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Promotion of hydrogen 
evolution from seawater 
via poly(aniline‑co‑4‑nitroaniline) 
combined with 3D nickel 
nanoparticles
Saleh Moradi‑Alavian 1, Amir Kazempour 1, Meysam Mirzaei‑Saatlo 1, 
Habib Ashassi‑Sorkhabi 1, Abbas Mehrdad 2, Elnaz Asghari 1*, Jacob J. Lamb 3,4 & 
Bruno G. Pollet 5

This work reports the synthesis of poly (aniline‑co‑4‑nitroaniline) deposited on a three‑dimensional 
nanostructured nickel (3D‑Ni) film, where both layers were fabricated via potentiostatic 
electrodeposition. The obtained electrocatalyst exhibited excellent electrochemical activity for the 
Hydrogen Evolution Reaction (HER) with small overpotentials of − 195 and − 325 mV at − 10 and 
− 100  mAcm−2, respectively, and a low Tafel slope of 53.3 mV  dec−1 in seawater. Additionally, the 
electrocatalyst exhibited good stability after 72 h operation under a constant potential of − 1.9 V 
vs. RHE. The efficient HER performance of the as‑prepared catalyst was found to originate from the 
synergy between the conducting polymer and three‑dimensional nickel nanoparticles with a large 
electrochemical active surface area. Moreover, the results obtained from electrochemical impedance 
spectroscopy (EIS) measurements revealed that the presence of 3D‑Ni layer improved the kinetics of 
HER by reducing the charge transfer resistance for the electrocatalyst.

Because of its numerous advantages, including zero carbon emissions, exceptional efficiency, and mobility, 
electrochemically derived hydrogen gas is now considered one of the most promising sustainable energy storage 
forms for a variety of  applications1–5. Water electrolysis is regarded as an efficient method for producing hydrogen 
in large quantities and with high purity due to its simplicity. In terms of the electrolysis of water, it is necessary to 
lower electrode reaction overpotentials and choose affordable electrode materials with high electrocatalytic activ-
ity. Within this framework, several catalysts have been investigated as potential electrode materials for the crea-
tion of renewable hydrogen. Due to their high electrocatalytic impact and low overpotentials for the Hydrogen 
Evolution Reaction (HER), most noble metals (in particular Pt), were the top choice  materials6–11. Despite this, 
their exorbitant price and global scarcity have limited their vast usage. As a result, it appears crucial to synthesize 
materials suitable for the catalysis of HER in place of Pt. Conducting polymers might be an attractive choice, 
given their capacity to enhance the electrochemical characteristics of electrodes in a variety of applications, 
including electrocatalysis, carbon dioxide electrochemical reduction, and corrosion  protection12–15. Polyaniline 
(Pani) and its derivatives are particularly well suited for usage as an appropriate electrocatalyst due to their high 
conductivity, environmental stability, chemical and physical characteristics, ease of synthesis, lightweight, and 
creation from affordable  monomers16–20. A Pani derivative called poly (aniline-co-4-nitroaniline) has also been 
used in a few polymer solar cell  applications21,22. The optical, electronic, and catalytic properties of this polymer 
have also been  investigated23–25. Moreover, earlier studies have shown the ability of a three-dimensional nickel 
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nanoparticle layer to catalyze the HER. For example, by heat treating the electrodeposited Zn layer on a nickel 
substrate and then electrochemically dealloying, a three-dimensional nanoporous nickel film was  created26. 
A three-dimensional nickel-carbon composite was also generated by the electrodeposition  approach27,28. Two 
distinct three-dimensional nickel composites containing 50 nm carbon particles and activated carbon were 
effectively synthesized, and their HER-activating properties were  assessed29. All these studies showed that three-
dimensional nickel-included catalysts had good performance in the HER. This prompted us to create a novel 
catalyst with much increased catalytic activity by combining such a structure with conducting polymers. As far 
as we are aware, there is no information about the catalytic properties of three-dimensional nickel films linked 
to poly (aniline-co-4-nitroaniline). Considering this, we anticipate that the results of this work will be useful in 
the development of affordable and effective HER catalysts.

