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We study the fractal uncertainty principle in the joint time-frequency representation, 
and we prove a version for the Short-Time Fourier transform with Gaussian window 
on the modulation spaces. This can equivalently be formulated in terms of projection 
operators on the Bargmann-Fock spaces of entire functions. Specifically for signals 
in L2(Rd), we obtain norm estimates for Daubechies’ time-frequency localization 
operator localizing on porous sets. The proof is based on the maximal Nyquist 
density of such sets, which we also use to derive explicit upper bound asymptotes 
for the multidimensional Cantor iterates, in particular. Finally, we translate the 
fractal uncertainty principle to discrete Gaussian Gabor multipliers.

© 2022 The Author(s). Published by Elsevier Inc. This is an open access article 
under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

The fractal uncertainty principle (FUP) was first introduced and developed for the separate time-
frequency representation in [10], [5], [9], see also [18] for explicit estimates. It states that no signal in 
L2(R) can be concentrated near fractal sets in both time and frequency. We reference Dyatlov’s detailed 
introduction to the topic [8], where fractal sets are defined broadly in terms of either δ-regular sets or 
almost equivalently in terms of ν-porous sets within the scale bounds 0 < h to 1 (see Definition 2.1). In 
both definitions, Dyatlov considers families of subsets T (h), Ω(h) ⊆ [0, 1] and formulates the FUP for said 
families as the lower bound scale h → 0. The FUP is presented as a norm estimate for the localization 
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operator χΩ(h)FhχT (h), where χE denotes the characteristic function of a subset E, and Fh denotes the 

dilated Fourier transform Fhf(ω) :=
√
h
−1Ff(ωh−1). In terms of ν-porosity (see Theorem 2.19 in [8]), for 

signals in L2(R) and for families T (h), Ω(h) ⊆ [0, 1] of ν-porous sets on scales h to 1, there exist constants 
C, β > 0 only dependent on ν > 0 such that

‖χΩ(h)FhχT (h)‖L2(R)→L2(R) ≤ Chβ ∀ 0 < h ≤ 1.

Alternatively, if we disentangle h from the Fourier transform and write 
√
h as h, we obtain a statement with 

regard to families T (h), Ω(h) ⊆ [0, h−1] of ν-porous sets on scales h to h−1, to which there exist constants 
C, β > 0 only dependent on ν > 0 so that

‖χΩ(h)FχT (h)‖L2(R)→L2(R) ≤ Chβ ∀ 0 < h ≤ 1. (1.1)

On this form, the FUP more clearly reads as an uncertainty principle as, depending on our choice of ν, the 
measures of our time and frequency set, |T (h)| and |Ω(h)|, respectively, might tend to infinity as h → 0.

Inspired by the FUP in the separate representation and motivated by the understanding that uncertainty 
principles should be present regardless of time-frequency representation, we search for analogous results in 
the joint representation. In particular, we consider and have considered Daubechies’ localization operator 
PΩ based on the Short-Time Fourier Transform (STFT) with the Gaussian window that projects onto some 
subset Ω of the time-frequency plane. In previous installments [19], [20], we have restricted our attention 
to radially symmetric subsets in R2, as this yields a known eigenbasis, the Hermite functions, and explicit 
formulas for the associated eigenvalues. With such insights, we have been able to derive estimates for 
the operator norm when localizing on radial Cantor iterates that mirror estimate (1.1) but with explicit 
estimates for the exponent, sometimes even precise estimates. The radial assumption has also proved effective 
for Bergman spaces and by extension for analytic wavelets in [2], where direct knowledge of the eigenvalues 
of the localization operator has produced similar estimates when localizing on the mid-third radial Cantor 
set.

In the present paper, however, we abandon the radial assumption and instead consider the more general 
problem of optimal localization on ν-porous sets in phase space R2d for arbitrary d ≥ 1. Although we 
no longer have knowledge of the eigenvalues of such an operator, the Gaussian window in the STFT in 
and of itself provides additional structure. Namely, Daubechies’ operator PΩ : L2(Rd) → L2(Rd) can 
equivalently be viewed as a Toeplitz operator on Bargmann-Fock spaces or simply Fock spaces, F2(Cd), 
of square integrable entire functions with respect to a Gaussian measure. With this perspective, we utilize 
the subaveraging properties of entire functions to derive estimates of the operator norm ‖PΩ‖op in terms 
of the maximal Nyquist density of Ω. These estimates bear resemblance to the estimates in Abreu and 
Speckbacher’ paper [3], which in large part served as inspiration for our approach. By an inductive scheme, 
we find that for a family Ω(h) ⊆ R2d of ν-porous sets on scales h to 1, there exist constants C, β > 0 only 
dependent on ν > 0 (and d) such that

‖PΩ(h)‖op ≤ Chβ ∀ 0 < h ≤ 1, (1.2)

which represents a direct analogue of (1.1), now in the joint representation. In fact, these estimates extend 
to norm estimates on the Fock space Fp(Cd) for generic p ≥ 1, which in turn yield an FUP not only for 
L2(Rd) but also for the modulation spaces, Mp(Rd). For more explicit estimates of the exponent in (1.2), 
we specifically consider multidimensional Cantor set constructions, and here the upper bound asymptotes 
rely on our ability to directly compute the Nyquist density of such sets.

In addition, we present an FUP for Gabor multipliers, which represent a discrete alternative to 
Daubechies’ localization operator based on Gabor frames (see [12] for an introduction to Gabor multi-
pliers). Approximation properties of such operators have been studied in [14], [6], and spectral properties 
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have been studied [13]. For our purpose, we consider the closest comparison to the Daubechies’ operator 
with a Gaussian window. Namely, we consider the case when the generating function of the Gabor multiplier 
also equals a Gaussian.

The paper is organized as follows: Section 2 contains necessary background theory. This includes, a formal 
introduction to the modulation spaces, Fock spaces and their connection to the STFT (Section 2.1 and 2.2), 
an introduction to Gabor frames and Gabor multipliers (Section 2.3) and a precise description of what 
we mean by “fractal” with the Cantor set constructions as concrete examples (Section 2.4). The results 
are divided into three sections 3, 4 and 5. The general FUP for Fock spaces and modulation spaces are 
formulated in Section 3. The next Section 4 is focused on the multidimensional Cantor set constructions, 
with an FUP formulated specifically for these sets. In the last Section 5 we show how the FUP can be 
translated to Gaussian Gabor multipliers.

2. Preliminaries

2.1. The short-time Fourier transform and modulation spaces

Consider some fixed window function φ : Rd → C, and introduce the basic operations Txφ(t) := φ(t − x)
and Mωφ(t) := e2πiω·tφ(t), i.e., time-translation and frequency-modulation, respectively. The Short-Time 
Fourier Transform (STFT) of some signal f ∈ L2(Rd), with respect to window φ, evaluated at a point 
(x, ω) ∈ Rd ×Rd, is then given by the inner product

Vφf(x, ω) := 〈f,MωTxφ〉.

Observe that if φ ≡ 1, the STFT coincides with the regular Fourier transform. For non-constant windows, 
however, we obtain a joint time-frequency description of our signal. Furthermore, for ‖φ‖2 = 1, the STFT 
becomes an isometry onto some subspace of L2(R2d), i.e., 〈Vφf, Vφg〉L2(R2d) = 〈f, g〉. In this case, we have 
an inversion formula, namely

f =
∫

R2d

Vφf(x, ω)MωTxφ dxdω, (2.1)

where the integral is interpreted in the weak-sense. Daubechies’ time-frequency localization operator, Pφ
S :

L2(Rd) → L2(Rd), with some bounded symbol S, is then obtained by modifying the above integrand by 
the multiplicative weight function S(x, ω), i.e.,

Pφ
S f :=

∫
R2d

S(x, ω) · Vφf(x, ω)MωTxφ dxdω

⇐⇒ 〈Pφ
S f, g〉 = 〈S · Vφf, Vφg〉L2(R2d) ∀ g ∈ L2(Rd). (2.2)

This could equivalently be viewed as modifying the resulting STFT by multiplication by S before inversion. 
Oftentimes, we consider S = χΩ, i.e., the characteristic function of a subset Ω of the phase space R2d, 
so that the operator Pφ

Ω := Pφ
χΩ

is interpreted as projecting signals onto said time-frequency domain. The 

associated operator norm ‖Pφ
Ω‖op then measures the optimal localization on Ω.

For general p ≥ 1, we do not consider Lp-signals, rather, we consider signals in the modulations spaces, 
introduced in [11]. For this purpose, we fix the window φ �≡ 0 in the Schwartz class S(Rd), and we denote the 
associated dual space of tempered distributions by S ′(Rd). The modulation space Mp(Rd) is then defined 
as the subspace
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Mp(Rd) :=
{
f ∈ S ′(Rd)

∣∣ ‖Vφf‖Lp(R2d) < ∞
}
⊆ S ′(Rd).

Depending on our particular choice of window, we induce equivalent norms on Mp(Rd), namely ‖f‖Mp :=
‖Vφf‖Lp(R2d). Again, we may consider localization on some subset Ω ⊆ R2d, using the modulation spaces. 
More precisely for any fixed p ≥ 1, we consider the quantity

sup
f∈Mp(Rd)\{0}

‖Vφf · χΩ‖pLp(R2d)

‖Vφf‖pLp(R2d)
(2.3)

as a measure of optimal localization on Ω. Notably for p = 2, we have that M2(Rd) = L2(Rd), and we 
retrieve the same localization estimate using Duabechies’ localization operator, where ‖Pφ

Ω‖op coincides with 
(2.3).

