outer part of the exterior wall[°C]
RoutWall Conductance of the outer part of the exterior wall[W/K]
Twall Temperature of the middle part of the exterior wall[°C]
Cwall Heat capacity of the heavy wall material of the room[J/K]
TinWall Temperature of the inner part of the exterior wall[°C]
RinWall Conductance of the inner part of the exterior wall[W/K]
Troom Temperature of the air in the room[°C]
Rroom Conductance of the thin air layer at the exterior wall interior surface[W/K]
Croom Heat capacity of the air and furniture in the room[J/K]
RpartWall Conductance of the wall separating the rooms[W/K]
CpartWall Heat capacity of the wall separating the rooms[J/K]
QsunExt Energy flux from the sun on the exterior wall exterior surface[W]
QsunPen Energy flux from the sun that penetrates into the room[W]

Qir
Energy flux due to longwave radiation exchange between
the exterior wall surface and the surroundings[W]

Ww Fraction of QsunPen that goes on the TinWall node[W]
Wr Fraction of QsunPen that goes on the Troom node[W]
Lr Heating radiative load[W]
Lc Heating convective load[W]
H Heating load[W]
C Cooling load[W]

Table 2.2.: Explanation of abbreviations in fig. 2.1

A mathematical model for an n-node system can be described with the following gov-
erning differential equation.

C · ˙⃗
T (t) = A(t) · T⃗ (t) + u⃗(t) (2.1)

where T⃗ (t) denotes the temperature vector at each node,
˙⃗
T (t) denotes its time deriva-

tive, u⃗(t) denotes the source term for each node, C denotes the positive diagonal thermal
capacity matrix and A(t) denotes the symmetric heat transfer matrix[25].

This system can be solved using various methods, including explicit and implicit Euler
methods, modal spectral methods, and Fourier series methods. It can also be depicted as
the electric circuit shown in fig. 2.1, with the corresponding explanation of abbreviations
in table 2.2[25].

In this model, the temperature of the outer part of the exterior wall, ToutWall, takes
into account the short- and long-wave radiant exchanges at the exterior surface. The
term Rext includes both conductive and convective terms, where the convective term is
influenced by wind speed, wind direction, and outdoor temperature. Therefore, Rext is
time-dependent. The layers of the exterior walls have a total capacitance of Cwall[25].
Although these values may vary from room to room, the structure of the model remains
the same for all rooms.

The inter-room connections denoted RpartWall, short for partition wall, model ther-
mal connections between the rooms. As shown in fig. 2.1, one room may have thermal
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connections with several rooms. However, this method does not account for the heat
capacity of the partition wall. If the heat capacity of the partition is significant, this
issue can be addressed by subdividing the heat capacitance of the wall and allocating the
subdivided parts to the capacitances Cwall and Croom of the respective rooms, as done in
eq. (2.2). It is important to notice that fig. 2.1 does not consider the conductance to the
external environment through open windows, leakage, and ventilation, i.e., the facade is
assumed to be airtight. This contrasts the model proposed by Kämpf and Robinson[25].

If the heat capacitance of the partition wall is denoted as CpartWall and Kirchhoff’s
current law is used at each node, eq. (2.1) can now be rewritten as follows. Qir de-
pends on ToutWall to the power of four but can be linearized using a first-order Taylor
expansion[25].

(
C1 0
0 C2

)
·

(
˙⃗
Troom(t)
˙⃗
Twall(t)

)
=

(
D E
F G

)
·

(
T⃗room(t)

T⃗wall(t)

)
+

(
u⃗room(t)
u⃗wall(t)

)
(2.2)

with the following properties.

(C1)ij =

{
Croom,i +

1
4

∑
j CpartWall,ij if i = j

0 elsewhere
,

(C2)ij =

{
Cwall,i +

1
4

∑
j CpartWall,ij if i = j

0 elsewhere
,

(D)ij , =

{
−κ2,i −

∑
j RpartWall,ij if i = j

RpartWall,ij elsewhere
,

(E)ij = −(F )ij =

{
κ2,i if i = j
0 elsewhere

,

(G)ij =

{
−κ2,i − κ1,i(t) if i = j

0 elsewhere
.

κ1(t) and κ2 denotes the conductance between the nodes Text(t) and Twall, and Troom

and Twall, respectively, and can be written as follows[25].

κ1(t) =

(
Rext(t) ·RoutWwall

Rext(t) +RoutWall

)
, κ2 =

(
Rroom ·RinWall

Rroom +RinWall

)
.

The vector T⃗room(t) contains all the room temperatures of the n rooms, and T⃗wall(t)
contains the wall temperatures at the n rooms.

The source term for the wall and room can be described as

(
uroom(t)
uwall(t)

)
=

( κ2
RinWall

· (QsunPen(t) · ww + Lr(t))
κ2

Rroom
· (QsunPen(t) · ww + Lr(t))

)
+

(
QsunPen(t) · wr + Lc(t) +H(t)− C(t)

κ1(t)
Rext(t)

· (Rext(t) · Text(t) +QsunExt(t) +Qir(t))

)
.

14
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In order to use this model to forecast the future state of the system, eq. (2.2) has to be

solved for
˙⃗
T .

˙⃗
T is the only unknown left in the system, and several methods can be used

to solve it. Once
˙⃗
T is obtained, the temperature at the next timestep can be obtained

by integrating or simply adding
˙⃗
T to T⃗ with a given step length, using, for example, the

Euler method.

2.3. Data-Driven-Based Building Temperature Modeling

Data-driven-based building temperature modeling, or data-driven building temperature
modeling, is an approach to indoor temperature forecasting that relies on data-driven
methods such as machine learning to forecast a building’s temperature evolution ac-
curately. This approach has gained significant attention in recent years due to break-
throughs in the machine learning paradigm and the need for energy-efficient buildings
to reduce energy consumption and carbon emissions.

Traditionally, indoor temperature forecasting has relied on PBMs that use mathematical
equations to forecast a building’s temperature evolution, as seen in section 2.2. How-
ever, such models require substantial input data, such as building geometry, material
properties, and Heating, Ventilation, and Air Conditioning (HVAC) system specifica-
tions, which are often hard to derive. These models also have several limitations, such
as being time-consuming, complex, and neglecting unknown physics. In addition, they
may not capture the variability in building performance due to factors such as occupant
behavior and weather conditions.

In contrast, data-driven building temperature modeling uses machine learning algorithms
to analyze large datasets of a building’s temperature evolution and environmental condi-
tions to generate models that accurately forecast temperature evolution. These models
can account for both known and unknown physics and can be used to optimize and
provide recommendations for energy-efficient building operations.

Overall, data-driven building temperature modeling is a promising approach to indoor
temperature forecasting that has the potential to revolutionize the way buildings are op-
erated. Furthermore, with the increasing availability of large datasets and advances in
machine learning algorithms, more accurate and effective models for optimizing building
energy performance can be expected, which can help reduce energy consumption and
carbon emissions, leading to a more sustainable future.

2.3.1. Data Preprocessing

Data preprocessing is a pivotal part of the machine learning pipeline. Not only does
it transform raw data to a more manageable format, but it also eases the detection
of patterns and comparisons between data, thereby directly impacting the performance
of the model[27]. Many preprocessing techniques exist, such as data cleaning, data
reduction, data interpolation, data normalization, and data windowing. This subsection
describes the key concepts used in this study. A reader familiar with these concepts is
advised to skip this part, as it may be found redundant.
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Data Interpolation

Data interpolation is an important statistical method in machine learning used to es-
timate unknown values within the range of a discrete set of known data points. Its
essence lies in filling the gaps within the dataset, and resampling sensor measurements
to a coordinated time grid, thereby reducing noise and enhancing the dataset’s overall
quality.

Forward filling is one of the simplest existing interpolation techniques. However, it
describes some discrete events in a time series entirely[28]. A great example of such an
event is the opening and closing of doors, monitored by a proximity sensor that sam-
ples the event of absence or presence. If a proximity sensor samples the presence of a
door, the door stays closed until the proximity sensor samples its absence, and therefore
the value of the closed door has to be forward filled until the door has been opened.
Figure 2.2a depicts this principle. Note that the sensor observations in this figure have
already been resampled to a manageable time grid before the forward filling takes place.

Linear interpolation is another simple yet prevalent interpolation technique. It sim-
ply determines the unknown value by drawing a straight line between the previous and
next known value and determines the unknown value from the point of intersection with
the desired time grid[28]. While this technique may not always provide the most accurate
estimates due to its assumption of a constant rate of change between points, it is still
feasible for slow systems with frequent sampling. Higher-order polynomial interpolation
can indeed model more complex trends in the data, but it may also lead to overfitting.
The principle behind linear interpolation is depicted in fig. 2.2b.
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Figure 2.2.: Principles behind the interpolation techniques

Data Normalization

Data normalization, a fundamental data preprocessing technique in machine learning, is
employed to transform independent features to a similar scale. Normalization is crucial
when training a DDM to achieve higher accuracy and reduce the time needed for train-
ing[29]. There are several different normalization techniques, and this work will present
two of the most commonly used techniques, namely min-max normalization and z-score
normalization.
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Min-max normalization is a linear scaling that scales the data according to predefined
upper and lower bounds, usually 0 to 1 or -1 to 1. The following equation describes the
transformation process.

x′i,n =
xi,n −min (xi)

max (xi)−min (xi)
(nMax−nMin) + nMin (2.3)

where x′i,n and xi,n respectively denote the normalized and original feature value, min (xi)

and max (xi) denote the minimum and maximum value of the ith feature, respectively,
and nMax and nMin denote the desired upper and lower bounds of the transform, re-
spectively[30].

Despite its benefits, min-max normalization may not be appropriate when the data
contains outliers, as these can distort the rescaling. In such scenarios, more suitable
options may include robust scaling methods or other preprocessing techniques[31].

Z-score normalization is another linear scaling that scales the data according to its
mean and standard deviation to achieve zero mean and unit variance. Mathematically,
this can be expressed as

x′i,n =
xi,n − µi

σi
(2.4)

where x′i,n and xi,n respectively denote the normalized and original feature value, and

µi and σi denote the mean and standard deviation of the ith feature, respectively[30].

Z-score normalization handles outliers more effectively than most other scaling meth-
ods[30]. However, it does assume that the data is normally distributed, which may not
always be the case[32].

Data Windowing

Data windowing, or sliding window, is often a necessary preprocessing step in machine
learning for time-series analysis. It involves partitioning the dataset into subsets or
“windows” of consecutive data points. These windows, which slide over the data in a
predetermined increment, help preserve the data’s sequential order and allow the learn-
ing algorithm to capture temporal patterns within the defined interval[33]. This principle
is depicted in fig. 2.3.

The window size, which refers to the length of consecutive data points in a window, is an
important parameter. A too-small window size may fail to capture relevant long-term
dependencies, while a too-large window size may dilute short-term dependencies[33].
Therefore, selecting an appropriate window size, hence appropriate feature and label
sizes, is essential for the model’s efficiency.

Windowing is particularly important in deep learning models such as Recurrent Neu-
ral Networks (RNNs), Long Short-Term Memory (LSTM) networks, and Transformers,
where it is used to define input sequences and output labels for the forecasts[34].
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T1 T2 T3 T4 T5 T6 T7 T8 T9

Window 1

Feature 1 Label 1

Window 2

Feature 2 Label 2

Window 3

Feature 3 Label 3

T1 T2 T3 T4 T5 T6 T7 T8 T9

T1 T2 T3 T4 T5 T6 T7 T8 T9

Figure 2.3.: Principle behind data windowing

Dimensionality Reduction

Dimensionality reduction is an essential step in time series analysis. It aims to reduce
the complexity of the data, thereby preventing overfitting, providing simplicity, and en-
hancing computational efficiency. This process transforms high-dimensional data into a
lower-dimensional space while preserving essential characteristics[35]. One of the goals
of dimensionality reduction is to avoid the infamous “curse of dimensionality”[36].

Principal Component Analysis (PCA), a commonly used linear dimensionality reduc-
tion technique, transforms the data into a new set of orthogonal features known as
principal components. These components are directions in feature space along which
the original data varies the most, with the first principal component accounting for the
largest possible variance in the data, the second principal component accounting for the
second largest variance, and so on [35].

Another more straightforward dimensionality reduction technique is to select features
based on correlation analysis. A correlation analysis is a statistical method used to as-
sess the strength and direction of the linear relationships between pairs of features. A
correlation matrix is a square table that contains the correlation coefficients for different
features. The values in the matrix range between -1 and 1, where 1 represents a perfect
positive correlation, -1 represents a perfect negative correlation, and 0 implies no linear
correlation[37].

Highly correlated features do not complement each other, and using both as input fea-
tures only increases complexity and computational cost. Removing such redundant fea-
tures might increase the efficiency and accuracy of the model[37]. However, it is essential
to note that the correlation matrix only captures linear relationships between variables,
and non-linear relationships and dependencies require other statistical techniques.
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Spectral Analysis

Spectral analysis is a powerful technique for analyzing time series data, providing in-
sights into the periodic components and underlying frequencies that form the data. This
method can reveal patterns not readily apparent in the time domain, thereby offering a
deeper understanding of the data’s structure[38].

Spectral analysis utilizes Fourier analysis, decomposing the time series data into sine
and cosine functions of distinct frequencies. This results in a spectrum or periodogram,
a plot of the power or significance of the different frequencies that highlights the dom-
inant cycles in the data. Spectral analysis is often used for feature engineering and is
particularly interesting when dealing with data that exhibits cyclical or seasonal behav-
ior, such as temperature data[38].

2.3.2. Machine Learning Fundamentals

The field of machine learning fundamentals is vast and complex. This section will,
therefore, only present the most important concepts used in this work. A reader familiar
with these concepts is advised to skip this part, as it may be found redundant.

