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ABSTRACT

In domains such as medical and healthcare, the interpretability and explainability of machine learning and
artificial intelligence systems are crucial for building trust in their results. Errors caused by these systems, such
as incorrect diagnoses or treatments, can have severe and even life-threatening consequences for patients. To
address this issue, Explainable Artificial Intelligence (XAI) has emerged as a popular area of research, focused
on understanding the black-box nature of complex and hard-to-interpret machine learning models. While
humans can increase the accuracy of these models through technical expertise, understanding how these models
actually function during training can be difficult or even impossible. XAI algorithms such as Local Interpretable
Model-Agnostic Explanations (LIME) and SHapley Additive exPlanations (SHAP) can provide explanations for
these models, improving trust in their predictions by providing feature importance and increasing confidence
in the systems. Many articles have been published that propose solutions to medical problems by using
machine learning models alongside XAI algorithms to provide interpretability and explainability. In our study,
we identified 454 articles published from 2018-2022 and analyzed 93 of them to explore the use of these

techniques in the medical domain.

1. Introduction

Despite our tendency for having unrealistic short-term expectations
for Artificial Intelligence (AI), the future looks promising. Recent ad-
vancements in different fields of AlI, especially in Machine Learning,
are the big reason why Al is gearing to take a central role in our
lives. We are just scratching the surface in utilizing deep learning to
solve major issues in areas such as e-commerce, the airline industry,
warfare, medical diagnoses, and almost all other aspects of human life.
Al has made remarkable advancements in the past decade, largely due
to unprecedented funding, as well as Al experts’ promises to convert
narrow Al to artificial general intelligence which can pass the Turing
test in every routine task that humans can do seamlessly.

Since the emergence of Al, humans have been fearful that it could
take full control and dominate us. This fear is compounded by the fact

that it is often difficult to fully understand how Al algorithms operate.
The recent revival of neural networks has shown remarkable results,
but they function like a black box. A well-trained neural network can
mimic human behavior, but the way it updates weights and biases
through gradient descent during each iteration is not fully understood,
leading to limited control over the algorithm. This is a concerning issue,
as we may know what the algorithm is doing, but we cannot explain
how it is doing that.

To address the concerns about the opacity of Al algorithms, a new
field called Explainable Artificial Intelligence (XAI) has emerged. It
encompasses a range of tools and frameworks aimed at helping humans
understand and interpret the workings of Al models. The value of XAI
in providing insight into the workings of Al algorithms is invaluable
across all fields, but it is especially crucial in the medical and healthcare
domain where human lives are at stake.
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1.1. Background

Al and XAI have made great advancements in the medical and
healthcare domains. Contributions are being made at a fast pace in the
XAl field as a whole, as well as in XAI for the medical and healthcare
domain. XAI can eliminate the barrier of distrust between clinicians and
Al results when it is used in the medical domain.

XAl is a field that provides explanations for the results derived from
Al models, or the way the model reached that result or decision. The
goal of XAl is to create transparent and trustworthy Al systems that
can be integrated into human decision-making in a supplementary way.
Although XAl is a relatively new field, it has gained a lot of attention in
recent years due to the need for Al and more specifically, transparent
Al in various fields.

Healthcare and medicine are broad categories as they include di-
agnosis, prevention, and treatment of individuals with diseases. There
are several domains where it gets tedious for a clinician to manually
examine the results, i.e., examinations of X-rays, Magnetic Resonance
Imaging (MRI), Computed Tomography (CT) scans, ultrasounds, etc.
Diagnosis is not only limited to diagnosing image data but text data as
well. For diagnosing mental health problems, there are many studies
that have used textual data in order to diagnose depression and other
mental health issues [1-4]. Similarly, prevention and treatment also be-
come laborious for healthcare practitioners. Prevention in fact requires
an early diagnosis and treatment requires an accurate diagnosis. Both
of which can be achieved if trustworthy and transparent AI models are
used to help the diagnosis.

The major contributions of this article are as follows:

Conducted an extensive Systematic Literature Review (SLR) on
XAI for medical and healthcare published articles

Identified widely used models and datasets taxonomy of the
domain.

Reported literature of 93 studies employing rigorous filtering
criteria following the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) framework.

Discussed limitations, advantages, and future research directions.

The rest of the article is structured as follows: after an introduction
to XAl in the medical domain, Section 2 discusses recent surveys in the
domain, followed by Section 3 to discuss the material and methodology
of the manuscript. Section 4 presents the results of the study and finally
Section 7 concludes the study.

1.1.1. Uncertainty of CNN models prediction

In the last few years, Convolutional Neural Networks (CNNs) have
shown remarkable performance in several medical and healthcare ap-
plications, including the classification of COVID-19 X-ray images and
the diagnosis of COVID-19. However, it is essential to consider the
uncertainty associated with CNN predictions to ensure reliable and
trustworthy results. This section explores the role of uncertainty-aware
CNN models in the medical and healthcare domain.

One notable study, conducted by Gour et al. gour2022uncertainty,
proposes an uncertainty-aware CNN model specifically designed for
COVID-19 X-ray image classification. The authors recognized the im-
portance of uncertainty estimation in this critical task and developed a
framework that not only focuses on accurate predictions but also quan-
tifies the uncertainty related with each prediction. By incorporating
uncertainty into the model, they aimed to provide more reliable and
interpretable results for medical professionals.

Another relative research paper by Shamsi et al. ss2021khosravi
presents an uncertainty-aware transfer learning-based framework for
COVID-19 diagnosis. The authors identified the challenges associated
with limited labeled data and leveraged transfer learning techniques to
improve the model’s performance. Additionally, they included uncer-
tainty estimation in order to provide insights into the reliability of the
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model’s predictions. The framework aimed to assist healthcare profes-
sionals by providing not only accurate diagnoses but also information
about the uncertainty associated with those diagnoses.

Both studies highlight the significance of considering uncertainty in
CNN models for medical and healthcare applications. Uncertainty esti-
mation allows for a more comprehensive understanding of the model’s
predictions, helping healthcare professionals in making informed deci-
sions. Specifically, one aspect of uncertainty that has gained attention
is the uncertainty associated with CNN models’ predictions, which can
provide valuable insights into the reliability and reliance level of the
results.

Uncertainty in CNN models’ predictions can be attributed to various
factors. One factor is the inherent complexity of medical data, including
variations and overlaps in different diseases or conditions. Additionally,
limited or imbalanced training data can contribute to uncertainty, as
the model may encounter instances that differ significantly from the
training distribution. Furthermore, ambiguity or noise in the input data
can also introduce uncertainty into the predictions.

To address the uncertainty associated with CNN models’ predictions,
several approaches have been proposed. These include Bayesian neural
networks, Monte Carlo dropout, and ensemble methods. These tech-
niques allow the model to generate multiple predictions or probability
distributions, providing a measure of uncertainty along with the final
prediction. By considering the uncertainty, medical professionals can
make more informed decisions and better understand the limitations
of the model.

In conclusion, incorporating uncertainty-aware CNN models in med-
ical and healthcare domains is crucial for reliable and trustworthy
predictions. The studies discussed gour2022uncertainty and ss2021
khosravi exemplify the efforts made to quantify uncertainty in the con-
text of COVID-19 X-ray image classification and diagnosis. Uncertainty
estimation in CNN models’ predictions helps healthcare profession-
als interpret the results, make informed decisions, and understand
the limitations and confidence level associated with the model’s out-
puts. By incorporating uncertainty-aware approaches, the medical and
healthcare community can leverage the benefits of CNN models while
ensuring the reliability and transparency of their predictions.

2. Related surveys

XAI and Healthcare both are hot topics for research nowadays. Since
researchers are actively contributing in both fields, there are numerous
surveys that lie under the domain of XAI for medical and healthcare.
Out of 11 surveys that we found, four of them belonged to sub-fields of
the healthcare domain for example, a survey on epilepsy detection [5],
X-ray Image Analysis [6], predictive modeling in healthcare [7] and
clinical decision support system [8]. Three of them were discussing
benefits and/or application of XAI in medical and healthcare but were
not directly linked with the healthcare domain such as [9] has discussed
augmentation approaches used in XAl for medical informatics, [10] has
investigated interactive visualization which can be beneficial for XAl in
different domains such as medical, agriculture, etc, [11] has found the
application of XAI in different fields, i.e., Natural Language Processing
(NLP), biomedical and malware classification, and lastly a mapping
study which found interpretability techniques used in medicine using
medicine [12].

