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Abstract

As one of the first courses students encounter at the university level, linear algebra
introduces students to a world of concepts, objects and representations. How-
ever, these abstract notions and their representations can be difficult for begin-
ning learners to navigate. Eigentheory, the domain of linear algebra encompassing
eigenvectors, eigenvalues, and eigenspaces, emerges as a particularly valuable
group of concepts. Despite its diverse applications, the inherent conceptual com-
plexity of eigentheory can present difficulties for students at the onset of their
learning journey.

As an assumed cornerstone of the learning process, homework assignments
are widely used in universities across the world. In this study, we explore students’
written and oral reasoning on a set of homework tasks, aiming to illuminate their
understanding of eigenvectors and eigenvalues. However, the notion of under-
standing can be complex and even contentious. Thus, to capture and characterise
their understanding, we draw upon Tall and Vinner’s notion of the concept image,
encompassing the cognitive structures that individuals associate with a concept.
Additionally, we make us of Sierpinska’s modes of thinking to capture the nuances
of the students’ reasoning.

Our study was conducted at the time when eigenvectors and eigenvalues were
first introduced to the students, extending into the subsequent weeks. The writ-
ten homework of 170 students were collected and their answers to two tasks,
specifically designed to illuminate their comprehension of eigenvectors and eigen-
values, were analysed. To gain deeper insights, semi-structured interviews were
conducted with five chosen participants after they had submitted their homework
assignments.

Our findings reveal the diverse concept images held by students concerning
eigenvectors and eigenvalues. These encompass a range of attributes, including
their structural relationships with linear transformations, span and vector spaces,
the arithmetic properties of their computation, as well as their geometric and
visual characteristics, and spatial representations. Interestingly, a remarkable ma-
jority of the students displayed proficiency in their engagement with multiple
modes of thinking. However, our observation that several of the students’ answers
fell in between the modes established by Sierpinska underscored a certain limit-
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ation in our application of this as an analytical framework. These experiences
prompted us to expand upon the original modes by introducing our own, mixed
categories. However, our study also highlighted potential challenges in students
learning of eigenvectors and eigenvalues. These obstacles encompassed aspects
such as a lacking awareness of the relations between a matrix (or linear trans-
formation), its eigenvector(s) and corresponding eigenvalue(s), as well as confu-
sion surrounding the number of eigenvectors associated with a given matrix or
eigenvalue.

In closing, our study highlights aspects of students’ comprehension that were
left unexplored, which we consider compelling avenues for future research.

Keywords: linear algebra, concept image, modes of thinking, eigentheory, student
understanding
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Sammendrag

Som et av de første emnene studenter møter på universitetsnivå, introduserer lin-
ear algebra studentene for en verden av begreper, objekter og representasjoner.
Imidlertid kan disse abstrakte begrepene og deres representasjoner være krevende
å håndtere for nybegynnere. Egenteori, grenen av linear algebra som omhandler
egenvektorer, egenverdier og egenrom, fremstår som en særlig nyttig gruppe be-
greper. Tross deres mangfoldige bruksområder, kan kompleksiteten disse begre-
pene innebærer være utfordrende for studenter i starten av læringsprosessen.

Som et antatt viktig ledd i læringsprosessen brukes øvinger (skriftlig hjem-
mearbeid) på universiteter over hele verden. I denne studien utforsker vi stu-
denters skriftlige og muntlige resonnement i forbindelse med et sett oppgaver,
hvor målet er å belyse deres forståelse av egenvektorer og egenverdier. Likevel
kan begrepet forståelse fremstå som komplekst og muligens kontroversielt. Derfor
tar vi i bruk Tall og Vinner’s idé om begrepsbilde (engelsk: concept image), som
omfatter alle de kognitive strukturene et individ assosierer med et begrep. Videre
benytter vi Sierpinskas tenkemåter (engelsk: modes of thinking) for å belyse nyansene
i studentenes resonnement.

Denne studien startet da studentene først ble introdusert for begrepene egen-
vektorer og egenverdier, og strakte seg utover de påfølgende ukene. Studentenes
øvinger ble samlet inn og deres skriftlige svar på to oppgaver, spesielt utformet
for å belyse deres forståelse av egenvektorer og egenverdier, ble analysert. For
å få dypere innsikt ble semistrukturerte, individuelle intervjuer utført med fem
utvalgte studenter etter at de hadde levert øvingene.

Våre funn avdekker de mangfoldige begrepsbildene studenter kan inneha av
egenvektorer og egenverdier. Disse omfatter en rekke egenskaper, inkludert deres
strukturelle forbindelser til lineære transformasjoner, spenn og vektorrom, arit-
metiske egenskaper som prosedyrer for å bestemme dem, samt deres geometriske
og visuelle tolkninger, og romlige representasjoner. Likevel observerte vi at flere
av studentens svar falt mellom Sierpinskas etablerte tenkemåter, noe som under-
streker en viss begrensning i anvendelsen av dette som et analytisk rammeverk.
Disse erfaringene fikk oss til å utvide de opprinnelige tenkemåtene ved å inkludere
våre egne, blandede kategorier.

Studien vår avdekket også potensielle utfordringer i studentenes læring av
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egenvektorer og egenverdier. Disse inkluderte aspekter som manglende begrep
om forholdene mellom en matrise (eller lineær transformasjon), dens egenvek-
tor(er) og tilhørende egenverdi(er), samt en forvirring rundt antall egenvektorer
som kan knyttes til en gitt matrise eller egenverdi.

Avslutningsvis belyser studien vår sider ved studenters forståelse som ikke lot
seg utforske i denne masteroppgaven, men som vi anser som lovende områder for
fremtidig forskning.

Nøkkelord: lineær algebra, egenvektor, egenverdi, begrepsbilde, forståelse
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Chapter 1

Introduction

Linear algebra is useful to science, technology, engineering and mathematics (also
known as STEM fields). However, over the last decades, the problems in the teach-
ing and learning of linear algebra have received increasing attention by research-
ers (Dorier & Sierpinska, 2001). In describing these challenges, Dorier (2002)
states that "The teaching of linear algebra is universally recognised as difficult.
Students usually feel that they land on another planet, they are overwhelmed by
the number of new definitions and the lack of connection with previous know-
ledge." (p. 876).

In this study, we investigate students’ understanding of eigentheory, the do-
main of linear algebra concerning eigenvectors, eigenvalues and eigenspaces, in
an early stage of their university education. We focus on eigentheory because of its
widespread use and conceptual complexity. First, eigentheory has important ap-
plications both in and outside mathematics. In physics, eigentheory can be used to
solve differential equations or study Markov-chains. Eigentheory can also be ap-
plied to model predator-prey processes in statistics and biology. Second, eigenthe-
ory can be conceptually complex as students need to understand several key con-
cepts in linear algebra, such as span, transformation and linear (in)dependence
(Wawro et al., 2018, p. 275).

In our experience, a typical linear algebra course involves weekly lectures,
homework and a final exam at the end of the semester. According to Gravesen
et al. (2017), tasks are at the core of a learning situation. With the perspective
that students develop their understanding when they are actively engaged in the
content, we concentrate on the setting of homework tasks in eigentheory. Given
the widespread use of homework in universities all over the world, it seems reas-
onable to assume that students’ engagement with homework can be an important
part of their learning process. Furthermore, it is assumed that students’ homework
may offer valuable insights into their current level of understanding.
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1.1 Understanding

As described above, we are interested in the understanding of eigentheory that
students exhibit. At this point, we may ask ourselves "What does it really mean
to understand?". From our perspective, the notion of understanding can be chal-
lenging to define. There exists several characterisations of different kinds of un-
derstanding. For instance, Skemp (1978) distinguished between instrumental and
relational understanding. The former is characterised as simply knowing how to
apply rules to solve problems, in contrast to the latter, which also includes knowing
why the rules apply. Similar descriptions can also be found in Hiebert’s (1986) dis-
tinction between procedural and conceptual knowledge (or understanding) and
Halmos’ (1985) algorithmic and dialectic mathematics. However, such dichotom-
ies have been criticised by researchers like Sfard (1991) and Sierpinska (2005)
for being reductive or even false. We share the perspective that these dichotomies
have some limitations, and taking into account that these distinctions are also not
specific to linear algebra, they may not capture the many facets of understanding
in this field. Therefore, we aim to develop our own concept of what it means to
understand, which we will discuss in this thesis.

Harel (1997) lists several properties of what it means to understand in the
context of linear algebra. These include the ability to think in general terms and
to make connections between concepts, or in his own terms, "ideas" (p. 109).
However, according to Dorier et al. (2000a, p. 94), definitions can be a source of
difficulty for students in linear algebra. It is our perspective that this might be par-
ticularly true for eigentheory, where several key concepts, such as transformation,
vector, matrix, etc., have intricate connections.

Linear algebra is characterised by the many representations of the mathemat-
ical objects under study (Hillel, 2000, p. 199). Thus, the ability to engage with
diverse representations becomes an important facet of understanding linear al-
gebra, in our view. Nonetheless, as we will later discuss, these representations
can often pose challenges for students. It should be noted that the term represent-
ation holds distinct interpretations across various authors, a subject we will also
delve into further down the line.

1.2 Aim and Research Questions

This thesis represents the initial and intermediate scientific outcome within an
integrated PhD project. The research presented here lays the groundwork for fur-
ther work, which will be carried out in a three-year PhD program with the in-
tention of extending upon the findings. However, it is important to differentiate
between the aims set for the master project and the broader goals pursued in the
PhD project, despite their close interrelation and interconnection in terms of both
objectives and planning. The primary objective of the master project is to invest-
igate students’ understanding of concepts from eigentheory. However, to provide
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a comprehensive overview, we briefly explain the aims of the PhD project as well.

1.2.1 Aim and Research Questions of the Master Project

Despite the growing amount of research on the teaching and learning of linear
algebra, Wawro et al. (2019) state that research focused on eigentheory is "far
from exhausted" (p. 275). In accordance with that, the master project aims to
describe some aspects of students’ understanding of two key concepts from eigen-
theory, namely eigenvectors and eigenvalues, as well as their challenges facing
these concepts. The overarching question for the master is:

What characterises students’ understanding of eigenvectors and eigenvalues?

To address this question, we have designed a set of tasks to be undertaken as
part of students’ compulsory homework in a first linear algebra course at the Nor-
wegian University of Science and Technology (NTNU). The data material consists
of the written works of 170 students, as well as sound recordings and transcripts
of interviews with five selected individuals.

The current master study builds upon an additional preparatory work in form
of a pilot study, which was conducted in the fall of 2022. There, the written the
homework of 52 students were analysed to gain insights into their understanding
of eigenvectors and eigenvalues. The results of the pilot study informed the design
and conduction of the main study, whose results will be discussed in this thesis.

In the provided thesis, we aim to explore a comprehensive research inquiry by
formulating theoretical foundations to guide our empirical investigation in search
of answers to the overarching question. This will involve refining the primary
question to precisely define the concept of understanding in the given context,
resulting in the following, more specific research questions, which will guide our
empirical analysis:

1. What concept images can be described from the students’ reasoning about ei-
genvectors and eigenvalues?

2. What modes of thinking can be identified in the students’ reasoning about
eigenvectors and eigenvalues?

The process of arriving at these refined questions will be expounded in Chapter
3, within the context of the theoretical and methodological framework.

1.2.2 Aim and Overarching Research Question for the PhD Project

The broader project of the PhD builds on the master project and aims to develop
a set of tasks to address students’ challenges and enrich their understanding of
linear algebra. The overarching research question for the PhD is:

What tasks can be designed to support university students’ understanding of
linear algebra?
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It should be noted that the aforementioned research question is not intended
as a final inquiry. Rather, it outlines our long-term intention to develop tasks to
support students’ learning process.

1.3 Structure

Chapter 2: Literature Review

In the next chapter, we will present a brief literature overview of relevant research
on the teaching and learning of linear algebra and eigentheory in particular. This
includes identifying some of the key concepts and theoretical insights that scient-
ists have worked on in the context of teaching and learning linear algebra, and
the respective challenges for students’ understanding.

Chapter 3: Theory

In Chapter 3, we offer our perspective on how theories can be applied to address
our research question(s). Afterwards, we delve into Tall and Vinner’s notion of the
concept image. Additionally, we explore the modes of thinking in linear algebra
as described by Sierpinska, which will be one of the key concepts for the analysis
of our data. Furthermore, we elaborate on the ontological and epistemological
assumptions underlying our theoretical perspective and highlight the advantages
of networking these theories.

Chapter 4: Methodology, Methods and Ethics

We begin Chapter 4 with a discussion on methodology, outlining the rationale of
our chosen methods. We explain why we opted to design tasks for homework as-
signments and conduct subsequent interviews with students regarding their reas-
oning. Following this, we describe the methods employed in further detail, in-
cluding an overview of the setting1 and participants of our study, the process of
data collection and the tasks. Then, we outline the steps involved in our thematic
analysis of the data, accompanied by an elaboration on the characteristics defin-
ing the modes of thinking within the context of eigentheory. We end this chapter
with our reflections regarding the ethical considerations involved in our study,
including the measures taken to support trustworthiness and authenticity.

At this stage, we would like to inform the reader that Chapters 3 and 4 are
inspired by two essays (Lyse-Olsen; 2022a; 2022b) on theoretical and methodo-
logical considerations for the master’s project, that were written in conjunction
with the courses MA-602 and MA-607 at the University of Agder in 2022. There-
fore, parts of these chapters may reflect insights gained from writing the essays.

1By setting we mean the physical, social and cultural site in which the study is conducted.
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Chapter 5: Results and Analysis

Chapter 5 outlines the findings of our study by showcasing examples of students’
written and oral reasoning in response to the homework tasks we designed. To
shed light on the students’ understanding, we provide a thorough analysis of these
responses using the notions of the concept image and the modes of thinking. In
employing these theoretical lenses, we aim to illuminate the nuances of students’
understanding and gain insights into how they interpret and conceptualise eigen-
vectors and eigenvalues.

Our analysis demonstrates that the students present concept images at various
stages of their development. Furthermore, we discuss how students’ answers align
with Sierpinska’s modes of thinking. It is noteworthy that several of the students’
responses incorporate elements from multiple modes of thinking, indicating rich
concept images.

Chapter 6: Discussion
In Chapter 6, we provide an overview of the main results of our study, comparing
and contrasting these with the findings of previous research. We engage in a crit-
ical reflection of the theoretical lenses we employed, assessing their affordances
and constraints, while also considering alternative theoretical lenses for our fu-
ture research. Following this, we undertake a critical examination of our methods,
carefully evaluating their benefits and limitations. We assess the extent to which
our analysis of the data using our theoretical lenses allowed us to answer the re-
search questions effectively. We conclude this chapter with an outlook towards
future research, highlighting areas that warrant further exploration and develop-
ment.

Chapter 7: Conclusion
We conclude this master’s thesis with a concise answer to our research questions to
demonstrate that we have effectively addressed the core objectives of the study. In
addition, we offer some personal reflections that expand upon the insights gained
from this study, as well as some thought-provoking questions for contemplation
and reflection.
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Chapter 2

Literature Review

In this chapter, we explore research on the teaching and learning of linear algebra
at the tertiary education level, with a particular focus on eigentheory. Our analysis
encompasses research spanning from the 1980s to the present, aiming to gain a
comprehensive understanding of the existing knowledge and the challenges that
students face in learning linear algebra and eigentheory in particular, as well as
highlighting promising new research that has emerged in this area.

2.1 Dorier’s Book

The 1980s marked the start of research on the learning of linear algebra, as re-
searchers in France called upon the attention of the international community. They
were concerned with students’ persistent difficulties in understanding linear al-
gebra concepts, even after completing one or two courses on the subject. Dorier’s
(2000) book, On the Teaching of Linear Algebra, is a significant collection of re-
search on the teaching of linear algebra at the tertiary education level. It holds
importance for laying the groundwork for future research and introduces several
theoretical concepts which may be used to study students’ understanding of linear
algebra.

The first part of the book offers a historical survey and epistemological analysis
of linear algebra, emphasising the abstract nature of linear algebra concepts and
the unifying role of vector spaces (Dorier, 2000). The second part of the book con-
cerns educational issues.The first four chapters of this part concern a research pro-
gram starting in 1987 on the teaching and learning of linear algebra led by Dorier,
Robert, Robinet and Rogalski. In Chapter 1, Dorier et al. (2000a) highlight some
challenges students experience in learning linear algebra, specifically the obstacle
of formalism. This refers to the challenges students face when dealing with sym-
bols, notations and concepts in linear algebra, leading them to feel overwhelmed
and hindering the development of a concrete understanding of the concepts. In
Chapter 2, the notion of level of conceptualisation is introduced by Robert (2000)
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to analyse students’ challenges in linear algebra. In Chapter 3, Rogalskí (2000)
describes a long-term teaching project that combines initial diagnoses with new
hypotheses to address students’ challenges in learning linear algebra. Chapter 4
introduces the meta level, a teaching tool developed to address the obstacle of
formalism, including three experimental illustrations and an evaluation of the
challenges encountered in evaluating these experiments and remaining difficulties
(Dorier et al., 2000b).