Feed-Forward Neural Network - FFNN

Feed-Forward Neural Network (FFNN) is a fundamental neural network architecture
where information travels in a forward manner from the input layer, through hidden lay-
ers, to the output layer, with no recurrence, feedback, or loops[39]. Given its widespread
use and straightforward design, this thesis refrains from an in-depth exploration of this
topic. Nevertheless, readers seeking comprehensive understanding are encouraged to
refer to “Deep Learning” by Goodfellow et al.[39].

L1 and L2 regularization

L1 and L2 regularization are widely employed and prevalent techniques to prevent over-
fitting in machine learning models by adding a penalty term to the loss function[39].

L1 regularization, also known as Lasso regression, introduces a penalty term that is
proportional to the absolute value of the parameters. This promotes sparsity in the
learned model as it tends to make some of the parameters exactly zero, effectively elim-
inating insignificant features and contributing to feature selection[39].

L2 regularization, or Ridge regression, adds a penalty term proportional to the square
of the parameters. It encourages the parameters to be small but does not make them
zero, resulting in models that are less sensitive to individual features[39].

Dropout

Dropout is another regularization technique for neural networks that operates by ran-
domly setting a fraction of the output from the neurons in each layer to zero during
training, which helps to prevent overfitting. Dropout prevents neurons from co-adapting
too much during training, which negatively impacts the model’s generalization.
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The underlying intuition is that this approach forces the network to learn more ro-
bust features useful in conjunction with various random subsets of the other neurons.
Despite its simplicity, dropout has been shown to produce significant improvements in
the performance of neural networks on supervised learning tasks[40].

Early Stopping

Early stopping is a third regularization technique used to prevent overfitting in machine
learning models during the training of neural networks. As model training advances, the
training error starts to decrease. The validation error, the error on unseen data, also
initially decreases, but at some point, it will reach a minimum and start to increase, in-
dicating overfitting. Early stopping intervenes at the point when validation error begins
to rise, ending the training process to ensure that the model generalizes well to unseen
data. This technique eliminates the need for setting and tuning an arbitrary number of
training epochs and reduces the risk of overfitting without adding computational com-
plexity or requiring additional hyperparameter tuning[41]. The principle behind early
stopping is depicted in fig. 2.4.

While early stopping has proven effective, it is important to know its limitations. For
instance, the optimal stopping point can vary depending on the dataset and model archi-
tecture, and early stopping may lead to underfitting if not appropriately tuned. Several
ways exist to decide on the optimal stopping point, with the simplest being to set a pa-
rameter called “patience”. This “patience” parameter decides the acceptable number of
epochs without improving the best validation loss before the training is terminated. The
model can then be reverted to the model which performed the best validation loss[41].

Epochs

Lo
ss

Training Loss
Validation Loss
Optimal Stopping Point

Figure 2.4.: Principle behind early stopping
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Rolling Forecast

Essentially, rolling forecast is a forecasting type that makes it possible for the model to
forecast longer into the future by using its own previous forecasts as input into the model
iteratively[42]. This method introduces some uncertainty to the input of the predictive
model, potentially increasing the risk of divergence. However, it has proven effective in
many cases and is often used in time-series forecasting. Pseudocode for rolling forecasting
is given in algorithm 1.

Algorithm 1 Rolling Forecast

1: Input: prev n timesteps, n iterations, forecast horizon length
2: for i in range(n iterations) do
3: forecast = PredictiveModel(prev n timesteps, forecast horizon length)
4: Append the n=forecast horizon length timesteps of forecast to prev n timesteps
5: Remove the n=forecast horizon length first elements from prev n timesteps
6: end for

2.3.3. Long Short-Term Memory - LSTM

Long Short-Term Memory (LSTM) is a type of Recurrent Neural Network (RNN) archi-
tecture that Hochreiter and Schmidhuber introduced in 1997[43]. The LSTM architec-
ture is designed to overcome the vanishing gradient problem in traditional RNNs. The
vanishing gradient problem occurs when the gradient signal in the backpropagation al-
gorithm exponentially decreases as it propagates back through time, causing the weights
to be updated very slowly or not at all[44, 45].

LSTMs aim to solve the vanishing gradient problem by utilizing the cell state and forget
gate concept. The cell state is depicted as the horizontal line running through the top of
fig. 2.5, denoted C, acting as the conveyor belt of the LSTM. It runs through the entire
chain and is only altered by minor linear interaction[45]. This makes the information
able to flow more or less unchanged down the line.
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X X

X +

tanh

Xt-1 ht-1

σ σ tanh σ

X X
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Xt ht
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X X
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Xt+1 ht+1

Neural Network Layer Pointwise Operation Vector Transfer
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Input Vector Hidden State/Output Vector

Memory Cell Memory Cell Memory Cell
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ht+1
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Figure 2.5.: The LSTM architecture with three memory cells

The only structures that can alter the cell state are the gates, namely the forget gate,
the input gate, and the output gate. The forget gate, denoted f in fig. 2.5, consists
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of the output from the previous timestep, often referred to as the hidden state, ht−1,
concatenated with the current state, xt. This vector is then processed by the trained
sigmoid layer, σ, which outputs a number between zero and one for each state in the cell
state before these values are pointwise multiplied with the previous cell state[45]. If the
sigmoid layer outputs zero for a state, it implies forgetting everything about this state,
while one implies remembering everything. Mathematically, this can be expressed as

ft = σ (Wf · [ht−1, xt] + bf ) . (2.5)

where Wf and bf denote the weight and biases of the corresponding sigmoid layer.

The input gate, denoted i in fig. 2.5, decides what new information will be stored in
the cell state. A trained sigmoid layer processes the concatenated states, [ht−1, xt], be-
fore the values are pointwise multiplied with the same states processed by a tanh layer.
The tanh layer creates a vector of candidate values, C̃t, that could be added to the cell
state, and the sigmoid layer decides how much of each value will be added to the cell
state[45]. Mathematically, this reads as

it = σ (Wi · [ht−1, xt] + bi)

C̃t = tanh (WC · [ht−1, xt] + bC)
(2.6)

where Wi and bi denote the weight and biases of the corresponding sigmoid layer, and
WC and bC denote the weight and biases of the corresponding tanh layer.

The output from the pointwise multiplication of i and C̃ is then added to the out-
put from the forget gate to form the new cell state. The updated cell state can be
expressed as

Ct = ft ∗ Ct−1 + it ∗ C̃t. (2.7)

The output gate does not directly alter the cell state but is responsible for deciding
what the memory cell will output and feed into the next memory cell in the chain, thus
influencing the cell state. The output is essentially a filtered version of the new cell state.
The cell state is first put through a tanh operation to squeeze the values between -1 and
1. A trained sigmoid layer processes the concatenated states, [ht−1, xt], and pointwise
multiplies them with the output from the tanh operation to decide which parts of the
cell state will be outputted[45]. This can be expressed mathematically as

ot = σ (Wo [ht−1, xt] + bo)

ht = ot ∗ tanh (Ct)
(2.8)

where Wo and bo denote the weight and biases of the corresponding sigmoid layer.

In the context of building temperature modeling, LSTMs can be used to forecast a
building’s temperature evolution based on historical temperature data and environmen-
tal conditions. By training an LSTM model on historical temperature data from the
asset and its surroundings, the LSTM should be able to learn the dynamics of the tem-
peratures of the asset and make reasonable forecasts of the temperature evolution. In
addition, the recurrent properties of the LSTM should be capable, to a certain extent,
of capturing various factors such as the presence of people, heat from a fireplace or
radiators, and other elements that influence the temperature evolution of the asset.
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2.3.4. Transformer

The Transformer is a neural network architecture introduced in 2017 by Vaswani et al.
in the paper “Attention Is All You Need”[46]. The architecture was initially proposed
for Natural Language Processing(NLP) tasks such as machine translation and language
modeling. It was quickly recognized as the state-of-the-art architecture for a wide range
of NLP problems[47]. The Transformer architecture is the engine behind several recent
breakthroughs in the AI paradigm, such as the cutting-edge, staggering chatbot released
by OpenAI in November 2022 named ChatGPT[48]. However, there are many similar-
ities between NLP and time-series forecasting, and recent studies have shown that the
Transformer also can be used to model physical systems[14].

The Transformer consists of an encoder-decoder framework where the encoder and de-
coder comprise a stack of N identical layers. These N layers consist of multiple self-
attention and feed-forward neural networks, as seen in fig. 2.6a.
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(a) Depiction of the Transformer architecture, as proposed by Vaswani et al.[46]
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Encoder Decoder

T1 T2 T3 T4 T4 T5

T5pred T6pred

Encoder Input Decoder Input

Decoder Output

(b) Depiction of the input and output of the Transformer during training

Figure 2.6.: The Transformer architecture

Self-attention is a mechanism that allows the network to weigh the importance of dif-
ferent parts of the input sequence while computing its representation. This mechanism
computes a weighted sum of the input sequence, with the weights derived from a func-
tion that depends on the input sequence itself. The function is learned during training,
allowing the network to focus on different parts of the sequence. The self-attention mech-
anism allows the model to capture long-term dependencies in a sophisticated manner[46].

The decoder additionally consists of a masked self-attention sub-layer. This masking
is necessary during training and inference but is especially important during training.
When the Transformer is trained, the decoder is provided with the correct outputs
shifted right, as depicted in fig. 2.6b. The output is then generated autoregressively,
which means the model generates the subsequent output at each step based on the pre-
vious correct outputs. In order to prevent the model from cheating by peeking ahead
and generating outputs that depend on correct values from the future, the decoder input
needs to be masked. This is accomplished by masking all values in the decoder input
sequence after the position of the current value, which ensures that the decoder can only
attend to the positions it has already generated[46].

Due to the autoregressive generation of outputs, inference with a Transformer must
differ from the training. During inference, the correct outputs are inherently not known.
Therefore, the autoregressive output generation must be generated based on the previ-
ously forecasted outputs instead of the correct outputs. This can be done iteratively by
re-feeding the generated forecasts for each forecasted output position into the decoder
until the desired forecast length is reached. For example, to forecast the first output,
T5pred in the context of fig. 2.6b, the encoder is provided T1 to T4 as done during train-
ing. However, the correct T5 is unknown, so the decoder will only be provided with the
correct T4 for the first iteration. The decoder will then output a forecast for T5, namely
T5pred, which will be added to the decoder input for the next iteration. The decoder
input will now consist of T4 and T5pred, resulting in new forecasts for T5 and T6. The
decoder input will then be updated with the new forecasts, and this procedure can be
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repeated until the desired forecast horizon is reached[49].

Another essential part of the Transformer is its positional encoding. In contrast to
the LSTM, which models time dependencies through its recurrent structure, the Trans-
former contains no recurrence. Instead, the Transformer handles time dependencies
through self-attention and positional encoding. The positional encoding uniquely en-
codes every sample in the sequence, allowing the Transformer to evaluate the sample’s
impact on the output. The original paper proposed the following positional encoding
based on the relative position of the sample in the sequence.

PE(pos,2i) = sin
(
pos/100002i/dmodel

)
PE(pos,2i+1) = cos

(
pos/100002i/dmodel

) (2.9)

where pos is the relative position in the sequence, i is the dimension of the positional
encoding and dmodel is the dimension of the model itself[46]. For time series forecasting,
this encoding can be rewritten as a temporal encoding, where each sample’s position is
represented by its timestamp converted to sines and cosines with appropriate periods[50].
The positional encoding can then be rewritten to

PE(t,2i) = sin (ωit)

PE(t,2i+1) = cos (ωit)
(2.10)

where ωi represents the handcrafted frequencies typically set to represent daily and
yearly periods.

The positional encoding allows each sample in the input sequence to be processed sepa-
rately, unlike the LSTM, where the sequence must be processed sequentially since each
timestep depends on the previous timestep. This allows the Transformer to perform
many computations in parallel, which results in faster training, especially if GPUs are
available for computation[46]. However, during inference, the model has to predict out-
puts autoregressively based on previous predictions, which limits its ability to perform
computations in parallel. Efficient generative inference for Transformer models is cur-
rently an active field of research[49].

To prevent overfitting, the Transformer architecture applies dropout to the output of
each sub-layer[46]. This dropout method randomly disables neurons during training to
promote generalization and prevent overfitting[40].

In summary, the Transformer, with its ability to handle long-term dependencies and
capture contextual information, is well-suited for modeling the intricate interactions be-
tween different components of a building’s thermal system. In addition, by incorporating
external factors such as weather conditions and occupant behavior, the model can accu-
rately forecast a building’s temperature evolution.
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2.4. Hybrid Analysis and Modeling-Based Building
Temperature Modeling

The HAM framework aims to exploit the complementary strengths of DDMs and PBMs
to enhance the accuracy, reliability, and interpretability of indoor temperature fore-
casts. By incorporating both models, HAMs can account for the inherent complexity of
building temperatures while maintaining the flexibility to adapt to changing conditions
through the DDM. Several HAM strategies have been proposed in recent research, includ-
ing Reduced Order Modeling, Physics-Guided Machine Learning, Data-Driven Equation
Discovery, and the Corrective Source Term Approach[51].

2.4.1. Corrective Source Term Approach - CoSTA

The Corrective Source Term Approach (CoSTA) is a novel HAM approach proposed
by Blakseth et al. in 2021[12]. A significant difference between CoSTA and the other
previously mentioned HAM approaches is that CoSTA utilizes the PBM to the greatest
extent possible by using it as the cornerstone of the forecast. The PBM consists of the
governing equations of the system, which, as discussed in section 2.1.1, yields high inter-
pretability and trustworthiness. However, these equations cannot provide outstanding
accuracy due to several factors, such as unknown and hidden physics and assumptions
made while modeling.

CoSTA seeks to bridge this inaccuracy by employing a DDM to predict the corrective
source term of the governing equations of the PBM and then augment the governing
equations with this corrective source term before the final output is produced. Hence,
this approach retains the utmost of the interpretability of the PBM[12].

