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Abstract

The following pages explore the use of generative models for realistic image
anonymization. In summary, this thesis aims to address two primary objectives.
First, develop generative models for synthesizing human figures for the purpose
of anonymization. Secondly, evaluate the impact of anonymization on the
development of computer vision algorithms.

This thesis culminates into four key contributions. First, it introduces DeepPri-
vacy, an open-source framework for realistic anonymization of human faces and
bodies. DeepPrivacy is the first framework to effectively handle the challenges
of in-the-wild image anonymization, such as handling overlapping objects,
partial bodies, and extreme poses. Secondly, a variety of Generative Adversar-
ial Networks (GANs) are proposed for synthesizing realistic human figures.
To the best of our knowledge, the proposed GANs are the first to synthesize
human figures in-the-wild effectively. The third contribution comprises of two
open-source datasets, namely Flickr Diverse Faces (FDF) and Flickr Diverse
Humans (FDH). Unlike previous datasets, FDF and FDH are large-scale and
diverse datasets consisting of unfiltered images that capture the complexities of
realistic image anonymization. Finally, the thesis presents an empirical evalua-
tion of DeepPrivacy and compare it to traditional anonymization. Specifically,
the impact of anonymization is evaluated for training computer vision models,
with a focus on autonomous vehicle settings.

This thesis demonstrates that realistic anonymization is a superior alternative
to traditional methods and a promising method to replace privacy-sensitive
data with artificial data. We are confident that our open-source framework
and datasets will be highly useful for practitioners and researchers seeking to
anonymize their visual data.
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Structure of Thesis
This thesis is a collection of papers organized into two parts.

Part I provides an overview of the research contributions, covers the relevant
background, and discusses the contributions.

Part II includes the published papers. For improved readability, the format of
the papers has been altered from their original published forms, but their content
remains unchanged. Supplementary material for each paper is accessible online
via links in Part II. The six papers included in this thesis are listed below.

Paper A. DeepPrivacy: A Generative Adversarial Network for Face
Anonymization
Håkon Hukkelås, Rudolf Mester, Frank Lindseth
14th International Symposium on Visual Computing, 2019
Won best paper award

Paper B. Image Inpainting with Learnable Feature Imputation
Håkon Hukkelås, Frank Lindseth, Rudolf Mester
42nd DAGM German Conference on Pattern Recognition, 2020

Paper C. Realistic Full-Body Anonymization with Surface-Guided GANs
Håkon Hukkelås, Morten Smebye, Rudolf Mester, Frank Lindseth
IEEE/CVF Winter Conference on Applications of Computer Vision,
2023

Paper D. DeepPrivacy2: Towards Realistic Full-Body Anonymization
Håkon Hukkelås, Frank Lindseth
IEEE/CVF Winter Conference on Applications of Computer Vision,
2023

Paper E. Synthesizing Anyone, Anywhere, in Any Pose
Håkon Hukkelås, Frank Lindseth
IEEE/CVF Winter Conference on Applications of Computer Vision,
2024

Paper F. Does Image Anonymization Impact Computer Vision Training?
Håkon Hukkelås, Frank Lindseth
CVPR Workshop on Autonomous Driving, 2023
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Chapter 1

Introduction

Collecting and storing images is ubiquitous in our modern society, everywhere
from communication to the development of advanced autonomous agents act-
ing freely in the world. However, such collection raises concerns regarding
the individual’s right to privacy, as visual data is rich in privacy-sensitive in-
formation (e.g. persons, documents, license plates). Recent privacy legislation
(e.g. GDPR (Council of European Union, 2016)) restricts the collection of
personal data, requiring entities to collect consent from recorded individuals or
anonymize the data. For some domains, collecting consent from all individuals
is infeasible (e.g. recording a crowded street), leaving anonymization as the
only option for preserving privacy rights. The prominent anonymization tech-
nique, anonymization by obfuscation (e.g. blurring), distorts the data, possibly
reducing its utility for its intended purpose. For example, learning a car to
detect blurred people will not perform well in real-world driving scenarios and
could pose a serious threat to human safety. This can be viewed as a barrier to
research and development, especially for the data-dependent field of computer
vision.

For the computer vision community, collecting task-specific datasets has be-
come critical in tailoring models for their intended purpose. However, col-
lecting such datasets can pose challenges when they involve sensitive data, as
anonymization can lead to a degradation in data quality. Current computer vi-
sion algorithms are not designed to handle visual artifacts from anonymization,
and they assume access to undistorted datasets 1. Consequently, if anonymiza-
tion by obfuscation is the way to comply with privacy laws, it is likely that
the model’s overall performance will suffer as a result of the reduced data
quality and therefore data utility. This introduces the need for realistic image
anonymization.

1The leading computer vision datasets employ no form of anonymization. Some datasets
anonymize faces by obfuscation (listed in Section 2.5.1). However, the general use of
anonymization for computer vision development is limited.
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Chapter 1 Introduction

Figure 1.1: In-the-wild synthesis is difficult, where the generative model has to handle
challenging cases such as partial bodies, occlusions, image distortions, and more.
Images from the FDF and FDH datasets presented in Paper A and D.

1.1 What is Realistic Image Anonymization?

Before delving deeper into this thesis, the question arises; what is realistic
image anonymization? Realistic image anonymization aims to replace privacy-
sensitive information with semantically equivalent information suited for the
application. For autonomous vehicles, the goal might be to replace people in the
image with a synthesized realistic-looking identity. The term "utility-preserving
anonymization" (Gross et al., 2006a) is frequently used and similar in meaning,
but it specifies the anonymization process dependent on the intended use of
the data. For example, anonymization by obfuscation is utility-preserving
for many tasks, as the realism of the data is irrelevant in many cases. A
shortcoming of the term "realistic anonymization" with respect to this thesis
is its focus on realism without considering distribution preservation. For
example, anonymization can be done via content removal (Uittenbogaard et al.,
2019) (e.g. replacing persons with their background), which is equally realistic.
However, this drastically alters the distribution of the data, which might reduce
its utility for some computer vision tasks. Thus, for this thesis, "realistic
anonymization" refers to techniques that aim to: 1) replace privacy-sensitive
information with application-based semantically equivalent information, and
2) retain the data distribution to preserve data utility.

1.2 The Key Difficulties of In-the-Wild Synthesis

Generative models (i.e. models that can generate new instances from a data dis-
tribution) designed for anonymization are required to handle the complexities
of in-the-wild synthesis. However, typical generative models do not address

4



1.3 Research Goals

these challenges. The majority of previous research focuses on curated datasets
2, where "poor quality" images are filtered out to improve synthesis quality.
For example, recent datasets for full-body synthesis filter out overlapping,
occluded, or partial bodies (Fruhstuck et al., 2022; Fu et al., 2022). However,
handling these challenging cases is a requirement for realistic anonymization.
If an image is blurred or if a body is partially visible, the anonymization
model should effectively handle this. Thus, we refer to these challenges as
the key difficulties of in-the-wild synthesis, which include overlapping/partial
bodies, occlusions, complex backgrounds, extreme poses, distorted images,
and more.

1.3 Research Goals

This thesis explores the use of deep generative models for realistic anonymiza-
tion of human figures, focusing on the following three goals.

Research Goal 1

Explore the use of generative models for realistic replacement of faces
in images.

This research goal aims to develop a generative model for synthesizing real-
istic faces to replace the original identity. Generative models are known to
generate close-to-photorealistic faces unconditionally (Karras et al., 2018).
However, their use for realistic image anonymization is under-explored. Previ-
ous research (Sun et al., 2018a,b) has indicated that Generative Adversarial
Networks (GANs) (Goodfellow et al., 2014) can realistically anonymize faces.
Nevertheless, no open-source tool exists for realistic image anonymization,
and the aforementioned studies show few qualitative examples of complex
scenarios, such as difficult poses or occluding objects. Thus, its practical use in
real-world scenarios is restricted. Considering this, research goal 1 focuses on
developing a generative model for realistic face anonymization that can handle
the complexities of in-the-wild synthesis.

2For example, CelebA-HQ, FFHQ (Karras et al., 2018, 2019), AFHQ (Choi et al., 2020).
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Chapter 1 Introduction

Research Goal 2

Explore the use of generative models for realistic replacement of human
figures in images.

The human body is recognizable even though the face is anonymized through
other identifying attributes (Wilber et al., 2016; Lander et al., 2001; McPherson
et al., 2016), such as gait (Jain et al., 2008), clothing (Gallagher and Chen,
2008), and body appearance (Zhang et al., 2015a; Oh et al., 2016). Therefore,
research goal 2 aims to develop a generative model for synthesizing realistic
human figures to replace full-body humans in images.

Synthesizing full-body human figures is a much more challenging task than
face synthesis, as the human body is a deformable surface that interacts with
complex objects in the world. Previous work often focus on simpler tasks,
such as transferring a known appearance into a given pose (Chan et al., 2019;
Balakrishnan et al., 2018), transferring garments (Han et al., 2018; Sarkar et al.,
2020), or full-body synthesis into a plain background (Fruhstuck et al., 2022).
These studies often disregard the key difficulties of in-the-wild synthesis. As far
as we know, only a few methods are suitable for full-body anonymization (Ma
et al., 2018; Maximov et al., 2020; Ma et al., 2017). However, these methods
focus primarily on full bodies (not partial bodies) in very low resolution.

Research Goal 3

Evaluate the impact of anonymization on the development of computer
vision algorithms.

The impact of data anonymization on training computer vision models is
under-explored. Previous work study the effect of face anonymization for
classification (Yang et al., 2022b), semantic segmentation (Geyer et al., 2020;
Zhou and Beyerer, 2022), object detection (Dvořáček and Hurtik, 2022), action
recognition (Tomei et al., 2021), and face detection (Klomp et al., 2021). These
studies find that realistic face anonymization is more effective in utility preser-
vation for computer vision development (Zhou and Beyerer, 2022; Dvořáček
and Hurtik, 2022). Still, the impact of anonymization is unclear for key tasks
such as instance segmentation and human pose estimation. Furthermore, the
impact of full-body anonymization is not explored in the current literature.
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Chapter 2

Background

This chapter introduces the underlying background knowledge to understand
the context of this thesis’ contributions. A basic understanding of machine
learning theory, neural networks, and their applications for computer vision is
recommended to comprehend the following material.

2.1 Generative Adversarial Nets

Generative Adversarial Networks (GANs) (Goodfellow et al., 2014) is a gen-
erative model that learns to sample from the data distribution by creating a
competitive adversarial game between a generator and a discriminator. Com-
monly, these adversaries are modeled as deep neural nets. The task of the
generator is to sample artificial data points (e.g. images resembling faces) from
random noise while the discriminator tries to distinguish real examples from
generated ones. In essence, the generator can be viewed as an "art forger" that
tries to convince the "police" (discriminator) that the artificial images are real.
In this way, by competing over several thousands of examples, the generator
learns to generate more and more realistic examples (Figure 2.1). Formally,
the adversarial objective is given by,

min
G

max
D

Ex∼pdata [logD(x)]+Ez∼pz [log(1−D(G(z)))], (2.1)

Figure 2.1: The figure shows generated images from the method in Paper A during
training. The number in the top left corner is the number of images that the generator
has trained on (in millions). Note the progressive improvement of image quality during
training.
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Chapter 2 Background

Goodfellow et al., 2014 Radford et al., 2015 Liu and Tuzel, 2016 Karras et al., 2018 Karras et al., 2019 Karras et al., 2020

Figure 2.2: 6 years of GAN progress. Figure inspiration: https://twitter.co
m/goodfellow_ian/status/1084973596236144640.

where zzz ∈ Rd is a latent vector with size d, drawn from a random noise
distribution pz (e.g. pz ∈ N (0,1)), and xxx is a sample drawn from the real data
distribution pdata. Note that Equation (2.1) can be extended to a conditional
GAN (Mirza and Osindero, 2014) by including conditional information to D
and G.

GANs are notoriously difficult to train, and a notable research focus is placed
on ensuring stable training of the generator. Since their conception, they have
evolved from generating low-resolution grayscale images to becoming the
leading image generation method (Figure 2.2). Arguably, the majority of these
advances have focused on basic engineering efforts, where "hand-designed"
network architectures (Karras et al., 2019, 2020; Isola et al., 2017) combined
with a well-designed training strategy (Karras et al., 2018; Sauer et al., 2022;
Karnewar and Wang, 2020) can improve results significantly. Furthermore, a
range of "tricks" have emerged in recent years to improve training stability,
such as minibatch discrimination (Salimans et al., 2016), exponential mov-
ing averages (Chandrasekhar et al., 2018), gradient/epsilon penalties for the
discriminator (Mescheder et al., 2018; Gulrajani et al., 2017; Karras et al.,
2018), specialized Adam parameters (Radford et al., 2015; Kingma and Ba,
2015), and different learning rates for the generator and discriminator (Heusel
et al., 2017). The major limitation of current GANs is their inability to handle
complex multi-modal distributions (e.g. ImageNet (Deng et al., 2009)), where
scaling GANs up to handle these complex distributions results in unstable train-
ing (Sauer et al., 2022). Recently, these issues can be diminished by employing
pre-trained feature networks for the discriminator (Sauer et al., 2022).
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2.1 Generative Adversarial Nets
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Figure 2.3: Comparison between the traditional GAN architecture (left) and the
StyleGAN architecture (right) (Karras et al., 2019). The traditional generator inputs
the latent code exclusively to the input layer. StyleGAN maps the latent code (z) to an
intermediate representation ω , which controls the generator through Adaptive Instance
Normalization (Huang and Belongie, 2017) at every layer. Here "A" is a learned linear
transformation. Original figure simplified from Figure 1 in (Karras et al., 2019).

Style-based GANs The StyleGAN (Karras et al., 2019, 2020) family of
architectures has been the leading architecture for GANs, and its techniques
are employed in Paper C-E. The significant advance of StyleGAN lies in how
the latent code (z) is injected into the generator, illustrated in Figure 2.3. The
traditional GAN inputs z exclusively to the input layer, whereas StyleGAN
inputs z at multiple resolutions throughout the generator. StyleGAN maps
the latent code z to an intermediate representation ω through a non-linear
fully connected network. This allows the generator to learn a disentangled
representation 1 in ω which is not required to follow any fixed distribution (i.e.
as pz). Furthermore, the multi-resolution input of ω throughout the generator
allows StyleGAN to control different factors at different resolutions.

StyleGAN significantly improved image quality compared to previous work,
but the major advance was (arguably) the editability of the generated images.

1Here "disentangled representation" refers to ω being divided into linear subspaces controlling
different factors of variations. For example, when you write a text in a text editor, you
have multiple factors of variations to edit the appearance of the text (e.g. font size or font
color). If you change the font size, the color won’t change as the factors of variations are
disentangled. If font size and color were entangled, changing the color would also change
the font size.
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Chapter 2 Background

T=5 T=4 T=3 T=2 T=1

Figure 2.4: The Truncation Trick. Image diversity can be traded off for image quality
by truncating the sampled latent towards the mode of the distribution. Here, truncation
is done by resampling all values falling above the threshold T until they fall within the
range [-T, T]. Original figure source: Figure 2 in Brock et al. (2019).

Due to the multi-resolution input of ω , StyleGAN allows for controlling
specific attributes at different resolutions. For example, it can mix styles
between generated images at different resolutions, where coarse styles (i.e. ω
inputted at low-resolution layers) represent "coarse features," e.g. structural
information such as head position/rotation. Finer styles (i.e. ω inputted at high
resolution) represent "finer features," such as hair color. For a visualization,
see Figure 3 in Karras et al. (2019). Finally, this style-based generator can edit
attributes given text prompts (Kocasari et al., 2022), which Paper D extends to
conditional GANs.

The Truncation Trick Given a GAN trained with pz ∼ N (0,1), Brock
et al. (2019) proposed the truncation trick. The truncation trick can trade off
the generated diversity for final image quality (Figure 2.4) by truncating the
sampled latent towards the mode of the distribution (0 for pz). Originally,
Brock et al. (2019) proposed to resample all values falling above a given
threshold until they fall in the range. The truncation trick was later extended
for StyleGAN (Karras et al., 2019), where truncation can be done in ω , by
linearly interpolating a sampled ω to the approximated mode of ω . Recently,
the truncation trick was extended to multi-modal truncation (Mokady et al.,
2022), enabling sampling of high-quality images while minimizing the loss
of diversity. Instead of approximating a single mode of the distribution ω ,
multi-modal truncation estimates a set of cluster centers by employing KMeans
clustering. Here, sampled latent codes are truncated toward their closest cluster
centers.

10



2.2 Evaluating Generative Models

2.2 Evaluating Generative Models

This section thoroughly covers the evaluation metrics employed in Paper
A-E. For generative models, there are three evaluation criteria of interest;
image quality, diversity, and disentanglement, where the latter often correlates
with the editability of the generated images. Note that image quality and
diversity are subjective measurements, and no perfect metric exists to assess
this accurately.

Distribution Similarity Distribution similarity evaluates image quality
and diversity by estimating the similarity of the generated data distribution to
the original data distribution. The prominent metrics are Fréchet Inception
Distance (FID) (Heusel et al., 2017) and Inception Score (IS) (Salimans et al.,
2016). All papers in this thesis focus on FID, as the use of IS for purposes
other than ImageNet generation is questionable (Barratt and Sharma, 2018).

Fréchet Inception Distance (FID) (Heusel et al., 2017) estimates the distribu-
tion similarity by comparing the features from generated/real images embedded
with an Inception Network (Szegedy et al., 2016). The similarity is estimated
with the Frèchet distance (Dowson and Landau, 1982), which compares the
mean and covariance of the generated/real images. The mean and covariance
are estimated from the features of a number of generated/real images (generally,
50K images each).

FID is far from a perfect metric, as it assumes that the features from an Inception
Network align with human judgment of image quality. However, FID is known
to often disagree with human judgment, and it is shown that FID is sensitive to
the presence of ImageNet objects in the image (Kynkäänniemi et al., 2022).
For example, for face synthesis on FFHQ (Karras et al., 2019), FID focuses
primarily outside the face region and score faces containing ImageNet classes
better (e.g. bow tie, sunglasses). Kynkäänniemi et al. (2022) recommends
that FID improvements should be verified using non-ImageNet features (e.g.
CLIP (Radford et al., 2021) or uninitialized networks (Naeem et al., 2020)).
Furthermore, they recommend that extra care should be exercised when using
pre-trained networks for training GANs (Sauer et al., 2022). Note that the
method in Paper E employs pre-trained networks for the discriminator.

11



Chapter 2 Background

Image Similarity & Diversity Learned Perceptual Image Patch Similarity
(LPIPS) (Zhang et al., 2018) estimates the similarity between two images
using features from convolutional networks. Specifically, LPIPS computes a
weighted sum of l2 distances from multi-resolution features extracted from
a VGG16 network (Simonyan and Zisserman, 2014). Here, the weights are
fitted such that LPIPS aligns with perceptual human judgment. Zhang et al.
(2018) shows that LPIPS align better with human judgment of perceptual
similarity than traditional metrics (e.g. PSNR). Similarly, LPIPS can measure
the diversity of generated images for conditional GANs (Zhu et al., 2017).
Conditional GANs can suffer from mode collapse given a condition where the
GAN generates the same image for different latents. Zhu et al. (2017) propose
to estimate the sample diversity for a given condition by measuring the LPIPS
distance for different points in the latent space pz.

Perceptual Path Length The ability of the generator to disentangle the
latent space correlates with the stability and consistency of generated shapes
(Karras et al., 2020). Intuitively, linear interpolation in the latent space should
produce linear interpolations in the image space. For example, the linear
interpolation between a woman with "black hair" and "blond hair" should not
produce "red hair." If so, it indicates that the latent space is entangled, and
factors of variations are not separated into linear subspaces.

Perceptual Path Length (PPL) (Karras et al., 2019) approximates the disentan-
glement of the latent space z by computing the LPIPS distance between two
close latent points. A close latent point to z1 ∼ pz is found by randomly sam-
pling z2 ∼ pz, then linearly interpolating zclose = z1+ε ·z2 (generally ε = 10−4).
If the latent space is disentangled, the perceptual difference (LPIPS) of the
generated images should be minimal.

2.3 Full-Body Synthesis

The research field of full-body synthesis has a range of applications with a
large variation of high-level goals. This section categorizes human synthesis
into the following two categories: transfer-based and synthesis-based models.
Transfer-based methods transfers a source appearance (or garment (Han et al.,

12



2.3 Full-Body Synthesis

2018; Sarkar et al., 2020)) into a new pose (Balakrishnan et al., 2018; Li et al.,
2019b; Sarkar et al., 2020; Pumarola et al., 2018; Ma et al., 2017; Si et al.,
2018), motion (Chan et al., 2019), or scene (Siarohin et al., 2018). While some
of these methods are applicable for in-the-wild human figure synthesis (Yang
et al., 2022a; Siarohin et al., 2018), they require a source appearance that limits
the synthesized identities to a texture bank or image dataset of appearances. For
the latter goal, synthesis-based methods can synthesize the appearance either
conditioned on a pose (Song et al., 2021; Ma et al., 2018; Yang et al.), a scene
(Esser and Sutter, 2018), or unconditionally (Fruhstuck et al., 2022; Chaudhuri
et al., 2021; Fu et al., 2022). Furthermore, some methods focus on the reverse
task of synthesis, reconstruction of the 3D surface, and texture (Natsume et al.,
2019; Saito et al., 2019; Weng et al., 2020). These reconstructions can later be
rendered to the scene given a camera view (Weng et al., 2020).

Independent of the goal, most methods use a form of pose information to
improve synthesis quality through dense pose annotations (Sarkar et al., 2020;
Neverova et al., 2018; Yang et al., 2022a), semantic segmentations (Song
et al., 2021; Chaudhuri et al., 2021; Yang et al., 2022a), sparse keypoints
(Han et al., 2018; Balakrishnan et al., 2018; Li et al., 2019b; Pumarola et al.,
2018; Ma et al., 2017; Si et al., 2018; Chan et al., 2019; Siarohin et al., 2018;
Ma et al., 2018; Esser and Sutter, 2018), or a 3D pose of the body (Lassner
et al., 2017; Yang et al.).

The primary limitation of the aforementioned studies w.r.t. full-body anonymiza-
tion is the lack of handling in-the-wild synthesis. Most of these studies disre-
gard the key difficulties of in-the-wild-synthesis, such as overlapping objects,
partial bodies, complex backgrounds, and extreme poses. Recent studies filter
out these difficult cases from their dataset to improve synthesis quality (Fruh-
stuck et al., 2022; Fu et al., 2022). Note that several studies (Song et al., 2021;
Ma et al., 2018; Maximov et al., 2020; Ma et al., 2017; Esser and Sutter, 2018)
perform experiments on the Market1501 dataset (Zheng et al., 2015), which
includes bodies in a large variety of poses and different backgrounds. However,
the Market1501 dataset consists primarily of full bodies (not partial) with few
occluding objects.
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Chapter 2 Background

2.4 Image Anonymization

The goal of image anonymization is to remove any privacy-sensitive informa-
tion contained in the image. Image anonymization can be categorized into
traditional anonymization and realistic anonymization. Traditional anonymiza-
tion is widely adopted in practice, where methods anonymize the image via
obfuscation (e.g. blurring or masking), encryption (He et al., 2016a), or k-
means (Gross et al., 2006b; Jourabloo et al., 2015; Newton et al., 2005). Often,
these methods are sufficient to protect privacy; however, they degrade the
quality of the data reducing its utility for downstream tasks.

This section focuses on methods targeting realistic anonymization of human
figures in images. Note that several papers focus on anonymization of other
objects, such as license plates (Kacmaz et al., 2021), documents (Orekondy
et al., 2018), or medical images (Kim et al., 2021). Furthermore, some methods
focus on predicting the privacy-sensitive parts of the image (Gupta et al.,
2021). Finally, it is worth mentioning that some papers investigate the use of
adversarial attacks to insert noise invisible to the human eye that can impede
face recognition models from accurately identifying individuals (Oh et al.,
2017). While these methods do preserve the realism of the data, they do
not anonymize the data, as the biometric information remains present in the
image.

2.4.1 Realistic Image Anonymization

The goal of realistic image anonymization is to remove any privacy-sensitive
information from the original image while generating realistic images that
retain the utility of the data. Preserving utility depends on the task that the data
is collected for. For example, collecting data for classroom studies can require
the retention of specific attributes (e.g. facial expressions). In comparison,
collecting data for autonomous vehicles has softer requirements for utility
preservation, where the main requirement is the realism of the generated
data.

Current methods in the literature provide different guarantees with respect to
privacy and utility preservation. In the following section, the literature is cate-
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Transformative

(a)

Information
Removal Inpainting

(b)

Figure 2.5: (a) Tranformative anonymization observes the original image and
anonymizes the identity by altering privacy-sensitive attributes. (b) Inpainting-based
anonymization separates anonymization into information removal and inpainting of
missing regions.

gorized into two different methodologies: anonymization by transformation
and anonymization by inpainting, illustrated in Figure 2.5. This section focuses
on prominent anonymization techniques that provide different trade-offs be-
tween privacy guarantee and utility preservation. Note that all models in Paper
A-E anonymizes by inpainting.

Anonymization by Transformation Anonymization by transformation
refers to methods that observe the original image and transform it to remove
privacy-sensitive information (Figure 2.5a). Transformative anonymization
provides no formal guarantee of privacy as a "black box" model is responsible
for removing privacy-sensitive information. Therefore, transformative methods
require quantitative experiments for validating that the anonymization model
can confuse both human and machine evaluators (Ren et al., 2018; Gafni et al.,
2019).

Transformative anonymization yields high utility preservation, where current
models can preserve non-identifying attributes (e.g. facial hair). For example,
Ren et al. (2018) proposes a model to anonymize the identity while preserving
the performed action in a video. Similarly, Gafni et al. (2019) proposes a
model that removes privacy-sensitive attributes while preserving all other
attributes. These models (Wu et al., 2019; Ren et al., 2018; Gafni et al.,
2019) learns privacy-sensitive attributes empirically based on what attributes
a face recognition system uses for identification. Recent methods explore
face swapping for anonymization, where the original face is swapped with a
new face dissimilar to the original (Ciftci et al., 2023). The aforementioned
methods empirically show that they confuse humans (Gafni et al., 2019; Ren
et al., 2018) and machine evaluators (Gafni et al., 2019; Ren et al., 2018; Ciftci
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et al., 2023). However, empirical validation provides no formal guarantee of
anonymization.

Anonymization by Inpainting Anonymization by inpainting masks out
the original identity before generating a new identity. Therefore, inpainting-
based methods never observes the original identity unless the identity is rec-
ognizable outside the masked-out region. As a result, inpainting-based meth-
ods provide stronger privacy guarantees than transformative methods, as the
identity is only recognizable when the detection system fails. However, cur-
rent inpainting-based techniques often yield poorer utility preservation than
transformative-based methods.

Sun et al. (2018a) propose an inpainting-based model for head obfuscation
(not only the face region), where their model is guided on 68 facial landmarks.
They later extended this with a parametric model for face anonymization (Sun
et al., 2018b). Both of these models can retain the pose of the face (given the
68 facial landmarks), where Sun et al. (2018b) can retain other non-identifying
attributes. Similarly, CIAGAN (Maximov et al., 2020) can retain the pose
given facial landmarks, while also specifying which identity to synthesize 2.
The major limitation of the aforementioned methods is the dataset used to train
the models. Sun et al. (2018a,b) use a filtered version of the PIPA dataset
(Zhang et al., 2015b), where extreme poses are removed. Similarly, CIAGAN
(Maximov et al., 2020) uses the CelebA dataset (Liu et al., 2015), which has a
limited diversity in ethnicity, extreme poses, ages, etc. Therefore, these models
struggle with in-the-wild anonymization.

2.5 Anonymized Data in Computer Vision

A key motivation of this this thesis is to use anonymized data for computer
vision development. Thus, the following section summarizes the current use of
anonymized data for computer vision development. In addition, this section
covers previous work that explores the impact of anonymization on developing
computer vision models.

2Identity selection is based on a pre-defined set of different identities, where the authors use a
set of 10K unique identities.
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2.5.1 Public Anonymized Datasets

Most computer vision datasets employ no form of anonymization with only a
few exceptions. The literature survey in Paper F found five prominent datasets
that employed anonymization for computer vision development. NuScenes
(Caesar et al., 2020) contain images from vehicles driving in Singapore and
Boston, where faces and license plates are anonymized via blurring. A2D2
(Geyer et al., 2020) includes data from southern Germany, where license plates
and heads are blurred to comply with German privacy regulations. AViD
(Piergiovanni and Ryoo, 2020) is a video dataset for action recognition, where
heads are blurred. P3M (Li et al., 2021) is a portrait matting dataset, where
every face is blurred. Uittenbogaard et al. (2019) propose a dataset containing
street view scenes, where cars and pedestrians are removed via content removal
using image inpainting.