In Chapter 5, Harel (2000) stresses the importance of students feeling the ne-
cessity of abstract concepts and introduces three pedagogical principles for design-
ing and implementing mathematics curricula. These are called the Concreteness
Principle, the Necessity Principle and the Generalisability Principle. First, the Con-
creteness Principle states that abstract ideas should be introduced with concrete
examples, visual aids or hands-on experiences to make them more tangible, thus
bridging the gap between abstract concepts and students’ pre-existing knowledge.
Second, the Necessity Principle holds that instructional activities must be organised
in such a way that the students perceive the knowledge at stake, be it a concept
or a procedure, to be necessary to solve the problem at hand. Finally, the Gen-
eralisability Principle highlights the importance of enabling students to transfer
their learning to different contexts by encouraging them to identify patterns, un-
derlying principles and apply their knowledge to new situations, thus promoting
flexible thinking.

In Chapter 6 of Dorier’s book, Hillel (2000) addresses the problem of repres-
entations, exploring how geometric visualisation in lower dimensions can impact
the learning of abstract concepts. He distinguishes between three modes of de-
scription in linear algebra: the abstract, algebraic and geometric mode. Within
these modes, vectors and transformations are characterised by distinct notations,
terminology and representations. The abstract mode employs formal language and
concepts from the generalised n-space, like vector space, subspace and kernel. The
algebraic mode is more specific, viewing vectors as n-tuples and transformations
as matrices. Finally, the geometric mode uses the concepts from 2- and 3-space,
such as points, lines and planes. Hillel’s (2000) distinction is closely related to the
modes of thinking introduced by Sierpinska in the subsequent chapter.

In Chapter 7, Sierpinska and her group explored the obstacle of formalism
and concpetualised the modes of thinking (Sierpinska, 2000. These modes repres-
ent different ways of reasoning in linear algebra, namely the analytic-structural,
analytic-arithmetic and synthetic-geometric mode of thinking. As we shall see
later in this chapter, these have been used as an analytic framework for examin-
ing students’ understanding in various areas of linear algebra, and will also play
a fundamental role for the theoretical approach we have chosen for the study
presented in this thesis.
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Mental Conceptions
While Dorier’s (2000) book provides an overview of the teaching and learning of
linear algebra at the time of its publication, it also addressed the importance of
mental conceptions in linear algebra education. Several studies, both within and
outside the chapter’s of Dorier’s book, have studied students’ mental conceptions
of various topics in linear algebra. For example, Dubinsky (1997) emphasised the
importance of visualising processes in linear algebra, and encouraging students
to construct their own ideas and discuss them.

However, most studies have focused on specific concepts within linear algebra.
For instance, Stewart and Thomas (2010) studied students’ mental conceptions
of key concepts like basis, span and linear independence, while Trigueros and
Possani (2013) employed a modelling approach to explore students’ mental con-
structions of linear combinations and linear independence. Furthermore, Salgado
and Trigueros (2015) used a similar modelling approach to investigate students’
mental constructions of eigenvectors and eigenvalues. Dogan (2018), on the other
hand, used the framework of Sierpinska’s modes of thinking to qualitatively ana-
lyse students’ ideas of linear independence from interviews. Her findings suggest
that relying solely on algebraic instructional tools, which is commonly practised in
classrooms, may contribute to limit students’ mental constructions to mere com-
putational procedures.

We find it worth mentioning that the authors referenced here employ terms
like mental conceptions, mental structures and mental constructions with slightly
different meanings. However, our interpretation suggests that both terms largely
concern the cognitive representations in the minds of individuals, which allow
them to comprehend their experiences, organise knowledge and communicate
their understanding.

2.2 Representations

In the context of linear algebra, and particularly concerning mental conceptions,
the aspect of representations is a recurring theme. Jean-Francois Duval’s (2006)
research on representations in the teaching of mathematics generally emphasises
the significance of implementing multiple representations in mathematics educa-
tion. He stresses that engaging students in meaningful representational activities
may promote their ability to make sense of mathematical ideas.

Returning to linear algebra, Sierpinska and her group (2000) notes that a com-
mon challenge for students is to perceive different representations as being inde-
pendent mathematical objects themselves. This causes students to face the chal-
lenge of dealing with an ever increasing number of new mathematical objects.
Duval (2006) raises the crucial question of how students can be expected to dis-
tinguish between the mathematical object and its representation, when their sole
means of access to the objects are indeed through their respective representations.
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According to Duval (2006), changing between the representations poses an
additional challenge for students, some being more difficult than others. Hillel
(2000) notes that instructors tend to perform these transfers without regard for
the cognitive complexity involved for students. The importance of proficiently
making transfers between representations is acknowledged by Alves Dias and Ar-
tigue (1995), who emphasise the necessity of training students to develop these
competencies. They highlight that the responsibility of fostering these competen-
cies cannot be left to the students alone. Rather it must be integrated in instruc-
tional practices.

2.3 Eigentheory

Concerning the challenges with representations, eigentheory emerges as a partic-
ularly interesting topic. According to Wawro et al. (2019), eigentheory encom-
passes a group of concepts with wide-ranging applications both in and outside
linear algebra. In lower dimensions, like R2 and R3, eigenvectors and eigenval-
ues possess powerful geometric representations. However, Hillel (2000) notes that
students may not be able to connect the geometric representations of eigenvectors
and eigenvalues to the algebraic representations.

Delving deeper into students’ understanding of eigentheory, Thomas and Stew-
art (2011) conducted a study, revealing both areas of proficiency and challenges
in students’ reasoning. While students demonstrated proficiency in performing
the arithmetic procedures for computing eigenvectors and eigenvalues, they en-
countered difficulties when faced with their geometric representations. Despite
using expressions like "being stretched" or "same direction" in describing eigen-
vectors, they struggled to apply these definitions in context. For instance, several
students had troubles determining whether

[
3 −4

]⊺
could be considered an ei-

genvector given that
[−3 4

]⊺
was in fact an eigenvector.

Their study also suggested that most students primarily perceived linear al-
gebra as a mere “application of procedures” (p. 293), thought of eigenvectors and
eigenvalues in a symbolic manner, and that few were aware of their embodied
(or geometric) representations. A particular challenge the students encountered
was performing the algebraic manipulations from the eigenequation, Ax⃗ = λ x⃗ , to
the homogeneous equation for computing eigenvectors, (A− λI) x⃗ = 0⃗. Accord-
ing to Thomas and Stewart (2011), their struggles appeared to stem from their
difficulties in conceptualising the matrix I in this context and the navigation of
multiple mathematical objects, such as scalars, vectors and matrices. The solu-
tions of (A− λI) x⃗ = 0⃗ are a set of vectors, while the solution of det(A−λI) = 0
yields numbers.

In light of these algebraic representations, Salgado and Trigueros (2015) em-
phasised the importance of understanding the equivalence between the equations
Ax⃗ = λ x⃗ and (A− λI) x⃗ = 0⃗. Moreover, Wawro et al. (2018) issued a cautionary
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note against an excessive focus on the computation of bases for eigenspaces before
students have developed a robust understanding of eigenvectors and eigenvalues.
Potentially, such an overemphasis can lead to misconceptions, such as believing
that there is only one eigenvector corresponding to an eigenvalue (when there are
in fact infinitely many).

While the studies discussed so far have revealed that undergraduate students
often encounter challenges facing the concepts of eigentheory, research also sug-
gests several promising approaches for alleviating these challenges. Incorporating
dynamic geometric software has the potential to enrich students’ geometric under-
standing of eigenvectors and eigenvalues. For instance, Gol Tabaghi and Sinclair
(2013) found that students’ engagement with the dynamic geometry software
Geometer’s Sketchpad could support a synthetic-geometric mode of thinking about
eigentheory, as conceptualised in Sierpinska’s (2000) framework. As their stu-
dents’ conceptions of eigenvectors were heavily motion-based, Gol Tabaghi and
Sinclair characterised their modes of thinking as dynamic-synthetic-geometric,
thus further contributing to the framework of Sierpinska.

2.4 The IOLA Project

The study conducted by Gol Tabaghi and Sinclair (2013) represents one of sev-
eral initiatives over the past decades attempting to support the teaching of linear
algebra in tertiary education. Another important initiative is the Inquiry-Oriented
Linear Algebra (IOLA) project, which aims to enhance the teaching of linear al-
gebra through an inquiry-based approach (Wawro et al., 2013). Inquiry, in this
sense, involves students being actively engaged in challenging problems in an au-
thentic setting. For instructors, inquiry-based teaching entails actively listening to
the ideas of the students, responding and building upon their ideas to enhance the
mathematical competencies in the classroom. Thus, in aligning the principles of
inquiry-oriented instruction and inquiry-based learning, the IOLA project aims to
promote active exploration of mathematical ideas for both students and instruct-
ors.

For the study presented here, and the PhD project it is a part of, the work of
the IOLA project has been an inspiration. We share the wish to develop learning
materials that can support students in their learning of linear algebra, based on a
scientific foundation, and to accompany these attempts with didactic analyses of
the content knowledge of linear algebra.
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Chapter 3

Theory

We begin this chapter by presenting our view on what theory is, why we need
theory and how we apply theory in the context of this study. Next, we introduce
the theories employed in this research, namely radical constructivism, Tall and
Vinner’s concept image (as described e.g. in Tall and Vinner, 1981), and Sierp-
inska’s modes of thinking (as introduced in Sierpinska, 2000). Subsequently, we
offer the rationale for our choice of theories, emphasising their affordances and
limitations, as well as comparing their ontological and epistemological assump-
tions to ensure compatibility. We conclude this chapter by restating the aim and
research questions of our study in terms of the theoretical perspective we have
adopted.

What is theory?
In mathematics education research, the notion of theory can be defined in various
ways and serve multiple functions. Niss (2007, pp. 1308-1309) describes a theory
as an organised system of concepts and principles that can be used to describe,
interpret, predict or explain phenomena. Assude et al. (2008) claims theory can
be seen as a tool for interpreting aspects of reality and generating new know-
ledge. According to Simon (2009), a theory may also be used as a lens that helps
researchers to focus on specific aspects of a phenomenon. While this focus may ob-
scure other aspects, he argues it allows for a deeper and more nuanced analysis
of the research data. The importance of theory (or theories) in research comes
from their ability to give meaning to the data. Lester (2010) asserts that the data
do not speak for themselves and stresses that theory is a necessary condition for
comprehending and interpreting data, allowing us to “transcend common sense”
(p. 70).

Levels of theories
Theories may be classified into different levels; local, middle-range and grand the-
ories (Bikner-Ahsbahs & Prediger, 2006; Assude et al., 2008). Local theories are
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developed within specific contexts, focusing on problems or tasks. Middle-range
theories, on the other hand, cut across contexts and encompass classrooms or in-
stitutions. Finally, grand theories are developed outside mathematics education,
and imply ontological and epistemological assumptions.

Theory as a lens
In order to come to know about and to describe students’ understanding of ei-
genvectors and eigenvalues, we need both data and theory. For the purpose of
this study, we employ theory as a lens to illuminate specific facets of their under-
standing, at the cost of disregarding other aspects. However, understanding is a
complex phenomenon, inherently challenging to define and directly observe. In
the following, we explain our decision to adopt radical constructivism as the the-
oretical foundation informing our ontological and epistemological assumptions
on what understanding entails. Then, we introduce Tall and Vinner’s notion of
the concept image, which serves as a theoretical lens for describing students’ un-
derstanding of mathematical concepts. Lastly, we delve into Sierpinska’s modes
of thinking, which provides a specialised lens, tailored to capture nuances in stu-
dents’ reasoning within the domain of linear algebra. Thus, it should be noted that
while radical constructivism underpins the study, the primary theoretical lenses
guiding the analysis are the concept image and the modes of thinking.

3.1 Radical Constructivism

For this study, radical constructivism, as introduced by Ernst von Glasersfeld in the
1970s (Walshe, 2020), forms the theoretical background perspective on learning
for this study. It is our perspective that radical constructivism can be considered
a grand theory of learning, providing us with valuable insights into the nature of
learning and how it occurs.

Taking a constructivist perspective on learning, students are not passive recip-
ients of knowledge, but active constructors of their own personal interpretation
of the knowledge at stake (Lerman, 1996). Hence, in the context of our study, this
implies that students develop their understanding of eigenvectors and eigenval-
ues by actively engaging with the subject matter. That is, in their interaction with
definitions, examples and representations, students strive to reinterpret and make
sense of the information at hand.

Radical constructivism distinguishes itself from conventional constructivism by
adopting a radical stance about the existence of an objective reality or objective
knowledge, such as an inherently “true” understanding of the concept of eigen-
vectors. While radical constructivism does not outright deny the existence of such
an objective knowledge, it claims we cannot directly access it (von Glasersfeld,
1990a; 1990b). Instead, we may only interpret it through our subjective experi-
ences. Thus, in describing students’ conceptions of eigenvectors and eigenvalues,
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we may only do so in comparison to our own construction of these concepts.

3.2 Concept Image and Concept Definition

In this subchapter, we introduce Tall and Vinner’s notions of the concept image
and concept definition, and their relations to the notion of understanding. We
explore the development of the concept image, factors influencing its formation,
and conflicts that may arise within different parts of the concept image, as well
as between the concept image and concept definition.

3.2.1 What is the Concept Image?

According to Vinner (2002), definitions can be a source of students’ difficulties
because the axiomatic structure of mathematics may not align with the process of
learning mathematics. In 1981, Tall and Vinner coined the terms concept image
and concept definition to explain how students’ associations with a concept may
be inconsistent with the formal definition.

The concept image, as defined by Tall and Vinner (1981), refers to the mental
representation or internalisation of a mathematical concept that individuals de-
velop through their experiences and interactions with mathematical ideas. Hence,
the concept image can be described as an individual’s subjective understanding of
a concept, shaped by their personal experiences, interpretations, and prior know-
ledge.

For example, in the case of eigenvectors, we propose that a student’s concept
image may consist of visual examples illustrating how a linear transformation
scales the eigenvector. Additionally, the concept image may include the eigenequa-
tion (Ax⃗ = λ x⃗), the homogeneous equation ((A−λI) x⃗ = 0⃗) and the computational
steps for deriving this latter equation.

3.2.2 What is the Concept Definition?

The concept definition is a verbal definition that explains the concept in a precise
and non-circular way (Vinner, 1983). Tall and Vinner (1981) makes a further dis-
tinction between a personal and a formal concept definition. The latter is a defini-
tion accepted by the mathematical community and is often presented to students
in lectures and textbooks. The personal concept definition may be the result of
rote learning of a formal concept definition or it could be the individual’s recon-
structed version of it. The concept definition generates its own concept image,
which forms a part of the total concept image possessed by an individual. This
may be more or less consistent with other parts of the concept image.
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3.2.3 The Development of the Concept Image

While a formal concept definition can be considered a static entity, Tall and Vin-
ner (1981) emphasise that the concept image is considered an evolving, dynamic
construct. The concept image is continuously shaped and refined through the in-
dividual’s engagement with mathematical tasks, their encounters with different
instructional approaches, and participation in social interactions with others. In
the context of eigenvectors and eigenvalues, we propose that a student’s concept
images of eigenvectors and eigenvalues may be influenced by the formal concept
definition, as well as examples and visual representations of them. In the analysis,
we shall see examples of different contributions to students’ concept images.

3.2.4 The Concept Image and Concept Definition in Relation to Un-
derstanding

In his work, Vinner (2002) addresses the notion of understanding and cautions
that memorising a concept definition does not guarantee understanding of it.
Instead, he proposes that understanding a concept involves the possession of a
concept image, stating that "To understand, so we believe, means to have a concept
image" (p. 69). However, while acknowledging the significance of the concept im-
age, we are of the opinion that it may not encompass every facet of the complex
phenomenon of understanding. Therefore, we refine this perspective by assert-
ing that possessing a concept image is a necessary condition for understanding.
We illustrate our perspective on the relationship between understanding, and the
concept image in Figure 3.1. It is important to note that the proportions depicted
in the diagram are not intended to represent their respective magnitudes.

Understanding

Concept
image

Figure 3.1: Visualisation of the concept image as an integral part of the notion
of understanding.
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3.2.5 Conflict Factors

As previously described, the concept image is considered to be multifaceted and
dynamic. Tall and Vinner (1981) propose that when a particular stimulus is presen-
ted, a subset of the concept image is activated, referred to as the evoked concept
image. Hence, not all aspects of an individual’s concept image are necessarily ac-
tivated simultaneously, as different stimuli evoke different subsets of the concept
image.

Tall and Vinner (1981) further claim that an individual’s concept image com-
prises various parts, which may differ in their level of consistency and even ex-
hibit conflicts. They employ the term potential conflict factor to describe the ele-
ments within the concept image (or concept definition) which may be in conflict
with other elements. These conflict factors may not always be triggered in cir-
cumstances that cause the individual to experience an actual cognitive conflict.
However, when they are activated simultaneously, they are referred to as cognit-
ive conflict factors.

Thus, if conflicting parts of the concept image are evoked simultaneously, it
can trigger a cognitive conflict, which we believe presents as a valuable learning
opportunity. The conflict arises when individuals are confronted with the incon-
sistencies or contradictions in their understanding, which can prompt them to
critically examine and resolve these conflicts. We argue that engaging with cog-
nitive conflict can facilitate the development of the concept image towards a more
robust and accurate understanding of the concept. In the analysis of the data col-
lected for iyr study, we will see how the students’ interactions with both the writ-
ten tasks and the interviewer lead to situations where conflicting parts of their
concept images were evoked.