To the best of our knowledge, we found three surveys that were
related to XAI for the medical or healthcare domain [13-15]. Korica
et al. [13] have presented a synthesized taxonomy for categorizing
explainability methods and a summary of gaps, challenges, and oppor-
tunities for applying XAI in the medical industry through a conducted
field survey. Chakrobartty et al. [14] have done a literature survey
on the same topic, they have covered 22 studies, and they searched
on PubMed only published during the 2008-2020 period. They have
tried to find the existing techniques and methods used in the medical
domain. The limitation of their work is to use only one database to
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Fig. 1. This is an example of how LIME can help doctors taking the decision. While explaining individual predictions LIME can help identify the important features considered

in predictions so doctors can take appropriate decisions.

fetch papers i.e. PubMed. Nazar et al. [15] have done a SLR on the
use of Al, XAI, and Human—Computer Interaction (HCI) in the medical
domain. They have covered 135 publications, published during the
2016-2021 timeframe and fetched from various data engines. [15]
collectively examines the applications and challenges of XAI, Al, and
HCI for medical and healthcare.

It is interesting to notice that all the surveys considered for this
study, haven been conducted in a specific domain related to Medical
and XAIL However, the survey that we are conducting comprises of
almost all the medical domains as well as all the XAI algorithms that
can possibly correlate with medical and healthcare.

The XAI algorithms used in the publications are explained in detail
in the following subsections.

2.1. LIME (local interpretable model-agnostic explanations)

LIME was introduced in the year 2016 by Ribeiro et al. LIME
was introduced in the year 2016 by Ribeiro et al. [16]. This innova-
tive methodology serves as a model-agnostic XAI algorithm. The term
“model-agnostic” implies that LIME can be applied universally to ex-
plain the workings of a wide array of machine learning or deep learning
algorithms, regardless of their specific characteristics or complexity.

LIME operates by generating localized explanations centered around
individual predictions, utilizing interpretable models. These explana-
tions shed light on the factors contributing to a particular prediction
made by a given machine learning or deep learning model. The un-
derlying concept is to estimate the behavior of the complex original
model within a smaller, more comprehensible model, known as an
interpretable model, specifically tailored to the prediction in question.

This capacity makes LIME highly versatile and adaptable, allowing
it to provide explanations not only for prevalent models like deep learn-
ing neural networks, random forests, and gradient boosting but also for
any other believable machine learning model, due to this property it is
referred to as “model-agnostic”. For a practical illustration of LIME’s
utility, consider Fig. 1 which serves as an exemplary scenario. In this
context, the primary model has predicted that a patient is afflicted
with the flu. However, through the application of XAI techniques, LIME
has explained that the presence of symptoms such as sneezing and
headache, gleaned from the patient’s medical history, has contributed
to the model’s “flu” diagnosis. This graphic depiction illustrates how a
medical professional can make well-informed decisions by leveraging
the insights provided by the XAlI, particularly in the context of a single
prediction.

It is interesting to note that LIME is intentionally engineered to
expound upon individual predictions. The key advantage derived from
its model-agnostic nature is its capability to seamlessly integrate with
an extensive spectrum of models, even when dealing with intricate
predictions in high-dimensional feature spaces.

2.2. SHAP (SHapley additive exPlanations)

Lundberg et al. [17] introduced SHAP, a groundbreaking methodol-
ogy aimed at unifying the realm of model interpretability. The primary

objective of SHAP is to provide a comprehensive solution for rendering
complex models interpretable, thereby facilitating a broader commu-
nity of researchers in comprehending the inner workings of machine
learning or deep learning models.

In the intricate landscape of XAI, the challenge of selecting the
most suitable algorithm for a specific model type proved to be a
formidable task. To surmount this hurdle, Lundberg and colleagues
devised SHAP, an ingenious framework that bestows importance values
upon individual features in the context of a particular prediction [17].
By explaining the importance of each feature, SHAP contributes to the
identification of key factors exerting the most substantial influence on
a given prediction.

SHAP distinguishes itself as a versatile, all-encompassing XAI algo-
rithm, poised to harmoniously interface with a diverse array of deep
learning or tree-based ML algorithms. Notably, its efficacy transcends
the boundaries of model intricacies and types, rendering it applicable
to a wide spectrum of scenarios.

Moreover, when confronted with multifaceted scenarios wherein a
multitude of features coalesce, SHAP’s efficacy shines through. It has
been demonstrated that SHAP can yield superior results compared to
alternative methodologies in such scenarios. This capability highlights
SHAP’s prowess in disentangling intricate relationships and facilitating
a more nuanced comprehension of the factors driving predictions.

In summation, Lundberg and his collaborators’ introduction of SHAP
has addressed a critical need within the XAI landscape. By providing a
unified approach to model interpretability, SHAP empowers researchers
to unravel the enigmatic inner workings of complex machine learning
or deep learning models, transcending the limitations of conventional
XAI methodologies.

2.3. CAM (class activation mapping)

CAM emerges as a specialized tool tailored to fulfill the eager
appetite for interpretability within the realm of deep learning-based
computer vision models. Designed with a specific focus on the com-
plex complexities of computer vision, CAM serves as an illuminating
XAl technique, offering insights into the enigmatic decision-making
processes of neural networks, particularly the formidable Convolu-
tional Neural Networks (CNNs) [18]. At its core, CAM coordinates the
generation of class activation maps through the integration of global
average pooling. This computational maneuver unveils the dominant
regions within an image that have precipitated a prediction made by
a neural network, particularly the potent Convolutional Neural Net-
works. The resultant class activation maps demystify the convolutional
neural network’s inner workings, shedding light on the salient features
and distinct regions that the network has honed in on during its
decision-making process.

Notably, CAM’s efficacy extends beyond its foundational role in the
computer vision domain. It carves out a versatile domain in the expan-
sive field of medical imaging, where deep learning-based models hold
immense promise. By harnessing CAM’s elucidative prowess, predic-
tions spawned by deep learning models utilized in the intricate realm
of medical imaging can be unraveled and contextualized. This critical
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application of CAM within medical imaging fortifies the understanding
of predictive outcomes, fostering a symbiotic relationship between
cutting-edge technology and informed medical decision-making.

In a nutshell, CAM stands as a testament to the resourcefulness
of XAlI, catering specifically to the demanding terrain of computer
vision models. Its utilization as a potent instrument for deciphering
deep learning-based models’ predictions, both in the visually intricate
realm of computer vision and the vital domain of medical imaging,
underscores its pivotal role in unraveling the latent complexities of
modern neural networks.

2.4. Grad-CAM (gradient-weighted class activation mapping)

Grad-CAM stands as a direct descendant of the CAM methodology,
extending and amplifying the prowess of interpretability for intricate
predictions churned out by deep learning-based models. The ingenious
concept underlying CAM serves as the foundational bedrock upon
which Grad-CAM is built, albeit with a novel twist that leverages the
potent tool of gradients [19]. At its essence, Grad-CAM propels the
realm of XAI into a new era by harnessing the raw power of gradients.
This technique ushers in a new era of interpretability for complex
predictions emerging from deep learning models, casting a radiant light
on the convoluted decision-making processes of these models.

In practice, Grad-CAM undertakes the task of crafting coarse lo-
calization maps that delineate the critical regions within an image.
These maps serve as visual waypoints, directing the observer’s attention
to the pivotal areas of the image that have contributed substantively
to the model’s prediction regarding a specific concept. This marks a
significant leap forward compared to the predecessor CAM, as Grad-
CAM refines the art of visualization, offering a more nuanced and
accurate representation of the regions that wield the most profound
influence on the prediction.

One of Grad-CAM’s remarkable attributes is its aptitude for dealing
with images boasting high resolutions. The technique’s proficiency
shines when faced with these intricate, information-rich images, mak-
ing it a potent tool for scenarios demanding a granular understanding
of complex predictions.

Worthy of note is the common thread linking CAM and Grad-
CAM—their shared reliance on gradients to unearth the crux of inter-
pretability. Both methodologies employ gradients as guiding beacons,
illuminating the path toward the most crucial regions within a given
input image that have propelled the model’s prediction. This shared
reliance underscores the pivotal role of gradients in unraveling the
enigmatic decision-making processes of deep learning-based models.

In summary, Grad-CAM represents a exquisite evolution of the CAM
lineage, empowered by the impressive tool of gradients. By adeptly
amalgamating visualization and gradient analysis, Grad-CAM paves the
way for a more profound and accurate comprehension of complex deep
learning-based model predictions. Its invaluable utility in navigating
high-resolution images elevates it to a critical position within the ever-
expanding toolkit of eXplainable Artificial Intelligence, furthering the
frontiers of model interpretability.