2.2. From modulation spaces to Fock spaces

A popular choice for window function is the Gaussian function, which on Rd reads

φ0(x) := 2d/4e−πx2
, where x2 = x2

1 + · · · + x2
d for x = (x1, . . . , xd).

With this window choice, we can, in fact, rephrase the localization estimate (2.3) for the modulation spaces 
Mp(Rd) as estimates in the Bargmann-Fock space or simply Fock space, Fp(Cd). In particular, Daubechies’ 
localization operator can be replaced by a Toeplitz operator on F2(Cd).

We reference Zhu’s book [31] for a detailed introduction to Fock spaces in C. For a complex vector z =
x +iω = (z1, . . . , zd) ∈ Cd, we distinguish between z2 = z ·z = z2

1 +· · ·+z2
d and |z|2 = z ·z = |z1|2+· · ·+|zd|2. 

Now, for arbitrary p ≥ 1, let dμp(z) := e−
p
2π|z|

2dA(z) denote the Gaussian measure on Cd, where dA(z) is 
the volume measure dxdω. The associated Lp-space, Lp(Cd, dμp), is simply denoted by Lp(Cd). The Fock 
space Fp(Cd) is then defined as the Banach space of entire functions F ∈ Lp(Cd), with norm1

‖F‖Lp =

⎛
⎝∫
Cd

|F (z)|pe− p
2π|z|

2
dA(z)

⎞
⎠

1/p

< ∞.

For p = ∞, we let L∞(Cd) denote the space of measurable functions on Cd such that

‖F‖L∞ = ess sup
{
|F (z)|e−π

2 |z|2 ∣∣ z ∈ Cd
}
< ∞.

Again, the Fock space F∞(Cd) is the Banach space of entire functions in L∞(Cd). For p = 2, we find that 
the Fock space forms a reproducing kernel Hilbert space, with reproducing kernel Kξ(z) = eπz·ξ so that 
〈F, Kξ〉L2 = F (ξ). Utilizing this kernel, we obtain an orthogonal projection P : L2(Cd) → F2(Cd), defined 
by

PF (z) :=
∫
Cd

Kξ(z)F (ξ)e−π|ξ|2dA(ξ).

For a bounded measurable function S : Cd(∼= R2d) → C, we define the Toeplitz operator TS : F2(Cd) →
F2(Cd), with symbol S, by

1 For consistent and simple notation, we denote the norm in the Fock space by ‖ · ‖Lp rather than ‖ · ‖Fp . In particular, this is 
to avoid switching notation for functions in Lp(Cd) \ Fp(Cd), e.g., when we consider F · χΩ for F ∈ Fp(Cd) \ {0} and Ω � Cd.
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TSF (z) := P (SF )(z) =
∫
Cd

S(ξ) ·Kξ(z)F (ξ)e−π|ξ|2dA(ξ).

If we initially consider test functions G ∈ L1(Cd) ∩F2(Cd), then, by Fubini’s theorem and the reproducing 
property of the kernel Kξ(z), the inner product attains the simple form

〈TSF,G〉L2 = 〈S · F,G〉L2 (2.4)

By a density argument, it follows that (2.4) holds for all G ∈ F2(Cd), more akin to the inner product (2.2).
The precise connection to the modulation spaces and Daubechies’ localization operator with a Gaussian 

window is established through the Bargmann transform. The Bargmann transform was first introduced in 
[4] as an isometric isomorphism B : L2(Rd) → F2(Cd), given by

Bf(z) := 2d/4
∫
Rd

f(t)e2πt·z−πt2−π
2 z2

dt.

Later, in [27] and [1], more general mapping properties of the Bargmann transform have been investigated, 
where, in fact, the transform has been shown to extend to an isometric isomorphism B : Mp(Rd) →
Fp(Cd). The Bargmann transform is closely related to the STFT with a Gaussian window Vφ0 , where it is 
straightforward to verify the following identity

Vφ0f(x,−ω) = eπix·ωBf(z)e−π
2 |z|2 for z = x + iω. (2.5)

Utilizing the above identity, we define S∗(z) := S(z) so that 〈Pφ0
S f, g〉 = 〈TS∗Bf, Bg〉L2 , and the one-to-

one correspondence between Daubechies’ localization operator Pφ0
S and the Toeplitz operator TS∗ becomes 

apparent. In particular, their norms coincide. Moreover, for arbitrary p ≥ 1, we find that

‖Vφ0f · χΩ‖Lp(R2d) = ‖Bf · χΩ∗‖Lp , (2.6)

where Ω∗ := {z ∈ Cd | z ∈ Ω} denotes the complex conjugate subset.
In the subsequent discussion, we shall therefore consider norm estimates in the Fock spaces. For p = 2, 

we consider Toeplitz operators projecting onto Ω ⊆ Cd, which we will simply denote by TΩ = TχΩ . By (2.4), 
the associated operator norm is given by

‖TΩ‖op = sup
‖F‖F2=1

∫
Ω

|F (z)|2e−π|z|2dA(z).

For general p ≥ 1, we consider upper bounds for the quantity

‖F · χΩ‖pLp

‖F‖pLp

=
∫
Ω |F (z)|pe− p

2π|z|
2dA(z)

‖F‖pLp

with F ∈ Fp(Cd) \ {0}.

By the use of complex interpolation (see Appendix A for details), the above quotients are actually bounded 
by the estimate for p = 1, i.e.,

sup
F∈Fp(Cd)\{0}

‖F · χΩ‖pLp

‖F‖pLp

≤ sup
F∈F1(Cd)\{0}

‖F · χΩ‖L1

‖F‖L1
, (2.7)

which allows for estimates without any p-dependence. Unsurprisingly, the added structure provided by the 
Fock space turns out to be beneficial when estimating the norm. Namely, we shall exploit subaveraging 
properties of subharmonic functions.
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2.3. Gabor frames and Gabor multipliers

In general, a family of vectors {φλ}λ∈Λ in the Hilbert space H is called a frame if there exist constants 
0 < A ≤ B < ∞, i.e., frame bounds, such that

A‖f‖2 ≤
∑
λ∈Λ

|〈f, φλ〉|2 ≤ B‖f‖2 ∀ f ∈ H.

The associated frame operator S : H → H is given by Sf :=
∑

λ〈f, φλ〉φλ with norm A ≤ ‖S‖H ≤ B, 
and ‖S‖H = B if B is the optimal upper frame bound. If A = B, the frame is called a tight frame. 
By renormalizing the vectors φλ �→ φλ/

√
A, any tight frame can be turned into a Parseval frame, i.e., 

A = B = 1, where we also have the representation f =
∑

λ〈f, φλ〉φλ, i.e., S = id.
The Gabor frame for L2(Rd) is based on the idea of discretizing the STFT inversion formula (2.1). For 

this purpose, consider a lattice Λ ⊆ R2d of sampling points. Oftentimes, we consider rectangular lattices 
of the form Λ = aZd × bZd with parameters a, b > 0. Further, fix a window function φ ∈ L2(Rd) \ {0}
and define the time-frequency shifts π(x, ω)φ := MωTxφ. If the family of time-frequency shifts {π(λ)φ}λ∈Λ
forms a frame, we call this system a Gabor frame with generating function φ over the lattice Λ. We may 
also include a normalization factor based on the density of the lattice. More precisely, to each lattice we 
can associate a connected neighborhood of the origin DΛ called the fundamental region such that

∪λ∈Λ(λ + DΛ) = R2d and |(λ + DΛ) ∩ (ξ + DΛ)| = 0 whenever λ �= ξ ∈ Λ.

With the normalization 
√
|DΛ|{π(λ)φ}λ∈Λ, the frame operator Sφ

Λ : L2(Rd) → L2(Rd) reads

Sφ
Λf = |DΛ|

∑
λ∈Λ

〈f, π(λ)φ〉π(λ)φ. (2.8)

We immediately recognize Sφ
Λf as a Riemann sum of the integral (2.1). Thus, for a sequence of Gabor 

frames 
√
|DΛn

|{π(λ)φ}λ∈Λn
where |DΛn

| → 0 as n → ∞, we expect the discretization (2.8) to converge 
weakly to the integral (2.1) and the frame bounds to tighten. Notably for the sequence of square lattices 
Λn = 1

n

(
Zd × Zd

)
and f, φ in Feichtinger’s algebra M1(Rd), Weisz shows in [29] (Theorem 2) that Sφ

Λn
f

converges to f in the M1-norm as n → ∞. In the same paper, while φ remains in M1(Rd), the result 
is extended (Theorem 5) to f in the more general modulation space Mp,q(Rd) with convergence in the 
Mp,q-norm. In particular, since M2(Rd) = L2(Rd), we have convergence in the L2-norm when f ∈ L2(Rd).