Experimental
Preparation of electrodes
To create the deposition solution, 2.87 g of  NiSO4.6H2O (99%, Fluka), 10.70 g of  NH4Cl (99.8%, Merck), and 
11.70 g of NaCl (99.5%, Merck) were dissolved in 100 mL of distilled water to create the solution for the 3D 
nanostructured Ni (3D-Ni) film. A nickel plate (1 × 1  cm2), a graphite sheet, and an Ag/AgCl (Sat. KCl) electrode 
were used as the working, counter, and reference electrodes, respectively, to electrodeposit the 3D-Ni film at a 
constant potential of − 5 V for 90 s. A MIRA3 TESCAN field emission scanning electron microscope (FESEM) 
and a Philips X-ray diffractometer (XRD) were used to analyze the produced Ni layer.

To synthesize poly (aniline-co-4-nitroaniline), simply defined as 4-NPani, a 0.5 M  H2SO4 solution containing 
0.1 M aniline (99%, Merck) and various concentrations of 4-nitroamiline (0.00, 0.25, 0.50, 1.00, and 2.00 mM) 
was prepared. The deposition of 4-NPani onto the as-prepared 3D-Ni electrode was carried out using the poten-
tiostatic method at three different potentials of 0.72, 0.76, and 0.80 V. Different deposition times, in the range 
of 100 to 400 s, were also examined to observe how they affected the electrode characteristics. The 4-NPani film 
was characterized using field emission scanning electron microscopy (FE-SEM) and Fourier transform infrared 
spectroscopy (FT-IR) spectroscopy (Tensor 27 Bruker). After deposition of 4-NPani onto the 3D-Ni layer, the 
whole electrode was subjected to HER experiments in a simulated seawater environment.

Electrochemical measurements
Cathodic polarization from 0.0 to − 2.0 V at a scan rate of 2.0 mV  s–1 was used to generate LSV diagrams that 
considered the iR drop correction. The EIS measurement was carried out under a sinusoidal signal with an 
amplitude of ± 10 mV and a frequency range of 100 kHz to 0.01 Hz. The ZView (II) software was used to generate 
an equivalent circuit model to determine the EIS parameter values. Chronoamperometry was also performed 
to evaluate the stability of the electrode over a 3-day period with a constant potential of − 1.9 V vs. RHE. All 
measurements were carried out in a conventional three-electrode cell by an AUTOLAB PGSTAT30 potentio-
stat–galvanostat. Ag/AgCl (Sat. KCl) served as the reference electrode, and a graphite sheet with a surface area 
of about 3  cm2 served as the counter electrode. The electrolyte used for the measurements was artificial seawater 
with a pH of 7.0, which had a composition of NaCl (38.38 g  L–1),  CaCl2 (2.43 g  L–1),  MgCl2 (19.06 g  L–1),  Na2SO4 
(5.26 g  L–1), and  KHCO3 (0.24 g  L–1).

Results and discussion
Characterizations
It is simple to create 4-NPani/3D-Ni via electrochemical polymerization when aniline and 4-nitroaniline are 
combined. Figure 1a illustrates the suggested electrochemical synthesized mechanism of 4-NPani.

Figure 1b exhibits the FT-IR spectra of electrodeposited 4-NPani/3D-Ni and Pani/3D-Ni electrodes. Accord-
ingly, the stretching vibration of the –NH group caused a wide peak to form at 3440  cm–1 (Pani has –NH groups 
in its structure more than 4-NPani so it showed high transmittance). The asymmetric stretching and symmetric 
stretching vibrations of the C–H groups were attributed to the bands seen at 2924 and 2855  cm–1, respectively. For 
copolymers and polyanilines, the bands at 1623 and 1464  cm–1 are indicative of C=C quinonoid and benzenoid 
stretching vibrations, respectively. The stretching vibration of C–N was observed at 1475 and 1460  cm–1. A band at 
1297  cm–1 was caused by C–N in-plane bending vibration. The C–H stretching vibration bands appeared at 2856 
and 2884  cm–1, and the N–O stretching vibration of the copolymer had bands at 1579 and 1327  cm–1. The 1, 2, 4 
tri-substitution across the benzene ring was responsible for the weak bands detected at 794 and 1153  cm–121,22,25. 
This demonstrated that the 4-nitroaniline monomer was successfully incorporated into the polymer backbone.