2.5. Counterfactual explanations

Counterfactual explanation, also known as “what-if” explanations
are a type of explanation which are used to understand the result/
prediction or outcome of an Al or ML algorithm. Counterfactuals as
the name suggest, they analyze alternative scenarios referred to as
counterfactuals, which are hypothetical situations where some input
variables/features are changed while keeping the rest of the model or
system unchanged. By systematically altering the input features and ob-
serving the resulting changes in the output, counterfactual explanations
help to identify the key features or factors that influenced the predic-
tion. The paper titled “Counterfactual Explanations Without Opening
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the Black Box: Automated Decisions and the GDPR” by Wachter, Mit-
telstadt, and Russell was published in 2017 [20]. This paper discusses
the importance of counterfactual explanations for automated decision-
making systems and their relevance in the context of the European
Union’s General Data Protection Regulation (GDPR).

2.6. Anchors

Anchors [21] are rule-based explanations that are mostly used
for highlighting the most important features/predictions done by an
ML algorithm. The main idea behind anchors is to find a minimal set
of conditions that, when satisfied, are likely to guarantee a specific
prediction. These conditions are expressed as simple and intuitive rules,
making them accessible to non-experts. Anchors focus on providing
explanations for individual predictions rather than explaining the over-
all behavior of a model. Anchors work by generating concise and
interpretable “if-then” rules that explain why a machine learning model
made a specific prediction for a given instance. The process involves
iteratively perturbing features and observing the model’s response to
identify the minimal set of conditions that are both necessary and suffi-
cient for the prediction. Anchors provide local explanations by focusing
on individual predictions, offering a transparent and understandable
way to understand the model’s decision-making process.

2.7. Influence functions

Influence Functions [22] are statistical tools used for finding the
influence of the individual training sample or parameters on the out-
come of a machine learning model. Influence functions measure how
sensitive a model’s predictions or parameters are to changes in the
training data. They enable the identification of influential training
examples that have a significant impact on the model’s behavior. By
quantifying the influence of each example, influence functions pro-
vide insights into which training instances contribute the most to the
model’s decision-making process. The calculation of influence functions
involves computing the derivatives of the model’s predictions or param-
eters with respect to changes in individual training examples. These
derivatives capture how small perturbations in the training data affect
the model’s output. By analyzing these derivatives, one can determine
the influence of each example on the model’s behavior.

3. Materials and methodology

In this study, we are aiming to investigate the state-of-the-art on XAI
for medical and healthcare domains. We are performing a systematic
review using mapping study or scoping study technique [23]. In this
study, we have done a comprehensive review of the literature in the
research domain and have identified the techniques, datasets, perfor-
mance metrics, and algorithms used in the literature. This study follows
the proposed guidelines by Kitchenham et al. [24] and it includes the
following phases:

. Specifying research questions

. Search strategy

. Identification of primary studies
. Data extraction

. Threat to the validity

a b wN =

3.1. Research questions

The key research question for this study was to find state-of-the-
art technologies, algorithms, and datasets evaluation metrics for XAI
in the medical and healthcare domain. To do an in-depth analysis for
this systematic mapping review, the key question is further divided into
four research questions which are mentioned in Table 1. These research
questions will clearly show the direction and road map for this study
and will help the readers to understand the structure of this work.
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[l Scopus [ Web of Science IEEEXplore = ACM
Scopus 231
Web of Science 107
IEEEXplore 97
ACM 19
Fig. 2. Database vs No. of publications.
3.3.1. Identification

Table 1 We retrieved 454 studies in total when we searched four well-
Research questions. known databases (Scopus, Web of Science, IEEE Xplore, and ACM
RO# Research question Digital Library). Fig. 4 shows the number of studies found initially
ROL What are the most common XAI algorithms/methods,tools used by and studies that were selected from each database. Scopus was the

researchers for the medical and healthcare domains?

RQ2 What challenges and limitations have been faced or undertaken by
researchers in these domains?

RQ3 Which datasets are being prominently and mostly used in research
on explainable artificial intelligence for medical and healthcare?

RQ4 Which performance metrics are commonly considered in XAI
research in the medical and healthcare domains?

3.2. Search strategy

For searching literature on XAI for medical and healthcare do-
mains we searched the literature in four well-known online databases,
i.e., Web of Science, Scopus, IEEE Xplore, and ACM Digital Library. For
forming our search string we used three groups of keywords as men-
tioned in Table 2. In group A we were also considering “explainability”
and “interpretable” keywords as well but these keywords did not return
good quality works and therefore we dropped it from the query. To
be inclusive and structured we used the same keywords on all four
databases and searched the literature by searching those keywords in
the title, abstract, and author keywords. By hitting search, we fetched
454 results, the distribution of which can be seen in Fig. 2.

We got 231 papers from Scopus which is the highest number, 107
from Web of Science, 97 from IEEE Xplore, and 19 papers from ACM
Digital Library.

3.3. Identification of primary studies

The search string was applied to different digital databases to fetch
the relevant results. The data is extracted by applying the search string
on the title, keywords, and abstract along with applying year, article
type (only conference and article papers), and language filters, as a
result, we got 454 articles. After removing duplicates we were left
with 239 articles. Then we applied the exclusion criteria mentioned in
Table 3, we applied exclusion criteria while reading the abstract and
title of the literature, after removing 87 papers including 11 survey
papers, 152 papers were selected for full-text screening. While full-
text screening we also applied inclusion criteria mentioned in Table 3,
we included papers having scientific rigor, credibility, and relevance.
There was doubt about including 17 papers so we used an anonymous
majority voting mechanism and three authors participated in that, we
removed two papers based on majority voting. After majority voting
and full-text screening, 93 studies were selected for systematic review
using PRISMA protocol. Fig. 3 is the PRISMA diagram which shows the
process from fetching the whole data to filtering the relevant data.

main contributor so we selected 66 publications out of 231. Similarly,
from IEEE Xplore 19 studies were considered out of 96, and from WoS
only six studies were considered as most of the studies were removed
because of duplication with Scopus. Lastly, we selected two studies
from ACM which were relevant to our topic.

3.3.2. Screening

In this step, we filtered out studies according to our inclusion and
exclusion criteria, as shown in Table 3. We first discarded the duplicate
papers, then the papers which were not in the English language, and
the papers which were out of our time span (2018-2022). Further, we
discarded the papers which were not related to the medical domain
and papers that were not related to XAI, Machine Learning (ML), Deep
Learning (DL), and AI. We also excluded the survey papers which were
a total of 11 in number, as well as the papers that did not fall under
the quality assessment criteria that were carefully set. The assessment
criteria are comprised of three factors that are defined in the following
subsection.

Scientific rigor. If an appropriate research methodology has been ap-
plied in the paper, it is considered to be scientifically rigorous.

Credibility. If the research is believable and the findings are accurate
and well presented, that paper is considered credible.

Relevance. 1If the findings of a paper are relevant to the academic com-
munity and actors in the medical/healthcare domain, it is considered
to be relevant.

3.3.3. Eligibility

Exclusion criteria implementation reduced the 87 papers. Then we
included the studies based on scientific rigor, credibility, and relevance.
Out of 454 fetched articles, 93 studies passed all the phases hence we
included them in this study.

3.3.4. Included studies

Finally, 93 studies were selected throughout the study and review.
We had 152 studies for full-text screening, during full-text screening,
we were extracting data and also checking if those studies meet the
quality assessment criteria defined in 3.3.2. We removed those studies
that either failed any of the three criteria (i.e., scientific rigor, credibil-
ity, and relevance). Also, we found 11 survey papers that were later
excluded from this work. There were three papers removed due to
having paid access. Moreover, there was one paper that was abstract,
so we also removed that. There were many studies that were related to
XAl, but we excluded them because they did not belong to the medical
domain. Some were in the medical domain but they were not really
related to XAI, they had just used the keyword XAI in the author’s
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Inclusion and exclusion criteria.
« Papers having scientific rigor, credibility, and relevance

Inclusion criteria

+ Not in the medical sector

« Not about explainable Al

* Not related to ML/DL/AIL

« Excluded editorial materials, book chapters and reviews,
letters, and retracted publications

« Survey Papers (n = 11)

Exclusion criteria

keywords or abstract. Table 4, 5-7 provide a detailed summary of all

studies included.