The Gabor multiplier, G φ
Λ,b : L2(Rd) → L2(Rd), represents a discretization of Daubechies’ operator in 

(2.2), where the sum (2.8) is weighted by a bounded symbol b defined on the lattice Λ, i.e.,

G φ
Λ,bf := |DΛ|

∑
λ∈Λ

b(λ)〈f, π(λ)φ〉π(λ)φ.

For localization on a specific subset Ω ⊆ R2d, we shall consider Gabor symbols b that mimic the behavior of 
the characteristic function χΩ. One natural option is to consider the portion of a lattice point region λ +DΛ
containing the subset Ω, i.e.,

bΩ(λ) := |Ω ∩ (λ + DΛ)|
|DΛ|

∈ [0, 1].

Alternatively, we only distinguish between whether the lattice point region λ +DΛ contains a non-zero part 
of Ω. That is, we apply the ceiling function �·�, rounding up to the nearest integer, so that
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�bΩ(λ)� ∈ {0, 1}.

Evidently 0 ≤ bΩ(λ) ≤ �bΩ(λ)�, from which it is easily verified that the operator norms also satisfy 
‖G φ

Λ,bΩ
‖op ≤ ‖G φ

Λ,�bΩ	‖op. Thus, when estimating upper bounds for the operator norm in Section 5, we only 
consider the second symbol suggestion, �bΩ�. Notice that utilizing symbol �bΩ� is the same as restricting 
the summation (2.8) to a subset of the lattice Λ, namely

ΛΩ :=
{
λ ∈ Λ

∣∣ |Ω ∩ (λ + DΛ)| > 0
}
. (2.9)

For simplicity, we denote the Gabor multiplier with symbol �bΩ� by G φ
Λ,Ω, which, by the above observation, 

is given by

G φ
Λ,Ωf = |DΛ|

∑
λ∈ΛΩ

〈f, π(λ)φ〉π(λ)φ. (2.10)

2.4. Porous sets and Cantor sets

We shall define “fractal sets” in terms of the general notion of ν-porosity. It is based on Definition 2.7 in 
[8], adjusted to higher dimensions. Informally, in order for a set to be classified as porous, we require the 
set to contain gaps or pores within certain scale bounds.

Definition 2.1. (ν-porosity) Suppose 0 < ν < 1, 0 ≤ αmin ≤ αmax ≤ ∞ and Ω ⊆ Rd is closed. We say that 
Ω is ν-porous on scales αmin to αmax if for every ball Br(x) of radius r ∈ [αmin, αmax] there exists a ball 
Bνr(y) ⊆ Br(x) of radius νr such that |Ω ∩Bνr(y)| = 0.

Notice that in one dimension, the ν-porous set resembles a Cantor type set, where we are able to remove 
a ν-portion of any interval inductively down to the lower bound scale. The Cantor sets represent a popular 
and easy to understand family of fractal sets, which we construct as follows:

Let M > 1 be a fixed integer, and let A be a non-empty proper subset of {0, 1, . . . , M − 1}. The n-iterate 
(n-order) discrete Cantor set with base M and alphabet A is then defined as

C(d)
n (M,A ) :=

⎧⎨
⎩

n−1∑
j=0

ajM
j
∣∣∣ aj ∈ A , j = 0, 1, . . . , n− 1

⎫⎬
⎭ ⊆ {0, 1, . . . ,Mn − 1}.

The “continuous” n-iterate Cantor set based in the interval [0, L] is given by

Cn(L,M,A ) := LM−n · C(d)
n (M,A ) + [0, LM−n] for n = 0, 1, 2, . . .

The iterates are nested, i.e., Cn+1 ⊆ Cn, and the (limit) Cantor set is then given by the intersection of all 
the n-iterates. While the Cantor set itself has measure zero, each n-iterate does not. If we let |A | denote 
the cardinality of the alphabet A , the measure of the n-iterate Cantor set is given by

|Cn(L,M,A )| =
(
|A |
M

)n

L.

Note that for M = 3 and A = {0, 2}, we obtain the standard mid-third n-iterate Cantor set, with measure 
(2/3)nL.

Unsurprisingly, the Cantor sets are indeed ν-porous. Below we present a simple estimate for the porosity 
constant and the scales (see Appendix B for details):
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Lemma 2.1. The n-iterate Cantor set Cn(L, M, A ) with base M > 1 and alphabet size |A | < M , based in 
the interval [0, L], is ν-porous on scales LM−n+1 to ∞, with any ν ≤ 1

2M
−2.

In multiple dimensions R2d, we consider two possible Cantor set constructions:

(1) For a ball of radius R > 0 centered at the origin, we consider the radially symmetric n-iterate Cantor 
set as a subset of the form

C 2d
n (R,M,A ) :=

{
(x1, . . . , x2d) ∈ R2d ∣∣ (x2

1 + · · · + x2
2d
)d ∈ Cn(R2d,M,A )

}
.

In particular, localizing on C 2
n (R, M, A ) has been discussed extensively in [20]. In general, these radially 

symmetric Cantor iterates are constructed such that all annuli that make up the set have the same
measure. The total measure is given by

|C 2d
n (R,M,A )| =

∣∣Cn ((πR2)d/d!,M,A
)∣∣ =

(
|A |
M

)n (πR2)d

d! ,

where we recognize (πR2)d
d! as the volume of the 2d-dimensional ball of radius R.

(2) Alternatively, we can consider the Cartesian product of 1-dimensional Cantor iterates,

Cn1(L1,M1,A1) × Cn2(L2,M2,A2) × · · · × Cn2d(L2d,M2d,A2d).

If all iterates coincide, the above Cartesian product reduces to Cn(L, M, A )2d based in the hypercube 
[0, L]2d.

Remark. In [8] fractal sets are originally defined in terms of δ-regularity for some 0 < δ < 1 (see Definition 2.2 
in [8]). While only formulated in 1-dimension, the notion of δ-regularity can also be extended to higher 
dimensions. Compared to ν-porosity, this concept offers a different perspective on fractal sets: For instance 
with regard to the n-iterate Cantor set Cn(L, M, A ), we find that the δ corresponds to fractal dimension 
(or Hausdorff dimension) of the iterate, namely ln |A |

lnM . However, the notion of δ-regularity might appear 
more abstract than ν-porosity as it does not immediately read as a set containing gaps, and less so the size 
of those gaps. Nonetheless, as shown in [8] Proposition 2.10, any δ-regular set is ν-porous, and the scales 
associated to δ-regularity coincide with the ν-porous scales up to multiplicative constants. Thus, formulating 
the FUP on ν-porous sets directly translates to an FUP on δ-regular sets.

3. Fractal uncertainty principle in joint representation

In this section we present the FUP for the joint time-frequency representation. Initially, in Section 3.1
we derive the FUP for the Fock spaces. In the subsequent Section 3.2 we translate the FUP for the Fock 
spaces to an uncertainty principle for the STFT on modulation spaces.

3.1. Fractal uncertainty principle for Fock spaces

Theorem 3.1. (FUP for Fock spaces Fp(Cd)) Let 0 < h ≤ 1, and suppose Ω(h) ⊆ Cd is an h-dependent 
family of sets which is ν-porous on scales h to 1. Then for all p ≥ 1 and all F ∈ Fp(Cd) \ {0} there exist 
constants C, β > 0 only dependent on ν (and d) such that

‖F · χΩ(h)‖pLp

‖F‖pLp

≤ Chβ ∀ 0 < h ≤ 1. (3.1)
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In particular, for p = 2, the Toeplitz operator TΩ(h) satisfies

‖TΩ(h)‖op ≤ Chβ ∀ 0 < h ≤ 1. (3.2)

The essential property of the Fock space that we utilize is the subaveraging property, where point eval-
uations can be bounded by an average over the ball up to a multiplicative constant. The statement can be 
found in [31] for Fp(C), which generalized to Fp(Cd) (see Appendix C for details) reads:

Lemma 3.2. For any F ∈ Fp(Cd) and any point z ∈ Cd, we have for all R > 0 that

|F (z)|pe− p
2π|z|

2 ≤
(p

2

)d⎛⎝1 − e−
p
2πR

2
d−1∑
j=0

(
p
2πR

2)j
j!

⎞
⎠

−1 ∫
BR(z)

|F (ξ)|pe− p
2π|ξ|

2
dA(ξ). (3.3)

Remark. The same statement also appears in [21] and [16], related to the sampling problem in more general 
Fock spaces, although without an explicit multiplicative constant.

Proceeding, we require the following two concepts: For a set Ω ⊆ Cd and R > 0, we define the maximal 
Nyquist density, ρ(Ω, R), by

ρ(Ω, R) := sup
z∈Cd

|Ω ∩BR(z)| ≤ max{|Ω|, |BR(0)|}. (3.4)

Further, we define the R-thickened set, ΩR, by

ΩR := Ω + BR(0) = ∪z∈ΩBR(z).

With these notions and Lemma 3.2, we present an upper bound estimate for the integral over Ω.

Lemma 3.3. Suppose Ω ⊆ Cd is measurable. Then for any F ∈ Fp(Cd) and any R > 0, we have that

∫
Ω

|F (z)|pe− p
2π|z|

2
dA(z) ≤

(p
2

)d ρ(Ω, R)

1 − e−
p
2πR

2 ∑d−1
j=0

(
p
2πR

2
)j

j!

