
ISBN 978-82-326-7538-8 (printed ver.)
ISBN 978-82-326-7537-1 (electronic ver.)

ISSN 1503-8181 (printed ver.)
ISSN 2703-8084 (online ver.)

Doctoral theses at NTNU, 2023:419

Muhammad Gibran Alfarizi

Data-driven design for fault
prognosis

Application to industrial components,
subsystems, and systems

D
oc

to
ra

l t
he

si
s

D
octoral theses at N

TN
U

, 2023:419
M

uham
m

ad G
ibran Alfarizi

N
TN

U
N

or
w

eg
ia

n 
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Th

es
is

 fo
r t

he
 D

eg
re

e 
of

Ph
ilo

so
ph

ia
e 

D
oc

to
r

Fa
cu

lty
 o

f E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f M
ec

ha
ni

ca
l a

nd
 In

du
st

ria
l

En
gi

ne
er

in
g





Thesis for the Degree of Philosophiae Doctor

Trondheim, December 2023

Norwegian University of Science and Technology
Faculty of Engineering
Department of Mechanical and Industrial Engineering

Muhammad Gibran Alfarizi

Data-driven design for fault
prognosis

Application to industrial components,
subsystems, and systems



NTNU
Norwegian University of Science and Technology

Thesis for the Degree of Philosophiae Doctor

Faculty of Engineering
Department of Mechanical and Industrial Engineering

© Muhammad Gibran Alfarizi

ISBN 978-82-326-7538-8 (printed ver.)
ISBN 978-82-326-7537-1 (electronic ver.)
ISSN 1503-8181 (printed ver.)
ISSN 2703-8084 (online ver.)

Doctoral theses at NTNU, 2023:419

Printed by NTNU Grafisk senter



i

"Essentially, all models are wrong, but some are useful." - George Box.
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Preface

This thesis is submitted in partial fulfillment of the requirements for the degree of
Philosophiae Doctor at the Department of Mechanical and Industrial Engineering
- Norwegian University of Science and Technology (NTNU).

One of my childhood dreams was to become a Professor. I do not really remember
it, as it was told by my mother and grandmother. As time went by, I never envi-
sioned myself becoming a Professor. My goal was only to get a well-paid job and
climb the career ladder. Unfortunately, when I got my bachelor’s degree in 2017,
I did not get a job, even though I was applying everywhere. At that time the oil
price was still quite low, so not many oil and gas companies recruited graduates.
I was then thinking of getting a master’s degree, and my parents are supportive of
it. It was their intention for me to get the highest education degree, though the
decisions are left to me. I was then accepted to study master’s degree in petroleum
engineering at NTNU.

Again, I finished my master’s degree at an unfortunate time, as we are in the middle
of a pandemic. But this time I am actually considering taking a doctorate degree.
Fortunately, I was offered a Ph.D. position in RAMS before the pandemic. Now
here I am, writing my Ph.D. thesis, many years later after I said I wanted to become
a Professor. I might not become a Professor, but getting a Ph.D. degree is pretty
close to that. I’m always interested in science and math, and hopefully, I will
continue to do so.

Professor Shen Yin and Professor Jørn Vatn have been the main supervisor and co-
supervisor, respectively. This Ph.D. position was funded by NTNU and carried out
from August 2020 until August 2023. The target audience of this thesis includes
researchers and practitioners interested in the areas of fault prognosis, accident
prevention, and machine learning applications in industry.

Trondheim, September 2023
Muhammad Gibran Alfarizi
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Abstract
Technical processes in diverse industries, like manufacturing, chemicals, and power
generation, involve intricate operations that aim to achieve specific outcomes.
These operations often entail complex interactions among components and sys-
tems. However, they can also carry substantial risks to health, the environment,
and industry sustainability. Hence, the implementation of a robust fault prognosis
system is paramount for safeguarding the safety and dependability of these intric-
ate technical processes.

Conversely, these technical processes frequently accumulate vast quantities of his-
torical data through routine sensor measurements, event logs, and records. This
observation fuels a compelling interest in crafting fault prognosis methods solely
reliant on this abundant process data. Consequently, the main objective of this
thesis was to design effective data-driven fault prognosis strategies tailored to di-
verse operational scenarios.

This thesis explores fault prognosis across various technical process levels, includ-
ing key components, subsystems, and systems. It begins with basic component-
level issues and progresses to intricate system-level challenges, aiming to gain a
holistic grasp of data-driven fault prognosis complexities in industrial contexts.

The first objective aimed to create a reliable fault prognosis system for critical
technical process components, specifically roller bearings. A novel data-driven
prediction framework was proposed, involving two phases: feature extraction via
Empirical Mode Decomposition and Remaining Useful Life (RUL) prediction us-
ing an RFs-based model with hyperparameters fine-tuned through Bayesian op-
timization. Notably, this approach demonstrated substantial enhancements in RUL
prediction accuracy compared to conventional data-driven and stochastic methods
during an actual run-to-failure experiment involving roller bearings.

The second objective aimed to create an effective fault prognosis system for tech-
nical process subsystems, with a focus on preventing operational failures. The
research selected an automated fuse test bench, a manufacturing line subsystem,
as the subject of study. Initially, an integrated fault diagnosis system based on
extreme gradient boosting was introduced, showcasing superior performance in
detection and classification accuracy while achieving quicker diagnosis times than
standard approaches. Subsequently, the scope of extreme gradient boosting was
broadened to encompass fault prognosis through methodological enhancements
and the incorporation of supplementary data streams like images.

The third objective focused on designing an accurate predictive model for anti-
cipating future operating conditions in industrial systems to avert catastrophic ac-
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cidents. The study honed in on a liquid hydrogen storage system as its research
subject. A novel application of the random forests algorithm was introduced to
enable early detection of hazardous incidents like liquid hydrogen spills, thereby
averting catastrophic outcomes like detonation. The model demonstrated remark-
able accuracy, surpassing other machine learning methods previously employed
for similar experiments. This model, forged through the study, offers valuable
insights for comprehensive risk analysis and the identification of prevention and
mitigation measures, especially in the context of emerging liquid hydrogen tech-
nology applications.

This Ph.D. study offers the potential for enhanced industrial fault prognosis meth-
ods, fostering improved safety and sustainability within the industry. Furthermore,
it may serve as a valuable reference and launching point for future academic re-
search, offering insights into the merits and complexities of employing data-driven
techniques in real-world industrial applications.
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Chapter 1

Introduction

This opening chapter provides the background for this Ph.D. thesis and its object-
ives, research methodology, scope and limitations, and structure of the thesis.

1.1 Background
Technical processes refer to a sequence of operations or actions taken in vari-
ous industries, such as manufacturing, chemical, and power generation, to achieve
desired outcomes or products. These processes often involve complex interac-
tions among different components, subsystems, and systems to accomplish specific
goals efficiently and effectively. However, these processes can also pose signific-
ant risks to human health, the environment, and the sustainability of the industries
themselves [5]. Consequently, there has been growing recognition of the need to
improve the safety of technical processes to minimize these risks and ensure that
industries are able to operate sustainably over the long term [6].

Figure 1.1 illustrates the three crucial aspects of the sustainability of the technical
process: safety, security, and energy efficiency [3]. Paramount to the success of
these processes is the safety and security of their operations, given that any failures
in these areas can result in significant harm to people, the environment, and the
economy [7]. In addition to safety and security, ensuring the use of efficient and
low-carbon energy sources is vital to establish sustainable technical processes for
the long term while also minimizing environmental impact [8].

Technical processes often involve hazardous chemicals, high temperatures, and
complex machinery, which pose considerable risks to workers and the environ-
ment if not adequately managed [9]. Moreover, as industries become increasingly
complex and interconnected, the risks associated with technical processes become

1
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Sustainability of Cyber-Physical System

Safety Security
Energy
Efficiency

Diagnosis
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Cyber
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Low Carbon

Optimization

Figure 1.1: The three pillars of sustainability in technical processes [3].

more challenging to predict and mitigate [10].

Ensuring the safety of technical processes is a critical aspect of modern indus-
trial operations. It is vital not only to protect workers and the environment but
also to ensure the long-term sustainability of the industries themselves. Industrial
accidents, pollution, and reputational damage can have serious economic and so-
cial consequences, impacting the health and safety of individuals, businesses, and
communities [11]. In recent years, there has been an increased focus on the de-
velopment of effective safety measures and the implementation of fault prognosis
methods [1, 12, 13].

Fault prognosis plays a central role in ensuring the safety of technical processes.
It involves predicting or forecasting a system’s, machine’s, or equipment’s future
performance based on current and past operating conditions and data. The ob-
jective of fault prognosis is to identify potential faults, defects, or failures before
they occur, enabling preventive measures to minimize downtime, reduce main-
tenance costs, and enhance safety [14]. Additionally, the prognosis can predict
a product’s remaining useful life (RUL) within appropriate confidence intervals,
informing decision-makers about potential cost avoidance activities and ensuring
safe operation [15].

The field of fault prognosis has undergone rapid advancements in the past decade,
with the development of sophisticated technologies that allow for more effective
and efficient monitoring of technical processes. These technologies can be broadly
classified into two categories: model-based and data-driven methods.

Model-based methods rely on mathematical models based on physical laws or a
priori knowledge of the underlying system to predict faults [16]. These methods
typically use sensor data to validate the model and refine the prognosis. In contrast,
data-driven methods extract useful information for prognosis directly from sensor
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data without making any assumptions about the system [1]. Both model-based and
data-driven methods have their own strengths and weaknesses. Model-based meth-
ods can provide a more accurate prognosis when the underlying physical model is
well-understood but can be limited by the complexity of the system and the ac-
curacy of the model [17]. For example, engineers use math models to predict
aircraft behavior, but when it comes to forecasting engine issues, simplifications
in these models can limit accuracy due to the complexity of aircraft engines [18].
The intricate nature of these engines, with unpredictable factors, makes modeling
their degradation challenging [19]. Data-driven methods, on the other hand, can
handle complex systems with multiple interacting components but may struggle
with identifying faults that do not have a clear signature in the sensor data [20].

Advancements in computing power have made it possible to process and analyze
large volumes of sensor data generated by technical processes, leading to the pre-
valence of data-driven methods in academia. Integrating both model-based and
data-driven methods can improve the accuracy and efficiency of fault prognosis,
as demonstrated by a variety of examples in the literature [21–25]. As the volume
of data continues to grow, more efficient and accurate fault prognosis methods are
urgently needed to ensure the safety and sustainability of technical processes.

Although data-driven methods have the potential to significantly improve indus-
trial operations, their adoption in industry is still limited due to their emerging
nature and the need for further research and validation. This is where the present
Ph.D. project contributes: it aims to implement current data-driven methods for
prognosis in real-world industrial cases, validate their effectiveness, and improve
them to make them more practical for industrial demands and address their limita-
tions.

The research presented in this thesis examines fault prognosis at different levels
of technical processes, including key components, subsystems, and systems. By
starting with simple component-level problems and gradually progressing toward
more complex system-level scenarios, this work seeks to develop a comprehensive
understanding of the challenges and opportunities associated with data-driven fault
prognosis in industrial settings.

This Ph.D. study holds promise for developing more effective and practical meth-
ods for industrial fault prognosis, which can ultimately lead to better safety out-
comes and a more sustainable future for the industry. Moreover, this study has the
potential to serve as a comprehensive reference or starting point for future research
in academia, providing insights into the benefits and challenges of implementing
data-driven methods in real-world industrial settings.
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1.2 Objectives
The primary objective of this thesis was to design efficient fault prognosis tech-
niques for technical processes using data-driven methods that consider the oper-
ating conditions of the process. Specifically, the goals of this thesis are stated as
follows:

1. Develop a reliable fault prognosis system for crucial technical components,
specifically roller bearings. The proposed data-driven framework involved
two phases: feature extraction using Empirical Mode Decomposition and
RUL prediction with an RFs-based model fine-tuned by Bayesian optimiza-
tion.

2. Develop an efficient fault prognosis system for technical process subsys-
tems that prevents operational failures. The research centered on an auto-
mated fuse test bench, a subsystem in manufacturing lines. It initially used
extreme gradient boosting for better fault detection and classification with
faster diagnosis. Later, it expanded to include fault prognosis, enhancing
methods and incorporating extra data like images.

3. Develop an accurate predictive model for assessing future operating condi-
tions within industrial systems to prevent catastrophic accidents. The study
focused on a liquid hydrogen storage system. A novel application of the
random forests algorithm enabled early detection of hazardous incidents like
liquid hydrogen spills, preventing catastrophic outcomes like detonation.

In this thesis, one industrial benchmark process and two experiments are utilized to
evaluate the effectiveness of the proposed approaches for fault prognosis purposes.
The research questions and objectives are discussed in detail in chapter 3.

1.3 List of publications
This thesis is comprised of a series of papers produced during the doctoral studies,
including three papers that have undergone rigorous peer-review in international
journals, as well as two conference papers. Of these publications, three journal
papers and one conference paper have been successfully published. Furthermore,
one conference paper is planned for submission. The following section provides
details regarding each of these publications.

1. Journal paper 1:
[26] M. G. Alfarizi, B. Tajiani, J. Vatn and S. Yin, "Optimized Random



1.4. Scope and limitations 5

Forest Model for Remaining Useful Life Prediction of Experimental Bear-
ings," IEEE Transactions on Industrial Informatics, vol. 19, no. 6, pp.
7771-7779, 2023.

2. Journal paper 2:
[27] M. G. Alfarizi, J. Vatn and S. Yin, "An Extreme Gradient Boosting
Aided Fault Diagnosis Approach: A Case Study of Fuse Test Bench," IEEE
Transactions on Artificial Intelligence, vol. 4, no. 4, pp. 661-668, 2023.

3. Journal paper 3:
[28] M. G. Alfarizi, F. Ustolin, J. Vatn, S. Yin, and N. Paltrinieri, “Towards
accident prevention on liquid hydrogen: A data-driven approach for releases
prediction,” Reliability Engineering & System Safety, vol. 236, p. 109276,
2023.

4. Conference paper 1:
[29] M. G. Alfarizi, J. Liu, J. Vatn and S. Yin, "Sustainability of ICPS from
a Safety Perspective: Challenges and Opportunities," 2023 IEEE 32nd In-
ternational Symposium on Industrial Electronics (ISIE), Helsinki, Finland,
pp. 1-8, 2023.

5. Conference paper 2 (to be submitted):
[30] M. G. Alfarizi, J. Vatn and S. Yin, "Advancements in extreme gradient
boosting for enhanced fault prognosis: A continuation study from fuse test
bench analysis," 2024 IEEE 33rd International Symposium on Industrial
Electronics (ISIE), Ulsan, South Korea, pp. 1-8, 2024.

1.4 Scope and limitations
This Ph.D. research focuses on the fault prognosis of technical processes, specific-
ally utilizing data-driven approaches. The research scope does not extend to de-
cision support functions such as maintenance optimization. Furthermore, model-
based approaches will not be studied.

The primary objective of this research is to develop data-driven methods for fault
prognosis that are applicable in industries with specific safety requirements. Such
industries may include the oil and gas industry, manufacturing industry, and mari-
time industry, among others. These industries are often subject to degradation and
require high reliability, limited maintenance activities, and strict safety protocols.
By targeting these specific industries, this research aims to provide practical solu-
tions to real-world problems and enhance the safety and efficiency of industrial
processes.
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However, a significant challenge encountered during the research is the limited
availability of relevant data from industry sources. Due to the sensitivity of indus-
trial data and privacy concerns, obtaining comprehensive and firsthand data has
proven to be difficult. Consequently, the research relies on publicly available data,
which may introduce the following potential limitations:

1. Data Relevance and Specificity. Publicly available data might not fully cap-
ture the intricacies and specificities of the industrial processes under invest-
igation, potentially limiting the applicability and accuracy of the developed
fault prognosis methods.

2. Limited Granularity. The granularity of publicly available data may not be
sufficient to address the fine details of fault detection and prognosis in com-
plex industrial systems, potentially impacting the precision of the proposed
methodologies.

3. Lack of Domain Expertise. Publicly available data may lack the context and
domain-specific insights that could be provided by industry experts. The ab-
sence of such expertise may influence the depth and accuracy of the research
findings.

Despite these challenges, the research aims to navigate and mitigate these limit-
ations effectively, striving to contribute valuable insights to the field of fault pro-
gnosis in safety-critical industrial settings, even in the face of data availability
constraints.

1.5 Structure of the thesis
The thesis is organized into several chapters. Chapter 2 provides a comprehens-
ive overview of the theoretical background that serves as the foundation for the
thesis. This chapter will introduce relevant terms, concepts, and basic theory ne-
cessary to understand the formulations developed throughout the thesis. Chapter
3 outlines the research objectives and presents the main research questions that
guide this study. Chapter 4 describes the research methodology and work process.
Chapter 5 summarizes the main findings of the thesis, highlighting the contribu-
tions made by the submitted papers. This chapter will discuss the results in the
context of the research questions and objectives presented in chapter 3. Finally,
chapter 6 presents concluding remarks and proposed future works. This chapter
will summarize the key findings of the thesis and provide recommendations for
future research. The proposed future works will build upon the research presented
in this thesis and further advance our understanding of data-driven fault prognosis
in industrial settings.



Chapter 2

Data-driven fault prognosis in
technical processes

Fault prognosis is a critical component in the domain of industrial technical pro-
cesses. Its primary objective is to predict the time to failure of machinery, en-
abling proactive maintenance and preventing unexpected equipment breakdowns.
This predictive maintenance technique is vital in industrial environments, where
unanticipated equipment failures can lead to substantial production losses, safety
risks, and elevated repair costs.

The complexity and interconnected nature of industrial processes underscore the
necessity for effective techniques in fault prognosis. Accurate fault prognosis can
not only enhance the safety and reliability of industrial systems but also optimize
maintenance scheduling and reduce operational costs.

In the face of these challenges, data-driven techniques have emerged as a prom-
ising solution. Leveraging the power of modern computational methods and the
wealth of data generated by industrial processes, these techniques offer improved
accuracy in fault prognosis. They are particularly adept at handling the complex-
ity and non-linearity of industrial systems, with methods such as machine learning
and deep learning leading the way.

This chapter will delve into the current state of the art in data-driven techniques
for fault prognosis in industrial technical processes. It will explore various data-
driven methods, discuss their applications and limitations, and highlight recent
advancements in the field.

The primary objective of this Ph.D. thesis is to enhance the current state of fault

7
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prognosis by devising innovative methodologies and techniques that enhance the
dependability and effectiveness of industrial processes. This endeavor aims to
contribute to the state of the art in fault prognosis, paving the way for more reliable
and efficient industrial processes.

2.1 Advancement in fault prognosis
Fault prognosis, a critical aspect of predictive maintenance in industrial technical
processes, has seen significant evolution over the years. The primary objective of
fault prognosis is to predict the time to failure of a system or component, enabling
active maintenance and minimizing downtime.

According to the literature, the current methods for fault prognosis can be broadly
categorized into three types: knowledge-based methods, model-based methods,
and data-driven methods. Knowledge-based methods rely on engineering exper-
ience and past events, resulting in prognosis outcomes that are more intuitive.
These methods are particularly suitable when process models are readily available
or when process knowledge has been accumulated. However, developing process
knowledge is a time-consuming task, and knowledge-based models heavily depend
on the expertise of individuals. In some cases, it may be impossible to construct
such models due to the issue of combinatorial explosion. Consequently, the predic-
tion accuracy is significantly compromised, and the applicability of these methods
is considerably constrained.

On the other hand, model-based methods utilized mathematical models, often de-
rived from physical laws or expert knowledge, to represent the behavior of indus-
trial systems. The models were then used to predict the system’s future behavior
and identify potential faults. However, these model-based techniques had their
limitations. They required accurate models, which were often difficult to develop
due to the complexity and non-linearity of industrial systems. Furthermore, they
were not well-suited to handle the variability and uncertainty inherent in industrial
processes.

With the advent of powerful computational methods and the increasing availabil-
ity of data from industrial processes, a paradigm shift occurred toward data-driven
techniques. Unlike model-based techniques, data-driven techniques do not require
explicit mathematical models of the system. Instead, they leverage the data gen-
erated by the system to learn its behavior and predict faults. These techniques,
which include machine learning and deep learning methods, have shown prom-
ise in handling the complexity of industrial systems and providing accurate fault
prognoses.

The transition from model-based to data-driven techniques in fault prognosis rep-
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resents a significant advancement in the field. However, it’s important to note
that both types of techniques have their strengths and limitations, and the choice
between them often depends on the specific requirements of the industrial process
in question.

2.2 Data-driven fault prognosis process
A typical data-driven fault prognosis process consists of three main steps: data
acquisition, feature extraction and selection, and model selection, training, and
testing. The illustration of such a process is shown in Fig. 2.1.

Data Acquisition

Feature extraction and
health indicator selection

Model selection,
training, and

testing

Industrial processes

Figure 2.1: A typical data-driven fault prognosis process.

2.2.1 Data acquisition

Data acquisition refers to the process of gathering relevant data from various sources
that are necessary for analyzing and predicting the occurrence of faults or failures
in a system. This step involves capturing and recording data related to the system’s
operation, performance, and condition.
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Data acquisition methods can vary depending on the nature of the system being
monitored. It may involve the use of sensors, monitoring devices, or data logging
systems to collect real-time measurements or historical data. The data can include
various types of information such as sensor readings, operational parameters, en-
vironmental conditions, maintenance records, and other relevant variables.

The data acquisition process requires careful consideration of the sensors or data
sources to be used, their placement or installation, and the sampling rate or fre-
quency at which data is collected. It is important to ensure that the acquired data is
accurate, reliable, and representative of the system’s behavior and operating con-
ditions.

Additionally, data preprocessing techniques may be applied during the data ac-
quisition phase. This involves tasks such as data cleaning, filtering, normalization,
and outlier detection to ensure the quality and integrity of the acquired data. Pre-
processing steps are essential for enhancing the effectiveness of subsequent data
analysis and modeling stages.

2.2.2 Feature extraction and health indicator selection

Feature extraction aims to identify and extract key information from the raw data
that can be used to describe and represent the system’s behavior. This process in-
volves applying mathematical or statistical techniques to transform the data into
a more concise and informative representation. The commonly used methods for
feature extraction in regard to fault prognosis have been summarized by Zhong
et al. in [1]. The techniques can be broadly categorized into two groups: stat-
istical methods, such as Principal Component Analysis (PCA) [31], Independent
Component Analysis (ICA) [32], Partial Least Squares (PLS) [33], Fisher Dis-
criminant Analysis (FDA) [34], and subspace-aided monitoring [35]; and engin-
eering knowledge-based methods, including Fourier transform [36] and wavelet
analysis [37]. Table 2.1 provides a comparison of the common feature extraction
methods for fault prognosis [1].

Health indicator selection, on the other hand, involves identifying the subset of
features that are most relevant for fault prognosis. It aims to eliminate redundant
or irrelevant features that may introduce noise or unnecessary complexity to the
modeling process. Health indicator selection techniques can be applied to rank
or score the importance of each feature based on criteria such as their predictive
power, correlation with the target variable (e.g., fault occurrence), or contribution
to reducing the model’s complexity.

Effective feature extraction and health indicator selection can enhance the accuracy
and efficiency of subsequent modeling and prediction stages in data-driven fault
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Table 2.1: Comparison of the common feature extraction methods for fault prognosis [1].

Method Advantage Disadvantage

PCA [31]
Simplify data dimension and reduce the
computational complexity

The frequency characteristics of the process
data are disregarded

ICA [32]
Statistically independent and appropriate for
non-Gaussian process

The training duration for multidimensional data
is excessively lengthy

PLS [33]
Mitigate the effects of multicollinearity
among variables

Unable to identify variables with weak
correlations

FDA [34]
Sample data demonstrates optimal separability
in projection subspaces

Highly susceptible to noise and reliant on
labeled datasets

Subspace-aided [35]
Extracted fault subspace variables can be
processed directly

Conditions for variable selection are subjective

Fourier transform [36] To enhance display signal in spectral resolution Not applicable to dynamic signals
Wavelet analysis [37] Well-suited for dynamic signal processing Challenging to select the optimal model parameters

prognosis. By focusing on the most relevant and informative features, the resulting
models can better capture the patterns and relationships necessary for accurate fault
detection and prediction.

2.2.3 Model selection, training, and testing

Model selection, training, and testing are critical stages in the data-driven fault
prognosis process. These steps involve choosing an appropriate model, training
it using the available data, and evaluating its performance to ensure accurate and
reliable fault predictions.

Model selection involves choosing the most suitable algorithm or model structure
that can effectively capture the relationships and patterns in the data. Various ma-
chine learning and statistical techniques can be utilized, such as decision trees,
support vector machines, neural networks, or regression models. The selection
process considers factors such as the complexity of the model, its interpretability,
computational requirements, and the specific characteristics of the fault prognosis
problem at hand.

Once a model is selected, the next step is training. Training involves feeding the
model with a labeled dataset, where the input data is paired with corresponding
fault labels or outcomes. The model learns from these examples and adjusts its
internal parameters or weights to minimize the difference between the predicted
outputs and the actual labels. This learning process allows the model to capture
the underlying patterns and relationships within the data.

After training, the model performance needs to be assessed through testing. This
involves evaluating the model’s ability to make accurate predictions on new, un-
seen data. A separate dataset, often referred to as a testing or validation dataset, is
used for this purpose. The model’s predictions are compared against the true fault
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outcomes or labels in the testing dataset, and performance metrics such as accur-
acy, precision, recall, or F1 score are calculated. This evaluation helps to assess
the model’s generalization ability and provides an indication of how well it would
perform on unseen data in real-world scenarios.

Model selection, training, and testing are iterative processes. Different models
can be compared based on their performance metrics, and further adjustments or
refinements can be made to improve the model’s predictive capabilities. This iter-
ative approach helps select the most accurate and robust model for fault prognosis
applications, ensuring reliable and effective predictions in real-time scenarios.