S. Ali et al.
Table 2
Query formation.
Group A: Explainable Artificial Intelligence-related keywords XAIL
Group B: Machine Learning related keywords Machine learning OR artificial intelligence OR deep learning
Group C: Medical related keywords Medical OR healthcare
Query (Group A) AND (Group B) AND (Group C)
5
‘Tg Scopus, |IEEE Xplore, Web of Science,
é’ ACM Digital Library
= (n=454)
3
-
Records after duplicates
removed
n=239 . sk
( ) Exclusion Criteria
-]
&
c ¢ . :
g « notin medical sector
. ) « not about explainable Al
I After title :T: 5a“?stract reading « not related to ML/DL/AI
(n=152) « Survey papers (n=11)
Articles Removed (n = 87)
Inclusion Criteria
§ Full Text Screening . o -
i (n=93) Papers having scientific rigor, credibility
) and relevance
w
Studies included in this
analysis
(n=93)
Fig. 3. PRISMA diagram.
Table 3 Among the selected 93 publications, 59 are journal articles while 34

are conference or proceeding papers. This information is visualized in
Fig. 5.

Fig. 6 shows the papers published with respect to years in journals
and conferences, respectively. We can see that 35 journal articles and
12 conferences were published in 2022, 18 journal papers and 10
conference papers in 2021, and 6 articles and nine conference papers
in 2020, while in 2019 only 3 conference papers were published but
no journal articles. This figure also shows an increasing trend in terms
of the number of publications hence we deduced that XAI is taking
popularity with time.

Fig. 7 shows the proportion of papers published by different pub-
lishers. This information is evident in IEEE being the leading publisher
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Table 4
Summary of studies considered 1/4.
Study Years Type Publisher Application Area Citations
[25] 2021 Journal Article IEEE Neonatal Intensive Care Unit (NICU) 112
[26] 2021 Conference Paper  IEEE Lesion Localization 25
[27] 2022  Journal Article MDPI Advanced Stage Epithelial Ovarian Cancer 17
[28] 2020  Conference Paper IEEE Pathological voices discrimination 14
[29] 2022  Journal Article MDPI Prevention Musculoskeletal Symptoms 14
[30] 2022  Journal Article MDPI Breast tomosynthesis examination 14
[31] 2022  Journal Article MDPI “Clinical COVID-19 Diagnosis with Routine Blood Tests” 11
[32] 2022  Journal Article MDPI Medical XAI applications in diagnosis and surgery 10
[33] 2021 Journal Article IEEE Parkinson’s Disease 9
[34] 2021  Journal Article Korean Physical Society =~ Hemorrhage prediction 9
[35] 2021 Journal Article MDPI Breast Cancer 8
[36] 2022 Journal Article ELSEVIER ECG data of cardiac disorders 6
[37] 2021  Journal Article 1IEEE Stress Disorder 6
[38] 2021 Conference Paper  IEEE Lung Cancer and COVID-19 prediction 6
[39] 2021 Conference Paper  IEEE Lung cancer prediction 6
[40] 2019  Conference Paper IEEE N/A 6
[41] 2020  Journal Article IEEE COVID-19 5
[42] 2022  Journal Article Nature Research “Auto-labeling of chest X-ray images based on quantitative 5
similarity”
[43] 2019  Conference Paper  Springer N/A 5
[44] 2022 Journal Article ELSEVIER UX effectiveness of the Local Interpretable Model-Agnostic 4
Explanations
[45] 2022  Journal Article ELSEVIER Early detection of Acute Kidney Injury 4
[46] 2022  Conference Paper IEEE Pediatric pulmonary health evaluation 4

Conference Papers [RE!

Fig. 5. Conference papers vs Journal articles.

2019

Conference Papers

2020

12
10

2021 2022

Year

o Journal Articles

Fig. 6. Journal and Conference papers published with respect to years.
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[47] 2022 Conference Paper IEEE Polyp classification 4
[48] 2021 Conference Paper IEEE Breast Cancer Prediction 4
[49] 2021 Journal Article IEEE Feature extraction 4
[50] 2020 Journal Article IEEE Cancer computer-aided diagnosis system 4
[51] 2021 Conference Paper Springer Autism Detection 4
[52] 2022 Conference Paper IEEE Explainable Image Retrieval 3
[53] 2021 Journal Article IEEE Classification of healthy and unhealthy neonates 3
[54] 2020 Conference Paper IEEE Heart Failure Prediction 3
[55] 2022 Journal Article ACM Alzheimer’s Disease 2
[56] 2022 Journal Article ELSEVIER ECG monitoring healthcare system 2
[57] 2022 Journal Article IEEE Breast Cancer 2
[58] 2021 Journal Article IEEE Mental Health 2
[59] 2022 Conference Paper SPIE Determining severity grade of Diabetic Retinopathy 2
[60] 2020 Journal Article BioMed Central Ltd Classification 1
[61] 2022 Journal Article ComSIS Consortium Medical Image Segmentation 1
[62] 2021 Journal Article IEEE COVID-19 1
[63] 2022 Journal Article MDPI Brain Tumor Detection 1
[64] 2022 Journal Article ACM Clinical Gait Analysis 0
[65] 2021 Journal Article ACM Brain Tumor Detection 0
[66] 2020 Journal Article ACM N/A 0
[67] 2020 Conference Paper CEUR-WS Feature importance 0
[68] 2022 Journal Article ELSEVIER N/A 0
[69] 2022 Journal Article ELSEVIER Threat detection in Internet of Medical Things networks 0
[70] 2021 Journal Article ELSEVIER Pneumonia classification 0
[71] 2021 Journal Article ELSEVIER DR severity classification 0
[72] 2021 Journal Article ELSEVIER Multi-modal causability 0
[73] 2021 Journal Article ELSEVIER Classification of ACS patients 0
[74] 2022 Journal Article Frontiers Media S.A. Deep Learning in Neuroimaging 0
[75] 2022 Journal Article Hindawi Limited Leukemia Diagnosis 0
Table 6
Summary of studies considered 3/4.
[76] 2022 Journal Article IEEE COVID-19 0
[77] 2022 Journal Article IEEE COVID-19 0
[78] 2022 Journal Article IEEE Alzheimer’s Disease 0
[79] 2022 Journal Article IEEE N/A 0
[80] 2022 Journal Article IEEE Diabetes 0
[81] 2022 Journal Article IEEE Alzheimer’s Disease 0
[82] 2022 Journal Article IEEE Arrhythmia 0
[83] 2022 Journal Article IEEE Hepatic Steatosis 0
[84] 2022 Conference Paper IEEE Real-time detection of COVID-19 using CXR 0
[85] 2022 Conference Paper IEEE Medical Image Captioning 0
[86] 2022 Journal Article IEEE Explainability of glaucoma predictions 0
[87] 2022 Journal Article IEEE Diagnosis of Paratuberculosis in Histopathological Images 0
[88] 2021 Journal Article IEEE Alzheimer’s Disease and Mild Cognitive Impairment Diagnosis 0
[89] 2021 Journal Article IEEE Alzheimer’s Patient 0
[90] 2021 Conference Paper IEEE Readmission Prediction 0
[91] 2021 Conference Paper IEEE N/A 0
[92] 2021 Conference Paper IEEE “heart disease classification” 0
[93] 2021 Conference Paper IEEE Pneumonia and COVID-19 classification 0
[94] 2020 Journal Article IEEE Neuroscience 0
[95] 2019 Conference Paper IEEE Stroke prediction 0
[96] 2022 Journal Article MDPI Diabetic Retinopathy 0
[97] 2021 Journal Article MDPI Chronic Wound Classification 0
[98] 2020 Conference Paper SPIE Retinal OCT image classification 0
[99] 2020 Conference Paper SPIE Breast Cancer 0

for research in this domain. 40 papers were published in IEEE journals
while Springer, Elsevier, and MDPI remained second, third, and fourth
choice respectively for the researchers. While Fig. 8 shows the propor-
tion of papers published in journals and conferences with respect to
publishers. From Fig. 8 we can see that 23 of 40 papers published in
IEEE were journal articles and 17 papers were conference papers. The
information about other publishers is also available in this figure to
help future researchers in the selection of a venue for their publication.
It can also be deduced from this figure that researchers who wish
to publish their articles at Conferences can keep IEEE, Springer, and
International Society for Optics and Photonics (SPIE) conferences as
their first choice as the majority of conference papers are published
in these venues.