CoSTA has recently been found to outperform comparable DDM and PBM models
in a series of numerical experiments on one-dimensional heat diffusion. The CoSTA
model often reduced the predictive errors by several orders of magnitude compared to
the other models while also generalizing better than pure DDMs. Due to its flexible yet
solid theoretical foundation, CoSTA provides a great modular framework for further ad-
vancements within the modeling of dynamical systems. This theoretical foundation also
guarantees its capacity to model any system governed by deterministic partial differen-
tial equations[12]. If able to model the source term accurately, CoSTA has the potential
to diminish or even solve the accuracy issue of the PBM.

CoSTA and Building Temperature PBM

To incorporate the PBM proposed in section 2.2.1 into a CoSTA model, eq. (2.1) would
have to be rewritten as follows.

˙⃗
T (t) = C−1A(t) · T⃗ (t) + C−1 · u⃗(t). (2.11)

where the A(t) denotes the symmetric heat transfer matrix and C denotes the diagonal
matrix with the heat capacities corresponding to each room on the diagonal. The C
matrix will always be invertible since a room cannot have zero heat capacity. With the
added corrective source term, ⃗̂σ(t), the equation reads as follows.

˙⃗
T (t) = C−1A(t) · T⃗ (t) + C−1 · u⃗(t) + C−1 · ⃗̂σ(t). (2.12)
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The solution of the system can then be approximated with the Euler method as follows.

T⃗n+1 = T⃗n + h · ˙⃗
T (tn)

= T⃗n + h · (C−1A(tn) · T⃗ (tn) + C−1 · u⃗(tn) + C−1 · ⃗̂σ(tn))
(2.13)

where h denotes the chosen step length. The step length is a parameter that requires
careful selection. A smaller step length may achieve a higher accuracy but comes at the
cost of a more demanding computation to reach the desired next step.

Training and Inference

The training and inference routines of PBM, DDM, and CoSTA are depicted and com-
pared in fig. 2.7. Note that a PBM does not need to be trained and is therefore not
included in fig. 2.7a.

Training and inference procedures are more complex for a CoSTA than a DDM since the
CoSTA has to calculate the output of three models before obtaining the next forecasted
temperature, while the DDM only has to calculate the output of one model.

The increased complexity is apparent in the training comparison in fig. 2.7a. The CoSTA
training approach will be described in a step-by-step manner in the following list.

1. The CoSTA first has to calculate the next temperature from the PBM model given
the last observed temperature, T⃗n

ref , and with no corrective source term.

2. This produces
⃗̂
T̃n+1, which can be interpreted as the PBM’s “best guess” of the

next temperature.

3. This “best guess” is subsequently provided as input to the DDM responsible for

predicting the corrective source term,
⃗̂
σ̃n. The DDM can also be provided with

additional relevant features, for example, time of day and weather conditions,
denoted by fn in fig. 2.7a.

4. Once the corrective source term is obtained, the PBM is once again solved with the
same input temperature, T⃗n

ref , but this time together with the corrective source
term produced by the DDM.

5. This output from the PBM is the final output of the CoSTA, ⃗̃Tn+1. The final
output is then compared to its label, the true temperature of the next state, in
order to calculate error gradients and update the weights of the DDM.

This approach differs from the original CoSTA, as proposed by Blakseth et al.[12], in
two ways. Firstly, the additional relevant features as input to the DDM, fn, are an
expansion of the original CoSTA architecture and seek to make the DDM able to make
better predictions based on more relevant context.

Secondly, the original approach labeled the output from the DDM,
⃗̂
σ̃n, directly with the

true corrective source term in order to train the DDM. The true corrective source term
can be obtained from eq. (2.13). However, by utilizing frameworks such as PyTorch[52],
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which automatically creates computational graphs based on operations done on the
fundamental data structures (tensors) and calculates error gradients for each parameter
using the chain rule differentiation[53], this process can be altered as depicted in fig. 2.7a,
which should yield the same results.

The inference routine of a CoSTA and how it differs from a PBM and DDM is de-
picted in fig. 2.7b. To infer a forecast from a CoSTA model, the same steps described
in the training routine have to be performed. To quickly summarize, this is done by
first solving the PBM without the corrective source term, then predicting the corrective
source term based on this output of the PBM together with additional relevant features
before the PBM is solved again, this time together with the predicted corrective source
term, to produce the final output.

DDM CoSTA

(a) Training procedure comparison of DDM and CoSTA

PBM

DDM

CoSTA

(b) Inference procedure comparison of PBM, DDM, and CoSTA

Figure 2.7.: Comparison of PBM, DDM, and CoSTA, inspired by Blakseth et al.[12]
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The data used in this study consisted of sensor measurements from 21 sensors from
Disruptive Technologies, more specifically, 16 temperature sensors and five proximity
sensors, placed in different locations of the asset. The temperature sensors measured
the temperatures in different rooms of the asset and the outdoor temperature. The
proximity sensors were responsible for monitoring the opening and closing of doors. The
sensor layout is depicted in fig. 3.1.

Ground Floor 1st Floor 2nd Floor

Bedroom

Storage Room Bathroom Bathroom

Bedroom 1 Bedroom 2

Bedroom 3

Office

Living Room

Entrance Hall

Kitchen

Living Room

Fireplace

Temperature Sensor Proximity Sensor

Figure 3.1.: Sensor layout at the asset

These sensors recorded data from 07.01.2022 until 19.02.2023, resulting in over a year’s
worth of measurements. Throughout this period, each temperature sensor measured its
target with a sampling frequency of one sample every 15 minutes, leading to more than
39,000 measurements per sensor. Furthermore, the proximity sensors sampled their state
every time it changed, i.e., when their door was opened or closed. Therefore, the differ-
ent proximity sensors have a different number of samples based on how frequently their
corresponding door was used. Nevertheless, all proximity sensors provide a complete
record of the opening and closing of their corresponding doors.

3.1. Resampling and Interpolation

The first step in dealing with such time-series sensor data was to resample the data onto
a manageable time grid. Even though the continuous temperature sensors all have a
sampling period of 15 minutes, they did not coordinate the sampling to happen on the
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same timestamp. Therefore, the samples had to be interpolated onto a common time
grid. This was done by utilizing the principle of linear interpolation as demonstrated
in fig. 2.2b. The thermal response of a building is relatively slow. With a sampling
period of 15 minutes, linear interpolation is believed to be complex enough to capture
the dynamics of the temperatures in the data.

For the discrete sensor data, i.e., the proximity sensors monitoring the doors, the sensor
observations were first resampled onto the closest time grid. After that, the values for
the undetermined time grids were forward-filled from the determined values, utilizing the
principle depicted in fig. 2.2a. The values “Door Open” and “Door Closed” were also
replaced with the values “0” and “1” to make them manageable for computing purposes.

The resampling process also revealed that one of the sensors in the entrance hall ceased
recording temperatures in the middle of June 2022. The measurements from this sensor
were therefore removed for further analysis.

3.2. Data Analysis

Data analysis is crucial in machine learning, especially when dealing with time series
data. Through exploratory analysis, one better understands the data and its underlying
structures and patterns. It identifies errors, irrelevant information, and weaknesses in
the dataset, which allows for cleaning the dataset in a more sophisticated way. It also
aids in feature engineering, as knowledge gained can be used to extract meaningful fea-
tures from the data. This process culminates in a neat and lighter dataset, simplifying
the training process and enhancing the model performance[54, 55]. The following para-
graphs present the analysis conducted on this dataset.

3.2.1. Correlation Analysis

Correlation analysis is a simple yet efficient measure when analyzing time series data.
An example of a correlation analysis is analyzing the correlation matrix. The correlation
matrix for the temperature sensors in this dataset is depicted in fig. 3.2. A great ex-
ample of redundant features is “2fBalconyEntrance” and “2fLivingRoomCenter”. These
sensors have a correlation of 0.99, meaning that they essentially correlate perfectly and
describe the same phenomena. Using both of these features as input to the model is
simply redundant and will only increase computational cost and make the optimal di-
rection of the gradient descent less apparent during training.

For this study, “2fBalconyEntrance” and “2fLivingRoomWindow” were dropped from
the dataset due to their correlation of 0.99 with “2fLivingRoomCenter”, hence providing
essentially the same information. “2fStair” was also dropped due to its correlation of
0.95 with “2fLivingRoomCenter”, which is relatively high. Finally, “0fLivingRoomCeil-
ing” and “0fLivingRoomFloor” have a correlation of 0.94 and were therefore squashed
together to one new feature, “0fLivingRoom”, providing a mean temperature for the
ground floor living room. This reduction resulted in a maximum correlation of 0.92 be-
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tween the features in the dataset, which is still relatively high. However, in fear of losing
information, correlations less than or equal to 0.92 were kept. This process reduced the
dimensionality of the dataset by 4 dimensions.
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Figure 3.2.: Correlation matrix of the time series data

3.2.2. Spectral Analysis

Spectral analysis is a technique that uncovers the underlying dominant cycles in the data
and is essential when analyzing time series data. When dealing with temperature data,
it is often possible to make well-educated guesses of the underlying cycles in advance,
as the outdoor temperature has a clear daily and yearly cycle. There might even be a
weekly cycle for the inside temperature in some circumstances. However, a periodogram
is a great way to assess and confirm these guesses and uncover other less apparent cycles.
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A periodogram of the temperature in the second-floor living room is depicted in fig. 3.3.
Here, the daily cycle is very apparent, with high power on the daily frequency. The
yearly cycle also seems quite dominant. However, it is difficult to determine what goes
on between the weekly and yearly cycles. A viable reason for this is that the dataset
only contains measurements for just over one year, which makes it hard to determine
the significance of these frequencies.
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Figure 3.3.: Periodogram of the time series data

From this analysis, it was apparent that some features regarding these cycles should be
engineered. The daily and yearly cycles are evident. The weekly cycle may also provide
information that allows the model to distinguish between individual days of the week
and between weekdays and weekends. Therefore, this cycle was also added to the fea-
tures.

These features were engineered using the sine and cosine functions applied to the re-
spective frequencies, according to eq. (3.1).

feature1(t) = sin (ωit)

feature2(t) = cos (ωit)
(3.1)

where ωi denotes the desired handcrafted frequency. For this study, the daily, weekly,
and yearly frequencies were added to the dataset. These features were added to every
sample in the dataset to make the model able to distinguish between the timestamps in
a sophisticated manner. The yearly cycle is depicted in fig. 3.4.

Figure 3.4 also highlights the need for two trigonometric functions to model the times-
tamps instead of one. With only the sine, the model would not be able to distinguish
between, for example, the 1st of February and the 1st of June. However, when comple-
mented by the cosine function, which represents a sine function phase-shifted by π/2,
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the model can uniquely distinguish between every timestamp throughout the year.
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Figure 3.4.: Feature engineering of the yearly cycle

3.3. Resulting Dataset

As a result of this data preprocessing, each of the 22 remaining features in the dataset -
distributed among 11 temperature sensors, five proximity sensors, and six cyclic features
describing the temporal characteristics - was represented by a series of 39,166 samples.
This resulting dataset is described by the box plot in fig. 3.5.
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Figure 3.5.: Box plot of the resulting dataset
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The objective of the implementations introduced in this chapter was to create models
from the various paradigms that accurately predicted temperature evolution in different
rooms of the asset. Subsequent sections detail the methods employed for each paradigm.
All models used the data presented in chapter 3, with some alterations tailored to their
respective modeling paradigms, which will also be outlined.

4.1. Physics-Based Modeling - PBM

A thorough PBM of the temperatures of the specified asset was developed during the
specialization project leading up to this thesis[1]. This model was implemented us-
ing ESP-r, a comprehensive, multi-domain, state-of-the-art simulation environment for
building energy analysis. The method behind this model is not presented in this thesis.
For further insight, the specialization report can be reviewed.

4.2. Data-Driven Modeling - DDM

During this work, two different DDMs were developed for the forecasting task. The first
model utilized an LSTM architecture combined with a Feed Forward Neural Network
(FFNN), while the second model employed the newer and increasingly popular Trans-
former architecture. Both models utilized the dataset described in chapter 3, with some
modifications.

4.2.1. Data Preprocessing

Although initial data preprocessing was carried out as detailed in chapter 3, additional
preprocessing was necessary for the dataset to be optimal for these machine learning
architectures.

The most crucial step in the data preprocessing stage of supervised machine learn-
ing is the split of the dataset into train and test sets. This is crucial to avoid data
leakage between the train and test data. The universal approximation theorem states
that feed-forward neural networks with as few as one hidden layers can approximate
any function[56]. Therefore, if the model is exposed to the test data during training, it
might approximate it. Even if it fails to approximate it effectively, the results will still
be still invalid. This is because the model validates its performance on the same data
it has already been given the features and correct labels, which for obvious reasons, is
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undesirable. The test data is the only way to validate the results from the model, and
if there has been a data leakage between the test and train data, any results will be
corrupted.

For this study, the test set was set to July 2022. This was done to get the best possible
basis of comparison to the PBM developed in the specialization project[1]. This PBM
neglected the influence of any internal heat source, such as radiators. Therefore, its
simulation will be more accurate in summer, such as in July, when the radiators will
most likely be turned off.

The choice of July as the test month may not have been optimal. The asset has sensor
measurements for a year and a month, and choosing the last month of measurements as
test data would lead to the model not having to extrapolate with regard to the season
when assessing the model. In addition, July is known to be one of the hottest months in
the specified location of the asset, meaning that the model might also have to extrapolate
on the temperature when assessing its performance. Finally, DDMs are notorious for un-
derperforming when extrapolating, and purposely extrapolating during testing will not
lead to the best results accuracy-wise. Nevertheless, one may examine how the model
performs during extrapolation, which may work as quality assurance.

The training set was again split into training and validation sets. The validation set
was set to August 2022, while the training set kept the remainder of the data. The data
split is depicted in fig. 4.1. This split resulted in the test set and validation set each
comprising 8% of the total dataset, while the train set comprised the remaining 84%.