XRD analysis was used to analyze the synthesized 3D-Ni layer, as illustrated in Fig. 1c. Diffraction peaks at 
44.2°, 51.5°, and 76.1° were an indication of the production of nickel crystalline  structures30,31.

The SEM images of 4-N Pani/3D-Ni, Pani/3D-Ni, and 3D-Ni are depicted in Fig. 2. According to these images, 
Fig. 2a and b show a uniform spherical structure for the synthesized 4-N Pani/3D-Ni with an average size of 1–2 
µm. On the other hand, Pani/3D-Ni illustrates a worm-like structure that was completely different from the 4-N 
Pani/3D-N structure (Fig. 2c and d). The SEM images related to 3D-Ni showed a structural difference between 
the uniformly synthesized 3D-Ni and its top layers (Fig. 2e and f). This figure demonstrated a cauliflower-like 
structure for 3D-Ni with an average size of 2–4 µm, while the grain size of Ni nanoparticles were in the range of 
15 to 25 nm. Furthermore, the 4-N Pani/3D-Ni coating displayed a morphology that was different from that of 
Pani/3D-Ni coating (Fig. 2c and d). A comparison between the morphologies of 4-N Pani/3D-Ni and Pani/3D-Ni 
(Fig. 2c and d) coatings revealed that the surface of 4-N Pani/3D-Ni had a spherical structure, whereas Pani/3D-
Ni had a worm-like structure. A cross-section SEM image, shown in Fig. 2g, was used to determine the thickness 
of the 4-N Pani/3D-Ni coating. This image depicted two layers: the top layer was related to the 4-NPani coating 
with a thickness of about 4.92 µm, and the middle one corresponded to the 3D-Ni coating with a thickness of 
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around 8.81 µm. Figure 2h shows the surface of 4-NPani/3D-Ni electrode after 72 h of electrolysis at − 1.9 V vs. 
RHE. According to this figure, some particles of the polymer that were loosely attached to the electrode surface 
separated from the surface. This caused a slight change in the coating morphology, increasing the surface area 
of the electrode.
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Figure 1.  (a) Chemical reaction of electrodeposited 4-NPani/3D-Ni, (b) FT-IR spectra of synthesized 
Pani/3D-Ni and 4-NPani/3D-Ni, and (c) XRD pattern of the electrodeposited 3D-Ni.
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Electrochemical results
The investigation of various electrodeposition circumstances led to the development of a functioning elec-
trode with the maximum activity. Various parameters, including potential and time of depositions, as well as 

Figure 2.  FE-SEM images of the as-prepared electrodes (a,b) 4-N Pani/3D-Ni, (c,d) Pani/3D-Ni, (e,f) 3D-Ni, 
(g) cross section of 4-N Pani/3D-Ni, and (h) 4-N Pani/3D-Ni after 72 h electrolysis in seawater at − 1.9 V vs. 
RHE.
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4-nitroaniline concentration, were optimized to fabricate this electrode. Moreover, different concentrations (0.25, 
0.5, 1.00, and 2.00 mM) from this material were added to the aniline solution to reach an optimum concentration 
of 4-nitroaniline, and 1 mM of 4-nitroaniline had the best performance as a catalyst of HER as it is obvious from 
the LSV plots in Fig. 3a. The optimum electrodeposition time and potential were also obtained as 200 s and 0.76 
V vs. RHE, as demonstrated in Fig. 3b and c, respectively. The best electrode (4-N Pani/3D-Ni) was compared to 
those of the blank Ni, 3D-Ni, Pani/3D-Ni, and Pt as a favorable electrode for the HER as shown by the LSV dia-
gram (Fig. 3d). The unique porous structure of the 3D-Ni coating resulted in higher electrocatalytic activity (i.e. 
lower overpotential and higher current density) than the blank Ni (Fig. 3d). The foam-like nature of the 3D-Ni 
increased the active surface area, which contributed to the HER. As seen in Fig. 3d, the presence of 4-NPani 
copolymer significantly improved the HER activity of the 3D-Ni electrode. This improvement allowed the per-
formance of 4-NPani/3D-Ni electrode to be even better than that of pure Pt. As shown in Fig. 3d, 4-NPani/3D-Ni 
required very low overpotentials of − 195 and − 325 mV to reach current densities of − 10 and − 100 mA  cm-2, 
respectively. These values were substantially less than those of the Ni (− 558 and − 959 mV), 3D-Ni (− 417 and 
− 676 mV), Pani/3D-Ni (− 212 and − 395 mV), and Pt (− 244 and − 441 mV).