3.4. Data extraction

In this section, we explain the data extraction process. The data was
extracted from the 93 papers, for which a tabulated Microsoft Excel
spreadsheet was used to log the data. A unique identifier was assigned
to each article that was made up of the initial letter of a source followed
by a serial number. We extracted fields such as “Datasets used” in the
study, dataset link, and source code link were also logged if they were
mentioned in the paper. In addition, “Algorithms used” in the study,
“Impact factor” of the publishing source from the year of publishing,
“Evaluation metrics” in case any experiments were performed and as-
sessed, followed by ’Application Area’ that defines the medical domain
in which the work was applicable, ‘“Limitations” of the study proposed,
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Table 7
Summary of studies considered 4/4.
[100] 2020 Conference Paper SPIE N/A 0
[101] 2022 Journal Article Springer brain tumors 0
[102] 2022 Conference Paper Springer Detection of thoracolumbar fractures using X-rays 0
[103] 2022 Conference Paper Springer Detecting medical instruments in endoscopy images 0
[104] 2022 Conference Paper Springer Allowing interactive correction of both decisions and 0
explanations by the experts
[105] 2022 Conference Paper Springer Evaluation of LIME vs SHAP on the Melanoma dataset 0
[106] 2022 Conference Paper Springer Breast Cancer Detection 0
[107] 2022 Conference Paper Springer Prediction of heart diseases 0
[108] 2021 Journal Article Springer N/A 0
[109] 2021 Conference Paper Springer retinal diseases classification 0
[110] 2020 Conference Paper Springer Medical 0
[111] 2020 Conference Paper Springer detect malaria in cell images 0
[98] 2020 Journal Article Springer Retinal OCT image classification 0
[112] 2020 Conference Paper Springer measuring the accuracy of image classification for breast 0
cancer screening.
[113] 2022 Journal Article Tech Science Press Classification of ASD and Non-ASD patients 0
[114] 2022 Journal Article Tech Science Press classification of GI tract diseases 0
[115] 2022 Journal Article Turkiye Klinikleri Gastrointestinal disease classification 0
[116] 2022 Journal Article Springer Predicting depressive symptoms 0

Publishers vs No. of Publications

Other (10)

SPIE (4)

ACM (4)

MDPI (9)

ELSEVIER (10)

Springer (16)

Fig. 7. Publishers vs No. of publications.

Table 8

Elements of the study.
Elements Description
Study ID Source of paper and serial number
Impact factor Impact factor of the journal if published in one.
Objectives Objectives of the conducted study or experiment
Algorithms used Which AI or XAI algorithms were used?
Tools used Any additional tools that were used after XAI methods.

Application area

In which medical domain does the study intend to be applicable

Evaluation metrics
Limitations

Which evaluation metrics were used if any experiments were conducted
Any limitations of the study

and “Tools used” represents the additional tools to XAI models if any
were used. Table 8 provides a description of each element.

3.5. Threats to validity

Search String: The query that was originally made, included the
words, “XAI”, “interpretability”, “explainability”’, and “medical and
healthcare”. As a result, we got around 1600 articles which were too
many, and most of which were not relevant to the topic under our
study. Therefore, we omitted the words “explainability” and “inter-
pretability” from our search query, and went ahead with the remaining
words. This omitting might have caused us to miss some valuable
articles related to our domain of study.

Selection of databases: The databases from which we selected articles
for our study were Web of Science, Scopus, ACM Digital Library, and
IEEE for the sake of credibility and quality. Since our domain is medical
and healthcare, it is possible that Pubmed (a famous site for medical
research), that was missed in this study, might have some esteemed
research.

Language Barrier: The papers were also filtered out on the basis of
language and only papers written in the English language were selected
for this study. We might have lost some valuable research due to the
language barrier as well.

Time frame of the studies selected: We have only considered the
studies from the past five years, there may have been some studies
before that time that could be of a beneficial contribution to our domain
of study.
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Proportion of Articles and Conference Papers with respect

to Publishers

[l Articles [l Conference Papers

23

IEEE 40

N

Springer 16

—
(=]

----“ii IS
=

ELSEVIER 10

MDPI 9

ACM 4

SPIE 4

Tech Science Press 2

BioMed Central Ltd 1

CEUR-WS 1

ComsSIS Consortium 1

Frontiers Media S.A. 1

Hindawi Limited 1

Korean Physical Society 1

Nature Research 1

Turkiye Klinikleri 1

Fig. 8. Articles vs Conference papers across publishers.

4. Results and discussions

In this section, we discuss our answers for the RQs presented in
Table 1.

4.1. RQI1. What are the most common XAI algorithms/methods/tools used
by researchers for the medical and healthcare domains?

There are multiple algorithms found in the systematic literature re-
view of XAl in the medical and healthcare domain. We have distributed
these algorithms in two parts. One is related to algorithms of XAI and
the other is for ML algorithms.

4.1.1. XAI algorithms

LIME and SHAP are the two top most used algorithms in XAI [117].
Although both methods LIME and SHAP can come up with similar
results, we have seen this in most of the papers (i.e., 13) which are
using both methods. The purpose of using LIME and SHAP together is
to validate explanations.

SHAP and Grad-CAM are the second most used methods in these
papers. Since both SHAP and LIME are used for getting an explanation
of predictions made by models. These are the models which use images,
tabular or textual data [118]. There were nine studies that used just
LIME method, and ten that used SHAP and Grad-CAM respectively.
It is also observed that LIME is a bit flexible to implement and it
also generates noisy dataset. So, it means that LIME only needs one
observation to be calculated [16]. On the other hand, SHAP needs to
be more structured. SHAP needs multiple observations and an entire

sample to get its result calculated [17]. The precise summary of the
XAI algorithms used can be seen in Table 9.

4.1.2. Machine learning & deep learning algorithms

Table 10 provides information about machine learning and deep
learning-based models used with XAI algorithms for research in medical
and healthcare. From this table, we can infer that deep learning algo-
rithms like CNN, Deep Neural Network (DNN), VGG-16, and ResNet
are widely used for building models, while XAI is used in junction with
deep learning models for better interpretation or explainability. This in-
formation can be helpful for future researchers to decide which ML/DL
models provide better performance while combining XAI algorithms
with them for applications in the medical domain.

Along with the XAI algorithms explained above, we have found a
portion of researchers that have used some additional tools in order to
take assistance in representing the outcomes of XAI algorithms’ results
as well as to better explain their research. Since the domain here is of
medical and healthcare, most of the researchers were made to detect
medical abnormalities. As many detections are done through X-rays
or some other sort of visual representation of the problematic area of
the human body. Although not all of the studies have used or at least
mentioned the additional tools, but those which have, most of them
have used heat maps, attention maps, or activation maps in order to
visually highlight the areas that are important for the abnormality that
is under study.



S. Ali et al.

Dataset
Types

Computers in Biology and Medicine 166 (2023) 107555

I

( X-rays ~ Scans )
Brain MRI
Chest (63, 101,
o (121, 42, o 7
m 81, 99, 89]
Skin Lesion
[105]
»[ CT [71, 76]
Spectroscopy |
(94]

7 - Y
Patients’
Images of the | :
targeted area | Hiedical
—_— Records
Gl Tract History
[115, 47, 61] 54, 35]
Surgery Reports
- Images - (60, 66,
[102, 103, 40] 90, 42, 45]
- Cell Images B ECGs
[111, 75] " [82, 56]

Fig. 9. Taxonomy for the types of datasets mostly used. Numbers in brackets represent the articles where those datasets are used.

Table 9
XAI algorithms used by publications.
Algorithms Publications Percentage
LIME [25,32,38,39,50,55,57,58,61,66,73,75,76,79-82, 30.1%
85,86,89,97,102,103,106,111,113,114,116]
SHAP [25,28,32,33,35,38,39,41,47,50,55,57,58,66,73, 27.95%
76,82,85,91,98,100,102,106,108,113,119]
Grad-CAM [26,33,34,47,59,82,87,93,109,114] 0.11%
CAM [53,65,76,102] 0.04%

4.2. RQ2. What challenges and limitations have been faced or undertaken
by researchers in these domains?

In most of the studies, they did not mention the challenges and limi-
tations. There were only 19 studies that came up with some challenges
and limitations. The most common challenge we observed was about
the data. Some studies mentioned that data was not enough to improve
the performance of the model. In [30] they came up with the challenge
of large-scale dataset as they were unable to train and test their model
with large-scale dataset acquired from different cohorts. In [56] they
faced the challenge of reduced accuracy of aggregated model. Because
for collection and analysis of data they used multiple devices, this
resulted in an increase in chances of data poisoning attacks. For one
study, language was a big challenge as they implemented the data set
of only Norwegian text. But, in some studies evaluation was considered
as the biggest challenge faced. They lacked the experts relating to XAI
and medical fields.

4.3. RQ3. Which datasets are being prominently and mostly used in re-
search on explainable artificial intelligence for medical and healthcare?