2.5.2 Anonymization and Its Impact on Computer Vision

There exists a limited set of studies exploring the effect that anonymization
has on training computer vision models. For ImageNet training (Deng et al.,
2009), face obfuscation (blurring) has little effect on top-5 accuracy, and no
impact on feature transferability to scene recognition, object localization, or
face attribute classification (Yang et al., 2022b). Nevertheless, anonymiza-
tion slightly degrades accuracy in classes appearing together with faces (e.g.
facial masks). For autonomous vehicle datasets, some studies find that face
obfuscation degrades instance segmentation on Cityscapes (Cordts et al., 2016;
Zhou and Beyerer, 2022). In contrast, Dvořáček and Hurtik (2022) finds little
impact of face anonymization on object detection on the same dataset. Geyer
et al. (2020) finds that face obfuscation does not affect instance segmentation
on A2D2. For action recognition, face obfuscation significantly degrades per-
formance (Tomei et al., 2021), where the authors propose a teacher-student
self-distillation framework to mitigate the degradation. Klomp et al. (2021)
finds that realistic anonymization performs substantially better than traditional
methods for training face detectors.

Other studies focus on the effect that anonymization has on evaluation. For
example, Wilber et al. (2016) presents a black-box study of Facebook’s face
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detection model, and finds that the model is robust to severe face obfuscation.

Finally, some studies focus on the human perspective. For example, Hasan et al.
(2018) systematically studies how anonymization affects the user’s perceived
utility of the anonymized image. Similarly, Li et al. (2017) evaluates the human
perception of different anonymization techniques w.r.t. image satisfaction,
information sufficiency, enjoyment, and social presence.
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Chapter 3

Research Contributions

This thesis presents the iterative development of DeepPrivacy. This chapter
first present and contextualizes each paper to previous work, followed by a
summarization of the main contributions. Finally, the DeepPrivacy framework
is described in detail. The following papers are included in this thesis:

Paper A. DeepPrivacy: A Generative Adversarial Network for Face
Anonymization
Håkon Hukkelås, Rudolf Mester, Frank Lindseth
14th International Symposium on Visual Computing, 2019
Won best paper award

Paper B. Image Inpainting with Learnable Feature Imputation
Håkon Hukkelås, Frank Lindseth, Rudolf Mester
42nd DAGM German Conference on Pattern Recognition, 2020

Paper C. Realistic Full-Body Anonymization with Surface-Guided GANs
Håkon Hukkelås, Morten Smebye, Rudolf Mester, Frank Lindseth
IEEE/CVF Winter Conference on Applications of Computer Vision,
2023

Paper D. DeepPrivacy2: Towards Realistic Full-Body Anonymization
Håkon Hukkelås, Frank Lindseth
IEEE/CVF Winter Conference on Applications of Computer Vision,
2023

Paper E. Synthesizing Anyone, Anywhere, in Any Pose
Håkon Hukkelås, Frank Lindseth
IEEE/CVF Winter Conference on Applications of Computer Vision,
2024

Paper F. Does Image Anonymization Impact Computer Vision Training?
Håkon Hukkelås, Frank Lindseth
CVPR Workshop on Autonomous Driving, 2023
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➡ Introduced DeepPrivacy
➡ Introduced the FDF dataset

➡ Iterated on Paper A
➡ Improved quality & diversity
➡ GAN generalized to Image 
Inpainting

➡ Introduced Surface-Guided 
GANs
➡ First GAN for full-body 
anonymization 

➡ Iterated on Paper C
➡ Introduced the FDH dataset
➡ High resolution face synthesis
➡ Text-guided face synthesis

➡ TriA-GAN: A Keypoint-
Guided Full-Body GAN
➡ Text-guided full-body 
synthesis
➡ Larger generator & Projected 
GANs

A

B

Original Image Anonymized
Surface
Detection

Diverse
Anonymization

Paper C Paper D

Paper A Paper B

C

D

E

Figure 3.1: A brief overview of papers A-E, showcasing the improvements of each
paper for anonymizing faces and full bodies.
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3.1 Summary of Thesis Papers

Paper A-E present the iterative development of DeepPrivacy (Figure 3.1) and
Paper F evaluates the impact of anonymization for training computer vision
models. A brief summary of each paper is given here.

Paper A - DeepPrivacy: A Generative Adversarial Network
for Face Anonymization

Figure 3.2: The FDF dataset. Each image is annotated with 7 keypoints and a tight
bounding box indicating the face region.

This paper introduced the DeepPrivacy framework for face anonymization. It
formulated anonymization as an inpainting task, where a Conditional Genera-
tive Adversarial Network (C-GAN) (Mirza and Osindero, 2014) fills in a square
missing region in the face, illustrated in Figure 3.1. To stabilize training of the
C-GAN, DeepPrivacy adapted techniques from Karras et al. (2018), such as
progressive growing and discriminator regularization. Furthermore, the paper
introduced the Flickr Diverse Faces (FDF) dataset (Figure 3.2), which is a large
and diverse dataset of human faces, including unconventional poses, occluded
faces, and a vast variability in backgrounds. In comparison to previous realistic
anonymization techniques (Sun et al., 2018a,b), the main improvement of
DeepPrivacy was the FDF dataset. Previous papers had focused on smaller
and filtered datasets with a small diversity of extreme poses (covered in de-
tail in Section 2.4). As an illustration, training DeepPrivacy on the Celeb-A
dataset (used in Maximov et al. (2020)) causes severe artifacts for simple head
rotations 1.

1Video comparing FDF training vs Celeb-A: https://youtu.be/k-SpRVc6nOc.
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Paper B - Image Inpainting with Learnable Feature
Imputation

This paper iterated on the method from Paper A. The key improvements were a
revised gradient penalty specialized for the inpainting task and the replacement
of progressive growing with Multi-Scale Gradient GANs (Karnewar and Wang,
2020). These contributions significantly improved synthesis quality. Notably,
the new model achieved a better FID score than the model in Paper A while
only using 10% of the parameters. The paper evaluated the method on general
image inpainting on the Places2 dataset (Zhou et al., 2017) and face inpainting.
In addition, the method was competitive with state-of-the-art for general image
inpainting at the time.

This paper improved many of the failure cases from Paper A (discussed in
Section A-6), demonstrated in the following videos (Figure 3.3).

youtu.be/nOJVqgvGwkU youtu.be/K8n-Ck0YHxc

Figure 3.3: Videos comparing the method in Paper B to Paper A. Note the significant
improvement in image quality, stability of generated identities, and synthesis quality
for extreme poses. Note that the label "DeepPrivacyV2" in the videos refers to the
method in Paper B, not the one in Paper D.

Paper C - Realistic Full-Body Anonymization with
Surface-Guided GANs

Paper A-B demonstrate that GANs can generate close-to-photorealistic faces
to anonymize individuals. However, the human body is often recognizable
from many other cues in the image other than the face. Therefore, this paper
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addresses the full-body anonymization task, which was an under-explored task
at the time.

This paper introduces Surface-Guided GANs, which condition the generator on
dense pixel-to-surface correspondences between the image and a canonical 3D
surface (T-shaped 3D body). Key to the method is Variational Surface-Adaptive
Modulation (V-SAM) which embeds surface information throughout the gen-
erator. Combining this with the proposed discriminator surface supervision
loss, the generator can synthesize high-quality humans with diverse appear-
ances in complex and varying scenes. This method showed promising results
for full-body anonymization, but it often generated human figures containing
visually annoying artifacts. The key limitation of this method was the small
dataset (40K images from COCO (Lin et al., 2014)), where the discriminator
overfitted early in training.

Paper D - DeepPrivacy2: Towards Realistic Full-Body
Anonymization

Figure 3.4: Examples from the FDH dataset. Each image is annotated with key-
points, pixel-to-vertex correspondences (from CSE (Neverova et al., 2020)), and a
segmentation mask. The leftmost image shows annotations for the first image.

This paper iterated on the method from Paper C. In summary, the key im-
provements can be summarized into the following four points. First, the
paper introduces the Flickr Diverse Humans (FDH) dataset (Figure 3.4). The
FDH dataset consists of 1.87M images, where each image includes a single
human figure as the subject. Note that the same image can contain several
individuals. This removed the issue of overfitting from Paper C, substantially
improving generated image quality. Secondly, it introduced an updated ver-
sion of the FDF dataset (FDF256), consisting of higher resolution images
(256×256 vs. 128×128). Thirdly, the paper adopted a StyleGAN architecture
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CSE Guided
Full-Body 
Generator

Unconditional
Full-Body 
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Face 
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Figure 3.5: DeepPrivacy2 supports multi-modal anonymization, where three detection
and synthesis networks are employed: (1) a CSE-guided generator for individuals
detected with dense pose (by CSE (Neverova et al., 2020)), (2) an unconditional full-
body generator for cases where CSE fails to detect (note the segmented persons without
color-coded CSE detections), and (3) a face generator for the remaining individuals
(marked in red). The original image is from Wider-Face (Yang et al., 2016).

enabling attribute-guided anonymization via text prompts. Finally, it improved
the anonymization pipeline, including stitching of generated images into the
original image and support for multi-modal anonymization (Figure 3.5) 2.

Paper E - Synthesizing Anyone, Anywhere, in Any Pose

This paper explored full-body synthesis conditioned on sparse 2D-keypoints,
eliminating the need for expensive dense pose annotations. The primary lim-
itation of the method introduced in Paper D is its reliance on dense pose
estimation. Detecting dense pose correspondences can be challenging, par-
ticularly for long-range detection, which is common in autonomous vehicles.
In addition, the available datasets with such annotations are either limited in
size (Guler et al., 2018) or automatically annotated (e.g. the FDH dataset).
Replacing dense pose correspondences with keypoints increases the modeling
complexity considerably, as the generative model must now infer both the
body’s texture and its structure. This paper addresses the challenge of scal-
ing up GANs to handle in-the-wild full-body synthesis without dense pose
correspondences.

This paper introduces TriA-GAN, a keypoint-guided GAN that can synthesize
Anyone, Anywhere, in Any given pose. The advances of TriA-GAN can be

2Multi-modal anonymization refers to using different generators for different detection types.
For example, some people are detected by full-body segmentation models, whereas others
are only detected by a face detector.
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summarized into the three following points. First, TriA-GAN replaces the
conventional GAN discriminator with Projected GANs (Sauer et al., 2021)
which employ pre-trained feature networks to discriminate images. The paper
thoroughly evaluates different pre-trained networks and finds that the previously
used classification networks (Sauer et al., 2021, 2022) are poorly suited for
discriminating human figures. Instead, TriA-GAN uses a combination of
self-supervised feature networks for the discriminator, which significantly
improves sample quality. Furthermore, the paper introduces a progressive
training scheme for U-nets (Ronneberger et al., 2015), enabling TriA-GAN to
easily scale up to higher resolutions and large model sizes. Finally, the paper
demonstrates that TriA-GAN can be used with unconditional editing methods
for GANs, enabling text-guided synthesis for human figures.

Paper F - Does Image Anonymization Impact Computer
Vision Training?

Paper A-E focus on the development of generative models for anonymiza-
tion. In contrast, Paper F studies the impact of image anonymization on
the training of computer vision models. Note that Paper A, C, D presented
smaller experiments exploring the impact of anonymization. However, they
rely on automatic detection of regions to anonymize, which raises questions
about whether the performance degradation is due to detection errors or the
anonymization model.

This paper explores the impact of image anonymization on the Cityscapes
(Cordts et al., 2016), BDD100k (Yu et al., 2020), and COCO (Lin et al.,
2014) datasets. Specifically, the paper benchmarks traditional and realistic
anonymization techniques for faces and bodies that are implemented in Deep-
Privacy. The findings in the paper can be summarized into the following. First,
traditional image anonymization substantially impacts final model performance,
particularly when anonymizing the full body. Secondly, realistic anonymization
can mitigate this decrease in performance, where the presented experiments
reflect a minimal performance drop for face anonymization. The paper con-
cludes that realistic anonymization can enable privacy-preserving computer
vision development with minimal performance degradation in some settings.
However, the experiments reflect that realistic image anonymization still is far
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from being a perfect substitute to the original data, and it highlights several
limitations of current methods. Chapter 4 further discuss these limitations.

3.2 Primary Contributions

Building upon the iterative development presented in the previous section, the
question arises: what are the main contributions of this thesis? The presented
papers culminate into four primary contributions.

Primary Contribution 1

The DeepPrivacy Anonymization Framework

To the best of our knowledge, Paper A presented the first open-source frame-
work for realistic anonymization. Note that previous studies had introduced
closed-source anonymization frameworks previously (Sun et al., 2018a; Gafni
et al., 2019). We consider the framework presented in Paper A (later improved
in Paper B-E) to be a significant contribution for practitioners who need to
anonymize images while preserving their realism. Today, the framework is
continuously used and has garnered over 1300 stars on GitHub, with 50-100
downloads per month (as of March 2023).

Primary Contribution 2

Generative Models for Face and Full-Body Synthesis In-the-Wild

Paper A-E all introduced novel methods for handling in-the-wild anonymiza-
tion, summarized into the following. Paper A introduced the first generative
model for face anonymization that could handle the difficulties of in-the-wild
synthesis. Furthermore, to the best of our knowledge, Paper C was the first
method to address in-the-wild full-body anonymization, and Paper D intro-
duced the first model to generate nearly photorealistic human figures. The final
model, TriA-GAN (Paper E), is the current state-of-the-art for synthesizing
human figures in-the-wild.
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Primary Contribution 3

Large-Scale Anonymization Datasets

Paper A introduced the FDF dataset for face synthesis and Paper D introduced
the FDH dataset for full-body synthesis. In contrast to previously used datasets
for faces (e.g. CelebA, FFHQ) and bodies (e.g. DeepFashion, Market1501), the
FDF/FDH datasets represent the difficulties of in-the-wild synthesis. Previous
datasets often filtered out these cases, such as removing partial subjects, blurred
images, extreme poses, and occluded subjects. Paper A, D showed that the
large-scale datasets substantially improved performance, reflecting that such a
diverse and large dataset was necessary to tackle in-the-wild synthesis.

Primary Contribution 4

Quantitative Analysis of the Impact of Image Anonymization

The impact of image anonymization for computer vision development is under-
explored, which Paper F address. The literature review in Paper F found two
unanswered questions w.r.t. the use of anonymized data for training computer
vision models. First, is realistic anonymization more effective in retaining the
utility of images compared to traditional methods? Secondly, to what extent
does full-body anonymization impact the training of computer vision models?
The former question was previously addressed for specific tasks and datasets
(discussed in Section 2.5.2). The latter was unanswered, where Paper F was
the first to address it.

3.3 The DeepPrivacy Framework

The contributions of Paper A-E culminate into the open-source framework
DeepPrivacy 3. The framework includes a range of generative models for realis-
tic anonymization of human faces and bodies (listed in Table 3.1). Additionally,
it supports traditional obfuscation techniques (blurring, masking, pixelation).

3First open-sourced at https://github.com/hukkelas/DeepPrivacy and later
improved in https://github.com/hukkelas/deep_privacy2.
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Figure 3.6: DeepPrivacy anonymizes recursively, where one instance is synthesized at
a time and pasted into the original image. Note that the generator may rely on additional
information, such as surface information or keypoints, which are not depicted here.

This section gives a brief overview of the three stages of DeepPrivacy shown
in Figure 3.6; detection, synthesis, and image stitching.

DeepPrivacy employs instance-wise generative models that synthesize one
individual (face or body) at a time. The motivation for instance-wise synthesis
is threefold; first, it is simpler than synthesizing multiple individuals at the
same time. Secondly, it allows for explicit instance-wise editability. Thirdly,
it is easy to process high-resolution images (e.g. 2048×1024 for Cityscapes
anonymization (Cordts et al., 2016)). However, instance-wise synthesis re-
quires stitching the generated individuals into the original image, which can
introduce visual artifacts, particularly when individuals overlap. This issue is
further discussed in Section 3.3.3.

Recommended demo We recommend the reader to try out the framework
with our website demos on Hugginface. Note that the demos are open-source
if you want to test them on your local machine.

Face Anonymization:
huggingface.co/spaces/haakohu/deep_privacy2_face.

Full-Body Anonymization:
huggingface.co/spaces/haakohu/deep_privacy2.
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Modality Resolution Detection Type Synthesis Method
Face 128×128 Face bounding box + 7 Keypoints Paper B*
Face 128×128 Face bounding box Paper D
Face 256×256 Face bounding box Paper D

Full-body 288×160 Segmentation mask Paper D
Full-body 288×160 DensePose + Segmentation mask Paper D
Full-body 288×160 Segmentation mask + 17 Keypoints Paper E

Table 3.1: An overview of the different generative models provided in DeepPrivacy.
"DensePose" detection refers to surface maps from Continuous Surface Embeddings
(Neverova et al., 2020). The 7 facial keypoints follow the COCO format and are the
shoulder, ears, and head keypoints. The 17 keypoints for full-body are all keypoints
following the COCO format. * Models from Paper B are not possible to train in the
current framework, but the weights are ported from the source code of Paper B.

3.3.1 Detecting Human Figures

The DeepPrivacy framework separates detection into face detection via bound-
ing boxes, and full-body detection via segmentation masks. Some synthesis
models require auxiliary information, such as facial landmarks, DensePose
estimations, or full-body keypoints. Paper D describes in detail the different
detection networks used for each modality. Note that the framework supports
processing multiple detection modalities at the same time, allowing anonymiza-
tion of faces in cases where the full body is not detected. Kalman filtering is
used to track all detections for video processing (using motpy (Muron, 2022)),
allowing for a single latent variable to be assigned to each identity. This im-
proves temporal consistency between frames 4. Note that the generative model
processes frame by frame and does not include any modeling choices to ensure
temporal consistency.

3.3.2 TriA-GAN - Synthesizing Human Figures

Paper A-E all introduce novel methods for synthesizing faces or full bodies.
This section does not aim to provide an extensive description of each network,
as they are already described in detail in their respective papers. Rather, it

4Video demo of tracking: https://youtu.be/Kt3au719hhk.
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Figure 3.7: (a) TriA-GAN fills in the missing region given a masked-out image condi-
tioned on 17 keypoints. The generator layers employ adaptive instance normalization
(Huang and Belongie, 2017) to condition the generator on ω , where ω is the output
of the style mapping network. TriA-GAN is trained progressively starting at 18×10
resolution, then increased by adding layers to the start/end of the encoder/decoder. (b)
Each feature network F use four shallow patch discriminators operating on its features
(with different spatial resolutions), where each feature is projected through random
differentiable operations (P1-P4). Given the projected features, each discriminator
predicts if a given patch corresponds to a real or fake image region.

offers a brief summary of TriA-GAN (Figure 3.7) introduced in Paper E, with
an aim to provide the reader with a general understanding of its capabilities
and limitations. Note that TriA-GAN is a general method for synthesizing
faces or bodies, and conditioning the model on other factors than keypoints
(used in Paper E), such as surface maps, is straightforward.

The TriA-GAN Generator The generator is a StyleGAN-based (Karras
et al., 2019) U-Net architecture (Ronneberger et al., 2015), first introduced
in Paper D and slightly revised in Paper E. Each layer in the encoder/decoder
consists of a set of residual blocks, where layers with matching resolutions are
connected between the encoder and decoder. Note that the decoder employs
output skip-connections at every resolution to improve training stability, fol-
lowing Karnewar and Wang (2020). The latent code (z) is injected via adaptive
instance normalization (Huang and Belongie, 2017), by first mapping it to ω
with a style mapping network (described in Section 2.1). The generator is
progressively trained, as described in Paper E.

Injecting the latent code with adaptive instance normalization results in a
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Figure 3.8: StyleMC (Kocasari et al., 2022) edits with TriA-GAN, where a global
direction (from the text prompt above each column) is added to the style code of the
original (leftmost) image.
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disentangled latent space which is easy to edit. Figure 3.8 demonstrate that
StyleMC (Kocasari et al., 2022) is effective with TriA-GAN to find global
semantic directions in the GAN latent space. StyleMC finds global directions
by manipulating random images towards a text prompt using a CLIP encoder
(Radford et al., 2021).

The TriA-GAN Discriminator The major advance of TriA-GAN was the
adoption of Projected GANs (Sauer et al., 2021) for the discriminator. TriA-
GAN uses two feature networks to discriminate human figures, specifically
ResNet-50 (He et al., 2016b) with CLIP pre-trained weights (Radford et al.,
2021) and ViT-L/16 (Dosovitskiy et al., 2021) pre-trained with masked autoen-
coding (He et al., 2022). Paper E demonstrate that the combination of these
networks is well-suited to discriminate human figures and significantly im-
proves over previously used classification networks (Sauer et al., 2022, 2021).
Furthermore, the use of Projected GANs significantly simplified the adversarial
objective. Paper A-D combined the GAN objective with regularizing objectives
to stabilize training, such as gradient penalties (Gulrajani et al., 2017) and
epsilon penalties (Karras et al., 2018). In contrast, TriA-GAN exclusively
optimizes the adversarial objective.

3.3.3 Stitching it All Up

The final stage is stitching the synthesized identities into the final image. If
not handled correctly, the stitching process can generate visually annoying
artifacts, especially in regions with overlapping instances. Paper A-C adopts
a naive approach by synthesizing all identities first and then stitching them
in. However, in cases of overlapping detections, the resulting synthesized
identities have sharp boundaries at the points of overlap. This occurs because
the boundaries transition smoothly to the original boundary rather than to
the other overlapping synthesized person. To compensate for this, Paper D
introduces a recursive stitching process.

Recursive Stitching Recursive stitching involves synthesizing individual
instances one at a time and then incorporating them into the image before
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Input Synthesized

(a) Descending Order

Input Synthesized

(b) Ascending Order

Figure 3.9: The order of synthesis matters. DeepPrivacy synthesizes in ascending
order w.r.t. the number of pixels a person covers. Note that the reverse order (a) can
lead to identities that appear "blurred". This occurs when the generator observes
upsampling artifacts in the input, as higher resolution images are synthesized first
(note that the person in the foreground appears blurred in (a)).

moving on to the next instance. In this way, the generative model handles over-
lapping artifacts when generating each individual. For recursive stitching, it is
crucial to consider the order in which synthesis is conducted to achieve optimal
image quality. Paper D proposes to synthesize individuals depending on the
number of pixels a person covers in ascending order. The motivation for this
ordering is twofold. First, the ordering assumes that objects in the foreground
cover a larger area, where foreground objects are stitched in last. The reverse
order (foreground objects first) results in background objects ”overwriting”
foreground objects, as the detections can overlap. This naive assumption that
foreground objects cover a larger area is not always true, however, it is a
straightforward estimation. Secondly, by stitching in higher-resolution identi-
ties last minimizes the possibility of introducing upsampling artifacts when the
original resolution is larger than the resolution of the generative model. These
artifacts are commonly not visually annoying, but the generative model can
react to such artifacts, as demonstrated in Figure 3.9.

33



Chapter 3 Research Contributions

3.4 Further Contributions

Technical Contributions In addition to the presented contributions, a
range of libraries was made open-source for the community.

• A High-Performance Pytorch Implementation of face detection models,
including RetinaFace and DSFD, https://github.com/hukke
las/DSFD-Pytorch-Inference.

A library containing efficient, lightweight, and state-of-the-art face de-
tection models in Pytorch and experimental ports to TensorRT.

• High-performance Keypoint-Mask RCNN Models, https://github
.com/hukkelas/keypoint_mask_rcnn.

A library containing pre-trained, efficient, and high-performing Mask
R-CNN models for keypoint and instance segmentation of human figures.

Other Contributions Concurrently with this work, the Ph.D. work has
contributed to other scientific contributions.

• Realistic Image Anonymisation.
Håkon Hukkelås and Frank Lindseth.
In van der Sloot, B. and van Schendel, S. The boundaries of data:
Technical, practical and regulatory perspectives.
Accepted in Amsterdam University Press.

• DeepPrivacy: A Framework for Realistic Image Anonymization.
Håkon Hukkelås.
Presented demo at NorwAI Innovate 2022.
Won best demo award.

• Autonomous Vehicle Control: End-to-end Learning in Simulated Envi-
ronments.
Hege Haavaldsen, Max Aasboe, Håkon Hukkelås, Frank Lindseth.
Norsk IKT-konferanse for forskning og utdanning 2019.

• Deep Active Learning for Autonomous Perception.
Navjot Singh, Håkon Hukkelås, Frank Lindseth.
Norsk IKT-konferanse for forskning og utdanning 2020.
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Chapter 4

Discussion and Conclusion

This chapter evaluates how the papers address the research goals and examine
any present limitations that may provide opportunities for future research.

4.1 Synthesis Limitations

The section commences with a discussion of the capabilities and limitations of
current synthesis methods for realistic image anonymization.

4.1.1 Face Synthesis

Research Goal 1

Explore the use of generative models for realistic replacement of faces
in images.

Paper A,B,D address research goal 1. Paper A proposed an open-source genera-
tive model for realistic face anonymization, which Paper B,D further improved.
Furthermore, Paper A introduced the FDF dataset, which Paper D extended for
higher-resolution face anonymization. The face generative models presented
in Paper A,B,D reflect a remarkable improvement in synthesis quality and the
ability to handle challenging settings. The final model synthesizes nearly pho-
torealistic human faces and allows manipulation of specific attributes through
user-given text prompts (e.g. eye color, see Paper D). However, there is a range
of limitations to the current model. The model in Paper A had significant issues
for all the limitations listed below, whereas subsequent iterations (Paper B,D)
demonstrated progressive improvement. Considering this trend, we expect that
more advanced generative models will further mitigate these issues.
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Original Initial ω HM HM-LO Optimization → Final Image

Figure 4.1: The global context mismatch problem refers to the issue where the
synthesized identity may not align with the global context of the image, making the
synthesized identity "stick out". Note that the illumination of the synthesized identity
("initial ω") is different from the original identity. Paper F explore two options to
address this issue: naive histogram matching (HM), and histogram matching via
latent optimization (HM-LO), which iteratively adjusts the initial ω to better fit the
histogram of the original image (in HSV). See Paper F for further details.

Limitation 1: Temporal Consistency

This thesis does not address the modeling of temporal consistency. However,
the proposed model produces identities that are somewhat consistent over time.
The sole design choice to enhance temporal consistency involves tracking
and sampling the identical latent variable for each individual (described in
Section 3.3.1). Although this enhances consistency, the current approach does
not provide temporal smoothness, and the identity can vary across different
contexts or head rotations. To address these challenges, it may be useful to
draw insights from analogous tasks in video generation. For example, by
introducing temporal blocks into the generative model (Skorokhodov et al.,
2022) or eliminating specific points in the pipeline that contribute to temporal
inconsistencies (Tzaban et al., 2022).

Limitation 2: Occluding Objects

Occluding objects can be extremely challenging to handle, especially complex
objects covering the face (e.g. hands). A potential solution to this issue is
more fine-grained masking techniques (Kirillov et al., 2020) or more robust
generative models that are better at synthesizing the borders of the occluding
object.
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Limitation 3: Extreme Poses

Extreme poses are difficult to handle. Similar to Limitation 2, better generative
models have demonstrated progressive improvement in handling extreme poses.
Furthermore, having more detailed pose information (e.g. 67 landmarks used in
Maximov et al. (2020)) could further improve the model. However, obtaining
a dataset containing such annotations is time-consuming, as current detection
models often struggle with extreme/unusual poses.

4.1.2 Full-body Synthesis

Research Goal 2

Explore the use of generative models for realistic replacement of human
figures in images.

Paper C,D,E all address research goal 2. Paper C introduced the first genera-
tive model for in-the-wild full-body anonymization, and Paper D,E improved
upon this method. Furthermore, Paper D introduced the FDH dataset, which
significantly improved synthesis quality compared to the dataset used in Paper
C. Synthesizing full bodies in the wild is an exceptionally demanding task,
yet Paper C,D,E indicate a noteworthy advancement in terms of image quality.
Naturally, the full-body generative models exhibit all the limitations previously
mentioned for face synthesis. In addition, full-body synthesis highlights further
limitations that become more apparent due to the complexity of the task.

Limitation 4: Global Context Mismatch

A pressing limitation for full-body synthesis is the global context mismatch
problem. This issue originates from instance-wise cropping, where a synthe-
sized identity matches the local context given to the generative model, but
not to the global context. This is due to the instance-wise cropping remov-
ing critical scene factors from the perspective of the generative model. For
example, the lighting of a scene might only be observable in the area outside
the crop. Paper F proposed two naive approaches to address this issue (Fig-
ure 4.1), which involve matching the histogram of the synthesized image to the
original. Furthermore, note that this issue persists for handling factors that are
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Original Input Synthesized Original Input Synthesized

Figure 4.2: The generator struggles to synthesize realistic objects when the person
appears to be holding something.