2.3 Data-driven fault prognosis methods

2.3.1 Statistical methods

Fault prognosis, as mentioned earlier, predicts a product’s future reliability based
on past and present health data. These health data, known as condition monitoring
(CM) data, are obtained through ongoing inspections and serve as indicators of the
system’s health. Examples of CM data include tire wear, chemical concentration,
fatigue fracture size, and light intensity from LEDs. As the system degrades due
to usage, this degradation is reflected in the observable CM data (e.g., a decrease
in the light intensity of the LED). CM data is therefore considered the signal of
system deterioration, and failures are determined when a predefined threshold set
by experts is reached. By modeling the degradation history and identifying when
it exceeds the failure threshold, we can predict the remaining useful life (RUL) of
the system.

The data used for RUL estimation can generally be categorized into event data
and CM data. Event data refers to historical failure data, which may be limited to
critical assets that are not allowed to operate until failure. On the other hand, CM
data is a valuable source of information for RUL estimation.

Statistical data-driven methodologies are based on the availability and quality of
data. According to literature [38], the observed CM data can be classified into two
categories: direct CM and indirect CM. The RUL estimation essentially involves
forecasting the CM data to reach a predefined threshold level, since direct CM
data directly reflect the underlying condition of the system. Common examples of
direct CM data include wear and crack sizes, which can be easily observed and
measured. Indirect CM data refers to data that can only provide indirect or partial
indications of the underlying system condition. For an accurate estimation of the
RUL, it is often necessary to supplement the CM data with failure event data. Ex-
amples of this type of data include vibration and oil-based monitoring data. These
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sources of information offer insights into the system’s condition, albeit indirectly.
By incorporating both CM data and failure event data, a more comprehensive un-
derstanding of the system’s health can be obtained, enhancing the accuracy of RUL
estimation.

Major categories of the statistical data-driven prognosis [39] are discussed in the
following section.

Regression Based Model

Techniques within this group predominantly revolve around constructing a para-
metric trajectory of CM data, with random effects, that can be linear or nonlinear.
The majority of prevalent methods for RUL prediction operate on the assumption
that products sharing a type or batch have identical probability of failure traits.
However, while overall population behavior can act as a guideline, it fails to pre-
cisely track the health progression of every individual item. This happens because
each product often encounters unique usage scenarios, disparate environments, or
even varying quality due to process fluctuations. Thus, it is vital to align with the
health trajectories of each singular product instead of relying on interpreted group
averages for more accurate reliability forecasting. Several techniques have been
introduced that combine population data with insights from individual items for
improved RUL prediction.

For example, a linear degradation that employs a Log-normal rate [40], where the
distribution of failure time F is formulated as:

F (t, β0, µ, σ) = P (β0 + β1t > L) = P

(
β1 >

L− β0
t

)
(Eq. 2.3.1)

= Φnor

(
log(t)− [log(L− β0)− µ]

σ

)
, t > 0 (Eq. 2.3.2)

where µ is mean, σ is standard deviation, β0 is constant, β1 ∼ LOGNOR(µ, σ),
and L is the predetermined threshold.

Independent Increment Process Based Model

This model is also known as the stochastic process model, comprising two funda-
mental elements:

1. A stochastic process,
X(t), t ∈ T , X ∈ χ, (Eq. 2.3.3)

with X(0) = x0, where χ is the state space of the process and T is the time
space.
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2. A boundary set B, where B ⊂ χ. If X(0) = x0 is outside B, the first hitting
time (FHT) is defined as random variable T , where T = inf{t : X(t) ∈ B}.
B is often reduced to threshold x∗ or L and the FHT is defined as when X(t)
hits x∗.

There are several stochastic processes, depending on which distribution the de-
gradation signal X(t) will follow. These processes include Gamma process, Wiener
process, and Inverse Gaussian process.

Gamma Process. Gamma process is used to model monotonically increasing de-
gradation signals. In this process, the increment ∆X(t) = X(t + ∆t) − X(t)
in a specified time interval ∆t has a Gamma distribution Ga(α∆t, σ) with scale
parameter σ > 0 and shape parameter α∆t > 0.

The Probability Density Function (PDF) of the first hitting time T is inverse Gaus-
sian distributed, and formulated as Pr(T > t) = Pr(X(t) < L) due to monotony.
The modeling degradation steps with Gamma process are discussed in [41–43].

Wiener Process. A Wiener process {W (t), t ≥ 0} is formulated as,

W (t) = λt+ σB(t) (Eq. 2.3.4)

where λ, σ > 0, and B(t) are the drift parameter, diffusion coefficient, and Brownian
motion respectively. The Wiener process is characterized by W (0) = 0, W (t) is
almost sorely continuous and has independent increments, and W (t) − W (s) ∼
N(µ(t− s), σ2(t− s)) for 0 ≤ s ≤ t.

The PDF of the first hitting time T is inverse Gaussian distributed IG((L−x0)/λ, (L−
x0)

2/σ2), which can be expanded to

Pr(T ≤ t) =

∫ t

0

L√
2πσ2µ3

exp

{
−(L− λµ)2

2σ2µ

}
du . (Eq. 2.3.5)

There are several studies that applied this model for prognostics purposes [44–48].
These models recursively update the parameters, making the prognostics history-
dependent [49, 50].

Inverse Gaussian Process. The inverse Gaussian process {X(t), t ≥ 0} has
specific characteristics, such as its mean function v(t) and scale parameter η.
In this process, the increment ∆X(t) follows an inverse Gaussian distribution
IG(∆t, η(∆t)2). It shares similarities with the Gamma process, displaying a mono-
tone path and approximating the failure time distribution to a Birnbaum-Saunders
type distribution, which offers advantages for future computations.
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Despite its potential benefits in incorporating random effects and covariates, the
use of the IG process in degradation modeling is still relatively new and not widely
adopted. Wang and Xu [51] introduced it to handle random effects, and Ye and
Chen [52] extensively explored various aspects, including the random drift model,
random volatility model, random drift-volatility model, and integration of covari-
ates.

Markovian Process-Based Models

Another set of methodologies utilizes memoryless Markov processes. While these
processes are categorized as stochastic processes, they distinguish themselves from
the models previously discussed by assuming a finite degradation state and focus-
ing on transition probabilities between these states. This group of methods in-
cludes the following major variations:

Markov Chain Model. This model assumes that the degradation process {Xn, n ≥
0} occurs within a finite state space Φ = {0, 1, ..., N}, where 0 denotes the perfect
healthy state and N represents the failed state of the observed system. The RUL at
time instant T is defined as T = inf{t : Xn+t = N |Xn ̸= N}. Historical data are
used to estimate the probability transition matrix and the number of states. This
approach categorizes the health status into distinct states such as "Perfect," "Fault
detected," "Maintenance needed," and "Break down," thereby offering practical
outcomes that can be readily comprehended by field engineers.

Semi-Markov Processes. The semi-Markov process {X(t), t ≥ 0} extends the
Markov chain model by incorporating the random time the process spends in each
state. Although this extension generally results in the loss of the Markov property,
the model remains highly practical. In this model, the first hitting time indicates
the duration during which the process remains in the initial and subsequent states
before it enters one of the states that define set B for the first time.

Hidden Markov Model (HMM). This model comprises of two stochastic processes
– a hidden Markov chain {Zn, n ≥ 0}, representing the unobservable true de-
gradation state, and an observable process {Yn, n ≥ 0}, which is the monitored
signal. This approach shares a similarity with Markovian-based models, as it as-
sumes that the degradation process advances through a finite state space using
a Markov chain. P (Yn|Zn = i), i ∈ Φ, is the conditional probability meas-
ure that connects {Yn, n ≥ 0} and {Zn, n ≥ 0}. Thus, the RUL at time n is
T = inf{t : Zn+t = N |Zn ̸= N,Yj , 0 ≤ j ≤ n}. This model is particularly
favored when only indirect observations are available [53].
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Filtering-Based Models

The Kalman filtering model doesn’t directly utilize the CM as the actual degrad-
ation signal, much like the HMM. Instead, it assumes that the true degradation
state is not directly observable but is somehow linked to the CM data. This
model considers the CM data yt and the unobserved condition xt are linked by
xt = αxt−1+ϵt and yt = βxt+ηt, where α, β are the parameters of the state space
model and ϵt, ηt represent Gaussian noises. Unlike some methods that rely solely
on the most recent CM status, the Kalman filtering model leverages all historical
data. However, its applicability is constrained by assumptions of linearity and
Gaussian noise, and researchers have made efforts to address these issues [38,54].

Proportional Hazard Model

The Proportional Hazard Model [55] has been extensively researched across vari-
ous fields. When incorporating time-dependent variable(s), this model can effect-
ively combine event data and CM data, which is advantageous when dealing with
hard failures or uncertain failure thresholds [56–58]. The model’s hazard rate is
formulated as follows:

h(t) = h0(t) exp (γz(t)) , (Eq. 2.3.6)

where h0(t) represents the baseline hazard rate, z(t) is a vector of time-dependent
variables, and γ is a vector of coefficients. The h0(t) can be either nonparametric
or parametric, and the model parameters can be determined using the maximum
likelihood method. The condition monitoring data are regarded as time-dependent
covariates within z(t). By employing Eq. (Eq. 2.3.6), the system failure distribu-
tion can be calculated.

2.3.2 Machine learning methods

In the field of fault prognosis in technical processes, there are numerous machine
learning techniques available. These methods are primarily used to forecast how
much longer a system or part can be effectively used, a concept known as Remain-
ing Useful Life (RUL). Achieving this prediction involves various approaches.
One approach involves using historical data to spot patterns and estimate how
much life is left. Another method starts by assessing the current damage and then
projecting how it will evolve over time until it reaches a point where failure is
likely.

Predicting the future state of degradation in a system relies on creating models and
recognizing significant factors. However, it’s important to acknowledge that there
will always be uncertainties when making predictions about future conditions in
monitoring systems. As time passes and we move further away from the current
state, these uncertainties grow, leading to less precise predictions. In many cases,
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RUL predictions are based on health indicators that provide the best insight into
the condition of the asset. These indicators are typically derived from an in-depth
analysis of various aspects of the system’s operation.

This section will explore regression models, a fundamental type of machine learn-
ing tool used to predict RUL for systems or components. What sets regression
models apart is their ability to provide a continuous prediction for RUL, offering a
detailed view of potential issues. In this context, it is noteworthy that linear regres-
sion and Support Vector Regression are not discussed as extensively as Random
Forest and XGBoost. This selectivity stems from the deliberate choice of Random
Forest and XGBoost as the preferred algorithms for implementation in this thesis.

Linear regression

In the context of linear regression [59], a prediction denoted as ŷ is generated
through a straightforward process involving the calculation of a weighted sum of
input predictors {x1, x2, . . . , xn}, along with the addition of a constant referred
to as the bias term (b). This mathematical representation of the linear regression
model can be articulated as follows:

ŷ = w1x1 + w2x2 + · · ·+ wnxn + b =

n∑

i=1

wixi + b (Eq. 2.3.7)

where w = {w1, w2, . . . , wn} is a weight vector.

Given that the bias term (b) may be considered negligible in certain cases, its es-
timation will not be described at this point. Instead, our primary objective is to
estimate the weight vector (w) using a training dataset consisting of m pairs, each
represented as (xj , yj), where xj represents an n-dimensional training instance,
and j ranges from 1 to m. To accomplish this objective, we can establish a cost
function, defined as follows:

J(w) = argmin
w

m∑

j=1

(yj − ŷj)
2 = argmin

w

m∑

j=1

(yj − wxj)
2 (Eq. 2.3.8)

In the pursuit of determining an optimized weight vector (w) that minimizes the
squared error as expressed in Eq. (Eq. 2.3.8), a common approach involves com-
puting the derivative of the error with respect to w and subsequently setting it equal
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to zero:

∂

∂w

m∑

j=1

(ŷj − yj)
2 = 2

m∑

j=1

−xj(yj − wxj) (Eq. 2.3.9)

2
m∑

j=1

−xj(yj − wxj) = 0 ⇒ 2
m∑

j=1

xjyj − 2
m∑

j=1

wxjxj = 0 (Eq. 2.3.10)

⇒ 2 = 2
m∑

j=1

wx2j ⇒ w =

∑m
j=1 xjyj∑m
j=1 x

2
j

(Eq. 2.3.11)

Support Vector Regression

In the scenario of having a training dataset characterized by multivariate sets of m
instances represented as xn, along with corresponding observed response values
yn, the objective is to determine a linear function

f(x) = xTw + b (Eq. 2.3.12)

that exhibits the flattest possible behavior. To achieve this goal, it becomes imper-
ative to seek a function f(x) with the minimal norm value wTw. This particular
problem can be effectively formulated as a convex optimization problem, aiming
to minimize the function

J(w) =
1

2
wTw (Eq. 2.3.13)

while ensuring that all residuals possess values lower than ϵ, which is

|yn − (xTnw + b)| ≤ ϵ,∀n (Eq. 2.3.14)

In situations where the existence of a function f(x) to satisfy these constraints for
all instances is not guaranteed, it becomes necessary to introduce slack variables ζn
and ζ∗n for each instance. This concept closely resembles the notion of soft margins
in Support Vector Machine (SVM) [60] classification, as the introduction of slack
variables allows for the accommodation of regression errors up to the values of ζn
and ζ∗n while still meeting the stipulated conditions. The inclusion of these slack
variables results in the objective function taking the following form:

J(w) =
1

2
wTw + C

m∑

n=1

(ζn + ζ∗n) (Eq. 2.3.15)

subject to yn − (xTnw + b) ≤ ϵ + ζn, (x
T
nw + b) − yn ≤ ϵ + ζ∗n, ζn ≥ 0, and

ζ∗n ≥ 0, ∀n where constant C is the penalty constraint and is assigned a positive
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numeric value. It plays a pivotal role in regulating the penalties imposed on obser-
vations that deviate beyond the epsilon margin (ϵ), thereby aiding in the prevention
of overfitting, a technique known as regularization. This value essentially dictates
the balance between the flatness of the function f(x) and the extent to which de-
viations larger than ϵ are allowed. In other words, it controls the trade-off between
model complexity and the tolerance for deviations from the desired conditions.

The parameter w can be fully characterized as a linear combination of the training
observations, and this relationship is succinctly expressed through the following
equation:

w =
m∑

n=1

(αn − α∗
n)xn (Eq. 2.3.16)

The function employed for predicting new values then relies exclusively on the
support vectors:

f(x) =

m∑

n=1

(αn − α∗
n)x

T
nx+ b (Eq. 2.3.17)

Random Forest

The Random Forests (RFs) algorithm relies on a collection of predictors influ-
enced by the stochastic values associated with each tree within the forest [61]. The
selection of input datasets for modeling RFs is done in a random manner from a
given group. The algorithm’s notable success can be attributed to its rapid com-
putational performance, efficient handling of large datasets, and minimal issues
related to overfitting of predictors [26]. For a visual representation of the general
structure of the RFs model, please refer to Figure 2.2.

In the RFs algorithm, each forest takes as input a q-dimensional vector X , where
X = x1, x2, . . . , xq. Inside the forest, a collection of L trees, represented as
{T1(x), T2(x), . . . , TL(x)}, is constructed. Each tree calculates an output value,
denoted as Ŷ1 = T1(X), . . . , Ŷm = Tm(X), where m ranges from 1 to L. Here,
L represents the total number of trees in the forest.

In the context of a classification task, the RFs’ output is determined by

PredictRFs(X) = majority vote{Ŷm(X)}Lm=1. (Eq. 2.3.18)

For a regression task, the prediction is computed by estimating the average of all
tree predictors, expressed as

PredictRFs(X) =
1

L

L∑

m=1

Ŷm(X). (Eq. 2.3.19)
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Figure 2.2: The general structure of the RFs model [4].

The training dataset is formed by inputs xi for i = 1, . . . , n and corresponding out-
puts yi for i = 1, . . . , n. This training dataset is denoted as T = T1, T2, . . . , Tn =
{(x1, y1), (x2, y2), . . . , (xn, yn)}.

The RF algorithm employs the bootstrap resampling method to randomly create L
tree sample sets from the initial training set T . Approximately two-thirds of the
original training data in T are used in the bootstrap samples, which are referred to
as in-bag data. The remaining data constitute the out-of-bag data (OOB).

During the construction of each tree in the forest, the algorithm needs to choose
an appropriate attribute for splitting at each node. This selection is based on a
measure that aims to maximize dissimilarity between classes. The Gini Index is
a commonly used criterion in RFs for selecting the best split. Given a training
dataset T , the mathematical formula for the Gini Index is expressed as

GI =
∑∑

j ̸=i

(f(Ci, T )/|T |)(f(Cj , T )/|T |) , (Eq. 2.3.20)

where Ci represents the class to which a randomly selected sample belongs, and
f(Ci, T )/|T | represents the probability that a selected case belongs to class Ci.
The Gini Index is used to quantify the impurity or heterogeneity in classes within
a node. Higher values of the Gini Index indicate greater class heterogeneity, while
lower values indicate higher class homogeneity. A successful split is indicated



2.3. Data-driven fault prognosis methods 21

when the Gini Index of the child node is lower than that of the parent node, signi-
fying that class homogeneity increases as the tree deepens. When the Gini Index
reaches 0, it means that each terminal node contains only one class, and the tree-
splitting process is complete. At this point, the decision tree has grown to its
maximum depth without any pruning.

Once all the L trees in the Random Forests (RFs) are constructed, new data can be
predicted by aggregating the outcomes of the predictions from these trees.

In summary, the provided pseudocode in Algorithm 1 outlines the RFs algorithm
as described by Breiman in his work [62].

Algorithm 1 Random Forest

Require: Training samples T = {(x1, y1), . . . , (xn, yn)}, testing samples xt
for m = 1 to L do

Using the training set T , create the bootstrap sample Tm at random with re-
placement
From Tm, build a non-pruning decision tree Ŷm
Randomly choose n_try features from N features
Select the best feature to split from each node’s n_try features
Split the tree until it achieves its largest possible size

end for
Ensure: A set of decision trees {Ŷm, m = 1, 2, . . . , L}. For the testing samples,

the predictor Ŷm(xt) is produced by the decision tree Ŷm. The RFs’ output is
determined using the formula in (Eq. 2.3.18) or (Eq. 2.3.19)

Due to the utilization of multiple predictors within their framework, RFs offer
enhanced predictive accuracy compared to a single decision tree. They achieve this
while maintaining efficient computational performance through parallel ensemble
construction, creating submodels for each sample. Furthermore, RFs exhibit strong
performance, particularly when applied to tabular data.

Gradient Boosting (XGBoost)

XGBoost stands out as an effective ensemble learning model. It employs a boost-
ing strategy to iteratively construct decision trees, as described in Chen’s work
[63]. Each newly generated decision tree focuses on correcting the prediction re-
siduals of the previous one. These individual decision trees are then combined
to make the final prediction, resulting in a substantial enhancement in accuracy
compared to the predictive capability of a single decision tree.

Let’s consider a dataset D = {(xi, yi)}, where i ranges from 1 to n, and each xi



22 Data-driven fault prognosis in technical processes

belongs to Rm representing the features of n observational examples, each corres-
ponding to the target variable yi in R. For a given observation indexed by i, a tree
ensemble model is calculated as the sum of predictions from K additive functions

ŷi = ϕ(xi) =
K∑

k=1

fk(xi), fk ∈ F , (Eq. 2.3.21)

In the context of XGBoost, the space of regression trees is denoted as F =
{f(x) = wq(x)}(q : Rm → T,w ∈ RT ), where:

• q represents the structure of each tree, which maps an example to the corres-
ponding leaf index

• T stands for the number of leaves in the tree

• w signifies the weights associated with each leaf

• fk represents an individual regression tree responsible for predicting the
value of fk(xi) for the i-th example

During the training process, the objective function is minimized. This objective
function incorporates both loss terms, denoted as (l), which quantify the difference
between predicted and actual values, as well as regularization terms, represented
as Ω, to prevent overfitting. The minimization of this objective function is crucial
in the training of XGBoost models, as described in equation (Eq. 2.3.22).

L(ϕ) =
∑

i

l(yi, ŷi) +
∑

k

Ω(fk)

where Ω(f) = γT +
1

2
λ||w||2

(Eq. 2.3.22)

The hyperparameters γ and λ serve as means to penalize the model’s complexity.
The loss term l represents a function that quantifies the dissimilarity between the
prediction ŷi and the target yi, such as the cross-entropy loss for classification
problems.

The iterative minimization of the objective function (Eq. 2.3.22) involves adding
a regression tree at each iteration. Specifically, the objective function for the i-th
instance at the t-th iteration can be expressed as follows

L(t) =
n∑

i=1

l(yi, ŷi
(t−1) + ft(xi)) + Ω(ft) . (Eq. 2.3.23)
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By eliminating terms that are independent of ft and employing a second-order
Taylor expansion, the objective function in (Eq. 2.3.23) transforms into

L̃(t) =
n∑

i=1

[gift(xi) +
1

2
hif

2
t (xi)] + Ω(ft) , (Eq. 2.3.24)

where gi and hi are the first and second order derivatives of l(yi, ŷi
(t−1)) with

respect to ŷi
(t−1). Additionally, Ij is defined as the instance set corresponding to

leaf j.

The optimal leaf weights w∗
j and the corresponding optimal value of L̃(t) are then

determined by the following equations

w∗
j = −

∑
i∈Ij gi∑

i∈Ij hi + λ
(Eq. 2.3.25)

L̃(t)(q) = −1

2

T∑

j=1

(
∑

i∈Ij gi)
2

∑
i∈Ij hi + λ

+ γT. (Eq. 2.3.26)

The evaluation criteria for finding the optimal tree split is determined by Eq.
(Eq. 2.3.26). A greedy algorithm is employed, initiating the split from a single leaf
and gradually adding branches in accordance with (Eq. 2.3.26), thereby avoiding
the exhaustive enumeration of all possible tree structures q. To gain a deeper un-
derstanding of the splitting process, IL and IR are introduced as the instance sets
for the left and right nodes after the split. Let I = IL ∪ IR, the loss reduction
resulting from the split is computed as follows

Lsplit =
1

2

[
(
∑

i∈IL gi)
2

∑
i∈IL hi + λ

+
(
∑

i∈IR gi)
2

∑
i∈IR hi + λ

− (
∑

i∈I gi)
2

∑
i∈I hi + λ

]
− γ (Eq. 2.3.27)

The best split is determined by identifying the configuration that yields the max-
imum value for the loss reduction in (Eq. 2.3.27). Following the selection of the
best split, leaf values are assigned using (Eq. 2.3.25). To illustrate the XGBoost
algorithm, please refer to the pseudocode provided in Algorithm 2.

2.4 Comparative analysis
In the realm of fault prognosis, the choice of methodology can significantly impact
the effectiveness of predictive maintenance strategies in various industrial sectors.
This section embarks on a comparative analysis between two prominent categor-
ies of data-driven fault prognosis methods: statistical and machine learning tech-
niques. The analysis delves into the nuances of these approaches, exploring their



24 Data-driven fault prognosis in technical processes

Algorithm 2 XGBoost
Require:

x: the training set
y: the label
l: the loss function
f : the base model
Steps:
Initialize: F0(x) = 0
for k = 1 to K do

for i = 1 to N do
gi = ∂ŷ(t−1) l(yi, ŷi

(t−1))

hi = ∂2
ŷ(t−1) l(yi, ŷi

(t−1))

end for
use gi, hi to compute objective function L̃(t) in (Eq. 2.3.24)
greedily grow a tree fk(x) in (Eq. 2.3.21)
Fk(x) = Fk−1(x) + ϵfk(x)

end for
Ensure: F (x) = Fk(x)

respective strengths and weaknesses across critical dimensions, including accur-
acy, computational complexity, ease of implementation, and suitability for differ-
ent fault types and industrial processes. By shedding light on the distinct advant-
ages and trade-offs of statistical and machine learning methodologies, this section
aims to provide valuable insights to guide researchers and practitioners in selecting
the most appropriate approach for their specific fault prognosis needs.

Accuracy. Statistical methods often require strong assumptions about data dis-
tribution and relationships. Their accuracy heavily depends on how well these
assumptions hold. If the underlying assumptions are met, statistical methods can
provide accurate results. On the other hand, machine learning methods are more
flexible and can handle complex relationships in data without strict assumptions.
They often yield competitive or superior accuracy when dealing with non-linear or
high-dimensional data.

Computational Complexity. Many statistical methods have relatively low computa-
tional complexity and can be implemented with minimal computational resources.
They are suitable for real-time applications with limited computational capacity.
Conversely, machine learning methods, especially complex algorithms like Gradi-
ent Boosting, can be computationally expensive, requiring significant processing
power and memory. They may not be ideal for resource-constrained environments.
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Ease of Implementation. Statistical methods often have well-established math-
ematical formulas and techniques, making them easier to implement, especially
when analytical solutions exist. However, customizing them for specific applic-
ations may require advanced statistical expertise. Machine learning methods are
generally easier to implement using libraries and frameworks like scikit-learn or
TensorFlow. They are accessible to a broader audience and do not always require
deep statistical knowledge. However, hyperparameter tuning and feature engineer-
ing may demand expertise.

Suitability for Fault Types. Statistical methods are well-suited for modeling faults
that adhere to probabilistic or distributional assumptions. For instance, they can
work effectively for predicting faults with well-defined statistical patterns, such
as sensor drift. Machine learning methods excel in capturing complex patterns
and anomalies in data. They are more adaptable to various fault types, including
non-linear, time-varying, or complex interactions among variables. They are often
preferred for fault prognosis in diverse industrial processes.