In this literature review, the datasets utilized in various studies
play a pivotal role in driving advancements in Al research for med-
ical applications. Among the extensive list of datasets presented in
Tables 11-13, three datasets stand out as the most commonly used. To
gain insights into the types of these datasets, we can refer to Fig. 9,
which provides a taxonomy of dataset types used in the reviewed
studies. Let us delve deeper into the dimensionality and quality of these
datasets to understand the significance and potential challenges when
applied to medical AI research. Understanding the dimensionality and
quality of these datasets is essential for assessing the potential benefits
and challenges associated with explainability in medical Al research.

11

4.3.1. MIMIC dataset

The MIMIC dataset stands out as a widely utilized and versatile
dataset in the medical domain, known for its comprehensive electronic
health records (EHRs) of intensive care unit patients. To achieve ex-
plainability in AI models using MIMIC, the dimensionality of the data
needs to be considered carefully. Analyzing the multitude of patient
attributes present in each record will provide insights into the com-
plexity of medical data being handled by XAI techniques. Ensuring the
quality of MIMIC is crucial for building reliable and transparent models.
With EHRs, data accuracy and completeness are critical factors that
can impact the explainability of Al algorithms. Furthermore, addressing
potential biases present in the EHRs, such as demographic variations or
medical conditions prevalence, becomes essential to develop fair and
interpretable models in the medical XAI context.

4.3.2. Chest X-ray datasets

The chest X-ray datasets, such as CheXpert, are extensively used
in medical XAI research for diagnosing various pulmonary anomalies.
Understanding the dimensionality of the radiographic features and the
richness of expert annotations in these datasets is essential for designing
explainable AI models for chest X-ray analysis. In medical diagnosis,
explainability is crucial to gaining trust and acceptance from medical
professionals. Ensuring the quality of the chest X-ray datasets, including
accurate annotations and addressing potential confounding factors, will
pave the way for interpretable AI models that can provide meaningful
insights to radiologists and aid in early disease detection and diagnosis.

4.3.3. Kvasir dataset

The Kvasir dataset is prominently used in medical XAI research
for analyzing gastrointestinal endoscopy images. Understanding the
dimensionality and diversity of endoscopic findings present in the
Kvasir dataset is vital for building explainable AI models for gas-
troenterological applications. Interpretable Al in gastroenterology can
assist clinicians in making informed decisions and improving patient
care. Ensuring the quality of the Kvasir dataset, including reliable
annotations and addressing potential challenges in endoscopic imaging,
will enable the development of transparent and trustworthy Al systems
for diagnosing gastrointestinal conditions.
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Table 10

ML/DL algorithms used in publications.
Algorithms Publications Percentage
CNN [26,32,36,46,47,49,53,56,61,62,64,65,70,71,74,77,81,86-89,98,99,101-104,109,111,113,114]  33.33%
DNN [27,63,93,108] 0.04%
KNN [28,31,32,41,89,107] 0.06%
XGBoost [27,28,35,38,39,41,44,54,58,73,79,80,89,106] 0.15%
SVM [25,28,38,51,63,64,74,80,83,88,106,114] 0.13%
VGG-16 [26,30,32,53,62,75,78,81,87,93,97,105] 0.13%
ResNet [26,30,34,36,40,75,81,85,87,102,104,109,112] 0.14%
Decision Tree [28,44,54,67,79,80,91,106,107] 0.1%
Random Forest [25,28,31,38,44,54,58,80,91,92,95,106,107] 0.13%
Ada Boost [28,54,58,60] 0.04%
LRP [46,58,78,98,100,119] 0.06%
DeepLIFt [33,98,100,119] 0.04%
GBP [98,100,119] 0.03%
MLP [31,64,111] 0.03%
ReLU [33,77,82,101] 0.04%
ANN [58,88] 0.02%
Logistic Regression [44,106,107] 0.03%
ANFIS, COBA, CUBA [86] 0.01%
Naive Bayes [106] 0.01%
SeNet [36] 0.01%
CovNet [76] 0.01%
U-Net [76,96] 0.02%
Dense-Sharp, APN, NSAM [43] 0.01%
TabNet, DFS, Bayesian Network [48] 0.01%
ChexNet [70] 0.01%
CIU [113] 0.01%

Table 11

Dataset Summary 1/3.
Study Dataset Link Modality
[104] Medical MNIST Link Image
[104] Fashion MNIST Link Image
[85] ImageCLEFmedical 2021 Link Image
[105] Skin Lesion Images for Melanoma Classification Link Image
[59] Fine-Grained Annotated Diabetic Retinopathy (FGADR) dataset Link Image
[106] INbreast Link Image and Text
[45] MIMIC-IV database Link Text
[46] COVID-19 chest X-ray (CXR) dataset collected from Northern Italy Link Image
[46] Pediatric Pneumonia dataset of Labeled Optical Coherence Tomography (OCT) and Chest Link Image

XRay Images from with directories CNV, DME, DRUSEN, and NORMAL

[46] Chest X-ray (Pneumonia, COVID-19, Tuberculosis) Dataset Link Image
[75] Leukemia Classification Dataset Link Image
[86] Fundus Images of Glaucoma Patients Link Image
[115] Kvasir-v2 Link Image
[47] Kvasir-SEG Link Image
[52] COVID-19 chest X-ray dataset Link Image
[52] ISIC 2017 skin lesion dataset Link Image
[61] WCE video dataset (collected from gastroenterology department of PSRI) Closed Video
[113] ASD Screening Dataset Link Text
[114] Kvasir Link Image
[116] A large dataset of text was obtained from a public Norwegian information website: ung.no. N/A Text
[731] Datasets from Western Australia Department of Health were used. Closed Not specified
[65] RadioPaedia database Link Image
[53] Thermograms were obtained from Selcuk University’s NICU (Turkey) for this study Closed Image
[90] not mentioned Closed N/A
[71] OPHDIAT Image-level evaluation dataset Closed Image
[34] Felipe Kitamura’s CT dataset Link Image
[97] Chronic wound data repository was collected from eKare Inc. data repository Closed Image
[26] ProstateX Link Image
[92] Heart disease database from UCI Link Medical records
[108] Collected from patients with SARS-CoV-2 infection from UK Health Research Authority Closed Not specified
[48] Shanghai Ruijin Hospital’s mammography data set Closed Image
[93] Images containing Pneumonia lesions Closed Image

4.4. RQ4. Which performance metrics are commonly considered in XAI
research in the medical and healthcare domains?

The performance of machine learning-based algorithms is important
because it tells the accuracy of predictions done by the algorithm
and it helps build trust in the model. The performance of Al models
used for medical diagnoses and healthcare devices is critical because
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the failure of AI models used in the medical domain can be life-
threatening [123]. In Table 14 we have presented performance metrics
used in the publications we are considering for this review. Most of the
papers have used evaluation metrics used for Al and ML algorithms
because XAl is applied to explain the AI/ML models used in these
research publications.

From data presented in Table 14 we can say that accuracy, preci-
sion, recall, and F1-Score are the performance metrics that are mostly