Train Set Train SetTest Set Validation Set

07.01.2022 01.07.2022 01.08.2022 01.09.2022 19.02.2023

Figure 4.1.: Train, validation, and test split

Splitting validation and test sets into two separate months may not be beneficial, as
it may break with the principle of independent and identical distribution (IID). How-
ever, to compare the model to the PBM, the choice of July as the test set was deemed
necessary. The choice of August as the validation set was made in order to be able
to tune the hyperparameters with a rolling forecast in the same manner as the model
was to be evaluated on the test set. This testing procedure simulates how the model
would be used in a real-life scenario and, as such, acts as an effective performance metric.

Another measure taken to make the sets more likely to fulfill the IID property, as well
as make the data more stationary, was to differentiate the data. Differentiation in this
context involved transforming the data to reflect temperature changes between times-
tamps rather than absolute temperatures, which can help minimize seasonal variation
and non-stationarity. Non-stationarity in data is infamous for its impact on the accuracy
and errors of forecasting in machine learning. Therefore, to get consistent and reliable
results, it was necessary to perform some changes to the non-stationary data to get a
more statistically stable environment[57].
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4.2. Data-Driven Modeling - DDM

A simple measure to make the seasonal data more stationary was to differentiate it,
and an illustration of this point is given in fig. 4.2. Here, the function f(x) = sinx+x is
clearly non-stationary and will continue to grow with a growing x. However, its deriva-
tive, f ′(x) = cosx+ 1 is stationary. This also applies to the seasonal trends in the time
series data, where the temperature will depend on the time of the year. Differentiating
the data was likely to remove some of this seasonal non-stationarity. It also aided in
bridging the gap between the test and training sets, as the temperature’s derivative is
likely less seasonally dependent than the temperature itself.
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 y = f(x) = sin(x) + x
y = f'(x) = cos(x) + 1

Figure 4.2.: Depiction of the non-stationarity of f(x) = sinx+x in contrast to its deriva-
tive

Subsequently, the data were normalized. Normalization is essential both for computa-
tional and accuracy purposes. Z-score normalization, described by eq. (2.4), was deemed
a good choice for normalizing the data in hand due to its more efficient handling of poten-
tial outliers. The z-score normalizer sklearn .preprocessing.StandardScaler from sklearn
was used to perform the normalization[58]. The normalizer was first fitted on the entire
train and validation set to determine the values of µi and σi, i.e., the mean and standard
deviation of the respective features. The normalizer was not fitted on the test data to
avoid any data leakage this would introduce, which is deemed a good and vital practice.
Subsequently, the train, validation, and test data were normalized using the determined
values of µi and σi from the fitting.

After this, the data windowing was performed. When performing data windowing, two
main parameters have to be decided upon: feature sequence length and label sequence
length. How long the look-back period, i.e., feature sequence length, and the forecasting
horizon, i.e., label sequence length, should be is not necessarily evident. Regarding the
look-back period, a longer period enables the model to capture longer-term dependencies
at the expense of potentially diluting the short-term dependencies[33]. Regarding the
forecasting horizon, a too-long horizon may cause the training loop to fail to converge,
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while a too-short horizon may cause the rolling forecast to diverge, from the author’s
experience. Through trial and error, the look-back period was set to 96 timesteps, i.e.,
one day of measurements, while the forecasting horizon was set to eight timesteps, i.e.,
two hours.

With the data windowing in place, the data preprocessing procedure was done. The
following sections will first introduce the door model implemented to facilitate a rolling
forecast. After that, the two DDM architectures employed to perform the forecasting
task and their architectures and hyperparameters will be presented.

4.2.2. Door Model

To facilitate a rolling forecast, it was necessary to have a model predicting whether the
doors were open or closed. The forecasting model requires the state of the doors and
temperatures as input. Hence, to make it possible to forecast further into the future
than the forecasting horizon of the model, there was a need for a model providing a
prediction of the door states. The simplest way to achieve this would be to forward-fill
these values from the last observed door states. However, this would be a significant
simplification and would likely deteriorate the models’ performance.

Therefore, a simple FFNN with two hidden layers was implemented and trained to
make this prediction based on the time of day and temperatures in each room. After
training and tuning its hyperparameters, this model achieved an accuracy of 83% on the
test set, which is deemed a good indicator of whether the doors are open or closed. In
addition, the same training, validation, and test split described previously was used to
avoid data leakage for this model. Table 4.1 summarizes the hyperparameter search.

Hyperparameter Search Range Best Hyperparameter

Batch Size 500-3000 2000
Epochs Early Stopping 37
Learning Rate 10−1 − 10−5 10−4

L1 Regularization 10−2 − 10−5 10−3

Number of FFNN Hidden Layers 1 - 4 2
Width of FFNN Hidden Layers 32-256 64

Table 4.1.: Door model: Hyperparameter search

4.2.3. LSTM

Model Architecture

The LSTM architecture described in section 2.3.3 was implemented using the PyTorch
framework[52]. The implemented architecture is depicted in fig. 4.3. This architecture
expands on the vanilla LSTM architecture by incorporating several hidden layers in the
FFNN after the LSTM, which was found to provide more satisfying results.
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Data Prediction

L
S
T
M

FFNN

Figure 4.3.: Architecture of the implemented LSTM model

During training and inference, the input data were first fed into the LSTM layer. The
output from the LSTM layer was then fed into a multilayer FFNN, responsible for inter-
preting and sorting the output from the LSTM layer to their corresponding forecasting
variable.

Training Routine

The training routine implemented for this model followed a standard routine for training
a neural network with time-series data, using the PyTorch framework[52]. The model
first tried to forecast an input of dimension (batch size, 96, 22) where 96 represents the
look-back period, and 22 represents the number of features. This gave an output of di-
mension (batch size, 8, 10) where 8 represents the forecasting horizon of eight timesteps,
and 10 represents the number of forecasted variables.

These outputs were then compared to their corresponding label using a mean squared
error (MSE) loss function before the gradients of the loss function with respect to the
network weights were calculated. The Adam algorithm was used to calculate the up-
dated weights, and the weights were updated accordingly for each batch in the training
set. The weights of the network were initialized according to the He initialization scheme.

After the whole training set had been iterated, its performance was examined on the
validation set. This procedure was implemented in a more sophisticated way than a
vanilla validation loop. Instead of simply comparing the 8-timestep output of the model
with its label, the validation loop utilized a rolling forecast of 96 timesteps to examine
the model’s accuracy, as previously introduced in pseudo-code in algorithm 1. Each win-
dow in the validation set was forecasted with a rolling forecast of n iterations = 12 and
forecast horizon length = 8, providing a forecast of 96 timesteps per validation win-
dow. This rolling forecast was then compared to the actual evolution of temperature on
a mean average error (MAE) basis for assessing the model’s performance on unseen data.
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The validation MAE was used to implement early stopping, which is an effective measure
to prevent overfitting, and also eliminates the need for tuning the number of training
epochs, as the training automatically halts once the validation loss starts to increase.
Since the validation loss was calculated on the same rolling forecast basis as the model
was intended to be used in a real-life scenario, this was deemed a good metric for assess-
ing the model’s performance. The patience of the early stopping was set to 10.

Hyperparameters

Such a model has several essential hyperparameters, many of which impact each other,
and tuning the hyperparameters is, therefore, inherently complex. As a result, numerous
papers have been written with sophisticated ways of doing hyperparameter search[59].
However, for the purpose and scope of this study, one of the simplest types of hyperpa-
rameter search was utilized, namely grid search.

The grid search started with a broad search before the grid was condensed around the
areas that showed the most promise. Table 4.2 summarizes the conducted grid search
for each hyperparameter, along with its corresponding best-discovered hyperparameter.
It is worth noting that the batch size parameter is a parameter that advantageously
should have been tested with even higher values. However, this was not possible due to
computational limitations on the available equipment.

Hyperparameter Search Range Best Hyperparameter

Batch Size 50-1000 1000
Epochs Early Stopping 6
Learning Rate 10−1 − 10−5 10−2

L1 Regularization 10−2 − 10−15 10−12

Number of LSTM Layers 1 - 2 1
Hidden LSTM Size 32 - 256 64
Number of FFNN Hidden Layers 1 - 5 3
Width of FFNN Hidden Layers 32-256 64

Table 4.2.: LSTM: Hyperparameter search

4.2.4. Transformer

Model Architecture

As the Transformer architecture proposed by Vaswani et al., depicted in fig. 2.6a, is
designed to operate on NLP problems, some modifications had to be made to the model
to make it suitable for time-series forecasting. First, the final softmax layer, responsible
for transforming outputs into output probabilities, had to be removed.

Additionally, the input and output embeddings had to be modified. Since the time-
series data is already understandable for the model, i.e., real-valued unlike words in an
NLP problem, these embeddings can be substituted with a linear layer. These layers
convert their inputs from the n-dimensional input space into the same dimension as the
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model. The implemented model is depicted in fig. 4.4.
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Figure 4.4.: Architecture of the implemented Transformer model, inspired by Vaswani
et al.[46]

The positional encoding was implemented in the same way as described in section 3.2.2,
with handcrafted daily, weekly, and yearly frequencies. The main difference between the
LSTM and Transformer input is that for the Transformer, this positional encoding was
added to the input after the linear layer and not directly added to the feature space as
with the LSTM.

This model was also implemented using the PyTorch framework for the Transformer
architecture[52].

Training Routine

The training routine followed the same procedure as the LSTM, adjusted with the specific
Transformer training procedure described in section 2.3.4. In addition, the validation
error was also evaluated with the same rolling forecast as the LSTM, with patience of
10 for early stopping.
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Hyperparameters

The hyperparameter tuning of a Transformer is a complicated process. A Transformer
has several internal hyperparameters that will affect its capability and ability to learn,
such as the dimension of the model itself, the number of encode layers, and the number
of decode layers, to name a few. Even though it also here exist sophisticated ways of
pursuing the optimal hyperparameters, the scope of this study limited the hyperparam-
eter tuning to a grid search.

The range of search for the different hyperparameters is presented in table 4.3, to-
gether with the corresponding best-discovered hyperparameters. It is also worth noting
that an increased batch size was impossible due to computational limits on the available
equipment, but it would be interesting to examine.

Another point worth mentioning regarding grid search in general, and especially with
as many hyperparameters as a Transformer introduce, is that there most likely exists
more optimal hyperparameters. However, the conducted grid search is expected to have
brought the hyperparameters reasonably close to the optimal values.

Hyperparameter Search Range Best Hyperparameter

Batch Size 50 - 500 500
Epochs Early Stopping 3
Learning Rate 10−2 - 10−5 10−3

L1 Regularization 10−3 - 0 10−15

Dropout Probability 0 - 0.5 0.3
Dimension of Model 32 - 512 128
Dimension of FF-layers 32 - 2048 256
Number of Heads 4 - 8 8
Number of Encode Layers 2 - 6 4
Number of Decode Layers 2 - 6 4

Table 4.3.: Transformer: Hyperparameter search

4.2.5. Scenario and Simulation Setup

As previously mentioned, the simulation was set up to simulate the month of July 2022,
and this month was therefore held aside in the test set. In addition, the simulation was
set up to support an arbitrary length on the rolling forecast, providing the opportunity
to modify and examine how the correction interval impacted the model’s accuracy. In
this context, the correction interval is defined as the duration for which the model makes
forecasts into the future before getting corrected with the true temperatures.

With the door model predicting the states of the doors, the LSTM/Transformer forecast-
ing the indoor temperature, and the future temporal features being inherently known,
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the only state not predicted, forecasted, or known, was the evolution of the outdoor tem-
perature. The initial plan was to use weather forecasts as input to the model during the
rolling forecasts. According to Anders Doksæter Sivle from the Norwegian Meteorologi-
cal Institute and Anna Kathinka Dalland Evans from the University of Oslo, Norwegian
weather forecasts typically achieve 70% - 80% accuracy for temperature forecasts over
the next few days[60]. This level of accuracy was deemed a good indicator of how the
outdoor temperature would evolve.

However, retrieving historical data on Norwegian weather forecasts proved to be chal-
lenging, if not impossible, and according to the author’s best knowledge and exploration,
such data is impossible to acquire. Nevertheless, according to Sivle and Evans’ statement
regarding weather forecast temperature accuracy, an emulation of a weather forecast can
be reconstructed from the actual outdoor temperature measurements.

This reconstruction was achieved by adding a random bias term in the range of ±30%
to the actual measured temperatures. The bias term was updated to a new random
number every two hours, as it is reasonable to assume that the weather forecast has
more of a constant offset for periods than jumping around the actual temperature every
15 minutes. Even though this “weather forecast” is not perfect, it is assumed to be a
good indicator of the actual weather forecast and that it will not impact the forecast
too significantly. The models were also double-checked with “weather forecasts” signif-
icantly poorer to ensure they did not rely too significantly on the forecasted outdoor
temperature.

4.3. Hybrid Analysis and Modeling - HAM

A HAM model, more specifically a CoSTA model, was also developed for this specific
forecasting task. Implementing a CoSTA model is more comprehensive and requires
more domain knowledge than DDMs.

At first, a PBM of the asset was developed as the cornerstone of the CoSTA. After
that, the DDM was developed to learn the corrective source term. This section intro-
duces the method used in this work.

In this section, fig. 4.5 and table 4.4 is included from the specialization project lead-
ing up to the thesis for completeness. The values in tables 4.5 and 4.6 were derived
based on values obtained from the same specialization project[1].

4.3.1. Data Preprocessing

For this model, a new feature was added to the dataset, namely the Global Horizontal
Irradiance (GHI). GHI is defined as the sum of the shortwave direct and diffuse radiation
from the sun on a horizontal surface measured in the unit W/m2, and is highly influ-
ential regarding the thermophysics of a building due to the heating gain it may pose.
This data was obtained from the Norwegian Centre for Climate Services (NCCS)[61].
NCCS records the average GHI every hour at a climate station located at Gløshaugen,
Trondheim, just over 5km from the asset. These measurements are therefore believed to

43



4. Method

be a good indicator of the radiance at the asset.