Suitability for Industrial Processes. Statistical methods can be suitable for pro-
cesses with known statistical properties and where underlying assumptions are
met. They may be preferred in situations where process dynamics are relatively
stable. On the contrary, machine learning methods are versatile and can be applied
to a wide range of industrial processes, including those with complex, non-linear
dynamics and unknown fault patterns. They are particularly valuable when dealing
with processes that evolve over time or where data is high-dimensional.

The choice between statistical and machine learning methods for data-driven fault
prognosis should be based on the specific requirements of the application. Stat-
istical methods are suitable when assumptions hold, computational resources are
limited, and the fault patterns are well-understood. On the other hand, machine
learning methods offer greater flexibility and accuracy, making them suitable for
a broader range of applications, especially those with complex fault patterns and
diverse industrial processes.

2.5 Concluding remarks
This chapter offers a brief introduction to the major technology and basic con-
cepts of fault prognosis techniques, which include statistical and machine learning
approaches. The analysis revealed a fundamental distinction between statistical
and machine learning approaches, each bearing unique advantages and trade-offs.
While statistical methods are grounded in well-defined assumptions and are suit-
able for cases where these assumptions hold true, machine learning methods offer
unparalleled flexibility in handling complex, non-linear relationships and adapting
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to diverse industrial processes. The choice between these approaches hinges upon
the specific demands and constraints of the application at hand.

This investigation underscores the crucial role of data-driven methodologies in
the progression of fault prognosis within industrial technical processes. In an era
marked by data abundance and technological innovation, harnessing the power of
data-driven models offers the promise of not only enhancing system reliability and
minimizing downtime but also ushering in a new era of efficiency and sustainabil-
ity in industrial operations.



Chapter 3

Research questions and
objectives

In this chapter, the researcher outlines the key research questions and the specific
objectives that will guide the study. The research question and objectives are care-
fully crafted to ensure that they are relevant, feasible, and aligned with the existing
literature in the field. This chapter serves as a roadmap for the research project,
providing a clear direction for the study and helping to ensure that the research
remains focused and on track.

3.1 Research questions
The main objective of this Ph.D. thesis is to design efficient fault prognosis tech-
niques for technical processes using data-driven methods that consider the operat-
ing conditions of the process. The research focuses on fault prognosis across vari-
ous levels of technical processes, encompassing critical components, subsystems,
and systems. The specific challenges of these levels are identified and research
questions are raised.

3.1.1 Fault prognosis of critical components

In accordance with ISO 13381-1 [64], predicting future fault progressions requires
a deep understanding of the physical underlying failure modes, as well as the rela-
tionships with future operating conditions. The fundamental goal of data acquisi-
tion and preprocessing is to create a model based on the extracted health indicators
that accurately describes the degree of degradation in the monitored component.
This model utilizes data from various condition monitoring sources to analyze the
degradation mechanisms that will affect the system’s performance while taking

27



28 Research questions and objectives

into account material properties, boundary conditions, and operating and envir-
onmental factors [65]. Consequently, possessing good knowledge of degrading
performance and mechanisms is crucial for establishing a reliable model. Given
the fundamental goal of data acquisition and preprocessing to create an accurate
model of the monitored component’s degradation mechanisms, it is crucial to over-
come the challenge of data interpretation into useful information through feature
extraction.

Feature extraction involves identifying the most relevant information from the
sensor data and transforming it into meaningful features that can be used to ac-
curately predict the RUL of the monitored component. The process of feature
extraction can be complex and time-consuming, as it requires expertise in data
analysis and a deep understanding of the underlying physical processes. Extracting
relevant features involves a careful selection of statistical, spectral, or other signal
processing methods to obtain the most informative features that can capture the
degradation mechanisms of the component. A feature set that is not well-tailored
to the monitored component may result in a model that does not accurately predict
the RUL. Furthermore, the selection of the appropriate feature extraction method
may vary depending on the monitored component, making it essential to possess a
broad range of expertise in data analysis.

Identifying relevant health indicators is another significant challenge. Determining
which indicators are most relevant for predicting RUL can be difficult due to the
complexity of industrial processes and the multitude of potential factors influen-
cing component degradation. Selecting the wrong indicators can lead to inaccurate
RUL predictions and ineffective maintenance planning.

Quantifying the relationship between health indicators and RUL is also a challen-
ging task. Establishing a clear, quantifiable relationship between health indicat-
ors and RUL can be difficult, particularly when dealing with noisy or incomplete
data or non-linear relationships between indicators and RUL. Failure to establish
this relationship accurately can result in incorrect RUL predictions and ineffective
maintenance planning.

The selection of an appropriate failure threshold is another crucial challenge. A
failure threshold is the point at which a component is considered to have failed,
and it can have a significant impact on RUL prediction accuracy. Selecting an
incorrect failure threshold can result in incorrect RUL predictions and ineffective
maintenance planning.

Finally, model selection and comparison present significant challenges in this re-
search. Evaluating and comparing the accuracy of various data-driven methods for
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RUL prediction requires a comprehensive assessment using standardized metrics,
benchmarks, and validation datasets, which can be challenging to establish in a
consistent manner. The selected model should accurately predict RUL to support
decision-makers in maintenance planning and prevent faults and operation failure.
Overcoming these challenges will be critical in achieving accurate and reliable
RUL predictions for effective maintenance planning and reduced downtime.

The relevant research questions related to fault prognosis for critical components
can be concluded as:

1. How to extract features from the raw data to create more interpretable data?

2. What are the most effective methods for selecting appropriate health indic-
ators for predicting RUL of critical components?

3. How to accurately quantify the relationship between health indicators and
RUL to enhance the precision of RUL predictions and improve maintenance
planning?

4. How to select the appropriate failure threshold for predicting RUL?

5. Which data-driven methods are the most accurate for predicting RUL of
critical components?

6. How can these methods be incorporated into a framework that is applicable
in industry and overcomes the limitations of standard techniques?

3.1.2 Fault prognosis of subsystems level

The inclusion of subsystems level fault prognosis in the thesis is essential as it
provides an intermediate level of complexity, capturing interactions among inter-
connected components and enabling more targeted interventions. This approach
allows for a nuanced analysis, striking a balance between the detailed examination
of individual components and the high-level overview of the entire system. By
focusing on subsystems, the research gains a better understanding of how faults
within specific functional areas may influence overall system performance, lead-
ing to more accurate predictions and tailored maintenance strategies for enhanced
system reliability.

The successful development and implementation of prognostic models in technical
processes’ subsystems are a significant research challenge. A key challenge is
understanding the complex interdependencies among subsystems that are inherent
in many technical processes. These relationships and dependencies need to be
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accurately modeled to support effective prognostic modeling. The challenge lies
in the development of models that can capture these complex interdependencies
while remaining computationally efficient.

Computational efficiency is a crucial challenge in developing prognostic models.
While complex models can capture the intricacies of technical processes, they may
require significant computational resources. This can pose a challenge in striking a
balance between model accuracy and computational efficiency. The development
of efficient models that can provide timely and actionable insights is a critical
research challenge.

Another challenge in developing prognostic models is the integration of these mod-
els with maintenance and decision-making systems. To be useful, the prognostic
results need to be seamlessly integrated with maintenance planning and decision-
making systems. This requires addressing challenges in data compatibility, com-
munication protocols, and decision-making algorithms. Successful integration of
prognostic models with these systems can support effective decision-making, im-
prove maintenance planning, and reduce downtime. However, achieving this in-
tegration is an important research challenge that requires a multidisciplinary ap-
proach.

Addressing the complex interdependencies, computational efficiency, and integra-
tion with maintenance and decision-making systems requires a multidisciplinary
approach that draws upon expertise in data science, engineering, and decision-
making. Overcoming these challenges will be critical in realizing the potential of
prognostic modeling to improve maintenance planning and enhance safety.

The research questions pertaining to fault prognosis of subsystem level may be
summarized as:

1. How can the complex interdependencies among subsystems be accurately
modeled and incorporated into prognostic models to ensure robust and reli-
able predictions?

2. What approaches can be used to optimize the balance between computa-
tional efficiency and prediction accuracy in prognostic models for subsys-
tems of technical processes?

3. How can prognostic models be effectively integrated with maintenance and
decision-making systems to enhance overall operational efficiency and sys-
tem reliability?
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3.1.3 Fault prognosis of system level

The fault prognosis of system level in industrial operations presents several chal-
lenges that need to be addressed. Two significant challenges include selecting
suitable prediction techniques and early detection of failure precursors.

The vast array of available techniques for predicting faults at system level presents
a challenge in selecting the most appropriate one for a particular industrial opera-
tion. Given the complexity of industrial systems, it is difficult to determine which
technique will be most effective. Moreover, techniques that work well for one sys-
tem may not be suitable for another. This requires an evaluation of the available
techniques to identify the most appropriate one.

Another significant challenge in fault prognosis is the early detection of failure
precursors. The early identification of potential faults is crucial for effective main-
tenance planning and avoiding unexpected downtime. However, identifying these
precursors can be challenging, as they may be subtle or masked by normal sys-
tem variations. This requires advanced monitoring techniques that can distinguish
between normal system variations and early signs of potential failure. Moreover,
expertise in data analysis can be beneficial to identify the relevant signals and in-
terpret them accurately.

Addressing these challenges is critical for the effective prognosis of system level
in industrial operations. Failure to do so can result in ineffective maintenance
planning, unexpected downtime, and potential safety hazards.

The research questions related to fault prognosis at system level can be summar-
ized as:

1. What are the most effective data-driven methods for predicting future oper-
ating conditions in industrial settings?

2. What are the most effective techniques and methods for identifying and in-
terpreting subtle precursors of failure in industrial systems?

3.2 Research objectives
The primary objective of this Ph.D. thesis is to develop effective fault prognosis
approaches for technical processes utilizing data-driven methodologies that take
into account the process’s operating conditions. To accomplish this goal, the re-
search questions described earlier have been translated into several sub-objectives,
including:

1. Design a reliable fault prognosis system for key components of the technical
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process to accurately predict the remaining useful life (RUL) using data-
driven methods. The proposed method should be applicable in industry and
overcome the limitations of standard techniques.

2. Develop an efficient fault prognosis system for technical process subsys-
tems that prevents operational failures. It is also desirable to investigate the
potential faults before prognosis to ensure appropriate fault prediction.

3. Develop an accurate predictive model for assessing future operating condi-
tions within industrial systems to prevent catastrophic accidents. The pro-
posed model should enable the selection of appropriate mitigation and risk
reduction measures to enhance safety.

In this thesis, one industrial benchmark process and two experiments are utilized
to demonstrate the effectiveness of the proposed approaches for fault prognosis at
the component, subsystem, and system levels.



Chapter 4

Research methodology and
approach

The purpose behind pursuing a Ph.D. degree has been to gain fresh insights and
cultivate expertise in research by constructing research questions, devising re-
search strategies, composing scientific papers, and delivering research outcomes.
This subchapter delineates the general research principles and research methodo-
logies.

4.1 Classification of research
It is crucial to begin by understanding the concept of research. Creswell [66]
defines research as a process of steps used to collect and analyze information to
increase our understanding of a topic or issue. In other words, research is a means
of discovering the unknown and expanding our understanding of a particular sub-
ject. Types of research can be classified into three, namely basic research, applied
research, and experimental development [67].

Basic research aims to expand our knowledge and understanding of fundamental
principles and concepts in science and technology. Basic research is often curiosity-
driven and seeks to answer questions about the nature of the universe, the laws of
physics, and the behavior of living organisms. It can lead to breakthrough dis-
coveries and innovations, but its practical applications are often unclear. Applied
research focuses on solving specific problems and developing practical solutions
to real-world issues. The goal of applied research is to develop new products,
processes, or services that can be used to improve people’s lives and enhance eco-
nomic growth. Applied research is often interdisciplinary, involving collaboration

33



34 Research methodology and approach

between researchers in different fields. Experimental development involves the
creation and testing of prototypes, models, and prototypes of new products, pro-
cesses, or services. Experimental development aims to turn scientific discoveries
and technological innovations into practical applications that can be commercial-
ized and brought to market. This type of research often involves significant invest-
ments of time, money, and resources, and requires close collaboration between
researchers, engineers, and business professionals.

This Ph.D. thesis is explicitly classified as applied research based on the classific-
ation described in the Frascati Manual. The primary objective of this study is to de-
velop effective data-driven models for fault prognosis of technical processes. The
research is intentionally designed to provide practical solutions to real-world prob-
lems and is explicitly intended to be applied in industrial settings to demonstrate
its relevance and applicability. By emphasizing the development and testing of
these models, this research aims to contribute substantially to the improvement of
industrial processes, enhancing their efficiency and reliability in a way that aligns
with the fundamental characteristics of applied research.

4.2 Model evaluation and verification
In scientific research, the assessment and verification of models cannot rely solely
on empirical or experimental methods. The Model Evaluation Group, established
by the EU in 1992, proposed a model evaluation process for cases where other
approaches are necessary [68]. The primary goal of the group was to promote a
culture of model development that included voluntary model evaluation procedures
based on a formalized consensus protocol. To achieve this objective, the group
recommended a model evaluation process that includes:

• scientific assessment,

• verification, and

• validation

By following this model evaluation process, researchers can ensure that their mod-
els are reliable and can be used with confidence in various practical applications.

The scientific assessment stage involves a critical examination of the theoretical
basis of the model and its underlying assumptions. It aims to evaluate the scientific
validity of the model and its suitability for the intended application. Verification is
the process of assessing whether the model is correctly implemented and performs
as expected. This stage involves comparing the results generated by the model
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against independent sources of information, such as analytical solutions, bench-
mark data, or other models. Validation is the process of assessing the model’s
predictive performance and its ability to represent the behavior of the system un-
der study. This stage involves comparing the model’s predictions against actual
observations or experimental data obtained from the real system.

This thesis adopts a scientific assessment approach to scrutinize the underlying
assumptions of the developed models, informed by an extensive literature review
of cutting-edge data-driven approaches, specifically focusing on random forest and
XGBoost, for fault prognosis in technical processes. Rigorous evaluations by ex-
perts from academic and industrial backgrounds contribute to ensuring the validity
and reliability of the developed models. Notably, the methods introduced in this
study represent a notable improvement over existing approaches recommended by
industry standards in the field.

To verify and validate the methods proposed in this thesis, expert judgments from
industry partners have been leveraged. The thesis presents relevant case studies
of technical processes, namely the roller bearings component, automated manu-
facturing line subsystem, and liquid hydrogen storage system, to demonstrate how
these methods can be deployed for decision-making support. The numerical results
obtained from these methods accurately reflect the performance of the developed
methods for fault prognosis of technical processes. Through this process, the ac-
curacy and reliability of these methods have been demonstrated, providing a sound
basis for practical applications in real-world industrial settings.

4.3 Scientific quality
As per the guidelines set forth by the Research Council of Norway [69], quality
research in science should embody three key attributes: Originality, Solidness, and
Relevance. Originality is a measure of the novelty and innovation of the research.
Solidness refers to the degree to which the research’s statements and conclusions
are supported by strong evidence and rigorous analysis. Relevance is judged based
on the research’s potential for contributing to professional and societal develop-
ment by providing practical and useful insights.

This thesis endeavors to strike a balance between the three key attributes of quality
research - Originality, Solidness, and Relevance. The research introduces novel
frameworks, such as the amalgamation of EMD and RF, and enhances existing
methods, exemplified by the hyperparameter optimization of random forest using
Bayesian optimization, thereby pioneering innovative approaches in the realm of
fault prognosis in industrial settings. To underscore the practicality and relevance
of these methods, the thesis presents case studies focused on diverse technical
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processes (bearings, automated fuse test bench, liquid hydrogen storage system),
showcasing their potential for real-world applications. Additionally, the scientific
quality of the work is ensured by disseminating it in scientific peer-reviewed journ-
als and international conferences, and the feedback received from expert reviewers
has been instrumental in enhancing the quality and rigor of the research presented
in this thesis. By focusing on these three attributes, this thesis seeks to make a
valuable contribution to the field of data-driven fault prognosis and advance our
understanding of these critical processes in industrial settings.



Chapter 5

Main results

This chapter presents and describes the main findings of the Ph.D. project, which
are documented in the form of five articles. These findings are evaluated to de-
termine the extent to which the research objectives have been achieved.

5.1 Overview
The research articles aim to address the research questions and to achieve the re-
search objectives that have been identified in Chapter 3. Three articles were pub-
lished in relevant international journals. In addition, one article has been presented
in a peer-reviewed international conference and one article is currently planned for
submission.

This chapter provides a summary of the key findings and contributions of the Ph.D.
thesis, specifically in relation to the proposed objectives. The objective of each
article is outlined in Table 5.1.

Table 5.1: Summary of contributions, objectives, and articles of this PhD thesis

Research objective Main topic Article

Objective 1 RUL prediction of critical components
Article I [26]

Article IV [29]

Objective 2
Fault prognosis of a subsystem

of manufacturing line

Article II [27]
Article IV [29]

Article V

Objective 3
Future operating condition prediction of

a maritime operation
Article III [28]
Article IV [29]
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Table 5.1 also highlights each article’s correlation to the overall research topics of
the thesis. The subsequent sections provide detailed insights into each objective’s
contributions. The complete versions of the articles are included in the Articles
part.

5.2 Contributions

5.2.1 Contributions to fault prognosis of critical components

The first objective of this thesis is to design a reliable fault prognosis system for
key components of the technical process to accurately predict the remaining useful
life (RUL) using data-driven methods. The two articles are related to this objective:

Article I: Optimized random forest model for remaining useful life prediction of
experimental bearings.
Article IV: Sustainability of ICPS from a safety perspective: Challenges and op-
portunities.

1. Article I proposed a novel data-driven prediction framework for bearing
RUL, which is a key component in many industrial technical processes, such
as aero engines, high-speed trains, and wind turbines. The framework, illus-
trated in Figure 5.1, involves two phases: feature extraction using Empirical
Mode Decomposition and RUL prediction using an RFs-based model with
hyperparameters tuned by Bayesian optimization. The approach showed
significant improvement compared to standard data-driven and stochastic
approaches in an actual run-to-failure experiment of roller bearings.

2. Article IV provides an overview of the present state-of-the-art in the field of
remaining useful life prediction in industrial processes, thereby establishing
the literature foundation for the objective of this thesis. This article also
identifies and delineates the research challenges that currently prevail in the
field, and thereby serves as a key source of inspiration and motivation for
the development of the approach outlined in Article I of this thesis.

The main findings of these articles are summarized as follows:

1. The proposed method in Article I outperforms other data-driven and model-
based approaches in terms of accuracy and error in predicting the bearing
RUL, as outlined in Table 5.2 and Table 5.3 respectively. Fig. 5.2 shows the
RUL prediction for every bearing with the best score.
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Figure 5.1: The proposed framework for bearing RUL prediction.

Table 5.2: The score of RUL predictions for every bearing.

Score B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 Average

All features 0.7621 0.7950 0.9277 0.9533 0.8760 0.9648 0.8809 0.9516 0.9094 0.9461 0.8967
4 features 0.7636 0.7853 0.9307 0.9580 0.8643 0.9634 0.8972 0.9537 0.9164 0.9487 0.8981
2 features 0.7761 0.8597 0.9362 0.9612 0.9329 0.9641 0.8447 0.9603 0.9135 0.9429 0.9092
1 feature 0.9536 0.6414 0.8151 0.8413 0.8096 0.9645 0.8532 0.8266 0.7917 0.8306 0.8328

Table 5.3: The RMSRE of RUL predictions for every bearing.

RMSRE B1 B2 B3 B4 B5 B6 B7 B8 B9 B10 Average

All features 2.6739 2.2487 1.3654 0.7220 1.1861 0.8493 1.4983 0.8499 1.4479 0.9599 1.3801
4 features 2.6187 2.2637 1.0971 0.6671 1.4759 0.9307 1.3785 0.8547 1.4315 0.8149 1.3533
2 features 2.3878 1.3728 1.2691 0.6417 0.7147 0.8891 1.8001 0.7249 1.2908 1.1332 1.2224
1 feature 0.5278 4.2387 4.3198 3.4316 1.7146 0.8916 1.8849 5.5522 7.3177 2.9226 3.2802
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Figure 5.2: The best RUL prediction of every bearing.

The proposed model demonstrates close alignment between predicted and
actual RUL values, particularly towards the end of a bearing’s lifespan,
where accurate predictions are crucial. The model excels with bearings
having an average number of samples (around 100-110), such as those in
instances like bearing 1, 4, 9, and 10. However, accuracy diminishes for
bearings with a limited number of samples (short lifespan), notably bearing
2 and 5, which, according to the manufacturer, have an average lifespan of
eight to twelve hours. This discrepancy suggests potential technical issues,
possibly stemming from incorrectly mounted accelerometers on these bear-
ings, leading to erroneous signals. Bearing 6, with an unusually high num-
ber of samples (248), exhibits subpar predictions, likely due to the model’s
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lack of exposure to such high-sample instances during training. Overall, the
model’s prediction error is more pronounced at the beginning of a bearing’s
lifespan, reflecting inherent uncertainty in the input data. As the bearing pro-
gresses towards failure, the model’s predictions become more accurate, be-
nefiting from increased exposure to degradation data, reducing uncertainty
in capturing the degradation trend.

2. The proposed methodology exhibits improved RUL prediction performance
in contrast to the Wiener process. Moreover, the proposed framework mitig-
ates the need for failure threshold determination, which is a source of uncer-
tainty in the model, thus addressing the challenge of managing uncertainty
highlighted in Article IV.

5.2.2 Contributions to fault prognosis of subsystems level

The second objective of this thesis is to develop an efficient fault prognosis sys-
tem for technical process subsystems that prevents operational failures. The three
articles are related to this objective:

Article II: An extreme gradient boosting aided fault diagnosis approach: A case
study of fuse test bench.
Article IV: Sustainability of ICPS from a safety perspective: Challenges and op-
portunities.
Article V: Advancements in extreme gradient boosting for enhanced fault pro-
gnosis: A continuation study from fuse test bench analysis.

1. Article II proposed an integrated fault diagnosis system based on extreme
gradient boosting to detect, classify, and identify the root causes of faults in
an automated fuse test bench, which is a subsystem of a manufacturing line.
The flowchart of the proposed method is shown in Figure 5.3. The proposed
diagnosis system is validated using the data set from PHM 2021 Data Chal-
lenge. By diagnosing faults correctly, this article serves as a foundation for
fault prognosis of subsystem level for Article V.

2. In Article IV, an overview of the current state-of-the-art in the area of indus-
trial process fault diagnosis and prognosis is presented, laying the ground-
work for the objective of this thesis. Moreover, the article identifies and
outlines the existing research challenges in this domain, which serves as a
significant source of inspiration and impetus for the development of the ap-
proach presented in Article II.

3. Article V expanded the capability of the extreme gradient boosting into fault
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Figure 5.3: The flowchart of the proposed method in Article II.

prognosis of an automated fuse test bench. The paper introduces method-
ological refinements to the previously established XGBoost model. These
refinements encompass enhancements to the model architecture, feature en-
gineering techniques, and meticulous hyperparameter tuning, all aimed at
bolstering the model’s accuracy and efficacy in predicting faults and fail-
ures.

Building upon the foundation laid in the earlier paper, this paper discusses
how the model has evolved to incorporate additional data streams, such as
image data. It details the seamless integration of these new data sources and
illuminates the profound impact of this integration on the model’s perform-
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ance, ultimately improving the accuracy and timeliness of fault prognosis.

This practical application showcases the approach’s efficacy in a dynamic
and operational environment, providing insights into data collection, sys-
tem integration, and the tangible outcomes achieved, including streamlined
maintenance processes, reduced downtime, and heightened overall system
reliability. The paper underscores the ongoing evolution of data-driven fault
prognosis, showcasing the continual advancements in the use of XGBoost
as a potent tool in predictive maintenance and fault prognosis for industrial
processes.

The main findings of these articles are summarized as follows:

1. The proposed fault diagnosis system in Article II has high classification ac-
curacy, fast diagnosis time, and interpretable root cause analysis when veri-
fied by the real industrial data from PHM Challenge 2021. The proposed
system also outperforms several standard fault diagnostic approaches in de-
tection and classification accuracy and requires a shorter diagnosis time as
outlined in Table 5.4 and Table 5.5.

Table 5.4: Comparison with standard approaches for detection and classification tasks
using the fuse test bench data set.

Method Detection Classification

F1-score Accuracy F1-score Accuracy

XGBoost 0.9745 0.9764 0.9693 0.9792
RF 0.9234 0.9302 0.7955 0.8958
MLP 0.7118 0.7274 0.7717 0.8684
Logistic Regression 0.6192 0.6942 0.6360 0.8196
LDA 0.6912 0.7396 0.6081 0.7911

Table 5.5: Time to classification for all methods.

Method Average Tc in Class Average Tc

Overall0 2 3 4 5 7 9 11 12
XGBoost 1.17 1 82.5 1 1 1 4 5 3 4.77
RF 1.17 96 57 1 1 1 3 3 3 7.58
MLP 20.76 360 360 360 6.5 11.5 31.5 360 360 76.77
Logistic Regression 9.53 1 3.5 7.5 7.5 5.5 5.5 8 4 8.27
LDA 5 62 360 3.5 6 7 5 360 13 29.79

2. Article II of this thesis proposes a fault diagnosis system that adeptly ad-
dresses the challenges of integrating multiple sources of data and techniques,
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as well as the need for real-time implementation emphasized in Article IV,
through the utilization of multiple data sources and computationally efficient
algorithms that enable real-time implementation.

3. Article V highlights the continued evolution and efficacy of the XGBoost-
based fault prognosis approach in industrial technical processes. Method-
ological refinements, including model architecture enhancements, feature
engineering, and hyperparameter tuning, resulted in improved fault predic-
tion accuracy. The integration of new data sources further bolstered the
model’s performance, enhancing its ability to adapt to changing operational
conditions. The real-world application of the refined approach demonstrated
its practical utility, showcasing streamlined maintenance processes, reduced
downtime, and heightened overall system reliability. These findings under-
score the ongoing advancement of data-driven fault prognosis, reaffirming
the value of XGBoost as a potent tool for predictive maintenance and reli-
ability enhancement in diverse industrial contexts.