https://github.com/apolanco3225/Medical-MNIST-Classification
https://www.kaggle.com/zalando-research/fashionmnist
https://repository.essex.ac.uk/32074/
https://www.kaggle.com/datasets/andrewmvd/isic-2019
https://ieeexplore.ieee.org/abstract/document/9257400/
https://www.sciencedirect.com/science/article/abs/pii/S107663321100451X
https://github.com/MIT-LCP/mimic-iv
https://www.mdpi.com/1660-4601/17/18/6933
https://www.sciencedirect.com/science/article/pii/S0092867418301545
https://www.kaggle.com/datasets/jtiptj/chest-xray-pneumoniacovid19tuberculosis
https://www.kaggle.com/datasets/andrewmvd/leukemia-classification
https://www.kaggle.com/sshikamaru/glaucomadetection?select=Fundus_Train_Val_Data
https://dl.acm.org/doi/abs/10.1145/3083187.3083212
https://datasets.simula.no/kvasir-seg/
https://link.springer.com/content/pdf/10.1038/s41598-020-76550-z.pdf
https://ieeexplore.ieee.org/abstract/document/8363547
https://dl.acm.org/doi/abs/10.1145/3107514.3107515
https://dl.acm.org/doi/abs/10.1145/3083187.3083212
https://radiopaedia.org/cases/anaplastic-astrocytoma-8?lang=us
https://prostatex.grand-challenge.org/
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https://archive.ics.uci.edu/ml/index.php
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Table 12
Dataset Summary 2/3.
[38] Artificial Simulacrumhealth dataset Link Medical records
[38] UK Covid-19 patients data Closed Not specified
[39] Data from the Simulacrum dataset from NCRAS, England was used Link Medical Records
[51] Toddler Dataset Link Medical records
[109] Retinal Fundus Image Quality Assessment (RFIQA) dataset Link Image
[109] EyePacs dataset Link Image
[28] Pathological voice samples of people with vocal cord polyp and paralysis were obtained Closed Audio
from an unknown source
[54] Dataset of Heart Failure Patients from UCI Link Medical records
[671 Cervical Cancer Risk Factors Link Medical records
[112] Two in-house mammogram datasets: “Data A” and “Data B”. Data A was gathered from Closed Image
four medical centers and Data B was acquired from a separate single medical center.
[110] UCTI’s Cleveland heart disease database and the Framingham Heart Study Repository Link Medical records
[111] Cell Images for detecting Malaria Link Image
[99] T1-weighted DCE-MRI scans from six institutions were collected and used [120] Image
[40] Cholec80 Link Video
[43] LIDC-IDRI dataset Link Image
[62] Chest Xray Dataset collected by[121] Link Image
[76] CT volume data from four hospitals in China (Private), CC-CCIL Open Image
[78] MRI Alzheimer brain image dataset Open Image
[33] SPECT image dataset Open Image
[88] EEG dementia diagnosis dataset by[122] Open Medical records
[79] sEMG Dataset Closed Image
[57] Breast Cancer Dataset by the University of California Link Medical records
[81] T1 weighted MRI Dataset Link
[371] An automated regular expression based searching was used to find potential veterans Not specified Text
with PTSD from twitter
Table 13
Dataset Summary 3/3.
[58] A web-based survey conducted from July 13 to July 17, 2020 was used to collect Link Image
data that is available on Kaggle
[82] MIT-BIH Arrhythmia database Open Medical records
[94] Infants’ Functional near-infrared spectroscopies (fNIRS) were used Link Image
[83] National Health and Nutrition Exam Survey (NHANES) III Link Text
[89] MRI images of AD and microarray gene expression were used Link Image
[25] Alzheimers Dataset Link Image
[32] Breast Cancer Wisconsin (Diagnostic) Dataset Link Medical records
[35] Patient clinical information for TCGA breast-invasive carcinoma cohort (BRCA) Link Medical records
from two projects on the cbioPortal were used.
[35] Clinical information for 1101 patients from Firehouse Legacy Link Medical records
[96] APTOS 2019 Blindness Detection Dataset Link Medical records
[55] Dementia Prediction w/ Tree-based Models Dataset Link Medical records

used for AI/ML algorithms used in combination with XAI for research in
the medical/healthcare domain. This information can help researchers
interested in XAl in the future to decide on evaluation metrics for use in
their research for benchmarking. These evaluation metrics can be used
to check the performance of Al models accompanied by XAI algorithms.
Furthermore, researchers can also refer to related studies to check how
these performance metrics were used to evaluate the experiments and
how experiments performed in this direction can be improved with the
help of these performance metrics.

Fig. 10 shows the frequency of performance metrics utilized to
evaluate three Explainable Artificial Intelligence (XAI) techniques—
LIME, SHAP, and Grad-CAM—in the context of medical and healthcare
applications. The numbers represent the count of papers that have
employed each specific metric for evaluation. Accuracy was the most
commonly used metric, with 15 papers assessing it for LIME, 10 for
SHAP, and 3 for Grad-CAM. Precision and Recall were also frequently
used, with 5 papers using Precision for LIME, 3 for SHAP, and 1 for
Grad-CAM, and 5 papers employing Recall for LIME, 3 for SHAP, and 2
for Grad-CAM. F1-Score was used in 4 papers for LIME, 3 for SHAP, and
2 for Grad-CAM. Area Under Curve (AUC), a metric suitable for binary
classification tasks, was assessed in 1 paper for LIME, 3 for SHAP, and
3 for Grad-CAM. Sensitivity and Specificity were both used in 2 papers
for LIME, 3 for SHAP, and 3 for Grad-CAM. These numbers demonstrate
that various performance metrics have been widely applied to com-
prehensively evaluate the XAI techniques, providing a comprehensive
analysis of their effectiveness in medical and healthcare scenarios.
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4.4.1. Metrics discussion:

In this section, we provide a comprehensive discussion on the
performance metrics utilized to evaluate the Explainable Artificial In-
telligence (XAI) techniques in the context of medical and healthcare
applications. The selection of appropriate performance metrics is cru-
cial in assessing the effectiveness and interpretability of AI models,
which play a vital role in critical domains like healthcare.

Firstly, the metrics of Accuracy, Precision, Recall, and F1-Score have
been widely used in evaluating the XAI techniques’ performance. Ac-
curacy measures the overall correctness of predictions, while Precision
quantifies the ratio of true positive predictions to total positive pre-
dictions. Recall, also known as Sensitivity, represents the ability to cor-
rectly identify positive instances. The F1-Score is the harmonic mean of
Precision and Recall, providing a balanced performance measure. These
metrics are essential in evaluating the Al models’ interpretability and
their capability to identify relevant features in medical data, thereby
aiding in informed decision-making by healthcare professionals.

Secondly, the Area Under the Curve (AUC) has been employed as a
performance metric, particularly in binary classification problems. AUC
represents the ability of Al models to distinguish between positive and
negative instances. In the medical context, where identifying critical
conditions accurately is crucial, AUC serves as a valuable metric to
gauge the model’s effectiveness in making accurate predictions and
achieving high interpretability.

Thirdly, the discussion extends to Sensitivity and Specificity, which
are vital in evaluating the XAI techniques’ ability to correctly identify
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Table 14
Performance Metrics and their usage.
Performance metrics Publications Count
Accuracy [28,32,34,39,41,43-46,48,51,53-56,61-63,65,67,69,75-81,84, 44
86-88,91,92,95,96,102,104,106,107,111,113-115]
Precision [27,28,36,38,39,44,46,54,56,58,60-62,67,69,86,87,91,93,97, 24
113-116]
Recall [27,28,36,38,39,44,46,54-56,58,61,67,69,86,91,93,97,111, 22
113,114,116]
F1-Score [25,27,28,36,38,44,46,54,56,58,61,69,75,79,86,87,91-93,97, 25
102,111,113,114,116]
Area Under Curve (AUC) [27,28,30,36,41,45,54,55,70,91,97,102,109,114] 14
Sensitivity [33,34,41,51,53,54,63,87,98,102,115] 11
Specificity [33,34,41,51,53,54,59,63,87,115] 10
Receiver Operating Characteristic (ROC) [31,54,70,71,90,97,115] 7
Computational Runtime [65,98,100,114] 4
PR Curves [61,71,115] 3
Similarity [42,82,98] 3
Matthews correlation coefficient [28,87,91] 3
Dice coefficient index [59,63] 2
Average [26,31] 2
PSNR [49,65] 2
Root Mean Squared Error [100,103] 2
Confidence [42] 1
Training Time [87] 1
AUPRC [36] 1
Standard Deviation [64] 1
Zero Rule Baseline [64] 1
BLEU Score [85] 1
Jacard Index Metrics [59] 1
Mean Average Precision [59] 1
Mean IOU [471 1
Dice Loss [47] 1
Loss [75] 1
B Accuracy Precision Recall [l F1-Score [ Sensitivity ] Specificity [l AUC

LIME

XX

SHAP

Grad-CAM

Fig. 10. Performance used with XAI algorithms.

positive and negative instances, respectively. In medical and healthcare
applications, where false negatives or false positives can have severe
consequences, these metrics play a pivotal role in assessing the models’
reliability and interpretability.

Finally, we acknowledge potential issues and limitations associated
with the use of certain metrics. For example, while Accuracy is a
widely used metric, it may not be the most appropriate choice in
cases of class imbalance, where a skewed distribution of data affects
its interpretability. It is essential to consider such limitations when
interpreting the results and selecting the most suitable metrics for a
given medical and healthcare application.

In summary, the selection of performance metrics is critical in eval-
uating the effectiveness and interpretability of XAI techniques in med-
ical and healthcare applications. The metrics of Accuracy, Precision,
Recall, F1-Score, AUC, Sensitivity, and Specificity provide valuable
insights into the models’ reliability and their ability to make accurate
predictions while being interpretable. Acknowledging potential issues
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and limitations associated with certain metrics ensures a comprehen-
sive evaluation, enabling the effective deployment of XAI in critical
healthcare scenarios.