Tafel slope values were used to evaluate the intrinsic catalytic kinetics of the electrodes (Fig. 3e). The Tafel 
slope (b) was derived from η = a + b log (j), where η is the overpotential and j is the current density. The Tafel 
slope offers details on the reaction process. In this work, procedures including applying a low scan rate for LSV 
measurements and iR drop correction were taken into consideration to provide Tafel and LSV analyses that were 
more accurate. As seen in Fig. 3e, 4-N Pani/3D-Ni had a low Tafel slope value of 53.3 mV  dec–1, being slightly less 
than those of Pani/3D-Ni (55.0 mV  dec–1) and Pt (56.5 mV  dec–1), and also much lower than those of Ni (83.3 
mV  dec–1) and 3D-Ni (77.0 mV  dec–1). This observation implied a faster charge transfer and in turn improved 
catalytic kinetics for 4-NPani/3D-Ni  electrode32–34. Table 1 illustrates some results from the literature, and it can 
be seen that the 4-NPani/3D-Ni electrode showed proper performance. Figure 4a depicts the LSV diagrams of 
all the studied electrodes after normalizing via electrochemical active surface areas (ECSA) obtained from EIS 
data (see Table 2). This figure showed that the 4-NPani/3D-Ni electrode had a catalytic activity comparable to 
Pt even after normalizing the LSV curves. Additionally, turnover frequency (TOF) of the two electrodes Pt and 
4-NPani/3D-Ni was calculated according to the  literature35–38. For this purpose, CV diagrams were provided 
in a potential range of − 0.90 to 0.25 in seawater, as shown in Fig. 4b. TOF is a measure of the number of  H2 
molecules generated from the electrode surface per unit second. The TOF values of Pt and 4-NPani/3D-Ni were 
estimated 5.30 and 14.50  s–1, respectively.

EIS might be used to investigate the HER kinetics and the reactions at the electrode/electrolyte interface. 
Figure 3f depicts the Nyquist diagrams of the electrodes in seawater at a potential of − 0.6 V vs RHE. According 
to this figure, the Nyquist diagrams demonstrated the presence of two-time constants. The first-time constant 
was associated with charge transfer kinetics, whereas the second one was related to the hydrogen adsorption 
process. As a result, it was predicted that impedance would produce data that was compatible with steady-state 
observations. The Electrical Equivalent Circuit (EEC) model illustrated in the inset of Fig. 3f was used to analyze 
the obtained EIS data. This model represents the behavior of the HER  system44, where the solution resistance 
is Rs, the adsorption constant phase element is CPEH, and the adsorption resistance is RH. Additionally, CPEdl 
denotes the double-layer constant phase element, and Rct denotes the electrode’s interface charge-transfer rate. 
Rct is mostly determined by the intrinsic features of the catalyst material, where a low Rct value suggests a quick 
reaction rate. It is known that a lower value of charge transfer resistance is associated with the higher electro-
catalytic activity of electrodes for hydrogen  generation10. The charge-transfer mechanism is broadly represented 
by a master equation from Volmer-Heyrovsky, which represents the widely accepted reaction mechanism for 
the HER in alkaline  conditions45. Moreover, the adsorption resistance (RH) is represented by the semi-circle 
in the low-frequency zone, and since RH represents the HER onset potential, a low RH value denotes a quickly 
occurring onset of  HER46. To explain the non-ideal performance of solid electrodes, Constant Phase Elements 
(CPE) are utilized instead of ideal capacitors. CPE consists of two elements, Y0 and n, where Y0 is the CPE con-
stant and n is a CPE exponent that may be used to quantify surface heterogeneity or  roughness47. The various 
CPE parameter amounts found in our studies might be attributed to electrode grain surface dispersion. Indeed, 
stochastic bulk distributions of grain forms, sizes, and orientations are present in electrodes, causing stochastic 
grain distributions to arise at the  electrode48. It is typically challenging to demonstrate how much hydrogen has 
been adsorbed onto the electrode surface when there are bubbles present. The hydrogen bubble growth caused 
by applied overpotential on the surface of electrodes is commonly regarded as a source of noise that results in 
some fluctuations in impedance experimental results especially at low frequencies (the hydrogen adsorption 
relaxation loop)49. The relaxation will be influenced by the electrolyte in contact with the electrodes as well as 
the physical characteristics of the  electrodes49,50.