5.2.3 Contributions to fault prognosis of system level

The third objective of this thesis is to develop an accurate predictive model for
assessing future operating conditions within industrial systems to prevent cata-
strophic accidents. The two articles are related to this objective:

Article III: Towards accident prevention on liquid hydrogen: A data-driven ap-
proach for releases prediction.
Article IV: Sustainability of ICPS from a safety perspective: Challenges and op-
portunities.

1. Article III proposed a novel application of the random forests algorithm for
early detection of hazardous events in liquid hydrogen (LH2) spills to pre-
vent catastrophic accidents, such as detonation. In this case, early detec-
tion was carried out by predicting the oxygen phase change and estimating
whether the hydrogen concentration was above the lower flammability limit
(LFL). The framework of the proposed application is illustrated in Figure
5.4. The proposed application is verified by real experiments of LH2 re-
lease tests to replicate spills of LH2 inside the ship’s tank connection space
and during bunkering operations.

2. Article IV provides an overview of the current state-of-the-art in the area of
industrial process fault prognosis, thereby setting the foundation for the goal
of this thesis. Additionally, the article appraises and elucidates the current
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Figure 5.4: The framework of the proposed application in Article III.

research challenges within this realm, which serve as a vital source of in-
spiration and momentum for the development of the application proposed in
Article III.

The main findings of these articles are summarized as follows:

1. The model was trained with experimental data and specific databases were
created to analyze the liquefaction and solidification of oxygen during the
LH2 release and the hydrogen concentration in the air. The model accurately
predicted the above-mentioned parameters as summarized in Table 5.6.

2. The random forest approach was more robust and precise than other ma-
chine learning techniques previously used to simulate similar experiments
as shown in Table 5.7.

3. The model developed in this study offers valuable insights that can be util-
ized to conduct comprehensive risk analysis and identify suitable prevention
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and mitigation measures, with the aim of mitigating the overall risk of LH2

technologies, particularly in emerging applications.

Table 5.6: Performance metrics of RFs model for all databases.

Label Accuracy Precision Recall F1 AUC-PR

First database (liquid oxygen) 0.9984 0.9981 0.9983 0.9984 0.9985
First database (solid oxygen) 0.9995 0.9985 0.9955 0.9984 0.9972
Second database (H2 concentration >LFL) 0.9993 0.9873 0.9583 0.9861 0.9731
Third database (liquid oxygen) 0.9993 0.9992 0.9994 0.9993 0.9994
Third database (solid oxygen) 0.9997 0.9993 0.9994 0.9996 0.9994

Table 5.7: Performance comparison of RFs model and linear model (LM) in [2] for all
labels.

Label
Accuracy Precision Recall AUC-PR

LM RFs LM RFs LM RFs LM RFs

Liquid oxygen 0.9020 0.9984 0.8480 0.9981 0.9360 0.9983 0.9490 0.9985
Solid oxygen 0.9570 0.9995 0.830 0.9985 0.6130 0.9955 0.8070 0.9972
H2 concentration >LFL 0.9880 0.9993 0.6490 0.9873 0.1840 0.9583 0.3660 0.9731



Chapter 6

Concluding remarks and outlook

The primary objective of this thesis was to design efficient fault prognosis tech-
niques for technical processes using data-driven methods that consider the op-
erating conditions of the process. This objective is decomposed into three sub-
objectives that are addressed through five articles.

The first sub-objective was to design a reliable fault prognosis system for key com-
ponents of the technical process to accurately predict the RUL using data-driven
methods. Roller bearings were chosen as the key components. A novel data-driven
prediction framework was proposed to predict the RUL of bearings. The frame-
work involves two phases: feature extraction using Empirical Mode Decomposi-
tion and RUL prediction using an RFs-based model with hyperparameters tuned
by Bayesian optimization. The approach showed significant improvement com-
pared to standard data-driven and stochastic approaches in an actual run-to-failure
experiment of roller bearings.

The second sub-objective was to develop an efficient fault prognosis system for
technical process subsystems that prevents operational failures. An automated fuse
test bench, which is a subsystem of a manufacturing line, was selected as the sub-
system of interest in this research. First, an integrated fault diagnosis system based
on extreme gradient boosting was proposed. The proposed fault diagnosis system
outperforms several standard fault diagnostic approaches in detection and classi-
fication accuracy and requires a shorter diagnosis time. Then, the capability of the
extreme gradient boosting was expanded into fault prognosis. Methodological re-
finements and the capability to incorporate additional data streams, such as image
data, were introduced.

The third sub-objective was to develop an accurate predictive model for assessing

47
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future operating conditions within industrial systems to prevent catastrophic acci-
dents. A liquid hydrogen storage system was selected as the system of interest in
this research. A novel application of the random forests algorithm was proposed
for the early detection of hazardous events in liquid hydrogen spills to prevent cata-
strophic accidents, such as detonation. The model can accurately predict the events
and is better than other machine learning techniques previously used to simulate
similar experiments. The model developed in this study provides insights for con-
ducting thorough risk analysis and identifying prevention and mitigation measures,
particularly in emerging liquid hydrogen technology applications.

The future work inspired by this thesis should aim to advance the field of data-
driven fault prognosis by expanding its scope, improving its accuracy, and facilit-
ating its practical implementation across diverse industrial domains. Another topic
that requires worthy attention is the design of real-time fault prognosis systems that
can continuously monitor and assess the health of technical processes. Such efforts
hold the potential to enhance system reliability, reduce downtime, and ultimately
contribute to safer and more efficient industrial processes.
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Abstract—Bearings are essential to the reliable operation
of rotating machinery in manufacturing processes. There is
a rising demand for accurate bearing remaining useful life
(RUL) predictions. The data-driven technique for predict-
ing RUL of bearing has demonstrated promising prospects
to facilitate intelligent prognostics. This article proposes
a new data-driven prediction framework for bearing RUL
utilizing an integration of empirical mode decomposition,
random forest (RF), and Bayesian optimization. The pro-
posed framework consists of two main phases: 1) feature
extraction and 2) RUL prediction. The first phase of this
framework focused on decomposing the empirical input
signals using empirical mode decomposition into distinct
frequency bands to filter out irrelevant frequencies and
determine the fault characteristics of the signals. In the
second phase, the RUL prediction is then carried out by
an RFs-based model with its hyperparameters tuned by
Bayesian optimization. The proposed approach is validated
using datasets obtained from an actual run-to-failure ex-
periment of roller bearings. The experiment results signifi-
cantly improved compared to the standard data-driven and
stochastic approaches.

Index Terms—Bayesian optimization, empirical mode de-
composition (EMD), random forest (RF), remaining useful
life (RUL) prediction, roller bearings.

I. INTRODUCTION

ROLLING bearings are vital in ensuring a stable operation
in many industrial mechanical drive systems, such as aero

engines, high-speed trains, and wind turbines. However, the
operation of bearings may encounter many unexpected fail-
ures due to lack of lubrication, overload, and inappropriate
installation. To avoid undesired consequences due to bearings
failure, researchers have developed several remaining useful
life (RUL) prediction methods to estimate the failure of the
rolling bearings in advance and to schedule proper maintenance
actions [1], [2]. RUL prediction is an efficient tool to improve the
overall system’s reliability and reduce maintenance expenses.
However, the challenge remains in describing the degradation
trend of rolling bearings due to unknown external circumstances,
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such as ambient noise and rotational speed, which can produce
a significant discrepancy between actual rolling bearing life and
theoretical calculating value.

In recent years, many approaches have been proposed to
predict the RUL of bearings. These approaches can be mainly
classified into model-based, data-driven, or a combination of
both. Model-based approaches use mathematical functions or
mappings to represent the physical nature of the failure [3]. Most
model-based approaches use the crack growth curves to describe
the degradation of rolling bearing, such as the Marco–Starkey
theory [4], where statistical estimation methods are applied, e.g.,
extended Kalman filtering (EKF) [5], to update the prediction
over time. Some researchers have favored stochastic processes
within model-based approaches because random errors in mea-
surements, working environment uncertainties, and stochastic
dynamics in the degradation process could be considered [6].
However, several other variables will influence the final pre-
diction findings, such as fatigue theory, computation method,
materials, fracture, and vibration, resulting in a lack of extensi-
bility. Therefore, an increasing number of researchers pay more
attention to the data-driven approaches, which use historical
failure data to build the degradation model without knowing
the physical failure mechanism of the system. A recent review
of data-driven methods for RUL prediction can be found in [7].

Data-driven approaches for bearing RUL prediction can be
broadly divided into health indicator (HI)-based and direct
prediction methods. Using similarity-based interpolation tech-
niques, the first category generates a synthetic HI that depicts
the level of system degradation from sensor data. For instance,
Huang et al. [8] employed a similarity weighting technique based
on Euclidean distance for RUL estimation. They also produced
confidence intervals for the predicted RULs using an adaptive
kernel density estimation method for managing uncertainty.
Likewise, Wang et al. [9] suggested HI curve modeling for online
RUL prediction based on sparse Bayesian learning. Yu et al. [10]
used a similarity-based HI curve matching method for RUL
prediction and a bidirectional recurrent-neural-network-based
autoencoder to construct HIs. Although the capability of this
group of ways to incorporate new instances is beneficial, the
system degradation patterns could be distorted by the data-fusion
techniques used to simulate HIs [11].

Machine learning models are explicitly utilized for RUL pre-
diction in direct prediction methods. According to recent studies,
HIs are just rescaled RULs and are directly predicted rather than
RULs [12], [13]. Recent advances in deep learning have led
to the development of numerous direct prediction algorithms.

1551-3203 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
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Using a deep belief network, Deutsch and He [14] have created
RUL prediction models for gears. Li et al. [15] showed that
convolutional neural networks perform better than conventional
shallow machine learning models when used to predict the RULs
of aircraft engines. Wu et al. [16] show that long short-term
memory can predict the RULs of aviation engines.

Despite the effectiveness of deep learning models in var-
ious prognostics and health management tasks, the lack of
datasets makes it difficult to increase the RUL prediction perfor-
mance [17]. A significant number of parameters must be mod-
ified during the training phases of deep learning models. Deep
learning models can offer excellent prediction performance on
test samples with good generalization abilities when sufficient
data are available. In the case of inadequately labeled historical
data, training may result in unsatisfactory model parameters
that only apply to the information upon which models were
trained [18]. In addition, deep learning requires relatively high
computational cost and lengthy training time [19]. Other algo-
rithms, such as the random forest (RF) method, can be utilized
to overcome the drawbacks of deep learning.

Developed by Breiman (in 2001) [20], RF is an ensemble
machine-learning technique. It is a bagging-based approach
that integrates many predictors (regression trees) generated ran-
domly using the bootstrapping method. Multiple predictors can
minimize complexity and yield superior performance compared
to a single predictor. RFs can handle discrete and continuous
variables without making assumptions about their distribution
and are not susceptible to overfitting [21]. Moreover, the RFs
approach minimizes complexity in the following three different
ways.

1) It keeps complexity low by constructing submodels from
sample subsets using the bootstrap.

2) It keeps computation speedy by using a parallel ensemble
to create submodels on each sample.

3) It has fewer hyperparameters to tune in comparison to
deep learning [22].

The hyperparameters must be determined optimally to predict
the RUL of bearings using RFs. Hyperparameter optimization
identifies a set of hyperparameters that minimizes a predeter-
mined loss function when applied to a group of independent
data. One approach to optimizing hyperparameters is the grid
search approach, which is an exhaustive search over a manually
chosen subset of a learning algorithm’s hyperparameters space.
Another approach, random search, is an improvement relative to
grid search because it replaces the exhaustive enumeration of all
combinations by randomly selecting them. When only a small
number of hyperparameters influences the machine learning
algorithm’s performance, it can outperform grid search [23].
However, these two approaches are relatively inefficient since
they do not select the next hyperparameters to assess depending
on the outcomes of the prior evaluations. Previous evaluations
do not influence the grid and random searches. They frequently
spend a lot of time analyzing “bad” hyperparameters.

For noisy black-box functions, there is a global optimiza-
tion technique called Bayesian optimization [24]. The Bayesian
approach remembers the outcomes of earlier analyses, unlike
random or grid search. Using these data, they create a proba-
bilistic model that connects hyperparameters to the probability

of a score on the objective function P (score | hyperparameters).
Bayesian hyperparameters optimization is used because it can
identify better model configurations in fewer iterations than
random search by assessing hyperparameters that appear more
promising based on the previous iteration.

The main objective of this article is to assess how accurately
the proposed approach can predict the RUL of rolling bearings.
The Bayesian optimization algorithm is used to optimize the
hyperparameters of the RFs model. To validate the performance
of the proposed method, the authors conducted a run-to-failure
experiment of rolling bearings and collected the raw acceleration
signals. The natural signals are then decomposed into several HIs
using the empirical mode decomposition (EMD) [25]. The most
significant advantage of the EMD method is that it is adaptive and
data-driven, without the need for a priori basis function selection
for signal decomposition. In addition, EMD, as a widely used
signal processing approach, can also analyze nonlinear and non-
stationary vibration signals. These HIs are then selected using
feature importance from the RFs algorithm and inputted to the
RFs-based Bayesian model. Its performance is compared with
support vector regression (SVR), LASSO regression, artificial
neural networks (ANNs), and conventional RFs. Additionally,
the performance of the proposed model is compared with a
model-based approach using the Wiener process.

The main contributions of this article can be summarized as
follows.

1) A framework to construct HIs is proposed by applying
EMD and selecting them using feature importance to
determine the best feature for RUL prediction.

2) A novel data-driven approach is proposed by utilizing the
proposed HI framework, RF, and Bayesian optimization
to offer precise RUL prediction to overcome the draw-
backs of deep learning (e.g., high computational cost and
lengthy training time) and improve prediction accuracy.

3) The proposed RUL prediction approach is verified by real-
world datasets obtained from a run-to-failure experiment
of rolling bearings. Furthermore, the performance of the
proposed model has been investigated and compared with
other data-driven and model-based approaches for RUL
prediction of bearings.

The remainder of this article is organized as follows. Section II
presents the proposed framework and the preliminaries of our
approach. Section III describes the data used in the case study.
Section IV discusses the performance of the proposed model in
real-world datasets. Section V concludes this article.

II. PROPOSED METHOD

A. Framework of the Proposed Method

Fig. 1 depicts the framework of the proposed method. The
initial phase of this framework is focused on feature extraction,
in which each of the gathered raw acceleration signals is de-
composed into distinct frequency bands to filter out irrelevant
frequencies and determine the fault characteristics of the signals.
The signal decomposition is performed with EMD. The EMD
decomposition is based on the variation in frequency over the
bearings’ lifespan. The statistical features as indicators (i.e.,
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Fig. 1. Framework of the proposed method.

kurtosis, RMS, crest factor, shape factor, impulse factor, skew-
ness, and mean value) are calculated for each intrinsic mode
function (IMF) to compare the frequency bands and determine
which feature from which band is suitable for predicting RUL
of bearings. The EMD decomposition is further elaborated in
Section II-B.

The second phase is related to the RUL prediction. The bear-
ing datasets have been obtained by an experimental laboratory
with the same operating condition. The statistical features from
other bearings’ datasets are used as input basis for the RFs-based
model to predict the RUL of the current bearing of interest. The
hyperparameters of concern (the number of trees in the forest,
the maximum depth of the tree, and the minimum number of
samples required to be at a leaf node) of every RFs-based model
are optimized using Bayesian optimization. The features are then
ranked and divided into four groups based on their importance,
which results in groups containing all, top four, top two, and
top one features. The RFs-based model considers every feature
group as the input to predict the RUL of the current bearing of
interest. The RUL prediction of every bearing is evaluated based
on its score and prediction error. The details of each step will be
further elaborated in Section II-F.

B. Empirical Mode Decomposition

Traditional signal-processing techniques assume that the sig-
nals are linear or stationary. Thus, they may result in false in-
formation and erroneous results. However, among various time-
frequency methods, the Hilbert–Huang transform (HHT) is an
empirical approach that can analyze stationary and nonstationary
signals for fault detection, condition monitoring, and failure
prognosis of bearings [25]. HHT is an adaptive data-driven

Algorithm 1: Empirical Mode Decomposition.

Input: Acceleration signal y(t)
Identify all local maxima and minima of y(t)
for i = 1 to n do

while j ≤ k do
The upper and lower envelopes, ytu and ytl , are
formed by connecting all local maxima and minima
with a cubic spline line, respectively

Calculate the mean of ytu, ytl , as mt
i1 = (ytu + ytl )/2,

and ht
i1 = y(t)−mt

i1
The above sifting process is repeated several times as
ht
ij = ht

i(j−1) −mt
ij

end while
ht

1k satisfies the definition of IMF and the stopping

condition, SD, where SD =
∑T

t=0

(
|ht

1(k−1)−ht
1k|

ht
1(k−1)

)2

,

it becomes IMF, that is, c1 = ht
jk

A new signal, x1, is generated by x1 = y(t)− c1

Repeat above steps as xi = xi−1 − ci
end for

Output: The original signal is decomposed into n IMFs,
and one residual xn

approach that can also handle the nonlinearity of the signals [26].
The first step in HHT is EMD, which decomposes the signals
into different segments called IMFs based on their time-domain
characteristics. The process of carrying out an EMD approach
on an acceleration signal is summarized in Algorithm 1.

C. Random Forests

The RFs algorithm is based on a collection of predictors
influenced by each forest tree’s random value. To observe the
modeling of RFs, input datasets are extracted from a group
and then randomized. The higher success of the RFs algorithm
is attributable to its efficient handling of big datasets, rapid
operational speed, and lack of predictor overfitting [27].

The forest in RFs is built using the p dimension in-
put vector of X = x1, x2, . . . , xp. Then, a set of K trees
{T1(x), T2(x), . . . , Tk(x)} is developed inside the forest.
Each tree determines its output value, represented as Ŷ1 =
T1(X), . . . , Ŷm = Tm(X), where m = 1, . . . ,K. The overall
output of the RFs is calculated by the estimation of an average
of all tree predictors, mathematically expressed as

PredictRFs(X) =
1
K

K∑

m=1

Ŷm(X). (1)

The training dataset D = D1, D2, . . . , Dn = {(x1, y1),
(x2, y2), . . . , (xn, yn)} is taken independently from input
and output, where xi, i = 1, . . . , n denotes the input vector
training dataset and yi, i = 1, . . . , n denotes the output vector
training dataset. From the original sample set D, the RF
randomly creates K tree sample sets using the bootstrap
resampling technique. Approximately one-third of the data in
the original sample set D is not drawn in bootstrap samples;
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Algorithm 2: Random Forest.

Input: Training samples D = {(x1, y1), . . . , (xn, yn)},
testing samples xt

for m = 1 to K do
Construct the bootstrap sample Dm randomly from the
original training set D with replacement

Create a nonpruning decision tree Ŷm through Dm

Pick n_try features at random from N features
Choose the best feature from each node’s n_try
features to split

Split the tree until it reaches its maximum size
end for

Output: A set of decision trees {Ŷm,m = 1, 2, . . . ,K}.
The decision tree Ŷm generates the predictor Ŷm(xt) for
the testing samples. The overall output of the RFs is
calculated as in (1)

these data are known as out-of-bag (OOB) data, whereas the
remaining data are known as in-bag data. Pseudocode of the RF
algorithm [20] is described in Algorithm 2.

As stated previously, the growth of each tree depends on a
bootstrap sample containing almost two-thirds of the training
data. Testing is done with the remaining training data (OOB).
As shown in the following equation, the MSE of the OOB error
is derived by deducting the predicted values from the reference
values

MSE ≈ MSEOOB =
1
N

N∑

i=1

(Ŷ (Xi)− Yi)
2 (2)

where Ŷ (Xi) denotes the predicted output, Yi denotes the ob-
served output, and N represents the total number of samples.

D. Bayesian Optimization

Bayesian optimization produces a probabilistic model of the
function mapping from hyperparameter values to the objective
as evaluated by a validation set when used for hyperparameter
optimization. Bayesian optimization is an iterative procedure
that involves two fundamental components: 1) a probabilistic
surrogate model and 2) an acquisition function to determine the
next point to examine. In each iteration, the surrogate model is
fitted to all previous observations of the target function. After
that, the acquisition function, which utilizes the probabilistic
model’s predictive distribution, decides the utility of various
prospective spots while balancing exploitation and exploration.
The acquisition function can be thoroughly tuned because it is
inexpensive to compute compared to assessing the costly black-
box process.

A visual representation of Bayesian optimization is shown
in Fig. 2. After two evaluations, the black line represents the
surrogate model’s initial estimate, with the related uncertainty
shown in gray. The surrogate model falls short of the actual
objective function shown in red.

The surrogate function after eight evaluations is shown in
Fig. 3. The real objection function is now matched with the
surrogate function. In light of this, the hyperparameters that

Fig. 2. Bayesian optimization run after two evaluations. Modified from
Snoek et al. [28].

Fig. 3. Bayesian optimization run after eight evaluations. Modified from
Snoek et al. [28].

maximize the surrogate will also optimize the actual objective
function.

One of the acquisition functions is expected improvement (EI)

EIy∗(x) =

∫ y∗

−∞
(y∗ − y)p(y|x)dy (3)

where y∗ is the objective function’s threshold value, the objective
function value y is calculated using the hyperparameters x and
the surrogate probability model p(y|x) expresses the probability
that y will occur given x. The goal is to maximize the EI
concerning x.

The tree-structured Parzen estimator applies the Bayes rule,
which is expressed as

p(y|x) = p(x|y) ∗ p(y)
p(x)

(4)

to construct a model where the probability of the hyperparam-
eters given the score on the objective function is denoted by
p(x|y), which may be written as

p(x|y) =
{
l(x) if y < y∗

g(x) if y ≥ y∗
(5)

where y < y∗ denotes an objective function value below the
threshold. According to this equation, there are two possible
distributions for the hyperparameters: One in which the objective
function value is lower than the threshold (l(x)) and another in
which it is greater (g(x)).

Since the l(x) distribution only includes x that resulted in
scores below the threshold, draw values of x from this distri-
bution are superior. Bayes’ rule also supports it since the EI

Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on July 27,2023 at 08:11:18 UTC from IEEE Xplore.  Restrictions apply. 



ALFARIZI et al.: OPTIMIZED RANDOM FOREST MODEL FOR REMAINING USEFUL LIFE PREDICTION OF EXPERIMENTAL BEARINGS 7775

Algorithm 3: Bayesian Hyperparameter Optimization.
Input: (hyperparameter space Θ, Target score function
H(θ), max number of evaluation nmax)
Select an initial configuration θ0 ∈ Θ
Evaluate the initial score y0 = H(θ0)
Set θ∗ = θ0, y

∗ = H(θ0), and S0 = {θ0, y0}
for n = 1 to nmax do

Select a new hyperparameter configuration θn ∈ Θ by
maximizing EI in (6)

Evaluate H in θn to obtain a new numeric score
yn = H(θn)

Augment the data Sn = Sn−1 ∪ {θn, yn}
Update the surrogate model
if yn < F ∗ then
θ∗ = θn and y∗ = yn

end if
end for

Output: θ∗ and y∗

equation becomes

EIy∗(x) =
γy∗l(x)− l(x)

∫ y∗

−∞ p(y)dy

γl(x) + (1 − γ)g(x)

∝
(
γ +

g(x)

l(x)
(1 − γ)

)−1

(6)

which states that the EI is inversely proportional to l(x)
g(x) . There-

fore, this ratio will be maximized when values for x are taken
from l(x), increasing the EI. The variable γ represents the
quantile of the negative accuracy scores (observed thus far), used
as a cutoff point, and defines the threshold y∗. This user-defined
cutoff point is often set at 15% by default.

Before saving the results and scores, the algorithm compares
each new set of hyperparameters it proposes with the real ob-
jective function. The algorithm builds a probabilistic model that
gets better with each iteration by computing l(x) and g(x) using
the account of the objective function.

In conclusion, a preliminary estimate of the surrogate function
is developed and modified as new information becomes avail-
able. When there are enough evaluations of surrogate functions,
the objective function will eventually be adequately reflected.
The objective function would also be maximized by the same
hyperparameters that maximize the EI. The pseudocode for
Bayesian hyperparameter optimization is presented in Algo-
rithm 3.

E. Model Evaluation

A score function is defined to evaluate the model’s perfor-
mance by comparing the actual and predicted RUL of bearings.
The score function is based on the percent errors of predictions,
which is defined as

%Error = 100 × Act RUL − R̂UL
Act RUL

. (7)

The early prediction of RUL (i.e., cases where %Error > 0) and
late prediction of RUL (i.e., cases where %Error ≤ 0) will be

TABLE I
INITIAL HYPERPARAMETERS AND THEIR SEARCH RANGE

treated differently. Thus, a penalty function, expressed in (8),
is introduced, which penalizes late RUL predictions more than
early ones. Late RUL predictions might result in more severe
consequences and are more crucial than early ones [29]

Ai =

{
exp (− ln (0.5) · (%Error/5)) if %Error ≤ 0

exp (+ ln (0.5) · (%Error/20)) if %Error > 0.
(8)

Moreover, accurate RUL predictions at the later stage of a
bearing’s lifetime are more vital than predictions at the early
stage. So, higher weights are given to the predictions near the
bearing’s time to failure. The weight is assigned linearly as
the first prediction data point weights 1, and the nth prediction
weights n. The score function is then defined as

Score =

∑n
i=1 wi ×Ai∑n

i=1 wi
(9)

where n is the number of samples, and wi is the weight of ith
prediction.