3.2.6 Summary and Limitations

So far, we have provided an overview of the concept image, elucidating its com-
ponents, and the process of its development. Additionally, we have presented the
concept definition and discussed the potential conflicts which can arise within
an individual’s concept image, or between their concept image and the concept
definition.

From our perspective, understanding the concept image is paramount for edu-
cators as it provides insights into students’ cognitive processes and their abilities
of reasoning. By recognising and addressing gaps or misconceptions in students’
concept images, teachers can facilitate more effective instructional approaches to
support students’ development of a rich and accurate understanding of mathem-
atical concepts.

However, to adequately describe students’ concept images in the domain of
linear algebra, we require a theoretical approach that allows us to describe phe-
nomena specific to the field. Therefore, we turn to Sierpinska’s modes of think-
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ing (as introduced in Sierpinska 2000), which offer a framework for analysing
students’ reasoning regarding linear algebra concepts. In the following, we will
provide an overview of the modes of thinking, their visual representations and
some challenges students may have with these modes.

3.3 Modes of Thinking

Recall that within the realm of linear algebra, students often encounter chal-
lenges in navigating the many abstract concepts and the representations asso-
ciated with these mathematical objects. To shed light on these difficulties and
better understand students’ reasoning in linear algebra, Sierpinska (2000) intro-
duced the modes of thinking. Though she does not provide a rigid definition of this
term, we interpret it as distinct ways of reasoning that individuals employ when
engaging with linear algebra. As we shall see, the modes can encompass different
ways of understanding, representing, and interpreting mathematical ideas.

In our perspective, the modes of thinking can be considered to describe a part
of students’ understanding. In particular, we consider the modes of thinking to
partly overlap with the notion of the concept image, as illustrated in Figure 3.2. It
should be noted that the diagram depicts a partial overlap between the sets, but
the proportions are not to scale.

Understanding

Modes
of

thinking

Concept
image

Figure 3.2: Venn diagram illustrating the concept image and modes of thinking
as partially overlapping aspects of understanding.

3.3.1 Background

Sierpinska (2000) distinguishes between three modes of thinking in linear al-
gebra. She calls them the synthetic-geometric, analytic-arithmetic and analytic-
structural modes of thinking. The names of these categories have two levels; In
the first level, she distinguishes between synthetic and analytic modes of thinking.
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In the second level, a further distinction is made between the geometric, arithmetic
and structural modes. This hierarchic structure is illustrated in Figure 3.3.

Modes of thinking

Analytic Synthetic

Structural Arithmetic Geometric

Figure 3.3: The modes of thinking can be divided into two subcategories; ana-
lytic and synthetic. In a second level, Sierpinska distinguishes between structural,
arithmetic and geometric modes of thinking. The arithmetic and structural modes
are analytic, and the geometric mode is synthetic.

3.3.2 Analytic vs Synthetic Modes of Thinking

In describing the difference between the synthetic and analytic modes of thinking,
Sierpinska (2000) states that:

[I]n the synthetic mode the objects are, in a sense, given directly to
the mind which then tries to describe them, while, in the analytic
mode they are given indirectly: In fact, they are only constructed by
the definition of the properties of their elements. (p. 233)

Sierpinska (2000) illustrates the distinction with the example of a straight line
which, in the synthetic mode, is understood as a “pre-given object of a certain
shape lying somewhere in space” (p. 233), and in the analytic mode “the straight
line is defined as a certain specific relationship between the coordinates of points
or vectors in a space of a given dimension” (p. 233). In contrast to the analytic
mode, the synthetic mode can only describe the line, not define it.

Yet, it is our perspective that the distinction between the analytic and syn-
thetic modes allows for interpretation in various contexts, necessitating further
elaboration for our application. In our view, the synthetic mode of thinking in-
volves describing a mathematical object through a representation. We use the term
representation here in the sense of Duval (2006), where semiotic representation
refers to using signs, symbols or notations to depict mathematical objects or op-
erations. Thus, a synthetic mode of thinking could be expressed as describing a
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function through its graph.

However, representations inherently cannot capture all facets of the mathem-
atical object. In contrast, the analytic mode of thinking aims to provide a well-
defined and precise description of the object. At this stage, we draw the reader’s
attention to what we perceive as a similarity between Sierpinska’s differentiation
of synthetic and analytic modes, and Duval’s (2006) observation that students
sometimes struggle to distinguish the mathematical object from its representa-
tion.

3.3.3 The Three Modes of Thinking

In the analytic-arithmetic mode, an object is defined by the formula that enables
its computation, while the analytic-structural mode is concerned with the char-
acteristic properties defining the object. Sierpinska (2000) provides the example
of inverses to illustrate the distinction from the analytic-structural mode of think-
ing. While the analytic-arithmetic mode pertains to the process of calculating the
inverse of a given element, the analytic-structural mode focuses on the property
of this element of having an inverse.

According to Sierpinska (2000, p. 234), the analytic mode is concerned with
making computations correctly and efficiently, while the structural mode aims to
extend our knowledge about the concepts and their connections. She elaborates
this distinction by discussing the notion of linear transformation. Traditionally, a
linear transformation was defined as the substitution of variables, where variables
yi are linear combinations of the variables x i for i ∈ {1,2, ..n}, with x and y
representing numbers (Sierpinska, 2000, p. 234; Daintith & Nelson, 1989, pp.
201-202). However, in modern undergraduate texts, a linear transformation is
defined as a mapping from one vector space to another. Here, the definition does
not provide a formula for computing the resulting image, and the elements could
be numbers, vectors or matrices. Thus, this latter definition corresponds to an
analytic-structural mode of thinking (Sierpinska, 2000).

Finally, the synthetic-geometric mode employs the vocabulary of geometric fig-
ures, such as points, lines and planes. This mode is concerned with the geometric
characteristics of the objects and their visual representations. For example, a vec-
tor could be conceptualised as an arrow lying somewhere in space in the synthetic-
geometric mode, or as an n-tuple in the analytic-arithmetic mode. From our un-
derstanding, the synthetic-geometric mode emphasises visual and spatial aspects
of the objects, while the analytic-arithmetic mode focuses on their algebraic rep-
resentations. In the following, we will further discuss the modes of thinking in
terms of their corresponding representations.
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3.3.4 Visual Representations

According to Sierpinska (2000), each of the three modes of thinking in linear al-
gebra corresponds to “a specific system of representations” (p. 234). While she
does not define the notion of “representation” or “system of representations”, we
interpret them in the sense of Duval (2006). The analytic-structural and synthetic-
geometric modes of thinking have at least three common features. Firstly, they can
be independent of any coordinate system. Secondly, they are based on their prop-
erties rather than calculations. Thirdly, the synthetic-geometric and the analytic-
structural mode include visual interpretations, yet they exhibit distinct character-
istics from one another.

Regarding the distinction between synthetic-geometric and analytic-structural
visualisations, Sierpinska (2000) states that “the latter is more metaphoric and/or
diagrammatic than the other” (p. 236). She elaborates this using the example of
a linear transformation. In a structural mode of thinking, a linear transformation
could be illustrated as two shapes (representing sets) linked by an arrow (repres-
enting the transformation). In contrast, a visual representation of a transforma-
tion corresponding to a synthetic-geometric mode of thinking could be visualised
as a line or a vector in the coordinate system which is transformed in a specific
way such as being rotated by an angle θ . From our interpretation, a representa-
tion corresponding to an analytic-structural mode of thinking is more abstract, in
this case illustrating a general map, while a synthetic-geometric representation is
more specific, in this case, illustrating properties of a particular transformation.
Based on Sierpinska’s (2000, p. 236) description, we have attempted to illustrate
this in Figure 3.4a and Figure 3.4b.

A B

T

(a) A transformation, T , maps an element
from the domain, A, to its corresponding
element in the codomain, B.

x

y

x

T(x)

θ

(b) A transformation, T , rotates a vector x⃗
by an angle θ in the two-dimensional, real
plane.

Figure 3.4: Visual representations of transformations associated with different
modes of thinking.
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3.3.5 Students’ Challenges with the Modes of Thinking

According to Sierpinska (2000), each of the three modes of thinking in linear al-
gebra can pose challenges for students. She notes that while students may have
access to all three modes, their arguments tend to lie somewhere between the
three modes presented here. Sierpinska (2000) explains that it would be unreas-
onable to claim that students prefer one mode over the others and suggests that
they tend to employ whichever mode (or combination of modes) they perceive to
be more convenient for a given situation (p. 236).

Sierpinska (2000) further notes that students often encounter difficulties in the
attempt to transition between the modes of thinking. Interestingly, in our view,
these difficulties bear resemblance to the challenge students face in converting
between different representational systems, as described by Duval (2006). How-
ever, it is our hope that this study can contribute to further develop the modes of
thinking as an analytical framework1 for exploring students’ reasoning in linear
algebra, with a specific focus on eigentheory.

3.4 Epistemology, Ontology, and Coherence Across The-
ories

In this chapter, we shall briefly discuss our understanding of the notion of research
paradigm and explain why we align our study with an interpretative paradigm.
We will present our ontological assumptions of knowledge as constructed by the
learning individual, as well as our epistemological assumptions. That is, our per-
spective of how we can come to know about students’ understanding through
an analysis of their reasoning about eigenvectors and eigenvalues. Afterwards,
we discuss the affordances and constraints provided by our chosen theories. Fur-
thermore, we compare the fundamental assumptions underlying these theories,
aiming to establish their compatibility and potential for networking.

3.4.1 Research Paradigm

There are at least 21 different meanings to the notion of research paradigm (Mas-
terman, 1970). According to Zakariah (2021), the meanings appear to stem from
different fields of study. A widely accepted definition of the term is that of Thomas
Kuhn. In his book The structure of scientific revolutions (1970), Kuhn described a
research paradigm as “the entire constellation of beliefs, values, techniques, and
so on shared by the members of a given community.” (p. 175). Similarly, Mor-
gan (2007) refers to paradigms as “shared beliefs among members of a specialty
area”. Hence, a research paradigm can be understood as a shared set of beliefs,
values and methods shared amongst a group of researchers. In other words, which

1By analytical framework, we mean a structured approach to analyse the data, facilitating the
interpretation of relationships, identification of patterns and exploration of underlying meanings.
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paradigm a study corresponds to depends on the underpinning epistemology, on-
tology, methodology and methods. According to Robson and McCartan (2016),
explicating one’s research paradigm is important as it can highlight the signific-
ance of one’s research questions and account for what constitutes sound answers
to the questions. In the following, we will describe the ontological and epistem-
ological assumptions that were applied in this work, that is, the assumptions on
what knowledge is and how one can come to know about the objects under study,
and how they have come to influence the methodological considerations, which
will be described in the next chapter.

3.4.2 Ontology

Ontology is related to philosophy and it can be described as the study of being,
becoming, existence and reality. Hence, ontology concerns the nature of reality
and social beings, that is, what is real and what it means to exist (Bolstad, 2020,
p. 21). From an ontological perspective, a key question is whether the object(s)
of study should be considered as existing objectively and independently of social
actors, or as subjective and constructed by our minds. For the project described in
this thesis, we aim to describe students’ concept images of eigenvectors and eigen-
values, and their modes of thinking. First, we may ask whether these concepts can
exist independently of social actors? In other words, is there an objective, “true”
definition of eigenvector (and eigenvalue), existing independently of any social
being? It is our perspective that there is no foundation for neither denying nor
confirming the existence of such an objective knowledge, aligning with a radical
constructivist perspective.

As described in Section 3.1, adopting a radical constructivist perspective im-
plies that students are not passive receivers of knowledge, but active constructors
of their own learning. Furthermore, radical constructivism assumes that know-
ledge resides in the mind of individuals. However, our modified perspective holds
that knowledge at least partly resides in the mind. We would like to acknowledge
the existence of alternative forms of knowledge and thinking, such as the close
relationship between thinking and communication (Sfard, 2008) and the inter-
connectedness between mathematical thinking and movement (Gandell, 2022;
Ingold, 2013). However, these aspects are not the primary focus of the current
study and will therefore not be discussed in greater detail. Instead, we accept that
we cannot gain direct access to what is (and what is not) in the students’ heads.
How we can come to know about students’ concept images is an epistemological
issue that will be discussed in the following.

3.4.3 Epistemology

According to Bryman (2016, p. 690), epistemology deals with what is (or should
be) regarded as acceptable knowledge in the discipline. Hence, epistemological
issues concern questions like ‘How can we come to know about the objects we
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study?’, ‘Can we rely on subjective meanings or observable phenomena?’ and
‘What are the limitations of this knowledge?’. In this section, we shall discuss
the epistemological issues related to our study, that is, how we can come to know
about students’ concept images and modes of thinking.

Epistemological Implications of Radical Constructivism
Keep in mind that the ontological assumption that knowledge (at least partially)
resides in the minds of individuals, implies that students’ understanding of ei-
gentheory cannot be directly accessed. However, this should not be misconstrued
as suggesting that their understanding is beyond study. On the contrary, we be-
lieve that this highlights the importance of formulating appropriate research ques-
tions concerning observable indicators of understanding and establishing suitable
methodologies to answer the questions. Let us recall that understanding, accord-
ing to Vinner (2002), implies the presence of a concept image. It is our perspective
that the notion of concept image as proposed by Tall and Vinner (1981), provides
several indicators for describing students’ comprehension of mathematical con-
cepts. Combining with Sierpinska’s (2000) modes of thinking, we achieve a spe-
cialised analytical tool for examining students’ reasoning within the realm of lin-
ear algebra. We still acknowledge that direct observation of thinking is beyond
reach in this study. Nevertheless, it is our perspective that Sierpinska’s descriptive
account of the characteristics of modes of thinking in both written and oral reason-
ing allows us to utilise the categorisation to gain insights into students’ reasoning
about eigenvectors and eigenvalues.

Assuming an epistemological perspective similar to that of radical construct-
ivism has at least three implications for our study. First, we must acknowledge
that students’ communication is essentially a representation of their understand-
ing (here, the term representation is used in the sense of an observable depiction),
and that this representation is inherently fallible. Our thoughts, which may be
non-verbal and “volatile”, may differ from the structure of written, and to some
extent, oral sentences. Hence, in the process of translating ideas into verbal reas-
oning, a process of structurisation occurs, where thoughts are organised into a
coherent, linear sequence of words. Thus, culminating in a (more or less) mean-
ingful sentence. However, this translation is not necessarily one-to-one, as some
aspects may be lost, added or transformed in the process. Thus, akin to how a rep-
resentation of a mathematical object may not perfectly capture all its facets, the
students’ explicit reasoning may not reflect all parts of their understanding. Our
challenge then becomes to determine observable indicators to examine students’
concept images and modes of thinking.

Second, an analysis of these indicators may only result in our own, constructed
version of students’ knowledge. Necessarily, our construction too is fallible. Third,
as we cannot directly access the mathematical objects (whose existence can be in-
terpreted from different ontological perspectives), we may only compare our con-
struction of students’ knowledge to our own concept images of eigenvectors and
eigenvectors (which may contain imperfections). Therefore, any results presented
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in our study will inevitably involve an element of subjectivity.

Interpretative Research Paradigm
Amidst the aforementioned challenges, we align our study with an interpretat-
ive research paradigm, where we seek to understand students’ reasoning through
the lens of subjective meaning-making (Bryman, 2016, p. 26; p. 692). Thus, we
acknowledge the significance of subjectivity in our interpretations and recognise
their role in shaping our upcoming analysis and the findings of our study. We con-
tend that by providing rich descriptions of students’ reasoning, actively reflecting
upon our own biases and presumptions, we may achieve trustworthy and authen-
tic research that captures the nuances of students’ understanding. Later, we shall
explore measures taken to support trustworthiness and authenticity in this study.
Nevertheless, in line with our interpretative stance, we recognise that other inter-
pretations, shaped by different experiences, may coexist and be equally valid to
our interpretation.

In the next subchapter, we will explore the ontological and epistemological
underpinnings of our three theories to compare and argue for their compatibility.
Furthermore, we shall justify their inclusion in our study by highlighting their
affordances and constraints.

3.4.4 Networking of Theories

According to Prediger and Bikaner-Ahsbahs (2014), theories can be networked to
explore a phenomenon, facilitate understanding and interpret empirical findings.
Networking, in this context, involves establishing connections between compon-
ents of theoretical perspectives, while respecting their distinctiveness and integrity
(Prediger et al., 2008). There are several strategies of networking which can be
categorised on a scale based on the level of integration. In the following, we will
discuss the affordances and constraints of the theoretical perspectives adopted for
this study in order to justify our choice and demonstrate how they can be effect-
ively networked in our study.

Rationale for the Chosen Theories
Our study on students’ learning and understanding of eigenvectors and eigen-
values is underpinned by the theoretical background of radical constructivism,
shaping our ontological and epistemological perspectives on the nature of un-
derstanding and the process of coming to understand. It is our perspective that
radical constructivism aligns with our interest in exploring authentic products of
students’ work, such as their homework. We consider these to be more accurate
representations of their constructed knowledge than materials or situations that
are more directly influenced by a present teacher.

However, given that radical constructivism in our view constitutes a grand
theory of learning, we recognise that it may not fully address the specific nuances
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of mathematics education and students’ reasoning in this domain. Therefore, to
accurately describe and analyse students’ comprehension of eigenvectors and ei-
genvalues, we acknowledge the need for a specialised theory tailored to address
their understanding of these mathematical concepts. In this regard, we rely on Tall
and Vinner’s (1981) notion of the concept image, alongside Sierpinska’s (2000)
modes of thinking, as the analytical framework guiding our analysis. As we shall
argue, we believe that these specialised theories allow us to delve deeper into
students’ reasoning in linear algebra.