5. Open challenges and future directions

From the literature, we have found that most papers have used
performance metrics that are commonly used for AI models for model
evaluation, i.e., accuracy, recall, precision, and F1-Score but there
are no performance metrics specific to evaluate the results of XAI
algorithms. Researchers have used Al performance metrics for the eval-
uation of XAI results, hence suggesting specific evaluation metrics for
XAI can be interesting to work upon for future researchers. Moreover,
an XAl performance evaluation method could also be proposed that is
dedicated to the medical and healthcare field. It should be achieved in
collaboration with medical experts.
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Another promising future direction is to assess the individual con-
tribution of each XAI technique when more than one technique is being
exploited. It is important to highlight the fact that when multiple expla-
nation techniques are being used in conjunction then it is not necessary
that each interpretation technique should have an equal contribution
to the final result. There should be an assignment of weight to each
XAI technique in the explanation, the weighted combination will be
helpful to differentiate the contribution of each XAI technique, and
the amount of contribution in the final explanation will determine the
weight of the explanation technique being used. Investigating individ-
ual contributions of each XAI technique when used together thus can
be an interesting topic to work on.

Explaining the features and their importance through XAI could
also help in understanding the models used in the medical and health-
care domains, but looking for the process behind the decision-making
of models used in medical can also be a potential future direction.
Moreover, due to XAI explanations, it is easy to determine the region
of interest for different medical imaging problems. Medical experts
can use such explanations with their field knowledge and propose
alternative diagnosis methods for different diseases.

Most of the pre-trained models such as Inception, VGG16, etc,
restrict the image to be of a certain size in order to use them for
classification. Whereas, medical images, such as X-rays, scans, and
MRIs, lose their quality and meaning when resized. A pre-trained model
could be proposed that does not require resizing images in order to
perform classification on them.

Also, when the dataset is small, there is a chance of the model over-
fitting. XAl explanations can help understand the underlying, important
features of a particular prediction. XAI can help identify features that
are not so important and those that are creating noise and problems
for training data so those problematic features can be avoided in order
to avoid model over-fitting. Potential researchers can study this area in
depth to make accurate conclusions about the contributions of XAI for
avoiding model over-fitting problems.

Labeling accuracy and efficiency are directly related to the quality
of the initial training set. Some studies faced limitations in the feature
selection method, which was found to be slightly more time-consuming,
impacting the overall efficiency of the methodology. Additionally, the
lack of prospective quality-of-life data in certain studies posed a limi-
tation in understanding the long-term impacts of AI applications. One
common limitation across several studies was the reliance on specific
types of data, such as 2-D MRI images or solely using GRF signals for
classification. This limited data variety may restrict the models’ gen-
eralizability and applicability to a broader range of medical scenarios.
However, some studies attempted to mitigate this limitation by training
and testing their models on large-scale datasets acquired from different
cohorts.

The use of federated learning raised concerns about data integrity
and authentication due to the distributed nature of data collection and
analysis across multiple devices. Furthermore, the assumption of homo-
geneous data and devices in some proposed frameworks may not hold
true in real-world scenarios, potentially reducing the accuracy of aggre-
gated models. For applications like telesurgical operations, researchers
faced challenges in minimizing errors during virtual surgery control,
ensuring real-time operation with minimal latency, and maintaining
privacy and security during remote surgical procedures.

In certain studies, models encountered difficulties in generating
captions for some words due to data preprocessing and the presence of
unknown words, leading to limitations in caption generation capabili-
ties. In the context of acute kidney injury (AKI) prediction, limitations
arose from missing laboratory parameters, the absence of recorded eti-
ology in the databases used, and the exclusive use of a single-centered
dataset without external validation. An external multicenter validation
is suggested to enhance the reliability of the models. While some studies
claimed the adaptability of their models to other languages using
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translated features, it remains essential to consider potential limitations
and differences in language-specific data.

Restrictions imposed by pre-trained models, such as fixed input
sizes, required resizing of input data and may have impacted model
performance in certain applications. Proposed solutions for foreground/
background separation were observed to be limited to binary or mul-
tilabel classification, presenting challenges in directly applying them
to multiclass classification scenarios. To improve model performance,
researchers suggested utilizing larger training datasets and fine-tuning
hyperparameters. However, the interpretability of models could be
limited by equivalent weights assigned to explanations in certain com-
bination frameworks. Scalability issues were observed with certain
techniques, such as LORE, which hindered their application in larger-
scale experiments. The data-hungriness of some medical Al models
presented a significant challenge, making it difficult to transfer learned
models from one task to another.

Lastly, limitations in literature coverage and the lack of proper
evaluation of explainability in many medical XAI applications were
noted, potentially hindering the adoption and understanding of these
models by medical experts. The field of XAI currently lacks bench-
mark datasets. In other Al fields, such as classification, clustering, and
segmentation, benchmark datasets are readily available, facilitating
progress. However, in XAlI, there is currently no benchmark dataset that
researchers can use to establish a common platform and agreed-upon
performance metrics. This absence of a benchmark dataset impedes
the progress of the field. Therefore, the development of a proper
benchmark dataset could prove to be a watershed moment in the field
of XAL

6. Practical implications of XAI in healthcare

Explainable Artificial Intelligence (XAI) has gained increasing at-
tention in the healthcare domain due to its potential to improve pa-
tient outcomes and enhance medical decision-making. In this section,
we discuss the practical implications of employing XAI techniques in
healthcare settings, highlighting how its implementation has positively
impacted medical practices.

6.1. Improved patient outcomes and informed decision-making:

One of the key practical implications of XAI in healthcare is its
ability to improve patient outcomes by providing transparent insights
into the decision process of Al models. XAI techniques, such as LIME,
SHAP, and Grad-CAM, have enabled healthcare professionals to gain a
deeper understanding of the features contributing to model predictions.
This interpretability empowers clinicians to make more informed and
confident decisions, leading to accurate diagnoses, optimized treatment
plans, and better patient care.

6.2. Bias detection and mitigation:

Another practical implication of XAI in healthcare is its role in
identifying potential biases in AI models. By revealing biases in the
data and model outputs, XAl allows healthcare systems to address issues
related to fairness and equity. This ensures that Al-powered healthcare
interventions are more inclusive and provide equitable treatment for
all patient groups.

Personalized Medicine and Tailored Treatment Plans: XAI has facil-
itated the adoption of personalized medicine in healthcare. Through
the transparent and interpretable nature of AI models, XAl enables
healthcare professionals to tailor treatment plans to individual patients
based on their unique medical history and characteristics. This per-
sonalized approach has led to improved treatment efficacy and patient
satisfaction.
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6.3. Reduced medical errors and early disease detection:

Documented cases and empirical evidence from various healthcare
institutions indicate that the implementation of XAI has contributed
to reducing medical errors and early detection of diseases. The inter-
pretability of AI models allows healthcare providers to catch poten-
tial errors and identify anomalies in medical data, leading to timely
interventions and better patient outcomes.

6.4. Case studies and empirical evidence:

A wealth of case studies and empirical evidence exists, demonstrat-
ing the practical impact of XAl in healthcare. These documented cases
showcase instances where the implementation of XAI has significantly
improved medical decision-making, diagnostic accuracy, and patient
care.

The practical implications of XAl in healthcare are far-reaching and
hold immense potential for transforming medical practices. The trans-
parency and interpretability of Al models provided by XAI techniques
have improved patient outcomes, facilitated personalized medicine,
and reduced medical errors. This section highlights the real-world
benefits of incorporating XAI in healthcare settings and underscores its
significance in revolutionizing medical practices.

7. Conclusion

Al and ML in particular have been advancing quite rapidly in the
last decade, however relying completely on the results of Al-based
algorithms in sensitive fields is difficult, especially in the medical field.
Thus, the field of XAI was introduced, which aims to explain the results
derived by the Al or ML models. It explains how the model has reached
a certain conclusion. This increases the credibility of the models to be
used by medical practitioners to aid in their manual practices. In this
SLR, we have targeted the articles from the last five years that have
discussed or used XAl for the said domain. We ended up with a total
of 93 studies after a thorough selection process.

We carried out information such as the most common algorithms
being used in the domain of XAI for medical and healthcare, which
included both ML and XAI algorithms. LIME was the most talked about
and used in most of the studies. We have also discussed LIME and how
it works since it was being prominently used. After LIME, came the
SHAP, CAM, and GradCAM which we have also discussed in the Related
Surveys Section 2. In addition to that, we observed the limitations and
challenges of the proposed study. Moreover, we proposed to find out
the datasets that are being used most commonly for these studies, and
we discovered that not much can be said as there was a lot of variation
found. However, COVID-19 X-rays were used more commonly, from
different regions of the world.

As there are only a few hospitals or clinics that make their data
available for research, and even if they do make it available, it is
only shared privately with the researchers. Researchers in the medical
domain experience a very common issue which is the lack of medical
image data. They have to use various techniques to combat that, such
as using pre-trained models and doing synthetic image generation.
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