In addition to the score function, the root-mean-square relative
error (RMSRE) is also calculated. RMSRE is expressed as

RMSRE =

√√√√ 1
n

∑n

i=1

(
Act RUL − R̂UL

Act RUL

)2

. (10)

A higher score and lower RMSRE values indicate that the
model’s predictive abilities for RUL prediction are superior.

F. Framework of the Proposed RFs-Based Bayesian
Model

The proposed model’s objective is to accurately predict the
RUL of rolling bearings. The RFs regression model is respon-
sible for predicting the RUL while Bayesian optimization will
optimize the RFs model’s hyperparameters to increase its pre-
diction accuracy. The RUL prediction of bearings begins with
specifying the input sample, the features, and the hyperparame-
ters’ initial values. The initial hyperparameters and their search
range are summarized in Table I.

The optimal hyperparameter settings will decrease predic-
tion error [30]. According to the literature, no analytical for-
mula exists to find the optimum set of hyperparameters [31].
Thus, Bayesian optimization is combined with the RFs model
to determine the optimal hyperparameter settings, resulting in
lower prediction error. The objective of the optimization is to
minimize the MSE of the RFs model. The flowchart of the
proposed RFs-based Bayesian model is shown in phase 2 of
Fig. 1.

The steps involved in phase 2 of the flowchart are explained
as follows.
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TABLE II
BEARINGS AND THEIR NUMBER OF SAMPLES

1) The samples and features are obtained from the feature
extraction phase with EMD decomposition using other
bearings’ data for each bearing. The features used for in-
put are kurtosis, RMS, crest factor, shape factor, impulse
factor, skewness, and mean value. The output is the RUL
of bearings for every timestep.

2) The hyperparameters (see Table I) are set to the initial
values and then optimized using Bayesian optimization.
It was observed that most of the time, the value of the
surrogate function does not improve after 40 evaluations;
the maximum number of evaluations is set to 50.

3) The optimal set of hyperparameters is applied to the RFs
model, and the score and the RMSRE are recorded for
model evaluation.

4) The features are ranked based on their importance in
predicting the RUL of bearings using RFs feature impor-
tance and SHAP importance analysis. The best 50% of the
features are selected and then ranked again. The process
is repeated, and as a result, the features are divided into
the top four, the top two, and the top one.

5) Build an RFs model for each group of features and repeat
steps 2 and 3. In total, there are four different RFs models
for each bearing.

6) Evaluate and analyze the performance of the four RFs-
based Bayesian models.

III. CASE STUDY

A. Data Description

A set of run-to-failure experimental tests on roller bearings is
designed to illustrate the effectiveness of the proposed approach.
The bearings are operated under similar laboratory conditions
with the same motor speed of 2975 r/min. The original data
are a batch of acceleration signals in the horizontal direction
collected from the bearings’ healthy state until the acceleration
amplitude crosses the level of 10g where the experiments ceased.
The bearings are degraded by contamination, i.e., pouring a
mixture of Silicium carbide solid particles and lubricant onto
the bearing at regular intervals until the stopping threshold (i.e.,
10g) is reached. Table II lists the number of samples of different
bearings from a healthy state to a failed state. The details of the
data and the vibration setup used to conduct the experiments can
be found in [32].

B. Health Indicator

In this section, EMD is implemented to decompose each
horizontal acceleration signal over different frequency ranges
according to the signal’s time-scale characteristics resulting in

Fig. 4. SHAP variable importance plot for B10.

a series of IMFs. Comparing different IMFs with their feature
scales for each signal gives insights into the relevant or infor-
mative frequencies and features concerning the bearings’ faults.
The statistical features will then be calculated from each of the
first 5 IMFs of the acceleration signals. The first IMF in EMD is
the dominant feature among all with the highest value of fitness
function (i.e., metric that combines monotonicity, trendability,
and prognosability). It is thus chosen for the HIs. Table III
shows how to calculate the statistical features where M is the
number of measurements in one sample, ci is the processed
signal measurements obtained by the EMD algorithm, and the
mean and standard deviation are m and σ, respectively.

In every bearing, the RMS feature has the highest value in
monotonicity, prognosability, and trendability, which means it
is the essential feature for RUL prediction. The RFs feature
importance and SHAP importance analysis also corroborate this
finding, as RMS is the critical feature for every bearing. RMS is
also the only feature that visually trends upward as time passes,
indicating higher degradation over time until bearing failure.
However, the value of RMS in one bearing cannot be compared
to other bearings, as the RMS value at failure time is different
in every bearing. Thus, the RMS feature must be considered
individually.

IV. EXPERIMENT RESULTS AND ANALYSIS

A. Model Results

Fig. 4 shows the SHAP variable importance plot for B10. The
plot shows that the RUL prediction depends on the RMS feature.
Moreover, the RMS is negatively correlated with the RUL value,
which means that the higher the RMS value, the lower the RUL
value. This correlation makes sense since higher RMS indicates
higher degradation, which means lower the RUL of the bearing.
The SHAP variable importance plot shows similar results for
other bearings.

Tables IV and V show the score and RMSRE of the RFs-
based Bayesian model for every bearing after hyperparameters
optimization is applied to every group of features. Fig. 5 shows
the RUL prediction for every bearing with the best score.

Tables IV and V show that the proposed model, on average,
produces the highest score and lowest RMSRE when using only
the top two features. However, the differences in score and error
are only significant when using only one feature and insignificant
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TABLE III
FORMULA FOR STATISTICAL FEATURES

TABLE IV
SCORE OF RUL PREDICTIONS FOR EVERY BEARING

TABLE V
RMSRE OF RUL PREDICTIONS FOR EVERY BEARING

otherwise. The top feature here is the RMS feature. This differ-
ence suggests that using multiple HIs is beneficial for predicting
RUL values. Many HIs can provide better information about the
bearing’s health condition than only one. The proposed model
also runs efficiently due to the use of Bayesian optimization to
update parameters, which avoids the high computational cost
and lengthy training time.

There are differences between the proposed method as a
data-driven approach and the Wiener process as a stochastic
approach. In the Wiener process, the underlying randomness
or the probabilistic behavior in the bearings’ degradation is
considered while the uncertainty of the failure threshold is also
considered at each timestep. On the other hand, the proposed
method can provide better RUL prediction results regarding
score and error without determining a failure threshold.

Fig. 5 shows that the prediction results of the proposed model
are close to the actual RUL values in most of the bearings,
especially near the end of the bearings’ lifetime, where the
RUL prediction matters most. Generally, the proposed model
performs better when the bearing has an average number of
samples (i.e., 100–110 samples) like bearing 1, 4, 9, and 10.
However, the model does not give an accurate RUL prediction
when the bearing only has a small number of samples (i.e.,
short lifetime), such as bearing 2 and 5. According to the
manufacturer, the average lifespan of such bearings is between
8 and 12 hours. Consequently, bearing 2 and 5 are atypical, and
there may be technical problems in conducting experiments.
The technical issue may be caused by the accelerometers not
being correctly mounted to the bearings, resulting in erroneous
signals. In addition, the predictions of bearing 6 perform poorly
compared to the other bearings. Its inferior prediction could
be due to its higher number of samples (248) than others.

Because the RFs model learned from other bearings datasets
to make predictions, it has not seen samples higher than 200
and, therefore, makes outrageous predictions.

Generally, at the beginning of a bearing’s lifespan, the model
has a more considerable prediction error, and this is due to some
uncertainty in the input data. At the middle and deterioration
stages, when the bearings are approaching failure, the uncer-
tainty has decreased because more degradation data have been
seen and utilized to capture the degradation trend, resulting in a
more accurate RUL prediction.

B. Results Validation

A comparison with other data-driven algorithms is made
to corroborate the proposed model’s performance, including
conventional RFs, ANNs [33], SVR [34], and LASSO regres-
sion [35]. The hyperparameters of ANN (number of layers,
hidden unit, and learning rate), SVR (gamma and C), and
LASSO (alpha) are optimized with Bayesian hyperparameters
optimization. Moreover, the performance of the proposed model
is also compared with a model-based approach using the Wiener
process. The average score and RMSRE are recorded for every
method and summarized in Table VI. The proposed method
results are bolded in Table VI.

Based on the score and RMSRE in Table VI, the proposed
method outperforms all other ways to predict the RUL of bear-
ings. Compared to conventional RFs, the proposed model has
improved the average score by 3% and reduced the average
error by 9%. Furthermore, compared to the Wiener process,
the proposed model has enhanced the average score by 6% and
reduced the average error by 54%. A higher score and lower
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Fig. 5. Best RUL prediction of every bearing.

TABLE VI
SCORE AND RMSRE OF ALL METHODS

RMSRE values imply that the model’s predictive capabilities
for RUL prediction are superior.

V. CONCLUSION

This article proposes a data-driven framework for predicting
the RUL of bearings. The framework consists of the feature
extraction phase and RUL prediction phase. EMD performed
the feature extraction to decompose input signals into different
frequency bands to identify signal fault characteristics. Then,
an RFs-based model combined with Bayesian hyperparameters
optimization was developed to predict the RUL of bearings.
A run-to-failure experiment of roller bearings was performed
to validate the proposed method. Score function and RMSRE
were used to evaluate the method’s performance. The proposed

method outperforms other data-driven and model-based ap-
proaches in terms of score and error. Additionally, the proposed
approach requires relatively low computational cost and fast
training time compared to the deep learning approach. However,
like any RFs-based method, one has to find a tradeoff between
the training time and prediction accuracy. RF is also a black box
algorithm, so the results are not easily interpretable, i.e., it does
not provide complete visibility into the coefficients like linear
regression.

For further research, a more detailed investigation is required
to compare the proposed method and the stochastic Wiener
process depending on the decision context, the length of the
dataset or the bearing’s lifetime, accuracy of the prediction
results on the two distinct healthy stages, and deterioration
stage of bearings, as well as their mathematical complexity and
computational time.
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An Extreme Gradient Boosting Aided Fault Diagnosis
Approach: A Case Study of Fuse Test Bench
Muhammad Gibran Alfarizi , Member, IEEE, Jørn Vatn, and Shen Yin , Senior Member, IEEE

Abstract—The health status of a fuse test bench is essential to
monitor to ensure quality control of the fuse. A system failure
during operation will lead to significant impacts on the final quality
of fuses. Thus, it is important to have a fault diagnosis system to
detect, classify, and identify the root causes of faults to prevent
operation failure. An effective fault diagnosis system should have
high accuracy, fast diagnosis time, and interpretable root cause
analysis. This article proposes an integrated fault diagnosis system
based on extreme gradient boosting for an automated fuse test
bench to solve those challenges. The proposed diagnosis system is
then validated using the dataset from PHM 2021 Data Challenge.
Performance comparison of the fault diagnosis system with other
standard approaches in practice is also carried out. Experimental
results show that the diagnostic accuracy of the proposed system
outperforms several standard fault diagnostic approaches.

Impact Statement—An appropriate fault diagnosis system is
needed to ensure a safe operation of the fuse test bench. This
paper proposes a fault diagnosis system based on extreme gradient
boosting for a fuse test bench. The proposed system in this paper
reaches 97% accuracy in both fault detection and classification and
gives interpretable root cause analysis. A diagnosis system that can
accurately detect when there is a fault and identify which type
of fault can lead to swift and proper maintenance action. Early
maintenance, which prevents a fault turns into a system failure,
will ensure the quality control of fuses continues and reduce the
probability of mislabelling the quality of the fuses.

Index Terms—Extreme gradient boosting, fault classification,
fault detection, fault diagnosis, fuses, root cause analysis.

I. INTRODUCTION AND CASE STUDY

FUSES have been used as essential safety devices from
the early days of electrical engineering. A fuse operates

to provide overcurrent protection of an electrical circuit. It is
crucial to let them pass the quality control pipeline to ensure the
quality of the fuses. With the rapid digital transformation of the
manufacturing/production process in the era of Industry 4.0, a
fuse test bench serves as an automated quality control pipeline
for electrical fuses.

The fuse test bench generally consists of a four-axis SCARA-
robot to pick up electrical fuses with a vacuum gripper, a thermal
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Fig. 1. Quality control pipeline for electrical fuses system [27].

camera to monitor the temperature, and a camera to detect
fuses on a feeder. The indicated system first assesses the fuse
conductivity. If it is conductive, the fuse is then heated up by
applying 200-mA current in a 1.5-s time interval, in which a
thermal camera measures the heating process. After the test
completion, the fuse is moved back into the feeder with two
conveyor belts.

The automated quality control process is depicted in Fig. 1.
The fuses are first picked up by a robotic arm. They are then
carried to the visual field of a thermal camera responsible for
finding signs of overheating or degradation. After the analysis is
terminated, the fuses are placed on a conveyor belt and sorted by
a robotic bar. Finally, the fuses are moved by the large conveyor
belt to a small conveyor belt that transports them back to the
feeder, where the fuses are stored before restarting the cycle.

A fault diagnosis system is necessary to ensure a safe oper-
ation of the fuse test bench. Faults in the test bench happen
when there is an alteration of the behavior of one or more
components. Typical abnormalities include changes in the speed
of the conveyor belts and pressure leakage on the pneumatic
system. The fault categories in the test bench are generally
known in practice. Therefore, it is essential to have a system
to detect and classify faults accordingly. Subsequently, to help
the operator understand the operation status, the system should
be able to identify the abnormal behavior, i.e., the root cause
identification. Furthermore, the system should be able to achieve
diagnosis tasks as soon as possible to avoid further problems
arising due to the abnormalities.

2691-4581 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
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The fault diagnosis methods can be roughly classified as
either physics model-based or data-driven ones [1]–[3]. The
model-based approach requires the knowledge of the first prin-
ciples of the item of interest, e.g., the system mechanisms,
structural integrity, and material properties [4], [5]. This method
is highly accurate on the component level but may not be
as accurate on the system level due to complex interactions
intrasystem that are not easy to model with first principles [6].
The data-driven methods are trying to find hidden patterns and
knowledge from empirical data without knowing the physics be-
forehand [7]–[10]. With the ever-increasing data and computing
power in the industry, more examples of data-driven methods
applications are found in the big data era [11]–[15].

Many sensors equipped with the fuse test bench provide a
huge amount of data. When dealing with such an amount of data,
engineers usually resort to data-driven analysis techniques. An
example of such popular techniques is deep learning approaches.
In the era of big data, deep learning algorithms have attracted
intense interest in fault detection and diagnosis because of
their enormous representing power and performance in solving
complex problems [16]. The recurrent neural network (RNN)
and autoencoder (AE) are examples of the popular deep learning
algorithms used for fault detection. Dinaki et al. [17] used an
LSTM network (a variant of RNN) to localize the network faults
using only the video quality of experience metrics from the
video service providers. Dewangan and Maurya [18] employed
the AE to detect anomalies in rotating machinery. The deep
learning approaches are also powerful tools for fault diagnosis.
CNN can be implemented for fault diagnosis in a semiconductor
manufacturing [19], unmanned aerial vehicle [20], and
cyber-physical systems [21]. Restricted Boltzmann machine
(RBM) and its variants are especially useful for fault diagnosis in
structured data, some of which are shown in [22]–[25], and [26].

However, the aforementioned deep learning approaches are
typically separately applied to fault detection, fault classifica-
tion, or root cause analysis. A combination of several methods is
commonly used in order to achieve detection, classification, and
root cause analysis simultaneously. For example, Chen et al. [28]
applied single shot multibox detector [29] and a fast single-shot
detection method [30] to localize defects and then applied deep
convolutional neural network to classify defects in fasteners.
This is typically referred to as separate learning, in which
independent methods are used to feature learning and pattern
recognition. In industrial practice, a preferred diagnosis system
would be end-to-end learning, which can take raw signals and di-
rectly generate the desired outcome, all in one integrated system.

There are many benefits of using end-to-end learning. First,
instead of being constrained to human prejudices, it can directly
capture anything implied in the data. Moreover, accuracy can
be improved by optimizing the parameters of the whole system.
Compared to separate learning, the global optimum might not
be reached because optimization happens individually at each
stage. Last but not least, the system is generic, which means it
is adaptable or transferable to different but similar problems.

Some of the deep learning algorithms can be implemented
as end-to-end learning, e.g., CNN. CNN can automatically
extract features, learn, and classify them accurately, which are
helpful for fault diagnosis systems in the industry. These learned

features, however, are part of a larger “black box.” This will
worsen the interpretability of the features. Therefore, it does
not help find the root cause of the faults, which is one of the
objectives in this case study. The conflict between interpretabil-
ity and accuracy is an important issue in machine learning.
High-accuracy results are typically achieved by deep learning,
but their decision-making processes are not interpretable, as the
algebraic complexity of the functions tends to lose meaning
with respect to the original set of feature variables. On the other
hand, a highly interpretable algorithm, such as linear regression,
performs unsatisfactorily when faced with real-world data.

Random forest is an algorithm that can defy the
interpretability-accuracy tradeoff, or at least push it to its limit.
Random forest can also be implemented as end-to-end learning
because of its feature importance analysis. The feature impor-
tance analysis is performed directly in the algorithm training,
which is essential to identify which signals represent anoma-
lous behavior. A similar technique to random forest but with
improved accuracy is gradient tree boosting [31]. Gradient tree
boosting combines weak learners sequentially so that each new
tree corrects the errors of the previous one. This is especially
helpful in this study due to the small amount of faulty data,
making the fault classifier the weak learner. Tree boosting has
been shown to produce state-of-the-art results on a variety
of standard classification benchmarks [32]. Extreme gradient
boosting [33] (XGBoost) is one of the tree boosting techniques
that has been frequently used in many machine learning and
data mining challenges. The success of XGBoost is due to its
scalability in various scenarios and faster running times [33].
XGBoost is highly accurate and can be directly implemented
to detect and classify anomalies, while also identifying signals
representing an abnormal operation, all in one integrated system
and fast running time.

To this end, the practical demands of fuse test bench can be
summarized into three main points as follows.

1) An integrated fault diagnosis system to detect, classify,
and identify the root causes of faults in a fuse test bench.

2) The fault diagnosis system is expected to have high clas-
sification accuracy, fast diagnosis time, and interpretable
root cause analysis.

3) Performance comparison of the designed fault diagnosis
system with other standard approaches in practice.

An extreme gradient boosting aided fault diagnosis approach
is then proposed to solve these practical demands. PHM Chal-
lenge 2021 dataset [27] is used for comparison analysis.

The rest of this article is organized as follows. Section II
presents the preliminaries of our approach. Section III describes
the data and the proposed fault diagnosis system approaches.
Section IV discusses the performance of the proposed system.
Finally, Section V concludes this article.

II. PRELIMINARIES

A. XGBoost Algorithm

XGBoost is an effective ensemble learning model. It employs
a boosting strategy to generate decision trees repeatedly [33].
The newly generated decision tree can correct the previous
decision tree’s prediction residuals. Finally, multiple decision
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trees are combined to make the final prediction, which greatly
improves accuracy when compared to a single decision tree.

Consider a dataset D = {(xi, yi)}(i = 1. . .n,xi ∈ Rm, yi ∈
R), where m represent features for each of n observation
examples which correspond to the target variable y. A tree
ensemble model for a given observation i is calculated by sum
of predictions from K additive functions

ŷi = φ(xi) =
K∑

k=1

fk(xi), fk ∈ F (1)

where F = {f(x) = wq(x)}(q : Rm → T,w ∈ RT ) is the
space of regression trees; q denotes the structure of each tree that
maps an example to the corresponding leaf index; T represents
the number of leaves in the tree;w is the leaf weights; and fk is a
regression tree predicting the value of fk(xi) for the ith example.
The objective function with loss terms (l) and regularization
terms Ω in (2) is minimized in the training process

L(φ) =
∑

i

l(yi, ŷi) +
∑

k

Ω(fk)

where Ω(f) = γT +
1

2
λ||w||2. (2)

The γ and λ are the hyperparameters to penalize the model
complexity. The loss term l is a function that measures the
difference between the prediction ŷi and the target yi, e.g., the
cross-entropy loss for classification problems.

The minimization of objective function (2) is done iteratively
by adding a regression tree at each iteration. The objective
function at tth iteration for ith instance becomes

L(t) =
n∑

i=1

l(yi, ŷi
(t−1) + ft(xi)) + Ω(ft). (3)

By removing the terms independent of ft and applying a second-
order Taylor expansion, the objective function in (3) becomes

L̃(t) =

n∑

i=1

[
gift(xi) +

1

2
hif

2
t (xi)

]
+Ω(ft) (4)

where gi and hi are the first and second-order derivatives of
l(yi, ŷi

(t−1)) with respect to ŷi
(t−1). Define Ij as the instance

set of leaf j. The optimal leaf weights w∗
j and the correspond-

ing optimal value of L̃(t) are then computed by the following
equations:

w∗
j = −

∑
i∈Ij gi∑

i∈Ij hi + λ
(5)

L̃(t)(q) = − 1

2

T∑

j=1

(
∑

i∈Ij gi)
2

∑
i∈Ij hi + λ

+ γT. (6)

Equation (6) is used as the evaluation criteria to find an optimal
tree split. A greedy algorithm starts splitting from a single
leaf and adds branches according to (6) to avoid enumerating
all possible tree structure q. To better understand the splitting
procedure, consider IL and IR are the instance sets of left and
right nodes after the split. Let I = IL ∪ IR, the loss reduction

Algorithm 1: XGBoost.
Input:
x: The training set
y: The label
l: The loss function
f : The base model
Steps:
Initialize: F0(x) = 0
for k = 1 to K do

for i = 1 to N do
gi = ∂ŷ(t−1) l(yi, ŷi

(t−1))

hi = ∂2
ŷ(t−1) l(yi, ŷi

(t−1))
end for
use gi, hi to compute objective function L̃(t) in (4)
greedily grow a tree fk(x) in (1)
Fk(x) = Fk−1(x) + εfk(x)

end for
Output: F (x) = Fk(x)

caused by the split is then calculated by

Lsplit =
1

2

[
(
∑

i∈IL gi)
2

∑
i∈IL hi + λ

+
(
∑

i∈IR gi)
2

∑
i∈IR hi + λ

− (
∑

i∈I gi)
2

∑
i∈I hi + λ

]
− γ. (7)

The configuration which gives the maximum value of the loss
reduction in (7) is considered the best split. The leaf values are
then assigned by (5). The pseudocode of XGBoost is shown in
Algorithm 1.

B. Health Indicator

XGBoost can be applied to classification problems. In case of
a fault detection task, which is a binary classification problem,
the loss terms (l) in (2) becomes

l(yi, ŷi) = −yi log(ŷi)− (1− yi) log(ŷi). (8)

For a fault classification task, i.e., multiclass classification prob-
lem, the loss terms (l) in (2) becomes

l(yi, ŷi) = −
M∑

c=1

yi,c log(ŷi,c) (9)

whereM is the number of classes. The best split at the end, which
gives minimum error L(t), will determine the classification for
a given observation i.

III. EXPERIMENT SETUP AND METHODOLOGY

A. Data Description

The fuse test bench dataset is provided by the Swiss Centre
for Electronics and Microtechnology (CSEM) [27]. Data have
been acquired with different fault modes during the operation by
an automated data acquisition system. The fault modes consist
of fault-free instances and a variety of seeded faults under
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664 IEEE TRANSACTIONS ON ARTIFICIAL INTELLIGENCE, VOL. 4, NO. 4, AUGUST 2023

TABLE I
DATASETS DESCRIPTION

TABLE II
STATISTICAL FEATURES DESCRIPTION

controlled conditions. Each mode influences one or more sensor
signals.

There are 99 datasets (experiments) provided for model train-
ing and validation, consisting fault-free instances with class label
0 and faulty instances with eight different class labels. Table I
provides an overview of the datasets.

Every dataset is composed of a set of 50 signals, describing
the evolution over time of a quantity of interest, and runs be-
tween one hour and three hours. These signals can be mainly
categorized into health monitoring signals, such as pressure and
vacuum, environmental monitoring signals, such as humidity and
temperature, and general process monitoring signals, such as
CPUTemperature and ProcessMemoryConsumption.

For every signal, up to seven statistical features are calculated
over a time window of 10 s. Only these statistical features
are considered for further analysis, instead of the raw signals.
Table II shows the description of every statistical features derived
from the sensor signals.

B. Data Preprocessing

1) Data Merging and Labeling: The data collected in every
experiment are summarized in a single dataset. Thus, to analyze
the whole experiment, the individual datasets for training and
validation are merged (99 experiments). Additionally, every
data point in the datasets is labeled to their respective classes.
This allows for fault classification using only one time window.
However, the strategy of choosing the optimal time window will
be explained in a later subsection.

The merged dataset contains reading from sensors. The par-
ticular set of fields of every sensor are considered as features.

2) Missing Value Imputation: There are two linearly depen-
dent statistical features in the dataset, which are vCnt and vFreq,
as described in Table II. Thus, the feature vCnt is chosen, and
vFreq is excluded from the analysis. In addition, when vCnt
equals 0, all other features are missing, which makes sense since
there is no recorded data in that time window. Therefore, all
missing value is replaced by 0 before inputted into training.

3) Feature Selection: The first step in the feature selection is
to remove all features whose value is only 0. Many features are

TABLE III
HYPERPARAMETERS CONFIGURATION FOR XGBOOST MODEL

removed with this rule, such as ErrorFrame and FeederAction.
Furthermore, features with zero-variance are removed, i.e., fea-
tures that have the same value in all samples. These steps are
carried out to remove features that have minimum information
and simplify model interpretation.

4) Data Splitting: The merged datasets are divided into train-
ing sets and test sets. Training sets consist of 80% of the datasets,
and the remaining 20% is allocated into test sets. The evaluation
is done in the test datasets.

C. Hyperparameters Configuration

The hyperparameters configuration used to build the XGBoost
model are summarized in Table III.