The train, validation, and test split was kept the same as the previous models. However,
the data preprocessing when dealing with a CoSTA has to be done differently since the
data can not be normalized in the same way as with a pure DDM. This is because the
PBM part of the CoSTA operates on inputs in the unit of °C, and normalizing the input
to the PBM would not make any sense. However, the input to the DDM should be
normalized to achieve the best performance.

Given that the PBM requires the original data as input, while the DDM benefits from
normalized data as input, the dataset was divided into two copies. One of the copies kept
the actual measurements to be used with the PBM. For the second copy, the continuous
variables were first time-differentiated for the same reasons described in section 4.2.1
before the data was z-score normalized for additional input to the DDM.

These dataset copies were then windowed together, providing each data window with
inputs for the PBM, DDM, and corresponding labels.

4.3.2. Door Model

The same door model utilized for the DDMs, as detailed in section 4.2.2, was also
employed to facilitate the rolling forecast for the CoSTA.

4.3.3. Model Architecture

PBM

The PBM part of the CoSTA was implemented as the RC network introduced in sec-
tion 2.2.1, described by eq. (2.2), with some modifications, which will be described in
the following paragraphs.

First, the Q-values describing the energy flux from the sun on the different nodes were
simplified. These values are challenging to derive accurately, as the radiation is defined
as W/m2 on a horizontal surface and also depends on the cardinal directions of the walls.
Therefore, the total radiation was subdivided into different rooms based on the area of
the room. This subdivision is naturally not remarkably accurate, but the plan was to let
the DDM part of the CoSTA handle the more exact distribution of the radiation. The
DDM should benefit from having access to the radiation data and the daily fluctuations
the radiation poses to the PBM.

Secondly, the heating loads for each zone were set to a constant of 10 watts to emu-
late radiators and heating from occupants, with the cooling load set to 0 watts. This
constant gain is also a significant simplification, but the asset does not have measure-
ments on any of these values, and these values will therefore become speculative. The
plan was consequently to let the DDM part also model this discrepancy.

The implemented asset, resembling the actual dimensions and construction of the phys-
ical asset, is graphically depicted in fig. 4.5. For a more detailed floor and section plan,
appendices A.1.1 and A.1.2 can be examined. The color codes of fig. 4.5 is listed in
table 4.4. Figure 4.5 and table 4.4 were extracted from the specialization project leading
up to this thesis[1].
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Figure 4.5.: Depiction of the asset integrated into CoSTA

Color Explanation

Black Frame of the asset
Red Window
Green Exterior door
Yellow Interior door
Blue Stairwell
Purple Partition wall

Table 4.4.: CoSTA-PBM: Color-coding of fig. 4.5

The asset was implemented according to the RC network, with the following coefficient
values for each zone.

Rext

[W/K]
RoutWall

[W/K]
RinWall

[W/K]
Rroom

[W/K]
Cwall

[J/K]
Croom

[J/K]

Ground Floor Bedroom 0.341 1.366 1.366 0.341 7873 25933
Ground Floor Living Room 0.598 2.392 2.392 0.598 19862 49387
Stairs 0.407 1.627 1.627 0.407 8319 37232
Ground Floor Bathroom 0.271 1.082 1.082 0.271 7057 26584
Ground Floor Storage Room 0.290 1.161 1.161 0.290 7046 27892
1st Floor Bedroom 1 0.367 1.468 1.468 0.367 11713 31406

Continued on next page
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Rext

[W/K]
RoutWall

[W/K]
RinWall

[W/K]
Rroom

[W/K]
Cwall

[J/K]
Croom

[J/K]

1st Floor Bedroom 2 0.421 1.685 1.685 0.421 15780 38716
1st Floor Bedroom 3 0.371 1.483 1.483 0.371 10850 32691
1st Floor Bathroom 0.173 0.691 0.691 0.173 9847 21833
1st Floor Storage Room 0.424 1.695 1.695 0.424 2751 35144
1st Floor Entrance Hall 0.123 0.493 0.493 0.123 19392 24861
2nd Floor Living Room 2.624 10.497 10.497 2.624 35695 27910
2nd Floor Office 0.381 1.522 1.522 0.381 8110 29130

Table 4.5.: CoSTA-PBM: Zone coefficients

The following connections between the zones were implemented.

Connected zones
RpartWall

[W/K]
CpartWall

[J/K]

Ground Floor Bedroom Ground Floor Living Room 10.352 8968
Ground Floor Bedroom Stairs 4.437 3843
Ground Floor Bedroom 1st Floor Bedroom 1 2.016 10350
Ground Floor Living Room Ground Floor Bathroom 9.785 8477
Ground Floor Living Room Stairs 38.109 0
Ground Floor Living Room 1st Floor Entrance Hall 2.722 13973
Ground Floor Living Room 1st Floor Bedroom 2 3.226 16561
Ground Floor Bathroom Ground Floor Storage Room 5.916 5124
Ground Floor Bathroom 1st Floor Bedroom 3 1.129 5796
Ground Floor Storage Room Stairs 4.437 3843
Ground Floor Storage Room 1st Floor Bathroom 1.828 9384
1st Floor Bedroom 1 1st Floor Bedroom 2 7.394 6406
1st Floor Bedroom 1 1st Floor Entrance Hall 4.437 3843
1st Floor Bedroom 1 Stairs 4.437 3843
1st Floor Bedroom 1 2nd Floor Living Room 2.419 12420
1st Floor Bedroom 2 1st Floor Bedroom 3 5.176 4484
1st Floor Bedroom 2 1st Floor Entrance Hall 6.655 5765
1st Floor Bedroom 2 2nd Floor Living Room 3.226 16561
1st Floor Bedroom 3 1st Floor Entrance Hall 12.570 10890
1st Floor Bedroom 3 2nd Floor Living Room 2.399 12317
1st Floor Entrance Hall 1st Floor Bathroom 3.944 3416
1st Floor Entrance Hall Stairs 38.109 0
1st Floor Entrance Hall 2nd Floor Living Room 4.281 21977
1st Floor Bathroom 1st Floor Storage Room 0.722 5800
1st Floor Bathroom Stairs 4.437 3843
1st Floor Bathroom 2nd Floor Office 1.828 9384
2nd Floor Living Room 2nd Floor Office 12.090 10474
2nd Floor Living Room Stairs 43.131 0
2nd Floor Office Stairs 4.729 4097

Table 4.6.: CoSTA-PBM: Zone connections

All of the values were derived by inspecting the U-value and heat capacity of the cor-
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responding surfaces implemented in ESP-r during the specialization project[1]. The
U-values were based on imposed Norwegian standards from The Regulations on Techni-
cal Requirements for Construction Works, which impose strict requirements for U-values
in newer buildings[62]. The heat capacities were derived from typical values in the con-
struction industry. For further details on the gathering of this data, the specialization
report can be reviewed[1].

In order to solve the system, the ODE in eq. (2.2) was approximated by the explicit
Euler method in the following manner.

T⃗n+1 = T⃗n + h · ˙⃗
T (tn) (4.1)

where

˙⃗
T (tn) =

(
˙⃗
Troom(t

n)
˙⃗
Twall(t

n)

)
=

(
C1 0
0 C2

)−1

·
(

D E
F G

)
·

(
T⃗room(t

n)

T⃗wall(t
n)

)
+

(
u⃗room(t

n)
u⃗wall(t

n)

)
.

(4.2)

C1 and C2 are diagonal matrices with solely positive values on the diagonal and will
always be invertible. As this is a relatively slow system, the step length was set to
60 seconds. Therefore, the system had to be solved iteratively 15 times to reach the
subsequent sampled sensor measurement, which has a sampling period of 15 minutes.

DDM

For this work, the DDM was implemented as a combination of an LSTM and an FFNN
in order to be able to catch more of the long-term (and short-term) dependencies than
a pure FFNN. This model combined the CoSTA model described in section 2.4 and the
LSTM model implemented in section 4.2.3 in the way depicted in fig. 4.6. Additionally,
a z-score normalizer was implemented between the PBM output and FFNN input to
ensure that the input data to the FFNN was normalized. This normalizer’s µ and σ co-
efficients were decided according to the forecasted temperatures produced by the PBM
without corrective source term on the training set.

This proposed architecture expands on the vanilla CoSTA architecture proposed by
Blakseth et al.[12] by incorporating an extra LSTM layer and providing it with the pre-
vious N timesteps The z-score normalization after the PBM is also an expansion of the
original architecture. The rationale behind this implementation is that the LSTM layer
should be able to catch more of the time dependencies which the plain FFNN would be
struggling with. In addition, the source term for consecutive timesteps will most likely
be correlated; for example, if there is a fire in the fireplace or there are more people than
usual in a room, this will be reflected in consecutive source terms, and the LSTM layer
should be able to model these dependencies better than a plain FFNN. As the output
from the LSTM will be between -1 and 1, it is also believed that normalizing the output
from the PBM will benefit the model.
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Figure 4.6.: Architecture of the implemented CoSTA DDM component

4.3.4. Training Routine

The training routine for this model followed the standard training procedure of a CoSTA,
as described in section 2.4.

The fact that the utilized dataset, based on the sensor measurements from the asset,
only has measurements from seven of the 13 zones implemented in the PBM introduced
some difficulties during the labeling process. It was found necessary to implement all 13
rooms in the PBM to make better-educated guesses of the correct resistances and capac-
itances of the model, even though some of the implemented rooms would not have labels.

This was solved by only labeling the rooms that had true temperature measurements in
order to calculate the error gradients. Given that the dynamics in the source term of
the different rooms likely resemble each other to some extent, the provided labels should
be able to describe the major part of the source term in all of the rooms. Despite only
a subset of the zones in the PBM being labeled, the DDM should, therefore, still be
capable of modeling the error in the underlying equations. By applying regularization
techniques such as L1 regularization and dropout, the DDM was expected to be able
to generalize the corrective source term for the different rooms. However, this is not
optimal and likely complicates the learning process.

The implemented model used both L1 regularization and dropout in the FFNN layers
to prevent overfitting and inappropriate co-adaptations between neurons in these layers
in order to facilitate better generalization in predicting the corrective source term.
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4.3.5. Hyperparameters

The hyperparameter tuning of the CoSTA followed the same procedure as the LSTM
described in section 4.2.3 due to the notable similarities between the DDM part of the
CoSTA and the implemented LSTM. Although experimenting with a larger batch size
could potentially benefit the model, this was not possible due to the computational
complexity of the implemented CoSTA and the limitations of the available equipment.
The following table summarizes the hyperparameter tuning.

Hyperparameter Search Range Best Hyperparameter

Batch Size 50-100 100
Epochs Early Stopping 4
Learning Rate 10−1 − 10−5 10−3

L1 Regularization 10−2 − 10−15 10−3

Dropout Probability 0− 0.5 0.4
Number of LSTM Layers 1 - 2 1
Hidden LSTM Size 32 - 256 64
Number of FFNN Hidden Layers 1 - 5 3
Width of FFNN Hidden Layers 32-256 64

Table 4.7.: CoSTA-DDM: Hyperparameter search

4.3.6. Scenario and Simulation Setup

The scenario and simulation setup for the CoSTA followed the same procedure as de-
scribed for the DDMs in section 4.2.3. Firstly, the pure PBM was evaluated to examine
its accuracy and determine whether the forecasts from the PBM were reliable enough
for the CoSTA. Subsequently, the complete CoSTA setup was examined.
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5. Results and Discussions

This chapter presents and discusses the resulting forecasts from the proposed models
described in chapter 4, and compares them to actual measurements from the asset’s
temperature sensors. The results are assessed using Mean Absolute Error (MAE) and
visual inspection of the forecasts plotted against the actual measurements, and the de-
viations between the forecasted and the actual measured temperatures are discussed.
Finally, any lessons learned from this work are assessed.

5.1. Physics-Based Modeling - PBM

This section presents the resulting forecast from the PBM part of the CoSTA and com-
pares it to the forecast produced by the more thorough PBM developed in the framework
ESP-r during the specialization project[1]. This thesis only briefly discusses the results
from the PBM developed in the specialization project. For a more comprehensive dis-
cussion, the specialization report should be reviewed. The forecasts from the PBM
component of CoSTA are examined to assess their suitability as a solid foundation for
further CoSTA integration.

5.1.1. Results

Table 5.1 describes the forecast MAE of the different models, and the forecasts pro-
duced are depicted in fig. 5.1. Note that the 2nd floor kitchen is not included in these
models because the kitchen is part of an open solution with the living room, and de-
termining the conduction and heat capacity of the separating “wall” therefore becomes
difficult for the PBMs. Hence, the kitchen is incorporated into the 2nd floor living room.

The outdoor temperature plotted in fig. 5.2 will serve as a reference and an explanation
for the PBM forecasts.