Original Input Synthesized Original Input Synthesized

Figure 4.3: The generator struggles to synthesize realistic interactions with objects on
the boundary of the missing region.

partially visible in the instance crop. For example, handling lens distortions or
transparency (e.g. standing in a window).

Limitation 5: Interacting Objects

Humans interact with objects constantly, and generating realistic interactions
where both the human and the object look natural can be extremely challeng-
ing (Figure 4.2 and 4.3). The models in Paper D,E are often able to handle
interactions with objects on the boundary (e.g. bicycles or chairs). However,
it struggles with complex objects (e.g. guitars), or in cases where the pose
indicates that the human is carrying something (e.g. a mug). Similar to Limi-
tation 2, this can be alleviated with more fine-grained masking or a stronger
generative model.
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Original Input Synthesized Original Input Synthesized

Figure 4.4: The generator samples from a small variation of possible identi-
ties/appearances for certain contexts.

Figure 4.5: Synthesized identities for 8 random latent variables. Note that the generator
samples near-identical appearances for certain contexts. Figure 4.4 illustrates the
original image.

Limitation 6: Condition Dependency

The generated identity and appearance are highly dependent on the context,
which narrows the sampling space of the generator (Figure 4.4 and 4.5). For
example, on football fields, the generator samples primarily players wearing
sports uniforms. Similarly, if a person in the background wears a suit, the
sampled person will likely wear a similar outfit. This feature often results
in more realistic images, but it can pose certain problems. It severely limits
temporal consistency, where changes in the background or the pose can drasti-
cally alter the appearance. Furthermore, this condition dependency narrows
the sampling space, often resulting in a very limited diversity of appearances
for some contexts.

A potential solution to this condition dependency is to disentangle the pose,
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Original Input Synthesized Full Image

(a) Not Recursive Synthesis

Input Synthesized Full Image

(b) Recursive Synthesis

Figure 4.6: The recursive synthesis impacts the synthesized identity as the input of the
generator is drastically changed. Note that severe artifacts are inserted at the border of
overlapping bodies if synthesis is not done recursively (a).

background, and appearance into separate factors (Ma et al., 2018). However,
current methods require paired datasets, which are limited in dataset size and
variation of background/identities.

Limitation 7: Overlapping Bodies

Overlapping bodies are particularly difficult to handle, due to the recursive
synthesis used by DeepPrivacy. The recursive synthesis inserts sampling
artifacts when the cropped image does not match the resolution of the generator,
as discussed in Section 3.3.3. The generator subsequently reacts to these
artifacts, potentially leading to significant distortions, particularly in the case
of high-resolution images. Furthermore, the recursive synthesis alters the input
of the generator for adjacent identities, causing the generated identity to vary
depending on the order of synthesis. As demonstrated in Figure 4.6, when
directly pasting identities into the image rather than recursively synthesizing
them, the identity changes drastically.

4.1.3 General Limitations

Limitation 8: Utility-Privacy Trade-Off

The utility-privacy trade-off problem refers to the issue where improved image
utility compromises the guarantee of privacy. In many cases, improving utility
requires the retention of more attributes from the original person. For example,
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in a classroom study, retention of gestures or motion of an individual is essential
to maintain image utility. However, this approach creates the potential for
individuals to be recognized from motion. DeepPrivacy does not prioritize
retaining specific attributes since it is not crucial for image recognition in
autonomous vehicles. Nevertheless, note that previous work focus on the
retention of detailed facial pose (Gafni et al., 2019) or other attributes such as
gender (Jourabloo et al., 2015).

Limitation 9: Controlled Sampling

Paper D,E demonstrate that the generative model is controllable through user-
given text prompts. This serves as a proof-of-concept for controlling syn-
thesized identities, but it is not used in the current anonymization pipeline.
Nonetheless, it presents exciting avenues for further research on realistic
anonymization in autonomous vehicles. For example, ensuring that the synthe-
sized demography matches that of the original data. As far as we know, this is
an unexplored area of research.

4.2 Using Anonymized Data for Computer Vision

Research Goal 3

Evaluate the impact of anonymization on the development of computer
vision algorithms.

Paper F evaluated the impact of training typical computer vision methods
on anonymized data with a focus on autonomous vehicle datasets and tasks.
Specifically, it benchmarked instance segmentation methods on Cityscapes
(Cordts et al., 2016) and BDD100K (Yu et al., 2020), and pose estimation on
COCO (Lin et al., 2014). This section discusses limitations to the analysis in
Paper F. See Section 3.1 for a summary of the paper’s findings.

There are four primary limitations to the evaluation protocol in Paper F, which
are summarized here. See Section 5.1 in Paper F for a more thorough discus-
sion. First, the experiments relies on automatic annotations, which introduce
ambiguity in the results. This raises the question of whether the current
performance degradation is due to annotation errors or synthesis limitations.
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Secondly, due to the filtering criteria presented in the paper, the anonymization
model is not able to anonymize all individuals in the images. Thirdly, the anal-
ysis is restricted to models using ResNet (He et al., 2016b) and R-CNN (Ren
et al., 2015). Other architectures are not explored (e.g. YOLO (Bochkovskiy
et al., 2020)), which might respond differently to anonymization artifacts.
Finally, Paper F limits the analysis to image-based detection methods. For
example, datasets requiring temporal consistency (e.g. tracking) or multi-view
consistency are not studied, as such capabilities are not present in the current
anonymization framework.

4.3 Privacy Considerations

Detection Limitations DeepPrivacy relies on a two-stage system; detec-
tion of privacy-sensitive regions and anonymization of the respective regions.
Methods following this regime cannot guarantee the privacy of individuals
without human validation, as current detection networks are far from perfect.
Nevertheless, current state-of-the-art can detect most individuals, where up to
90% of all persons that take up a "large" portion of the image are recognized
1. In terms of faces, state-of-the-art methods detect well above 90% of all
faces in an image (Li et al., 2019a). Furthermore, detection networks are
vulnerable to adversarial attacks, where malicious actors can insert objects
into the physical world that can prevent the detection model from recognizing
individuals (Kurakin et al., 2018b). However, there is currently a large focus
in the community on developing defenses against such attacks (Kurakin et al.,
2018a).

Identity Leakage The identity of individuals can leak through other means
of recognition. State-of-the-art methods focus primarily on face anonymization.
However, as discussed previously, the human body is identifiable through other
attributes than the face. The most pressing limitation of current anonymization
techniques is gait recognition. The gait of a person is a behavioral biometric
(Jain et al., 2008), where the pattern of shape and motion of a walking person

1Following the top-ranked COCO (Lin et al., 2014) object detection submission as of March
2022, where a "large" portion is regions larger than 96x96 pixels in the image.
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is a discriminative feature for long-range video recognition. Furthermore, the
GANs presented in Paper C-D employ dense surface information to generate
the individual. This information is likely reproduced in the generated identity,
which could make the individual recognizable through its surface map.

GDPR and the Limitations of DeepPrivacy The GDPR (Council of
European Union, 2016) affects the ability of entities to collect and store data
containing identifiable information (’biometric data’) and personal data. Thus,
entities are required to collect consent from recorded individuals or anonymize
the data containing such information. This raises the question; what are
anonymized images, and does the DeepPrivacy framework provide this? GDPR
article 4.14 defines "biometric data" as:

’biometric data’ means personal data resulting from specific tech-
nical processing relating to the physical, physiological or be-
havioural characteristics of a natural person, which allow or con-
firm the unique identification of that natural person, such as facial
images or dactyloscopic data. (Council of European Union (2016),
Article 4.14).

Article 4.14 specifies facial images as biometric data. However, it does not
provide a clear answer regarding the full-body. In December 2021, the Belgian
Data Protection Authority specified that ’biometric data’ does cover behavioral
characteristics, such as gait patterns (Brodahl et al., 2022). Furthermore, GDPR
regulates the processing of "personal data", defined as:

’personal data’ means any information relating to an identified or
identifiable natural person (’data subject’); an identifiable natu-
ral person is one who can be identified, directly or indirectly, in
particular by reference to an identifier such as a name, an iden-
tification number, location data, an online identifier or to one or
more factors specific to the physical, physiological, genetic, men-
tal, economic, cultural or social identity of that natural person;
(Council of European Union (2016), Article 4.1).

This article does not clearly define what is and is not personal data. By
combining information (e.g. location, clothes, body shape), you might be able
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to identify who the information belongs to, which qualifies it as personal
data.

With this in mind, does DeepPrivacy comply with GDPR? Before addressing
this, note that the response to this question was provided by computer scientists
who do not possess a law degree. As a result, it is recommended to approach
the following answer with a degree of skepticism. As discussed previously,
DeepPrivacy provides no formal guarantee of anonymization without a human
in the loop to verify that all individuals are detected. On the assumption
that all humans are detected, does DeepPrivacy comply with GDPR? In most
cases, the face anonymizer of DeepPrivacy does not, as the human body is
still identifiable from other cues than the face. For full-body anonymization,
it depends on the context. Considering video data, DeepPrivacy does not
adjust the gait in any way, thus gait patterns are likely to be similar to the
original identity. Considering image data, the generator guided on keypoints
provides no additional information compared to masking the identity out,
except the location of the 17 keypoints of the human body. Thus, this provides
similar privacy guarantees as masking the area out, and it is unlikely to reliably
reproduce information to identify the original individual.

4.4 Ethical Considerations

Realistic anonymization focuses on synthesizing realistic humans, creating a
potential for misuse. A typical example is the misuse of DeepFakes, where
generative models can be used to create manipulated content to misinform.
In contrast to realistic anonymization, typical DeepFake methods observe the
original identity (Zakharov et al., 2019) or perform computationally expensive
finetuning on a specific individual (Thies et al., 2016). Furthermore, there exist
several solutions to mitigate the potential for misuse. The DeepFake Detection
Challenge (Dolhansky et al., 2020) has increased the ability of automatic
models to detect manipulated content. In addition, pre-emptive solutions, such
as model watermarking (Yu et al., 2021) can embed a synthetic "fingerprint"
on the image data to identify it as fake.

Similar to all learning-based generative models, the synthesized human figures
adhere to the sampling probability of the dataset. For all generative models
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proposed in this thesis, the dataset originates from Flickr. Thus, these genera-
tors follows the biases from Flickr and is less likely to synthesize people from
underrepresented groups on this website.

Finally, overfitting of the generative model can imply privacy risks to indi-
viduals in the training dataset. This privacy risk arises from the fact that the
GAN has a higher probability of generating images of people from the training
dataset compared to those who are not part of it. Nevertheless, recent studies
have found that overfitting of GANs is minimal for face synthesis (Marriott
et al., 2020) and less prone to overfitting than diffusion models (Carlini et al.,
2023).

4.5 Conclusion

This thesis presents DeepPrivacy, the first open-source framework for realistic
image anonymization of human figures and faces. The primary contributions
include a variety of generative models and datasets for face and full-body
synthesis. The proposed generative models are capable of addressing the
challenges of in-the-wild synthesis that were previously unexplored. Further-
more, the presented findings indicate that realistic image anonymization is
a superior alternative to traditional methods in cases where the realism of
the data is essential. The experiments reflect that training computer vision
models on traditionally anonymized data severely impact model performance,
whereas realistic anonymization can mitigate this decrease. Nonetheless, re-
alistic anonymization is not a complete substitute for real data, especially
for full-body anonymization, as current generative models still struggle with
complex scenarios. Moreover, the presented analysis of generative models
for realistic anonymization and its impact on computer vision development
has identified several exciting and challenging areas for future research. For
example, handling multi-view and temporal consistency or ensuring that the
synthesized demography matches that of the original data. Finally, it is worth
noting that this research coincides with the ongoing generative model revolu-
tion, and the quality of synthesized human figures has significantly improved in
recent years. Given the present trend, it is not far-fetched to presume that syn-
thesized individuals will soon become a near-perfect alternative to the original
data.
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Abstract

We propose a novel architecture which is able to automatically anon-
ymize faces in images while retaining the original data distribution. We
ensure total anonymization of all faces in an image by generating images
exclusively on privacy-safe information. Our model is based on a con-
ditional generative adversarial network, generating images considering
the original pose and image background. The conditional information
enables us to generate highly realistic faces with a seamless transition
between the generated face and the existing background. Furthermore,
we introduce a diverse dataset of human faces, including unconventional
poses, occluded faces, and a vast variability in backgrounds. Finally,
we present experimental results reflecting the capability of our model
to anonymize images while preserving the data distribution, making
the data suitable for further training of deep learning models. As far
as we know, no other solution has been proposed that guarantees the
anonymization of faces while generating realistic images.

1 Introduction

Privacy-preserving data-processing is becoming more critical every year; how-
ever, no suitable solution has been found to anonymize images without de-
grading the image quality. The General Data Protection Regulation (GDPR)
came to effect as of 25th of May, 2018, affecting all processing of personal
data across Europe. GDPR requires regular consent from the individual for any
use of their personal data. However, if the data does not allow to identify an
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Figure 1: DeepPrivacy Results on a diverse set of images. The left image is the
original image annotated with bounding box and keypoints, the middle image is the
input image to our GAN, and the right image is the generated image. Note that our
generator never sees any privacy-sensitive information.

individual, companies are free to use the data without consent. To effectively
anonymize images, we require a robust model to replace the original face,
without destroying the existing data distribution; that is: the output should be a
realistic face fitting the given situation.

Anonymizing images, while retaining the original distribution, is a challenging
task. The model is required to remove all privacy-sensitive information, gener-
ate a highly realistic face, and the transition between original and anonymized
parts has to be seamless. This requires a model that can perform complex
semantic reasoning to generate a new anonymized face. For practical use,
we desire the model to be able to manage a broad diversity of images, poses,
backgrounds, and different persons. Our proposed solution can successfully
anonymize images in a large variety of cases, and create realistic faces to the
given conditional information.

Our proposed model, called DeepPrivacy, is a conditional generative adver-
sarial network [3, 18]. Our generator considers the existing background and
a sparse pose annotation to generate realistic anonymized faces. The gener-
ator has a U-net architecture [23] that generates images with a resolution of
128× 128. The model is trained with a progressive growing training tech-
nique [12] from a starting resolution of 8×8 to 128×128, which substantially
improves the final image quality and overall training time. By design, our gener-
ator never observes the original face, ensuring removal of any privacy-sensitive
information.

For practical use, we assume no demanding requirements for the object and
keypoint detection methods. Our model requires two simple annotations of
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1 Introduction

the face: (1) a bounding box annotation to identify the privacy-sensitive area,
and (2) a sparse pose estimation of the face, containing keypoints for the ears,
eyes, nose, and shoulders; in total seven keypoints. This keypoint annotation is
identical to what Mask R-CNN [6] provides.

We provide a new dataset of human faces, Flickr Diverse Faces (FDF), which
consists of 1.47M faces with a bounding box and keypoint annotation for
each face. This dataset covers a considerably large diversity of facial poses,
partial occlusions, complex backgrounds, and different persons. We will make
this dataset publicly available along with our source code and pre-trained
networks12.

We evaluate our model by performing an extensive qualitative and quantita-
tive study of the model’s ability to retain the original data distribution. We
anonymize the validation set of the WIDER-Face dataset [27], then run face
detection on the anonymized images to measure the impact of anonymization
on Average Precision (AP). DSFD [14] achieves 99.3% (95.9% out of 96.6%
AP), 99.3% (95.0%/95.7%), and 99.3% (89.8%/90.4%) of the original AP
on the easy, medium, and hard difficulty, respectively. On average, it achieves
99.3% of the original AP. In contrast, traditional anonymization techniques,
such as 8x8 pixelation achieves 96.7%, heavy blur 90.5%, and black-out 41.4%
of the original performance. Additionally, we present several ablation experi-
ments that reflect the importance of a large model size and conditional pose
information to generate high-quality faces.

In summary, we make the following contributions:

• We propose a novel generator architecture to anonymize faces, which
ensures 100% removal of privacy-sensitive information in the original
face. The generator can generate realistic looking faces that have a
seamless transition to the existing background for various sets of poses
and contexts.

• We provide the FDF dataset, including 1.47M faces with a tight bound-
ing box and keypoint annotation for each face. The dataset covers a
considerably larger diversity of faces compared to previous datasets.

1Code: www.github.com/hukkelas/DeepPrivacy
2FDF Dataset: www.github.com/hukkelas/FDF
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2 Related Work

De-Identifying Faces: Currently, there exists a limited number of research
studies on the task of removing privacy-sensitive information from an image
including a face. Typically, the approach chosen is to alter the original image
such that we remove all the privacy-sensitive information. These methods can
be applied to all images; however, there is no assurance that these methods
remove all privacy-sensitive information. Naive methods that apply simple
image distortion have been discussed numerous times in literature [1, 19, 5, 20,
4], such as pixelation and blurring; but, they are inadequate for removing the
privacy-sensitive information [4, 19, 20], and they alter the data distribution
substantially.

K-same family of algorithms [4, 11, 20] implements the k-anonymity algorithm
[25] for face images. Newton et al. prove that the k-same algorithm can
remove all privacy-sensitive information; but, the resulting images often contain
"ghosting" artifacts due to small alignment errors [4].

Jourabloo et al. [11] look at the task of de-identification grayscale images while
preserving a large set of facial attributes. This is different from our work, as
we do not directly train our generative model to generate faces with similar
attributes to the original image. In contrast, our model is able to perform
complex semantic reasoning to generate a face that is coherent with the overall
context information given to the network, yielding a highly realistic face.

Generative Adversarial Networks (GANs) [3] is a highly successful training
architecture to model a natural image distribution. GANs enables us to generate
new images, often indistinguishable from the real data distribution. It has a
broad diversity of application areas, from general image generation [2, 12, 13,
30], text-to-photo generation [31], style transfer [8, 24] and much more. With
the numerous contributions since its conception, it has gone from a beautiful
theoretical idea to a tool we can apply for practical use cases. In our work, we
show that GANs are an efficient tool to remove privacy-sensitive information
without destroying the original image quality.

Ren et al. [22] look at the task of anonymizing video data by using GANs.
They perform anonymization by altering each pixel in the original image to
hide the identity of the individuals. In contrast to their method, we can ensure
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3 The Flickr Diverse Faces Dataset

the removal of all privacy-sensitive information, as our generative model never
observes the original face.

Progressive Growing of GANs [12] propose a novel training technique to
generate faces progressively, starting from a resolution of 4x4 and step-wise
increasing it to 1024x1024. This training technique improves the final image
quality and overall training time. Our proposed model uses the same training
technique; however, we perform several alterations to their original model
to convert it to a conditional GAN. With these alterations, we can include
conditional information about the context and pose of the face. Our final
generator architecture is similar to the one proposed by Isola et al. [9], but we
introduce conditional information in several stages.

Image Inpainting is a closely related task to what we are trying to solve, and
it is a widely researched area for generative models [10, 15, 17, 29]. Several
research studies have looked at the task of face completion with a generative
adversarial network [15, 29]. They mask a specific part of the face and try to
complete this part with the conditional information given. From our knowledge,
and the qualitative experiments they present in their papers, they are not able
to mask a large enough section to remove all privacy-sensitive information.
As the masked region grows, it requires a more advanced generative model
that understands complex semantic reasoning, making the task considerably
harder. Also, their experiments are based on the Celeb-A dataset [17], primarily
consisting of celebrities with low diversity in facial pose, making models
trained on this dataset unsuitable for real-world applications.

3 The Flickr Diverse Faces Dataset

FDF (Flickr Diverse Faces) is a new dataset of human faces, crawled from the
YFCC-100M dataset [26]. It consists of 1.47M human faces with a minimum
resolution of 128×128, containing facial keypoints and a bounding box anno-
tation for each face. The dataset has a vast diversity in terms of age, ethnicity,
facial pose, image background, and face occlusion. Randomly picked examples
from the dataset can be seen in Figure 2. The dataset is extracted from scenes
related to traffic, sports events, and outside activities. In comparison to the
FFHQ [13] and Celeb-A [17] datasets, our dataset is more diverse in facial
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Figure 2: The FDF dataset. Each image has a sparse keypoint annotation (7 key-
points) of the face and a tight bounding box annotation. We recommend the reader to
zoom in.

poses and it contains significantly more faces; however, the FFHQ dataset has
a higher resolution.

The FDF dataset is a high-quality dataset with few annotation errors. The
faces are automatically labeled with state-of-the-art keypoint and bounding
box models, and we use a high confidence threshold for both the keypoint and
bounding box predictions. The faces are extracted from 1.08M images in the
YFCC100-M dataset. For keypoint estimation, we use Mask R-CNN [6], with
a ResNet-50 FPN backbone [16]. For bounding box annotation, we use the
Single Shot Scale-invariant Face Detector [32]. To combine the predictions, we
match a keypoint with a face bounding box if the eye and nose annotation are
within the bounding box. Each bounding box and keypoint has a single match,
and we match them with a greedy approach based on descending prediction
confidence.

4 Model

Our proposed model is a conditional GAN, generating images based on the
surrounding of the face and sparse pose information. Figure 1 shows the
conditional information given to our network, and Appendix A has a detailed
description of the pre-processing steps. We base our model on the one proposed
by Karras et al. [12]. Their model is a non-conditional GAN, and we perform
several alterations to include conditional information.

We use seven keypoints to describe the pose of the face: left/right eye, left/right
ear, left/right shoulder, and nose. To reduce the number of parameters in the
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Figure 3: Generator Architecture for 128× 128 resolution. Each convolutional
layer is followed by pixel normalization [12] and LeakyReLU(α = 0.2). After each
upsampling layer, we concatenate the upsampled output with pose information and
the corresponding skip connection.

network, we pre-process the pose information into a one-hot encoded image
of size K ×M ×M, where K is the number of keypoints and M is the target
resolution.

Progressive growing training technique is crucial for our model’s success. We
apply progressive growing to both the generator and discriminator to grow the
networks from a starting resolution of 8. We double the resolution each time we
expand our network until we reach the final resolution of 128×128. The pose
information is included for each resolution in the generator and discriminator,
making the pose information finer for each increase in resolution.

4.1 Generator Architecture

Figure 3 shows our proposed generator architecture for 128×128 resolution.
Our generator has a U-net [23] architecture to include background information.
The encoder and decoder have the same number of filters in each convolution,
but the decoder has an additional 1×1 bottleneck convolution after each skip
connection. This bottleneck design reduces the number of parameters in the
decoder significantly. To include the pose information for each resolution, we
concatenate the output after each upsampling layer with pose information and
the corresponding skip connection. The general layer structure is identical
to Karras et al. [12], where we use pixel replication for upsampling, pixel
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normalization and LeakyReLU after each convolution, and equalized learning
rate instead of careful weight initialization.

Progressive Growing: Each time we increase the resolution of the generator,
we add two 3×3 convolutions to the start of the encoder and the end of the
decoder. We use a transition phase identical to Karras et al. [12] for both of
these new blocks, making the network stable throughout training. We note that
the network is still unstable during the transition phase, but it is significantly
better compared to training without progressive growing.

4.2 Discriminator Architecture

Our proposed discriminator architecture is identical to the one proposed by
Karras et al. [12], with a few exceptions. First, we include the background
information as conditional input to the start of the discriminator, making the
input image have six channels instead of three. Secondly, we include pose
information at each resolution of the discriminator. The pose information
is concatenated with the output of each downsampling layer, similar to the
decoder in the generator. Finally, we remove the mini-batch standard deviation
layer presented by Karras et al. [12], as we find the diversity of our generated
faces satisfactory.

The adjustments made to the generator doubles the number of total parameters
in the network. To follow the design lines of Karras et al. [12], we desire
that the complexity in terms of the number of parameters to be similar for the
discriminator and generator. We evaluate two different discriminator models,
which we will name the deep discriminator and the wide discriminator. The
deep discriminator doubles the number of convolutional layers for each resolu-
tion. To mimic the skip-connections in the generator, we wrap the convolutions
for each resolution in residual blocks. The wider discriminator keeps the same
architecture; however, we increase the number of filters in each convolutional
layer by a factor of

√
2.
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5 Experiments

Figure 4: Anonymized Images from DeepPrivacy. Every single face in the images
has been generated. We recommend the reader to zoom in.

5 Experiments

DeepPrivacy can robustly generate anonymized faces for a vast diversity of
poses, backgrounds, and different persons. From qualitative evaluations of
our generated results on the WIDER-Face dataset [27], we find our proposed
solution to be robust to a broad diversity of images. Figure 4 shows several
results of our proposed solution on the WIDER-Face dataset. Note that the
network is trained on the FDF dataset; we do not train on any images in the
WIDER-Face dataset.

We evaluate the impact of anonymization on the WIDER-Face [27] dataset.
We measure the AP of a face detection model on the anonymized dataset
and compare this to the original dataset. We report the standard metrics for
the different difficulties for WIDER-Face. Additionally, we perform several
ablation experiments on our proposed FDF dataset.

Our final model is trained for 17 days, 40M images, until we observe no
qualitative differences between consecutive training iterations. It converges to
a Frèchect Inception Distance (FID) [7] of 1.53. Specific training details and
input pre-processing are given in Appendix A.
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Table 1: Face Detection AP on the WIDER Face [27] validation dataset. The face
detection method used is DSFD [14], the current state-of-the-art on WIDER-Face.

Anonymization method Easy Medium Hard
No Anonymization [14] 96.6% 95.7% 90.4%
Blacked out 24.9% 36.3% 54.8%
Pixelation (16x16) 95.3% 94.9% 90.2%
Pixelation (8x8) 91.4% 92.3% 88.9%
9x9 Gaussian Blur (σ = 3) 95.3% 92.8% 84.7%
Heavy Blur (filter size = 30% face width) 83.4% 86.3% 86.1%
DeepPrivacy (Ours) 95.9% 95.0% 89.8%

Figure 5: Different Anonymization Methods on a face in the WIDER Face validation
set.

5.1 Effect of Anonymization for Face Detection

Table 1 shows the AP of different anonymization techniques on the WIDER-
Face validation set. In comparison to the original dataset, DeepPrivacy only
degrades the AP by 0.7%, 0.7%, and 0.6% on the easy, medium, and hard
difficulties, respectively.

We compare DeepPrivacy anonymization to simpler anonymization methods;
black-out, pixelation, and blurring. Figure 5 illustrates the different anonymiza-
tion methods. DeepPrivacy generally achieves a higher AP compared to all
other methods, with the exception of 16×16 pixelation.

Note that 16× 16 pixelation does not affect a majority of the faces in the
dataset. For the "hard" challenge, 0% of the faces has a resolution larger
than 16× 16. For the easy and medium challenge, 43% and 29.9% has a
resolution larger than 16×16. The observant reader might notice that for the
"hard" challenge, 16×16 pixelation should have no effect; however, the AP
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is degraded in comparison to the original dataset (see Table 1). We believe
that the AP on the "hard" challenge is degraded due to anonymizing faces in
easy/medium challenge can affect the model in cases where faces from "hard"
and easy/medium are present in the same image.

Experiment Details: For the face detector we use the current state-of-the-art,
Dual Shot Face Detector (DSFD) [14]. The WIDER-Face dataset has no facial
keypoint annotations; therefore, we automatically detect keypoints for each
face with the same method as used for the FDF dataset. To match keypoints
with a bounding box, we use the same greedy approach as earlier. Mask
R-CNN [6] is not able to detect keypoints for all faces, especially in cases
with high occlusion, low resolution, or faces turned away from the camera.
Thus, we are only able to anonymize 43% of the faces in the validation set.
Of the faces that are not anonymized, 22% are partially occluded, and 30%
are heavily occluded. For the remaining non-anonymized faces, 70% has a
resolution smaller than 14x14. Note that for each experiment in Table 1, we
anonymize the same bounding boxes.

5.2 Ablation Experiments

We perform several ablation experiments to evaluate the model architecture
choices. We report the Frèchet Inception Distance [7] between the original
images and the anonymized images for each experiment. We calculate FID
from a validation set of 50,000 faces from the FDF dataset. The results are
shown in Table 2 and discussed in detail next.

Effect of Pose Information: Pose of the face provided as conditional informa-
tion improves our model significantly, as seen in Table 2a. The FDF dataset
has a large variance of faces in different poses, and we find it necessary to
include sparse pose information to generate realistic faces. In contrast, when
trained on the Celeb-A dataset, our model completely ignores the given pose
information.

Discriminator Architecture: Table 2b compares the quality of images for
a deep and wide discriminator. With a deeper network, the discriminator
struggles to converge, leading to poor results. We use no normalization layers
in the discriminator, causing deeper networks to suffer from exploding forward
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Table 2: Ablation Experiments with our model. We report the Frèchet Inception
Distance (FID) on the FDF validation dataset, after showing the discriminator 30.0M
images (lower is better). For results in Table 2a and Table 2b, we use a model size
of 12M parameters for both the generator and discriminator. *Reported after 20.0M
images, as the deep discriminator diverged after this.