D. Time to Classification

The optimal time to classification for each experiment should
be determined to do the classification in the shortest time pos-
sible. First, classification is done using all the data points in
that experiment, and the class is determined by choosing the
most predicted class. Then, initialize the time to classification
(Tc) to 1. If by using Tc = 1 yield the same classification
as the one that uses all the data point, then the Tc for that
experiment is 1. Otherwise, add the Tc incrementally by one
until the classification is the same as the one that uses all the
data points. The classification for every Tc is also done by using
the most predicted class in that time window.

E. Evaluation Metrics

F1-score is used to evaluate the system performance because
the dataset is imbalanced. The F1-score is suitable for imbal-
anced dataset because it takes into account the precision and
recall of the system, and it is defined as the harmonic mean of
the system’s precision and recall. The calculation of the F1-score
is given in as

F1 = 2× TP

TP + 1
2 (FP + FN)

(10)
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TABLE IV
COMPARISON WITH STANDARD APPROACHES FOR DETECTION AND

CLASSIFICATION TASKS USING THE FUSE TEST BENCH DATASET

where TP, FP, and FN are the number of true positives, false
positives, and false negative, respectively.

To give additional insight, accuracy of the system is also
calculated by using the formula stated as

Accuracy =
TP + TN

TP + FP + TN + FN
. (11)

F. Root Cause Analysis

The root cause analysis for each class is done by using the fea-
ture importance analysis. For a single decision tree, importance
is calculated by the amount that each feature split point improves
the Gini index, weighted by the number of observations for
which the node is responsible. The feature importance is then
averaged across all of the system’s decision trees. In general,
importance provides a score indicating how useful or important
each feature was in the creation of the system’s boosted decision
trees. The more a feature is used to make significant decisions
with decision trees, the more important it is. This importance
is explicitly calculated for each feature in the dataset, allowing
them to be ranked and compared to one another.

A specific model for each class is built to determine the
most important signals in every class. For instance, to determine
the most important signals for class 2, only the data in faulty
experiment class 2 and healthy data in class 0 were used. As
a result, the model is now doing binary classification, and the
feature importance from this model is used to identify the root
cause for class 2. A similar procedure is also done for other
classes.

To visualize the steps involved in our approach, Fig. 2 shows
the flowchart of the proposed method.

IV. EXPERIMENT RESULTS AND ANALYSIS

A. Fault Detection and Classification

In the fault detection problem, all of the faulty classes are
labeled as 1. This becomes a binary classification problem. Fig. 3
shows the confusion matrix for fault detection system in test
dataset. The values in every row are normalized by the total
number of experiments per row (true label).

The detection system yields high accuracy in class 0 (0.99) but
performed slightly worse for class 1 (0.95). This might happen
due to the higher amount of data available for class 0 than class 1.
F1-score and accuracy of the detection system can be seen from
Table IV, which is 0.9745 for F1-score and 0.9764 for accuracy.
These results prove that the system can detect fault accurately.
In the next step, the system will classify the faults according

Fig. 2. Flowchart of the proposed method.

to their classes. Fig. 4 shows the confusion matrix for the fault
classification system in the test dataset.

The classification system yields high accuracy in classes 0, 9,
11, and 12, but the accuracy decreased slightly in classes 2, 3,
4, 5, and 7. When the system misclassifies classes 2, 3, 4, 5, and
7, the majority of them are classified into class 0. Again, this
might happened because of the class imbalance between class 0
and other classes. However, this happens rarely, considering the
accuracy in those classes is still high. The F1-score and accuracy
of the classification system are 0.9792 and 0.9693, respectively.
A high F1 score indicates high precision and recall, meaning
that the system has a low false-positive and false-negative rate.

The proposed system’s capability to detect and classify faults
is proven satisfactory when validated in the fuse test bench
datasets. However, to corroborate the system’s performance,
a comparison with other algorithms is made, which include
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Fig. 3. Confusion matrix for fault detection system in test dataset with nor-
malized value.

Fig. 4. Confusion matrix for fault classification system in test dataset with
normalized value.

linear discriminant analysis (LDA) [34], logistic regression,
multilayer perceptron (MLP), and random forest (RF) [35].
Table IV presents the F1-score and accuracy of each system for
detecting and classifying faults in the fuse test bench datasets.

The proposed system outperforms all other methods to detect
and classify faults in terms of F1-score and accuracy on the
test dataset. The RF method has the closest performance with
the proposed system, due to their similarity in the algorithm.
However, RF suffers in classification F1-score despite having
high accuracy. Because the data consisted of mostly the healthy
data, RF got high accuracy by classifying most of the data into
healthy data and got a lower F1-score by misclassifying the
faulty data into the healthy data. Nevertheless, the RF method

still performs better than MLP, logistic regression, and LDA.
MLP may fall off in F1-score and accuracy due to overfitting
the training data (F1-score of 0.9055 and accuracy of 0.9429 on
the training data, compared to F1-score of 0.7717, and accuracy
of 0.8684 on the test data). Logistic regression achieved unsatis-
factory results due to its linear decision boundaries assumption
in this not-linearly separable data. LDA performs worst due to
its normal distribution assumption on features, which usually is
not the case for many of the real-world data.

The proposed system performs superiorly in these imbalanced
datasets due to its capability in tuning each class’ weight. A
higher weight can be assigned to the less represented class, i.e.,
the faulty classes, and a lower weight to the more represented
class, i.e., the healthy class. This will penalize misclassification
made in the minority class more than in the majority class.
Additionally, the proposed approach has in-built L1 (Lasso
regression) and L2 (Ridge regression) regularization, which pre-
vents the system from overfitting. Moreover, it utilizes the power
of parallel and distributed computing which enables quicker
execution.

B. Time to Classification

As explained in Section III-D, the optimal time to classifica-
tion for each experiment was determined. Table V summarizes
the average time to classification of all classes using the proposed
system and several standard fault diagnostic approaches in test
dataset.

In classes 2, 4, 5, and 7, the proposed system is able to classify
the faults by only using one time window, with a length of 10 s.
These results are desired for a fault diagnosis system because it
can diagnose faults as soon as it happens. Similar results can be
seen in class 0, but one experiment needs seven time windows for
classification, bringing down the average time to classification
to 1.17. In classes 9, 11, and 12, a sufficient amount of time
is needed for the fault classification. However, in class 3, a
considerably long time is required to make a judgment. The
system requires 131 time windows in one of the experiments in
class 3. On the one hand, this is an undesired result for a fault
diagnosis system, as the fault remains undetected for a long time.
On the other hand, the system’s accuracy is very high in classi-
fying faults. In class 3, one might find the tradeoff between the
system’s accuracy and time to classification. Another solution is
to gather more training data in class 3, so the system can classify
faster without sacrificing accuracy.

Table V also provides the average time to classification for
any class for every method. The average time is computed by
weighted average with class 0 having the most weight because
it has the most amount of experiments. The proposed system
has the shortest average time to classification compared to other
methods. Again, the RF method performs closest to the proposed
system due to their similarity in the algorithm. Logistic regres-
sion also able to classify the faults relatively quickly. However,
given the low accuracy results from logistic regression, this
method may be undesired for fault diagnosis system. MLP and
LDA need a noticeably long time to classify compared to others.
This is because the whole duration of the experiment is required
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TABLE V
TIME TO CLASSIFICATION FOR ALL METHODS

TABLE VI
MOST IMPORTANT SIGNALS FOR EVERY CLASS

for some of the evaluations. This implies that those two methods
cannot find the unique characteristics in some of the classes from
small sets of data. Regardless, the accuracy of MLP and LDA is
still inadequate despite of the long evaluation time. The proposed
system is proven to offer the best of both worlds, a high accuracy
and short evaluation time.

C. Root Cause Analysis

The root cause of a fault is determined by the most important
signals in the feature importance analysis. The most important
signals for each class are reviewed in Table VI.

Deeper investigations into the data, specifically in the most
critical signals, are carried out to understand better the causes
of the faults and their physical interpretation. For example, a
constant value in SmartMotorSpeed.value is observed in healthy
data, implying a constant speed in the big conveyor belt. How-
ever, fluctuations in SmartMotorSpeed.value are observed in
class 9 data, indicating an abnormal behavior compared to
healthy data. This suggests that the fault happened in the big
conveyor belt. Therefore, the proper maintenance action would
fix the conveyor belt. A similar problem is also observed in
class 11. In classes 2, 5, 7, and 12, fewer fuses are estimated
and detected compared to normal operation. This may suggest
defects in the robotic arm or the vacuum gripper. The right
maintenance actions should fix the robotic arm and the vacuum

TABLE VII
FAULT INTERPRETATION OF EVERY CLASS

gripper. In class 3, less image sharpness and background illumi-
nation LED are observed. Thus, this may suggest the feeder is
dirty, and the appropriate maintenance response is to clean the
feeder. In class 4, there are changes in environmental conditions
and pressure used for the feeder barrier. Therefore, a suitable
maintenance plan would change the environmental condition
and pressure back to normal. The faults interpretation of all
classes is summarized in Table VII.

V. CONCLUSION

This article proposes an integrated fault diagnosis system
based on extreme gradient boosting for a fuse test bench line
to achieve superior performance in fault detection, fault classifi-
cation, and root cause analysis. The proposed fault diagnosis
system has high classification accuracy, fast diagnosis time,
and interpretable root cause analysis when verified by the real
industrial data from PHM Challenge 2021. The proposed system
also outperforms several standard fault diagnostic approaches
in detection and classification accuracy and requires a shorter
diagnosis time.
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A B S T R A C T

Hydrogen is a clean substitute for hydrocarbon fuels in the marine sector. Liquid hydrogen (𝐿𝐻2) can be used
to move and store large amounts of hydrogen. This novel application needs further study to assess the potential
risk and safety operation. A recent study of 𝐿𝐻2 large-scale release tests was conducted to replicate spills of
𝐿𝐻2 inside the ship’s tank connection space and during bunkering operations. The tests were performed in
a closed and outdoor facility. The 𝐿𝐻2 spills can lead to detonation, representing a safety concern. This
study analyzed the aforementioned 𝐿𝐻2 experiments and proposed a novel application of the random forests
algorithm to predict the oxygen phase change and to estimate whether the hydrogen concentration is above
the lower flammability limit (LFL). The models show accurate predictions in different experimental conditions.
The findings can be used to select reliable safety barriers and effective risk reduction measures in 𝐿𝐻2 spills.

1. Introduction

Liquid hydrogen (𝐿𝐻2) is one of the best solutions for storing
and transporting large amounts of hydrogen. 𝐿𝐻2 can be used in
the maritime sector to store large amounts of hydrogen due to the
limited space onboard ships [1]. However, 𝐿𝐻2 is a cryogenic gas
that is more difficult to handle than conventional fuels (e.g., gasoline).
Hydrogen is liquefied by decreasing its temperature below −253 ◦C,
which corresponds to its normal boiling point [2], and is stored at
atmospheric pressure in very well thermally insulated tanks. Different
insulation types (e.g., perlite, multi-layer insulation (MLI) [3]) can be
installed in the tank vacuum jacket. Additional details on the 𝐿𝐻2
tank’s design for automotive applications can be found in [4–7].

Although hydrogen is potentially clean and renewable and has a
high energy content, it is a hazardous substance since it is highly
flammable and has low minimum ignition energy [8]. Additional haz-
ards are added when it is liquefied since it becomes a cryogenic
substance. Therefore, it must be handled appropriately, and loss of
containment of 𝐿𝐻2 storage components must be avoided. Many conse-
quences of an 𝐿𝐻2 release must still be fully understood. For instance,
air components (nitrogen and oxygen) can condensate or solidify when
in contact with 𝐿𝐻2 due to its extremely low-temperature [9,10].

Abbreviations: AUC-PR, Area Under the Precision–Recall Curve; CFD, Computational Fluid Dynamics; DDT, Deflagration to Detonation Transition; FN, False
Negative; FP, False Positive; LFL, Lower Flammability Limit; LH2, Liquid Hydrogen; LNG, Liquefied Natural Gas; LOX, Liquid Oxygen; MLI, Multi-Layer
Insulation; OOB, Out-Of-Bag; PFPs, Passive Fire Protections; RFs, Random Forests; RPT, Rapid Phase Transition; SOX, Solid Oxygen; TCS, Tank Connection
Space; TN, True Negative; TP, True Positive; VCE, Vapor Cloud Explosion.
∗ Corresponding author.
E-mail addresses: muhammad.g.alfarizi@ntnu.no (M.G. Alfarizi), federico.ustolin@ntnu.no (F. Ustolin), jorn.vatn@ntnu.no (J. Vatn), shen.yin@ntnu.no

(S. Yin), nicola.paltrinieri@ntnu.no (N. Paltrinieri).

Condensed phase explosions are ‘‘detonations’’ that can be provoked
by the ignition of the mixture composed of 𝐿𝐻2 and liquid (LOX) or
solid oxygen (SOX). It is critical to investigate and comprehend under
which circumstances this phenomenon might manifest to prevent or
mitigate it. Only in this fashion, the overall risk of 𝐿𝐻2 technologies
and applications can be reduced.

Prediction of oxygen phase change and hydrogen concentration
during 𝐿𝐻2 spills is vital to prevent unwanted consequences. Data-
driven approaches are popular techniques for system prognosis, with
some researchers employing deep learning methods for remaining use-
ful life prediction [11–13]. Other researchers use the random forest
algorithm as a key component in their prediction models, enhancing
the accuracy and performance of ship collision severity prediction and
lithium-ion battery capacity estimation [14,15]. The random forests
(RFs) algorithm has demonstrated notable results in prediction and
classification tasks [16]. RF is a type of machine learning that integrates
numerous predictors (decision trees) into an ensemble [17]. These mul-
tiple predictors offer higher accuracy in predicting outcomes compared
to a single decision tree and maintain low computational time by using
a parallel ensemble to create submodels on each sample. Consequently,
the RFs algorithm is well-suited for predicting potential changes in
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oxygen phase and hydrogen concentration during 𝐿𝐻2 spills to aid in
accident prevention.

This study aims to shed light on 𝐿𝐻2 releases and condense phase
explosions by utilizing machine learning algorithms, namely the ran-
dom forests, to predict their consequences. This paper proposes a novel
application of the random forests algorithm to predict the occurrence
of oxygen phase change and to estimate whether the hydrogen con-
centration is above the lower flammability limit (LFL) in the event of
𝐿𝐻2 leakage. The proposed application was investigated using the 𝐿𝐻2
release tests carried out by DNV in 2019 and 2020 as part of a project
led by the Norwegian Defence Research Establishment (FFI) [18]. To
the authors’ knowledge, the application of machine learning is one of
the pioneering works to predict 𝐿𝐻2 release consequences. This study
is a follow-up of the investigation performed by Ustolin et al. [19]
where a linear model was adopted as part of a machine learning
approach, namely a supervised learning method with the classification
task. This paper’s novelty involves employing a more accurate and
robust methodology and analyzing all sequences of the 𝐿𝐻2 release
test experiments. The models provide accurate and reliable predictions
in different experimental conditions. The outcome of the proposed
application can be exploited to select effective mitigation measures
as part of a risk assessment and increase the overall safety of 𝐿𝐻2
technologies.

The following is a summary of this paper’s main contributions.

1. A novel application of machine learning, specifically the random
forests algorithm, is proposed to predict the development of con-
densation or solidification of oxygen in the air and to estimate
whether the hydrogen concentration is higher than LFL in the
event of 𝐿𝐻2 leakage to prevent disastrous accidents.

2. The proposed application is verified by real experiments of 𝐿𝐻2
release tests conducted by DNV as part of a project led by the
Norwegian Defence Research Establishment [18] and showed ac-
curate and reliable predictions in different experimental settings.

3. The mitigation and risk reduction measures of accidents caused
by 𝐿𝐻2 spills are discussed.

The remainder of this paper is organized as follows. Section 2
describes the consequences of liquid hydrogen loss of containment.
Section 3 presents the measures of this study. Section 4 describes the
experimental setup and methodology used in this study. Section 5
discusses the experiment results and their analysis. Section 6 concludes
this paper.

2. Liquid hydrogen loss of containment

Several causes may provoke a loss of containment of 𝐿𝐻2 storage
or transfer components. Since hydrogen is a hazardous substance, its
unintended release must be prevented. On the other hand, it is critical
to understand the consequences that an 𝐿𝐻2 loss of containment may
have in order to mitigate them. The main consequences of an 𝐿𝐻2 loss
of containment are described in Section 2.1.

2.1. Liquid hydrogen release consequences

Usually, 𝐿𝐻2 flashes to gas when released due to different fac-
tors such as pressure difference between the 𝐿𝐻2 storage and the
atmosphere, heat transfer between 𝐿𝐻2, air, and the ground where
𝐿𝐻2 is spilled. The flashing fraction depends on the released hydrogen
conditions (temperature and pressure) and should increase when both
pressure and temperature are higher. For instance, a high fraction can
be expected when 𝐿𝐻2 is superheated [20]. If the pressure inside
the 𝐿𝐻2 storage equipment is high enough, a high-momentum jet
can be generated. This jet may be hazardous for personnel in case of
contact. Frostbites can have lethal consequences on humans as well
as asphyxiation in the event the jet creates a hydrogen atmosphere
with absence or limited oxygen concentration [21]. Moreover, metal

structures impinged by the cryogenic jet can become brittle due to the
extremely low 𝐿𝐻2 temperature, resulting in component failure. It is
still unclear how passive fire protections (PFPs) used to protect pipes
and tanks from flames behave under cryogenic conditions. Therefore,
cryogenic jets may severely affect humans and structures near the
release.

Due to the flashing phenomenon, the hydrogen jet during the re-
lease is usually two-phase (liquid and gaseous). Rainout may occur
depending on the release flow rate, distance from the ground, and
orientation of the leakage (e.g., horizontal, vertical downward). Hence,
an 𝐿𝐻2 pool might form on the released surface (e.g., ground, water).
It was concluded by the experiments carried out by Aaneby et al. [18]
that there is a higher probability of pool formation in case the release
is oriented vertically downward. Condensation or even solidification
of air components (nitrogen and oxygen) may occur since the 𝐿𝐻2
temperature at atmospheric pressure is way below the boiling and
melting point of both nitrogen (−195.8 ◦C, −210.0 ◦C [2]) and oxygen
(−182.9 ◦C, −218.8 ◦C [2]). However, nitrogen and oxygen can lose
significant amounts of heat since their latent vaporization heat is 199.6
and 213.1 kJ/kg, respectively. At the same time, hydrogen requires
448.5 kJ/kg to change phase from liquid to vapor [22]. Moreover, the
heat necessary to cool nitrogen and oxygen from ambient temperature
(288 K) down to their boiling point at atmospheric pressure is 221.5
and 182.0 kJ/kg, respectively [2]. In addition, the water vapor in the
air and the surface, where 𝐿𝐻2 is spilled (e.g., ground), cede heat to
𝐿𝐻2. This means that relatively large amounts of 𝐿𝐻2 are necessary to
liquefy oxygen. Royle and Willoughby [23] observed during their 𝐿𝐻2
release experiments that a solid deposit appeared on top and close to
the 𝐿𝐻2 pool formed on the ground. Although it was impossible to
analyze this deposit, it has been hypothesized that it is composed of
solidified air components.

Before describing the condensed phase explosion phenomenon, it
is important to distinguish between two types of chemical explosions,
namely deflagration and detonation. A deflagration is a type of ex-
plosion that generates subsonic blast waves, i.e. the flame front has
a speed lower than the speed of sound, and it may occur even for
low hydrogen concentration (4.0% vol–11% vol in air). On the other
hand, detonation is a rapid combustion process that is characterized by
supersonic combustion waves that travel through the flammable cloud
at speeds of up to 2,000 m/s [24]. Usually, a hydrogen concentration
between 11 and 59% vol in air is required to achieve a detonation [25].
This explosion can generate high temperatures and overpressures that
can cause structural damage and injury to people in the area.

The cryogenic pool might be formed during an 𝐿𝐻2 release and is
thus composed of liquid hydrogen, liquid or solid nitrogen, and oxygen,
and can be enriched with oxygen because it condenses at a temperature
higher than nitrogen. The enrichment occurs because the LOX density
is three orders of magnitude higher than the gaseous nitrogen one.
Gill et al. [26] experimentally demonstrated that the mixture of 𝐿𝐻2
and solid air created on top of the cryogenic pool may even transition
from deflagration to detonation (DDT) in the presence of an ignition
source and if the SOX concentration in the solid deposit is higher than
50%. Therefore, the combustion process is initiated in a condensed or
solidified phase mixture, meaning that the hydrogen is in the liquid
state and the oxygen can be either liquid or solid. For this reason,
this type of phenomenon is often called a condensed phase explosion
and can result in severe consequences. On the other hand, the mixture
barely burns without exploding for a higher concentration of nitrogen
in the solid compound. Moreover, a mixture of 𝐿𝐻2 and LOX or SOX
is also sensitive to pressure variation. This means that an increase in
pressure (e.g., blast wave) might have sufficient energy to provoke a
detonation [27].

Finally, 𝐿𝐻2 continuously evaporates, generating a dense flammable
cloud that can remain close to the ground and slowly rises and dis-
perses depending on the presence of natural or forced ventilation.
Hydrogen has a very low minimum ignition energy, especially at the
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Fig. 1. The framework of the proposed application.

stoichiometric concentration (0.017 mJ [28]), and a wide flammability
range (4.0%vol - 75.0%vol in air [29]). Therefore, the flammable cloud
formed from the 𝐿𝐻2 pool or the cryogenic jet would easily be ignitable
in the presence of an ignition source. If the cryogenic two-phase jet is
ignited, a jet fire can develop. Similarly, a pool fire results from the
ignition of the gaseous hydrogen evaporated on top of the 𝐿𝐻2 pool. In-
stead, flash fire or a vapor cloud explosion (VCE) are two consequences
of hydrogen-flammable cloud ignition. The main distinction between
these two phenomena is the flame front velocity which is higher than
40 m/s for VCE and is thus able to generate explosive effects [30]. In
densely congested areas, the cryogenic hydrogen cloud combustion may
even undergo DDT [31]. Finally, to summarize, the main consequences
of an 𝐿𝐻2 release from a hydrogen component are as follows:

• 𝐿𝐻2 or cryogenic hydrogen jet;
• material embrittlement impacted by 𝐿𝐻2 jet;
• pool formation;
• air component condensation or solidification;
• dispersion and flammable cloud formation,

and in case of ignition:

• fire;
• jet fire;
• pool fire;
• flash fire;
• vapor cloud explosion (VCE);
• deflagration to detonation transition (DDT);
• condensed phase explosion (detonation).

It must be mentioned that other types of consequences such as rapid
phase transition (RPT) were investigated for 𝐿𝐻2 spills onto or into wa-
ter [32–34]. RPT is a physical explosion that may occur when liquefied
natural gas (LNG) or other cryogenic fluids are spilled onto the water.
Few studies concluded that RPT is unlikely for 𝐿𝐻2. Nevertheless, a
high momentum jet of 𝐿𝐻2 direct into the water can lead to a self-
ignition of the flammable cloud developed during the spillage above
the water surface as demonstrated by recent experimental studies [35].

Many other experiments where an 𝐿𝐻2 release was simulated were
carried out in the past. To the authors’ knowledge, the first time that
𝐿𝐻2 spill tests were carried out was at the end of the 1950s, as
described by Zabetakis and Burgess [36]. Afterward, a few more tests
were performed in 1981 by NASA at its White Sands Test Facility in
New Mexico [37], in 1994 by Federal Institute for Materials Research
and Testing (BAM) in collaboration with the Research Center Juelich
in Drachhausen, Germany [38,39], in 2012 by Health and Safety Lab-
oratory (HSL) at its facility in Buxton, UK [23,40], in 2019 and 2020
by DNV at Spadeadam facility in UK [18], and in 2021 by BAM at its
facility in Horstwalde, Germany [35]. A more detailed description of
these 𝐿𝐻2 release experiments can be found in [41]. Moreover, addi-
tional experiments were recently carried out with cryogenic (gaseous)
hydrogen and 𝐿𝐻2 during the European project PRESLHY [42]. During
these experimental campaigns, different parameters such as release
rate, spill duration, nozzle diameter, and surface (e.g., gravel, sand,
concrete, water) were considered to comprehend and investigate the
consequences of the loss of containment for 𝐿𝐻2 technologies.

Different authors attempted to simulate most of the abovementioned
phenomena through theoretical and numerical models. These models
were, in most cases, validated against the outcomes of various exper-
iments. Most of these studies adopted a computational fluid dynamics
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(CFD) approach to assess the consequences of 𝐿𝐻2 releases. A list of
these investigations can be found in [41]. The developed models can
be employed for the consequence analysis as part of a risk assessment.
Despite CFD tools being widely used in industries and the computa-
tional power of commercial machines exponentially increasing in the
last decades, a few drawbacks, such as the need for highly qualified
personnel, remain. Furthermore, a long computational time may still
be a disadvantage when investigating large geometrical domains to
achieve accurate results.

2.2. Prevention and mitigation measures

As previously described, the consequences of an 𝐿𝐻2 release might
severely affect structure and humans. Prevention of accident scenarios
is critical to reduce the probability of failure and, consequently, the
overall risk of the hydrogen system. Standard prevention measures
such as training and safety devices may be employed to prevent ac-
cidents. On the other hand, mitigation measures are also required in
the undesired event of an 𝐿𝐻2 release. To increase the response of
the mitigation system, automatic activation of safety systems should be
adopted. Sensors must be installed close to the hydrogen components to
detect an undesired 𝐿𝐻2 leakage. The detectors may measure parame-
ters such as hydrogen concentration or temperature and automatically
activate alarms or specific safety devices. If the hydrogen concentration
is measured, the threshold to trigger the mitigation measures must be
set at 1%vol in air, which is 25% of the hydrogen lower flammability
limit (LFL). All the sensors and devices must perform well at tempera-
tures close to the 𝐿𝐻2 one. Examples of safety devices to be activated
are shutdown valves to stop the 𝐿𝐻2 flow (e.g., from pipes), sprinklers,
water curtains, inert gases (e.g., nitrogen), and ventilation.