Mean Absolute Error[°C]

Room ESP-r PBM CoSTA PBM

Ground Floor Bedroom 1.53 1.74
Ground Floor Living Room 2.11 2.26
1st Floor Entrance Hall 1.99 1.36
1st Floor Bedroom 1 1.53 1.18
1st Floor Bedroom 2 1.98 1.50
2nd Floor Living Room 2.41 1.91
2nd Floor Office 4.19 1.98

Average MAE 2.25 1.71

Table 5.1.: PBM: Mean absolute error of the different rooms

51



5. Results and Discussions

Fri 
01

.07

Sa
t 0

2.0
7

Su
n 0

3.0
7

Mon
 04

.07

Tue
 05

.07

Wed
 06

.07

Th
u 0

7.0
7

Fri 
08

.07

Sa
t 0

9.0
7

Su
n 1

0.0
7

Mon
 11

.07

Tue
 12

.07

Wed
 13

.07

Th
u 1

4.0
7

Fri 
15

.07

Sa
t 1

6.0
7

Su
n 1

7.0
7

Mon
 18

.07

Tue
 19

.07

Wed
 20

.07

Th
u 2

1.0
7

Fri 
22

.07

Sa
t 2

3.0
7

Su
n 2

4.0
7

Mon
 25

.07

Tue
 26

.07

Wed
 27

.07

Th
u 2

8.0
7

Fri 
29

.07

Sa
t 3

0.0
7

Su
n 3

1.0
7

Timestamp

18

20

22

24

26

°C

True Temperature
CoSTA PBM Forecast
ESP-r PBM Forecast

(a) Ground floor bedroom forecasts
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(b) Ground floor living room forecasts

Figure 5.1.: PBM: True and forecasted temperatures of different rooms
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(c) 1st floor entrance hall forecasts
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(d) 1st floor bedroom 1 forecasts

Figure 5.1.: PBM: True and forecasted temperatures of different rooms
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(e) 1st floor bedroom 2 forecasts
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(f) 2nd floor living room forecasts

Figure 5.1.: PBM: True and forecasted temperatures of different rooms
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(g) 2nd floor office forecasts

Figure 5.1.: PBM: True and forecasted temperatures of different rooms
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Figure 5.2.: Outdoor temperatures for July
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5.1.2. Discussion

From the plots in fig. 5.1, it can be seen that both PBM models tend to follow the trends
of the true temperature and are able to capture the general patterns of the temperatures
of the asset. Both PBM models forecast the daily fluctuations in temperature, which
also occur in the true temperatures. However, both models often fail to calculate the
amplitude and offset of these fluctuations.

The most interesting model to discuss is the CoSTA PBM in order to assess its us-
ability as the cornerstone of the CoSTA. The ESP-r PBM is primarily included as a
benchmark, representing a more thoroughly developed PBM.

Interestingly, the CoSTA PBM outperforms the ESP-r PBM in terms of MAE, as evident
in table 5.1. However, relying solely on MAE to assess model quality can be misleading
in such a forecasting task. A pitfall of using MAE is that models that only forecast
the general trends in the temperature may prevail. Optimizing electricity usage based
on such forecasts is unlikely to achieve the desired outcome. It is therefore required to
employ a comprehensive model able to model the inherent complexities of the problem
to do electricity optimization. The complexity of the problem is immense. Nevertheless,
the CoSTA PBM neglects a vast majority of this complexity.

Another interesting observation is that the very simplified CoSTA PBM forecasts es-
sentially the same temperature evolution for every room, with a slight offset and time
lag between the rooms. This general trend forecast is one factor that could lead to a
lower MAE, while the forecast itself proves quite useless for electricity optimization.

On the more positive side, as indicated by fig. 5.1, the CoSTA PBM has demonstrated a
certain level of efficacy in modeling the temperatures of the asset. It has also resembled,
to some degree, the forecasts from the significantly more thorough ESP-r PBM, even
though they often differ by some offset. Furthermore, it has successfully incorporated
the asset’s dominant temperature trends into its forecast, albeit simplified, due to the
simplifications made during the modeling. For instance, the energy flux from the sun
and internal heat gain were significantly simplified. However, despite these simplifica-
tions, the model still follows the principal trends of the temperatures of the asset.

The CoSTA PBM clearly models daily temperature trends, showing an increase dur-
ing the day and a decrease at night. The timing of the peak and bottom temperatures
also align well with the true temperature measurements. It also, to a certain degree,
manages to model which periods the average indoor temperature will rise and fall, such
as the somewhat steady decline in average indoor temperature for the first eight days of
the month. This pattern correlates highly with the outdoor temperatures seen in fig. 5.2,
which explains the model’s successful forecasting of this period.

However, the average indoor temperature of a day does not always correlate with the
outdoor temperature. For the last four days of the month, the outdoor temperature
is among its highest, as seen in fig. 5.2. Despite the increase in outdoor temperature,
the true temperature of, for example, the ground floor living room in fig. 5.1b stays
relatively stable and does not increase. The exact reason for this behavior is tough to
pinpoint due to the complexity of the problem. Likely explanations include some human
interaction, such as nighttime ventilation or curtains to block the radiation out. None
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of the implemented PBMs have knowledge about these interactions and are thus unable
to forecast this. However, this increase in outdoor temperature is reflected in the true
temperature of the 2nd floor living room in fig. 5.1f, where the true temperature rises.
Consequently, the PBMs manages to model the temperature quite well.

From an optimization perspective, none of the models are especially accurate. Most
of the time, they fail to forecast correct or close to correct values. A prime example is
the 2nd floor office depicted in fig. 5.1g. The CoSTA PBM fails to forecast the tempera-
ture spikes occurring in this room. This is reasonable since these spikes do not correlate
with the outdoor temperature and are seemingly not very correlated to the radiation.
These are the only two time-dependent gains in the implemented CoSTA PBM model.
Nevertheless, a forecasting model should be able to catch up on the evolution of tem-
perature a bit better to optimize based on it.

However, some of the forecasts are relatively good, for example, the 2nd floor living
room seen in fig. 5.1f. Here, the CoSTA PBM performs quite well, with more or less
only a constant offset in the forecasted temperature for extended periods. Nevertheless,
optimizing based on a constant offset is not very feasible, and some sort of rectifying
component, for example, a data-driven component, rectifying this constant offset would
be necessary for further optimization.

Based on these observations, it is reasonable to assume that the CoSTA PBM model it-
self is not good enough to be used as a cornerstone for further optimization of electricity
usage. This was also assumed in advance due to all the simplifications made during the
modeling. However, the objective of this model was for it to be used as the cornerstone
of a CoSTA model, and from the plots in fig. 5.1 and the discussion above, it certainly
seems like this model could be good enough to be incorporated into a CoSTA model.

Many of the previously discussed flaws, such as the inaccurate amplitude of daily fluctu-
ations and constant offsets, are likely rectifiable by a neural network with relative ease.
However, some of the other flaws, like the sudden spikes in temperature in the 2nd floor
office and whatever caused the temperature in the ground floor living room to stay sta-
ble despite the increase in outdoor temperature, may be more challenging for a neural
network to pick up on. One of the inherent advantages of data is its ability to provide
a comprehensive overview of the problem at hand, while interpreting this data is often
difficult due to the complexities and intricacies it often reveals.

To conclude, the CoSTA PBM seems to provide a sound basis for further incorpora-
tion into a CoSTA model. If successful, the CoSTA model can correct some of the
previously discussed flaws and perform significantly better.
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5.2. Data-Driven Modeling - DDM

5.2.1. Results

Figure 5.3 depicts how the error in the LSTM and the Transformer evolves with an
increasing correction interval.
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Figure 5.3.: DDM: MAE with increasing correction interval

In order to examine the results more concretely, the correction interval was set to every
24 hours. Figure 5.4 displays how both of the DDMs forecast the temperatures for the
given intervals of 24 hours, and table 5.2 describes how the error is distributed across
the different rooms of the asset.

Mean Absolute Error[°C]

Room LSTM Transformer

Ground Floor Bedroom 0.51 0.52
Ground Floor Living Room 0.36 0.85
1st Floor Entrance Hall 0.45 0.46
1st Floor Bedroom 1 0.65 0.67
1st Floor Bedroom 2 0.58 0.60
2nd Floor Kitchen 0.85 1.05
2nd Floor Living Room 0.61 0.73
2nd Floor Office 0.98 1.03

Average MAE 0.62 0.74

Table 5.2.: DDM: Mean absolute error of the different rooms
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(a) Ground floor bedroom forecasts
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(b) Ground floor living room forecasts

Figure 5.4.: DDM: True and forecasted temperatures of different rooms
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(c) 1st floor entrance hall forecasts
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(d) 1st floor bedroom 1 forecasts

Figure 5.4.: DDM: True and forecasted temperatures of different rooms
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(e) 1st floor bedroom 2 forecasts
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(f) 2nd floor kitchen forecasts

Figure 5.4.: DDM: True and forecasted temperatures of different rooms
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(g) 2nd floor living room forecasts
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(h) 2nd floor office forecasts

Figure 5.4.: DDM: True and forecasted temperatures of different rooms
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5.2.2. Discussion

The error of both models grows more or less proportionally with the correction interval,
as depicted in fig. 5.3. However, the LSTM handles the increasing correction interval
better than the Transformer. One of the reasons for this might be the Transformer’s
forecast of the ground floor living room, as depicted in fig. 5.4b. The Transformer fore-
casts an increase in the temperature of this room no matter the circumstances. With
an increasing correction interval, the deviation between the true and forecasted temper-
ature increases, consequently influencing the MAE. The LSTM handles the forecasting
of this room better.

There may be many reasons why the Transformer performs this poorly on the ground
floor living room. One viable reason might be underfitting, which is one of the pitfalls
when using early stopping, especially on a multiple-input multiple-output (MIMO) prob-
lem. As seen in the hyperparameter tuning of the Transformer in table 4.3, the early
stopping found that the best hyperparameter for the number of epochs was three. The
best number of epochs was decided based on the rolling forecast MAE on the validation
set, which reasonably assesses the model’s performance on unseen data. However, this
MAE was calculated based on the average MAE across all the rooms the model was
forecasting. It accepted underfitting or overfitting on some rooms as long as the average
performance was good. This may have led to underfitting or overfitting for this partic-
ular room.

Nevertheless, this issue is hard to address for MIMO problems. One way to address
this problem would be to implement separate models for each room, allowing the op-
portunity to tune the hyperparameters individually. However, this poses undesirable
effects, such as the need for a significantly more comprehensive hyperparameter tuning,
increased computational cost as there would be a need to train more models, and more
data storage to store all the models.

Another way to address this issue would be to make a more sophisticated performance
metric of the best validation MAE, for example, by imposing some restrictions on the
accepted variability in performance across the different rooms. This would require a
carefully constructed metric of the accepted variability, which might not be straightfor-
ward to derive due to the complexities of defining an acceptable range of variability.

From the plots in fig. 5.4, it is apparent that both models have learned a lot of the
same dynamics. A prime example of this can be seen for the 1st floor entrance hall in
fig. 5.4c. The forecasted temperatures from the models nearly perfectly resemble each
other, even when they produce their worst forecasts compared to the actual measure-
ments, for example, during their first 24 hours of forecasting. The forecasts from the
LSTM and Transformer for the 1st floor entrance hall deviate by a mean of only 0.067°C
for the entire forecasted month.

The fact that the two models are learning much of the same dynamics can mean two
things; either the models are overfitting or underfitting on the same data, or the models
are successfully approximating the underlying patterns and rules of the temperatures of
the asset. However, given the significant difference in the architecture, it is more likely
that the models are picking up on the actual underlying patterns and rules for several
reasons.
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Firstly, the models are forecasting using a rolling forecast and will, therefore, iteratively
take their output as input. Such forecasting is notorious for its proneness to divergence
and accumulating errors. The fact that none of the forecasts seems to diverge (except
for the Transformer’s forecast of the ground floor living room) substantiates this claim.
Secondly, the models are extrapolating with regard to the season in the test set. Ma-
chine learning models are infamous for their underperforming extrapolation capabilities.
Thirdly, the models operate with time-differentiated temperatures as inputs and out-
puts. This means that the output from the model must be integrated or added to the
previous temperature to obtain the forecasted temperature. Such operations are notori-
ous for their error-magnifying effect.

It is, therefore, rather unlikely that the two different architectures, with a significant
difference in the underlying structure, are forecasting the same, relatively reasonable
temperatures without actually resembling the underlying dynamics. Hence, this obser-
vation provides more certainty that the models are capturing the true dynamics of the
system.

The fact that the models are learning so much of the same dynamics also indicates
the robustness of the learning process. Since the models often arrive at the same conclu-
sion, it is more likely that the dynamics they are learning are true features of the system
and not an artifact of their respective model architecture.

Even though the models often forecast similar temperatures, the forecasts occasion-
ally deviate quite significantly from the actual measured temperatures. An example of
this can be seen in the greyed-out part of the ground floor bedroom forecast of the 17th
of July in fig. 5.5. In this period, the models have an MAE of 1.46°C, and the error of
the final forecasted value is 2.68°C for the LSTM and 2.79°C for the Transformer. The
reason for this deviation is likely the rapid increase and decrease in the temperature,
which started in the evening of Saturday the 16th of July. The models seem to struggle
with forecasting such rapid and somewhat irregular changes in temperature, which is
understandable. The models naturally have no precise knowledge regarding open win-
dows or heat sources of the “future” they are trying to forecast. Therefore, irregularities
like additional heating or cooling sources may offset the forecast.

However, the fact that some forecasts are significantly worse than others is to be ex-
pected, especially since the model has no explicit information about control inputs such
as radiators, ventilation, and fireplace. Suppose the model had this information and
was trying to forecast the temperature evolution based on a proposed future sequence of
control inputs, which would be the case if the model was incorporated into an optimiza-
tion algorithm. In that case, these errors would likely be reduced since the model would
have explicit knowledge about the most significant driving forces of the temperature.
However, forecasting errors would still have to be expected due to human interaction,
such as additional people present imposing additional heat or opening windows or doors
in an irregular pattern.

In the context of fig. 5.5, a plausible explanation might be that the ground floor bed-
room had additional guests sleeping over from Saturday to Sunday, thereby imposing
additional heat gain at the beginning of the night before opening a window so that
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5.2. Data-Driven Modeling - DDM

the temperature steadily started to decrease. Suppose there is no regularity or pattern
concerning the time of such additional guests or interactions. In that case, it becomes
impossible for the models to forecast these events without explicit information, and their
forecast will be offset.

The fact that the models are struggling with spikes is apparent in several of the plots in
fig. 5.4, particularly figs. 5.4f and 5.4h where the forecasts of respectively the 2nd floor
kitchen and 2nd floor office are plotted. These rooms, which often experience irregular
and rapid temperature changes due to events like cooking at different times of the day
or working outside regular hours, are more challenging to forecast than rooms with more
apparent recurring daily trends. This difficulty can also be observed in table 5.2, where
these two rooms have the highest MAE.