For our purpose of exploring students’ understanding of eigenvectors and ei-
genvalues, we find that Tall and Vinner’s notion of the concept image presents
as a suitable theoretical lens. It offers a range of indicators, such as the use of
examples, formulas and representations, that may effectively capture specific as-
pects of students’ conceptions of mathematical objects. However, it is important
to note that these notions were developed for mathematics in general, and not for
linear algebra in particular. As a result, we recognise the need to supplement this
theory with additional perspectives addressing the intricacies of the field. Thus,
we turn to Sierpinska’s modes of thinking.

Within linear algebra, students encounter various "languages" and represent-
ations, which might be confusing for them (Hillel, 2000). To better understand
students’ reasoning in this subject, numerous theories and concepts have been
proposed, including Tall’s three worlds (Tall, 2004) and Hillel’s modes of de-
scription (2000). However, our pilot study conducted in 2022 (as described in
Section 1.2.1) revealed challenges in distinguishing between Hillel’s (2000) ab-
stract and algebraic modes of description. In this context, we find that Sierpinska’s
(2000) modes of thinking, a theory specifically developed for analysing students’
reasoning in linear algebra., offer a more precise and well-defined categorisation
to capture the nuances of their reasoning. Nevertheless, it is noteworthy that Si-
erpinska (2000) herself states that students’ reasoning tends to fall somewhere
between the modes (p. 240). It is our hope and anticipation that our study may
contribute to further develop the modes of thinking as an analytical framework
and enhance our knowledge of students’ understanding in linear algebra.

Compatibility
In our perspective, neither of the presented theories alone is sufficient for ef-
fectively describing students’ understanding of eigenvectors and eigenvalues. As
previously described, each of them contributes to our aim in different ways. Con-
sequently, it becomes necessary to examine the compatibility of their fundamental
assumptions regarding ontology and epistemology before attempting to combine
them.

As previously explained, the adoption of the radical constructivist theoretical
lens implies the assumption that knowledge is constructed. Furthermore, in as-
suming that knowledge resides in the mind of the individual, radical construct-
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ivism is a theory focused on the individual’s learning processes, as opposed to
collective learning processes. However, it is our perspective that the underlying
perspective on learning of Tall and Vinner’s (1981) concept image and Sierpin-
ska’s (2000) modes of thinking is not explicitly stated. Consequently, we need to
interpret and analyse these theories to uncover their underlying ontological and
epistemological assumptions. In doing so, we aim to evaluate their compatibility
with radical constructivism, which we will do now.

Previously, the concept image was described as a result of the individual ac-
cumulating experiences with the concept through their engagement with tasks,
instructional approaches and discussions. Additionally, conflict factors were iden-
tified as a potential learning opportunity when evoked simultaneously in the mind
of the individual. It is our perspective that these descriptions align the concept
image with a constructivist perspective on learning. Furthermore, our examina-
tion of students’ individually submitted homework aligns with the inclusion of the
concept image as a theoretical lens.

The formal concept definition, on the other hand, appears to represent a form
of objective knowledge. Several studies have compared students’ concept images
to the concept definition in order to identify deficiencies in their understanding.
However, this approach does not align with our aim. Instead, we adopt the radical
constructivist perspective, refuting the idea of direct access to an objective know-
ledge of eigenvectors and eigenvalues. Instead, we compare our interpretation of
students’ concept images to our own knowledge of these concepts, assuming that
ours is somewhat further developed than that of the students. Thus, we argue that
we may ensure compatibility of these theories by applying them in this particular
manner.

Concerning Sierpinska’s modes of thinking, we observe that both the sociocul-
tural and the constructivist approach can be applied in this context. While Sier-
pinska refers to Vygotsky’s sociocultural theory (e.g. Vygotsky, 1987), we do not
perceive the modes of thinking to be fundamentally based on this grand theory
of learning. Instead, we consider the modes of thinking to describe the cognit-
ive strategies and ideas used by individuals to solve mathematical problems. This
aligns with the radical constructivist stance of thinking as a process occurring
within individuals’ minds. Nevertheless, we acknowledge that the sociocultural
learning process may influence the development of the concept image and the
modes of thinking, although this is not the focus of our analysis.

Finally, it is our perspective that in combining these theories, we achieve trian-
gulation in theory which is beneficial for several reasons. Each of the chosen the-
ories can provide unique insights to different aspects of students’ understanding.
Thus, in combining these perspectives, we can gain a more comprehensive under-
standing of students’ reasoning about eigenvectors and eigenvalues. As we have
discussed, none of these theories alone are sufficient to describe the complexity of
students’ understanding. Thus, we argue that combining theories to understand
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this phenomenon is akin to shining a light in a dark area. While a single light
source may only provide a limited understanding, multiple light sources can re-
veal different aspects of the phenomenon that would otherwise remain concealed
in the shadows. Furthermore, triangulation in theories can enhance the validity of
the study in reducing bias in the results obtained. However, the matter of validity
will be further discussed in a later chapter.

3.5 Aim and Research Questions

In this section, we outline the objectives, research questions, and unit of analysis
for the current master study. Afterwards, we provide an overview of the over-
arching aim of the PhD project, of which the master study constitutes an integral
component.

3.5.1 Specific Research Questions and Unit of Analysis in the Master
Study

Recall that the aim of this thesis is to describe aspects of students’ understanding
of eigenvectors and eigenvalues. As described in the introduction, understanding
in the context of linear algebra entails the ability to connect concepts, to work with
different representations of objects, and to effectively make transfers between
these representations. In the theory chapter, we have seen that understanding
entails having a concept image and that the modes of thinking can character-
ise different ways of reasoning about a concept. Thus, it is our perspective that
both the concept image and the modes of thinking can offer valuable insights in
our quest to characterise students’ understanding of eigenvectors and eigenvalues.

Specific Research Questions
Thus, in light of our theoretical perspective, we rephrase our overarching research
question in terms of the more specific research questions:

1. What concept images can be described from the students’ reasoning about ei-
genvectors and eigenvalues?

2. What modes of thinking can be identified in the students’ reasoning about ei-
genvectors and eigenvalues?

Unit of Analysis
In our perspective, specifying the unit of analysis can help to clearly identify and
delimit the object of study, as well as select appropriate research methods. While
there are many definitions of the unit of analysis, we define it as the specific en-
tity that researchers gather data about and analyse in order to understand the
phenomena under study. In this particular study, we are interested in describing
students’ concept images and modes of thinking in the days and weeks following
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their initial introduction to the concepts of eigenvectors and eigenvalues. Hence,
we consider both students’ concept images and their modes of thinking, as ex-
pressed in their reasoning on our tasks during this time interval, to constitute the
unit(s) of analysis in this study.

3.5.2 Overall Aim of the PhD Study

We remind the reader that the insights gained from investigating these questions
are intended to contribute to the PhD project. The aim of which is not only to
identify students’ challenges in understanding algebra but also to develop a set
of (homework) tasks addressing these challenges. Thus, the master study is con-
sidered to be a very first step in the broader aim of providing practical supporting
solutions to support a more robust understanding.
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Chapter 4

Methodology, Research Design
and Ethics

In this chapter, we explore the methodological implications provided by our on-
tological and epistemological perspectives. This includes critical reflections of our
chosen methods, their affordances and constraints. Afterwards, we provide a de-
tailed account of our research design, including the context of the linear algebra
course in which our study is situated, together with a brief description of the
participants and their prior knowledge. Subsequently, we will present the tasks
that were designed to explore students’ concept images and modes of thinking,
together with a deeper analysis of potential solution strategies in light of our con-
ceptual framework. We end this chapter by stating the ethical considerations guid-
ing our study and the measures taken to support trustworthiness and authenticity
in our research.

4.1 Methodology

Kothari (2004) posits that methodology is the study of methods and their under-
lying rationale. Additionally, it entails a critical reflection on the limitations of
the chosen approach, as well as the rejection of alternative methods. From our
perspective, methodology is where theory meets methods.

In this section, we will explicate our approach to answering the research ques-
tions, namely by analysing our data using the theoretical lens described in the
previous chapter. We shall argue for our chosen methods of collecting written
homework and interview data to shed light on students’ concept images of eigen-
vectors and eigenvalues, as well as their modes of thinking.
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Rationale for Collecting Written Homework
In our experience, mathematics in university involves several written materials,
such as textbooks, assignments, lecture notes and written exams. Several studies
(e.g. Wawro et al., 2018, 2019; Donevska-Todorova 2016; Bouhjar et al., 2018)
have made use of students’ written work (often in combination with other data
sources) to examine students’ understanding of linear algebra. In our perspective,
the widespread use of homework (both at our university and worldwide), together
with the fact that homework is often mandatory in order to access the exam,
indicates the significant role homework holds in students’ learning process.

To come to know about students’ concept images of eigenvectors and eigen-
values, it is desirable to get an impression of their written, as well as their oral
reasoning. Therefore, it was planned to analyse both written works and conduct
interviews with students.

The inclusion of written homework is motivated by several factors. First, home-
work is a regular component of the students’ coursework, making it an authentic
source of their work (a further discussion of measures taken to support authen-
ticity will be elaborated in Section 4.3.3). Second, a large number of students
complete homework assignments, which allows us to collect a large number of
responses. This, in turn, gives a good basis for the selection of students to inter-
view, who are desired to represent as many different concept images as possible.
Given our objective to describe students’ concept images and modes of thinking,
we decided to design specific tasks to address these aspects of students’ under-
standing.

In addition to the immediate research objectives, the more long-term goal of
the PhD project is to contribute to the improvement of Linear Algebra teaching
practices through the design and scientific evaluation of homework tasks. Home-
work tasks play a crucial role in students’ learning efforts and academic achieve-
ments, as evidenced by several studies (e.g. Zhu & Leung, 2012; Fernández-Alonso
et al., 2016). The evaluation of students’ homework assignments within this mas-
ter project aligns with and serves as a first step towards the overarching objective
of the PhD project.

Rationale for Conducting Interviews
It is our perspective that solely relying on students’ written answers presents lim-
itations in capturing the entirety of their understanding. Our position stems from
our assumption that students may prioritise providing correct answers over ar-
ticulating their full thought process in writing. With this in mind, we opted to
conduct interviews as they may offer valuable insights into students’ concept im-
ages, complementing the insights gained from their written responses.

We consider both homework assignments and interviews to be potential learn-
ing situations. However, while the oral data obtained through the interviews can
illuminate aspects of students’ thinking process, their written homework can only
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provide a glimpse of the outcome of their reasoning. Hence, the decision to collect
homework and conduct interviews may allow us to understand both aspects of
students’ reasoning, thus contributing to data triangulation.

Our decision to conduct semi-structured individual interviews and audio-record
them was based on several methodological considerations. While students have
the option to work either individually or collaboratively, they are required to sub-
mit their work individually. Given the objective of describing students’ concept
images (which are inherently individual) we opted for individual interviews to
capture their unique perspectives and modes of thinking.

Our choice of semi-structured interviews was influenced by Sierpinska’s (2000)
note that students’ reasoning tend to fall somewhere between the modes of think-
ing described in her framework. The interviews provide an opportunity to delve
deeper into their modes of thinking and explore which modes are dominant in
their arguments. With a predefined list of topics to cover, the semi-structured in-
terviews offer flexibility including spontaneous follow-up questions to uncover
further nuances in students’ modes of thinking (Corbin & Strauss, 2015, p. 39).

The rationale for exclusively collecting audio-recordings of the interviews, rather
than video-recordings, stems from a careful consideration of the objectives of our
study, and advantages and disadvantages associated with the methods. In a pi-
lot study conducted in the 2022, it was observed that students’ often referred
to specific parts of their written work using terms like “these” and “that” during
the interviews. This observation led to the exploration of video-recordings as a
potential remedy for this issue.

Although video-recordings may capture gestures and non-verbal cues, which
may be valuable in some research contexts, our research questions did not neces-
sitate such an analysis. Moreover, video-recordings come with certain drawbacks.
For instance, Moschkovich (2019) cautions that individuals might be less will-
ing to participate when being filmed. Additionally, video-recordrings may cause
students to be more self-conscious and less at ease to engage in discussions. Con-
versely, it was hoped that audio-recordings could contribute to a more relaxed
and candid conversation, enhancing the quality of the data collected.

4.2 Research Design

In this section, we present an overview of the setting and participants of our study,
describing the learning activities and our assumptions regarding students’ prior
knowledge. Next, we describe our means of data collection and participant re-
cruitment. Subsequently, we present the tasks together with an initial analysis of
anticipated responses and their corresponding modes of thinking. We conclude
this section detailing how the students’ written responses were analysed using a
thematic coding approach and how the interviews supported this analysis.
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4.2.1 Setting and Participants

This study was situated in a first linear algebra course during the fall of 2022 at
a Norwegian university. About 700 students from various engineering study pro-
grams were enrolled in the course, most of which were in their second year of
study and aged in their early 20s.

Learning Activities
The instructional approach of the course employed a flipped classroom style,
where students were expected to watch a series of short lecture videos prior to
attending weekly interactive lectures with a duration of 2x45 minutes.In the lec-
ture videos, key concepts, theorems and examples were demonstrated as an intro-
duction to the topic, providing students with a foundation before the interactive
sessions on campus. The students were also provided lecture notes and links to
YouTube-videos, primarily from the channel 3blue1brown, where key concepts and
procedures were explained and visualised.

During the interactive lectures, the interactive learning platform Mentimeter
was employed to actively engage students in the learning process. Throughout the
sessions, students were given a few minutes to independently or collaboratively
attempt tasks relevant to the topic. Subsequently, the instructor demonstrated ef-
fective solution strategies and highlighted common errors on the blackboard.

Additionally, there were weekly exercise lectures where an instructor (myself)
demonstrated potential solution strategies for basic tasks and exam problems on
the blackboard. I personally selected the tasks for these sessions, but students
were given the opportunity to request specific tasks in advance. Moreover, stu-
dents were encouraged to prepare for the lectures by watching the lecture videos
and/or reading the lecture notes beforehand. While the students were given the
opportunity to review the tasks prior to the lecture, they were not obligated to do
so.

Assessment
The students’ final grade in the course was determined by a written exam with a
time limit of four hours administered at the end of the semester. To be eligible for
the exam, students were required to complete and submit a minimum of four out
of six written homework assignments. Apart from this requirement, the students’
performance on the homework did not affect their grade in the course.

For assistance or collaboration, students had the opportunity to attend exer-
cise classes, called Mattelab, multiple times per week, where they could engage in
discussions with their peers and/or students regarding the homework (or other
academic questions). In addition, students were provided a digital platform where
they could engage in similar discussions.
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Prior Knowledge
This study was conducted in the weeks following the introduction of the concepts
of eigenvectors and eigenvalues to the students. The students were required to
hand in their homework the same week as they were first introduced to the con-
cepts of eigenvectors and eigenvalues, and the interviews were conducted in the
weeks following this.

Through the interviews and communication with the students, it was evident
that not all students engaged with every learning material available to them. In-
stead, many chose to engage with parts of it, although we lack a comprehensive
overview of which resources each student utilised. Nevertheless, it was anticip-
ated that by the time of this study, most students had been exposed to the defin-
ition of eigenvectors and eigenvalues (See Definition 4.2.1 by NTNU (2021), our
translation) and the computational procedure for determining eigenvalues and
eigenvectors, as well as some visual interpretations of them in R2, as these were
presented in both the video lectures, lecture notes and YouTube-videos.

Definition 4.2.1 (Eigenvector and Eigenvalue) Let T : V → V be a linear trans-
formation. A scalar λ is called an eigenvalue of T if there exists a vector v⃗ ̸= 0⃗ in V
such that

T (v⃗) = λv⃗

The vector v is called an eigenvector of T corresponding to the eigenvalue λ. When
T is given as an n×n matrix A, λ is called an eigenvalue of A and v is an eigenvector
of A corresponding to the eigenvalue λ.

4.2.2 Data Collection

To come to know about the students’ concept images of eigenvectors and eigen-
values, and their modes of thinking, four tasks were designed and implemented as
part of the students’ written homework. In addition, interviews with five students
were conducted by the author of this thesis, further exploring their reasoning in
completing the tasks and their overall experiences with the course, approximately
3-5 weeks after submitting their homework.

Recruitment
Out of the 700 students enrolled in the course, consent from 170 students to col-
lect their written homework could be obtained. To recruit participants, the author
of this thesis attended the interactive lectures, informing the students about the
purpose and scope of the study. Their rights as participants were emphasised, as
well as the option to decline participation. The information provided to students
was given in writing (refer to Appendix A) and a short summary of its content
was presented orally to the class. Then, students were asked to fill out a consent
form (See Appendix B), indicating their willingness to participate. While all the
students submitted their homework through the digital platform Ovsys2, only the
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assignments of the students who provided their consent were collected for ana-
lysis. A more comprehensive description of the ethical considerations pertaining
to recruitment, data collection, analysis and other aspects of this study will be
presented in Section 4.3.