(a) Result of using
conditional pose.

Model FID
With Pose 2.71

Without Pose 3.36

(b) Result of the deep and wide
discriminator.

Discriminator FID
Deep Discriminator* 9.327
Wide Discriminator* 3.86

(c) Result of different
model sizes.

#parameters FID
12M 2.71
46M 1.84

passes and vanishing gradients. Even though, Brock et al. [2] also observe
similar results; a deeper network architecture degrades the overall image quality.
Note that we also experimented with a discriminator with no modifications to
number of parameters, but this was not able to generate realistic faces.

Model Size: We empirically observe that increasing the number of filters in
each convolution improves image quality drastically. As seen in Table 2c, we
train two models with 12M and 46M parameters. Unquestionably, increasing
the number of parameters generally improves the image quality. For both
experiments, we use the same hyperparameters; the only thing changed is the
number of filters in each convolution.

6 Limitations

Our method proves its ability to generate objectively good images for a diversity
of backgrounds and poses. However, it still struggles in several challenging
scenarios. Figure 6 illustrates some of these. These issues can impact the
generated image quality, but, by design, our model ensures the removal of all
privacy-sensitive information from the face.

Faces occluded with high fidelity objects are extremely challenging when
generating a realistic face. For example, in Figure 6, several images have
persons covering their faces with hands. To generate a face in this scenario
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7 Conclusion

Figure 6: Failure Cases of DeepPrivacy Our proposed solution can generate unreal-
istic images in cases of high occlusion, difficult background information, and irregular
poses.

requires complex semantic reasoning, which is still a difficult challenge for
GANs.

Handling non-traditional poses can cause our model to generate corrupted
faces. We use a sparse pose estimation to describe the face pose, but there is no
limitation in our architecture to include a dense pose estimation. A denser pose
estimation would, most likely, improve the performance of our model in cases
of irregular poses. However, this would set restrictions on the pose estimator
and restrict the practical use case of our method.

7 Conclusion

We propose a conditional generative adversarial network, DeepPrivacy, to
anonymize faces in images without destroying the original data distribution.
The presented results on the WIDER-Face dataset reflects our model’s capa-
bility to generate high-quality images. Also, the diversity of images in the
WIDER-Face dataset shows the practical applicability of our model. The cur-
rent state-of-the-art face detection method can achieve 99.3% of the original
average precision on the anonymized WIDER-Face validation set. In com-
parison to previous solutions, this is a significant improvement to both the
generated image quality and the certainty of anonymization. Furthermore,
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the presented ablation experiments on the FDF dataset suggests that a larger
model size and inclusion of sparse pose information is necessary to generate
high-quality images.

DeepPrivacy is a conceptually simple generative adversarial network, easily
extendable for further improvements. Handling irregular poses, difficult oc-
clusions, complex backgrounds, and temporal consistency in videos is still a
subject for further work. We believe our contribution will be an inspiration for
further work into ensuring privacy in visual data.

Appendix A - Training Details

We use the same hyperparameters as Karras et al. [12], except the following:
We use a batch size of 256, 256, 128, 72 and 48 for resolution 8, 16, 32, 64,
and 128. We use a learning rate of 0.00175 with the Adam optimizer. For each
expansion of the network, we have a transition and stabilization phase of 1.2M
images each. We use an exponential running average for the weights of the
generator as this improves overall image quality [28]. For the running average,
we use a decay β given by:

β = 0.5
B

104 , (1)

where B is the batch size. Our final model was trained for 17 days on two
NVIDIA V100-32GB GPUs.

Image Pre-Processing

Figure 7 shows the input pre-processing pipeline. For each detected face with
a bounding box and keypoint detection, we find the smallest possible square
bounding box which surrounds the face bounding box. Then, we resize the
expanded bounding box to the target size (128×128). We replace the pixels
within the face bounding box with a constant pixel value of 128. Finally, we
shift the pixel values to the range [−1,1].

Paper A DeepPrivacy: A Generative Adversarial Network for Face . . .

82



References

!"#$$%&'()*% +%,%")-#"'.,$/- +%,%")-%&'()*%

Figure 7: Input Pipeline: Each detected face is cropped to a quadratic image, then
we replace the privacy-sensitive information with a constant value, and feed it to the
generator. The keypoints are represented as a one-hot encoded image.

Tensor Core Modifications

To utilize tensor cores in NVIDIA’s new Volta architecture, we do several
modifications to our network, following the requirements of tensor cores. First,
we ensure that each convolutional block use number of filters that are divisible
by 8. Secondly, we make certain that the batch size for each GPU is divisible by
8. Further, we use automatic mixed precision for pytorch [21] to significantly
improve our training time. We see an improvement of 220% in terms of training
speed with mixed precision training.
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Figure 1: Masked images and corresponding generated images from our proposed
single-stage generator.

Abstract
A regular convolution layer applying a filter in the same way over

known and unknown areas causes visual artifacts in the inpainted image.
Several studies address this issue with feature re-normalization on the
output of the convolution. However, these models use a significant
amount of learnable parameters for feature re-normalization [36, 42], or
assume a binary representation of the certainty of an output [11, 25].

We propose (layer-wise) feature imputation of the missing input values
to a convolution. In contrast to learned feature re-normalization [36, 42],
our method is efficient and introduces a minimal number of parameters.
Furthermore, we propose a revised gradient penalty for image inpaint-
ing, and a novel GAN architecture trained exclusively on adversarial
loss. Our quantitative evaluation on the FDF dataset reflects that our
revised gradient penalty and alternative convolution improves generated
image quality significantly. We present comparisons on CelebA-HQ and
Places2 to current state-of-the-art to validate our model.
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1 Introduction

Image inpainting is the task of filling in missing areas of an image. Use
cases for image inpainting are diverse, such as restoring damaged images,
removing unwanted objects, or replacing information to preserve the privacy of
individuals. Prior to deep learning, image inpainting techniques were generally
examplar-based. For example, pattern matching, by searching and replacing
with similar patches [4, 8, 22, 26, 33, 38], or diffusion-based, by smoothly
propagating information from the boundary of the missing area [3, 5, 6].

Convolutional Neural Networks (CNNs) for image inpainting have led to
significant progress in the last couple of years [1, 23, 37]. In spite of this,
a standard convolution does not consider if an input pixel is missing or not,
making it ill-fitted for the task of image inpainting. Partial Convolution (PConv)
[25] propose a modified convolution, where they zero-out invalid (missing)
input pixels and re-normalizes the output feature map depending on the number
of valid pixels in the receptive field. This is followed by a hand-crafted certainty
propagation step, where they assume an output is valid if one or more features
in the receptive field are valid. Several proposed improvements replace the
hand-crafted components in PConv with fully-learned components [36, 42].
However, these solutions use ∼ 50% of the network parameters to propagate
the certainties through the network.

We propose Imputed Convolution (IConv); instead of re-normalizing the output
feature map of a convolution, we replace uncertain input values with an estimate
from spatially close features (see Figure 2). IConv assumes that a single spatial
location (with multiple features) is associated with a single certainty. In
contrast, previous solutions [36, 42] requires a certainty for each feature in a
spatial location, which allocates half of the network parameters for certainty
representation and propagation. Our simple assumption enables certainty
representation and propagation to be minimal. In total, replacing all convolution
layers with IConv increases the number of parameters by only 1−2%.

We use the DeepPrivacy [15] face inpainter as our baseline and suggest several
improvements to stabilize the adversarial training: (1) We propose an improved
version of gradient penalties to optimize Wasserstein GANs [2], based on the
simple observation that standard gradient penalties causes training instability
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2 Related Work

for image inpainting. (2) We combine the U-Net [30] generator with Multi-
Scale-Gradient GAN (MSG-GAN) [19] to enable the discriminator to attend
to multiple resolutions simultaneously, ensuring global and local consistency.
(3) Finally, we replace the inefficient representation of the pose-information
for the FDF dataset [15]. In contrast to the current state-of-the-art, our model
requires no post-processing of generated images [16, 24], no refinement net-
work [41, 42], or any additional loss term to stabilize the adversarial training
[36, 42]. From our knowledge, our model is the first to be trained exclusively
on adversarial loss for image-inpainting.

Our main contributions are the following:

1. We propose IConv which utilize a learnable feature estimator to impute
uncertain input values to a convolution. This enables our model to
generate visually pleasing images for free-form image inpainting.

2. We revisit the standard gradient penalty used to constrain Wasserstein
GANs for image inpainting. Our simple modification significantly im-
proves training stability and generated image quality at no additional
computational cost.

3. We propose an improved U-Net architecture, enabling the adversarial
training to attend to local and global consistency simultaneously.

2 Related Work

In this section, we discuss related work for generative adversarial networks
(GANs), GAN-based image-inpainting, and the recent progress in free-form
image-inpainting.

2.0.1 Generative Adversarial Networks

Generative Adversarial Networks [9] is a successful unsupervised training
technique for image-based generative models. Since its conception, a range
of techniques has improved convergence of GANs. Karras et al. [21] propose
a progressive growing training technique to iteratively increase the network
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complexity to stabilize training. Karnewar et al. [19] replace progressive
growing with Multi-Scale Gradient GAN (MSG-GAN), where they use skip
connections between the matching resolutions of the generator and discrimina-
tor. Furthermore, Karras et al. [20] propose a modification of MSG-GAN in
combination with residual connections [12]. Similar to [20], we replace pro-
gressive growing in the baseline model [15] with a modification of MSG-GAN
for image-inpainting.

2.0.2 GAN-based Image Inpainting

GANs have seen wide adaptation for the image inpainting task, due to its
astonishing ability to generate semantically coherent results for missing regions.
There exist several studies proposing methods to ensure global and local
consistency; using several discriminators to focus on different scales [16, 24],
specific modules to connect spatially distant features [34, 39, 40, 41], patch-
based discriminators [42, 43], multi-column generators [35], or progressively
inpainting the missing area [11, 44]. In contrast to these methods, we ensure
consistency over multiple resolutions by connecting different resolutions of
the generator with the discriminator. Zheng et al. [46] proposes a probabilistic
framework to address the issue of mode collapse for image inpainting, and
they generate several plausible results for a missing area. Several methods
propose combining the input image with auxiliary information, such as user
sketches [17], edges [27], or examplar-based inpainting [7]. Hukkelås et al.
[15] propose a U-Net based generator conditioned on the pose of the face.

GANs are notoriously difficult to optimize reliably [31]. For image inpainting,
the adversarial loss is often combined with other objectives to improve training
stability, such as pixel-wise reconstruction [7, 16, 24, 28], perceptual loss
[34, 45], semantic loss [24], or style loss [36]. In contrast to these methods,
we optimize exclusively on the adversarial loss. Furthermore, several studies
[17, 35, 36, 41] propose to use Wasserstein GAN [2] with gradient penalties
[10]; however, the standard gradient penalty causes training instability for
image-inpainting models, as we discuss in Section 3.2.
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3 Method
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⊙
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⊙
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Figure 2: Illustration of partial convolution, gated convolution and our proposed
solution. ⊙ is element-wise product and ⊕ is addition. Note that CL is binary for
partial convolution.

2.0.3 Free-Form Image-Inpainting

Image Inpainting with irregular masks (often referred to as free-form masks)
has recently caught more attention. Liu et al. [25] propose Partial Convolu-
tions (PConv) to handle irregular masks, where they zero-out input values to
a convolution and then perform feature re-normalization based on the num-
ber of valid pixels in the receptive field. Gated Convolution [42] modifies
PConv by removing the binary-representation constraint, and they combine
the mask and feature representation within a single feature map. Xie et al.
[36] propose a simple modification to PConv, where they reformulate it as
"attention" propagation instead of certainty propagation. Both of these PConv
adaptations [36, 42] doubles the number of parameters in the network when
replacing regular convolutions.

3 Method

In this section, we describe a) our modifications to a regular convolution layer,
b) our revised gradient penalty suited for image inpainting, and c) our improved
U-Net architecture.
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3.1 Imputed Convolution (IConv)

Consider the case of a regular convolution applied to a given feature map
I ∈ RN :

f (I) =WF ∗ I, (1)

where ∗ is the convolution and WF ∈ RD is the filter. To simplify notation, we
consider a single filter applied to a single one-dimensional feature map. The
generalization to a regular multidimensional convolution layer is straightfor-
ward. A convolution applies this filter to all spatial locations of our feature map,
which works well for general image recognition tasks. For image inpainting,
there exists a set of known and unknown pixels; therefore, a regular convolution
applied to all spatial locations is primarily undefined (“unknown" is not the
same as 0 or any other fixed value), and naive approaches cause annoying
visual artifacts [25].

We propose to replace the missing input values to a convolution with an
estimate from spatially close values. To represent known and unknown values,
we introduce a certainty Cx for each spatial location x, where C ∈ RN , and
0 ≤Cx ≤ 1. Note that this representation enables a single certainty to represent
several values in the case of having multiple channels in the input. Furthermore,
we define Ĩx as a random variable with discrete outcomes {Ix,hx}, where Ix

is the feature at spatial location x, and hx is an estimate from spatially close
features. In this way, we want the output of our convolution to be given by,

O = φ( f (E[Ĩx])), (2)

where φ is the activation function, and O the output feature map. We ap-
proximate the probabilities of each outcome using the certainty Cx; that is,
P(Ĩx = Ix)≈Cx and P(Ĩx = hx)≈ 1−Cx, yielding the expected value of Ĩx,

E[Ĩx] =Cx · Ix +(1−Cx) ·hx. (3)

We assume that a missing value can be approximated from spatially close
values. Therefore, we define hx as a learned certainty-weighted average of the
surrounding features:

hx =
∑K

i=1 Ix+i ·Cx+i ·ωi

∑K
i=1Cx+i

, (4)

Paper B Image Inpainting with Learnable Feature Imputation

96



3 Method

where ω ∈ RK is a learnable parameter. In a sense, our convolutional layer will
try to learn the outcome space of Ĩx. Furthermore, hx is efficient to implement
in standard deep learning frameworks, as it can be implemented as a depth-wise
separable convolution [32] with a re-normalization factor determined by C.

Propagating Certainties Each convolutional layer expects a certainty
for each spatial location. We handle propagation of certainties as a learned
operation,

CL+1 = σ(WC ∗CL), (5)

where ∗ is a convolution, WC ∈ RD is the filter, and σ is the sigmoid function.
We constraint WC to have the same receptive field as f with no bias, and
initialize C0 to 0 for all unknown pixels and 1 else.

The proposed solution is minimal, efficient, and other components of the net-
work remain close to untouched. We use LeakyReLU as the activation function
φ , and average pooling and pixel normalization [21] after each convolution f .
Replacing all convolutional layers with Ox in our baseline network increases
the number of parameters by ∼ 1%. This is in contrast to methods based on
learned feature re-normalization [36, 42], where replacing a convolution with
their proposed solution doubles the number of parameters. Similar to partial
convolution [25], we use a single scalar to represent the certainty for each
spatial location; however, we do not constrain the certainty representation to
be binary, and our certainty propagation is fully learned.

U-Net Skip Connection U-Net [30] skip connection is a method to com-
bine shallow and deep features in encoder-decoder architectures. Generally,
the skip connection consists of concatenating shallow and deep features, then
followed by a convolution. However, for image inpainting, we only want to
propagate certain features.

To find the combined feature map for an input in layer L and L+ l, we find a
weighted average. Assuming features from two layers in the network, (IL,CL),
(IL+l,CL+l), we define the combined feature map as;

IL+l+1 = γ · IL +(1− γ) · IL+l, (6)
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and likewise for CL+l+1. γ is determined by

γ =
CL ·β1

CL ·β1 +CL+l ·β2
, (7)

where β1,β2 ∈ R+ are learnable parameters initialized to 1. Our U-Net skip
connection is unique compared to previous work and designed for image
inpainting. Equation 6 enables the network to only propagate features with
a high certainty from shallow layers. Furthermore, we include β1 and β2 to
give the model the flexibility to learn if it should attend to shallow or deep
features.

3.2 Revisiting Gradient Penalties for Image Inpainting

Improved Wasserstein GAN [2, 10] is widely used in image inpainting [17,
35, 36, 41]. Given a discriminator D, the objective function for optimizing a
Wasserstein GAN with gradient penalties is given by,

Ltotal = Ladv +λ · (||∇D(x̂)||p −1)2, (8)

where Ladv is the adversarial loss, p is commonly set to 2 (L2 norm), λ is the
gradient penalty weight, and x̂ is a randomly sampled point between the real
image, x, and a generated image, x̃. Specifically, x̂ = t · x+(1− t) · x̃, where t
is sampled from a uniform distribution [10].

Previous methods enforce the gradient penalty only for missing areas [17, 35,
41]. Given a mask M to indicate areas to be inpainted in the image x, where
M is 0 for missing pixels and 1 otherwise (note that M =C0), Yu et al. [41]
propose the gradient penalty:

ḡ(x̂) = (||∇D(x̂)⊙ (1−M)||p −1)2, (9)

where ⊙ is element-wise multiplication. This gradient penalty cause significant
training instability, as the gradient sign of ḡ shifts depending on the cardinality
of M. Furthermore, Equation 9 impose ||∇D(x̂)|| ≈ 1, which leads to a lower
bound on the Wasserstein distance [18].

Imposing ||∇D(x̂)|| ≤ 1 will remove the issue of shifting gradients in Equa-
tion 9. Furthermore, imposing the constrain ||∇D(x̂)|| ≤ 1 is shown to properly
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Figure 3: Illustration of the generator (left of the dashed line) and discriminator
architecture. Up and down denotes nearest neighbor upsampling and average pool.
The pose information in the discriminator is concatenated to the input of the first
convolution layer with 32×32 resolution. Note that pose information is only used for
the FDF dataset [15].

estimate the Wasserstein distance [18]. Therefore, we propose the following
gradient penalty:

g(x̂) = max(0, ||∇D(x̂)⊙ (1−M))||p −1) (10)

Previous methods enforce the L2 norm [17, 35, 41]. Jolicoeur-Martineau et
al. [18] suggest that replacing the L2 gradient norm with L∞ can improve
robustness. From empirical experiments (see Appendix 1), we find L∞ more
unstable and sensitive to choice of hyperparameters; therefore, we enforce the
L2 norm (p=2).

In total, we optimize the following objective function:

Ltotal = Ladv +λ ·max(0, ||∇D(x̂)⊙ (1−M))||p −1) (11)

3.3 Model Architecture

We propose several improvements to the baseline U-Net architecture [15]. See
Figure 3 for our final architecture. We replace all convolutions with Equa-
tion 2, average pool layer with a certainty-weighted average and U-Net skip
connections with our revised skip connection (see Equation 6). Furthermore,
we replace progressive growing training [21] with Multi-Scale Gradient GAN
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(MSG-GAN) [19]. For the MSG-GAN, instead of matching different resolu-
tions from the generator with the discriminator, we upsample each resolution
and sum up the contribution of the RGB outputs [20]. In the discriminator we
use residual connections, similar to [20]. Finally, we improve the representa-
tion of pose information in the baseline model (pose information is only used
on the FDF dataset [15]).

Representation of Pose Information The baseline model [15] repre-
sents pose information as one-hot encoded images for each resolution in the
network, which is extremely memory inefficient and a fragile representation.
The pose information, P ∈ RK·2, represents K facial keypoints and is used as
conditional information for the generator and discriminator. We propose to
replace the one-hot encoded representation, and instead pre-process P into
a 4× 4× 32 feature bank using two fully-connected layers. This feature
bank is concatenated with the features from the encoder. Furthermore, after
replacing progressive growing with MSG-GAN, we include the same pose
pre-processing architecture in the discriminator, and input the pose information
as a 32×32×1 feature map to the discriminator.

4 Experiments

We evaluate our proposed improvements on the Flickr Diverse Faces (FDF)
dataset [15], a lower resolution (128×128) face dataset. We present experi-
ments on the CelebA-HQ [21] and Places2 [47] datasets, which reflects that
our suggestions generalizes to standard image inpainting. We compare against
current state-of-the art [36, 42, 46, 29]. Finally, we present a set of ablation
studies to analyze the generator architecture. 1

1To prevent ourselves from cherry-picking qualitative examples, we present several images
(with corresponding masks) chosen by previous state-of-the-art papers [11, 36, 42, 46], thus
copying their selection. Appendix 5 describes how we selected these samples. The only
hand-picked examples in this paper are Figure 1, Figure 5, Figure 6, and Figure 7. No
examples in the Supplementary Material are cherry-picked.
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4 Experiments

Table 1: Quantitative results on the FDF dataset [15]. We report standard metrics
after showing the discriminator 20 million images on the FDF and Places2 validation
sets. We report L1, L2, and SSIM in Appendix 3. Note that Config E is trained
with MSG-GAN, therefore, we separate it from Config A-D which are trained with
progressive growing [21]. * Did not converge. † Same as Config B

Configuration FDF Places2
LPIPS ↓ PSNR ↑ FID ↓ LPIPS ↓ PSNR ↑ FID ↓

A Baseline [15] 0.1036 22.52 6.15 –* –* –*
B + Improved Gradient penalty 0.0757 23.92 1.83 0.1619 20.99 7.96
C + Scalar Pose Information 0.0733 24.01 1.76 – † –† – †
D + Imputed Convolution 0.0739 23.95 1.66 0.1563 21.21 6.81
E + No Growing, MSG 0.0728 24.01 1.49 0.1491 21.42 5.24

Quantitative Metrics For quantitative evaluations, we report commonly
used image inpainting metrics; pixel-wise distance (L1 and L2), peak signal-
to-noise ratio (PSNR), and structural similarity (SSIM). Neither of these re-
construction metrics are any good indicators of generated image quality, as
there often exist several possible solutions to a missing region, and they do not
reflect human nuances [45]. Recently proposed deep feature metrics correlate
better with human perception [45]; therefore, we report the Frèchet Inception
Distance (FID) [13] (lower is better) and Learned Perceptual Image Patch Sim-
ilarity (LPIPS) [45] (lower is better). We use LPIPS as the main quantitative
evaluation.

4.1 Improving the Baseline

We iteratively add our suggestions to the baseline [15] (Config A-E), and report
quantitative results in Table 1. First, we replace the gradient penalty term with
Equation 10, where we use the L2 norm (p = 2), and impose the following
constraint (Config B):

Gout = G(I,C0) · (1−C0)+ I ·C0, (12)

where C0 is the binary input certainty and G is the generator. Note that we
are not able to converge Config A while imposing Gout . We replace the one-
hot encoded representation of the pose information with two fully connected
layers in the generator (Config C). Furthermore, we replace the input to all
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convolutional layers with Equation 3 (Config D). We set the receptive field
of hx to 5× 5 (K = 5 in Equation 4). We replace the progressive-growing
training technique with MSG-GAN [19], and replace the one-hot encoded pose-
information in the discriminator (Config E). These modifications combined
improve the LPIPS score by 30.0%. The authors of [15] report a FID of 1.84
on the FDF dataset with a model consisting of 46M learnable parameters. In
comparison, we achieve a FID of 1.49 with 2.94M parameters (config E). For
experimental details, see Appendix 2.

4.2 Generalization to Free-Form Image Inpainting

We extend Config E to general image inpainting datasets; CelebA-HQ [21]
and Places2 [47]. We increase the number of filters in each convolution by a
factor of 2, such that the generator has 11.5M parameters. In comparison,
Gated Convolution [42] use 4.1M, LBAM [36] 68.3M, StructureFlow [29]
159M, and PIC [46] use 3.6M parameters. Compared to [42, 46], our increase
in parameters improves semantic reasoning for larger missing regions. Also,
compared to previous solutions, we achieve similar inference time since the
majority of the parameters are located at low-resolution layers (8× 8 and
16× 16). In contrast, [42] has no parameters at a resolution smaller than
64×64. For single-image inference time, our model matches (or outperforms)
previous models; on a single NVIDIA 1080 GPU, our network runs at ∼ 89
ms per image on 256×256 resolution, 2× faster than LBAM [36], and PIC
[46]. GatedConvolution [42] achieves ∼ 62 ms per image. 2 See Appendix
2.1 for experimental details.

Quantitative Results Table 2 shows quantitative results for the CelebA-
HQ and Places2 datasets. For CelebA-HQ, we improve LPIPS and FID sig-
nificantly compared to previous models. For Places2, we achieve comparable
results to [42] for free-form and center-crop masks. Furthermore, we compare
our model with and without IConv and notice a significant improvement in
generated image quality (see Figure 1 in Appendix 3). See Appendix 5.1 for
examples of the center-crop and free-form images.

2We measure runtime for [42, 46] with their open-source code, as they do not report inference
time for 256×256 resolution in their paper.
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4 Experiments

Table 2: Quantitative results on the CelebA-HQ and Places2 datasets. We use the
official frameworks to reproduce results from [42, 46]. For the (Center) dataset we use
a 128×128 center mask, and for (Free-Form) we generate free-form masks for each
image following the approach in [42]. We report L1, L2, and SSIM in Appendix 3.

Method
Places2 (Center) Places2 (Free Form) CelebA-HQ (Center) CelebA-HQ (Free Form)

PSNR LPIPS FID PSNR LPIPS FID PSNR LPIPS FID PSNR LPIPS FID
Gated Convolutions [42] 21.56 0.1407 4.14 27.59 0.0579 0.90 25.55 0.0587 6.05 30.26 0.0366 2.98
Plurastic Image Inpainting [46] 21.04 0.1584 7.23 26.66 0.0804 2.76 24.59 0.0644 7.50 29.30 0.0394 3.30
Ours 21.70 0.1412 3.99 27.33 0.0597 0.94 25.29 0.0522 4.43 30.32 0.0300 2.38

(a) Input (b) PM [4] (c) PIC [46] (d) PC [25] (e) BA [36] (f) GC [42] (g) Ours

Figure 4: Places2 comparison to PatchMatch (PM) [4], Pluralistic Image Completion
(PIC) [46], Partial Convolution (PC) [25], Bidirectional Attention (BA) [36], and
Gated Convolution (GC) [42]. Examples selected by authors of [36] (images extracted
from their supplementary material). Results of [42, 46] generated by using their open-
source code and models. We recommend the reader to zoom-in on missing regions.

Qualitative Results Figure 5 shows a set of hand-picked examples, Fig-
ure 4 shows examples selected by [36], and Appendix 5 includes a large set
of examples selected by the authors of [11, 36, 42, 46]. We notice less visual
artifacts than models using vanilla convolutions [46, 29], and we achieve com-
parable results to Gated Convolution [42] for free-form image inpainting. For
larger missing areas, our model generates more semantically coherent results
compared to previous solutions [11, 36, 42, 46].
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(a) Input (b) GConv [42] (c) PIC [46] (d) SF [29] (e) Ours

Figure 5: Qualitative examples on the Places2 validation set with comparisons to
Gated Convolution (GConv) [42], StructureFlow (SF) [29], and Pluralistic Image
Completion (PIC) [46]. We recommend the reader to zoom-in on missing regions. For
non hand-picked qualitative examples, see Appendix 5.
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5 Conclusion

Figure 6: Diverse Plausible Results: Images from the FDF validation set [15]. Left
column is the input image with the pose information marked in red. Second column
and onwards are different plausible generated results. Each image is generated by
randomly sampling a latent variable for the generator (except for the second column
where the latent variable is set to all 0’s). For more results, see Appendix 6.

4.3 Ablation Studies

Pluralistic Image Inpainting Generating different possible results for the
same conditional image (pluralistic inpainting) [46] has remained a problem for
conditional GANs [14, 48]. Figure 6 illustrates that our proposed model (Config
E) generates multiple and diverse results. Even though, for Places2, we observe
that our generator suffers from mode collapse early on in training. Therefore,
we ask the question; does a deterministic generator impact the generated image
quality for image-inpainting? To briefly evaluate the impact of this, we train
Config D without a latent variable, and observe a 7% degradation in LPIPS
score on the FDF dataset. We leave further analysis of this for further work.

Propagation of Certainties Figure 7 visualizes if the generator attends to
shallow or deep features in our encoder-decoder architecture. Our proposed
U-Net skip connection enables the network to select features between the
encoder and decoder depending on the certainty. Notice that our network
attends to deeper features in cases of uncertain features, and shallower feature
otherwise.