∫
ΩR

|F (z)|pe− p
2π|z|

2
dA(z). (3.5)

Proof. By Lemma 3.2,

∫
Ω

|F (z)|pe− p
2π|z|

2
dA(z) ≤

(p
2

)d⎛⎝1 − e−
p
2πR

2
d−1∑
j=0

(
p
2πR

2)j
j!

⎞
⎠

−1

·
∫
Ω

∫
BR(z)

|F (ξ)|pe− p
2π|ξ|

2
dA(ξ)dA(z).

Since z ∈ Ω, we have that

∫
BR(z)

|F (ξ)|pe− p
2π|ξ|

2
dA(ξ) =

∫
ΩR

χBR(z)(ξ) · |F (ξ)|pe− p
2π|ξ|

2
dA(ξ).

By Fubini’s theorem, we obtain
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∫
Ω

∫
BR(z)

|F (ξ)|pe− p
2π|ξ|

2
dA(ξ)dA(z) =

∫
ΩR

⎛
⎝∫

Ω

χBR(ξ)(z)dA(z)

⎞
⎠ |F (ξ)|pe−π p

2 |ξ|
2
dA(ξ)

=
∫

ΩR

|Ω ∩BR(ξ)| · |F (ξ)|pe− p
2π|ξ|

2
dA(ξ) ≤ ρ(Ω, R)

∫
ΩR

|F (ξ)|pe− p
2π|ξ|

2
dA(ξ). �

In the above lemma notice that the integral over ΩR is always bounded by the integral over Cd, that is,

‖F · χΩ‖pLp ≤
(p

2

)d ρ(Ω, R)

1 − e−
p
2πR

2 ∑d−1
j=0

(
p
2πR

2
)j

j!

‖F‖pLp ∀ R > 0.

Further, by the interpolation result (2.7), we can optimize the right-hand side with the estimate for p = 1
so that

‖F · χΩ‖pLp ≤ 2−d ρ(Ω, R)

1 − e−
1
2πR

2 ∑d−1
j=0

( 1
2πR

2
)j

j!

‖F‖pLp ∀ R > 0. (3.6)

Regardless, this shows that estimates of the quotient ‖F ·χΩ‖pLp/‖F‖pLp can be solely based on estimates of 
the maximal Nyquist density. E.g., as shown in the subsequent Section 4, under certain growth conditions, 
we are able to obtain good estimates for the Nyquist density for the standard Cartesian product of Cantor 
sets and radial Cantor sets. For the general case of porous sets, however, we also take into account the 
integral over the thickened set.

Besides the trivial upper bounds of (3.4), if we suppose Ω ⊆ Cd is ν-porous on scales αmin to αmax and 
consider a radius R within the scale bounds, we obtain, by Definition 2.1, the simple estimate

ρ(Ω, R) ≤ sup
|z−ξ|≤(1−ν)R

∣∣BR(z) \BνR(ξ)
∣∣ =

(
1 − ν2d) |BR(0)| =

(
1 − ν2d) (πR2)d

d! .

We apply this upper bound to Lemma 3.3, which yields the corollary:

Corollary 3.1. Suppose Ω ⊆ Cd is ν-porous on scales αmin to αmax. Then for any radius R ∈ [αmin, αmax]
and any function F ∈ Fp(Cd), we have that

∫
Ω

|F (z)|pe− p
2π|z|

2
dA(z) ≤ κd

(p
2πR

2
)
·
(
1 − ν2d) ∫

ΩR

|F (z)|pe− p
2π|z|

2
dA(z), (3.7)

where the function κd is given by

κd(x) := xd

d!

⎛
⎝1 − e−x

d−1∑
j=0

xj

j!

⎞
⎠

−1

. (3.8)

The crucial observation, moving forward, is that for some choices of R > 0, the thickened set ΩR is 
itself a porous set provided the original set Ω is porous. A special case of this observation is presented in 
Proposition 2.11 [8].

Lemma 3.4. (Thickening of porous set) Suppose Ω ⊆ Cd is ν-porous on scales αmin to αmax. For any 0 ≤
r < ν · αmax, consider the r-thickened set Ωr := Ω + Br(0) = ∪z∈ΩBr(z). Then for any R ∈ [αmin, αmax]
with r < R, the set Ωr is 

(
ν − r

)
-porous on scales R to αmax.
ν R
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Proof. Consider αmin ≤ R ≤ L ≤ αmax. By ν-porosity of Ω, for any BL(z) there exists BνL(ξ) ⊆ BL(z)
such that |BνL(ξ) ∩ Ω| = 0. After r-thickening, we maintain a zero intersection with Ωr if the radius of 
BνL(ξ) is reduced to νL − r. Since L is arbitrary and

(
ν − r

R

)
L ≤ νL− r =⇒ |B(

ν− r
R

)
L(ξ) ∩ Ωr| ≤ |BνL−r(ξ) ∩ Ωr| = 0,

the set Ωr satisfies the claimed porosity properties. The conditions on r and R ensure that the new porosity 
is positive and that the scale bounds are valid. �

We are now ready to prove Theorem 3.1, where the main idea is to construct a sequence of thickened 
sets, to which we may apply Corollary 3.1 repeatedly.

Proof of Theorem 3.1. By the interpolation result (2.7), it suffices to prove the statement for the case p = 1.
Recall that for some 0 < h ≤ 1 we presume Ω = Ω(h) is ν-porous on scales h to 1. For some finite 

sequence of radii {Rj}nj=1, we consider an associated sequence of thickened sets {Ω(j)}n−1
j=0 , given by

Ω(0) := Ω and Ω(j) := ΩR1+R2+···+Rj
for j = 1, 2, . . . , n− 1.

We chose the radii such that the set Ω(j) maintains the porous property, in the sense that

Ω(j) is νj-porous on scales Rj+1 to 1.

By Lemma 3.4, the new porosity constants {νj}j are given by

νj = ν − R1 + · · · + Rj

Rj+1
, where Rj+1 >

R1 + · · · + Rj

ν
for j = 0, 1, . . . , n− 1.

Thus, the sequence of radii must at least grow exponentially. In particular, we consider radii of the form

Rj := h

(
3
ν

)j

for j = 1, 2, . . . , n, (3.9)

which not only satisfy the above radii-condition but also yield a positive lower bound for the porosity 
constants {νj}j , namely

νj = ν −
(ν

3

)j+1 j∑
k=1

(
3
ν

)
≥ ν

2 ∀ j ∈ N and 0 < ν < 1.

In addition, we will consider a fixed threshold radius 0 < r ≤ 1, specified later, such that Rj ≤ r for all 
j = 1, 2, . . . , n.

Proceeding, we make repeated use of Corollary 3.1 to the sequence of thickened sets {Ω(j)}j based on the 
radii defined in (3.9), all with porosity constant equal to ν2 . This reveals that the integral over Ω is bounded 
by

∫
Ω

|F (z)|e−π
2 |z|2dA(z) ≤

⎡
⎣ k∏
j=1

κd

(π
2R

2
j

)
·
(

1 −
(ν

2

)2d
)⎤⎦ ·

∫
Ω(k)

|F (z)|e−π
2 |z|2dA(z)

≤

⎡
⎣ k∏
j=1

κd

(π
2R

2
j

)
·
(

1 −
(ν

2

)2d
)⎤⎦ · ‖F‖L1 for k = 1, 2, . . . , n− 1. (3.10)



376 H. Knutsen / Appl. Comput. Harmon. Anal. 62 (2023) 365–389
Since limx→0 κd(x) = 1 and the derivative κ′
d(x) > 0 for all x > 0, we may fix a threshold radius r > 0 such 

that

κd

(π
2R

2
)
·
(

1 −
(ν

2

)2d
)

< 1 ∀ 0 < R ≤ r.

In particular, fix some 0 < ε ≤
(
ν
2
)2d and consider the threshold r := min(1, rε), where rε > 0 denotes the 

(unique) solution to κd

(
π
2 r

2
ε

)
= 1 + ε. We shall only consider the radii Rj ≤ r, for which

κd

(π
2R

2
j

)
·
(

1 −
(ν

2

)2d
)

≤ (1 + ε) ·
(

1 −
(ν

2

)2d
)

≤ 1 −
(ν

2

)4d
. (3.11)

Evidently, this constraint directly translates to the maximal sequence length n, i.e.,

h

(
3
ν

)n

≤ r < h

(
3
ν

)n+1

⇐⇒ −1 < n + ln h

ln 3
ν

− ln r

ln 3
ν

≤ 0. (3.12)

By combining (3.10) and (3.11), we have that

‖F · χΩ(h)‖L1 ≤
(

1 −
(ν

2

)4d
)n−1

‖F‖L1 .

Finally, by expressing n in terms of the parameter h, according to (3.12), we conclude that

‖F · χΩ(h)‖L1 ≤ Chβ ‖F‖L1 ∀ 0 < h ≤ 1

for some constants β, C > 0 only dependent on ν (and d). �
Remark. By a closer inspection of the above proof, we actually obtain explicit expressions for the exponent 
β > 0 in Theorem 3.1. In fact, for every fixed 0 < ε ≤

(
ν
2
)2d, there is an associated multiplicative constant 

C = C(ε) > 0 such that Theorem 3.1 is satisfied with exponent

β = − ln
(

(1 + ε) ·
(

1 −
(ν

2

)2d
))

·
(

ln 3
ν

)−1

.