Interviews
Based on a preliminary analysis of their written homework, six students were iden-
tified for interviews. To motivate students to take part in the interviews, students
were approached individually via email, communicating why their participation is
both interesting and important. The selection aimed to include students exhibiting
different modes of thinking and concept images at various stages of their develop-
ment. Specifically, students who gave brief answers offering limited information
about their concept images were selected, as well as students who presented com-
prehensive descriptions of eigenvectors, indicating several modes of description
and rich concept images.

Subsequently, the chosen students were contacted via email, providing the
students with information regarding the purpose and duration of the interviews
(refer to Appendix C). Additionally, they were informed in regards to the handling
of their personal data to ensure transparency. Out of the six students who were
contacted, five willingly agreed to participate in the interviews. In preparation
for the interviews, semi-structured interview guides were created for each parti-
cipant (see Appendix D for an example). These guides were designed to guide the
exploration of students’ perspectives.

The interviews were conducted individually, with each session lasting up to
45 minutes, in designated study rooms on campus to ensure a suitable environ-
ment for discussions. To ensure accuracy in capturing students’ responses and
uncover nuances in their modes of thinking, the interviews were audio-recorded.
During the interviews, students were provided with a written copy of the tasks
and their answers. Additionally, they were equipped with pen and paper, allow-
ing the students to express their reasoning in written explanations and/or visual
representations, in case they found it helpful.

The structure of the interviews adhered to the approach suggested by Robson
and McCartan (2016, p. 290). It commenced with an introduction of the inter-
viewer (myself) and a clarification of the purpose of the interviews. To establish
a trustworthy and confidential environment, students were reminded of their an-
onymity and right to withdraw their consent at any moment. Following the intro-
duction, a warm-up phase was initiated, allowing participants to talk about their
interests, study programs and learning strategies. This phase aimed to establish
a comfortable atmosphere, allowing both parties to ease into the situation. Sub-
sequently, the students’ were asked to explain their reasoning concerning the four
tasks that were designed in the preparation of the study, aiming to better un-
derstand their concept images and modes of thinking. Towards the end of the
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interview, a cool-down phase with easier questions was implemented to relieve
any potential tension or stress which may have accumulated during the discus-
sions. The interviews were concluded by expressing gratitude to the participants
for their cooperation and for making the time to participate in the study. The par-
ticipants were compensated for their efforts with a small, edible gift. Moreover,
an additional 30 minutes was allotted for each participant, offering an opportun-
ity to discuss any academic matters, ask questions or receive assistance with their
homework. This additional time was not audio-recorded and is not considered in
this study.

4.2.3 The Tasks

To gain insights into students’ concept images and modes of thinking, four tasks
(numbered 9, 10, 11 and 12) were designed and implemented as part of the stu-
dents’ written homework. For this master’s study, we restrict our analysis to Tasks
9 and 10. These tasks were selected because they align with the aim and research
questions of our study.

4.2.3.1 Task 9

The first task, referred to as Task 9, required students to provide their own ex-
planation of the concepts of eigenvectors and eigenvalues. The exact phrasing of
Task 9 can be found in Figure 4.1, which presents our translated version from
Norwegian to English.

Task 9: Explain in your own words:

a) What is an eigenvector?
b) What is an eigenvalue?

You may use sketches to illustrate.

Figure 4.1: In Task 9, students were asked to explain eigenvectors and eigenval-
ues in their own terms, and encouraged to provide a sketch.

The open-ended structure of this task allows students the freedom to prioritise
specific aspects of eigenvectors and eigenvalues, directly addressing our research
questions concerning students’ concept images and modes of thinking. Further-
more, students could determine the extent of their answers, allowing us to ex-
plore the breadth of their concept images. As we will later elaborate, a more com-
prehensive response may indicate a more advanced concept image, yet a briefer
answer does not necessarily imply a limited concept image.
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Our Interpretation of Sierpinska’s Modes of Thinking
In order to effectively characterise students’ modes of thinking, it is essential to
first understand what the analytic-structural, analytic-arithmetic and synthetic-
geometric modes entail in the context of eigenvectors and eigenvalues. However,
it is important to note that since Sierpinska does not provide a comprehensive
explanation of this, we had to develop our own interpretation, which we elucidate
in the following.

Now, recall that in the analytic-structural mode, an object is described by the
properties defining it. Hence, an analytic-structural description of eigenvectors
captures aspects that hold true for all eigenvectors, not just particular examples.
Since eigenvectors and eigenvalues are defined by the corresponding matrix (or
linear transformation), an analytic-structural description of an eigenvector can
include the relationships that exist between the eigenvector, eigenvalue and mat-
rix/linear transformation. Expanding upon Sierpinska’s (2000) description, we
recognise an additional intrinsic characteristic common to all eigenvectors, their
ability to maintain their original span when imaged by a linear transformation.
A sketch illustrating how a general linear transformation would affect an eigen-
vector could also be considered to align with this mode of thinking.

Furthermore, in the analytic-arithmetic mode, an object is defined by the for-
mula allowing its computation. Applied to eigenvectors and eigenvalues, this im-
plies that eigenvectors can be characterised as the solutions of the homogeneous
equation (A− λI) x⃗ = 0⃗, where A represents the matrix, λ represents the eigen-
value, I represents the identity matrix and x represents the eigenvector. Similarly,
eigenvalues can be described as the roots of the characteristic polynomial, that is,
the solutions λ of det(A−λI) = 0.

Finally, in the synthetic-geometric mode, objects were described based on their
geometric or visual properties1. In the case of eigenvectors, this may involve visual
descriptions of their representations or geometric characterisations of their beha-
viour under a matrix multiplication or linear transformation. For example, eigen-
vectors may be characterised as remaining on the same line or preserving their
direction. For eigenvalues, a synthetic-geometric description could involve charac-
terising the eigenvalue as the factor by which an eigenvector is stretched or com-
pressed. Furthermore, sketches illustrating how a specific eigenvector is affected
by the linear transformation it corresponds to align with a synthetic-geometric
mode of thinking. From our understanding, descriptions in the synthetic-geometric
mode describe certain characteristic properties of some eigenvectors and eigen-
values. These descriptions do not not define them because they are not true for
all eigenvectors and eigenvalues.

1We understand visual properties as referring to observable characteristics that can be graph-
ically represented, like length and direction. Geometric properties, on the other hand, encompass
mathematical aspects like orthogonality, parallelism, and angles. While visual and geometric prop-
erties do exhibit a degree of overlap, it is important to note that our study does not centre on
delineating this distinction.
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In Table 4.1, we present a short summary of the characteristics of the modes
of thinking in the context of eigenvectors and eigenvalues.

Table 4.1: An overview of our interpretation of how Sierpinska’s (2000) modes
of thinking could present in Task 9.

Mode of Thinking Description
Analytic-structural Description based on the defining properties of

eigenvectors and eigenvalues
Analytic-arithmetic Description based on the equations for comput-

ing eigenvectors ((A−λI) x⃗ = 0⃗) and eigenvalues
(det(A−λI) = 0)

Synthetic-geometric Description based on geometric or visual proper-
ties of eigenvectors and eigenvalues, as well as
sketches

Students were also encouraged to produce a sketch accompanying their writ-
ten answers. In encouraging students to provide sketches alongside their written
explanations, we hoped to capture any visual interpretations they may possess
of eigenvectors and eigenvalues. As we shall see, only a portion of the students
provided sketches. However, there were interesting variations within the sketches.

4.2.3.2 Task 10

In Task 10, students were given the vector
[−1 2

]⊺
, and were asked to justify

whether or not it was an eigenvector to the given matrix A =
ï

1 1
−2 −2

ò
. The

exact phrasing of this task is given in Figure 4.2 (our translation from Norwegian
to English).

Task 10: Justify why x⃗ =
ï−1

2

ò
is or is not an eigenvector of the matrix

A=
ï

1 1
−2 −2

ò
.

Figure 4.2: In Task 10, students were asked to justify whether a specific vector x⃗
was or was not an eigenvector of a given matrix A.

The purpose of this task was to identify the modes of thinking employed by
students to support their decision regarding the vector’s status as an eigenvector
of A. This task was selected due to its capacity to encompass multiple solution
strategies corresponding to our interpretation of Sierpinska’s (2000) modes of
thinking in the context of eigenvectors and eigenvalues. In the previous section,
we discussed our interpretation of these modes in the context of Task 9. Now, we
extend our interpretation to Task 10.
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In the context of Task 10, an analytic-structural argument would make use of
the defining properties of eigenvectors to verify that x⃗ is in fact an eigenvector
of A. As described in the previous section, one defining property of eigenvectors
is fulfilling the eigenequation. Hence, an analytic-structural mode of thinking in
Task 10 could present as a verification that the eigenequation is fulfilled for the
given vector x⃗ and matrix A.

Furthermore, an analytic-arithmetic argument would make use of the formulas
for computing eigenvectors and eigenvalues to determine x⃗ ’s status as an eigen-
vector of A. Thus, employing the procedures to compute the eigenvalues of A and
the corresponding eigenvectors, and verifying that the given vector x⃗ is one of
them represents an analytic-arithmetic mode of thinking in Task 10.

Finally, a synthetic-geometric mode of thinking here would involve an argument
using the geometric or visual properties of eigenvectors. Accordingly, this could
present as computing the matrix product Ax⃗ and observing that the resulting vec-
tor is a scalar multiple or lying on the same line as the given vector x⃗ . Additionally,
a sketch illustrating the visual or geometric properties of x⃗ as an eigenvector of A
would also align with a our interpretation of a synthetic-geometric mode of think-
ing. This could entail employing a coordinate system to portray the vectors x⃗ and
as arrows that lie on the same line or vectors that are scalar multiples of each
other. The reader is referred to Figure 4.3 for an example of a potential solution
that includes such a sketch.

For the matrix A=
ï

1 1
−2 −2

ò
and the vector x⃗ =

ï−1
2

ò
.

Compute Ax⃗ =
ï

1 1
−2 −2

òï−1
2

ò
=
ï

1
−2

ò
.

As the vectors x⃗ and Ax⃗ lie on the same line (see illustration below), and
Ax⃗=- x⃗ . Thus, x⃗ is an eigenvector of A with corresponding eigenvalue λ= −1.

x1

x2

x

Ax

−3 −2 −1 1 2 3

−3

−2

−1

1

2

3

Figure 4.3: Our proposed solution to Task 10, exemplifying a synthetic-geometric
mode of thinking. This approach features the computation of the matrix-vector
product Ax⃗ and an accompanying sketch that demonstrates the collinearity of
vectors x⃗ and Ax⃗ .
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In Table 4.2, we present a short overview of the arguments identified in our
preliminary analysis of Task 10, alongside their corresponding modes of thinking.

Table 4.2: An overview of our interpretation of how Sierpinska’s (2000) modes
of thinking could present in Task 10.

Mode of Thinking Argument
Analytic-structural Checking if A and x⃗ fulfil the eigenequation for some

scalar λ
Analytic-arithmetic Computing eigenvalues and eigenvectors and check-

ing that x⃗ is indeed one of them
Synthetic-geometric Geometric or visual description of x⃗ and Ax⃗ lying on

the same line (or exhibiting a similar relationship) or
a drawing illustrating this

4.2.3.3 Tasks 11 and 12

The third task, Task 11, asked students to reason about a set of statements con-
cerning eigenvectors and eigenvalues. Finally, in Task 12, students were tasked
with analysing several visual representations of vectors and the resulting vec-
tor after a matrix multiplication in R2. Based on these representations, students
were asked to determine whether these were eigenvectors of the matrix, and if so,
provide an estimate for the corresponding eigenvalues. For the precise phrasing of
all our tasks, the reader is referred to Appendix E. The students’ answers to these
tasks will be addressed in a future study.

4.2.4 Data Analysis

To allow an in-depth analysis of students’ concept images and modes of thinking,
we engaged in thematic coding, as outlined by Braun and Clarke (2006), of the
students’ written answers to Tasks 9 and 10. The coding was conducted separately
for each task, with the interviews providing further insights and context to support
the written answers. In our analysis, we did not make a distinction between cor-
rect and incorrect answers. The interview recordings and transcripts, while not
subjected to the same thematic coding, played a supplementary role, providing
additional perspectives and enriching the insights gained from the written data.

4.2.4.1 Analysis of Task 9

In Task 9, our coding approach was inspired by Wawro et al. (2019) and involved
two levels of coding. The codes developed in this first level were descriptive codes
as they were based on words or short phrases used by the students, aimed at cap-
turing the essence of their ideas.
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First Level
In the first level, we employed a cyclical process to label all students’ answers,
creating a coding handbook containing all codes, their descriptions and examples
of their use on the way. These first level codes were in vivo codes, based on the
words or short phrases used by the students (Miles et al., 2014, p. 74).

Given the considerable number of 16 first level codes employed in our ana-
lysis of Task 9, it is not feasible to explain each one in detail here. Instead we
present two examples of such codes. For instance, the code “9-transformation”
was assigned to answers to Task 9 relating eigenvectors to the notion of trans-
formation. Similarly, responses describing eigenvectors as preserving their direc-
tion were coded “9-direction”. The reader is referred to Appendix F for the full
coding handbook. It should be noted that the majority of the students gave their
answers in Norwegian. During our analysis, we made the decision to translate
their responses to English and generate codes based on this translation.

Second Level
In the second level of coding, we created codes corresponding to the modes of
thinking and categorised the first level codes accordingly.

• Thus, first level codes corresponding to defining properties of eigenvectors,
such as the preservation of the span, were assigned to the analytic-structural
mode of thinking. Similarly, answers making use of key concepts closely
related to these properties, such as “image” and “vector space”, were also
coded and assigned to this mode.
• First level codes assigned to answers making use of the formulas for com-

puting eigenvalues and eigenvectors were classified as analytic-arithmetic.
• Finally, codes describing geometric or visual properties of eigenvectors and

eigenvalues were grouped in the synthetic-geometric mode of thinking. These
answers described eigenvectors in terms of geometric or visual properties
like “being scaled” or “not being rotated”. As we shall see later, while several
students gave such descriptions, they were actually not able to capture the
geometric properties of all eigenvectors.

The previously described coding handbook in Appendix F includes these second
level codes as well.

Multiple Modes of Thinking
We quickly came to realise that many of the students’ answers aligned with mul-
tiple modes of thinking. To accommodate this complexity, we created four addi-
tional categories representing these combined or in-between modes. To simplify
categorisation, we established the following codes:
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• Answers aligning with both the analytic-structural and analytic-arithmetic
modes were categorised as structural-arithmetic. This mode was character-
ised by describing eigenvectors and eigenvalues as fulfilling the eigenequa-
tion, Ax⃗ = λ x⃗ . It is our perspective that this equation represents a defining
property of eigenvectors, thus aligning with an analytic-structural mode of
thinking. However, the equations for computing eigenvectors ((A−λI) x⃗ =
0⃗) and eigenvalues (det(A−λI) = 0) can fairly easily be derived from
the eigenequation through arithmetic procedures. Thus, we argue that de-
scribing eigenvectors in terms of the eigenequation can also align with the
analytic-arithmetic mode of thinking. Consequently, answers employing the
eigenequation would fall between these two modes and we handled this
complexity by categorising them as structural-arithmetic.
• Answers combining analytic-structural and synthetic-geometric modes were

categorised as structural-geometric. This combined mode was characterised
by describing eigenvectors and eigenvalues from their defining properties,
as well as geometric or visual properties. Recall that defining properties
are general, while the geometric or visual properties are necessarily more
specific (e.g., not all eigenvectors are stretched by the matrix/linear trans-
formation it corresponds to).
• Answers combining analytic-arithmetic and synthetic-geometric modes were

categorised as arithmetic-geometric. This combined mode was characterised
by describing eigenvectors and eigenvalues in relation to the formulas for
computing them ((A− λI) x⃗ = 0⃗ and det(A−λI) = 0), and their geometric
or visual properties.
• Finally, answers incorporating elements from all three modes of thinking

were categorised as structural-arithmetic-geometric.

Figure 4.4 provides an overview of the modes of thinking identified in Task 9,
illustrating the “pure” modes, as well as their combinations. The “pure” modes,
analytic-structural, analytic-arithmetic and synthetic-geometric are represented in
red, blue and yellow, respectively. The overlapping regions, displayed in purple,
orange, green, and white, depict the merged modes of thinking. The purple area
represents the structural-arithmetic mode, where elements of both analytic-structural
and analytic-arithmetic thinking converge. The orange area represents the structural-
geometric mode, combining elements of the analytic-structural and synthetic-
geometric mode of thinking. The green area represents the arithmetic-geometric
mode, encompassing features of the analytic-arithmetic and synthetic-geometric
modes. Finally, the white area in the middle represents the structural-arithmetic-
geometric mode, which involves the integration of all three pure modes.

In our naming of the combined modes, we omitted the explicit distinction
between analytic and synthetic modes of thinking. This is because the distinc-
tion is inherent in the differentiation between structural and arithmetic modes on
the one hand, and the geometric mode on the other hand. The reader is referred
to Figure 3.3 for a reminder of the levels in Sierpinska’s (2000) modes of thinking.
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A− S S − G

A− A

S.A A.G

S.G

S.A.G

NA/M

Abbreviation Explanation
A− S Analytic-

structural
A− A Analytic-

arithmetic
S − G Synthetic-

geometric
S.A Structural-

arithmetic
A.G Structural-

geometric
A.G Arithmetic-

geometric
S.A.G Structural-

arithmetic-
geometric

NA/M Not answered/
Miscellaneous

Figure 4.4: Overview with the modes of thinking identified in Task 9, illustrating
both Sierpinska’s (2000) three modes, and their combinations.