5 Conclusion

We propose a simple single-stage generator architecture for free-form image
inpainting. Our proposed improvements to GAN-based image inpainting
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Figure 7: U-Net Skip Connections. Visualization of γ from Equation 6. The left
image is the input image, second column and onwards are the values of γ for resolution
8 to 256. Rightmost image is the generated image. Smaller values of γ indicates that
the network selects deep features (from the decoder branch).

significantly stabilizes adversarial training, and from our knowledge, we are the
first to produce state-of-the-art results by exclusively optimizing an adversarial
objective. Our main contributions are; a revised convolution to properly handle
missing values in convolutional neural networks, an improved gradient penalty
for image inpainting which substantially improves training stability, and a
novel U-Net based GAN architecture to ensure global and local consistency.
Our model achieves state-of-the-art results on the CelebA-HQ and Places2
datasets, and our single-stage generator is much more efficient compared to
previous solutions.
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Realistic Full-Body Anonymization with
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Figure 1: Our model performs in-the-wild anonymization by first detecting pixel-
to-surface correspondences with CSE [41], then Surface-Guided GAN individually
anonymizes each person. Original image from COCO [32].

Abstract

Recent work on image anonymization has shown that generative ad-
versarial networks (GANs) can generate near-photorealistic faces to
anonymize individuals. However, scaling up these networks to the entire
human body has remained a challenging and yet unsolved task. We
propose a new anonymization method that generates realistic humans
for in-the-wild images. A key part of our design is to guide adversarial
nets by dense pixel-to-surface correspondences between an image and
a canonical 3D surface. We introduce Variational Surface-Adaptive
Modulation (V-SAM) that embeds surface information throughout the
generator. Combining this with our novel discriminator surface supervi-
sion loss, the generator can synthesize high quality humans with diverse
appearances in complex and varying scenes. We demonstrate that surface
guidance significantly improves image quality and diversity of samples,
yielding a highly practical generator. Finally, we show that our method
preserves data usability without infringing privacy when collecting im-
age datasets for training computer vision models. Source code and
appendix is available at: github.com/hukkelas/full_body_anonymization
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1 Introduction

Privacy regulations constitute a significant obstacle against using image data
taken in public for training computer vision algorithms. Recent work reflects
that generative adversarial networks (GANs) [21, 35, 50] can realistically
anonymize faces, where the anonymized datasets perform similarly to the
original for future computer vision development. However, these methods
[21, 35, 50] focus solely on face anonymization, leaving several primary iden-
tifiers(e.g. ears [23]) and soft identifiers (e.g. gender) on the human body
untouched.

Generative adversarial networks are great at synthesizing high-resolution im-
ages in many domains, including humans [27]. Despite this success, previous
work on full-body generative modeling focuses on simplified tasks, such as
motion transfer [6], pose transfer [3, 31], garment swapping [16], or rendering
a body with known 3D structure of the scene [55]. These methods do not
directly apply to in-the-wild anonymization, as they do not handle variations in
the background. As far as we know, our work is the first to address the task
of synthesizing humans into in-the-wild images without simplifying the task
(e.g. having a source texture to transfer, known 3D structure of the scene, or
assuming a static background) 1.

Our contributions address the unexplored and challenging task of full-body
anonymization for in-the-wild images. Our goal is to ensure the privacy of
the anonymized individual; thus, we pose the anonymization task as an image
inpainting problem. Modeling anonymization as image inpainting has stronger
privacy guarantees than previous human synthesis methods, which rely on a
source body texture or the original identity.

In this work, we propose Surface-guided GANs that utilize Continuous Surface
Embeddings (CSE) [41] to guide the generator with pixel-to-surface corre-
spondences. The compact, high-fidelity, and continuous representation of CSE
excels for synthesizing human figures, as it allows for simple modeling choices
without compromising fine-grained details. We show that surface guidance

1Although, we note that CIAGAN [35] ablates their method for low-resolution human synthe-
sis.
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2 Related Work

significantly improves image quality, whereas current state-of-the-art GANs
struggle with generating human figures without it.

We summarize our contributions into three points.

First, to efficiently utilize the powerful CSE representation, we propose Varia-
tional Surface Adaptive Modulation (V-SAM). V-SAM projects the input latent
space of the generator to an intermediate surface-adaptive latent space. This
allows the generator to directly map the latent factors of variations to rele-
vant surface locations (e.g. relate "red shirt" to the upper body independent of
its spatial position), resulting in a latent space disentangled from the spatial
image. The explicit disentangled representation is unique to V-SAM, which
significantly improves latent disentanglement and image fidelity compared to
previous spatially-invariant [27, 62] and spatial-adaptive modulation [43].

Secondly, we propose Discriminator Surface Supervision that incentivizes the
discriminator to learn pixel-to-surface correspondences. The surface awareness
of the discriminator provides higher-fidelity feedback to the generator, which
significantly improves image quality. In fact, we find that the surface-aware
feedback from the discriminator is a key factor to the powerful representation
learned by V-SAM, where similar semantic-based supervision [48] yields
suboptimal results.

Thirdly, we present a novel full-body anonymization framework that produces
close-to-photorealistic images. We demonstrate that surface-guided anonymiza-
tion significantly improves upon traditional methods (e.g. pixelation) in terms
of data usability and privacy. For example, pixelation degrades the person
average precision by 14.4 for Mask R-CNN [17] instance segmentation. In
contrast, surface-guided anonymization yields only a 2.8 degradation.

2 Related Work

Anonymization of Images Naive anonymization methods that apply sim-
ple image distortions (e.g. blurring) are known to be inadequate for removing
privacy-sensitive information [14, 39], and severely distorts the data. Recent
work reflects that deep generative models can realistically anonymize faces by
inpainting [2, 21, 35, 50, 51] or transforming the original image [10]. These
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Figure 2: (a) A CSE-detector [41] predicts pixel-to-surface correspondences repre-
sented as a continuous positional embedding ei. For simplicity, we show the pipeline
with a single person, but multi-person detection is done by cropping each person
(see Figure 1). (b) The mapping network ( fω ) transform surface locations and the
latent variable (z ∼ N (0,1)) into an intermediate surface-adaptive latent space (ωi)
(section 3.1, section 3.2). Then, wi controls the generator with pixel-wise modulation
and normalization after each convolution. (c) Our FPN-discriminator predicts the
surface embedding and optimizes a surface-regression loss (LCSE, section 3.3) along
with the adversarial loss (LGAN).

methods demonstrate that retaining the original data distribution is important
for future computer vision development (e.g. evaluation of face detection [21]).
However, prior work focuses on face anonymization, leaving several primary
and secondary identifiers untouched. Some methods anonymize the entire body
[4, 35], but these methods are limited to low-resolution images [35] or generate
images with visual artifacts [4].

Conditional Image Synthesis Current state-of-the-art for conditional
image synthesis generates highly realistic images in many domains, such as
image-to-image translation [22, 48]. An emerging approach is to introduce
conditional information to the generator via adaptive modulation (also known
as adaptive normalization [19]). This is known to be effective for unconditional
synthesis [27], semantic synthesis [43], and style transfer [19]. Adaptive
modulation conditions the generator by layer-wise shifting and scaling feature
maps of the generator, where the shifting and scaling parameters are adaptive
with respect to the condition. In contrast to prior semantic-modulation methods
[43, 52, 53], V-SAM conditions the modulation parameters on dense surface
information and generates global modulation parameters instead of independent
layer-wise parameters. Conditional modulation is adapted for human synthesis,
where prior methods adapt spatially-invariant [36, 46], or spatially-variant
modulation [1, 59]. However, these methods are conditioned on a source
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appearance, yielding softer privacy guarantees compared to V-SAM.

Human Synthesis Prior work for person image generation often focus on
resynthesizing humans with user-guided input, such as rendering persons in
novel poses [3, 31], with different garments [16], or with a new motion [6].
Recent work [7, 13, 30, 40, 47] employ dense pixel-to-surface correspondences
in the form of DensePose UV-maps [15]. These methods "fill in" UV texture
maps, then render the person in new camera views [7] or poses [13, 30, 40, 47].
In contrast, CSE is a much more compact representation, and the continuous
representation eases modeling complexity (e.g. downsampling of DensePose is
not straightforward) and removes the need to handle borders. In other cases,
the aim is to reconstruct the 3D surface and texture [38, 45, 55], which can be
rendered to the scene given a camera view [55]. A limited amount of work
focuses on human synthesis without a source image, where Ma et al. [34]
maps background, pose, and person style into Gaussian variables, enabling
synthesis of novel persons. None of these methods are directly applicable for
human anonymization, as they require information about a source identity or
the camera position to render the person. Additionally, none of them account
for modeling background variations in the scene, which is the challenge of
in-the-wild anonymization.

3 Method

We describe the anonymization task as an inpainting task. The objective of the
generator is to inpaint the missing regions in the image I⊙M, where Mi = 0 for
missing pixels and 1 otherwise. For each missing pixel, the surface embedding
ei ∈R16 (the output of a CSE-detector [41]) represents the position of pixel i on
a canonical 3D surface S (i.e. the position on a "T-shaped" human body). The
surface S is discretized with 27K vertices, where each vertex has a positional
embedding ek obtained from the CSE-detector [41]. From this, pixel-to-vertex
correspondences are found from euclidean nearest neighbor search between ei

and ek
2. Figure 2 shows the overall architecture.

2Finding pixel-to-vertex correspondence is not strictly necessary. However, replacing the
regressed embedding ei with the nearest ek prohibits the generator from directly observing
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3.1 Surface Adaptive Modulation

Inspired by the effectiveness of semantic-adaptive modulation [43], we intro-
duce Surface Adaptive Modulation (SAM). SAM normalizes and modulates
convolutional feature maps with respect to dense pixel-to-surface correspon-
dences between the image and a fixed 3D surface. Given the continuous
positional embedding ei, a non-linear mapping fω transforms ei to an interme-
diate surface-adaptive representation ωi;

ωi =

{
fω(ei) if Mi = 0
ωM otherwise

, (1)

where ωi ∈ RD, and ωM ∈ RD is a pixel-independent learned parameter for
all pixels that do not correspond to the surface (D = 512 for all experiments).
Given ωi, a learned affine operation transforms ωi to layer-wise "styles" γℓi (we
use the word "style" following prior work [19, 27]) to scale the feature map
xℓ;

SAM(xℓi ,γ
ℓ
i ) = γℓi · xℓi , (2)

where each pixel i is modulated by γℓi independently. Note that we follow
StyleGAN2 design [28], with modulation before convolution and normalization
after.

The global mapping network ( fω ) adapts the smooth surface embedding into
semantically meaningful surface-adaptive styles, which are not necessarily
smooth. For instance, this enables the generator to learn part-wise continuous
styles with clearly defined semantic borders (e.g. between two pieces of cloth-
ing). We observe that a deeper mapping network learns higher-fidelity styles
(Figure 3), which improves image quality (shown in Section 4.1).

Unlike prior semantic-based modulation [43, 52, 53], SAM uses a denser and
more informative representation that excels at human synthesis. Semantic-
based modulation learns spatially-invariant (but semantic-variant) styles [53],
which is reflected in Figure 3. These spatially-invariant parameters are efficient
for natural image synthesis but translate poorly to the highly fine-grained task
of human figure synthesis. In contrast, SAM learns semantically detailed styles
independent of pre-defined semantic regions.

embeddings regressed from the original image. This can mitigate identity leaking through
CSE-embeddings.
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(a) n = 0 (b) n = 2 (c) n = 4 (d) n = 6 (e) SPADE

Figure 3: Visualization of the norm of γ for SAM where fω has n layers (a-d), and
(e) show SPADE [43] with 26 semantic regions. Note that SAM learns much more
fine-grained details (e.g. zoom in on head or fingers) than its semantic counterpart
[43].

3.2 Variational Surface Adaptive Modulation

A key limitation to SAM is that the appearance of the synthesized body depends
on its spatial position. Typically, an image-to-image generator inputs a latent
code (z) directly to a 2D feature map through concatenation or additive noise.
However, this entangles the latent code with the spatial feature map, making the
appearance of the generated person dependent on the position in the image.

Instead of inputting z to a 2D feature map, we extend SAM to condition the
mapping network on z; ωi = fω(ei,z). Now, fω transforms the latent variable z
to a surface-adaptive intermediate latent space (ω), which is modulated onto
the spatial feature map. This naive extension of SAM allows the generator to
directly relate latent factors of variations (e.g. color of the shirt) to specific
positions on the body. Note that the variational modulation of V-SAM is inde-
pendent of the spatial position of the body in the image, as γℓi is determined
solely from (z,ei). This enables V-SAM to modulate the style of the body in-
variant to image rotation and translation, improving the ability of the generator
to synthesize the same person independent of its spatial position 3.

3Note that rotational invariance is not retained in the generator, as the generator is not rota-
tionally invariant itself. However, adapting V-SAM with StyleGAN3-R [26] produces a
surface-guided rotationally invariant generator.
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Adaptive modulation is an established technique in the literature for uncon-
ditional [19, 27] and conditional modulation [43, 62]. However, the design
of V-SAM is more expressive than current methods, and the explicit adap-
tion of latent variables to surface locations independent of spatial position
is unique to V-SAM. The naive design of V-SAM originates from the plain
representation of CSE, where equally expressive modulation techniques based
on other representations (e.g. DensePose or semantic maps) require much more
engineering effort. For example, current variational semantic-based modula-
tion [52, 66] does not directly translate to human synthesis 4 and the styles
generated by V-SAM are of higher fidelity. Furthermore, the expressiveness
of V-SAM significantly improves quality and disentanglement compared to
previous methods, which we experimentally validate in section 4.2.

3.3 Discriminator Surface Supervision

Supervising the discriminator by teaching it to predict conditional information
(instead of inputting it), is known to improve image quality and training stability
[42, 48]. We propose a similar objective for surface embeddings.

We formulate the surface embedding prediction as a regression task. We extend
the discriminator with an FPN-head that outputs a continuous embedding for
each pixel; êi. Along with the adversarial objective, the discriminator optimizes
a masked version of the smooth L1 loss [11];

LCSE(ê,e) = ∑
i∈h,w

(1−Mi)⊙ smoothL1(êi,ei). (3)

Similarly, the generator objective is extended with the regression loss with
respect to the generated image. Unlike the original CSE loss [41], our objective
is simpler as we assume a fixed embedding e which is learned in advance.

Discriminator surface supervision explicitly encourages the discriminator to
learn pixel-to-surface correspondences. This yields a discriminator that pro-
vides highly detailed gradient signals to the generator, which considerably
improves image quality. In comparison to semantic-based supervision [48],

4E.g. adapting [52, 66] for body parts requires class-specific latent variables that have to
semantically match between related regions
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surface-supervision provides higher-fidelity feedback without relying on pre-
defined semantic regions. Finally, we found that additionally predicting "real"
and "fake" areas (as in OASIS [48]) negatively affects training stability and
that a FPN-head is more stable to train compared to a U-Net [44] architecture
(as used in [48]).

3.4 The Anonymization Pipeline

Our proposed anonymization framework consists of two stages. Initially, a
CSE-based [41] detector computes the location of humans, including a dense
2D-3D correspondence between the 2D image and a fixed 3D human surface.
Given the detected human, we zero-out pixels covering the human body and
complete the partial image with a generative model. Note that the masks
generated from CSE [41] do not cover areas that are "outside" of the human
body, thus we dilate the mask to ensure that it covers clothing and hair. We
extend eq. (1) with an additional pixel-independent learned parameter for the
dilated regions (similar to ωM), to ensure a smooth transition between known
areas and unknown dilated areas (without a surface embedding).

4 Experiments

We validate our design choices in Section 4.1 and compare V-SAM to alterna-
tive methods in Section 4.2. Section 4.3 ablate on the DeepFashion [33] dataset
for scene-independent human synthesis. Finally Section 4.4 evaluates the
impact of anonymization for future computer vision development. Appendix C
and D include further evaluation.

Architecture Details We follow the implementation of StyleGAN2 [28]
for our training setup. The generator is a U-Net [44], previously adapted for
image-to-image translation [22], and the discriminator is similar to the one of
StyleGAN2. The generator uses instance normalization for each convolution,
operating only on standard deviation (i.e. the mean is not used for normaliza-
tion). The latent variable (z) is linearly projected and concatenated to the input
of the decoder of the generator, unless it is inputted through modulation. The
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Original SPADE B D,n=0 D E

Figure 4: Synthesized images for the different model iterations in Table 1. Appendix
D includes random examples.
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(a) (b) (c) (d) (e)

Figure 5: Config E diverse synthesis. (a) is the input, (b) is the generated image
with truncation (t=0), and (c-e) are without truncation. Appendix D includes random
examples.
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baseline discriminator and generator has 8.5M and 7.4M parameters, respec-
tively. We use the non-saturating adversarial loss [12] with epsilon penalty
[24] and r1-regularization [37]. We mask the r1-regularization by M, similar
to [57, 20]. Data augmentation is used for COCO-Body, including geometrical
transforms, and color transforms. Otherwise, we keep the training setup simple,
with no feature matching loss [54], or path length regularization [28]. We set
the dimensionality of ωi and the fully-connected layers in fω to 512, and use
6 layers in fω unless stated otherwise. Appendix A includes further details.

Dataset Details We validate our method on two datasets; a derived version
of the COCO-dataset [32] (named COCO-Body) for full-body anonymization
and DeepFashion [33] for static scene synthesis. We will open-source the
CSE-annotations for both datasets.

• COCO-Body contains cropped images from COCO [32], where a single
human is in the center of each image. Each image has automatically
annotated CSE embeddings and a boolean mask indicating the area to
be replaced. Note that each mask is dilated from the original CSE-
embedding such that the mask covers all parts of the body. The dataset
contains 43,053 training images and 10,777 validation images, with a
resolution of 288×160. See Appendix B for more details.

• DeepFashion-CSE includes images from the In-shop Clothes Retrieval
Benchmark of DeepFashion [33], where we have annotated each image
with a CSE embedding. It has 40,625 training images and 10,275 val-
idation images, where each image is downsampled to 384×256. The
dataset includes some errors in annotations, as no annotation validation
is done.

Evaluation Details We follow typical evaluation practices for generative
modeling. We report Fréchet Inception Distance (FID) [18], Learned Percep-
tual Image Patch Similarity (LPIPS) [61], LPIPS Diversity [65], and Perceptual
Path Length (PPL) [27]. FID, LPIPS, and LPIPS diversity is found by generat-
ing 6 images per validation sample, where the reported LPIPS is the average.
In addition, we report the face quality by evaluating FID for the face region
(see Appendix A). Appendix C includes all metrics for each model.
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Table 1: Iterative addition of surface guidance to the baseline. * LCSE is applied to G
and D, where G receives CSE-information by concatenation with the image

Method LPIPS ↓ FID ↓ PPL ↓ Diversity ↑
A: Baseline 0.237 7.4 26.7 0.162
B: A + LCSE* 0.220 5.8 19.0 0.140
C: B + SAM 0.219 5.6 19.2 0.143
D: B + V-SAM 0.220 5.2 13.7 0.166
E: D + Larger D/G 0.211 4.8 15.1 0.161

Table 2: Config D with different number of layers (n) in the mapping network ( fω ).
All other experiments use 6 layers.

fω depth (n) Face FID ↓ FID ↓ PPL ↓
0 7.7 5.4 24.9
2 8.0 5.4 19.7
4 7.9 5.5 19.8
6 7.4 5.2 13.7

4.1 Attributes of Surface-Guided GANs

We iteratively develop the baseline architecture to introduce surface guid-
ance. Table 1 (and Figure 4) reflects that the addition of discriminator surface-
supervision (config B) and surface modulation (config C/D) drastically im-
proves image quality. Note that adaptive modulation is only applied for the
convolutional layers in the decoder. Config E increases the model size of the
generator and discriminator to 33M and 34M parameters, respectively. The
final generator produces high-quality and diverse results (Figure 5). In addition,
the conditional intermediate latent space ω is amenable to similar techniques
as the latent space of StyleGAN [27], e.g. the truncation trick [5] and latent
interpolation (ablated in Appendix C). Figure 5 includes generated images with
latent truncation.

Mapping Network Depth A deeper mapping network allows the generator
to learn finer-grained modulation parameters, which we find to significantly
improve image quality and latent disentanglement (Table 2). Qualitatively, we
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observe that this significantly improves the quality of fine-grained regions (e.g.
the face and fingers, see Figure 4). We quantitatively validate this improvement
through the FID of the upsampled face region (Face FID).

Furthermore, a deeper mapping network allows the generator to better disentan-
gle the latent space 5, which is reflected by PPL. The improved disentanglement
is rooted in two design choices; first, SAM explicitly disentangles the varia-
tions of pose into surface-adaptive modulation. Secondly, V-SAM allows the
generator to easier control specific areas of the human body disentangled of the
spatial image, by "unwarping" the fixed distribution z to the surface-conditioned
distribution ω .

Affine Invariance Studies V-SAM is invariant to affine image-plane
transformations, and thus, improves the ability of the generator to disentangle
the latent representation from such transforms. We quantitatively evaluate this
with Peak Signal-to-Noise Ratio (PSNR), following [60],

EI,M,E,t∼T PSNR[t(G(Ī,E)),G(t(Ī), t(E))], (4)

where Ī = I ⊙M, E is the CSE embedding, G is the generator, and T is the
distribution of vertical/horizontal image shifts. T is limited to translate by
a maximum 1

8 of the image width/height. Similarly, we evaluate rotational
invariance (limited to ±90◦) and horizontal flip.

V-SAM significantly improves the baseline w.r.t. invariance to affine trans-
formations (table 3), as V-SAM is invariant to such transformations. In com-
parison, SAM achieves similar scores as the baseline. The aspect of affine-
invariance is important for realistic anonymization, as the detection can induce
slight shifts across frames.

Computational Complexity V-SAM consists of two stages, the mapping
network and layer-wise linear transformations. Each layer-wise transformation
is efficiently implemented as 1× 1 convolution. The mapping network is
a sequence of fully-connected layers, which can be implemented as 1× 1

5Following Karras et al. [27], "disentangled latent space" refers to that the latent factors of
variations are separated into linear subspaces.
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Table 3: Comparison of V-SAM to alternative adaptive normalization methods. All
methods are applied on top of config B.

Affine Transformation Quality
Method Translation ↑ Rotation ↑ Hflip ↑ Diversity ↑ FID ↓ PPL ↓ Face FID ↓
Config B 23.1 20.3 21.7 0.140 5.8 19.0 9.1
B + SPADE [43] 22.5 19.8 20.7 0.150 5.9 20.6 9.7
B + INADE [52] 24.1 20.2 20.9 0.140 5.8 19.5 9.4
B + CLADE [53] 22.9 20.1 21.3 0.138 5.7 16.9 8.9
B + StyleGAN [28] 25.5 20.9 21.6 0.155 5.7 48.2 9.4
B + CoMod [62] 24.5 20.6 21.6 0.154 5.5 17.5 8.0
B + SAM 23.8 20.7 21.4 0.143 5.6 19.2 7.4
B + V-SAM 26.1 21.4 22.5 0.166 5.2 13.7 7.4

convolution by using the spatial embedding map ei for each pixel i. However,
in practice, we find the nearest vertex embedding ek for each embedding ei,
and transform the 27K vertex-embeddings to wk. This results in a mapping
network independent of image resolution.

4.2 The Expressiveness of V-SAM

We now analyze the expressiveness of V-SAM compared to well-established
modulation techniques. Specifically, we compare against adaptive instance
normalization from StyleGAN2 [28], co-modulation (CoMod) [62], and varia-
tional [52]/non-variational [43, 53] semantic-based methods. All methods are
applied on top of Config B.

table 3 shows that V-SAM significantly improves upon previous modulation
methods. V-SAM generates higher-fidelity styles than both semantic-based
modulation [28, 62] and spatially invariant modulation [43, 52, 53], yielding a
substantial improvement in image quality (FID). This is especially prominent in
semantically complex areas of the body (Face FID). Note that the improvement
of V-SAM over co-modulation [62] is significant, as it is approximately the
same as increasing the number of parameters by 20M (config E vs D, table 1).
Furthermore, V-SAM improves latent disentanglement (PPL), originating from
the expressive and explicit design of V-SAM. Finally, V-SAM is more invariant
to affine image-plane transformations.
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Figure 6: V-SAM can transfer attributes between poses by simply sampling the same
latent variable z. Each row shows synthesized images with the same latent variable,
but different input pose.

4.3 Synthesis of Humans in Static Scenes

We demonstrate that V-SAM excels at human synthesis for the DeepFashion
[33] dataset. Following the design of SPADE [43], we design a decoder-only
generator that synthesizes humans independent of any background image.

The disentangled and spatially-invariant latent space of V-SAM allows the
generator to transfer attributes between poses. By sampling the same latent
variable z for different poses, V-SAM is able to perform pose/motion transfer
of synthesized humans (Figure 6) without any task-specific modeling choices
(e.g. including a texture encoder [59]). However, V-SAM is variant to 3D affine
transformations that are not parallel to the imaging plane (e.g. changing the
depth of the scene). This is reflected in Figure 6, where changing the depth
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Original Pixelation 8×8 Pixelation 16×16 Masked out Ours

Figure 7: Different anonymization methods for an image from COCO [32] val2017.
Appendix D includes random examples.

Table 4: Instance segmentation mask AP on the COCO validation set [32]. The results
are from a pre-trained Mask R-CNN [17] R50-FPN-3x from detectron2 [56] evaluated
on different anonymized datasets.

Validation Dataset AP50:95 ↑ AP50 ↑ AP75 ↑ APs ↑ APm ↑ APl ↑ APPerson ↑
Original 37.2 58.6 39.9 18.6 39.5 53.3 47.7
Mask Out 32.8 52.0 35.1 16.3 34.6 47.3 27.5
8×8 Pixelation 32.8 51.8 35.2 16.4 34.6 47.2 33.3
16×16 Pixelation 33.4 53.0 35.7 16.7 35.0 48.1 38.4
Ours 34.6 55.0 37.0 17.1 36.8 50.0 44.9

of the scene significantly changes the synthesized person. We believe that
combining V-SAM with task-specific modeling choices from the pose/motion
transfer literature [36, 59] could resolve these issues.

4.4 Effect of Anonymization for Computer Vision

Data Usability We analyze the effect of anonymization for future computer
vision development by evaluating a pre-trained Mask R-CNN [17] on the
COCO dataset (results on PASCAL VOC [9] are included in Appendix B).
We anonymize all individuals that are detected by a pre-trained CSE-detector
[41], where we use all detections with a confidence score higher than 0.1. We
compare our framework to traditional anonymization methods (Figure 7).

Our method significantly improves APperson compared to traditional anonymiza-
tion (Table 4), even pixelation, which is known to be questionable for anonymiza-
tion [14, 39]. However, we observe a notable drop in average precision for
other object classes, which originates from two sources of error. First, full-
body anonymization removes objects that often appear with human figures.
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Table 5: Re-identification mAP and rank-1 accuracy on Market1501 [63] using the
official code of OSNet [64].

Anonymization R1 ↓ mAP ↓
Original 94.4 82.5
Pixelation 8×8 67.8 39.6
Pixelation 16×16 86.6 66.4
Mask-out 28.2 10.4
Face Anonymization [21] 82.1 50.7
Ours 31.1 14.4

For example, the "tie" class drops from 31% AP to 1% and "toothbrush" drops
from 14.6% to 6.2%. Secondly, the detections include false positives, yielding
highly corrupted images when anonymizing these. For example, the "zebra"
class drops from 56.2% to 48.0%. We observe insignificant degradation for
objects that are rarely detected as person (e.g. car, train, elephant). Finally,
surface-guided anonymization improves over traditional techniques for training
purposes, which we validated on the anonymized COCO dataset (Appendix B).

Anonymization Quality Table 5 evaluates the effect of anonymization for
person re-identificaiton on the Market1501 [63] dataset. Surface-guided GANs
provide similar anonymization guarantees as masking out the region. Mean-
while, face anonymization and pixelation yields a much higher re-identification
rate, reflecting its worse anonymization guarantee.

5 Conclusion

We present a novel full-body anonymization framework that generates close-
to-photorealistic and diverse humans in varying and complex scenes. Our
experiments show that guiding adversarial nets with dense pixel-to-surface cor-
respondences strongly improves synthesis of high-fidelity textures for varying
poses and scenes. Finally, we demonstrate that our anonymization framework
better retains data usability for future computer vision development compared
to traditional anonymization.
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5 Conclusion

Limitations Our contributions significantly improve the usability of anon-
ymized data and generate new identities independent of the original. However,
our method has limitations that can compromise the privacy of individuals.
As with any anonymization method, our method relies on detection that is far
from perfect 6 and vulnerable to adversarial attacks. Detection is improving
every year and defense against adversarial attacks is currently a large focus
in the community [29]. We believe that potential errors in detection can be
circumvented with face detection as a fallback.

With the assumption of perfect detections, identification is still possible through
gait recognition (when anonymizing videos), or through identity leaks in the
CSE-embeddings. We speculate that gait recognition can be mitigated by
slightly randomizing the original pose between frames. Furthermore, identity
leaking through surface embeddings is possible, as they are regressed from
the original image and could include identifying information. We reduce
this possibility by discretizing the regressed embedding into one of the 27K
vertex-specific embeddings (Section 3).