Although we may improve the estimate for β by choosing a smaller ε, this comes at the cost of an enlarged 
multiplicative constant C, where, at least from the above proof scheme, C(ε) → ∞ as ε → 0.

3.2. Fractal uncertainty principle for modulation spaces

By the norm correspondence (2.6), we can rephrase Theorem 3.1 in terms of the STFT on modulation 
spaces.

Theorem 3.5. (FUP for modulation spaces Mp(Rd)) Let 0 < h ≤ 1, and suppose Ω(h) ⊆ Cd is an h-
dependent family of sets which is ν-porous on scales h to 1. Then for all p ≥ 1 and all f ∈ Mp(Rd) \ {0}
there exist constants C, β > 0 only dependent on ν (and d) such that

‖Vφ0f · χΩ(h)‖pLp(R2d)

‖Vφ0f‖pLp(R2d)
≤ Chβ ∀ 0 < h ≤ 1. (3.13)
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In particular, for p = 2, Daubechies’ time-frequency localization operator Pφ0
Ω(h) satisfies

‖Pφ0
Ω(h)‖op ≤ Chβ ∀ 0 < h ≤ 1. (3.14)

Another noteworthy rephrasement is result (3.6), which in terms of the STFT reads

‖Vφ0f · χΩ‖pLp(R2d) ≤ 2−d ρ(Ω, R)

1 − e−
1
2πR

2 ∑d−1
j=0

( 1
2πR

2
)j

j!

‖Vφ0f‖pLp(R2d) ∀ R > 0. (3.15)

Remark. For d = 1, in [3] Theorem 3, there is a similar but more general result, valid for all Hermite 
windows {hj}j , namely

‖Vhj
f · χΩ‖pLp(R2) ≤

ρ(Ω, R)
1 − e−πR2Pj(πR2)

‖Vhj
f‖pLp(R2) ∀ p ≥ 1 and R > 0,

where Pj is a specified polynomial of degree 2j. In particular, for j = 0, we have that h0 = φ0 and P0 ≡ 1
so that the above inequality reduces to

‖Vφ0f · χΩ‖pLp(R2) ≤
ρ(Ω, R)

1 − e−πR2 ‖Vφ0f‖pLp(R2) ∀ p ≥ 1 and R > 0. (3.16)

By close inspection, for d = 1 result (3.15) turns out to be an improvement of (3.16).2

4. Density of Cantor sets

In this section we consider the Cantor sets specifically and show, under certain conditions, how the FUP 
in Theorem 3.5 (or equivalently Theorem 3.1) can be refined for this family of fractal sets. While the general 
FUP is formulated in terms of a continuous parameter h → 0+, it is more convenient to consider discrete 
iterations n → ∞ when working with the Cantor sets. The relation between h and n is made clear by 
Lemma 2.1, where for the Cantor iterate Cn(M, A , L), we have that

h ∼ LM−n.

From the above relation, we observe that h is of the same order of magnitude as the intervals that make up 
the Cantor iterate. Furthermore, similarly to the condition imposed in [8], we consider L ∼ h−1. Thus, we 
have that L is dependent on the iterates n so that L(n) ∼ M

n
2 . More precisely, we specify the multiplicative 

constants of the asymptotes so that the interval condition now reads:

Definition 4.1. Let the interval length L be a function N → R+. The interval length L satisfies condition 
(IM ) with constants 0 < c1 ≤ c2 < ∞ if

c1M
n
2 ≤ L(n) ≤ c2M

n
2 for n = 0, 1, 2, . . . (4.1)

For the 2d-dimensional radially symmetric Cantor iterate C 2d
n (R, M, A ), we adjust the above condition 

to the radius R > 0, similar to condition (1.3) in [19] and (1.4) in [20].

2 In [19] (Section 3.2 page 10) there is a similar comparison for a specific set Ω, where ρ(Ω, R) is known, with the claim that 
the upper bound obtained in [19] is also an improvement of (3.16). By closer examination, this claim is incorrect, and the upper 
bound for the localization operator is in fact the same as result (3.16), i.e., the special case h0 = φ0 of Theorem 3 in [3].
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Definition 4.2. Let the radius R be a function N → R+. The radius R satisfies condition (DM ) with constants 
0 < c1 ≤ c2 < ∞ if

c1M
n
2 ≤ R2d(n) ≤ c2M

n
2 , for n = 0, 1, 2, . . . (4.2)

With these conditions, we present an FUP for the two multidimensional Cantor set constructions from 
Section 2.4.

Theorem 4.1. (FUP for Cantor sets) We consider the two constructions separately:

(i) Let C 2d
n (R, M, A ) denote the 2d-dimensional radially symmetric Cantor iterate, and suppose the radius 

R = R(n) > 0 satisfies condition (DM ) with constants c1 ≤ c2. Then there exists a positive constant γ
only dependent on M , |A |, c1, c2 (and d) such that for all f ∈ Mp(Rd) with p ≥ 1,

‖Vφ0f · χC 2d
n (R(n),M,A )‖pLp(R2d) ≤ γ ·

(
|A |
M

)n
2

‖Vφ0f‖pLp(R2d) for n = 0, 1, 2, . . . (4.3)

(ii) Let Ω := Cn1(L1, M1, A1) × · · · × Cn2d(L2d, M2d, A2d) denote the 2d-dimensional Cartesian product of 
Cantor iterates, and suppose the interval lengths Lj = Lj(nj) satisfy condition (IMj

) with the same 
constants c1 ≤ c2. Then there exists a positive constant γ only dependent on {(Mj , |Aj |)}j, c1, c2 (and 
d) such that for all f ∈ Mp(Rd) with p ≥ 1 and all iterations {nj}j ∈ N2d

0 ,

‖Vφ0f · χΩ‖pLp(R2d) ≤ γ ·

⎡
⎣ 2d∏
j=1

(
|Aj |
Mj

)nj/2
⎤
⎦ ‖Vφ0f‖pLp(R2d).

In particular, when all iterates are equal to say Cn(L(n), M, A ), we find that

‖Vφ0f · χCn(L,M,A )2d‖pLp(R2d) ≤ γ ·
(
|A |
M

)n·d
‖Vφ0f‖pLp(R2d) for n = 0, 1, 2 . . . (4.4)

Remark. For localization on the radially symmetric Cantor set with d = 1 and p = 2, we retrieve the same 
upper bound asymptote as in [20] Theorem 3.3. In fact, Theorem 3.3 reveals that the general asymptote is 
optimal in the sense that there are alphabets where the asymptote is precise. However, the same theorem 
also states that there are alphabets where the asymptote is not precise.

The proof of Theorem 4.1 is based on inequality (3.15), combined with estimates of the maximal Nyquist 
density of the multidimensional Cantor iterates. In order to produce such estimates, we first need to consider 
the 1-dimensional Cantor iterates and introduce the notion of the Cantor function. To the n-iterate Cantor 
set Cn(M, A ) := Cn(1, M, A ) based in [0, 1] we associate the Cantor function Gn,M,A : R → [0, 1], given by

Gn,M,A (x) := |Cn(M,A )|−1

{
0, x ≤ 0,
|Cn(M,A ) ∩ [0, x]|, x > 0.

(4.5)

For the iterates based in [0, L], we consider the dilated Cantor function Gn,M,A (· L−1). The Cantor function 
is a useful concept as the difference Gn,M,A (y) −Gn,M,A (x) measures the portion of the n-iterate Cn(M, A )
contained in the interval [x, y]. By definition, the Cantor function is said to be subadditive if the difference is 
bounded by Gn,M,A (y−x). While this is the case for the mid-third Cantor set (see [7]), we cannot guarantee 
subadditivity with an arbitrary alphabet. Nonetheless, for our purpose, we only require a weaker version 
utilizing the canonical alphabet A := {0, 1, . . . , |A | − 1} (see [20] Appendix A).
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Lemma 4.2. Let Gn,M,A denote the Cantor-function, defined in (4.5). Then for any x ≤ y,

Gn,M,A (y) − Gn,M,A (x) ≤ Gn,M,A (y − x). (4.6)

Re-scaling to Cantor iterates based in [0, L], we find, by the above lemma, that the maximal Nyquist 
density is bounded by

ρ
(
Cn(L,M,A ), x

)
= max

a∈R
|Cn(L,M,A ) ∩ [a, a + x]| ≤ |Cn(L,M,A ) ∩ [0, x]|.

In the next lemma, we enforce condition (4.1), which yields a more explicit estimate for the upper bound 
in the 1-dimensional case.

Lemma 4.3. Suppose that the alphabet A is a proper subset of {0, 1, . . . , M −1}, and suppose that the length 
L(n) > 0 satisfies condition (IM ) with constants 0 < c1 ≤ c2 < ∞. Then for any fixed x > 0, there exists a 
finite constant γ > 0 dependent only on x, M, |A |, c1 and c2 such that

|Cn(L,M,A ) ∩ [0, x]| = Gn,M,A

(
xL−1)( |A |

M

)n

L ≤ γ ·
(
|A |
M

)n
2

. (4.7)

Proof. Fix some positive integer n0 < n, and observe that for coefficients aj ∈ A , the sum 
∑n−1

j=0 ajM
j−n <

Mn0−n only if aj = 0 for j ≥ n0. This means whenever x < Mn0−n, the cardinality of the intersection 
C(d)
n (M, A ) · M−n ∩ [0, x] cannot exceed |A |n0 . We also note that the discrete n-iterate Cantor set itself 

has cardinality |A |n. Thus, the associated Cantor function must be bounded by

Gn,M,A (x) ≤ |A |−m ∀ x ≤ M−m and m = 0, 1, . . . , n− 1.