Table 2 listed the quantitative data that were obtained by fitting EIS diagrams. This table revealed that the Rct 
values of the investigated electrodes were in the following order: Ni > 3D-Ni > Pt > Pani/3D-Ni > 4-NPani/3D-Ni. 
According to this finding, 4-NPani/3D-Ni transferred electrons across its surfaces quicker than the other elec-
trodes. This decrease in resistance resulted from the fact that embedding an electronic conducting layer would 
reduce the catalytic system’s charge transfer resistance. Additionally, coating the Ni blank with a 3D-Ni layer that 
has a large active surface area and high conductivity lowered the Rct. The order observed in the RH values of the 
samples revealed that 4-NPani/3D-Ni had the lowest RH, meaning a facile hydrogen adsorption to the surface of 
4-NPani/3D-Ni electrode. A low charge transfer resistance obtained for the 3D-Ni layer suggested that this layer 
was helpful for gaining a faster HER  kinetics51–53. The values of Cdl can be used to estimate the ECSA values of 
the electrodes by using the following equation ECSA = Cdl/Cs, where Cs is general specific capacitance. 0.039 mF 
 cm-2 of general specific capacitance was used for Pt and Ni  substrates54–58. Equation (1) was also used to compute 
the values of double-layer  capacitance59, and the results are given in Table 2.
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Figure 3.  The electrochemical performance of various fabricated electrodes in seawater at room temperature 
(a) LSV plots of the synthesized 4-N Pani/3D-Ni with different concentrations of 4-nitroaniline at a potential 
of + 0.76 V vs. RHE, (b) LSV plots of the synthesized 4-NPani/3D-Ni at various electrodeposition times under 
a potential of + 0.76 V vs. RHE, (c) LSV plots of the synthesized 4-NPani/3D-Ni at different potentials (d) LSV 
plots for comparing the performance of various prepared electrodes, (e) Tafel slope diagrams for the prepared 
electrodes, and (f) EIS analyses of the electrodes in seawater at a potential of − 0.6 V vs. RHE, where the inset 
figure shows the equivalent circuit model applied for fitting the EIS plots.
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Based on the data in Table 2, the ECSA values of the metals (blank Ni and Pt) were significantly lower than 
those of the porous and nanostructured electrodes, suggesting that the rigid surface of blank Ni and Pt was 
responsible for their lower ECSA values.

In real-time applications, the functional stability of a coating for HER is more significant than the catalytic 
 activity60. The long-term stability of 4-N Pani/3D-Ni was tested at a constant voltage of − 1.9 V vs. RHE in sea-
water for 72 h. Figure 5a depicts the stability of 4-N Pani/3D-Ni and Pt electrodes for 72 h and 60 h, respectively. 
According to this figure, 4-N Pani/3D-Ni exhibited better performance than Pt, meaning that a lower potential 
input was required for 4-N Pani/3D-Ni to generate hydrogen from seawater. It was found that the current densi-
ties of 4-N Pani/3D-Ni and Pt decreased until 34 h of electrolysis, then Pt was almost stable while the current 
density of 4-N Pani/3D-Ni increased. These observations could be due to the poisoning of the Pt active sites by 
the adsorbed chloride ions  (Cl-), blocking the absorption of hydrogen  atoms61. Additionally, Fig. 5b compares 

(1)Cdl = (Y0 × Rct)
1

n /Rct .

Table 1.  Comparison of some finding from the literature with the results of this study.