Surface-guided GANs significantly improve human figure synthesis for in-the-
wild image anonymization. Nevertheless, human synthesis is a complicated
task, and many of the images generated by our method are recognizable as
artificial by a human evaluator. One of the limiting factors of our model is the
dataset, where COCO-Body contains 40K images with a large variety. This
is relatively small compared to the 70K images in FFHQ [27], which is a
considerably simpler task. Our method applies data augmentation to mitigate
this. However, further extension with adaptive augmentation [25] or transfer
learning could be fruitful.

Societal Impact We live in the age of Big Data, where personal information
is the business model for many companies. Recently introduced legislation has
complicated data collection, requiring consent to store any data that contains
personal information. This can be a barrier to research and development,
especially for the data-dependent field of computer vision. We present a
method that can better preserve the privacy of individuals, while retaining the

6Current CSE-based detectors (R-101-FPN-DL-s1x [56]) has an average recall rate of 96.65%
(AR50) for human segmentation on COCO-DensePose [15]. Note that COCO-DensePose
contains primarily high-resolution human figures.
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usability of the data. Nevertheless, our work focus on the synthesis of realistic
humans, which has a potential for misuse. The typical example is misuse
of DeepFakes, where generative models can be used to create manipulated
content with an intention to misinform. Several solutions have been proposed,
where the DeepFake Detection Challenge [8] has increased the ability of
models to detect manipulated content, and pre-emptive solutions such as model
watermarking [58] can mitigate the potential for misuse.
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DeepPrivacy2: Towards Realistic Full-Body
Anonymization

Håkon Hukkelås Frank Lindseth
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Figure 1: DeepPrivacy2 detects and anonymizes individuals via three detection and
synthesis networks; (1) a CSE-guided generator for individuals detected with dense
pose (by CSE [30]), (2) an unconditional full-body generator for cases where CSE
fails to detect (note the segmented persons without color-coded CSE detections), and
(3) a face generator for the remaining individuals (marked in red). The original image
is from Wider-Face [45].

Abstract

Generative Adversarial Networks (GANs) are widely adopted for
anonymization of human figures. However, current state-of-the-art lim-
its anonymization to the task of face anonymization. In this paper, we
propose a novel anonymization framework (DeepPrivacy2) for realis-
tic anonymization of human figures and faces. We introduce a new
large and diverse dataset for full-body synthesis, which significantly
improves image quality and diversity of generated images. Further-
more, we propose a style-based GAN that produces high-quality, di-
verse, and editable anonymizations. We demonstrate that our full-body
anonymization framework provides stronger privacy guarantees than
previously proposed methods. Source code and appendix is available at:
github.com/hukkelas/deep_privacy2.
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Figure 2: Examples from the FDH dataset. Each image is annotated with keypoints,
pixel-to-vertex correspondences (from CSE [30]) and a segmentation mask. The
leftmost image shows annotations for the first image.

1 Introduction

Collecting and storing images is ubiquitous in our modern society, where
a range of applications requires collecting privacy-sensitive data. However,
collecting such data without anonymization or consent from the individual is
troublesome due to recently introduced legislation in many areas (e.g. GDPR
in EU). Traditional image anonymization (e.g. blurring) is widely adopted
in practice; however, it severely distorts the data, making it unusable for
future applications. Recently, realistic anonymization has been introduced as
an alternative to traditional methods, where generative models can generate
realistic faces fitting into a given context [7, 13, 26, 40]. However, current
methods focus on face anonymization, which does not prevent recognition
through identifiers outside the face, including both primary (e.g. ears, gait [15])
and secondary (e.g. gender) identifiers.

Surface Guided GANs (SG-GAN) [14] propose a full-body anonymization
GAN guided on dense pixel-to-surface correspondences from Continuous
Surface Embeddings (CSE) [30]. SG-GAN shows promising results for full-
body anonymization, but their method often includes visual artifacts, degrading
the image quality. The authors attribute the limited visual quality to the
dataset, where they use a derivate of COCO [23] containing 40K human
figures. Furthermore, the CSE segmentation used for anonymization does not
include accessories/hair on the human body; thus, the anonymized individual
often "wears" these unsegmented areas (see fig. 3). Additionally, SG-GAN
fails to anonymize many individuals, as the CSE detector often fails to detect
persons that are further away from the camera.

In this work, we extend Surface Guided GANs to address the limited visual
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1 Introduction

quality and the insufficient anonymization due to poor segmentation. Further-
more, we address cases where the CSE detector fails to detect individuals. We
summarize our contributions in the following.

First, we introduce the Flickr Diverse Humans (FDH) dataset. The FDH dataset
consists of 1.5M images of human figures in diverse contexts extracted from
the YFCC100M [42] dataset. We show that the larger dataset greatly benefits
the visual quality of generated human figures.

Secondly, we propose a novel anonymization framework that combines detec-
tions from multiple modalities to improve the segmentation and detection of
human figures. Our anonymization framework divides image anonymization
into three individual anonymizers; (1) for human figures that are detected
with a dense pose estimation (CSE), (2) for human figures that CSE does not
detect, and (3) for the remaining faces (see fig. 1). For each category, our
framework employs a simple inpainting GAN that follows established GAN
training techniques for unconditional image generation [17, 18]. We show that
our GAN generates high-quality and diverse identities with few task-specific
modeling choices.

Finally, we extend our GAN for face anonymization on an updated version
of the Flickr Diverse Faces (FDF) dataset [13]. In contrast to previous face
anonymization techniques [7, 13, 26, 40], our GAN uses no pose guidance,
enabling it to anonymize individuals where pose information is challenging to
detect. Furthermore, we show that our style-based generator can adapt methods
from unconditional GANs to find global semantically meaningful directions
in the GAN latent space. This enables text-guided attribute editing for our
anonymization pipeline.

DeepPrivacy2 surpasses all previous state-of-the-art realistic anonymization
methods in terms of image quality and anonymization guarantees. We validate
the effectiveness of DeepPrivacy2 with extensive qualitative and quantitative
evaluation. Our code, pre-trained models, and the FDH dataset is available at
github.com/hukkelas/deep_privacy2.
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2 Related Work

Image Anonymization Naive image anonymization (e.g. masking, blur-
ring, pixelation) is widely adopted in practice; however these methods severely
degrade the quality of the anonymized image, making the data unusable
for many applications. Early work focused on the K-same family of algo-
rithms [8, 16, 31], which provides better privacy guarantees and data usability
than naive methods , but generate highly corrupted images. Recent work
on deep generative models reflects that learning-based anonymization can
realistically anonymize data while retaining its usability for downstream appli-
cations. These methods anonymize face regions by either inpainting missing
regions [13, 26, 40, 41] or transforming [7, 35] the original face. Our method
anonymizes by inpainting, as inpainting-based methods provide stronger pri-
vacy guarantees than transformative methods, as they never observe the orig-
inal privacy-sensitive information. The majority of prior work focuses on
face anonymization, which compromises privacy for many use cases, as they
leave several primary (e.g. ears, gait) and secondary (e.g. gender) identifiers
on the human body untouched. There is a limited amount of work focusing
on full-body anonymization [2, 14, 26], where prior methods are limited to
low-resolution images [26] or generate images with visual artifacts [2, 14].

Full-body Synthesis Recent work on full-body synthesis focus on limited
tasks, such as transferring source appearances into new poses [1, 3, 22, 29, 38],
with different garments [9, 37, 38], or with new motion [3]. These methods are
often guided on dense pixel-to-surface correspondences or sparse keypoints
annotations. In contrast to these methods, our anonymization approach does not
rely on a source appearance to transfer, and the majority of the aforementioned
methods do not handle large variations in background contexts. Furthermore,
a number of these methods focus on low-variance datasets (e.g. DeepFashion
[24]), which consists of a limited number of identities in similar poses and a
close-to static context (white background). There is a limited amount of work
focusing on full-body synthesis without a source appearance, where Ma et al.
[25] proposes a pose-guided GAN for novel full-body synthesis.
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3 The Flickr Diverse Humans Dataset

Detection (Ours) SG-GAN [14] Ours

Figure 3: SG-GAN [14] anonymizes only the area from a CSE segmentation (marked
in blue tint), which does not include accessories/hair. This results in SG-GAN [14]
anonymization often wearing the original hair/accessories of the original identity
(marked in red). In contrast, DeepPrivacy2 anonymizes the segmentation from Mask
R-CNN (outlined), which includes hair and clothing.

3 The Flickr Diverse Humans Dataset

The Flickr Diverse Humans (FDH) dataset consists of 1.53M images of human
figures from the YFCC100M [42] dataset. Figure 2 shows examples from
the dataset. Each image contains a single human figure in the center, with a
pixel-wise dense pose estimation from CSE [30], 17 keypoint annotations from
a keypoint R-CNN model [10], and a segmentation mask. The segmentation
mask is the union of the mask from a CSE detector and Mask R-CNN [10]
trained on COCO. The dataset is automatically filtered through confidence
thresholding, automatic image quality assessment, the number of body parts
visible in the image, and overlap between keypoint and CSE predictions (see
Appendix A for more details). Otherwise, we perform no further filtering such
that the dataset includes individuals in all various contexts. The resolution
of each image is 288× 160, and the dataset is split into 1,524,845 images
for training and 30K images for validation. Compared to previously adopted
datasets for full-body synthesis [14, 24, 47], FDH is much larger and contains
a diverse set of individuals from in-the-wild images. Additionally, FDH is less
curated than typical datasets for generative modeling, where it includes human
figures with unusual poses, perspectives, lighting conditions, and contexts.
This is to ensure that our anonymization method can handle such conditions.
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4 The DeepPrivacy2 Anonymization Pipeline

This section outlines the core technologies used for our anonymization pipeline.
First, we present our ensemble detection pipeline, then our GAN-based synthe-
sis method.

4.1 Detection

The main objective of the detection module is to ensure that all individuals
in the image are detected. DeepPrivacy2 uses an ensemble of three detection
networks from different modalities; DSFD [21] for face detection, CSE [30]
for dense pose estimation, and Mask R-CNN [10] for instance segmentation.
The pipeline categorizes the detections into three categories; individuals with
dense pose estimation (detection w/ CSE), individuals not detected by CSE
(detection w/o CSE), and faces that are not included in the former categories.
For each category, we propose individual anonymization methods, introduced
in section 4.2. For human figures, we anonymize the union of Mask R-CNN
and CSE segmentations, such that accessories/hair detected by Mask R-CNN
(but not CSE) are anonymized (see fig. 3). Note that dense pose estimation
is not essential for privacy, but it substantially improves synthesized image
quality. Furthermore, the detections are tracked with a bounding box tracker,
such that the anonymization can retain the same identity over a sequence of
frames. Compared to SG-GAN [14], the ensemble of detectors significantly
improves detection recall, as DeepPrivacy2 uses Mask R-CNN and DSFD for
fallback detection when the CSE detector fails.

Implementation Details. Instance segmentation and CSE segmentation are
combined via simple Intersection over Union (IoU) thresholding, where we
assume all detections with an IoU higher than 0.4 are the same individual. All
instance segmentations from Mask R-CNN not combined with a CSE detection
are categorized as a detection without CSE. All face detections within the CSE
or Mask R-CNN segmentation are discarded. All detections are tracked with
simple Kalman filtering on bounding boxes, following the implementation
of motpy [28]. We use Mask R-CNN and the CSE implementations from
detectron2 [43], specifically, the ResNeXt-101 FPN [44] Mask R-CNN, and
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4 The DeepPrivacy2 Anonymization Pipeline

ResNet-101 [11] CSE. We adapt DSFD [21] from the official implementation
of the authors.

4.2 Synthesis Method

DeepPrivacy2 uses three independently trained generators for the three different
detection categories introduced in section 4.1 (detection w/ cse, detection w/o
cse, faces). While the tasks significantly differ in complexity, they share
training setup and architecture to a high degree. Here, we first present our
style-based generator, then present task-specific modeling choices for full-
body and face synthesis. Each generator frame the anonymization task as an
image inpainting task, where we remove areas to be anonymized and let a
generator complete the missing region. Specifically, the input and output of
each generator is given by 1,

Ĩ = G(I ⊙M,M,z)⊙M+(1−M)⊙ I, (1)

⊙ is element-wise multiplication, I the original image, and M indicates missing
regions (M is 1 for known pixels and 0 for pixels to be anonymized).

4.2.1 A Style-Based U-Net Generator

Our synthesis method follows the implementation of Surface-guided GANs
[14]. The generator is a U-Net [36] with limited task-specific modeling choices,
consisting of a context encoder and a style-based decoder. The context encoder
uses a sequence of convolutions and downsampling layers, with residual con-
nections at every feature map resolution. We use no normalization layers in
the encoder, as it performs similarly without it. However, we find it essential
to apply instance normalization for the features in the U-net skip connections,
where we combine features from the encoder and decoder as additive resid-
uals. The decoder follows the design of Stylegan2 [18], with the operation
order instance normalization → convolution → style modulation. Note that

1For the CSE-guided generator, the CSE-embedding is concatenated with I ⊙M to the input
of the generator. See section 4.2.1.
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we replace the baked-in weight demodulation in Stylegan2 with instance nor-
malization, as we find that normalization on expected statistics works poorly
when large areas of the input are missing.

Furthermore, we increase the depth of the U-net to 5 downsampling layers, such
that the minimum feature resolution is 9×5. In contrast, SG-GAN has three
downsampling blocks, where most parameters are at the 36×20 resolution. We
observe no performance degradation by increasing the depth while improving
inference speed, as more parameters are located at lower resolution layers.
Finally, we remove V-SAM and discriminator surface supervision used in
SG-GAN. Appendix C includes further details.

Full-Body Synthesis The full-body generator is trained on the FDH
dataset at a resolution of 288× 160. We train two independent generators
for full-body synthesis; one that concatenates the CSE embedding to the in-
put image and one that does not. The CSE embedding has a resolution of
16×288×160, where we use the pixel-to-vertex embedding map released in
the official implementation of CSE [30, 43].

Face Synthesis In contrast to previous face anonymization methods [13,
26, 40], we propose a generator that does not use keypoints for synthesis.
Removing the keypoint detector improves detection recall in cases where
keypoints are difficult to detect. We train the face generator on an updated
version of the FDF dataset [13], which increases the image resolution to
256×256 from the original 128×128.

4.3 Recursive Stitching

The final stage of our pipeline is pasting the anonymized identities into the
original image. Unlike face anonymization, full-body anonymization has many
detection overlaps. If not handled correctly, these overlaps generates visually
annoying artifacts at the border between individuals.

Our stitching approach recursively stitches each individual in ascending order
depending on the number of pixels the person covers. The recursive stitching
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4 The DeepPrivacy2 Anonymization Pipeline

(a) Detections

(b) Descending ordering

(c) Ascending ordering

Figure 4: Anonymization results comparing our method with descending and ascend-
ing image stitching order. The ascending ordering stitches foreground objects last,
which improves image quality at detection borders (e.g. marked in red).
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assumes that the synthesis method handles overlapping artifacts when gen-
erating each individual. Additionally, our ordering assumes that objects in
the foreground cover a larger area, where foreground objects are stitched in
last. The reverse order (foreground objects first) results in background objects
"overwriting" foreground objects, as the detections can overlap (see fig. 4).
This naive ordering significantly reduces visual artifacts at borders between
individuals.

5 Experimental Evaluation

We validate our proposed anonymization pipeline in terms of synthesis quality,
using anonymized data for future development, and anonymization guarantees.
There are no standard baselines to compare against for realistic anonymization
of data. Thus, we compare against traditional anonymization techniques, and
DeepPrivacy [13], a widely adopted realistic face anonymizer. Additionally,
we compare our full-body generator to Surface Guided GANs [14]. Appendix
D includes random anonymized images on Cityscapes [4], COCO [23], FDH,
and FDF256.

Experimental Details. All models are trained with Pytorch 1.10 [33] on 4
NVIDIA V100-32GB. For qualitative examples, we use multi-modal truncation
to improve image quality while retaining diversity [27]. We report Fréchet
Inception Distance (FID) [12] and FIDCLIP

2 [20] to evaluate image quality
using Torch Fidelity [32]. The three generators (for CSE-guided, unconditional
and face) has 43M parameters each.

Datasets. For training, we use the FDH dataset (see section 3) for full-body
synthesis, and FDF256 for face synthesis. The FDF256 dataset is an updated
version of FDF [13], where the image resolution is increased from 128×128
to 256× 256 (see Appendix B ). For evaluation, we use Market1501 [47],
Cityscapes [4], and COCO [23]. We follow the standard train/validation split
for all datasets.

2FIDCLIP is less sensitive to ImageNet classes. ImageNet-FID is insensitive to faces and scores
images containing ImageNet objects (e.g. tie) higher [20].
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5 Experimental Evaluation

(a) Original (b) Detections

(c) Anonymized

Figure 5: DeepPrivacy2 anonymization result on an image from WIDER-Face. Ap-
pendix D includes random examples.

Runtime Analysis. The DeepPrivacy2 architecture is computationally
efficient, where the CSE-guided generator processes ∼ 11.6 frames per second
(FPS), and the face generator at ∼ 7.9 FPS on an NVIDIA 1080 8GB GPU. In
contrast, the SG-GAN [14] generator processes ∼ 7.3 FPS, where our improved
runtime originate from the removal of V-SAM and moving the majority of
parameters to lower resolution layers. The entire pipeline (detection, synthesis
and stitching) require ∼ 2.8 seconds to process an image with 12 persons on
an NVIDIA 1080 8GB GPU.

5.1 Synthesis Quality

Full-Body Synthesis. Figure 6 shows diverse synthesized examples on
the FDH dataset. Our model generates high-quality human figures that seam-
lessly transition into the original image. Furthermore, the model can handle
a large variety of background contexts, poses, and overlapping objects. We
find CSE guidance necessary for high-quality anonymization, where the un-
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(a) Detected (b) No CSE (c) (d) (e)

Figure 6: Synthesis results on FDH. (a) is the original identity and the anonymization
mask, (b) is the unconditional generator, and (c-e) is the CSE-guided generator
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5 Experimental Evaluation
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Figure 7: Our generator overfits early when trained on the small COCO-Body dataset
(blue) [14], which consists of ∼ 40K images of human figures. Note that this occurs
even with the strong data augmentation used by [14]. No data augmentation, other
than horizontal flip, is used for FDH.

conditional generator often generates human figures with unnatural poses (see
fig. 6). This is reflected in quantitative metrics, where the CSE-guided gen-
erator (FID=5.6, FIDCLIP=1.7) substantially improves over the unconditional
generator (FID=6.1, FIDCLIP=2.30). Furthermore, the primary improvement
of our model compared to Surface-guided GANs [14] is the larger and more
diverse FDH dataset. The same model trained on the COCO-Body dataset [14]
starts to overfit early in training, reflected by the diverging discriminator logits
and increasing FID (fig. 7).

Face Synthesis. Figure 8 shows generated results on the FDF256 dataset.
Directly comparing our face anonymizer to DeepPrivacy [13] is not straightfor-
ward, as we synthesize higher resolution images (256×256, not 128×128).
Additionally, the FDF256 dataset does not include the same images as the
original dataset, as FDF256 filter out lower resolution images. Nevertheless,
to validate our modeling choices, we retrain our GAN for 128×128 synthesis
on FDF [13]. Our GAN achieves a FID of 0.56, a significant improvement
compared to DeepPrivacy (FID=0.68) [13]. Note that this is without using face
keypoints, which the original DeepPrivacy uses to improve quality.

Figure 9 compares the open-source DeepPrivacy [13] to our method. Our
method generates higher quality faces and handles overlaps between detections
better. Also, note that DeepPrivacy does not anonymize all faces in the image,
as it is unable to detect keypoints for all individuals 3.

3Even with confidence threshold of 0.05, DeepPrivacy is unable to detect keypoints for all
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Figure 8: Synthesis results on FDF256. First column shows the original identity and
the anonymization mask. Columns 2-5 shows generated identities from DeepPrivacy2.
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5 Experimental Evaluation

(a) Original (b) DeepPrivacy

(c) Ours

Figure 9: Face anonymization comparison between our method and DeepPrivacy [13].

Attribute-Guided Anonymization DeepPrivacy2 allows for controllable
anonymization through text prompts by adapting StyleMC [19]. StyleMC
finds global semantically meaningful directions in the GAN latent space by
manipulating images towards a given text prompt with a CLIP-based [34] loss.
Figure 10 shows attribute-guided anonymization, where the global directions
are found over 256 images. As far as we know, DeepPrivacy2 is the first to
enable controllable anonymization through text prompts, whereas previous
methods are limited to no control or attribute preservation from the original
identity [7] .

5.2 Anonymization Evaluation

Anonymization Guarantee To evaluate the anonymization guarantee of
DeepPrivacy2, we evaluate how well automatic re-identification tools can

individuals.
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Original Anonymiza-
tion

Happy Mustache Blue eyes

Figure 10: Latent manipulations with StyleMC [19]. The text prompt used for
each edit is shown below each image. See our video for an interactive demo:
https://youtu.be/faoNyaaORts.

Anonymization R1 ↓ mAP ↓
Original 94.4 82.5
Pixelation 8×8 54.6 16.1
Pixelation 16×16 70.3 36.6
Mask-out 45.5 8.0
SG-GAN [14] 74.4 30.2
Full-body anonymization (Ours) 44.7 8.5

Table 1: Re-identification mAP and rank-1 accuracy on Market1501 [47] using OSNet
[48].

identify anonymized individuals. Specifically, we evaluate the re-identification
rate of OSNet [48] by anonymizing Market1501 [47]. In this case, a lower
re-identification mAP and rank-1 accuracy (R1) reflects worse re-identification,
indicating improved anonymization. Appendix C details the experiment further.

Table 1 reflects that pixelation enables re-identification of several of the
anonymized individuals. Our full-body anonymizer yields similar anonymiza-
tion guarantees as masking out the area and significantly improve compared
to pixelation. Furthermore, the full-body anonymization of SG-GAN [14]
provides poorer anonymization results than DeepPrivacy2. This is caused by
the CSE detector failing in several cases and the poor segmentation of acces-
sories/hair in SG-GAN, where the anonymized identity often "wears" parts of
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5 Experimental Evaluation

Train w/ Anon. Data Validate w/ Anon. Data
Dataset Box AP ↑ Kp. AP ↑ Box AP ↑ Kp. AP↑
Original 53.6 64.0 53.6 64.0

Masked Out 10.1 0.5 17.0 1.8
Pixelation 8×8 10.4 1.0 29.1 2.2

Pixelation 16×16 10.1 1.5 36.5 12.0
DeepPrivacy2 (w/o CSE) 21.4 10.2 49.9 11.5

DeepPrivacy2 26.0 31.9 49.4 48.4

Table 2: Keypoint (Kp.) AP on the COCO [23] validation set with a Keypoint R-50
FPN R-CNN [10].

the original identity (see section 4.1).

5.2.1 Training and Evaluating on Anonymized Data

A typical use case for anonymization is collecting and anonymizing data for
the development of computer vision systems. We evaluate DeepPrivacy2 on
two established computer vision benchmarks: COCO [23] person keypoint
estimation and Cityscapes [4] instance segmentation. We evaluate two use
cases; (1) using anonymized data for training, and (2) using anonymized data
for validation with a pre-trained model. For the former, we report evaluation
metrics on the original validation dataset.

COCO Person Keypoint Estimation. Table 2 analyzes the effect of
anonymization on the COCO dataset for person keypoint estimation. Pix-
elation greatly affects model training for the fine-grained task of keypoint
estimation, whereas DeepPrivacy2 significantly improves over traditional meth-
ods. Note that CSE fails to detect many individuals in the COCO dataset, which
yields poor pose preservation for individuals anonymized by the unconditional
generator.

Cityscapes Instance Segmentation. Table 3 analyzes the effect of anonymiza-
tion on the Cityscapes dataset. DeepPrivacy2 improves over pixelation and
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Train w/ Anon. Data Validate w/ Anon. Data
Dataset mAP ↑ APperson ↑ mAP ↑ APperson ↑
Original 36.5 35.0 36.5 35.0

Masked Out 34.0 26.4 27.7 4.7
Pixelation 8×8 34.7 27.1 29.4 10.2

Pixelation 16×16 34.7 29.6 32.0 21.8
DeepPrivacy2 (w/o CSE) 33.4 27.5 33.1 27.8

DeepPrivacy2 35.2 30.3 33.2 27.3

Table 3: Instance segmentation AP on the Cityscapes [4] validation set with a Mask
R-CNN [10] R-50 FPN.

mask-out, but the gap is less prevalent than for keypoint estimation. We believe
this originates from model weight initialization 4.

Is surface guidance necessary? Section 5.1 established that the CSE-guided
generator improves image quality compared to the unconditional generator. We
now ask the question; does the improved image quality translate to improve-
ments when using the anonymized data? In table 3 and table 2, we replace the
CSE-guided generator with the unconditional generator, such that all persons
are anonymized without CSE-guidance (denoted DeepPrivacy2 w/o CSE). Re-
moving CSE-guidance severly hurts performance, especially when using the
anonymized data for training.

6 Conclusion

DeepPrivacy2 is an automatic realistic anonymization framework for human
figures and faces, and is a practical tool for anonymization without degrading
the image quality. Compared to previously proposed anonymization frame-
works, we show that DeepPrivacy2 substantially improves image quality and
privacy guarantees. Furthermore, we introduce the FDH dataset, a large-scale
full-body synthesis dataset that includes a wide variety of identities in different

4The Cityscapes model is initialized from a COCO pre-trained Mask R-CNN, while the
keypoint R-CNN from an ImageNet [5] backbone.
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6 Conclusion

Figure 11: The generator samples from a small subset of different identities given the
condition.

poses and contexts. Our new FDH dataset, combined with our simple style-
based GAN, improves image quality and diversity of human figure synthesis for
in-the-wild images. Furthermore, we show that our simple style-based GAN
generates high-quality human faces that are controllable through user-guided
anonymization via text prompts. We believe that our open-source framework
will be a useful tool for computer vision researchers and other entities requiring
anonymization while retaining image quality.

Societal Impact Recently introduced legislation in many regions has com-
plicated collecting privacy-sensitive data, where consent from individuals is
required for storing the data. This can act as a barrier for developing applica-
tions relying on high-quality images, such as computer vision models. This
paper proposes an automatic realistic image anonymization framework that
simplifies the collection of privacy-sensitive data while retaining the original
image quality. We believe this will be a highly useful tool for the computer
vision field. Nevertheless, our work focuses on synthesizing realistic humans,
which has a potential for misuse (e.g. DeepFakes). There is a large focus in the
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community to mitigate this, for example, the DeepFake Detection Challenge
[6] and model watermarking [46].

6.1 Limitations

DeepPrivacy2 generates a limited set of identities given a particular input
condition. The input condition is highly descriptive of the shape of the original
identity and the context that the identity should fit into. Thus, the generator
learns a sampling probability of identities given the condition. For example, if
the generator observes a baseball field, the synthesized identity is likely to be a
baseball player (fig. 11).

As with any anonymization framework, DeepPrivacy2 cannot guarantee anon-
ymization without human supervision, as the detector can fail. However,
DeepPrivacy2 uses a set of detectors from different modalities to improve
detection in cases where one or more of the detectors fail. Also, DeepPri-
vacy2 uses dense pose description for anonymization, which allows identity
recognition through gait [15].

Synthesis Quality DeepPrivacy2 significantly improves full-body synthe-
sis for in-the-wild images; however, it struggles in several scenarios. First,
DeepPrivacy2 relies on dense pose estimation to synthesize high-quality hu-
man figures, where the image quality is severely degraded in cases where the
pose description is incorrect. Furthermore, we find our full-body GAN harder
to edit (e.g. attribute edit via text prompts [19]), and we observe that com-
mon directions in the latent space do not translate to semantically equivalent
transformations for different poses/background contexts.

Acknowledgement The computations were performed on resources pro-
vided by the NTNU IDUN/EPIC computing cluster [39] and the Tensor-GPU
project led by Prof. Anne C. Elster through support from The Department of
Computer Science and The Faculty of Information Technology and Electrical
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Synthesizing Anyone, Anywhere, in Any Pose

Håkon Hukkelås Frank Lindseth

Norwegian University of Science and Technology
Trondheim, Norway

hakon.hukkelas@ntnu.no

Figure 1: TriA-GAN can synthesize realistic human figures given a masked image
and a sparse set of keypoints.

Abstract

We address the task of in-the-wild human figure synthesis, where the
primary goal is to synthesize a full body given any region in any image.
In-the-wild human figure synthesis has long been a challenging and
under-explored task, where current methods struggle to handle extreme
poses, occluding objects, and complex backgrounds.