Since the same upper bound holds if we suppose x ≤ M−(m+ 1
2 ) < M−m, it follows that

Gn,M,A (x) ≤ |A | 12 |A |−m
2 ∀ x ≤ M−m

2 and m = 0, 1, . . . , 2(n− 1).

Now, let x be any positive, fixed number and consider the argument xL−1. Utilizing the lower bound 
condition L(n) ≥ c1M

n
2 , we can find a positive integer N = N(xc−1

1 ) such that xL−1 ≤ M
N−n

2 . By 
monotonicity of the Cantor function, combined with the above estimate for the Cantor function, we conclude

Gn,M,A

(
xL−1) ≤ Gn,M,A

(
M

N−n
2

)
≤ |A | 12 |A |N−n

2 ∀ n = 0, 1, 2, . . .

Finally, we enforce the upper bound condition L(n) ≤ c2M
n
2 , and inequality (4.7) follows with constant 

γ = c2|A |N+1
2 . Since 0 < c1 ≤ c2 < ∞, the constant γ is indeed finite. �

Based on the 1-dimensional result, we estimate upper bounds for the maximal Nyquist densities for the 
multidimensional Cantor iterates, which, combined with (3.15), proves Theorem 4.1.

Lemma 4.4. (Nyquist density of Cantor sets) Let r > 0 be fixed.

(i) Let C 2d
n (R, M, A ) denote the radial Cantor iterate, and suppose the radius R = R(n) > 0 satisfies 

condition (DM ) with constants c1 ≤ c2. Then there exists a constant γr > 0 only dependent on M, |A |, 
c1, c2 (and d) such that the maximal Nyquist density is bounded by

ρ
(
C 2d
n (R,M,A ), r

)
≤ γr ·

(
|A |

)n
2

for n = 0, 1, 2, . . .

M
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(ii) Let Ω := Cn1(L1, M1, A1) × · · · × Cn2d(L2d, M2d, A2d) denote the Cartesian product, and suppose the 
interval lengths Lj = Lj(nj) satisfy condition (IMj

) with the same constants c1 ≤ c2. Then there exists 
a constant γr > 0 only dependent on {(Mj , |Aj |)}j, c1, c2 (and d) such that the maximal Nyquist density 
is bounded by

ρ (Ω, r) ≤ γr ·
2d∏
j=1

(
|Aj |
Mj

)nj/2

for n = 0, 1, 2, . . .

Proof. Without loss of generality, we can assume that r ≥ 1. For part (i), fix a cutoff value N � 1 and 
distinguish between two cases for Br(a) ⊆ R2d, (1) |a| ≤ Nr and (2) |a| > Nr:

For case (1), Br(a) ⊆ B(N+1)r(0) so that |C 2d
n (. . . ) ∩ Br(a)| ≤ |C 2d

n (. . . ) ∩ B(N+1)r(0)|. By definition of 
the radial Cantor iterate, it follows that

∣∣C 2d
n (R,M,A ) ∩Br(a)

∣∣ ≤ πd

d!
∣∣Cn(R2d,M,A ) ∩

[
0, (N + 1)2dr2d]∣∣

≤ γ1 ·
(
|A |
M

)n
2

(by Lemma 4.3)

for some constant γ1 > 0.
For case (2), Br(a) ⊆ Ar(|a|) := {z ∈ R2d | 0 < |a| − r ≤ |z| ≤ |a| + r}. For the annulus Ar(|a|) with 

r < |a|, we have again, by definition of the radial Cantor iterate, that

∣∣C 2d
n (R,M,A ) ∩Ar(|a|)

∣∣ = πd

d!
∣∣Cn(R2d,M,A ) ∩

[
(|a| − r)2d, (|a| + r)2d

] ∣∣
≤ πd

d!
∣∣Cn(R2d,M,A ) ∩

[
0, (|a| + r)2d − (|a| − r)2d

] ∣∣ (by Lemma 4.2). (4.8)

Since |a| > 1 and since the leading term |a|2d cancels, it follows that

(|a| + r)2d − (|a| − r)2d ≤ |a|2d−1 ((1 + r)2d − (1 − r)2d
)
.

Furthermore, by subadditivity, the Cantor function Gn,M,A (m · x) ≤ m · Gn,M,A (x) for any m ∈ N. In 
general, this means

Gn,M,A (m · x) ≤ (m + 1) · Gn,M,A (x) ∀ m > 0.

With these observations inequality (4.8) simplifies to

∣∣C 2d
n (R,M,A ) ∩Ar(|a|)

∣∣ ≤ πd

d!
(
|a|2d−1 + 1

) ∣∣Cn(R2d,M,A ) ∩
[
0, (1 + r)2d − (1 − r)2d

] ∣∣
≤ γ2 ·

(
|a|2d−1 + 1

)( |A |
M

)n
2

(by Lemma 4.3) (4.9)

for some constant γ2 > 0 independent of |a|. Evidently, the right-hand side of the above inequality is 
unbounded in terms of |a|. The ball Br(a), however, only represents a fraction of the annulus Ar(|a|), 
which warrants a closer comparison between |C 2d

n (. . . ) ∩ Ar(|a|)| and |C 2d
n (. . . ) ∩ Br(a)|. Let ∂Bη := {z ∈

R2d | |z| = η} denote the (2d − 1)-dimensional sphere of radius η > 0 with associated surface area |∂Bη|. 
We consider the optimal surface quotient
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max
{
|∂Bη ∩Br(a)|

|∂Bη|

∣∣∣ η ∈
[
|a| − r, |a| + r

]}
≤ α ·

(
r

|a|

)2d−1

for some constant α > 0 only dependent on N � 1 and d. Hence,

∣∣C 2d
n (R,M,A ) ∩Br(a)

∣∣ ≤ α ·
(

r

|a|

)2d−1 ∣∣C 2d
n (R,M,A ) ∩Ar(|a|)

∣∣,
which, combined with (4.9), yields the desired conclusion of part (i).

Part (ii) turns out to be much simpler. Since any ball Br(a) is contained in some shifted hypercube 
a +[−r, r]2d, we consider the maximal Nyquist density ρ

(
Cnj

(Lj , Mj , Aj), r) in each direction j = 1, 2, . . . , 2d. 
In total, we obtain

ρ(Ω, r) ≤
2d∏
j=1

ρ
(
Cnj

(Lj ,Mj ,Aj), r),

where the desired conclusion follows once we apply the 1-dimensional result Lemma 4.3. �
5. Fractal uncertainty principle for Gabor multipliers

In this section we present one simple translation of Theorem 3.1 to Gabor multipliers. Specifically, since 
the previous theorems are based on the Gaussian window φ0, we proceed with Gabor multipliers on the 
form (2.10) with φ0 as generating function, i.e.,

G φ0
Λ,Ωf = |DΛ|

∑
λ∈ΛΩ

〈f, π(λ)φ0〉π(λ)φ0 (5.1)

for some subset Ω ⊆ R2d and lattice Λ. Furthermore, since we consider an h-dependent family Ω(h) of sets 
for the FUP, we also let the lattice Λ depend on the parameter 0 < h ≤ 1, meaning, we let Λ(h) become 
sufficiently dense so to capture the fractal details of Ω(h). In particular, we consider the following condition:

Definition 5.1. We say that an h-dependent family of lattices Λ(h) ⊆ R2d for 0 < h ≤ 1 satisfies condition 
(H) with constant L > 0 if the fundamental region, DΛ(h), satisfies the inclusion

DΛ(h) ⊆ BhL(0) ∀ 0 < h ≤ 1.

Remark. Any family of rectangular lattices of the form Λ1(h) = h 
(
aZd × bZd

)
with a, b > 0 satisfies 

condition (H) with constant L = 2−1
√

d(a2 + b2) > 0. In contrast, the family Λ2(h) =
(
h2a

)
Zd× bZd does 

not satisfy condition (H), even though |DΛ1(h)| = |DΛ2(h)|.

Utilizing condition (H), we formulate the FUP for Gaussian Gabor multipliers:

Theorem 5.1. (FUP Gaussian Gabor multipliers) Let 0 < h ≤ 1, and suppose Ω(h) ⊆ R2d is an h-dependent 
family of sets which is ν-porous on scales h to 1. Let Gφ0

Λ(h),Ω(h) : L2(Rd) → L2(Rd) denote the Gaussian 
Gabor multiplier defined in (5.1), whose lattice Λ(h) satisfies condition (H) with constant L > 0. Then there 
exists constants C, β > 0 only dependent on ν, L (and d) such that the operator norm is bounded by

‖G φ0
Λ(h),Ω(h)‖op ≤ Chβ ∀ 0 < h ≤ 1.