4.2.4.2 Analysis of Task 10

Due to the inherent differences in the nature of Tasks 9 and 10, a slightly dif-
ferent approach, consisting of just one level, was employed to code the students’
answers to Task 10. As outlined in Section 4.2.3.2, our initial analysis of Task 10
identified three main solution strategies aligning with Sierpinska’s (2000) modes
of thinking:

• Answers that verified the fulfilment of the eigenequation (Ax⃗ = λ x⃗) were
coded as indicative of an analytic-structural mode of thinking.
• Conversely, answers that computed the eigenvalues and corresponding ei-

genvectors were coded as indicative of an analytic-arithmetic mode of think-
ing.
• Finally, answers that drew upon geometric or visual descriptions of eigen-

vectors to evaluate the vector x⃗ ’s status as an eigenvector of A were coded
as representing a synthetic-geometric mode of thinking. As previously men-
tioned, a sketch illustrating that the vectors x⃗ and Ax⃗ are scalar multiples
of each other would also align with a synthetic-geometric mode.

We would like to highlight a distinction in the interpretation of modes of think-
ing between answers utilising the eigenequation in Task 9 and Task 10, arising
from the inherent differences in the nature of these tasks. In Task 9, answers mak-
ing use of the eigenequation (Ax⃗ = λ x⃗ or T ( x⃗) = λ x⃗) were interpreted as align-
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ing with a structural-arithmetic mode of thinking, as fulfilling this equation can
be seen as both a defining property and a formula for computing eigenvectors and
eigenvalues. However, in Task 10, answers employing the eigenequation to check
the vector x⃗ ’s status as an eigenvector were considered to employ an analytic-
structural mode of thinking.

It is our perspective that Task 10 was more “closed”, implicitly offering stu-
dents three distinct paths to follow: verifying the fulfilment of the eigenequation,
computing the eigenvectors, or reasoning about the geometric or visual properties
of eigenvectors. However, as we shall see later, it is likely that this task primarily
emphasised the first two strategies and their corresponding modes of thinking. In
contrast, Task 9 was open-ended and did not obviously gear students towards any
particular modes of thinking in the same manner. Thus, in the context of Task 9
it was important to acknowledge that describing eigenvectors as fulfilling the ei-
genequation could align with both the analytic-structural and analytic-arithmetic
modes of thinking. However, to accurately capture the nuances in students’ argu-
ments in Task 10, it was necessary to classify arguments employing the eigenequa-
tion as belonging to the analytic-structural mode. This distinction allowed us to
capture the difference between verifying the eigenequation and constructing the
eigenvectors by applying the procedure for computing them. While we acknow-
ledge that these reflections might be more suitably discussed later, we felt it was
important to clarify any potential confusion at this early stage. However, we will
come back to this matter in Chapter 6.

Multiple Modes of Thinking
During the analysis of students’ responses to Task 10, instances were observed
where combinations of our pre-defined solution strategies were employed, indic-
ating the utilisation of multiple modes of thinking. To account for these obser-
vations, similar to the approach used in the second level of coding in Task 9,
the following codes were introduced: structural-arithmetic, structural-geometric,
arithmetic-geometric, and structural-arithmetic-geometric.

• The code structural-arithmetic was assigned to responses that utilised the
arithmetic procedure to compute eigenvalues (by solving the equation
det(A−λI) = 0) and verified that the eigenequation was fulfilled for one of
the computed eigenvalues, the given vector x⃗ , and the matrix A.
• The code structural-geometric was given to responses that verified the ful-

filment of the eigenequation for the given vector x⃗ , the matrix A, and some
scalar λ, and incorporated arguments referring to geometric properties of
eigenvectors.
• The code arithmetic-geometric was applied to answers employing the arith-

metic procedure for computing eigenvalues and/or eigenvectors, while also
referring to their geometric properties.
• Finally, the code structural-arithmetic-geometric was utilised for responses
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that combined the eigenequation, the computational procedure and the geo-
metric properties of eigenvectors and eigenvalues.

Similar to Task 9, the pure and combined modes in Task 10 are represented
using a Venn diagram, employing the same color system for consistency and visual
clarity (see Figure 4.5).

A− S S − G

A− A

S.A A.G

S.G

S.A.G

NA/M

Abbreviation Explanation
A− S Analytic-

structural
A− A Analytic-

arithmetic
S − G Synthetic-

geometric
S.A Structural-

arithmetic
A.G Structural-

geometric
A.G Arithmetic-

geometric
S.A.G Structural-

arithmetic-
geometric

NA/M Not answered/
Miscellaneous

Figure 4.5: Overview of the modes of thinking identified in Task 10, illustrating
both Sierpinska’s (2000) three modes, and their combinations.

4.2.4.3 The Objects and their Relations: An Aspect of the Concept Image

During the analysis, various aspects of the concept image were encountered that
were not captured by the modes of thinking. To address one of these aspects
(which was recurrent in the data material), an inductive approach was adopted,
and the notion of "the objects and their relations" was developed. In the following,
a comprehensive outline of this aspect of the concept image is provided.

The definition of eigenvectors encompasses at least three essential mathemat-
ical objects2, namely the eigenvector, eigenvalue and matrix or linear transform-
ation, depending on the definition employed. Recall that the definition in the stu-
dents’ curriculum (refer to Definition 4.2.1), defines eigenvectors and eigenvalues
in relation to both the linear transformation and the eigenvalue.

2By mathematical object, we mean an abstract entity or concept that is defined within mathem-
atics. Examples of such mathematical objects are numbers, functions, vector spaces etc.
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These mathematical objects are all interconnected:

• First, the matrix and the linear transformation share a close relationship. A
matrix is a collection of elements (numbers, vectors, functions or any other
mathematical objects that satisfy the properties of matrix operations), and
can be represented as a rectangular array. In the context of eigentheory, the
linear transformation is a mathematical operation fulfilling specific proper-
ties and mapping elements from one vector space to the same vector space.
Multiplying an element with the matrix yields the same result as applying
the linear transformation, making the matrix and the linear transformation
related yet distinct mathematical objects.
• Second, an eigenvalue is a scalar value associated with a square matrix (or

a linear transformation) which represents a specific property of said matrix
or linear transformation.
• Finally, an eigenvector is a non-zero vector corresponding to an eigenvalue

(and consequently also to the matrix/linear transformation).

Thus, the matrix (or linear transformation) defines an operation or a trans-
formation, while the eigenvalues and eigenvectors serve as properties of the mat-
rix (or linear transformation), describing specific characteristics of the linear trans-
formation. These objects and their relationships are illustrated in Figure 4.6.

Matrix /
Linear

transformation

Eigenvalue Eigenvector

Figure 4.6: Illustration of the relations that exist between the matrix or linear
transformation, eigenvalue and eigenvector.

In the upcoming chapter on results and analysis, we explore examples of stu-
dents’ responses where objects were omitted. Additionally, we examine instances
where the roles of these objects appear to be mixed up. By examining these ex-
amples, we aim to gain deeper insights into the challenges students face when
dealing with these objects and the relations that exist between them.

4.2.4.4 Analysis of Interviews

Our analysis of the interviews began by listening through the complete recordings.
Next, we transcribed the relevant portions pertaining to Tasks 9 and 10 using
the built-in transcription feature in Word Web App, from Microsoft. Following
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this, we compared the recordings and corrected inaccuracies. The data obtained
from these interviews provided valuable support for our analysis of the students’
written answers, enabling us to uncover nuances in their modes of thinking and
identify additional elements of their concept images. It is important to emphasise
that although the interviews were conducted in Norwegian, the mother tongue of
both the participants and interviewer, the excerpts included in the analysis have
been translated to English (our translation).

4.3 Ethical Considerations

In this subchapter, we reflect upon what ethics in research entails, expand upon
our ethical considerations and outline the accompanying measures implemented
in this study to address them. Following this, we delve into the significance of
trustworthiness and authenticity as alternative criteria for assessing the quality of
qualitative research, distinguishing them from the commonly associated criterions
of reliability and validity in quantitative research. Additionally, we elucidate spe-
cific measures undertaken to foster trustworthiness and authenticity in the context
of our study.

4.3.1 Ethics

As explained by Denzin and Lincoln (2000), ethics in research encompasses a care-
ful and comprehensive consideration of the research objectives, the treatment of
participants, as well as the handling and presentation of data. According to The
National Committee for Research Ethics in the Social Sciences and Humanities,
also known as NESH, all researchers are responsible for upholding current ethical
standards in their studies (NESH, 2021, p. 8). These ethical norms encompass
various aspects, such as ensuring that the methods are transparent and verifiable
and presenting findings in a fair and truthful manner, and that the participants
otherwise are treated fairly and respectfully.

NSD
In compliance with NTNU’s ethical guidelines, this study has been duly repor-
ted to NSD (the Norwegian Centre for Research Data), the authority responsible
for managing research data involving people and society. Prior to commencing
recruitment and data collection, the study underwent an evaluation by NSD to
ensure its adherence to their ethical principles. These include obtaining informed
consent, maintaining confidentiality and our duty of secrecy, and in any prevent-
ing harm to participants. In the following, we outline the specific measures im-
plemented to promote compliance with the current guidelines as evaluated and
approved by NSD.
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Informed Consent
To attend to the principle of informed consent, all students received comprehens-
ive information about the study in both written and oral form. This information
included details about the purpose and scope of the study, their anonymity and
their rights regarding access, correction or deletion of personal data. Students
who were willing to participate were asked to fill out a consent form, thereby sig-
nifying their consent to take part in our study.

Confidentiality
Confidentiality in research entails that information about the participants is ac-
cessible only to authorised individuals. The purpose of confidentiality is to prevent
misuse of personal data (Fossheim & Ingierd, 2013). In line with our notification
form for NSD, we have implemented measures to ensure confidentiality through-
out the study. To safeguard data, we have employed password-protected cloud
storage enforced with two factor authentication and approved third-party data
processors. Access to sensitive material, such as students’ complete homework,
the names and contact information of participants, and interview recordings and
transcripts, has been limited to the author of this thesis and the responsible su-
pervisor.

Participants have been duly informed, both orally and in writing, about their
rights to access, correct or delete any personal data about themselves. Addition-
ally, they have been informed that anonymised information, such as excerpts from
their homework and interview transcripts, may be used in this master study and
upcoming papers. In compliance with the notification form submitted to NSD, we
are committed to delete any personal data, that is, details which may identify in-
dividuals, by the conclusion of the PhD project (expected autumn 2026).

Duty of Secrecy
Another important aspect of ethics in research which is closely related to confid-
entiality, is the duty of secrecy. As outlined by Fossheim and Ingierd (2013), the
duty of secrecy imposes a responsibility upon the researcher(s) to preserve secrecy
regarding certain information provided by participants. Aligning with the noti-
fication form submitted to NSD, we have implemented measures to uphold this
duty.

During the interviews with students, we came across information extending
beyond the scope of our research questions, such as students’ opinions regarding
organisational matters related to the course. Regardless of the nature of these
opinions, we have honoured our duty of secrecy by reporting solely on information
relevant to our objectives.

In the presentation of our findings, we have taken diligent steps to promote the
anonymity of our participants. This includes restraining from divulging informa-
tion we deem to potentially being personally identifiable, such as names, gender
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or study programs of individual participants. Thus, the names used in the analysis
are gender-neutral aliases and not the real names of the participants.

Harm to Participants
The duty of secrecy further involves the researcher’s responsibility to avoid harm
to participants (Fossheim & Ingierd, 2013). To fulfil this obligation, our duty has
been meticulously coordinated with course lecturers, ensuring that our tasks in-
deed align with the curriculum and do not disrupt organisation matters within the
course. Furthermore, measures have been taken to ensure that the participants of
our study do not gain unfair benefits over those who chose not to participate.
For example, it is important to note that all students were required to complete
the homework, regardless of their participation in our study. Therefore, those who
agreed to have their homework collected for the purposes of our study did not gain
any unfair advantage (or disadvantage). While the interviews may be viewed as a
potential learning situation, we argue that similar opportunities were available to
students through activities, such as Mattelab. Moreover, it is our perspective that
any small edible gifts offered to students after participating in the interviews are
insignificant within the broader context of this study.

Data Minimisation
In research ethics, the principle of data minimisation plays an important aspect of
ethical research practices. As stated by the European Commission (2021, p. 11),
this principle emphasises that all data collected has to be relevant and limited
to what is strictly necessary to answer the research questions. To accommodate
this, a careful analysis was conducted prior to data collection to determine which
data was necessary to meet the aims of our study. The decision to collect writ-
ten homework and supplement with interviews is outlined in the methodology
section.

4.3.2 Trustworthiness

According to Lincoln and Guba (1985), trustworthiness in research concerns how
the researcher can demonstrate that the findings of the study are worthy of the
attention of the audience. To assess the trustworthiness of qualitative research,
Lincoln (1995) poses four criteria: credibility, transferability, dependability and
confirmability. In the following, we shall delve deeper into what these criteria
entail and the steps taken to support their fulfilment in our research.

4.3.2.1 Credibility

Credibility, which aligns with internal validity in quantitative research, concerns
the internal consistency of the research. That is, how we can ensure and convince
others that our research is conducted with rigour (Gasson, 2004, p. 95). An im-
portant approach we have adopted is triangulation in data, wherein we have col-
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lected both written homework and conducted interviews with students, thereby
enforcing credibility of our research (Mok & Clarke, 2015; Lincoln & Guba, 1985).

4.3.2.2 Transferability

Transferability parallels external validity in quantitative research and concerns the
extent to which the findings of the study can be applied in other contexts (Morrow,
2005, p. 252). In the context of qualitative research, Geertz (1973) argues that
transferability can be supported by a so-called “thick description”, that is, rich and
detailed information about the context of the study and how it was conducted.
To enhance transferability of our research, we have provided a comprehensive
account of the setting and participants of our study in Section 4.2.1. This includes
detailed information on how the course was organised, students’ prior knowledge
and learning materials. In providing this information, we aim to facilitate a better
understanding of the context, enabling readers to assess the applicability of our
findings in their own settings.

4.3.2.3 Dependability

Dependability corresponds to reliability in quantitative research, and concerns the
consistency of methods, data analysis and findings, across different times, re-
searchers and techniques of analysis (Gasson, 2004). While our study adopts an
interpretative perspective, acknowledging that our findings are inherently shaped
by our values, expectations and interpretations of the data, we argue that depend-
ability remains an important aspect.

However, according to Robson and McCartan (2016, p. 470), thematic ana-
lysis has often been subject to criticism for lacking transparency in terms of how
the analysis was conducted. To meet these concerns and contribute to an audit
trail, we developed a detailed coding handbook with descriptions and illustrative
examples of thor use. This documentation serves to promote transparency and in
our analysis and enhance transferability (Gasson, 2004).

4.3.2.4 Confirmability

Confirmability, as proposed by Lincoln and Guba (1985), serves as an alternat-
ive criterion to objectivity in quantitative research. According to Gasson (2004, p.
93), confirmability in research entails that the findings should accurately repres-
ent the situation under research, rather than the researcher’s beliefs and biases.
By framing our research within an interpretivist paradigm, we acknowledge the
inherent influence of our presumptions and values upon our findings. However,
Morrow (2005, p. 252) claims that the integrity of the study can be maintained by
connecting the data, the analysis and the findings, while being transparent about
what is descriptions and what is interpretations.
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Morrow (2005) further explains that confirmability can be supported through
many of the same measures as dependability. To support a fair and accurate ana-
lysis of the data, in the initial level of coding, we utilised data-driven codes that
closely align with students’ own words and phrases. To foster intra-rater reliab-
ility, which refers to consistent measurements or coding by the same observer, a
coding handbook was developed and continuously refined throughout the coding
process (Bryman, 2016, p. 294). The second level of coding involves interpret-
ing the data in relation to the modes of thinking or their combinations. In our
upcoming analysis, we present multiple examples of students’ written work and
quotes from the interviews, accompanied by our arguments for their correspond-
ing modes of thinking. Based on our interpretation of Morrow (2005), we argue
that these steps can promote transparency of the analysis, clarifying the distinc-
tion between descriptions of data and interpretations of findings. Consequently,
both dependability and confirmability may be supported.

4.3.3 Authenticity

Authenticity in research, as described by James (2008) pertains to the genuine
and credible conduct and evaluation of the study. In the context of our study,
we contend that the homework setting is authentic as students would need to
complete their homework assignment regardless of our study. Consequently, it is
our expectation that students will be equally motivated and committed to engage
with the tasks as they would with their “regular” homework.

To assess the authenticity of the tasks, we turn to Vos (2011; 2020), who sug-
gests that tasks can be deemed authentic if they resemble questions actors within
the given context would pose. More specifically, our tasks may be considered au-
thentic if they resemble the typical tasks of students’ regular coursework.

Task 9 was designed to present students with a conceptually challenging task,
differing from the standard calculations or re-inventions of theorems one might
associate with “traditional” homework assignments. Thus, it was expected that
this task might be perceived as less authentic and that the students’ answers could
offer valuable insights into their concept images of eigenvectors and eigenvalues.
For a more typical and authentic task, we included Task 10. By incorporating both
these tasks, we sought to enhance the overall authenticity and relevance of our
study, aligning with our research questions.