Another factor that contributes to this irregularity is the choice of forecasting month.
July is the most irregular month throughout the year, with a significant portion of the
population going on vacation, thereby changing their regular day-to-day schedules. The
models are trained on data from all months other than July - which typically have more
recurring daily schedules - and will naturally struggle to accurately forecast the more
irregular patterns seen in July. An additional year of training data would likely benefit
the models, as they would no longer need to extrapolate for July and might be able to
model some of the irregularities July introduces better.

These observations show that the models work best during stable periods with clearly
recurring daily trends. Figure 5.6 depicts such a period with the forecasted tempera-
tures of the nine days between the 16th of July to the 25th of July of the 2nd floor living
room. This is one of the best periods of forecasts and powerfully illustrates the potential
of these models. The LSTM model achieves an MAE of only 0.27°C during the entire
period, while the Transformer achieves an MAE of 0.39°C. This period has a clear daily
trend; the most significant difference between the days is the starting temperature and
magnitude of the daily oscillation.

To conclude the DDM discussion, there is no doubt that the models have learned some
of the dynamics of the temperatures of the asset, even though they are struggling with
any irregularity or spike. From the observations and discussions above, the LSTM model
performs better overall than the Transformer model for this forecasting task, which is
also the case when looking at table 5.2. The LSTM model also appears relatively stable,
with 80% of its forecasted values having an absolute error of less than 1°C. Therefore, it
is very likely that such a model would have the potential to work well as a cornerstone
for optimizing electricity cost or usage. This topic is further delved into in section 5.4.
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Figure 5.5.: DDM: Ground floor bedroom forecast of the 17th of July
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Figure 5.6.: DDM: 2nd floor living room forecast of the period 16th to 25th of July
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5.3. Hybrid Analysis and Modeling - HAM

5.3.1. Results

Table 5.3 describes the forecast MAE of the implemented CoSTA model. The cor-
responding forecasts are plotted in fig. 5.7, together with the true temperature of the
same rooms. The 2nd floor kitchen is neither included in this model for the same reasons
described for the PBMs in section 5.1.

Mean Absolute Error[°C]

Ground Floor Bedroom 2.46
Ground Floor Living Room 1.56
1st Floor Entrance Hall 1.27
1st Floor Bedroom 1 0.81
1st Floor Bedroom 2 0.88
2nd Floor Living Room 1.09
2nd Floor Office 2.03

Average MAE 2.06

Table 5.3.: HAM: Mean absolute error of the different rooms
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(a) Ground floor bedroom forecasts

Figure 5.7.: HAM: True and forecasted temperatures of different rooms
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(b) Ground floor living room forecasts
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(c) 1st floor entrance hall forecasts

Figure 5.7.: HAM: True and forecasted temperatures of different rooms
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(d) 1st floor bedroom 1 forecasts
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(e) 1st floor bedroom 2 forecasts

Figure 5.7.: HAM: True and forecasted temperatures of different rooms
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Figure 5.7.: HAM: True and forecasted temperatures of different rooms
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5.3.2. Discussion

As fig. 5.7 reveals, the implemented CoSTA model’s performance falls short of expecta-
tions on this forecasting task, even after an extensive training period and hyperparameter
tuning to make it perform as well as possible. Even though some of the forecasts re-
semble the dynamics going on in the asset, as can be seen in the 1st floor bedroom 1
forecast in fig. 5.7d, the model does not manage to perform particularly well, especially
not from an optimization perspective.

As seen in figs. 5.7a and 5.7b, the forecasts for the rooms on the ground floor are highly
inaccurate. The model more or less always forecasts a temperature of several degrees
too high, even after being corrected with the true temperature. Hence it is by no means
feasible to impose any optimization based on these forecasts.

There could be several reasons for these suboptimal forecasts. The apparent reason
is that the training routine has decided on weights and biases to minimize the loss over
the entire training set. However, these weights and biases do not adequately represent
the general error in the underlying equations. The underlying reason(s) why this occurs
is not readily apparent, which is one of the main drawbacks of “black box” methods such
as neural networks, whose inner workings are not easily understandable. Furthermore,
the complexity of the problem is enormous, and the error in the underlying equations is
thus also inherently difficult to predict.

This suboptimal performance of the DDM part may have several explanations, including
incorrect weight-and-bias initialization, inadequate learning rate, improper regulariza-
tion, suboptimal dataset, improper feature normalization, or inappropriate model archi-
tecture.

The network’s weights and biases were initialized using the recognized He initializa-
tion, the same scheme utilized by the DDM LSTM. It is thus unlikely that this is the
leading cause. Various learning rates were also experimented with, but none provided
better results. The network is also heavily regularized, as seen in table 4.7. This reg-
ularization may naturally lead to underfitting, but the regularization parameters were
also experimented with without enhanced performance.

Regarding the dataset and normalization of features, the LSTM input to the CoSTA
was identical to the LSTM input in the DDM LSTM. The only difference between the
inputs to the DDM part of the CoSTA and the inputs to the DDM LSTM is that the
FFNN layers of the CoSTA received an additional 26 T⃗room and T⃗wall features. These
features were also normalized, and as long as they appear in the same range as the
forecasts produced on the training set, they should be z-score normalized. Hence, this
is neither believed to be the leading cause of its inability to learn.

The architecture of the CoSTA unit has also proven to work relatively well on this
forecasting problem, as seen in section 5.2. Despite the predictive task of the DDM
in a CoSTA model differing significantly from the predictive task of a pure DDM, it is
believed that both DDMs depend on a lot of the same dynamics and require models of
a relatively similar capacity. The capacity of the CoSTA DDM was also explored, but
it did not significantly impact the performance. Therefore, the choice of DDM model
architecture is neither believed to be the leading cause of the suboptimal performance.
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The fact that the DDM part of the CoSTA is not the final output layer may be one
of the reasons for this suboptimal performance. This design choice, as advocated by
Blakseth et al. in their original CoSTA model, was made to enhance interpretability[13].
However, this introduces additional complexity to the prediction task of the DDM. For
a standalone DDM, it is easier to forecast a temperature closer to the most recently
observed temperature than for a CoSTA DDM, which has to predict a corrective source
term enabling the PBM to forecast a temperature within the same range. This trade-off
between interpretability and the DDM’s prediction complexity enhances the CoSTA’s
interpretability. Nevertheless, this design choice may lead to a more challenging learning
process for the DDM.

The choice of letting the error gradients handle the calculation of correct labels for the
corrective source term based on the output temperature from the PBM, as described in
section 2.4, may also have further complicated the training process. The longer the error
gradient has to traverse backward on the computational graph to update the weights,
the more likely it is that the gradient will vanish, meaning that it will not be able to
update the weights appropriately. This may be one of the causes for the inability to
accurately learn the corrective source term.

Another potential reason for the model’s inability to accurately learn the corrective
source term may be the number of labels compared to the number of targets the DDM
part is trying to predict. As seen in fig. 3.1, the asset has measurements of temper-
atures in seven of the 13 rooms. These measurements are sampled every 15 minutes.
The CoSTA model is, however, trying to forecast the temperature in all 13 rooms of
the asset. Since the CoSTA model utilized a step size of 60, the model has to be solved
iteratively 15 times before reaching the next sampled measurement. Additionally, the
DDM part of the CoSTA is trying to predict the source term of T⃗wall as well as T⃗room.
This results in the DDM attempting to predict 26 targets 15 times but only having
seven labels to evaluate its predictions. This disparity makes it more challenging to find
optimal weights. It should be possible, given that the dynamics of the 26 targets likely
will be similar, and the seven labels may be able to describe these dynamics, but it is not
optimal. An idea could be to predict only the source term of T⃗room, thereby halving the
number of targets, but it is highly uncertain whether this will lead to any improvements.

It is also reasonable to believe that the error in the underlying equations of the PBM is
somewhat seasonally dependent, making the error non-stationary. As previously men-
tioned, neural networks are notorious for their underperformance on non-stationary data.
Some of this non-stationarity was in the pure DDMs counteracted by time-differentiating
the features and labels. However, no measures have been taken to counteract this non-
stationarity in the CoSTA model except time-differentiating the input to the LSTM, as
the model’s nature makes the non-stationarity more difficult to counter. This could be
a factor in why the DDM part of the CoSTA is not able to disclose the source term of
the underlying equations.

Another weakness of the PBM model implemented is its reliance on the T⃗wall variables.
The true values of these variables are never known, and when “correcting” the forecasts
from the model every 24 hours, these values are approximated by doing a “warm-up se-
quence” on the previously measured temperatures. This sequence will approximate the
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variable’s value, but it is not highly accurate, and the model could benefit from having
fewer time-dependent unknown variables. However, the dynamics of these temperatures
are an utterly complex problem, and it is unlikely that a simpler PBM could adequately
model the temperatures of the asset.

Therefore, another potential reason for the inability to learn is that the PBM part is too
superficial in describing the temperatures of the asset for the DDM part to determine
its corrective source term. The DDM part certainly seems incapable of disclosing the
correct corrective source term of the underlying equations from the PBM. This suggests
that the PBM, although seemingly representing the temperatures of the asset effectively
in fig. 5.1, might not be an acceptable representation of the underlying patterns and
rules of the system for the CoSTA. This would mean that the inherent error in the
underlying equations is not generalizable enough for accurate prediction based on the
given input features. This could also mean that the error in PBM’s underlying equations
varies significantly across seasons due to non-stationarity, making it harder to disclose
the corrective source term.

This observation suggests the need for a more thoroughly developed PBM to improve
the forecasts, factoring in more of the influencing elements of the temperatures of the
asset. Undoubtedly, the current PBM relies on numerous assumptions, especially re-
garding the heat gain and the energy flux from the sun, which might make the error in
the underlying equations harder to generalize. However, a more thoroughly developed
PBM, able to factor in more dynamics, could make the error in the underlying equations
easier to disclose and possibly diminish the seasonal dependencies in the source term.
Consequently, this could enhance the model’s overall performance.

From this discussion, it is clear that pinpointing the exact reason for this suboptimal
performance is challenging. Therefore, significant work would have to be done regarding
the previously discussed points to improve the model. A starting point would be to
investigate the PBM more thoroughly and alter the model based on the findings.

To conclude, the core concept behind the CoSTA architecture holds significant promise
for the future of forecasting models. This concept enhances the interpretability of the
model and may improve the model’s overall performance, thereby representing a signifi-
cant idea for advancing forecasting methodologies. However, despite these enhancements
and the fact that the CoSTA architecture has a solid theoretical foothold[12], it demands
an adequate PBM to make the error in the underlying equations generalizable, thereby
disclosable for the DDM. This seems not to be the case for the PBM proposed in sec-
tion 4.3.
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5.4. Applicability for Electricity Optimization

Given the CoSTA model’s failure to deliver good forecasts, as seen in fig. 5.7, and the
PBMs’ inability to produce accurate forecasts applicable for electricity optimization pur-
poses, as evidenced in section 5.1, it appears the DDM paradigm has emerged as the
most effective paradigm for this forecasting task at present.

As outlined in section 5.2, the LSTM slightly outperforms the Transformer regarding
reliability and accuracy. Consequently, the LSTM model, of all the implemented models,
offers the best forecast and is the model which should be incorporated into an electricity
optimization algorithm to assess potential savings in electricity cost or consumption.
However, to fully perform this function, the model would require adaptation to accom-
modate control inputs, like the impacts from radiators or ventilation systems.

Incorporating control inputs into the model would likely enhance its overall performance.
The purpose of such a model in the electricity optimization context would be to examine
and decide upon different future control sequences, meaning that the model would have
explicit information about the future of the most significant driving forces of the asset’s
temperatures, namely the control inputs. This information should allow the model to
predict rapid increases and decreases in temperature more precisely, such as the sequence
observed in fig. 5.5. However, as previously discussed, forecasting errors should still be
expected due to human interaction.

Undoubtedly, strategically timing electricity usage can result in a lower electricity bill
due to the inherent fluctuations in the electricity price. The electricity price in Norway
is always known for the next 24 hours, which makes it possible to optimize electricity
usage based on the known electricity price. An example of the potential savings due
to fluctuations in the electricity price can be given for eastern Norway on the 23rd of
May, 2023. The electricity spot price evolution for this day is depicted in appendix A.2.
Between 8 AM and 9 AM, the price was 1.10 NOK/kWh, while between 3 PM and 4
PM, the price was 0.06 NOK/kWh. Hence, electricity is 95% cheaper at the lowest price
compared to the highest[9]. With the increasing penetration of wind energy and its
inherent volatile nature, the energy price may fluctuate even more on a daily basis[10,
11]. Therefore, it is reasonable to assume that the potential savings might be significant,
given a good forecasting model and a proper optimization algorithm.

An example of such an optimization sequence that would occur every weekday for a
residential house is the period between the inhabitants leaving the house for work and
when they return. Significantly simplified, the temperature in the house’s different rooms
does not matter in this period as long as the house is in a desired thermal state when
the inhabitants return. For example, say the inhabitants always leave for work at 7 AM
and return home at 5 PM. This absence gives 10 hours of optimization space, where the
electricity consumption can be optimized in any way, provided the house returns to the
desired thermal state by 5 PM.

This approach also has vast potential from the climatic perspective. Optimization based
on total electricity usage is no more challenging than adjusting consumption in response
to price fluctuations. An example of such a situation is when employees arrive at work.
A simple thermostat may cause the temperature to overshoot before the ventilation kicks
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in. Hence electricity is wasted on both heating and cooling. However, a sophisticated
model may forecast this, and the control system may be adjusted accordingly. Such
a model can also optimize electricity consumption overnight when no one occupies the
building, consequently decreasing energy usage.