First, we reformulate the problem to an estimate in the Fock space.
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Lemma 5.2. Let Ω∗ := {z ∈ Cd | z ∈ Ω} denote the complex conjugate set of Ω ⊆ R2d. The operator norm 
of the Gaussian Gabor multiplier G φ0

Λ,Ω : L2(Rd) → L2(Rd) is given by

‖G φ0
Λ,Ω‖op = sup

F∈F2(Cd), ‖F‖L2=1
|DΛ|

∑
λ∈ΛΩ∗

|F (λ)|2e−π|λ|2 .

Proof. By Cauchy-Schwarz’ inequality on �2-sequences, the operator norm is given by

‖G φ0
Λ,Ω‖op = sup

‖f‖2=1
〈G φ0

Λ,Ωf, f〉 = sup
‖f‖2=1

|DΛ|
∑
λ∈ΛΩ

|〈f, π(λ)φ0〉|2.

By identity (2.5), each term can be expressed in terms of the Bargmann transform, namely |〈f, π(λ)φ0〉|2 =
|Bf(λ)|2e−π|λ|2 , and since the Bargmann transform B : L2(Rd) → F2(Cd) is an isometry onto the Fock 
space, the result follows. �
Proof of Theorem 5.1. By Lemma 5.2, we consider the sum |DΛ| 

∑
λ |F (λ)|2e−π|λ|2 for any normalized 

F ∈ F2(Cd). By the subaveraging property in Lemma 3.2, for every R > 0

∑
λ

|F (λ)|2e−π|λ|2 ≤

⎛
⎝1 − e−πR2

d−1∑
j=0

(πR2)j

j!

⎞
⎠

−1∑
λ

∫
BR(λ)

|F (ξ)|2e−π|ξ|2dA(ξ)

≤

⎛
⎝1 − e−πR2

d−1∑
j=0

(πR2)j

j!

⎞
⎠

−1

γ(R,Λ) ·
∫

⋃
λ BR(λ)

|F (ξ)|2e−π|ξ|2dA(ξ)

where

γ(R,Λ) := sup
z∈DΛ

card
{
λ ∈ Λ

∣∣ |B2R(z) ∩ (DΛ + λ)| > 0
}

takes into account the possible overlap between the balls BR(λ). We are interested in the case R = h for 
the family of lattices Λ(h). By the condition DΛ(h) ⊆ BLh(0), it follows that

|B2h(z) ∩ (DΛ(h) + λ)| > 0 =⇒ |B(2+L)h(z) ∩ (DΛ(h) + λ)| = |DΛ(h)|.

In turn, the overlap must be bounded by

γ(h,Λ(h)) ≤
|B(2+L)h(0)|

|DΛ(h)|
= (2 + L)2d · |Bh(0)|

|DΛ(h)|
∀ 0 < h ≤ 1.

In total, we obtain

|DΛ(h)|
∑

λ∈ΛΩ∗ (h)

|F (λ)|2e−π|λ|2 ≤ (2 + L)2d · κd(πh2)
∫

⋃
λ∈ΛΩ∗(h)

Bh(λ)

|F (ξ)|2e−π|ξ|2dA(ξ),

where κd(x) was defined in (3.8). Since κd(x) is continuous for x > 0 and limx→0 κd(x) = 1, this factor is 
simply absorbed by the multiplicative constant C > 0 of the theorem.

Now, by definition (2.9) for the subset ΛΩ∗(h) ⊆ Λ(h) and again by DΛ(h) ⊆ BhL(0), the union ⋃
λ∈ΛΩ∗ (h) Bh(λ) must be contained in the r-thickened set Ω∗

r for r(h) := (1 + L)h. By Lemma 3.4, the 
thickened set Ω∗

r(h) is itself ν2 -porous on scales h1 := 2
ν r(h) to 1. Thus, we simply apply the FUP for the 

Fock space in Theorem 3.1 on the family of sets Ω∗ as h1 → 0, from which the statement follows. �
r(h)
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Remark. The question immediately arises whether the Gabor systems {π(λ)φ0}λ∈Λ(h) with Λ(h) satisfying 
condition (H) actually are Gabor frames for all 0 < h ≤ 1 or for sufficiently small h. In d = 1, by the 
results obtained independently by Lyubarskii [23] and Seip and Wallsten [25], [26], we have a simple density 
criterion. Namely, that the system {π(λ)φ0}λ∈Λ is a Gabor frame if and only if the fundamental region 
satisfies |DΛ| < 1. In higher dimensions d > 1, characterizations of lattices Λ that yield Gaussian Gabor 
frames become much more intricate, which have been studied in [15], [24], [17], [22]. In particular, the density 
criterion does not translate, e.g., as shown in [22] Theorem 1.5, the lattice Λ = (Z × 1

2Z)2 does not generate 
a Gaussian Gabor frame even though |DΛ| = 1

4 < 1. Further, a sufficient condition is formulated in [22]
Theorem 1.2 combining a density criterion with the notion of transcendental lattices, which, as remarked by 
the authors, represents a large family of lattices in Cd. Nonetheless, our estimates of the Gabor multiplier 
are not reliant on the operator being associated to a Gabor frame.

We conclude this section with a simple example of Gabor multipliers based on Cantor sets, which also 
illustrates an alternative approach to choosing the lattice restriction ΛΩ.

Example 5.1. (Cantor set) For simplicity, we let d = 1 and consider the symmetric Cartesian product of 
Cantor iterates Ω := Cn(L, M, A ) × Cn(L, M, A ). For this case one obvious choice of lattices are square 
lattices Λ = a (Z× Z) with density a ∼ LM−n. Unsurprisingly, the restriction ΛΩ closely resembles the 
Cartesian product of scaled discrete Cantor iterates Ω(d) := [L · C(d)

n (M, A )]2. Thus, for Gabor multipliers 
localizing on such Cartesian products, it seems more natural to consider sampled points directly from the 
already available discrete set, i.e., we consider the operator

Gφ0(Ω(d))f := (LM−n)2
∑

λ∈
[
L·C(d)(M,A )

]2〈f, π(λ)φ0〉π(λ)φ0.

In order to estimate the operator norm, we follow the same procedure as in the proof of Theorem 5.1. After 
one 1

2LM
−n-thickening and then utilizing inequality (3.15), we obtain for all f ∈ L2(R) and r > 0 that

‖Gφ0(Ω(d))f‖2 ≤ 4
π
·
κ1
(
π
4 (LM−n)2

)
1 − e−

1
2πr

2 ρ
(
Ω(d) + B 1

2LM−n(0), r
)
‖f‖2

2.

By definition of the discrete and “continuous” Cantor iterate, the Nyquist density must satisfy

ρ
(
Ω(d) + B 1

2LM−n(0), r
)
≤ ρ(Ω, r),

so the operator norm is in turn bounded by

‖Gφ0(Ω(d))‖op ≤ 4
π
·
κ1
(
π
4 (LM−n)2

)
1 − e−

1
2πr

2 ρ(Ω, r).

If we now suppose the length L depends on the iterates n according to condition (IM ), we simply apply the 
estimate for the Nyquist density in Lemma 4.4 to retrieve the same asymptotic estimate for the operator 
norm as in Theorem 4.1.
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Appendix A. Complex interpolation in Fock space

We prove the following inequality between the Fock spaces F1(Cd) and Fp(Cd) for p ≥ 1.

Lemma A.1. For any measurable subset Ω ⊆ Cd and any p ≥ 1, we have the inequality

sup
F∈Fp(Cd)\{0}

‖F · χΩ‖pLp

‖F‖pLp

≤ sup
F∈F1(Cd)\{0}

‖F · χΩ‖L1

‖F‖L1
.

The proof combines central results from complex interpolation. An introduction to complex interpolation, 
based on Hadamard’s three line theorem, can be found in [30] Chapter 2. We follow the notation in [30]
and let Xθ = [X0, X1]θ for θ ∈ [0, 1] denote the complex interpolation space between two (compatible) 
Banach spaces X0 and X1. To begin with, we present a general result regarding linear operators between 
interpolation spaces and the associated operator norm (from [30] Theorem 2.4 (c) combined with subsequent 
remark).

Theorem A.2. Suppose X0, X1 and Y0, Y1 are compatible pairs of Banach spaces, and suppose the mapping

T : X0 + X1 → Y0 + Y1

is bounded, linear such that T : Xk → Yk is bounded with norm ‖T‖k ≤ Mk for k = 0, 1. Then the mapping 
T satisfies T : [X0, X1]θ → [Y0, Y1]θ with norm estimate ‖T‖θ ≤ M1−θ

0 Mθ
1 for all θ ∈ [0, 1].

In order to relate the above theorem to our context, we need to consider interpolation between weighted 
Lp-spaces and between Fock spaces. The next statements are all found in [31] Chapter 2.4, formulated for 
spaces over C but easily generalized to Cd. First, we consider the Stein-Weiss interpolation theorem, first 
published in [28], for weighted Lp-spaces.

Theorem A.3. Suppose w, w0 and w1 are positive weight functions on Cd. Then for any 1 ≤ p0 ≤ p1 ≤ ∞
and θ ∈ [0, 1], we have that

[
Lp0(Cd, w0dA), Lp1(Cd, w1dA)

]
θ

= Lp(Cd, wdA),

where

1
p

= 1 − θ

p0
+ θ

p1
and w

1
p = w

1−θ
p0

0 w
θ
p1
1 .