In contrast, we recognise that the interview setting may lack the same degree
of authenticity as the homework setting, since one-to-one interviews typically do
not occur in the students’ daily learning activities. Nevertheless, the oral commu-
nication of mathematics is an important part of students’ university education in
mathematical subjects, for example in the communication with fellow students or
teaching assistants. In these respects, an oral conversation on the course contents
can be considered an authentic challenge for the students. Furthermore, the in-
terviews offer an opportunity to explore students’ experiences with the tasks, thus
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checking whether they were in fact perceived as “different” and/or challenging.

However, the interview setting may bear some resemblance to oral examina-
tions, which our students may have experienced. While oral examinations are au-
thentic situations, this can be problematic, as the resemblance can cause students
to feel more stressed and concerned about giving incorrect answers. To create a
more relaxed atmosphere, we commenced the interviews by restating the purpose
of the interviews and reassuring students that the interview would not affect their
grade in the course in any way.

4.3.3.1 Relevance

James (2008) further explains that authenticity in research encompasses the rel-
evance and value of the research to the members of the community being re-
searched. In line with this perspective, we propose that research in the didactics
of mathematics should contribute to the advancement of mathematics education
by supporting teaching and learning processes.

As the primary objective of the master study is to gain deeper insights into stu-
dents’ comprehension of eigenvectors and eigenvalues, we contend that our re-
search aligns with what Lester (2010) characterises as use-inspired basic research.
By exploring students’ understanding of these concepts, we aim to generate know-
ledge that can contribute to practical implications for the teaching and learning
of linear algebra in tertiary education. Furthermore, we hope that our analysis
can further develop the modes of thinking described by Sierpinska (2000) as an
analytical framework for understanding students’ reasoning in linear algebra.

Additionally, we anticipate that the knowledge gained from this master study
will function as a valuable foundation for our future research, such as the PhD
project, which aims to improve students’ understanding of linear algebra through
task-design and possibly also teaching sequences.
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Chapter 5

Results and Analysis

In this chapter, we analyse students’ written responses to Tasks 9 and 10, aiming
to characterise their concept images and modes of thinking, as conceptualised by
Tall and Vinner (1981) and Sierpinska (2000). As we shall see, the analysis re-
veals a range of concept images. Several students presented rich concept images
encompassing multiple modes of thinking, while others gave more general de-
scriptions, suggesting concept images at the early stages of their development.

Structure
We begin with an examination of students’ answers to Task 9, then followed by
their responses to Task 10. The analysis of each task comprises two main parts.
In the first part, we present examples to illustrate how students’ answers align
with Sierpinska’s modes of thinking. The modes, namely the analytic-structural,
analytic-arithmetic and synthetic-geometric, are represented respectively as red,
blue and yellow in Figure 4.4. Through these examples, we aim to build a robust
understanding of these modes in the context of eigentheory. It is important to note
that while the upcoming examples are selected to illustrate characteristics of these
three “pure” modes of thinking, they may also contain elements that correspond
to other modes or that fall between Sierpinska’s modes. However, this is the focus
of the next part of the analysis.

In the second part, our attention shifts to conceptualising the combined modes
of thinking, which we have named the structural-arithmetic, structural-geometric,
arithmetic-geometric and the structural-arithmetic-geometric modes. These modes
pertain, respectively, to the purple, orange, green and white (in the middle) areas
of the Venn diagram. Figure 4.4, introduced in the previous chapter, is repeated
here in Figure 5.1 to illustrate this. To conceptualise the combined modes, we will
revisit some examples presented in the first part of our analysis, and introduce
new examples incorporating elements from multiple modes of thinking. As we
shall see, the majority of the students’ answers encompassed multiple modes of
thinking, while only a minority strictly adhered to a single mode.
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Figure 5.1: Overview with the modes of thinking identified in Task 9, illustrating
both Sierpinska’s (2000) three modes, and their combinations.

To address the inherent limitations of relying solely on students’ written an-
swers, as discussed in the previous chapter, we supplement our analysis with ex-
cerpts from the interviews whenever available. It is our perspective that these ex-
cerpts can aid in establishing a more comprehensive and nuanced understanding
of students’ concept images and their modes of thinking.

We conclude this chapter with an examination of the parts of students’ concept
images that were not captured by their modes of thinking. This includes a dis-
cussion of the role of the matrix, linear transformation, the eigenvector and the
eigenvalue, as well as the relations that exist between these objects. Furthermore,
we delve into the topic of the number of eigenvectors associated with an eigen-
value or a matrix. Finally, we consider students’ experiences in working with our
tasks.

5.1 Task 9

Our analysis commences with Task 9, where students were asked to provide their
own explanations of the concepts of eigenvectors and eigenvalues. Recall that
this task was intentionally designed with an open phrasing to allow students the
freedom to express their ideas, and thus, allowing us to capture the nuances of
their concept images and modes of thinking. By encouraging students to provide
a sketch, we hoped to tap into the students’ visual interpretations of eigenvectors
and eigenvalues.
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In Sections 5.1.1-5.1.4, we will examine examples of students’ answers in-
corporating elements that correspond to Sierpinska’s (2000) modes of thinking,
namely analytic-structural, analytic-arithmetic, and synthetic-geometric modes. It
is important to acknowledge that we are unable to provide examples for all first
level codes associated with these modes. Nevertheless, we contend that the chosen
examples included here allow us to characterise modes of thinking evident in our
students’ responses. In Section 5.1.5, we explore our additional modes of think-
ing, namely the structural-arithmetic, structural-geometric, arithmetic-geometric
and structural-arithmetic-geometric modes. We conclude our analysis of students’
reasoning in Task 9 with a summary and overview in Section 5.1.6.

5.1.1 Analytic-Structural Mode of Thinking

In line with our characterisation in Section 4.2.4.1, an analytic-structural descrip-
tion of eigenvectors highlights their defining properties, such as their correspond-
ence to a matrix or linear transformation and their ability to preserve their span. In
this section, we showcase examples of students’ answers incorporating elements
of this particular mode of thinking.

5.1.1.1 The Notion of Span

Recall that the property of preserving the original span after undergoing a linear
transformation was considered to be a characteristic property of the eigenvectors
of a matrix or linear transformation. An example of an answer making use of the
notion of span to explain the concept of eigenvector was provided by a student
we shall call Student A. The answer is depicted in Figure 5.2.

Figure 5.2: Student A’s written answer to Task 9a), describing eigenvectors in
relation to the notion of span.

This student, henceforth called Student A, stated that: “When you do a linear
transformation, most vectors will be ‘pushed out’ of their own span, but some
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special vectors will still lie in their own span. These are called eigenvectors.”. Here,
Student A observed that a linear transformation could affect a vector by changing
their span. In characterising eigenvectors as “special vectors” which preserve their
span, the student exhibited an analytic-structural mode of thinking.

However, it is worth noting that the nullvector also preserves its original span
under a linear transformation. Yet, the definition of eigenvectors in the students’
curriculum (refer to Definition 4.2.1), does not allow the nullvector to be an ei-
genvector. However, this possibility was not excluded in Student A’s response to
Task 9 a), and consequently, the answer does not fully qualify as a definition of
an eigenvector. Rather, it describes a defining property inherent to eigenvectors.
Among the 170 homework assignments we collected, 15 students described ei-
genvectors in relation to the notion of span.

Later in this chapter, we shall delve deeper into the examination of such “lacks”
in students’ descriptions of eigenvectors and eigenvalues. We emphasise that the
term “lacks” is not used in a normative sense to imply any deficiency or inad-
equacy in students’ answers. As the students’ were not asked to provide formal
definitions, it would be inappropriate to evaluate their answers based on that
criterion. However, prior to this examination, we discuss students’ visual inter-
pretations of eigenvectors and eigenvalues that align with an analytic-structural
mode of thinking.

5.1.1.2 Analytic-Structural Sketches

Recall now that Tall and Vinner’s (1981) notion of concept image encompasses all
the cognitive structures an individual associates with a concept, including visual
interpretations. Furthermore, Sierpinska (2000) highlights a distinction between
the concept’s representation associated with synthetic-geometric and structural
modes of thinking. A representation related to a structural mode of thinking is
not reliant on a coordinate, but rather based on the inherent properties of the
concept represented. In this study, two students gave sketches illustrating the no-
tions of eigenvectors and eigenvalues, which were identified as examples of such
structural representations. One of these students, Student B, gave the sketch in
Figure 5.3.

Figure 5.3: The sketch by Student B illustrates two V s linked by an arrow labelled
T , symbolising a linear transformation. Below, the linear transformation T acts
upon a vector x⃗ , mapping it to λ( x⃗).
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The sketch shows two V s connected by an arrow labelled T , which we inter-
preted as symbolising a linear transformation within a vector space denoted V .
Below, the linear transformation T is depicted as operating on a vector x⃗ and
mapping it to λ( x⃗). We understand this sketch as depicting how a linear trans-
formation T acts upon a corresponding eigenvector x⃗ by scaling it with a factor
of , the eigenvalue. However, we would typically interpret the notation ( x⃗) as " x⃗
as a function of λ", rather than "the scalar product λ · x⃗". Nevertheless, Student
B’s intention can not be determined based on their written answer alone.

In subsequent sections of this chapter, we will discuss other sketches demon-
strating the concepts of eigenvectors and eigenvalues, namely those attributed
to a synthetic-geometric mode of thinking. However, before we delve into those
examples, we consider descriptions interpreted as having elements of an analytic-
arithmetic mode of thinking.

5.1.2 Analytic-Arithmetic Mode of Thinking

In the sense of Sierpinska (2000), the analytic-arithmetic mode of thinking was
characterised by describing mathematical objects based upon the procedures for
computing them. In the case of eigenvectors and eigenvalues, our interpretation
suggests that an analytic-arithmetic mode of thinking may include a description of
eigenvectors as the solution of the homogeneous equation, (A−λI) x⃗ = 0⃗, or eigen-
values as the roots of the characteristic polynomial, det(A−λI) = 0. Responses
that made use of these equations from the computational procedure were coded
as “9-procedure”.

5.1.3 Prodecure

In this study, a small number of nine students provided descriptions of eigen-
vectors and/or eigenvalues by referring to the procedures for computing them,
either by stating the equations or verbal rephrasing of them. For example, a stu-
dent, henceforth referred to as Student C, stated that: “An eigenvector corresponds
to x⃗ in (A− λI) x⃗ = x⃗ [sic], x⃗ ̸= 0⃗. The eigencvector is a self-willed vector which
can only be scaled by A.” (See Figure 5.4).

Figure 5.4: Student C’s answer to Task 9 a), describing an eigenvector as the
vector x in the equation(A−λI) x⃗ = x⃗ , x⃗ ̸= 0⃗, and as a "self-willed" vector.
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As student C characterised eigenvectors as fulfilling the (homogeneous) equa-
tion (A− λI) x⃗ = x⃗ , their answer was coded as “9-procedure” and interpreted as
corresponding to an analytic-arithmetic mode of thinking. Later, we shall see that
this answer not only encompasses elements of the analytic-arithmetic mode, but
also contains elements of a synthetic-geometric mode, thus making it an answer
corresponding to multiple modes of thinking.

In the latter part of the response, Student C noted that an eigenvector possesses
a quality of being “self-willed”. We interpret the description of an eigenvector as
“self-willed” as a result of Student C’s own reconstructed version of the concept
of eigenvector. It may serve as a mnemonic or heuristic for understanding the
nature of eigenvectors rather than a formal concept definition. We further argue
that such mnemonics may be an important step for students in the process of con-
structing and internalising the knowledge of eigenvectors, that is, in developing
their concept image.

Other students described the concept of eigenvalue according to the procedure
for computing them, namely by computing the determinant of the matrix (A−λI)
and the roots of the resulting polynomial. For instance, a student, which we shall
call Student D, stated that: “Eigenvalue or characteristic value is a solution of
the characteristic equation det(A−λI) = 0.” (See Figure 5.5). In describing an
eigenvalue as the solution of an equation, the answer was deemed as aligning
with an analytic-arithmetic mode of thinking.

Figure 5.5: Student D’s answer to Task 9 b), where an eigenvalue (or char-
acteristic value) is characterised as a solution of the characteristic equation,
det(A−λI) = 0.

Next, we shall consider answers aligning with an alternative mode of thinking,
namely the synthetic-geometric mode.

5.1.4 Synthetic-Geometric Mode of Thinking

While only a limited number of students gave explanations of eigenvectors and
eigenvalues aligning with an analytic-arithmetic mode of thinking, several offered
descriptions highlighting their geometric and/or visual properties. Recall that ac-
cording to our interpretation of Sierpinska’s (2000) modes of thinking, descrip-
tions of how eigenvectors are affected by the linear transformation (or matrix mul-
tiplication) in terms of stretching, shrinking etc. are consistent with a synthetic-
geometric mode of thinking.
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In this study, we came across a range of visual characterisations of eigenvectors
and eigenvalues. Among the collected homework assignments, 36 students de-
scribed eigenvectors as maintaining their direction, 36 described eigenvectors as
being scaled, and 33 explained how eigenvectors may be stretched, shrunk, flipped
or left unchanged. Furthermore, five students characterised the original vector x⃗
as parallel to the resulting vector (T ( x⃗) or Ax⃗), while four students stated that x⃗ is
not rotated under the linear transformation or matrix multiplication. Finally, one
student noted that the resulting vector would lie on the same line as the original.

Among the 170 homework assignments collected for this study, a total of 69
written answers included one or more of these descriptions of eigenvectors and
eigenvalues. In the following, we shall discuss examples of answers using geomet-
ric or visual descriptions of how a linear transformation (or matrix multiplication)
may affect a corresponding eigenvector. Subsequently, we revisit the topic of stu-
dents’ sketches, this time focusing on those aligning with a synthetic-geometric
mode of thinking.

5.1.4.1 Geometric or Visual Descriptions

Among the 33 students who explained ways in which a linear transformation or
matrix multiplication may affect the length of its eigenvectors, using expressions
like “stretching”, “shrinking”, “changing length” or “preserving length”. For ex-
ample, one of these students, which we shall call Student E, stated that “[The]
Eigenvalue is how much the vector is stretched.” (see Figure 5.6).

Figure 5.6: Student E’s answer to Task 9 b), characterising eigenvalues as de-
scribing how much an eigenvector is stretched.

In explaining that the eigenvalue represents how much the eigenvector is stretched,
Student E gave a visual description of a particular type of eigenvalues, namely real
eigenvalues with an absolute value greater than 1 |λ| ≤ 1,λ ∈ R). Because the de-
scription is visual and limited to only some eigenvalues, the answer was evaluated
to correspond to a synthetic-geometric mode of thinking. In fact, 13 out of these
33 students gave similar descriptions of eigenvalues being factors of stretching
or eigenvectors being stretched, thus excluding the possibilities of shrinking or
preserving the length. However, the definition presented to students (See Defini-
tion 4.2.1) does not imply such restrictions.

In this study, none of the 170 participating students gave a comprehensive
description of all the ways an eigenvector can be affected by the linear transform-
ation (or matrix multiplication). These effects encompass various possibilities, in-
cluding stretching, shrinking, rotating by 180 degrees, preserving its length or
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direction, as well as combinations of the aforementioned.

It is possible that the 13 students who described eigenvectors as being stretched
or attributing the stretching to eigenvalues, may stem from being exposed to
graphical representations highlighting this aspect of stretching. Such illustrations
might serve as prototypical examples of eigenvectors and eigenvalues, represent-
ing a common or typical way of visually interpreting these concepts. While these
examples may serve as useful starting points for making sense of complex math-
ematical ideas, they may not capture all their facets. As Dorier and Sierpinska
(2001, p. 264) noted, relying solely on prototypical examples might restrict stu-
dents’ understanding of the concepts. It is plausible that our students have not
encountered other examples or have yet to contemplate the definition (see 4.2.1)
sufficiently to grasp the opportunities beyond stretching. This observation led us
to believe that these 13 students may possess concept images at early stages of
their development, yet it should be noted that we do not imply this in a normative
sense.

However, it is important to recognise that absence of explicit mentions of these
possibilities does not necessarily imply that students lack awareness of them. For
instance, it is plausible that students possess an understanding that eigenvectors
may also be compressed or preserve their length, despite not having articulated it
in their written answers. In other words, students’ concept images may encompass
additional dimensions that are not reflected in their written answers.

5.1.4.2 Direction

In the previous example, we observed how students described how the length of
an eigenvector is influenced by the linear transformation or matrix multiplication.
Now, our attention shifts towards answers discussing addressing the impact on the
direction of eigenvectors. For instance, a student which we shall call Robin, gave
the following characterisation of eigenvectors “[A] vector which does not change
direction” (refer to Figure 5.7).

The claim that eigenvectors do not change direction, can be considered a visual
interpretation pertaining to the synthetic-geometric mode of thinking. The fact
that “not changing direction” is only true for some eigenvectors (not eigenvectors
in general) further supports this classification. Characterising eigenvectors in gen-
eral as preserving their direction is, in our opinion, somewhat inaccurate. In the
case of real eigenvectors, their direction may be reversed by the linear transform-
ation or matrix if the eigenvalue is negative. Furthermore, eigenvectors associated
with complex eigenvalues can undergo both scaling and rotation. Thus, their dir-
ection1 is not maintained in the same sense as for real eigenvectors. Consequently,
Robin’s written answer was deemed to represent a concept image restricted to real
eigenvectors, and possibly also positive eigenvalues.