With an appropriate optimization algorithm, this approach even has the potential to
combine the two optimization strategies, optimizing based on both total electricity us-
age and electricity cost. This approach would require a weighting of the importance
of the two factors. By assigning a weight to each factor according to their priorities,
electricity consumers can tailor the optimization to their specific needs, whether primar-
ily concerned with reducing electricity costs, minimizing consumption for environmental
reasons, or achieving a balance between the two.

Undoubtedly, some of the forecasts produced by the LSTM are good enough for fur-
ther electricity optimization. A great example is the nine days depicted in fig. 5.6. For
this entire period, the LSTM is essentially spot on. Hence it should be possible to reduce
energy costs or consumption by optimizing based on this.

However, as seen in section 5.2, the LSTM does not always forecast adequate tem-
peratures for optimization purposes. In addition, the interpretability of the model is low
due to its “black box” nature, which undermines its trustworthiness. Its interpretability
may pose a problem when integrating it into a real-world application, especially if it is a
high-stakes application, as there is no guarantee that the model’s forecast is reasonable.
It might therefore be needed to implement some confidence measures on the forecasts
to make the optimization algorithm able to assess the reliability of the forecast. His-
tory has shown that one of the most essential factors for humans to change their way
of doing things is that it is not at the expense of their comfort in addition to some
reward. Therefore, maintaining satisfactory thermal comfort during these optimizations
is crucial.
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5.5. Lessons Learned

This work has highlighted several important lessons learned about modeling physical
processes. In hindsight, the following list presents some of the most important lessons
learned and details that would have been done differently if this study was to be repeated.

1. The complexity of the indoor temperature forecasting problem is immense. Due
to the numerous influencing factors, a pure PBM will not be able to forecast the
temperatures of a building accurately from an optimization perspective. The fact
that data may manifest all the influencing factors of the temperatures thus seems
like an important prerequisite for accurate forecasts.

2. The DDMs prosper on the premise that data may manifest all the influencing
factors of the temperatures. However, the notorious fact that DDMs are often as
interpretable as a “black box” hurts their trustworthiness.

3. The HAM paradigm contains powerful tools for enhancing the interpretability
and trustworthiness of accurate forecasting models. However, as this work has
shown, they require significantly more domain knowledge and some level of synergy
between the PBM and the DDM part, which is not always trivial to foresee and
derive.

4. If the DDMs were to be implemented again, it would be interesting to experiment
with the water and humidity sensors in the dataset. As seen in appendix A.1.3,
the asset also has measurements of these factors, which were not included in this
study. These sensors may reveal patterns regarding cooking, showering, or people
present in the asset, which may influence the evolution of temperature, such as
the spikes in temperature experienced in the 2nd floor kitchen. It would also be
interesting to include the radiation data from NCCS in the dataset of the DDMs,
as it was utilized in the CoSTA.

5. If the CoSTA was to be implemented again, the PBM model would have been
developed in a more sophisticated manner. A more sophisticated representation of
the heating load and the energy flux from the sun would benefit the CoSTA. Addi-
tionally, the asset has installed balanced ventilation, whose datasheet is attached
in appendix A.1.4, which could be beneficial to include in the PBM, making it
easier to disclose the underlying source term.

6. Tracking and measuring of control inputs at the asset would likely also benefit the
DDMs and the CoSTA, as these features are some of the most important driving
forces in the evolution of indoor temperature. This would also allow for assessing
the potential savings attainable from such models by incorporating them into an
optimization algorithm. However, the asset is not measuring these variables at
present.
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This chapter will first conclude on the research questions proposed in section 1.2.3 before
discussing potential avenues for further work.

6.1. Conclusion

• Which PBM, DDM, or HAM architecture forecasts the evolution of the
indoor temperatures of a building most accurately?
Based on the results presented in chapter 5, it is apparent that the DDM paradigm
managed to forecast the evolution of the indoor temperatures of a building most
accurately. Within the DDM paradigm, the LSTM provided the most accurate
and reliable forecasts and is thus recognized as the most accurate architecture for
this forecasting problem. However, the HAM model implemented did not function
as desired and may not accurately represent the full potential of this architecture
or paradigm. Therefore, the HAM paradigm cannot be completely dismissed.

• How reliable are the forecasts from the most accurate model?
From the plots of the LSTM forecasts in fig. 5.4, the forecasts from this model
seem pretty reliable. The forecasts often align closely with the true temperature
and rarely deviate far from the true temperature. It is also reasonable that the
forecasts occasionally deviate from the true temperature, as the model has no ex-
plicit knowledge about future control sequences or human interaction, which might
significantly impact the complex problem of temperature evolution. Nevertheless,
the model never produced diverging or appalling forecasts, further demonstrating
its reliability. However, the model’s inherent low interpretability and “black box”
nature weaken its trustworthiness, thereby undermining its overall reliability.

• Are the forecasts from the most accurate model applicable as a corner-
stone for electricity optimization?
Some of the forecasts produced by the LSTM certainly seem adequate to be ap-
plied as a cornerstone for electricity optimization, such as the nine-day period
depicted in fig. 5.6. However, the model must be adapted to handle control inputs
and paired with an optimization algorithm to assess the potential savings more
accurately. The model would likely benefit from this adaptation with enhanced
accuracy due to the significance of the control inputs. In addition, a confidence
measure to make the optimization algorithm able to assess the reliability of the
forecast would also be beneficial.
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6.2. Further Work

Further work on this topic can broadly be classified into three main categories; further
exploration of the HAM paradigm, more comprehensive data collection, and incorpora-
tion into an optimization algorithm.

6.2.1. Further Exploration of the HAM Paradigm

Although the CoSTA model implemented in this work did not provide good forecasts, the
HAM paradigm contains powerful tools for improving interpretability and trustworthi-
ness, consequently enhancing the reliability of accurate indoor temperature forecasting
models. Enhanced reliability will make the model applicable to higher-stakes applica-
tions and make it possible to provide some “guarantee” that its forecast is reasonable.
Therefore, this paradigm is worth exploring more. This exploration could be undertaken
in several ways.

One way would be to rewrite the PBM part of the CoSTA implemented in this work
to enable it to consider a broader range of the influencing factors of the temperatures,
such as more details on heating loads or a more sophisticated subdivision of the radia-
tion gain from the sun. This would make it easier for the DDM part to determine and
generalize the source term. It would also be valuable to investigate how to counteract
the non-stationarity of the source term and understand how this influences the model’s
performance.

Another interesting approach could be to employ different HAM architectures for this
forecasting task, for example, Physics-Guided Machine Learning or Data-Driven Equa-
tion Discovery. These architectures also contain powerful tools for improving inter-
pretability and trustworthiness and, if successful, enhancing performance.

6.2.2. More Comprehensive Data Collection

To further improve the accuracy of the models, it would be beneficial for the models
to include various control inputs, such as radiators, ventilation systems, and fireplaces.
These are driving forces of the temperature of the asset and would likely reveal more of
the intricate dynamics behind the temperature fluctuations.

At present, the asset of this study does not measure or track any of these control metrics.
Therefore, it is necessary to make the data collection more comprehensive by tracking
and measuring these control inputs in order to improve the model. In addition, tracking
these control inputs would facilitate the models’ incorporation into an optimization algo-
rithm, as this optimization algorithm would need forecasts based on different sequences
of control input.

6.2.3. Incorporation into an Optimization Algorithm

To truly assess the potential savings attainable from the LSTM model, it would have to
be incorporated into an optimization algorithm that optimizes a desired cost function
based on its forecasts. This cost function can include different optimization variables,
such as energy cost, energy consumption, or a weighted combination of the two.

The LSTM model would then have to be adapted to accommodate control inputs. Once
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the model can handle these inputs, it will be able to forecast how the temperature will
evolve based on different control input sequences.

Following these modifications, the LSTMmodel can be incorporated into an optimization
algorithm, serving as the foundation for assessing the effect of different control inputs.
From this, optimizing the control inputs based on the desired cost function would be
possible while reaching the desired temperature at the desired time.

As previously discussed, it would be beneficial for such an optimization algorithm to also
implement a confidence measure of the forecast to assess its reliability. Additionally, the
algorithm should have a built-in safety measure or fallback mechanism to ensure reach-
ing the desired state at the desired time. This is important in cases where the model’s
forecast of indoor temperature evolution proves inaccurate.
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A.1. Asset Specifications

A.1.2. Section Plan

The asset of the study is the leftmost of the three houses depicted below.
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A. Appendix

A.1.3. Floor Plan with Sensor Layout
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Unit specification

Project

Name Stokkasen51 
Project ID  
Country NO 
Location Oslo 
Customer  
Designed by adil rasheed 
Information  

Assumptions

Atmospheric pressure 101325 Pa
Air density 1.2 kg/m³
Sound duct in accordance with ISO 5136
Ambient sound in accordance with ISO 9614-2

Flexit Nordic S 4 R E 800 L 230 16.11.2022
Version 2022.1.1.182

Calculation report
NO

Flexit participates in the ECP programme for 
RAHU.
Check ongoing validity of certificate:
www.eurovent-certification.com

Description  
Information  
Weight 62 kg
Fuse size 230V 10A 
Unit version Left 
General

Comparison winter temperature (DUTv) -19.8 °C
Indoor temperature 21 °C
Desired supply air temperature 18 °C

Supply winter
Airflow winter 0.08 m³/s
Pressure drop winter 100 Pa

Extract winter
Airflow winter 0.08 m³/s
Pressure drop winter 100 Pa

Energy Result
Air heating coil max power requirement 0.29 kW
Ventilation demand without heat recovery 9470 kWh/year
Energy used supply fan 428 kWh/year
Energy used extract fan 411 kWh/year
Energy requirement after heat exchanger 177 kWh/year
Total energy used 1016 kWh/year
Energy saved 8453 kWh/year
Yearly energy efficiency 89 %

Televeien 15

1870 Ørje
Norway

Flexit AS Telephone: +47 69 81 00 00
Telefax: +47 69 81 00 01

www.flexit.no
kundeservice@flexit.no

Page (Pg): 1 / 4

A.1. Asset Specifications

A.1.4. Balanced Ventilation Datasheet
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Technical specification

Filter, supply
Filter class ePM1 55% 
Dimensions 365x247x31 
Number of filters 1 pcs
Area 1.06 m²
Winter

Dimension pressure drop 71 Pa
Start pressure drop 59 Pa
End pressure drop 250 Pa

Filter, extract
Filter class ePM1 55% 
Dimensions 365x247x31 
Number of filters 1 pcs
Area 1.06 m²
Winter

Dimension pressure drop 71 Pa
Start pressure drop 59 Pa
End pressure drop 250 Pa

Hex
Type ST1-1.6-200-Ø350 
Winter

Temperature outdoor -19.8 °C
Relative humidity outdoor 91 %
Temperature supply 15 °C
Relative humidity supply 35 %
Pressure drop supply 106 Pa
Temperature efficiency supply (EN308) 85 %
Humidity efficiency supply 78 %
Temperature extract 21 °C
Relative humidity extract 30 %
Temperature exhaust -13.8 °C
Relative humidity exhaust 99 %
Pressure drop exhaust 106 Pa
Humidity efficiency exhaust 88 %

Energy Calculation
Power usage 4.1 W

Fan, supply
Winter

Adjustment 67 %
Power 49 W
Current 0.36 A
Power factor 0.576 
SFP 0.6 kJ/m³
RPM 2617 rpm

Fan, extract
Winter

Adjustment 65 %
Power 47 W
Current 0.35 A

Performance
Ambient sound (Lw) 41 dB(A)
Ambient sound (Lp) with room attenuation 37 dB(A)
Room attenuation 4 dB
Temperature efficiency (EN308) 85 %
Temperature efficiency (EN13141-7) 85 %
SFP total winter 1.2 kJ/m³

Televeien 15

1870 Ørje
Norway

Flexit AS Telephone: +47 69 81 00 00
Telefax: +47 69 81 00 01

www.flexit.no
kundeservice@flexit.no

Page (Pg): 2 / 4



Diagrams

Supply Extract

Power factor 0.583 
SFP 0.6 kJ/m³
RPM 2592 rpm

After heater, electrical
Max effect 0.8 kW
Winter

Effect 0.3 kW
Temperature before 15 °C
Temperature after 18 °C

Sound data, supply
Frequency band Hz 63 125 250 500 1k 2k 4k 8k Lw Total Lw(A)
Supply duct, winter 67 67 64 59 55 54 45 39 dB 62 dB(A)

Sound data, extract
Frequency band Hz 63 125 250 500 1k 2k 4k 8k Lw Total Lw(A)
Extract duct, winter 58 59 56 46 38 35 26 25 dB 50 dB(A)

Sound data, ambient
Frequency band Hz 63 125 250 500 1k 2k 4k 8k Lw Total Lw(A)
Ambient, winter 54 49 44 35 30 33 29 26 dB 41 dB(A)
Ambient sound (Lp) with room attenuation 4dB 37 dB(A)

Televeien 15

1870 Ørje
Norway

Flexit AS Telephone: +47 69 81 00 00
Telefax: +47 69 81 00 01

www.flexit.no
kundeservice@flexit.no
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Ventilation duration diagram

Dimensions

Flexit participates in the ECP programme for 
RAHU.
Check ongoing validity of certificate:
www.eurovent-certification.com

Televeien 15

1870 Ørje
Norway

Flexit AS Telephone: +47 69 81 00 00
Telefax: +47 69 81 00 01

www.flexit.no
kundeservice@flexit.no
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A.2. Electricity Spot Price Eastern Norway 23rd of May 2023

A.2. Electricity Spot Price Eastern Norway 23rd of May 2023

The electricity spot price evolution for eastern Norway on the 23rd of May, 2023, is
presented below. The data was collected from Strømpris.no, a service provided by For-
brukerr̊adet[9].

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Time of Day

0.2

0.4

0.6

0.8

1.0

Pr
ice

[N
OK

]

Electricity Spot Price Eastern Norway

95