3. Measures

3.1. The framework of the proposed application

Fig. 1 shows the flowchart of the proposed application. First, three
databases are built based on the data from experiments conducted
by DNV [18]. Each database is built based on different experimental
settings and for different prediction purposes. After that, an RFs model
is created for each database and fed with the input data, which consists
of many parameters to predict oxygen phase change or the possibility of
hydrogen concentration above LFL. Then, every model’s performance
is evaluated with several metrics to assess its accuracy. In the end,
the models’ results are discussed and analyzed to help select reliable
safety barriers and effective risk reduction measures. Every step will
be detailed in Section 4.

3.2. Random forests

The foundation of the RFs algorithm is a set of predictors affected
by the random values of each forest tree [15]. Input datasets are
selected randomly from a group to model the RFs. The RFs algorithm’s
relatively high success rate can be attributed to its quick operating
speed, effective handling of large datasets, and minimal overfitting of
predictors [43]. The general structure of the RFs model is illustrated in
Fig. 2.

The input for forest in RFs is a 𝑞-dimensional input vector of
𝑋, in which 𝑋 = 𝑥1, 𝑥2,… , 𝑥𝑞 . Within the forest, a collection of 𝐿
trees {𝑇1(𝑥), 𝑇2(𝑥),… , 𝑇𝐿(𝑥)} are formed. Output value of each tree is
calculated, denoted as 𝑌1 = 𝑇1(𝑋),… , 𝑌𝑚 = 𝑇𝑚(𝑋), where 𝑚 = 1,… , 𝐿.
𝐿 is the number of trees. In a classification task, the RFs’ output is
determined by

PredictRFs(𝑋) = majority vote{𝑌𝑚(𝑋)}𝐿𝑖=1. (1)

The inputs, 𝑥𝑖, 𝑖 = 1,… , 𝑛, and outputs, 𝑦𝑖, 𝑖 = 1,… , 𝑛, form the
training dataset 𝑇 = 𝑇1, 𝑇2,… , 𝑇𝑛 = {(𝑥1, 𝑦1), (𝑥2, 𝑦2),… , (𝑥𝑛, 𝑦𝑛)}. The

RF then uses the bootstrap resampling method to randomly generate
𝐿 tree sample sets from the initial training set 𝑇 . About two-thirds of
the original training set 𝑇 data are taken in bootstrap samples, referred
to as in-bag data. In contrast, the remaining data are out-of-bag data
(OOB).

At each node, the algorithm needs to select a suitable attribute using
the appropriate measure, maximizing dissimilarity between classes. The
Gini Index, which assesses an element’s impurity in relation to the
other classes, is frequently used by RFs to select the best split. Given a
training dataset 𝑇 , the mathematical formula of the Gini Index is

𝐺𝐼 =
∑∑

𝑗≠𝑖
(𝑓 (𝐶𝑖, 𝑇 )∕|𝑇 |)(𝑓 (𝐶𝑗 , 𝑇 )∕|𝑇 |) , (2)

where 𝐶𝑖 is the class a randomly selected sample belongs to, and
𝑓 (𝐶𝑖, 𝑇 )∕|𝑇 | is the probability that a selected case belongs to class 𝐶𝑖.
The class heterogeneity increases as the Gini Index increases, and vice
versa. A successful split is indicated with the Gini Index of the child
node being less than a parent node, meaning the class homogeneity
increases in that class as the tree grows deeper. When the Gini Index
is 0, which indicates that only one class is present at each terminal
node, tree splitting is completed. Consequently, a decision tree is made
to grow to its maximum depth with no pruning. When every 𝐿 tree in
the forest is grown, the new data can be predicted using the outcome
of the predictions of 𝐿 trees. To summarize, Algorithm 1 outlines the
pseudocode of the RFs algorithm [17].

Algorithm 1 Random Forest
Require: Training samples 𝑇 = {(𝑥1, 𝑦1),… , (𝑥𝑛, 𝑦𝑛)}, testing samples
𝑥𝑡
for 𝑚 = 1 to 𝐿 do

Using the training set 𝑇 , create the bootstrap sample 𝑇𝑚 at random
with replacement
From 𝑇𝑚, build a non-pruning decision tree 𝑌𝑚
Randomly choose 𝑛_𝑡𝑟𝑦 features from 𝑁 features
Select the best feature to split from each node’s 𝑛_𝑡𝑟𝑦 features
Split the tree until it achieves its largest possible size

end for
Ensure: A set of decision trees {𝑌𝑚, 𝑚 = 1, 2,… , 𝐿}. For the testing

samples, the predictor 𝑌𝑚(𝑥𝑡) is produced by the decision tree 𝑌𝑚.
The RFs’ output is determined using the formula in (1)

Because RFs utilized multiple predictors in its structure, it can
provide higher accuracy in predicting outcomes over a single decision
tree. It also keeps the computational time low by using a parallel
ensemble to create submodels on each sample. Additionally, it works
very well with tabular data. The experiment data investigated in this
study is tabular and has many data points. Therefore, the RFs algorithm
is well-suited for application in this study because it has high accuracy,
low computational time for large datasets, and works well with tabular
data. The RFs algorithm will be used to predict potential changes in
oxygen phase and hydrogen concentration for accident prevention. To
the authors’ knowledge, the application of RFs to predict 𝐿𝐻2 release
consequences is one of the pioneering works in this field of study.

4. Experiment setup and methodology

4.1. Liquid hydrogen release experiments

The 𝐿𝐻2 release experiments carried out by the Norwegian Defence
Research Establishment (FFI) at the DNV Spadeadam facility in 2019
and 2020 [18] were considered as a case study in this investigation.
The tests aimed to simulate a realistic release accident scenario during
bunkering operations or onboard 𝐿𝐻2 ships and comprehend the 𝐿𝐻2
behavior during these events. A total of 15 trials were executed by
varying 𝐿𝐻2 flow rate, release duration and orientation (horizontal and
vertical downward), and location: outdoor and inside a closed room. In
the following, the outdoor and indoor tests are briefly described.
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Fig. 2. The general structure of the RFs model [44].

Fig. 3. Top view of the placement of thermocouples and calorimeters on the concrete pad. Dimensions are in meters. The green dots denote the positions of the measurements
beneath the concrete surface, while the red dots denote the locations of the surface measurements. The release point of 𝐿𝐻2 is indicated by the blue cross, while the calorimeters
are represented by the yellow squares.
Source: Adapted from [18].

4.1.1. Outdoor leakage studies
The experimental setup built for this experiment was positioned on

a concrete pad, (see Fig. 3). It is composed of an 𝐿𝐻2 line ending with
a nozzle with an internal diameter of 25.4 mm located in the center
of the pad and surrounded by a few obstacles (two containers and
metal frames to install the equipment). Moreover, several sensors (40
thermocouples, 30 oxygen sensors, 12 radiometers, and ten calorimeter
blocks) are installed, as shown in Fig. 3, to measure temperature,
hydrogen concentration, pressure, ambient conditions, radiation, and
heat flux from the ignited release. Cameras were used to record the
experiments as well. Additional information on the setup can be found
in [45]. A total of seven trials were carried out as part of these studies.
The objectives of this type of experiment were [18]:

• investigate the 𝐿𝐻2 pool behavior (formation, propagation, and
duration);

• estimate of the flammable cloud developed from the release;
• analyze the cloud’s combustion type (fire, deflagration, detona-

tion).

As previously mentioned, it was observed that the 𝐿𝐻2 pool for-
mation depends on the release orientation. With the set release rate
and vertical downward direction, the maximum 𝐿𝐻2 pool diameter
was 1.0 m. Furthermore, frozen air components were noted around
the release point. As pointed out in the previous section, a mixture
of 𝐿𝐻2 and LOX or SOX can lead to severe consequences, and its
formation must be prevented or mitigated. The outdoor releases studies
were already analyzed by Ustolin et al. [19] using a machine learning
approach, namely a supervised learning method with the classification
task and a linear model.

4.1.2. Closed room and ventilation mast studies
An enclosure composed of a metal box with a volume of 24 m3

with internal dimensions (height, width, and depth) of 2.26 × 2.96 ×
2.69 m, respectively, was built to simulate a tank connection space
(TCS). The TCS was connected to a ventilation mast with a diameter
of 0.45 m and horizontal and vertical lengths of approx. 3 and 10 m,
respectively, separated by a 90◦ bend. A vent panel was simulated
by an opening (dimensions 1.6 × 2.3 m) on one side of the TCS
and covering it with a polyethylene sheet. Also, in this case, ambient
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Fig. 4. Locations of thermocouples and oxygen sensors are indicated by red dots and green dots, respectively, while blue crosses indicate the 𝐿𝐻2 release points. The schematic
displays (a) the top view of the test pad, and (b) the cross-section of the TCS connected to the ventilation mast. The test pad radius is 0.2, 0.5, and 1.0 m from the release point,
respectively. The TCS has internal dimensions (height, width, and depth) of 2.26 × 2.96 × 2.69 m, respectively. The 𝑥 and 𝑦 axes indicate the ground plane, while z is the vertical
axis.
Source: Adapted from [18].

conditions, temperature, pressure, and gas concentration were recorded
inside and outside the TCS ventilation mast. An illustration of the
TCS is shown in Fig. 4. A total of eight release tests were carried out
inside the TCS by positioning the leakage point in the middle of the
room, oriented vertically downward. In this case, the diameter of the
release nozzle was 25.4 mm in the first two trials and then reduced to
12.7 mm in the remaining tests. The first five tests had been carried
out without ignition, while the flammable release was intentionally
ignited in the last three. In this series, the maximum flow rate was
40.1 kg/min. The maximum extension of the 𝐿𝐻2 pool was 1.0 m from
the release point (2.0 m diameter). Liquid or frozen air components
were identified on the TCS floor and remained on the ground longer
than 𝐿𝐻2, which evaporated 30–40 s after the leakage stopped [18].
When an ignition source was activated at the top of the ventilation
mast, it took 30 min for an explosion to occur in case the TCS was
sealed. On the other hand, when one of the two vents of the enclosure
was opened, a severe explosion manifested 10–15 s after ignition on
the same position. No spontaneous ignition was observed during the
entire experimental campaign. Additional information on the outcomes
of these experiments can be found in [18].

4.2. Database creation

The database is built based on the data collected from the case
study. For the duration of the experimental test, each row represents
the value that each thermocouple or sensor measures at each given
moment in time. This latter corresponds to the sample rate of 0.1 s.
Here, there are three different databases created:

1. The first database is built based on outdoor leakage studies to
predict when air components may condense or freeze.

2. The second database is built based on outdoor leakage studies
to predict the hydrogen concentration within the gas cloud.

3. The third database is built based on closed room studies, also
called indoor leakage studies, to predict when air components
may condense or freeze.

Hydrogen concentration was not investigated in the indoor studies
since the box is quickly saturated with hydrogen after the beginning of
the release. As the experiments previously described, if TCS is sealed,
the enclosure is saturated with hydrogen, and it takes a long time to
have flammable mixtures. Purging inert gas (e.g., nitrogen) can avoid

Table 1
The list of features.

Feature Feature

Time PT_04
Ambient_Pressure Wind_Direction_High
Release_Rate Wind_Direction_Low
Humidity Wind_Speed_High
Release_Orientation Wind_Speed_Low
P01 TT
P02 x
P03 y
P04 z
PT_01 liquid_oxygen
PT_02 solid_oxygen
PT_03 H2_concentration_above_LFL

the entrance of air into the room and the formation of a flammable
atmosphere and can be adopted as a mitigation measure. The features
in all of the databases are the following parameters:

• the timestamp that indicates the sensors’ sampling rate;
• atmospheric conditions: relative humidity, pressure, speed, and

wind direction;
• liquid hydrogen release flowrate;
• temperature and hydrogen concentration;
• internal liquid hydrogen tank temperature and pressure;
• spatial coordinates of the thermocouples (x, y, z).

The parameters the model will predict are the labels specified in the
database. For each sensor location and time in this study, the labels
were defined as follows:

• liquid oxygen formation;
• solid oxygen formation;
• hydrogen concentration above the LFL.

In total, there are 24 features in these databases. Table 1 lists
all features. For the first and third databases, two labels have been
assigned. Label 1 is assigned if oxygen condensation or solidification
occurs after 200 s; otherwise, label 0 is assigned. The oxygen boiling
and melting point are considered at the pressure of 0.96 bar and
correspond to 𝑇𝑏 = −183.5 ◦C and 𝑇𝑚 = −218.79 ◦C [22]. For the
second database, two labels have been assigned. Label 1 is assigned
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Table 2
The description of the first database.

Experiment Duration (s) No. of sensors
locations

Datapoints

1 585 32 187,232
2 301.2 32 96,417
3 700.9 32 224,320
4 360.9 32 115,552
5 298.1 32 95,424

Total datapoints 718,945

Table 3
The description of the second database.

Experiment Duration (s) No. of sensors
locations

Datapoints

1 900.9 30 270,300
2 700.9 30 210,300
3 190.9 30 57,300
4 424 30 127,230

Total datapoints 665,130

Table 4
The description of the third database.

Experiment Duration (s) No. of sensors
locations

Datapoints

1 460.9 25 115,250
2 460.9 25 115,250
3 400.9 25 100,250
4 340.9 25 85,250
5 200.9 25 50,250

Total datapoints 466,250

if the hydrogen concentration is above the LFL after 200 s; otherwise,
label 0 is assigned. The LFL of hydrogen at atmospheric pressure is 4%
vol. [46]. The 200 s time frame was chosen based on the water systems’
response time after a hydrogen release.

The first, second, and third databases have 718,945 data points,
665,130 data points, and 466,250 data points, respectively. These
databases only include the unignited release tests because the ignited
one cannot provide any indication of the hydrogen dispersion and
condensation of air components due to the hydrogen combustion. The
first database was generated from outdoor studies and consisted of
5 experiments with varying duration, a sample rate of 0.1 s, and
32 different sensor locations. The description of the first database is
tabulated in Table 2. The second database was generated from outdoor
studies and consisted of 4 experiments with varying duration, a sample
rate of 0.1 s, and 30 different sensor locations. The description of the
second database is tabulated in Table 3. Finally, the third database
was generated from indoor studies and consisted of 5 experiments
with varying duration, a sample rate of 0.1 s, and 25 different sensor
locations. The description of the third database is tabulated in Table 4.
Before being inputted into the model, the databases are split into
training and test sets. The databases are shuffled randomly before 75%
of their data are assigned to the training sets and the remaining 25%
to the test sets. Therefore, in the test sets, the first, second, and third
databases have 179,736 data points, 166,282 data points, and 116,562
data points, respectively.

4.2.1. Impact of LFL changes
The LFL of hydrogen at atmospheric pressure and room temperature

is approximately 4% by volume in air and assumed constant in this
study to create a conservative model in terms of safety. This means
that hydrogen must be present in a concentration of at least 4% in the
air before it can ignite. The LFL of hydrogen varies depending on the
pressure and temperature of the surrounding environment, the mixture

Table 5
Hyperparameters setup for RFs model.

Hyperparameter Value

n_estimators 100
criterion gini
max_depth None
min_samples_split 2
min_samples_leaf 1
min_weight_fraction_leaf 0
max_features sqrt
max_leaf_nodes None
min_impurity_decrease 0
max_samples None
random_state 25

composition ratio, and the orientation of the hydrogen release [47–
50]. The LFL of hydrogen increases if the pressure is raised, while it
decreases when the temperature is increased.

It is important to note that hydrogen has a large volume expansion
ratio (1:850) [51] when comparing its density in liquid state at boil-
ing point at atmospheric pressure with hydrogen gas at atmospheric
conditions. So, a small 𝐿𝐻2 leak can quickly create a large volume of
hydrogen gas in the atmosphere. Therefore, it is important to detect and
isolate leaks as quickly as possible in order to prevent the concentration
of hydrogen from reaching the flammable limit.

In summary, the lower flammability limit of hydrogen at atmo-
spheric pressure and room temperature is around 4% by volume in
air, but this can vary depending on the pressure and temperature of
the surrounding environment and release orientation. It is important to
note that hydrogen is highly flammable and must be handled with care
and proper safety measures in place. For these reasons, a conservative
model was developed in this study.

4.3. Hyperparameters configuration

Table 5 summarizes the hyperparameters’ value to build the RFs
model.

4.4. Evaluation metrics

Performance metrics are used to evaluate the model’s performance.
In binary classification problems, the confusion matrix is typically
used to summarize the predictions by breaking them down into four
alternative outcomes: 1) true negative (TN) occurs when the accurate
label and the predicted label are both negative (0); 2) true positive (TP)
is when the accurate label and the predicted label are both positive
(1); 3) false negative (FN) is when the accurate label is positive, but
the predicted label is negative, and 4) false positive (FP) is when the
accurate label is negative, but the predicted label is positive. These four
measurements can derive the following performance metrics: accuracy,
precision, recall, and F1-score. Accuracy describes the ratio of correct
prediction and all predictions as expressed in (3). Precision represents
the fraction of accurate positive predictions, as stated in (4), while
recall indicates the percentage of accurate positive labels correctly
predicted, as stated in (5). The F1-score, defined as the harmonic mean
of the system’s precision and recall, is appropriate for imbalanced
data sets since it considers the precision and recall of the system. The
formula of the F1-score is expressed in (6).

Accuracy = 𝑇𝑃 + 𝑇𝑁
𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁

, (3)

Precision = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃

, (4)

Recall = 𝑇𝑃
𝑇𝑃 + 𝐹𝑁

, (5)

𝐹1 = 2 × 𝑇𝑃
𝑇𝑃 + 1

2 (𝐹𝑃 + 𝐹𝑁)
. (6)
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Fig. 5. Confusion matrices for the labels (a) first database - liquid oxygen, (b) first database - solid oxygen, (c) second database - H2 concentration >LFL, (d) third database -
liquid oxygen, and (e) third database - solid oxygen.

Table 6
Performance metrics of RFs model for all databases.

Label Accuracy Precision Recall F1 AUC-PR

First database (liquid oxygen) 0.9984 0.9981 0.9983 0.9984 0.9985
First database (solid oxygen) 0.9995 0.9985 0.9955 0.9984 0.9972
Second database (H2 concentration >LFL) 0.9993 0.9873 0.9583 0.9861 0.9731
Third database (liquid oxygen) 0.9993 0.9992 0.9994 0.9993 0.9994
Third database (solid oxygen) 0.9997 0.9993 0.9994 0.9996 0.9994

Finally, the precision–recall curves can be plotted, and the area under
the precision–recall curve (AUC-PR) can be calculated. High classifier
performance is indicated by high accuracy, precision, recall, F1, and
AUC-PR. All of the performance metrics values range from 0 to 1.

5. Prediction results and analysis

5.1. Model results

Table 6 summarizes the performance of the RFs model to predict
various labels for all databases. The RFs model achieved very high
scores in terms of accuracy, precision, recall, F1, and AUC-PR in every
label. This indicates that the developed model can accurately predict
air components condensing or solidifying on the ground in outdoor and
indoor environments and whether the H2 concentration will be above
the LFL.

Fig. 5 depicts the obtained confusion matrices. In every label, the
RFs model generates many correct predictions (a high number of true
negatives and true positives) and minimal amounts of false predictions
(a low number of false negatives and false positives). This means the
probability of false alarms, i.e., predicting that there will be air compo-
nents condensing or solidifying on the ground, or the H2 concentration
will be higher than the LFL while it will not, is very low, indicated
by the low number of false positives. Similarly, the probability of
non-detection, i.e., predicting that there will not be air components
condensing or solidifying on the ground, or the H2 concentration will

not be higher than the LFL while it will, is also very low, denoted by
the low number of false negatives.

The calculated AUC-PR for every database is summarized in Table 6.
The scores indicate that the RFs model has high precision and recall
for every label, except in the second database, where the precision and
recall are relatively lower than others. This might happen because the
dataset in the second database is very imbalanced, which means there
are considerably much more data points for label 0 than for label 1.
Thus, it can complicate the model’s prediction as it has only a few data
points to learn for label 1. Nevertheless, the precision and recall for
the second database are still satisfactory for predicting if the hydrogen
concentration within the gas cloud is above the LFL.

Furthermore, from the models’ prediction, the extension of pre-
dicted LOX and SOX deposits can be plotted in spatial dimensions
(x and y), as shown in Fig. 6. From Fig. 6, it can be seen that the
predicted LOX and SOX deposits happen only within 1 m from the
release point. These results are also observed in the actual experiments
by FFI [18], thus confirming the models’ prediction. The LOX deposits
extend farther than the SOX deposits and follow the wind direction.

5.2. Performance comparison

Ustolin et al. [19] have conducted a similar study to predict con-
densation and solidification during an accidental release of 𝐿𝐻2. Their
study investigates the release of 𝐿𝐻2 on the ground on a pad, compa-
rable to this study’s first and second databases. Table 7 compares the
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Fig. 6. Spatial extension of predicted LOX and SOX deposits on the test pad for outdoor leakage experiments.

Table 7
Performance comparison of RFs model and linear model (LM) in [19] for all labels.

Label Accuracy Precision Recall AUC-PR

LM RFs LM RFs LM RFs LM RFs

Liquid oxygen 0.9020 0.9984 0.8480 0.9981 0.9360 0.9983 0.9490 0.9985
Solid oxygen 0.9570 0.9995 0.830 0.9985 0.6130 0.9955 0.8070 0.9972
H2 concentration >LFL 0.9880 0.9993 0.6490 0.9873 0.1840 0.9583 0.3660 0.9731

performance of the RFs model in this study with the linear model used
in [19] to predict the occurrence of LOX, SOX, and H2 concentration
above the LFL. The bold numbers denote the best results between the
two methods.

As seen in Table 7, the RFs model in this study significantly im-
proved the prediction results compared to the linear model in [19],
especially in predicting the H2 concentration above LFL. Although
the hydrogen concentration, in this case, is rarely higher than the
LFL, it could still have profound implications. This improvement of
the model’s predictive capabilities is crucial to provide accurate early
warnings, which can prevent severe consequences from happening. In
addition, the prediction of liquid and solid oxygen formation is also
improved. Thus, one can adopt prevention and mitigation measures to
reduce the overall risk of the 𝐿𝐻2 storage system.

5.3. Risk reduction measures

The developed model can aid the selection of measures necessary to
decrease the risk of 𝐿𝐻2 storage and transfer components (e.g., tanks,
pipes, valves). One can adopt appropriate preventive measures such as
training and safety devices by knowing the extension of the 𝐿𝐻2 release
consequences under different conditions. First, people who do not wear
protective equipment must be restricted from the spill area. Then, all
the ignition sources must be safely removed. Installing ATEX devices
can remove the ignition sources from the most critical areas. This type
of equipment is usually expensive, and its limited employment can
drastically decrease the high costs of 𝐿𝐻2 technologies, thus facilitating
their deployment.

Once the model has been trained, the engineers can change the
operating conditions to predict the consequences of different release
scenarios. In this fashion, the extension of the 𝐿𝐻2 and LOX/SOX
pool area and the distance reached by the flammable cloud can be
estimated. Afterward, one can determine when the mitigation measures
must be activated to lessen the release consequences. On the other
hand, 200 s were considered in this study based on the activation time
of standard safety devices such as sprinklers [52]. Moreover, the best
mitigation measure (e.g., sprinkler, water curtains, inert gases) can be

selected depending on the type and yield of consequence. To avoid
the formation of condensed phase explosions, releasing inert gases
such as nitrogen is considered a good option since this phenomenon
manifests if the oxygen concentration in the mixture is above 50% as
demonstrated by Atkinson [10]. However, installing a water system can
also be adopted. For instance, it was verified during a series of tests of
the European project PRESLHY [42] that the contact between 𝐿𝐻2 and
water does not lead to rapid phase transition (RPT) explosion, hence
making sprinklers and water curtains effective mitigation measures to
prevent ignition.

Furthermore, the estimation of the extension of the flammable
hydrogen cloud could be used as input for other consequence analysis
models (explosion models) and support the determination of precise
and effective separation distances. The separation distances can be
determined by considering the threshold values of the physical effects
of fires and explosions. The distance should be far enough such that
the thermal radiation or overpressure is sufficiently low to not cause
any harm to the operators. However, the use of mitigation strategies
may reduce the separation distances. For instance, the use of sprinklers
can reduce the thermal radiation effects, and installing safety barriers
such as walls can protect from explosion-related blasts and projectiles.
It is crucial to ensure that the mitigation strategies will not worsen the
effects of other risks. For example, barriers built to withstand blasts and
missiles may prevent hydrogen from dispersing, lengthening the time
flammable concentrations are present, and raising the risk of ignition.
A combustible cloud explosion may become more likely as a result of
the wall’s partial containment [53].

5.4. Future studies

This study investigated condensed phase explosions and hydrogen
dispersion (concentration during the release). However, the developed
model can provide critical indications on each parameter included in
the database. Therefore, additional simulations may be conducted to
analyze other parameters and phenomena. For instance, the radiation
from the jet fire provoked by the 𝐿𝐻2 release ignition can be predicted
to indicate separation distances or sprinkler activation. In addition, the
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model might be further developed to predict few of the consequences
described in Section 2.1.

Experimental studies involving liquid hydrogen pose many eco-
nomic and technological challenges mainly due to the high cost of 𝐿𝐻2
equipment and low 𝐿𝐻2 availability. Despite additional tests being
necessary further to study the loss of containment of 𝐿𝐻2 technologies,
it is suggested to extensively exploit the available experimental data to
develop advanced models further as performed in this work. If there
are more experimental studies about liquid hydrogen leakage in the
future, it is then better to test the models on different test data so that
the robustness and reliability of the models can be further assessed.