Our main contribution is TriA-GAN, a keypoint-guided GAN that can
synthesize Anyone, Anywhere, in Any given pose. Key to our method is
projected GANs combined with a well-crafted training strategy, where
our simple generator architecture can successfully handle the challenges
of in-the-wild full-body synthesis. We show that TriA-GAN significantly
improves over previous in-the-wild full-body synthesis methods, all
while requiring less conditional information for synthesis (keypoints
vs. DensePose). Finally, we show that the latent space of TriA-GAN
is compatible with standard unconditional editing techniques, enabling
text-guided editing of generated human figures.
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1 Introduction

Given any image with a missing region, can you imagine a human appearance
fitting into it? If there is a football next to the missing region, does your
imaginary person change? This is a fascinating and difficult problem because
countless possible solutions could fit the context. We refer to this task as in-
the-wild human figure synthesis. Addressing this problem requires a complex
understanding of human appearances and how they vary based on different
environmental conditions, viewpoints, poses, and sizes of the missing region.
Such a system would have widespread applications in content creation, fashion
[37], or even for anonymization purposes [18].

Human figure synthesis is a well-established research field with many high-
level goals. However, in-the-wild human figure synthesis is a difficult and
under-explored task. Previous methods focus on simpler tasks, such as trans-
ferring a known appearance into a given pose [2, 4], transferring garments
[14, 52], or full-body synthesis into a plain background [9]. Often they disre-
gard the key difficulties of in-the-wild-synthesis, such as overlapping objects,
partial bodies, complex backgrounds, and extreme poses. In fact, recent studies
filter out these difficult cases from their dataset to improve synthesis quality
[9, 10]. To the best of our knowledge, only a handful of research studies have
tackled these challenges, with a focus on full-body synthesis for anonymization
[18, 20] 1. While previous methods [18] generate visually pleasing results,
they heavily rely on DensePose estimation and struggle in complex scenarios.
In addition, the generated images are hard to edit [18].

A key issue of current methods for in-the-wild human figure synthesis is
their reliance on DensePose annotations [18, 20]. The available datasets with
such annotations are either limited in size [12, 20] or automatically annotated
[18]. We argue that this reliance constrain these methods, either by overfitting
on small datasets [20] or by the numerous annotation errors arising from
DensePose [18].

This paper explores full-body synthesis conditioned on sparse 2d-keypoints,
eliminating the need for expensive DensePose annotations. However, this

1Note that other studies address similar tasks [40, 60], but they focus on simpler datasets (i.e.
Market1501 [75], DeepFasion [37]) with few overlapping/occluding objects.
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2 Related Work

increases the modeling complexity considerably, as the generative model must
now infer both the body’s texture and its structure. We find that current
GANs [18] struggle to synthesize realistic human figures without DensePose
correspondences.

Our contributions address the challenge of scaling up GANs to handle in-
the-wild full-body synthesis without DensePose correspondences. Key to our
method is replacing the conventional GAN discriminator with Projected GANs
[53]. By combining Projected GANs with a thoughtfully designed training
strategy, our method can generate coherent bodies with visually pleasing
textures.

Our contributions can be summarized as follows. First, we adapt Projected
GANs [53] for image inpainting (section 3.1), and propose a novel mask-aware
patch discriminator (section 3.2). Secondly, we investigate the representational
power of pre-trained feature networks used by the discriminator (section 3.3).
Our experiments reflect that the previously used classification networks [53,
54] are poorly suited for discriminating human figures. Instead, we use a
combination of self-supervised feature networks for the discriminator, which
significantly improves sample quality. Finally, we propose a progressive
training technique for U-Net [50] architectures (section 3.4), enabling us to
easily scale up to high resolutions and larger model sizes.

Our contributions culminate into a new state-of-the-art for in-the-wild hu-
man figure synthesis. As far as we know, our approach is the first to gen-
erate nearly photorealistic humans without DensePose annotations while ef-
fectively dealing with extreme poses, complex backgrounds, partial bodies,
and occlusions. Source code: http://github.com/hukkelas/deep_
privacy2/.

2 Related Work

2.1 Full-body Human Synthesis

Synthesizing human bodies has a range of applications, and previous studies
have a large variety of high-level goals. We categorize human synthesis into
transfer-based and synthesis-based models. Transfer-based methods transfers a
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source appearance (or garment [14, 52]) into a new pose [2, 33, 39, 47, 52, 56],
motion [4] or scene [57]. While some of these methods are applicable for
in-the-wild human figure synthesis [57, 67], they require a source appearance
that limits the synthesized identities to a texture bank or an image dataset of
appearances. In contrast, our method can directly synthesize novel identities.
For the latter goal, synthesis-based methods can synthesize the appearance
either conditioned on a pose [40, 60, 68], scene [8, 18, 20], or unconditionally
[9, 5, 10]. Several of these methods are applicable for in-the-wild human
synthesis [18, 40, 60], but they are limited to low-resolution [8, 40], struggle
to handle complex backgrounds [9, 60], and only a few handles overlapping
objects [18, 20].

Independent of the goal, most methods use a form of pose information to
enhance synthesis quality through DensePose annotations [18, 20, 43, 52],
semantic segmentations [5, 60, 67], sparse keypoints [2, 4, 8, 14, 33, 39, 40,
47, 56, 57, 67], or a 3d pose of the body [32, 68].

Previous studies primarily focus on GAN-based methods, but recent studies
have employed diffusion models [59] for human figure synthesis [22]. Our
work focuses on GANs as they offer fast sampling of high-quality images.

2.2 Generative Adversarial Networks

Generative Adversarial Networks [11] (GANs) have long been a leading gen-
erative model for a range of full-body synthesis tasks. GANs are notoriously
difficult to train, and a notable research focus has been on achieving stable
training of the generator, where different techniques such as novel objectives
[1], architectures [24, 26, 27, 28], training strategies [25], and regularization
[13, 41] has been proposed to improve stability and synthesis quality. Re-
cently introduced Projected GANs [53] use pre-trained feature networks for
the discriminator to reduce training time and improve image quality, which was
later extended for high-resolution image synthesis on the ImageNet [6] dataset
[54]. We continue this line of research, where we adapt projected GANs for
conditional synthesis.
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3 TriA-GAN - A Keypoint-Guided GAN

2.3 Image Inpainting

Image inpainting [3] aims to complete missing regions in natural images.
Unlike general image inpainting, we complete missing regions that contain
human figures appearing at random regions in natural images. GANs have long
been the leading methodology for free-form image inpainting [46, 70], where
most prior work focuses on architectural changes to the generator. For example,
to handle missing values [19, 35, 70], generate higher resolution [69], utilize
auxiliary information [23, 31, 42], or improve the receptive field via attention
mechanisms [71] or fourier convolutions [62]. Previous methods adapt a
traditional GAN discriminator, often patch discriminators [21, 36, 49, 65, 70],
combined with perceptual image similarity losses [36, 49] and pixel-wise l1 loss
[49, 65]. As far as we know, we are the first to adapt Projected GANs [53] for
image inpainting, where we exclusively train on the adversarial objective.

3 TriA-GAN - A Keypoint-Guided GAN

In this section, we gradually introduce changes to improve synthesis quality
(table 1). Config A (section 3.1) starts with a StyleGAN-based [27] U-Net
[50] architecture, similar to the architecture used in [18], trained with Pro-
jected GANs [54] using EfficientNet-Lite0 [63]. Config B introduces our
Mask-Aware Discriminator objective (section 3.2), and Config C replaces
EfficientNet-lite0 with ViT-L16MAE and RN50CLIP (section 3.3). Config D
introduces our progressive training technique (section 3.4) and finally, Config
E increases the generator model size. To reduce training time, we ablate our
method on low-resolution images (72×40). Finally, section 3.5 increases the
resolution to 288×160. Appendix A includes experimental and architecture
details.

Problem Formulation We formulate in-the-wild full-body synthesis as
an image inpainting task. Our goal is to complete the missing regions of a
corrupted image Ī = I ⊙M, where I is the ground truth image, M is the mask
indicating missing regions (Mi = 1 for known pixels and 0 for missing), and ⊙
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Table 1: Iterative development of our method. Each addition is added on top of the
previous. Config A-C are trained until the discriminator has observed 50M images.

Configuration FID ↓ FIDCLIP ↓ PPL ↓ OKS ↑
A: Baseline 1.73 1.74 55.8 0.916
B: + Mask-Aware Discriminator 1.65 1.63 52.8 0.912
C: + Improved Feature Nets 1.79 0.47 49.2 0.951
D: + Progressive Growing 1.66 0.40 52.0 0.954
E: + Larger G (62M → 110M) 1.62 0.30 52.0 0.948

is element-wise multiplication. To improve synthesis quality, we condition the
generator on 17 keypoints following the COCO [34] keypoint format

Dataset We conduct our experiments on the FDH dataset [18]. The FDH
dataset is a large unfiltered dataset, where models trained on FDH adapt well
to in-the-wild settings [18]. The dataset consists of 1.87M training images
and 30K validation images. Each image includes a single human figure as
the subject, but the same image can include several individuals. Each image
is annotated with a 2d keypoint annotation, a segmentation mask indicating
the human to be inpainted, and pixel-to-surface correspondences (i.e. surface
of a T-shaped 3D body). Note that TriA-GAN does not use pixel-to-surface
correspondences.

We find that a large amount of the keypoint annotations in the FDH dataset are
incorrect. Thus, we automatically re-annotate all images with ViTPose [66]
(see Appendix B).

Pose Representation We represent keypoints as a one-hot encoded spatial
map, specifically P ∈ {0,1}K×H×W where K = 17 and Pk,y,x = 1 for keypoint k
with location (x,y) and P is 0 otherwise. In addition, we include a spatial map
(S) drawing the human skeleton. Specifically, the spatial map S ∈ {0,1}6×H×W

is one-hot encoded into 6 categories, where lines connect closeby joints in the
body, separated into 6 classes (left/right arm/leg, torso, head). The one-hot
encoded pose and the skeleton map are concatenated with the input image of
the generator.
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3 TriA-GAN - A Keypoint-Guided GAN

Evaluating Sample Quality We evaluate sample quality with Fréchet
Inception Distance (FID) [16] and FIDCLIP

2. Additionally, we report latent
disentanglement via Perceptual Path Length (PPL) [27], which correlates with
consistency and stability of shapes [28].

Furthermore, we introduce a new metric for assessing the sample quality of gen-
erated human figures, namely Object Keypoint similarity (OKS), that compares
the generated pose to the ground truth keypoints. The motivation behind this
metric is to obtain a metric that is not influenced by the feature network used
by the discriminator. Projected GANs [53] are known to achieve artificially
good scores on feature-based metrics [30], which makes it challenging to make
quantitative comparisons across different types of feature networks. This is
evident from our experiments, where Config B (which uses ImageNet features
for the discriminator) generates severely more corrupted images than Config E
but still achieves a similar ImageNet FID.

Object Keypoint Similarity (OKS) is calculated by predicting keypoints with
ViTPose [66], then computing the OKS to the ground truth keypoints following
COCO [34]. Compared to direct Euclidean distance, OKS considers that "cor-
rect" keypoints can deviate slightly from the ground truth keypoints, where the
acceptable deviation varies for different keypoints (e.g. the shoulder keypoint
can deviate more than the eye keypoint).

3.1 Projected GANs for Image Inpainting

Projected GANs [53] employ pre-trained feature networks to discriminate
between real and fake images. Given an image I, the adversarial objective is
formulated as

min
G

max
Dℓ

∑
ℓ∈L

EI∼pdata [log(Dℓ (Pℓ (I)))]+

Ez∼pz [log(1−Dℓ (Pℓ (G(z, Ī))))] ,
(1)

2ImageNet-FID scores images containing ImageNet objects higher and is insensive to faces
[30]. These issues are diminished with FIDCLIP, where we use features from a CLIP [48]
pre-trained ViT-B/32.
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Figure 2: (a) Our generator fills in the missing region given 17 keypoints. The gener-
ator layers employ adaptive instance normalization to condition the generator on ω ,
where ω is the output of the style mapping network. Config D&E is trained progres-
sively starting at 18×10 resolution, then increased by adding layers to the start/end of
the encoder/decoder. Note that all layers remain trainable throughout training. (b) For
each feature network F , we use four shallow patch discriminators operating its features
(with different spatial resolutions), where each feature is projected through random
differentiable operations (P1-P4). Given the projected features, each discriminator
predicts if a given patch corresponds to a real or fake image region.

where {Dℓ} is a set of independent discriminators operating on its feature
projector Pℓ. Each projector is frozen during training and consists of a pre-
trained feature network F , where features from F are randomly projected with
differentiable operations. For the baseline (Config A), we use EfficientNet-
Lite0 [63] as F following [53], which we later revisit in Section 3.3. For each
discriminator Dℓ, we adopt a patch discriminator architecture, described in
Section 3.2.

Equation (1) does not enforce consistency between the condition (Ī) and the
generated image, yielding a generator that learns to completely ignore Ī in
practice. Thus, we enforce condition consistency by masking the output of the
generator. Specifically, we set G(z, Ī) = Ĩ ⊙ (1−M)+ Ī ⊙M, where Ĩ is the
output of the last layer in G.

3.1.1 Stabilizing the Generator

Naively adopting projected GANs for image inpainting is unstable to train and
prone to mode collapse early in training. This originates from the generator
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3 TriA-GAN - A Keypoint-Guided GAN

struggling to keep up with the pre-trained discriminator, where the discrim-
inator overpowers the generator early in training. To improve stability, we
introduce several modifications to the adversarial setup. First, we blur images
inputted to the discriminator at the start of training, where the blur is linearly
faded over 4M images. The long blur prevents the discriminator from focusing
on the high-frequency edges caused by the masking of the generator output.
Previous methods apply discriminator blurring over the first 200k images
[26, 54], whereas we find it beneficial to significantly increase this period.
Furthermore, the U-net architecture injects the latent code (z) via a mapping
network and style modulation following StyleGAN2 [28]. We set the mapping
network to 2 layers and reduce the dimensionality of z to 64, following [54].
Furthermore, we scale residual skip connections by 1/

√
2 (similar to [28]), and

1/
√

3 for skip connections where residual U-net connections are present. Finally,
we use instance normalization instead of weight demodulation [28], as we find
it more stable to train.

3.2 Mask-Aware Patch Discriminator

Projected GANs [53, 54] adapt four shallow discriminators operating on dif-
ferent feature projections (Pℓ) with different spatial resolutions. Each discrim-
inator output logits at the same resolution (4×4). In contrast, we find patch
discriminators to work better for the image inpainting task, where each discrim-
inator tries to classify local patches instead of the global image. Specifically,
each Dℓ (inputting features from the projection Pℓ) consists of three convolu-
tions, where the output of Dℓ is half the spatial resolution of Pℓ. We find that
replacing the discriminator from [53] with a patch discriminator substantially
improves performance.

Patch discriminators are widely adapted for image inpainting [62, 70, 73, 74].
Typically, each patch is classified as belonging to the class of the original
image, such that all patches corresponding to a real image are classified as real.
However, this introduces ambiguity for the image inpainting task, as certain
features (e.g. shallow features from CNNs) might exclusively depend on real
pixels even though the image is fake due to a limited receptive field. Thus,
we propose a mask-aware discriminator objective, where the discriminator’s
patches are categorized as belonging to the real or fake class based on whether
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Figure 3: Comparison of different feature networks with the standard projected GAN
objective (eq. (1)) and mask-aware discriminator objective (eq. (2)). All models are
trained until the discriminator has observed 50M images.
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3 TriA-GAN - A Keypoint-Guided GAN

they correspond to a real or fake region in the image. The new objective is
given by

min
G

max
Dℓ

∑
ℓ∈L

EI∼pdata [log(Dℓ (Pℓ (I)))]+

Ez∼pz

[
Hℓ

∑
y

Wℓ

∑
x

My,x
ℓ · log

(
Dy,x
ℓ (Pℓ (G(z, Ī)))

)
+

(
1−My,x

ℓ

)
· log(1−Dy,x

ℓ (Pℓ(G(z, Ī))))
]
,

(2)

where Dℓ ∈ RHℓ×Wℓ , and Mℓ is downsampled from M to Hℓ ×Wℓ via min-
pooling.

Equation (2) removes the ambiguous classification of patches due to global
class allocation, which provides more detailed and spatial coherent responses to
the generator. Furthermore, it introduces an auxiliary task to the discriminator,
which is known to improve synthesis quality [45]. In our case, the auxiliary
task is to spatially segment the region that corresponds to the generated area.

Figure 3 confirms that Equation (2) improves image quality (FID/FIDCLIP)
and OKS across a range of feature networks. This includes feature networks
with different pre-training tasks and architectures (CNNs and ViTs). Similar
segmentation discriminators have been explored before for other tasks [55,
61, 68]. Our work further validate that this concept generalizes to extremely
shallow discriminator architectures leveraging pre-trained feature networks,
independent on the feature network used as F .

3.3 Discriminative Feature Networks for Human Synthesis

GANs have historically generated impressive results for aligned human synthe-
sis, especially on the FFHQ [27] and CelebA-HQ [25, 38] datasets. However,
projected GANs are known to generate artifacts for face synthesis on FFHQ
[53] and struggle to generate realistic images of unaligned humans [54] 3. We
find that the poor human synthesis quality originates from an invariance in
the pre-trained feature space used by the discriminator. Earlier work [53, 54]

3See the appendix in [54].
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(a) ImageNet (ViT-B/16) (b) CLIP (ViT-B/16)

(c) MAE (ViT-B/16) (d) ViT-L/16MAE + RN50CLIP

Figure 4: Qualitative comparison of various feature networks used for the discrimina-
tor. It is worth noting that these examples are not curated but selected from the first 12
images from the validation set.
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3 TriA-GAN - A Keypoint-Guided GAN

has utilized pre-trained ImageNet [6] classification networks. These feature
networks learn feature representations for the sole goal of classification; map-
ping an image to the top-1 class. Hence, they learn to ignore features that
are irrelevant to the goal of classification. While this invariance benefits im-
age classification, we find it to hurt discriminative representation for human
synthesis.

We explore different feature networks (including variants of CNNS/ViTs) with
widely different pre-training tasks for the discriminator. Specifically, Figure 3
ablate the following feature nets with the following pre-training tasks:

• IN: ImageNet Classification: ResNet50 (RN50), ViT-B16 (DeIT vari-
ant), EfficientNet-Lite0 (EN-L0).

• CLIP: Contrastive Language Image Pre-training [48]: RN50, ViT-B16.

• MAE: Masked Autoencoders [15]: ViT-B16, ViT-L16.

• CSE: DensePose estimation [44]: ResNet50 (RN50).

We refer to each model as architecturetask, e.g. RN50CLIP refers to ResNet-50
with CLIP pre-trained weights. Directly selecting the best feature network from
standard generative metrics (FID/FIDCLIP) is ambiguous, as projected GANs
are known to achieve unnatural high scores on feature-based metrics [30]. We
find that ImageNet models achieve unnatural high FID due to matching pre-
training tasks, and ViT scores better on FIDCLIP due to matching architecture
4.

Independent of the architecture, we observe that all ImageNet [6] models
generate highly corrupted faces, illustrated in Figure 4. This is most likely due
to the invariance of facial descriptors in these feature networks, a phenomenon
that has also been observed in [30]. Note that Appendix C includes comparison
for all networks in Figure 3.

From the results in Figure 3, Config C replaces EfficientNet-Lite0 with ViT-
L16MAE and RN50CLIP. The motivation for pairing these networks is to exploit
features with completely different architectures and pre-training tasks. In
addition, these networks scores among the best w.r.t. OKS, FIDCLIP, and PPL.

4FIDCLIP is calculated from features of ViT-B/32 following [30].
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Finally, RN50CLIP supplements ViT well, as RN50 operates on the original
aspect ratio (288×160), whereas ViT is fixed to 224×224 5.

3.4 Progressive Growing

Progressive training [25] is known to improve training stability of GANs and
was recently re-introduced for unconditional synthesis with projected GANs
[54]. StyleGAN-XL [54] first trains at 16×16 resolution, then increases the
resolution by adding new layers to the end of the decoder. Note that StyleGAN-
XL freezes already trained layers and the style network when training the next
stage.

We adopt a straightforward extension to the image-to-image translation case,
where we progressively train the U-net architecture by adding layers to the
start/end of the encoder and decoder, respectively (see fig. 2). We observe
that adding new blocks to the start of the encoder leads to training instability
as it results in significant changes to the input of already-trained layers. To
mitigate this, we introduce LayerScale [64] for each residual block with an
initial value of 10−5 to lessen the contribution of new blocks. Furthermore,
we include output skip connections following [27]. Unlike StyleGAN-XL,
we avoid freezing any blocks during training as the computational benefit is
minimal, given that we need to calculate gradients for layers at the beginning of
the encoder. Introducing these changes substantially improves the final image
quality (Config D)

We note that we experimented with more advanced techniques for progres-
sive training, such as cascaded U-nets [17], or assymetric training of the
encoder/decoder (i.e. start with a full-resolution encoder and a low-resolution
decoder). However, we found that the straightforward progressive training
technique was superior in terms of training time and final image quality.

5ViT input resolution is set to 224× 224 for all models, as ViT features are less robust to
changes in resolution from the training resolution.
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4 Comparison to Surface-Guided GANs

Table 2: Quantitative comparison of SG-GAN [18] vs. ours.

Method FID ↓ FIDCLIP ↓ PPL ↓ OKS ↑
SG-GAN [18] 1.97 1.25 70.2 0.950
TriA-GAN (ours) 1.68 0.43 47.8 0.972

3.5 Scaling Up the Generator

Config E double the number of residual blocks for each resolution in the
encoder/decoder, resulting in 110.4M parameters in the generator compared to
the previous 62.2M. This model trains stable up to 288×160 resolution, which
is the maximum resolution of the FDH dataset.

4 Comparison to Surface-Guided GANs

Table 2 compares TriA-GAN to Surface Guided GANs (SG-GAN) [20] trained
following DeepPrivacy2 [18], the current state-of-the-art for in-the-wild full-
body synthesis. Figure 1 shows synthesis results with TriA-GAN, and Figure 5,
Figure 6, compares TriA-GAN to SG-GAN. Appendix D include randomly
selected samples.

The main difference between TriA-GAN and SG-GAN [18] is the improved
training strategy of TriA-GAN, and the sparser conditional information (key-
points vs. dense surface correspondences). TriA-GAN improves at handling
overlapping objects, partial bodies (e.g. intersection with image edges), and
synthesis of texture (e.g. hair, clothing). Furthermore, TriA-GAN improves at
context handling, e.g. inferring that an elderly lady is likely to sit at the table
(top row, fig. 5), or that there is a motorcyclist on the bike (3rd row, fig. 5).

Finally, TriA-GAN is easier to use for downstream tasks, as our method
does not rely on DensePose detections. For example, keypoints are easier to
edit for interactive editing applications. Furthermore, detecting DensePose is
challenging and unreliable for long-range detection, restricting its use in many
scenarios (e.g. anonymizing pedestrians on the street). See Appendix D for
examples of failure cases.
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Original Condition SG-GAN Ours

Figure 5: Curated examples comparing Surface Guided GAN [18] to TriA-GAN. Note
that surface information is not used for TriA-GAN (shown in blue-yellow tint).
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4 Comparison to Surface-Guided GANs

Original Condition SG-GAN Ours

Figure 6: Curated examples comparing Surface Guided GAN [18] to TriA-GAN. Note
that surface information is not used for TriA-GAN (shown in blue-yellow tint).
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5 Editability of TriA-GAN

StyleGAN [27] is known for its disentangled latent space, and it is widely used
for user-guided image editing, such as modifying images through text prompts
[29]. However, most methods for editing images focus on unconditional GANs
(or class-conditional GANs), and their application to image inpainting is less
explored. StyleMC [29] is effective for editing faces with inpainting methods
[18], but the same study finds editing human figures in-the-wild much harder
[18]. We believe this limitation originates from the DensePose condition,
where descriptive conditions can be correlated with specific attributes. This
narrows the sampling probability, which makes it harder to find meaningful
directions for randomly sampled images.

Figure 7 demonstrate that StyleMC [29] is effective with TriA-GAN to find
semantically meaningful directions in the GAN latent space. StyleMC finds
global directions by manipulating random images towards a text prompt using
a CLIP encoder [48], where the directions are found over 1280 images. We find
that StyleMC combined with TriA-GAN can edit a wide range of attributes,
even quite specific attributes such as the size of the ears. However, we do note
that editing some attributes results in changes to other correlated attributes.
For example, the edit "blond hair" induces slight changes to the skin color.
Furthermore, some attributes are more challenging to edit. For instance, intro-
ducing "red lips" to a body inferred as a male can result in significant semantic
changes (top row, fig. 7). It is unclear whether this limitation is a result from
the editing technique or TriA-GAN itself. We believe these correlations are
inherent in the training datasets of CLIP or TriA-GAN.

6 Conclusion

TriA-GAN has enabled the generation of human figures in any desirable pose
and location given a sparse set of keypoints, resulting in a new state-of-the-art
for person synthesis on the FDH dataset. Key to our method is leveraging pre-
trained feature networks for the discriminator. We demonstrate that a carefully
designed training strategy combined with feature networks suited to discrimi-
nate human figures substantially improves synthesis quality. TriA-GAN is the
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6 Conclusion

Original
Image

A person with 
sunglasses

A person with
blond hair

A person with
red lips Anime

A person with 
mustache

A person with 
large ears

Figure 7: StyleMC [29] edits with TriA-GAN, where a global direction (from text
prompt above each column) is added to the style code of the original (leftmost) image.
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Original Condition Surface Guided GAN Ours

Figure 8: Failure cases of TriA-GAN.

first to demonstrate reliable attribute editing of human figures via text prompts,
which we believe will be highly practical for many applications.

Societal Impact Synthesizing human figures has a range of useful applica-
tions everywhere, from content creation to anonymization purposes. However,
similar to all learning-based generative models, the synthesized human figures
adhere to the sampling probability of the dataset. In our case, the dataset
originates from Flickr, which means that our generator follows its biases and is
less likely to synthesize people from underrepresented groups on the website.
Furthermore, our work focuses on generating lifelike humans, which carries
the potential for abuse (e.g. DeepFakes). We note that the community has
made a concerted effort to address this issue, through initiatives like the Deep-
Fake Detection Challenge [7], or embedding watermarks into images from
generative models [72].
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6.1 Limitations

TriA-GAN sets a new state-of-the-art for human figure synthesis in-the-wild.
Exploring methods for disentangling the latent space from the pose, body
shape, and environment are exciting future avenues. Currently, the sampling
space of TriA-GAN is highly dependent on the conditional information, where
it can collapse into a single synthesized identity given certain conditions.
Disentangled person image generation can mitigate this, by disentangle pose,
appearance, and context. However, current methods require datasets with
paired images [40, 51], which are less diverse and small.

The key limitation of TriA-GAN is handling more complex interactions with
objects (fig. 8). This is particularly true for generating realistic hands/fingers,
e.g. when playing the piano. SG-GAN [18] often improve on TriA-GAN in
such scenarios if the DensePose information explicitly describes the interaction.
But, it still struggles in cases where it is not clear (e.g. playing the masked-out
trumpet).

TriA-GAN is hard to edit for attributes that are less frequent in the FDH dataset.
For example, many images do not contain the lower body and attempting
to find editing directions for "a person wearing red pants" results in editing
other attributes as well. Whether this is a limitation to the editing method, or
TriA-GAN is an open question.
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Figure 1: To assess the impact of anonymization, we first anonymize common com-
puter vision datasets, then train various models using the anonymized data, and
finally evaluate the models on the original validation datasets. The figure depicts our
Cityscapes [8] full-body anonymization experiment. Note that the leftmost image is
anonymized with face blurring, following Cityscapes [8] terms of use.

Abstract
Image anonymization is widely adapted in practice to comply with

privacy regulations in many regions. However, anonymization often
degrades the quality of the data, reducing its utility for computer vi-
sion development. In this paper, we investigate the impact of image
anonymization for training computer vision models on key computer
vision tasks (detection, instance segmentation, and pose estimation).
Specifically, we benchmark the recognition drop on common detection
datasets, where we evaluate both traditional and realistic anonymization
for faces and full bodies. Our comprehensive experiments reflect that
traditional image anonymization substantially impacts final model per-
formance, particularly when anonymizing the full body. Furthermore,
we find that realistic anonymization can mitigate this decrease in perfor-
mance, where our experiments reflect a minimal performance drop for
face anonymization. Our study demonstrates that realistic anonymiza-
tion can enable privacy-preserving computer vision development with
minimal performance degradation across a range of important computer
vision benchmarks.
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1 Introduction

Collecting and storing large amounts of visual data is a fundamental task in
developing robust and efficient computer vision algorithms. However, this
raises concerns regarding the individual’s right to privacy, as visual data is rich
in privacy-sensitive information, e.g. persons, license plates, and street signs.
Recent privacy legislation (e.g. GDPR [9] in the European Union) requires
anonymization when collecting visual data or consent from individuals, which
is often infeasible. This can be viewed as a barrier to research and development,
particularly for the data-dependent field of Autonomous Vehicle (AV) research.
To compensate for these restrictions, practitioners have adopted traditional
image anonymization (e.g. blurring) for collecting AV datasets [15, 6] and
street view images [12].