Catalyst Electrolyte η (mV)10 mA  cm–2 Tafel slope (mV  dec–1) Stability Ref

PSS-PPy/Ni-Co-P PBS (1M) 106 80.81 90 h 39

PSS-PPy/Ni-Co-P KOH (1M) 67 27.38 24 h 39

WO3@NPRGO H2SO4 (0.5M) 225 87 1000 cycles 40

Co(II)-PPy NPs/NF NaOH(1M) – 110 30 h 41

PTh:PPP KOH (1M) 77 152 – 42

Ni-PAni 175 H2SO4 (0.5M) 82 131 – 43

4-NPani/3D-Ni Sea water 195 53.3 72 h This work

-20

-15

-10

-5

0

-1 -0.8 -0.6 -0.4 -0.2 0

Ni
3D-Ni
Pani/3D-Ni
4-Npani/3D-Ni
Pt

j (
m

A
 c

m
-2

)

E (V vs. RHE)

-0.40

-0.30

-0.20

-0.10

0.00

0.10

0.20

0.30

0.40

0.50

-1.25 -0.75 -0.25 0.25

Pt

4-Npani/3D-Ni

j (
A

 c
m

-2
)

E (V vs. Ag/AgCl)

(a) (b)

Figure 4.  (a) LSV diagrams of the studied electrodes after normalizing by ECSA reported in Table 2, and (b) 
cyclic voltammetry diagrams of Pt and 4-NPani/3D-Ni in sea water at scan rate of 50 mV  s–1 to obtain TOF 
values.

Table 2.  EIS diagrams fitting parameters of prepared electrodes in seawater at a potential of − 0.6 V vs RHE at 
room temperature.

Samples

CPEdl

Rct (Ω  cm2)

CPEH

RH (Ω  cm2) Cdl (mF) ECSA  (cm2) Fitting error
Y0 ×  10–3  
(Ω–1  cm–2Sn) n Y0 (Ω–1  cm–2Sn) n

Ni 0.134 0.85 9.770 0.102 0.53 14.76 0.04 1.06 0.0047

3D-Ni 0.965 0.89 5.990 0.109 0.81 3.80 0.51 13.09 0.0019

Pt 0.248 0.80 5.880 0.060 0.52 2.96 0.05 1.24 0.0016

Pani/3D-Ni 1.330 0.83 5.012 0.180 0.76 3.14 0.48 12.22 0.0002

4-NPani/3D-Ni 1.216 0.84 4.450 0.202 0.80 2.58 0.45 11.54 0.0013
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the LSV diagrams of 4-N Pani/3D-Ni before and after electrolysis. Accordingly, the HER activity of the electrode 
did not show a significant redaction after 72 h of electrolysis in sea water. This conclusion could be supported 
by the EDX analysis represented in Fig. 5c and d, indicating that the electrode composition did not undergo 
a remarkable change after electrolysis. Furthermore, the improved performance of 4-N Pani/3D-Ni after 34 h 
of electrolysis could be due to the increased surface area of the electrode, as demonstrated by the SEM images 
shown in Fig. 2h.

Conclusions
Linear sweep voltammogram experiments for Pani/3D-Ni and 4-N Pani/3D-Ni showed that the addition of  NO2 
groups derived from 4-nitroaniline to the Pani structure improved the catalytic activity of the resultant electrodes. 
A remarkable synergism between 3D-Ni and 4-N Pani led to higher HER performance. It was also found that the 
Tafel slopes decreased from 77 mV  dec–1 for the 3D-Ni electrode to 53 mV  dec–1 of 4-N Pani/3D-Ni electrode, a 
value comparable to that found for Pt (56 mV  dec–1). The improved catalytic activity for 3D-Ni was mainly due 
to the increased electrochemical active surface area. Long-term durability studies of the as-prepared electrodes 
immersed in seawater for 3 days were performed by chronoamperometry and showed that the electrode was 
stable with an improvement in its activity. Overall, the promising results found for 4-N Pani/3D-Ni indicated 
that it can be used for efficient hydrogen evolution in seawater when compared to Pt.

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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Figure 5.  (a) Chronoamperometry for 4-N Pani/3D-Ni and Pt electrodes at a constant applied potential of -1.9 
V vs. RHE, (b) LSV diagram of 4-N Pani/3D-Ni before and after long-term stability test, (c) EDX analysis of 4-N 
Pani/3D-Ni before stability test, and (d) EDX analysis of 4-N Pani/3D-Ni after stability test.
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