Since the risk is given by the combination of probabilities and con-
sequences of failure, additional indications on the probabilities must be
provided, especially for hydrogen technologies deployed for emerging
technologies. Different studies investigate this issue and provide essen-
tial insights on risk-based inspection and maintenance methodologies
for storage components where only hydrogen is contained [54].

6. Conclusion

Unique 𝐿𝐻2 release experiments were analyzed in this work. The
focus was on investigating condensed phase explosions for 𝐿𝐻2 and
LOX or SOX mixtures and the hydrogen dispersion in the air during
the release. An advanced machine learning approach based on the
random forest algorithm was employed to develop a model capable of
predicting the consequences of the 𝐿𝐻2 loss of containment. Specific
databases were created to analyze the liquefaction and solidification
of oxygen during the 𝐿𝐻2 release and the hydrogen concentration in
the air. The model was initially trained with the experimental data.
Accurate results were obtained by the model predicting the above-
mentioned parameters. The random forest approach was more robust
and precise than other machine learning techniques previously used
to simulate similar experiments. The insights provided by the model
developed in this study can be further exploited to carry out detailed
risk analysis and select appropriate prevention and mitigation measures
to reduce the overall risk of 𝐿𝐻2 technologies, especially in emerging
applications. Future studies, such as investigating different parameters
and phenomena, were suggested.
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Abstract—The growth of Industrial Cyber-Physical Systems
(ICPS) has boosted industrial processes’ effectiveness, security,
and sustainability. Nevertheless, preserving the sustainability of
ICPS is a complex challenge, especially in dynamic and unpre-
dictable conditions. Fault diagnosis, prognosis, and remaining
useful life prediction are crucial for ICPS sustainability in terms
of safety, as they enable timely and effective maintenance to
extend the system’s lifespan. This paper presents a perspective
on the current state-of-the-art in the safety of ICPS, emphasizing
fault diagnosis, prognosis, and remaining useful life prediction.
Key findings from existing literature are summarized, academic
gaps are identified, and research challenges are highlighted. The
paper offers suggestions for addressing the gaps, advancing ICPS
sustainability, and ensuring secure and reliable operation.

Index Terms—Fault Diagnosis, Industrial Cyber-Physical Sys-
tems (ICPS), Prognosis, Remaining Useful Life Prediction, Sus-
tainability

I. THE STATE OF THE ART

Industrial processes play a crucial role in our daily lives,
from producing goods and services to generating energy. The
sustainability of Industrial Cyber-Physical Systems (ICPS)
relies on three aspects: safety, security, and energy efficiency,
which are illustrated in Figure 1. The safety and security of
these processes are of paramount importance, as a failure
in these systems can have serious consequences, including
harm to people, the environment, and the economy. In ad-
dition, ensuring these processes run on efficient and low-
carbon energy is also critical to protect the environment and
establish a sustainable ICPS in the long run. In recent years,
there have been several high-profile accidents in industrial
processes, which have raised serious concerns about the safety
and security of these systems. One of the examples is the
attack on the Nord Stream pipeline, which caused a temporary
disruption of gas supplies to Europe. The incident highlights
the vulnerability of critical infrastructure to physical attacks
and the importance of ensuring the security of these systems.
This has led to increased attention from researchers, industry,

and governments, who are working to improve the safety and
security of industrial processes.

Ensuring the safety and security of industrial processes
is complex and requires a multidisciplinary approach en-
compassing various fields, including engineering, computer
science, and social sciences. The use of modern technologies
and methodologies, such as machine learning [1]–[3], the
Internet of Things [4], [5], and cybersecurity [6]–[8], have
the potential to enhance the safety and security of these
processes significantly. However, there are also challenges
and limitations associated with these technologies, and it
is essential to identify and address these issues to ensure
industrial processes’ safe and secure operation.

ICPS have been increasingly integrated into various indus-
trial processes to enhance the efficiency and effectiveness of
production, as well as provide greater flexibility in adapting
to dynamic and uncertain conditions [9]–[13]. However, this
integration has also increased security and reliability concerns,
especially when dealing with sensitive industrial processes
such as those in the chemical and petrochemical industries
[14]–[16]. This paper aims to explore the current state of
sustainability in ICPS, with a particular focus on maintaining
secure and reliable operations in a dynamic and uncertain
environment.

The current advancements in the safety of ICPS encompass
a range of subjects, including fault diagnosis, prognosis, and
remaining useful life (RUL) prediction. In terms of fault
diagnosis, various techniques have been developed to monitor
the performance of ICPS and identify potential faults before
they result in system failure. For instance, several studies have
utilized data-based methods such as Artificial Neural Networks
(ANNs) [17]–[19] and Support Vector Machines (SVMs) [20]–
[22] to detect faults in ICPS. Additionally, other studies have
utilized model-based methods, including Model Predictive
Control (MPC) [23]–[25] and Hybrid System models [26]–
[28], to perform fault diagnosis in ICPS.
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Fig. 1. The three pillars of sustainability in ICPS.

Regarding prognosis and RUL prediction, various ap-
proaches have been developed to predict the remaining lifes-
pan of ICPS components. These methods take consider mul-
tiple factors, such as the system’s historical performance,
operating conditions, and the physical properties of the com-
ponents. Some studies have utilized probabilistic models such
as Bayesian networks [29], [30] and Markov chains [31],
[32] to predict the RUL of ICPS components. Other studies
have utilized data-based methods, including machine learning
techniques such as Artificial Neural Networks (ANNs) [33]–
[35], to make the RUL prediction of ICPS components. These
advancements in the safety of ICPS are summarized in Figure
2.

Despite the advancements in the field of ICPS safety, several
academic gaps still need to be addressed. One significant gap
is the need for integrating multiple techniques to enhance the
reliability and security of ICPS. Currently, most studies in
the field focus on either fault diagnosis or RUL prediction
and do not integrate these approaches to enhance the overall
safety of ICPS. Additionally, the fault diagnosis, prognosis,
and RUL prediction algorithms for ICPS need to be real-
time implementable, but many current algorithms are too
computationally expensive. There is a need for research to
make the algorithms more efficient for real-time use.

To address these problems, the field of ICPS safety requires
further research that integrates multiple techniques to improve
reliability and security. This research should aim to holistically
address fault diagnosis and RUL prediction, considering algo-
rithms’ computational efficiency for real-time implementation.
Additionally, efforts should be made to improve the compu-
tational efficiency of existing algorithms so that they can be
used in real-time industrial applications.

In conclusion, this paper aims to provide a comprehensive
perspective of the current state of the art in ICPS safety, focus-

ing on maintaining secure and reliable operation in dynamic
and uncertain environments. The identified academic gaps and
potential solutions provide valuable insights for future research
and development in the field of ICPS safety.

II. SAFETY I: FAULT DIAGNOSIS

Fault diagnosis techniques in ICPS are methods used to
identify, isolate, and diagnose faults in the system. Some
literature also refers to fault diagnosis as fault detection and
isolation (FDI). The significant technologies can be classified
into:

1) Model-based fault diagnosis: This technique uses a
mathematical model of the system to predict its behavior.
Any deviation from the expected behavior is considered
a fault. For example, detecting faults in a control loop
is possible with a Kalman filter.

2) Data-based fault diagnosis: This technique can be di-
vided further into stochastic-based, signal-based, and
machine learning-based. Stochastic-based fault diagnosis
uses statistical techniques to detect changes in the pro-
cess behavior indicative of faults. For example, a control
chart can see changes in a process’s mean and variance.
Signal-based fault diagnosis involves monitoring the
signals generated by the system and using algorithms to
detect anomalies in these signals. For example, wavelet
analysis can detect faults in signals generated by sensors.
Machine learning-based fault diagnosis uses machine
learning algorithms such as neural networks, support
vector machines, or decision trees to detect faults in the
system.

3) Fusion: This technique uses both model-based and data-
based methods to diagnose faults in the system. For
example, an aircraft engine’s expected performance can
be represented by a model-based method, but it may not
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Fig. 2. Overview of sustainability in ICPS from a safety perspective.

consider all factors that can cause faults. Therefore, a
data-driven method can be used to monitor the engine’s
actual performance during operation and detect any
deviations using machine learning algorithms. This can
help identify faults or failures.

A. Model-based Fault Diagnosis

Model-based fault diagnosis in ICPS is a technique that
uses mathematical models of the system to detect faults. The
basic idea is to use a system model to predict its behavior and
compare this prediction to the system’s actual behavior. Any
deviation from the expected behavior is considered a fault.
Several types of mathematical models can be used for model-
based fault diagnosis in ICPS, including:

1) State-space models: These models describe the system’s
state using a set of state variables and equations. The
system’s state can be estimated using the measurement
data and compared with the expected state to detect
faults.

2) Transfer function models describe the relationship be-
tween the inputs and outputs of a system. The system’s
outputs can be compared with the expected outputs
based on the information to detect faults.

3) Parametric models: These models describe the system’s
behavior in terms of parameters that can be estimated
from the data. The parameters can be calculated and
compared with the expected values to detect faults.

A common model-based fault diagnosis approach is a
Kalman filter, a state-space model. A Kalman filter uses a
mathematical model of the system and measurement data to
estimate the system’s state [36]. The estimated state can then
be compared with the expected state to detect faults. For

example, a wind turbine model was developed in [37] using
a closed-loop identification technique and fault detection is
done through residuals generated by dual Kalman filters. In
contrast, dual sensor redundancy is used for fault isolation.

Another technique that can be classified as model-based
fault diagnosis is the Hidden Markov Models (HMMs). HMMs
are probabilistic graphical models that represent the underlying
states of a system and can be used to detect faults. For
example, a study applied HMMs to see the fault of bearings
[38]. The scalar probabilities of different bearing operating
conditions are used as input to the HMMs for fault diagnosis,
showing promising results through experimental analysis.

B. Data-based Fault Diagnosis

1) Stochastic-based Fault Diagnosis: Stochastic-based fault
diagnosis is one of a method of data-based fault diagnosis in
ICPS that uses statistical techniques to monitor the behavior
of a process and detect deviations from normal behavior. This
approach involves collecting and analyzing data generated by
a system over time, intending to see patterns or anomalies that
may indicate the presence of a fault. Some standard techniques
of this approach include:

• Statistical process control (SPC): A quality control
method that uses statistical techniques to monitor and
control a process to ensure it operates within specified
limits [39].

• Multivariate Statistical Analysis (MSA): A set of tech-
niques that use multiple variables to describe the behavior
of a system and can be used to detect anomalies and faults
[40].

• Principal Component Analysis (PCA): A statistical tech-
nique that uses orthogonal transformations to convert
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a set of correlated variables into a set of uncorrelated
variables, which can be used for residual generation and
fault diagnosis [41].

• Partial Least Squares (PLS): A statistical technique that
uses linear regression to model the relationship between
two sets of variables and can be used for fault diagnosis
[42].

Researchers widely use PCA for fault diagnosis in ICPS
[43]–[47]. The advantage of using PCA for fault diagnosis
is that it can reduce the dimensionality of the data, making
it easier to detect faults by analyzing residuals. Additionally,
PCA can handle highly correlated data, making it suitable for
complex and high-dimensional data sets that are common in
many industrial applications.

2) Signal-based Fault Diagnosis: Signal-based fault diag-
nosis is a method of detecting faults in ICPS by analyzing the
signals generated by the system. The basic idea is to monitor
the signals generated by the system, compare the signals to
a reference model, and detect deviations from the reference
model that could indicate a fault. Signal-based fault diagnosis
can be performed using a variety of techniques, including:

• Frequency-domain analysis: This technique involves an-
alyzing the frequency content of a signal. This approach
transforms the signal from the time domain to the fre-
quency domain using a method such as the Fast Fourier
Transform (FFT) [48]. This allows for a more detailed
analysis of the signal’s frequency components, which
can help identify faults such as resonances or frequency-
specific disturbances.

• Time-domain analysis: This method involves examining
the behavior of a system over time. In this approach,
the signal is plotted against time and analyzed for any
trends, changes, or anomalies that may indicate a fault.
Time-domain analysis can identify faults in a system by
looking for changes in the amplitude, phase, or other
signal characteristics over time.

• Time-Frequency analysis: For machines experiencing
changes in their operating conditions, such as varying
load or unbalanced supply voltages, the signals they
produce are dynamic and challenging to monitor using
traditional time-domain or frequency-domain analysis
methods. To effectively diagnose faults in real-time, using
time-frequency decomposition tools is necessary to ana-
lyze the time-varying frequency spectrum of the transient
signals [49].

For instance, a signal-based fault diagnosis method for
power converters of switched reluctance motors was developed
in [50] by examining the changes in the root-mean-square
current characteristics between health conditions and single-
/dual-transistor short circuits or open circuits situations. In
[51], an improved frequency-domain blind deconvolution flow-
based acoustic fault detection approach for gearboxes was
proposed.

3) Machine learning-based Fault Diagnosis: Machine
learning (ML) based fault diagnosis is a method of detecting

faults in ICPS using ML algorithms. ML-based fault diagnosis
can be performed using various techniques, including:

• Artificial Neural Networks (ANNs): ANNs are widely
used in fault diagnosis due to their ability to model
complex relationships between inputs and outputs. They
can be trained using historical data to identify patterns in
the system’s behavior indicative of faults.

• Support Vector Machines (SVMs): SVMs are a type of
machine learning algorithm that are particularly well-
suited for solving classification problems. They can dif-
ferentiate between normal and abnormal system behavior
and classify faults into different categories.

• Decision Trees: Decision trees are a versatile machine
learning algorithm that can be applied to both clas-
sification and regression problems. They can be used
to identify the most critical factors contributing to the
occurrence of faults in a system [52]–[54].

• Deep Learning: Deep learning is a type of machine
learning that uses ANNs with multiple layers to learn
from large amounts of data. Deep learning algorithms
have been used in various industrial applications for
fault diagnosis due to their ability to understand complex
patterns in the data [55]–[57].

Researchers in [58] developed a fault diagnosis system to
prevent operational failure in a fuse test bench. The system,
based on extreme gradient boosting, which is an advancement
of decision trees, was capable of detecting, classifying, and
identifying the root causes of faults. The results of the experi-
ment demonstrate that the system has a high level of accuracy,
a fast diagnosis time, and provides interpretable root cause
analysis. In [59], multiple autoencoders (AE), a type of deep
learning algorithm, were stacked to extract features from raw
bearing vibration signals. The extracted features were then
processed through a softmax regression to identify the different
bearing faults.

III. SAFETY II: PROGNOSIS

Prognosis techniques in ICPS are methods used to predict
the remaining time before a component or system fails.
Prognostics approaches can be broadly divided into three
categories: model-based, data-based, and fusion models.

1) Model-based prognosis: These approaches use mathe-
matical models based on physical laws and principles to
simulate the behavior of a system and predict its future
behavior. Examples include physics-based models and
first-principles models.

2) Data-based prognosis: These approaches rely on histori-
cal data to predict a system’s behavior. Examples include
statistical methods such as regression analysis and ma-
chine learning techniques such as neural networks and
support vector machines (SVMs).

3) Fusion prognosis: These approaches combine the
strengths of both data-based and model-based ap-
proaches by using historical data and mathematical
models to make predictions.
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A. Model-based Prognosis
Model-based prognosis in ICPS involves using mathemat-

ical models to predict the remaining life of components or
systems. The goal is to estimate the RUL accurately and
identify the degradation onset before it leads to failure. Model-
based prognosis can be classified into two main approaches:
physics of failure and system model approaches.

1) Physics of Failure (PoF) approach: This approach is
based on the idea that the degradation of a system is
driven by physical mechanisms such as wear and tear,
corrosion, and fatigue. PoF models use physical laws
and principles to describe the behavior of a system as
it degrades over time. For example, a PoF model of a
component might explain the relationship between its
stress and strain and predict the point at which it will
fail based on the accumulation of damage.

2) System model approach: This approach uses mathemat-
ical models to describe the behavior of a system as a
whole without focusing on the individual components or
degradation mechanisms. For example, a system model
might explain the behavior of an engine based on its
speed, torque, and fuel consumption and predict its
remaining useful life based on its performance data.

PoF models can provide accurate predictions of the timing
of component failure based on physical models of the degra-
dation process. However, it can be complex and challenging
to develop, particularly for systems with multiple degradation
mechanisms. On the other hand, system models are often more
straightforward to create than PoF models, particularly for
complex systems with various components and interactions.
But may not provide as accurate predictions of component
failure as PoF models.

In [60], the PoF approach was used to predict the failure
of the power supply. The power supply was divided into
parts based on their material characteristics. By predicting the
degradation of one or a combination of these components, the
overall reliability of the entire power supply system could be
estimated.

In [61], a system model approach was applied for gas
pipeline system integrity management to prevent or reduce the
likelihood of failures. The framework considers all possible
failure modes of the pipeline using real-time field data and a
combination of Hybrid Causal Logic and Dynamic Bayesian
Networks predictive models to suggest cost-effective and op-
timal mitigation actions.

B. Data-based Prognosis
A data-based prognosis predicts a system’s health and

remaining useful life based on historical data. Data-based
prognosis is based on the idea that patterns can describe the
system’s behavior in the data and that these patterns can be
used to predict the RUL. The data used for RUL prediction
can include operational parameters, performance metrics, or
degradation indicators. It can be further classified into two
main categories: statistical approaches and machine learning
approaches.

1) Statistical approaches: These techniques use mathemat-
ical models and statistical methods to analyze large
amounts of historical data. These methods are often
based on traditional statistical techniques such as regres-
sion, principal component analysis (PCA), and survival
analysis. These methods require high-quality data to
produce accurate predictions, but they are simple to
implement and interpret.

2) Machine learning approaches: These techniques use
advanced algorithms such as artificial neural networks,
decision trees, and support vector machines to model the
relationships between input variables and system health.
These approaches can learn from data without relying on
explicit mathematical models, making them well-suited
for complex and non-linear systems. However, they can
also be more computationally intensive and require more
expertise to implement and interpret.

A study in [62] developed an optimized random forest
model, a machine learning approach, to predict the RUL of
experimental bearings. The proposed framework integrates a
signal processing technique and machine learning to improve
RUL prediction accuracy. The experiment results significantly
improved compared to the standard data-based and stochastic
techniques.

Another study in [63] also incorporates machine learning for
accident prevention by predicting condensed phase formation
during an accidental release of liquid hydrogen. A model
was developed to predict the likelihood and location of an
oxygen phase change during refueling based on the operating
conditions. The results of the model were accurate and reliable,
and can be used to select appropriate safety measures, like a
water drench system, to prevent an oxygen phase change.

C. Fusion Prognosis

Fusion approaches in prognostics use a combination of data-
based and model-based methods to achieve more accurate and
reliable predictions. These approaches leverage the strengths
of both data-based and model-based methods to overcome
their limitations. For example, data-based methods can provide
good results with large amounts of data, while model-based
methods can provide better physical insights and interpretabil-
ity. However, data-based methods can be limited by the quality
and quantity of data, while the complexity and accuracy of the
model can determine model-based methods.

In a fusion approach, data-based models can be used to
identify patterns and relationships in the data. Then these
patterns can be used to inform and improve the model-
based models. Similarly, model-based models can provide
context and physical understanding for data-based models.
This combination of methods can improve prediction accuracy
and robustness compared to using either technique alone.

Some researchers in [64] propose a hybrid prediction model,
which integrates random forest (RF), Artificial Bee Colony
(ABC), and general regression neural network (GRNN), called
RF-ABC-GRNN, to accurately predict the RUL of lithium-ion
batteries in the early-cycle stage. The comparison results reveal
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that the suggested model effectively identifies the key features
and makes precise predictions much sooner.

Another study in [65] developed a hybrid prediction model
based on a combination of a hidden semi-Mark model
(HSMM) and an empirical model to predict the RUL of the
Solid Oxide Fuel Cell (SOFC). The results indicate that the
developed prognostic model outperforms existing approaches
for SOFC prognostics with improved prediction accuracy and
faster forecasting speed.

IV. CHALLENGES FROM SAFETY PERSPECTIVE: FAULT
DIAGNOSIS AND PROGNOSIS

Implementing fault diagnosis and prognosis in ICPS
presents various technical and operational challenges that must
be addressed to ensure their reliable and efficient operation.
Overcoming these challenges is critical to ensuring industrial
systems’ safe and reliable operation and continued growth
and development. Some of the significant challenges in fault
diagnosis and prognosis are:

1) Integration of multiple sources of data and techniques:
In ICPS, various sources of data can be used for fault
diagnosis and prognosis, such as sensor data, operational
data, and maintenance data. However, there needs to
be more research on effectively integrating and using
these multiple data sources for improved fault diagnosis
and prognosis. In addition, most studies only focus on
fault diagnosis or prognosis and do not integrate these
approaches to enhance the overall safety of ICPS.

2) Handling uncertainty: There is often uncertainty in the
data used for fault diagnosis and prognosis, such as mea-
surement noise and uncertainty in the model parameters.
This uncertainty can lead to inaccurate results and false
alarms. Research is needed to handle uncertainty in the
data and models used for fault diagnosis and prognosis.

3) Real-time implementation: The fault diagnosis and prog-
nosis algorithms used in ICPS must be implemented
in real-time to be helpful in industrial applications.
However, many existing algorithms are computationally
expensive and run offline. There is a need for research
on how to make the algorithms more computationally
efficient and implement them in real-time.

4) Incorporating domain knowledge: Learning about the
system and its behavior in many industrial applications
can improve the accuracy of fault diagnosis and prog-
nosis. However, more research must be conducted on
effectively incorporating this domain knowledge into the
algorithms.

To overcome these challenges, a variety of solutions that
address each of these issues can be proposed. These solu-
tions range from integrated approaches using multiple data
sources to efficient computation techniques and approximation
methods to knowledge-based methods incorporating domain
knowledge. Using these solutions, researchers aim to improve
the accuracy and efficiency of fault diagnosis and prognosis
in ICPS and ensure these systems’ safe and reliable operation.

1) Data fusion: Developing algorithms that can effectively
integrate and use multiple data sources for improved
fault diagnosis and prognosis.

2) Uncertainty quantification: Developing algorithms that
can effectively handle uncertainty in the data and models
used for fault diagnosis and prognosis. Examples of
such algorithms include Bayesian filtering and Kalman
filtering. These techniques can estimate the uncertainty
in the data and models and provide a probabilistic
assessment of the system’s behavior.

3) Real-time optimization: Developing computationally ef-
ficient algorithms that can be implemented in real-
time for industrial applications. Researchers can also
use efficient computation techniques, such as parallel
processing and hardware acceleration. Additionally, ap-
proximation techniques, such as reduced-order modeling
and model pruning, can reduce the algorithms’ compu-
tational complexity.

4) Incorporating domain knowledge: Researchers can use
knowledge-based methods, such as rule-based and ex-
pert systems, to incorporate domain knowledge into the
algorithms. These methods can use the knowledge about
the system and its behavior to guide the fault diagnosis
and prognosis processes and improve their accuracy.
Additionally, machine learning techniques can be used
to learn from the domain knowledge and improve the
algorithms’ performance.

In addition to the above solutions, some exciting future re-
search topics can improve safety and reliability in ICPS:

1) Transfer learning and domain adaptation: Transfer learn-
ing and domain adaptation techniques allow the algo-
rithms developed for one industrial system to be adapted
and used in another industrial design. This approach can
reduce the data and computational resources required
to develop algorithms for each new industrial system.
By generalizing the algorithms, transfer learning and
domain adaptation techniques can improve the accuracy
of the fault diagnosis and prognosis algorithms and
make them more widely applicable in different industrial
systems.

2) Multi-task learning: Multi-task learning algorithms can
perform multiple tasks in a single framework, such as
fault diagnosis and prognosis. By sharing information
and resources between these tasks, multi-task learning
algorithms can improve the accuracy of both tasks. For
example, the fault diagnosis results can improve the
prognosis and vice versa. This approach can also reduce
the data and computational resources required to develop
separate algorithms for each task.

3) Active learning: Active learning algorithms can actively
select and label the most relevant data for improved fault
diagnosis and prognosis. By focusing on the most critical
data, active learning algorithms can reduce the amount
of data required for training and improve the accuracy of
the algorithms. This approach can also incorporate new
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data into the algorithms over time, making them more
robust and up-to-date.

4) Explainable AI (XAI): These algorithms provide clear
and interpretable explanations of their results, making
them more transparent and trustworthy in industrial ap-
plications. By giving descriptions of the algorithms’ be-
havior, explainable AI algorithms can increase the users’
confidence in the results and help them understand the
underlying decision-making processes. This approach
can also help identify and address potential biases in
the algorithms and improve their overall accuracy.

Overall, future research should develop algorithms that can
effectively use multiple data sources, handle uncertainty, apply
in real-time, and incorporate domain knowledge to improve the
accuracy of fault diagnosis and prognosis in ICPS.

V. REMARKS

The safety and security of industrial processes are of critical
importance, and there is a growing need for innovative and
efficient solutions to ensure the sustainable operation of ICPS.
The current advancements in ICPS safety, including fault
diagnosis and prognosis, provide a promising foundation for
future research and development. However, several challenges
still need to be addressed, including the integration of multiple
techniques and the computational efficiency of algorithms.

To address these challenges, future research in the field
of ICPS safety should aim to integrate multiple techniques,
handle uncertainty, and incorporate domain knowledge, to
improve the reliability and security of these systems. Addi-
tionally, efforts should be made to enhance the computational
efficiency of existing algorithms so that they can be used in
real-time industrial applications.

This paper provides a comprehensive perspective of the
current state of the art in ICPS safety, focusing on maintaining
secure and reliable operation in dynamic and uncertain en-
vironments. The identified challenges and potential solutions
provide valuable insights for future research and development
in the field of ICPS safety. The continued efforts to improve
the safety and security of ICPS will play a critical role in
ensuring a sustainable and secure industrial future.
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