Traditional image anonymization can protect privacy, but it severely distorts
the visual data, potentially reducing its utility for computer vision development.
Despite this, face obfuscation (e.g. blurring) is the standard method employed
to anonymize public autonomous vehicle datasets [15, 6], and its impact on
final model performance is currently unclear. Previous work analyzed the
impact of face anonymization for classification [59], semantic segmentation
[15, 63], object detection [11], action recognition [54], and face detection [30].
In summary, their findings reveal that face anonymization can impact visual
recognition related to the human class, and it can severely hurt tasks where the
human is in focus [30, 54].

Our literature review, detailed in section 2, resulted in two unanswered ques-
tions, which we address in this study.

First, is realistic anonymization more effective to preserve image utility com-
pared to traditional methods? Realistic anonymization replaces privacy-
sensitive information with synthesized content from generative models, which
are found to better preserve utility compared to traditional methods [52, 25].
Previous work has found realistic anonymization to improve utility preservation
for semantic segmentation [30, 63]. Our work builds upon this by investigating
different objectives and datasets.

Secondly, to what extent does full-body anonymization impact the training of
computer vision models? The human body is recognizable from many cues
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1 Introduction

(a) Face - Gaussian (b) Face - Maskout (c) Face - Realistic

(d) Body - Gaussian (e) Body - Mask out (f) Body - Realistic

Figure 2: The different anonymization methods evaluated in this paper. Image from
COCO train2017 [37], image id=000000097507.

outside the face (e.g. gait, clothes, ear, body shape), often requiring full-body
anonymization to protect privacy. A few studies explore the impact of full-body
anonymization [26, 23], where they find it to improve over traditional methods.
However, they rely on automatic detection methods, which opens the question
if the performance degradation is due to detection errors or the anonymization
model. Furthermore, their model requires dense pose estimation [18, 43],
which limits anonymization to individuals close to the camera due to limited
long-range detection recall of dense pose models.

In this paper, we focus on key computer vision tasks related to autonomous
vehicles, namely instance segmentation and human pose estimation. We evalu-
ate the full-body and face anonymization models built in DeepPrivacy2 [23]
and compare realistic anonymization to traditional methods. See https:
//github.com/hukkelas/deep_privacy2/blob/master/do
cs/anonymizing_datasets.md to reproduce our experiments.
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2 Related Work

Image Anonymization The goal of image anonymization is to remove any
privacy-sensitive information contained in the image. Traditional anonymiza-
tion is widely adopted in practice, where methods anonymize the image via
obfuscation (e.g. blurring, masking), encryption [20], or k-means [17, 28, 44].
Often, these methods are sufficient to protect privacy; however, they degrade
the quality of the data reducing its utility for downstream tasks.

Recent work has introduced realistic image anonymization, where anonymiza-
tion is done by replacing persons with synthesized identities from a generative
model. The majority of previous work focuses on face anonymization, where
current methods anonymize by inpainting a masked out region [25, 38, 52, 53],
or transforming [13, 50, 7] the original identity to remove privacy-sensitive
information. Transformative models often maintain higher utility (e.g. preserv-
ing facial expression) but offer no formal guarantee of removing the original
identity from the image, making them vulnerable to adversarial attacks. A
few methods explore anonymizing the full-body [23, 26, 4, 38], where the cur-
rent state-of-the-art [23, 24] can generate convincing full-bodies given sparse
keypoints [24] or dense pose annotations [23]. Finally, some methods insert
adversarial perturbation in the image, which is invisible to the human eye but
able to fool face recognition systems [46].

Privacy Guarantees of Anonymization Most current anonymization
systems offer no formal guarantee of anonymization, and the identity can
often be recognized from other cues in the image. Image blurring is discussed
numerous times in the literature [35, 36, 3, 42, 16, 44], where the identity
is often recognizable due to limited blurring. Furthermore, the identity is
recognizable even though the face is anonymized through other identifying
attributes of the human body [56, 32, 39], such as gait [27], clothing [14], and
body appearance [62, 45]. This makes full-body anonymization more effective
than face anonymization in terms of privacy. Finally, most anonymization
systems rely on automatic detection, which is far from perfect and vulnerable
to adversarial attacks [31].
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2 Related Work

Public Anonymized Datasets The prominent computer vision datasets
employ no form of anonymization, where only a few datasets are anonymized.
NuScenes [6] contains images from vehicles driving in Singapore and Boston,
where faces and license plates are anonymized via blurring. A2D2 [15] includes
data from southern Germany, where license plates and heads are blurred to
comply with German privacy regulations. AViD [48] is a video dataset for
action recognition with blurred heads. P3M [33] is a portrait matting dataset
where every face is blurred. [55] propose a dataset containing street view
scenes where cars and pedestrians are removed via image inpainting.

Visual Recognition on Anonymized Data There exists a limited set
of studies exploring the effect that anonymization has on training computer
vision models. For ImageNet [10] training, face obfuscation (blurring) has
little effect on top-5 accuracy and no impact on feature transferability to scene
recognition, object localization, and face attribute classification. Neverthe-
less, anonymization slightly degrades accuracy in classes appearing together
with faces (e.g. facial masks). For autonomous vehicle datasets, traditional
face anonymization can degrade instance segmentation on Cityscapes [8, 63],
whereas realistic face anonymization has no noticeable negative impact. Fur-
thermore, they find that larger backbones and multi-scale features are more
robust to image anonymization [63]. Dvoracek et al. [11] finds little impact of
face anonymization on object detection on the same dataset. Geyer [15] finds
that face anonymization has little effect on semantic segmentation on the A2D2
dataset. For face detection, realistic anonymization performs substantially
better than traditional methods for training face detectors [30]. For action
recognition, face obfuscation significantly degrades performance [54], where
the authors propose a teacher-student self-distillation framework to mitigate
the degradation.

Finally, we note that some studies focus on the human perspective and investi-
gate the effect of different anonymization techniques on the users’ perceived
experience [19, 35].
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Figure 3: DeepPrivacy2 [23] anonymizes one instance at a time, then paste each
synthesized individual into the original image. For our experiments, detection is
not performed, as segmentation masks are defined from pre-defined annotations (see
section 3.1). Note that the generator relies on keypoint annotations, which are not
depicted here.

3 Anonymization Method

In this paper, we explore three different anonymization techniques for full-body
and face anonymization; blurring, mask-out, and realistic anonymization (see
fig. 2). Given the image I and a mask M indicating the region to be anonymized,
the goal of each method is to remove any privacy-sensitive information within
M. In this section, we first define M for face and full-body anonymization
(Section 3.1), then introduce the anonymization methods in Section 3.2 and
Section 3.3.

3.1 Anonymization Region

To define the anonymization region, we employ the pre-defined instance seg-
mentation annotations for the person/pedestrian class, as every dataset in this
paper includes such annotations. Note that we do not anonymize annotations
marked as "crowd" or "ignored" in the datasets, nor classes that often contain
a person (e.g. bicycle, motorcycle), as the realistic anonymization techniques
require distinct instance-wise annotations. Given the two aforementioned fil-
tering criteria, it is important to note that we are not able to anonymize all
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3 Anonymization Method

individuals in the dataset. An alternative option is to obtain instance-wise an-
notations by manual annotation or automatic detection. However, we decided
against this approach, as the former is too time-consuming, and the latter may
introduce detection errors, making it unclear if performance degradation is due
to detection errors or poor anonymization.

Face Region As none of the benchmark datasets include annotated faces,
we define the face anonymization region following a standard face detection
dataset, WIDER-Face [60]. Specifically, the region is the minimal bounding
box containing the forehead, chin, and cheek. We annotate each dataset with
a pre-trained face detector (DSFD [34]), where we filter the detections by
matching them with annotated instance segmentations. We match boxes to
segmentations via Intersection over Union (IoU), where we select the match
with the highest IoU and bounding box score. Any matches with an IoU < 1%
are removed.

Full-Body Anonymization Since all benchmark datasets include anno-
tated instance segmentations, we use these to define the full-body anonymiza-
tion region. To compensate for annotations where the segmentations don’t fully
encompass the body (often segmentation does not include bordering pixels),
we slightly dilate the segmentation following [23].

3.2 Traditional Anonymization

We evaluate two commonly used obfuscation techniques for traditional anonymiza-
tion, namely blurring and masking out. Note that we employ the same method
for both face and full-body anonymization.

Mask-Out Mask-out defines the anonymized image as Inew = I ⊙ (1−M)+
M⊙127, where ⊙ is element-wise multiplication.
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Gaussian Blur Gaussian blur defines the anonymized image as Inew =
I ⊙ (1−M)+M⊙ Iblur. Here, Iblur is the blurred image with a Gaussian filter
(σ = 7, k-size= 3 ·σ ).

3.3 Realistic Anonymization

For realistic anonymization, we employ pre-trained models from DeepPrivacy2
[23]. Note that DeepPrivacy2 anonymizes by inpainting (illustrated in fig. 3),
such that it never observes the masked region in I. Thus, it provides similar
privacy protection as mask-out anonymization.

Face Anonymization For face anonymization, we employ the face anonymiza-
tion model in DeepPrivacy2 [23], which is a U-Net GAN trained on FDF [25]
that synthesizes faces at 128× 128 resolution. This model does not rely on
keypoint annotations, which enables it to anonymize all faces detected.

Full-Body Anonymization For full-body anonymization, we employ a
U-Net GAN [24] relying on keypoint annotations following the COCO format
[37]. This model is trained on the FDH dataset [23], and the model is inte-
grated into the DeepPrivacy2 framework [23]. For datasets without keypoint
annotations, we use a top-down pose estimation network (ViTPose [58]) which
estimates the pose given the image and the minimal bounding box encompass-
ing the instance segmentation. All keypoints with a confidence ≥ 30% are
assumed to be visible.

3.4 Global Context for Full-Body Synthesis

In our preliminary experiments, we observed that the full-body generative
model often generated human bodies that fit the local context of the genera-
tive model but did not align with the global context. We believe this is not
a limitation of the generative model itself but a limitation to the crop-based
anonymization method used by DeepPrivacy2 (see fig. 3). In this paper, we ex-
plore two solutions to this issue; ad-hoc histogram equalization and histogram
matching via latent optimization illustrated in fig. 4
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3 Anonymization Method

Original Initial ω HM HM-LO Optimization → Final Image

Figure 4: The initial synthesized identity ("initial ω") may not align with the global
context of the image, making the synthesized identity "stick out" compared to the
original identity. We explore two options to address this issue: naive histogram
matching (HM), and Histogram matching via latent optimization (HM-LO), which
iteratively adjusts the initial ω to better fit the histogram of the original image (in
HSV)

Histogram Matching (HM) A naive approach for matching the generated
body to the global context is naive histogram equalization. Specifically, we
match the synthesized (cropped) image to the original (cropped) image by
using skimage match_histogram. This adjusts the synthesized image such that
each color channel (RGB) matches the cumulative histogram of the original
image. To reduce bordering effects when pasting the equalized image into
the original image, we smoothly transition the border by slightly blurring
the mask with a gaussian filter. That is, given the cropped image x, the
corresponding mask Mc, and the synthesized image y, the new image is given
by; ynew = x⊙ (1−Mblurred

c )+ y⊙Mblurred
c , where Mblurred

c is Mc blurred with
a gaussian filter with size=[19,19] and σ = 9. We note that this is far from an
optimal solution, where naive histogram matching can introduce severe visual
artifacts fig. 5.

Histogram Matching via Latent Optimization (HM-LO) An alterna-
tive approach to post-processing the output is a search in the latent space of
the generator. Conceptually, if the exact environmental context (e.g. scene
lightning) is not given by the cropped image, it should be possible to adjust
such factors through the latent space of the generator. Therefore, we suggest
utilizing gradient descent to modify the latent vector of the generator, aligning
the histogram of the generated image with that of the original image
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Original Anonymized Final after HM

Figure 5: Naive histogram matching can introduce visual artifacts.

Given the cropped image x and the mask Mc, the generated image is y = G(x⊙
MC,ω), where ω is the latent space of the generator, following StyleGAN
[29]. Given x, we adjust a sampled ω via gradient descent such that y matches
the histogram of x in the S and V channel of the HSV transform of x and y.
Specifically, we optimize;

L (xhsv,yhsv) =W(PS(xhsv),PS(yhsv))+

W(PV (xhsv),PV (yhsv)),
(1)

where W is the Wasserstein-1 distance, and PV , PS is the histogram of the S and
V color channel in the HSV transformed image of x and y. Then, we perform
gradient descent on ω for 100 steps or until L (xhsv,yhsv)< 0.02.

Often, HM-LO induces slight adjustments to the generated image such that it
better matches the context of the image (fig. 4). However, we note that HM-LO
can induce significant semantic changes if the original sampled colors deviate
from the original identity (fig. 6).

4 Experiments

In this section, we report results for training on anonymized data. We train
each model on the anonymized dataset and report standard evaluation metrics
on the original validation set. To reduce randomness, we report the average and
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Original Initial ω Final ω

Figure 6: Histogram Matching via Latent Optimization can induce significant semantic
changes to the synthesized identity, due to directly optimizing ω to match the HSV
histogram (S/V channels).

standard error over three independent training runs using seeds 0, 1, and 2. All
experiments are done with Pytorch 1.12 [47] on a single NVIDIA A100-40GB.
Random qualitative examples from our experiments are given in Appendix
B.

4.1 Experimental Details

COCO Pose Estimation We train a Keypoint R-50 FPN R-CNN using
detectron2 [57] on the COCO2017 dataset [37]. The training dataset contains
118,287 images with 149,813 person instances (after filtration following sec-
tion 3), and we evaluate on the original validation dataset (5K images). Out of
149,813 instances, 95,295 are detected by the face detector. Detectron2 is run
with commit: 58e472e076

Cityscapes Instance Segmentation We train Mask R-CNN [21] R-50
FPN using detectron2 [57] on the Cityscapes dataset [8]. The training dataset
contains 2,975 images with 17,919 person instances (after filtration following
section 3), and we evaluate on the original validation dataset (500 images). Out
of 17,919 instances, 4,456 were detected by the face detector. Interestingly,
this is a noticeably smaller percentage than for the COCO dataset, which we
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Figure 7: Cumulative histogram of average bounding box length normalized to image
size.

speculate is due to the dataset distribution (persons in COCO often face the
camera, while they often do not in Cityscapes).

BDD100K Instance Segmentation We train Mask R-CNN [21] R-50
FPN using MMDetection [40] on the BDD100K dataset [61]. The training
dataset contains 7K images with 9,954 person instances (after filtration follow-
ing section 3), and we evaluate on the original validation dataset (1K images).
Out of 9,954 instances, 687 were detected by the face detector. MMdetection
is run with commit: b95583270c.

4.2 Effect of Face Anonymization

We start our analysis by focusing on face anonymization. On Cityscapes and
BDD100k (table 1, 2), we observe no significant performance difference from
any type of face anonymization. We note that realistic anonymization slightly
outperforms mask-out anonymization for both datasets. In Figure 7, we find
that the majority of boxes in BDD100K/Cityscapes cover less than 1% of the
image area. Thus, it is not surprising that face anonymization has little impact
on these datasets.

For COCO pose estimation (table 3), face anonymization severely impacts per-
formance, where both mask-out and blurring degrade keypoint AP by > 10%.
This performance drop is significant for bounding box AP as well, reflecting
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Table 1: Instance segmentation AP on the Cityscapes [8] validation set with a Mask
R-CNN [21] R-50 FPN. HM=Histogram matching (section 3.4). HM-LO=Histogram
matching via Latent Optimization (section 3.4).

Anonymization Method AP ↑ AP50 ↑ APperson
Original 36.7±0.1 (∆) 62.8±0.2 35.0±0.2 (∆)

Fa
ce

Blur 36.4±0.2 (-0.3) 62.5±0.2 (-0.3) 34.9±0.1 (-0.1)
Mask-out 36.7±0.2 (0.0) 63.1±0.2 (0.3) 34.9±0.1 (-0.1)
Realistic 36.6±0.1 (-0.1) 62.8±0.3 (0.0) 35.0±0.1 (0.0)

B
od

y

Blur 31.4±0.2 (-5.3) 54.5±0.4 (-8.3) 2.1±0.1 (-32.9)
Mask-out 31.2±0.1 (-5.5) 53.2±0.1 (-9.6) 0.7±0.1 (-34.3)
Realistic 34.6±0.1 (-2.1) 59.0±0.3 (-3.8) 20.3±0.2 (-14.7)

Realistic + HM 34.3±0.2 (-2.4) 58.9±0.2 (-3.9) 21.3±0.3 (-13.7)
Realistic + HM-LO 34.8±0.2 (-1.9) 60.0±0.3 (-2.8) 21.5±0.1 (-13.5)

Table 2: Instance segmentation AP on the BDD100K [61] validation set with a Mask
R-CNN [21] R-50 FPN.

Anonymization Method AP ↑ AP50 ↑ APperson
Original 20.2±0.2 (∆) 34.9±0.4 (∆) 32.0±0.0 (∆)

Fa
ce

Blur 20.5±0.1 (0.3) 35.9±0.1 (1.0) 31.7±0.1 (-0.3)
Mask-out 20.3±0.1 (0.1) 35.3±0.3 (0.4) 31.4±0.1 (-0.6)
Realistic 20.6±0.1 (0.4) 35.8±0.3 (0.9) 31.6±0.2 (-0.4)

B
od

y Blur 15.4±0.1 (-4.8) 26.3±0.2 (-8.6) 0.5±0.0 (-31.5)
Mask-out 15.3±0.0 (-4.9) 25.5±0.1 (-9.4) 0.0±0.0 (-32.0)
Realistic 17.0±0.1 (-3.2) 28.9±0.4 (-6.0) 12.8±0.1 (-19.2)
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Table 3: Keypoint (Kp.) AP on the COCO [37] validation set with a Keypoint R-50
FPN R-CNN [21].

Anonymization Method Box AP ↑ Kp. AP ↑
Original 55.7±0.0 (∆) 65.2±0.0 (∆)

Fa
ce

Blur 50.3±0.2 (-5.4) 53.5±0.2 (-11.7)
Mask-out 49.9±0.2 (-5.8) 52.0±0.3 (-13.2)
Realistic 54.3±0.1 (-1.4) 60.6±0.1 (-4.6)

Realistic + HR Faces 54.4±0.0 (-1.3) 60.8±0.2 (-4.4)

B
od

y Blur 17.8±0.0 (-37.9) 4.4±0.1 (-60.8)
Mask-out 17.4±0.1 (-38.3) 2.0±0.1 (-63.2)
Realistic 24.0±0.1 (-31.7) 15.6±0.1 (-49.6)

that the performance difference is not due to the inability to predict keypoints in
the facial region. Likely, this is due to learning that blurring/masking artifacts
correlate to the human body. Furthermore, we hypothesize that the major
performance drop compared to Cityscapes and BDD100k is due to dataset
distribution and not the task at hand. To validate this, we train an instance
segmentation model on the anonymized COCO datasets and observe a similar
performance drop 1.

Refining COCO Faces Although realistic anonymization significantly
improves over traditional methods, there remains a considerable degradation
between it and the original COCO dataset. We hypothesize that this degrada-
tion results from the following factors; limited synthesis quality, facial keypoint
mismatch, and low-resolution synthesis. As the generative model is not con-
ditioned on facial keypoints, the synthesized identity will likely not match
the annotated keypoints. There exists keypoint guided anonymization models
[38, 25, 52], which we leave for further work to investigate. Furthermore,
the generative model synthesizes faces at 128× 128 resolution, introducing

1For mask-out, we observe a 6.7% performance drop for Box AP for COCO instance segmen-
tation, compared to a 10.4% drop for Box AP for Keypoint R-CNN in table 3. See Appendix
A.2 for more details.
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upsampling artifacts for any face above. In total, we found 14,688 faces with
an area larger than 1282. To remove these upsampling artifacts, we employ a
higher resolution (256×256) face synthesis model from DeepPrivacy2 [23] to
anonymize any face larger than 128×128. This slightly improved downstream
use (marked Realistic + HR Faces in table 3), supporting our hypothesis that
upsampling artifacts can degrade image utility for COCO keypoint detection
training.

4.3 Effect of Full-Body Anonymization

For full-body anonymization, we observe a substantial decline in performance
for both traditional and realistic anonymization methods (table 1, 2, 3). Tradi-
tional anonymization leads to a complete degradation in performance, whereas
realistic anonymization improves this significantly. Interestingly, the perfor-
mance of realistic full-body anonymization on BDD100K [61] is noticeably
worse than for Cityscapes [8], which we discuss further below.

Clearly, realistic full-body anonymization significantly degrades the perfor-
mance compared to the original dataset, which we attribute to the following
three issues: keypoint detection errors, synthesis limitations, and global context
mismatch. Synthesizing realistic human bodies is difficult, and current models
may introduce severe visual artifacts for many contexts. Furthermore, current
methods rely on a crop-based anonymization method (discussed in Section 3.4),
which can result in synthesized identities that do not fit the global context of
the image. Section 3.4 introduced naive histogram matching and HM-LO
to mitigate this issue, which we find to significantly improve results on the
Cityscapes dataset (Table 1).

BDD100k vs. Cityscapes The decline in performance is significantly
more prominent for BDD100k than Cityscapes, despite both datasets being
collected for the same purpose. We suspect this discrepancy stems from two
sources; keypoint annotations and dataset resolution. First, ViTPose [58]
detects keypoints for 95.8% of the instances in the Cityscapes dataset, whereas
it only detects for 85.5% in the BDD100k dataset. Secondly, the BDD100k
images are of lower resolution (720p) than Cityscapes (2048× 1024). This
results in 36% of the instance crops having an area < 322, compared to 24% for
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Figure 8: The relative performance drop of realistic anonymization (face or body) for
different ResNet depths.

Cityscapes. While lower-resolution bodies are easier to synthesize in theory,
the employed generative model operates at the resolution 288×160, and major
deviations from this resolution can induce visual artifacts. For example, if we
do not anonymize any detections < 322, BDD100k APperson is increased from
12.8% to 19.9%. In contrast, this increases APperson from 20.3% to 23.4% for
Cityscapes.

4.4 Ablations

Do Larger Models Generalize Better? Zhou et al. [63] observes that
deeper models are less impacted by realistic image anonymization. In our
experiments, we observed the reverse to be true. We train a ResNet-50, 101,
and 152 and compare the relative performance drop of realistic anonymiza-
tion compared to the original dataset. We investigate this for realistic face
anonymization on COCO and full-body anonymization for Cityscapes. Fig-
ure 8 reflects that larger models perform worse for both the COCO, whereas it
is not clear for the Cityscapes dataset.

Diversity vs. Quality Trade-off GANs can trade off the diversity of sam-
ples with quality through the truncation trick [5]. Specifically, by interpolating
the input latent variable z ∼ N (0,1) towards the mode of N (0,1), generated
diversity is traded off for improved quality. This leaves the question, what is
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4 Experiments

Table 4: Instance segmentation AP on the Cityscapes [8] validation set with full-body
anonymization using different latent sampling strategies. Results from Mask R-CNN
[21] R-50 FPN.

Anonymization Method AP ↑ AP50 ↑ APperson
Original 36.7±0.1 (∆) 62.8±0.2 (∆) 35.0±0.2 (∆)

No Truncation 34.0±0.2 (-2.7) 57.7±0.5 (-5.1) 18.6±0.2 (-16.4)
Unimodal Truncation 33.9±0.2 (-2.8) 58.1±0.3 (-4.7) 19.7±0.5 (-15.3)

Multi-modal Truncation (Default) 34.6±0.1 (-2.1) 59.0±0.3 (-3.8) 20.3±0.2 (-14.7)

best for anonymization purposes? Limited diversity might result in a detector
primarily being able to detect a small diversity of the population, whereas
limited quality might reduce transferability to real-world data.

We explore the use of the truncation trick for anonymization purposes, where
we investigate the use of no truncation, multi-modal truncation [41] 2, and
standard truncation [5]. Note that in all other experiments, multi-modal trunca-
tion is used for full-body anonymization, while we use no truncation for face
anonymization.

Table 4 reflects that both standard and multi-modal truncation performs sub-
stantially better than no truncation for APperson. Furthermore, we observe that
multi-modal truncation further improves over standard truncation.

Does Anonymization Impact Other Classes? For many tasks, person
detection is not the intended task of the anonymized data (e.g. road damage
detection [1]). Thus, we investigate the impact of anonymization where person
detection is not part of the task. To answer this, we re-train the instance
segmentation for the Cityscapes dataset and exclude the "person" class from
the segmentation task.

Our experiment (see Appendix A.3) reflects that full-body anonymization does
not impact the detection of the following classes: bus, car, motorcycle, train,

2Multi-modal truncation [41] approximates multiple modes of the latent distribution, enabling
sampling high-quality images while minimizing the loss of diversity. We estimate 512
cluster centers following [23].
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or truck. However, we do notice a performance drop for detecting "rider" and
"bicycle". We believe this is due to detection overlaps.

5 Conclusion

In this work, we investigated the impact of anonymization for training computer
vision models, with a focus on autonomous vehicle datasets. Our experiments
reflect that face anonymization (obfuscation and realistic) has little to no impact
for instance segmentation on the BDD100K [61] and Cityscapes [8] datasets.
In contrast, face obfuscation severely degrades the performance of keypoint
detection models on the COCO [37] dataset, as faces are more prevalent in
comparison to the BDD100k and Cityscapes datasets. We find that realistic face
anonymization can significantly reduce this performance drop. Furthermore,
we find that full-body obfuscation severely impairs performance on all datasets,
where realistic full-body anonymization can notably alleviate this issue. In
summary, our findings reflect that realistic anonymization is a superior option
compared to traditional methods. However, they are not a complete substitute
for real data, especially for full-body anonymization, as current generative
models can often produce unnatural humans that do not fit the given context.

Societal Impact Computer vision models are becoming increasingly adopted
for solving challenging tasks everywhere in our society, from manufacturing to
driving our cars. These models require task-specific training data to specialize
for the task at hand. Collecting such data is troublesome due to privacy legisla-
tion, especially for autonomous vehicles which operate in environments where
individuals appear everywhere. Our findings indicate that realistic anonymiza-
tion can effectively substitute the original data, encouraging companies to
protect individuals’ privacy without compromising model performance. Our
main societal concern is that we do not advocate that the anonymization meth-
ods studied in this paper give any sort of privacy guarantee. The detailed
discussion in Section 2 clarifies that face anonymization and image blurring are
questionable with respect to privacy. Furthermore, anonymized bodies could
still be identified, e.g. from gait recognition [27].
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5 Conclusion

5.1 Limitations and Further Work

Limitations The primary limitation of our study is the reliance on automatic
annotations, where we use DSFD [34] for face detections, and ViTPose [58] for
keypoint annotations. While the performance of these methods is impressive,
they introduce ambiguity in our results, questioning if the current performance
degradation is due to annotation errors or synthesis limitations. Furthermore,
due to the filtering criteria for full-body anonymization and automatic anno-
tation of faces, we are not able to anonymize all individuals in the images.
Finally, it is also worth mentioning that our analysis is restricted to ResNet
[22] and R-CNN [49] based models and that other architectures (e.g. YOLO
[2]) may respond differently to anonymization artifacts.

Further Work Our explorative analysis of current realistic anonymization
techniques highlights several areas of improvement and limitations. To the best
of our knowledge, all current anonymization techniques rely on a crop-based
anonymization method to improve synthesis quality. However, this can result
in a mismatch between the synthesized identity and the global image. For
example, the synthesized identity may not align with the global context of the
image despite fitting the local crop given to the generative model. To mitigate
this, we show that histogram equalization can reduce the impact of this, but we
note that histogram equalization is far from the optimal solution. Furthermore,
our experiments reflect that there are major practical difficulties remaining
in effectively employing generative models for anonymization. For example,
current anonymization techniques operate at a fixed synthesis resolution, where
large deviations from the operating resolution (e.g. bodies smaller than 322)
result in unnatural images, which impacts performance. Finally, we note that
there are several intriguing and unexplored challenges to handle for synthesiz-
ing human figures for anonymization in autonomous vehicles. E.g. handling
multi-view consistency, temporal consistency, or ensuring that the synthesized
demography matches the demography of the original data.
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