In particular, for the Lp-spaces with Gaussian measures, Lp(Cd), we obtain:
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Corollary A.1. For any 1 ≤ p0 ≤ p1 ≤ ∞ and θ ∈ [0, 1], we have that

[
Lp0(Cd),Lp1(Cd)

]
θ

= Lp(Cd), where 1
p

= 1 − θ

p0
+ θ

p1
.

For Fock spaces we have the following interpolation:

Theorem A.4. For any 1 ≤ p0 ≤ p1 ≤ ∞ and θ ∈ [0, 1], we have that

[
Fp0(Cd),Fp1(Cd)

]
θ

= Fp(Cd), where 1
p

= 1 − θ

p0
+ θ

p1
.

With these interpolation results, we are ready to prove Lemma A.1.

Proof of Lemma A.1. Note that the statement is equivalent to the linear mapping

TΩ : Fp(Cd) → Lp(Cd), F �→ F · χΩ

satisfying the operator norm inequality ‖TΩ‖pLp ≤ ‖TΩ‖L1 for p ≥ 1. Therefore, we consider the mapping 
TΩ between the spaces

TΩ : F1(Cd) + F∞(Cd) → L1(Cd) + L∞(Cd),

which is clearly bounded. By Theorem A.2,

TΩ :
[
F1(Cd),F∞(Cd)

]
θ
→
[
L1(Cd),L∞(Cd)

]
θ
,

and the associated operator norm is bounded by ‖TΩ‖1−θ
L1 ‖TΩ‖θL∞ . By Corollary A.1 and Theorem A.4, 

these interpolation spaces correspond to Fp(Cd) and Lp(Cd), respectively, with p−1 = 1 − θ. In addition, 
‖TΩ‖L∞ ≤ 1, from which the norm estimate readily follows. �
Appendix B. Omitted proof: simple porosity estimate of Cantor sets

We shall prove the following simple porosity estimate for the n-iterate Cantor set in 1-dimension.

Lemma B.1. The n-iterate Cantor set Cn(L, M, A ) with base M > 1 and alphabet size |A | < M , based in 
the interval [0, L], is ν-porous on scales LM−n+1 to ∞, with any ν ≤ 1

2M
−2.

Proof. Without loss of generality, we assume L = 1. Consider an interval I ⊆ R of size M−m+1 ≤ |I| ≤
M−m+2 for some integer 1 ≤ m ≤ n. Suppose first that the intersection I ∩ Cm(. . . ) does not form an 
interval. Then, by the Cantor set construction, there exists an interval J ⊆ I of size |J | = M−m ≥ M−2|I|
such that |J ∩ Cm(. . . )| = 0. Conversely, suppose the intersection forms an interval, effectively dividing the 
remainder I \ Cm(. . . ) into two intervals J1, J2. Again, by the Cantor set construction, we have the upper 
bound |I ∩ Cm(. . . )| ≤ |A |M−m ≤ (M − 1)M−m, so that max{|J1|, |J2|} ≥ 1

2 (|I| − (M − 1)M−m). Hence, 
we conclude that there exists an interval J ⊆ I with |I ∩ Cm(. . . )| = 0 of size

|J | =
(
|I| − (M − 1)M−m

2|I|

)
|I| ≥ 1

2M
−2|I|.

Since m is arbitrary and Cn(. . . ) ⊆ Cm(. . . ), the statement holds for all intervals I with M−n+1 ≤ |I| ≤ M . 
For |I| ≥ M the statement becomes trivial as Cn(. . . ) ⊂ [0, 1]. �
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Appendix C. Subaveraging in Fock space

We shall generalize the subaveraging statement made in Lemma 2.32 in [31] for the Fock space over C
to the space over Cd, namely:

Lemma C.1. For any F ∈ Fp(Cd) and any point z ∈ Cd, we have for all R > 0 that

|F (z)|pe− p
2π|z|

2 ≤
(p

2

)d⎛⎝1 − e−
p
2πR

2
d−1∑
j=0

(
p
2πR

2)j
j!

⎞
⎠

−1 ∫
BR(z)

|F (ξ)|pe− p
2π|ξ|

2
dA(ξ). (C.1)

In one dimension, the proof is based on the subaveraging property of subharmonic functions in C. More 
precisely, for u : C → R ∪ {−∞} subharmonic, we have that

u(z) ≤ 1
2π

2π∫
0

u(reiθ + z)dθ ∀ r > 0.

In d-dimensions, we instead consider plurisubharmonic functions.

Definition C.1. (Plurisubharmonic) Let X be a domain in ⊆ Cd. We say that a function u : X → R ∪{−∞}
is plurisubharmonic if

(a) u is upper semi-continuous, and
(b) for every z, ξ ∈ Cd the function τ �→ u(ξτ + z) is subharmonic in the open subset of C where it is 

defined.

Many well-known examples of plurisubharmonic functions are based on the holomorphic functions. In 
particular, if F is entire, then |F |p is a plurisubharmonic function in Cd for every p > 0. Hence, by point 
(b) in Definition C.1, every F ∈ Fp(Cd) satisfies

|F (z)|p ≤ 1
2π

2π∫
0

∣∣F (ξreiθ + z)
∣∣pdθ ∀ ξ ∈ Cd and r > 0. (C.2)

Notice that since the left-hand side of (C.2) is independent of ξ (and r), we may multiply both sides by a 
positive function of ξ, integrate with respect to ξ and keep the inequality intact.

Introduce the notation

∂B1 :=
{
z ∈ Cd

∣∣ |z| = 1
}

for the (2d − 1)-dimensional unit sphere, and let |∂B1| denote the associated surface area. Further, let dS
denote the surface measure on ∂B1. To begin with, we show that the point evaluation |F (z)|2 is bounded 
by an average over the sphere.

Lemma C.2. For every entire function F , we have that

|F (z)|p ≤ 1
|∂B1|

∫ ∣∣F (ξr + z)
∣∣pdS(ξ) ∀ r > 0. (C.3)
|ξ|=1
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Proof. Consider the equivalence relation ∼ in Cd, where

ξ1 ∼ ξ2 ⇐⇒ ∃ θ ∈ [0, 2π] such that ξ1 = eiθξ2.

This induces the quotient space ∂B1/ ∼ of “remaining angles” over the unit sphere, with measure dΦ such 
that dS = dθdΦ and

|∂B1| =
2π∫
0

dθ
∫

∂B1/∼

dΦ = 2π
∫

∂B1/∼

dΦ.

With the above decomposition, we may integrate both sides of (C.2) over the space ∂B1/ ∼, which leaves 
the desired result. �

Proceeding, we relate the subaverage over the sphere to an subaverage over the ball BR(0).

Lemma C.3. For every entire function F , we have for all R > 0 that

|F (z)|p ≤
(p

2

)d⎛⎝1 − e−
p
2πR

2
d−1∑
j=0

(
p
2πR

2)j
j!

⎞
⎠

−1 ∫
BR(0)

∣∣F (z + ξ)
∣∣pe− p

2π|ξ|
2
dA(ξ). (C.4)

Proof. For any ω ∈ Cd, we have the basic decomposition ω = rξ for |ξ| = 1 and r = |ω|, so that the volume 
measure can be expressed dA(ω) = r2d−1drdS(ξ). Since we consider the Gaussian measure of the Fock 
space Fp(Cd), we integrate both sides of inequality (C.3) against e− p

2πr
2
r2d−1dr. For the right-hand side, 

we find that

1
|∂B1|

R∫
0

∫
|ξ|=1

∣∣F (ξr + z)
∣∣pe− p

2πr
2
r2d−1dS(ξ)dr = 1

|∂B1|

∫
BR(0)

∣∣F (ω + z)
∣∣pe− p

2π|ω|2dA(ω).

While for the left-hand side, using the formula

L∫
0

rke−rdr = k!

⎛
⎝1 − e−L

k∑
j=0

L

j!

⎞
⎠ for k = 0, 1, 2, . . . ,

we obtain

|F (z)|p
R∫

0

e−
p
2πr

2
r2d−1dr = |F (z)|p (d− 1)!

2

(
2
pπ

)d
⎛
⎝1 − e−

p
2πR

2
d−1∑
j=0

(
p
2πR

2)j
j!

⎞
⎠ .

Since the surface area of the (2d − 1)-dimensional unit sphere is given by |∂B1| = 2πd/(d − 1)!, inequality 
(C.4) follows. �

We are now ready to prove Lemma C.1.
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Proof of Lemma C.1. Consider the integral over the ball centered at z ∈ Cd,
∫

BR(z)

|F (ξ)|pe− p
2π|ξ|

2
dA(ξ) =

∫
BR(0)

∣∣F (z + ξ)
∣∣pe− p

2π|z+ξ|2dA(ξ)

= e−
p
2π|z|

2
∫

BR(0)

∣∣F (z + ξ)e−πξ·z∣∣pe− p
2π|ξ|

2
dA(ξ).

(C.5)

Define Gz(ξ) := F (z + ξ)e−πξ·z, which is an entire function with respect to ξ. Since Gz(0) = F (z), the 
inequality follows once we apply Lemma C.3 to |Gz(0)|p, combined with (C.5). �
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