1The notion of direction for complex vectors differs from that of real vectors. Thus, in the context
of eigentheory, we find it more appropriate to discuss their magnitude and phase.
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Figure 5.7: Robin’s answer to Tasks 9 a) and 9 b), characterising eigenvectors as
not changing direction and eigenvalues as scalars which determine the length of
the eigenvector.

Robin was selected for an interview in order to further explore their concept
images of eigenvectors and eigenvalues. When asked to explain the concept of ei-
genvectors in the interview, the student gave a verbal rephrasing of the eigenequa-
tion, identifying the role of the eigenvector and eigenvalue in the equation:

Interviewer: May I ask you to explain what an eigenvector and an
eigenvalue is?

Robin: [long pause] Yes, that, if you have a. . . uhm. A matrix, then
you can. . . And you multiply it with the eigenvalue, then you will
have the same as if you multiply the eigenvector. . . an eigenvector
with the eigenvalue. Is actually the only thing I know about that. . .
Uh. . . So, basically, an eigenvalue is a value which you can multiply
by the matrix and a vector and obtain the same result.

Thus, it appeared the written task evoked a part of the student’s concept im-
age associated with a synthetic-geometric mode of thinking, while the interview
evoked another part of their concept image. Later, we shall see how answers de-
scribing the eigenequation can be associated with both analytic-structural and
analytic-arithmetic modes of thinking. However, to see if the student could link
the written and oral response, the student was reminded of their written descrip-
tion:

Interviewer: It seems to me that you know another thing, because you
wrote that. . . uhm. In [Task 9] a) you wrote: “A vector which does not
change direction”?

Robin: Oh. . . Yes. . . Uhm. . . [long pause]. I don’t really know what
I meant by that. If I. . . Maybe I meant, if I. . . That I multiplied by a
number and then. . . No. . . Now I’m not quite sure what that means.
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The purpose of reminding the student of their written response was to as-
sist them in establishing a connection between the two descriptions. However,
instead of achieving the desired clarity, the student appeared confused and uncer-
tain about the accuracy of their written response. Nevertheless, when prompted
to recall their written explanation of eigenvalues affecting the length of the eigen-
vector, the student appeared to align their oral and written answer:

Interviewer: In [Task 9] b) you wrote: “The scalar which determines
the length of the eigenvector”.

Robin: That makes a bit more sense. Maybe if you take a vector and
you multiply it by a number, it would change length.

Based on the excerpt above, it appears that the student is capable of visually inter-
preting scalar multiplication as a means of altering the length of a vector (in this
case, an eigenvector). Considering both the students’ written and oral answers,
we perceive them as indicating an evolving concept image at the beginning of its
development. Later in this chapter, we shall revisit this example to examine other
aspects of their concept image, not captured by the modes of thinking.

5.1.4.3 Synthetic-Geometric Sketches

Despite explicit encouragement for students to provide sketches illustrating the
concepts of eigenvectors and eigenvalues, the number of participants who did so
amounted to a mere 29, that is, less than 20% of the total 170. In Section 5.1.1,
we discussed how two of these sketches aligned with an analytic-structural mode
of thinking. Moving forward, our focus shifts to examining sketches exemplify-
ing a synthetic-geometric mode of thinking. These sketches are characterised by
depicting particular examples of eigenvectors in a coordinate system, either as
arrows or dots.

A noteworthy example of these sketches, provided by Student F, shows a two-
dimensional coordinate system with dots labelled u⃗ and Au⃗ connected by a curved
arrow, as well as v⃗ and the equation Av⃗ = k̇⃗v linked by another arrow. It is further
noted that k is a real scalar and that A is an n × n matrix (see Figure 5.8). This
sketch bears resemblance to the figures presented in the course’s lecture notes
(The reader is referred to NTNU, (2021)). Upon closer examination of the sketch,
it seems that the dot labelled v has coordinates (1,−1), while the dot labelled
Av⃗ = k̇⃗v is located at the coordinate (3,4). Consequently, while the equation Av⃗ =
k̇⃗v implies that v is scaled by a real factor k when multiplied with A, the figure
suggests that Av⃗ is subjected to both rotation and stretching. Hence, the scaling
in the equation Av⃗ = k̇⃗v appears contradicted in the sketch.
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Figure 5.8: Student F’s sketch shows a coordinate system and dots labelled u⃗
and Au⃗ connected by a curved arrow, and another arrow connecting v and the
equation Av⃗ = k̇⃗v.

Accompanying this sketch, Student F gave a written description of eigenvectors
as “a vector that together with a matrix only gives the same vector multiplied
by a factor” and eigenvalue as “the factor in front of the eigenvector” (refer to
Figure 5.9). Considering this written explanation alongside the sketch and the
discrepancy therein, we wonder whether this student fully understands the visual
interpretation of eigenvectors and scalar multiplication in general. Our impression
is rather that Student F perceives eigenvectors as fulfilling the eigenequation, Av⃗ =
k̇⃗v, for a matrix A, a vector v⃗ and a scalar k. In the following, we shall discuss such
answers in greater detail.

Figure 5.9: Student F’s written answers to Tasks 9 a) and b), giving a verbal
description of the eigenequation.

5.1.5 Multiple Modes of Thinking

As previously stated in this chapter, several students demonstrated engagement
with multiple modes of thinking in their written answers to Task 9. Out of the
total 170 participants in our study, 98 students exhibited elements of two modes
of thinking, while 54 students incorporated aspects of all three modes described by
Sierpinska (2000). In the upcoming sections, we discuss examples of such answers
corresponding to the structural-arithmetic, structural-geometric and arithmetic-
geometric modes of thinking. Furthermore, we present examples where students
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integrated all three modes, which we have categorised as the structural-arithmetic-
geometric mode of thinking.

5.1.5.1 Structural-Arithmetic Mode of Thinking

In this study, we identified an overwhelming majority of 123 answers employing
the symbolic eigenequation of the linear transformation (T ( x⃗) = λ( x⃗) or matrix
(Ax⃗ = λ x⃗)), or a verbal rephrasing of it. For instance, a student, referred to as
Student G, gave the following explanation of eigenvectors and eigenvalues: “If
one has a matrix A and a vector x⃗ , the product will give a number λmultiplied by
x⃗ . Then will be an eigenvalue and x⃗ an eigenvector: Ax⃗ = x⃗ .” (see Figure 5.10).

Figure 5.10: Student G’s written response to Task 9 a) and b), describing the
eigenequation. The answer has been reproduced for increased legibility.

In characterising eigenvectors as fulfilling the eigenequation, the answer demon-
strates elements of an analytic-structural mode of thinking. However, the answer
essentially describes an equation (which in turn can be manipulated to compute
eigenvectors and eigenvalues) and matrix multiplication, thereby exhibiting ele-
ments of an analytic-arithmetic mode of thinking. Consequently, Student G’s an-
swers can be seen as falling between the realms of both the analytic-structural
and analytic-arithmetic mode, leading us to categorise it as a manifestation of
structural-arithmetic thinking.

Nevertheless, we note that the answer is brief and provides little other inform-
ation regarding the Student G’s concept images of eigenvectors and eigenvalues.
There is no explicit mention of the correspondence between the eigenvector and
eigenvalue or other key concepts closely related to eigentheory such as linear
transformation or span. Moreover, there is no sketch or description of geometric
and/or visual properties included either. Thus, the answer illustrates the limit-
ations of relying solely on students’ written answers to gain insigths into their
concept images. Later in this chapter, we shall revisit this example to further dis-
cuss the importance of understanding the relations that exist between the eigen-
vector, eigenvalue and matrix (or linear transformation).
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Another student, Iben, who described eigenvectors and eigenvalues by reph-
rasing the eigenequation wrote the following: “An eigenvector is a vector that you
can multiply with an eigenvalue (number) such that it becomes the same as mul-
tiplying a square matrix with this vector.” (see Figure 5.11).

Figure 5.11: Iben’s answers to Task 9 a) and b), giving a verbal rephrasing of the
eigenequation. The answer has been reproduced to enhance readability.

In the interview, when the student was asked to explain the concepts of eigen-
vectors and eigenvalues, they admitted that they found such tasks to be somewhat
challenging:

Iben: I find explanatory tasks to be somewhat difficult. I do not know
if people notice, but I tend to respond with somewhat vague answers
to them. [Short pause] But at least I wrote that an eigenvector is a
vector that can be multiplied by an eigenvalue, so it is equivalent to
multiplying a square matrix by this vector. And, that is what it is. . .

They proceed to write the eigenequation , Ax⃗ = λ x⃗ , with the provided pen and
paper, and added:

Iben: But uh. . . I get it, and I can apply it, but maybe I struggle to
understand what it is on a deeper level than that? Uhm. . . Yeah.
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Hence, although Iben is correct that fulfilling the eigenequation is a necessary
condition for being an eigenvector (we note that it is not sufficient in itself), they
are of the opinion that their answer is a bit vague. This reflection, combined with
their remark of understanding on a ‘deeper level’, suggests to us that perhaps
Iben is unfamiliar with such tasks, and unsure what kind of answer is expected
from them. Later, we shall revisit the aspect of students’ experiences with the
tasks. First, we explore another combined mode of thinking, namely the structural-
geometric mode.

5.1.5.2 Structural-Geometric Mode of Thinking

In our study, we observed several answers exhibiting characteristics aligning with
both analytic-structural and synthetic-geometric modes of thinking. Specifically,
these answers described eigenvectors by their defining properties and visual in-
terpretations.

One of these students, Student H, articulated their understanding of the no-
tion of eigenvector as follows: “A vector that remains in the same span when it is
transformed, and that the only effect the linear transformation has on the vector
is to shorten/lengthen it.”. They further noted that the eigenvector is the factor
by which the eigenvalue is shortened/lengthened and gave two sketches (see Fig-
ure 5.12).

Figure 5.12: Student H’s answer to Task 9 a) and b), including sketches. The text
is reproduced for legibility.

According to our analysis, this answer exhibited a combination of both analytic-
structural and synthetic-geometric modes of thinking. By relating eigenvectors
to the notions of span and (linear) transformation, Student H demonstrated an
analytic-structural mode of thinking. Additionally, by describing the effect of the
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transformation, specifically as shortening or lengthening the eigenvectors, the an-
swer also incorporated a synthetic-geometric mode of thinking.

Furthermore, Student H supplemented their written response with a sketch
depicting a two-dimensional coordinate system with axes labelled x and y . The
sketch included three vectors: Orange, red and blue. Adjacent to it, another sketch
displayed a grid that appeared rotated and skewed compared to the first. Between

the two sketches, Student H included the matrix A=
ï
3 1
0 2

ò
, possibly to illustrate

the impact of the matrix on the vector space. In the latter sketch, the orange and
blue vectors were labelled as eigenvectors and appear to be stretched with respect
to the initial coordinate system. However, the red vector appears both stretched
and rotated, and is labelled “not eigenvector”. Consequently, we infer that Stu-
dent H’s concept image encompasses visual examples as well as non-examples of
eigenvectors.

The two sketches presented by Student H bear notable resemblance to one of
the supplementary course materials accessible through the course website, namely
a video by 3blue1brown (2016) called Eigenvectors and eigenvalues | Chapter 14,
Essence of linear algebra. This video introduces the concepts of eigenvectors and
eigenvalues, highlighting their geometric properties and the dynamics associated
with linear transformations, matrices, eigenvectors and eigenvalues. Hence, the
Student H’s inclusion of these sketches suggest their engagement with these ex-
ternal materials.

In total, 23 students gave such answers that were interpreted as representing
a structural-geometric mode of thinking.

5.1.5.3 Arithmetic-Geometric Mode of Thinking

A less common combination within our dataset were answers incorporating both
analytic-arithmetic and synthetic-geometric modes of thinking in their written an-
swers. Notably, this particular combination was only identified in answers provided
by two students. To better understand this combination, we revisit the example of
Student C’s answer which was discussed in Section 5.1.3, as illustrated again in
Figure 5.4.

Figure 5.13: Student C’s answer to Task 9 a), describing an eigenvector as the
vector x in the equation(A−λI) x⃗ = x⃗ , x⃗ ̸= 0⃗, and as a "self-willed" vector.
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First, recall that the answer was previously identified as exemplifying an
analytic-arithmetic mode of thinking. This classification was based upon the char-
acterisation of the eigenvector as the vector x⃗ in the homogeneous equation
(A− λI) x⃗ = 0⃗, which may be solved to compute the eigenvector. On the other
hand, the student also demonstrated a synthetic-geometric mode of thinking by
stating that an eigenvector is a vector which may only be scaled by A (the matrix).
Thus, the answer exemplifies both these modes of thinking.

Next, we discuss answers incorporating all three modes of thinking.

5.1.5.4 Structural-Arithmetic-Geometric Mode of Thinking

As many as 54 of our 170 students (amounting to more than 30% of participants)
gave answers with elements corresponding to all three modes of thinking de-
scribed by Sierpinska (2000). A particularly interesting example, provided by Stu-
dent I, is illustrated in Figure 5.14.

Student I gave a sketch of a coordinate system with axes x1 and x2, the vectors
x⃗ and Ax⃗ , and the angle θ between them. Adjacent to the sketch, the student
provided additional information, noting that A is an n × n matrix. Furthermore,
Student I included the equation T ( x⃗) = Ax⃗ describing the linear transformation
T from Rn to Rn. According to the student’s description, T scales the vector x⃗ and
rotates it by an angle θ .

Below the sketch, Student I wrote that “An eigenvector of a matrix (example:
A) is a vector which is only scaled, and not rotated. Cannot be nullvector.”. Our
interpretation is that Student I first explains and illustrates how a general linear
transformation may act upon any vector x⃗ , and in Task 9 a) the student specifies
that the vectors which are only scaled are eigenvectors, so long as they are not
the nullvector.

Upon a thorough examination of Student I’s extensive response, which spans a
full page, we identified several elements corresponding to all three of Sierpinska’s
(2000) modes of thinking. We list some of them here:

• By relating eigenvectors to the notion of linear transformation, the answer
can be characterised as incorporating an analytic-structural mode of think-
ing.
• By further stating that eigenvectors are scaled, not rotated, Student I provides

a visual description of typical examples of eigenvectors, aligning with a
synthetic-geometric mode of thinking.
• Furthermore, by stating the equation (A− λI) x⃗ = x⃗ , the answer could in-

dicate an analytic-arithmetic mode of thinking as well.

Consequently, our analysis suggests this student possesses a concept image en-
compassing multiple characteristics of eigenvectors, indicating a developed un-
derstanding of them.
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Figure 5.14: Student I’s written answer and accompanying sketch to Tasks 9 a)
and b), demonstrating all three modes of thinking.
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In the Student I’s response to Task 9 b), they explain the concept of eigenvalue,
stating that: “An eigenvalue deals with scaling the vector up to the correct value.
Eigenvalue is usually denoted λ.”. Additionally, Student I included a quote from a
YouTube-video: “The eigenvalue deals with rotating the eigenvector to the correct
direction of A” and asked for confirmation regarding its accuracy.

Upon careful consideration, we find this quote to be inaccurate, at best, and
possibly incorrect. From our perspective, it is evident that Student I possesses a
sufficiently developed concept image to question the statement. However, their
understanding may not be robust enough to definitively determine its inaccuracy.
Our interpretation suggests that Student I is currently in a process of connecting
various elements of their concept image and establishing links between the modes
of thinking.

5.1.6 Summary and Overview

So far, we have seen various examples of students’ written responses that align
with each of the three modes of thinking, as well as combinations thereof. Fig-
ure 5.15 presents an overview of the distribution of modes of thinking exhibited
by students.

Initially, our expectation was that most students would adhere to one mode of
thinking in their responses. However, it became evident that the majority of the
students incorporated more than one mode of thinking in their responses to Task
9. Among those presenting a singular mode of thinking, three were characterised
as analytic-structural (indicated by red area), while none exclusively adopted an
analytic-arithmetic mode (indicated by blue area). Additionally, six students ex-
clusively exhibited synthetic-geometric modes (indicated by yellow area).

Instead, combining two modes of thinking was much more prevalent, with
73 incorporating a structural-arithmetic mode (indicated by purple area) and 23
demonstrating a structural-geometric mode (orange area). As we have previously
discussed, the arithmetic-geometric mode was rare, with only two students exhib-
iting this particular combination. Interestingly, 54 students gave answers which
encompassed all three modes of thinking, and were thus characterised as em-
ploying a structural-arithmetic-geometric mode (indicated by white area in the
middle).

In Figure 5.15, the number 9 outside the Venn diagram represent the written
answers that could not be classified into either mode of thinking, either because
they left the task unanswered (4 students) or gave a description that did not align
with any of the modes (5 students). There are several possible reasons for un-
answered tasks. Unanswered tasks can be attributed to various factors, such as a
lack of understanding, limited time or simply overlooking the task. Whatever the
reason, unanswered tasks provide no information on students’ concept images.
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Figure 5.15: Overview of the distribution of modes of thinking exhibited in the
students’ answers to Task 9.

Uncategorised answers
Among the answers that did not align with the modes of thinking, one student,
which we shall refer to as Kim, described eigenvectors in relation to the notion of
diagonalisation (see Figure 5.16).

Figure 5.16: Kim’s written answer to Tasks 9 a) and b), explaining eigenvectors
and eigenvalues in relation to diagonalisation.

In Task 9 a), Kim explained: “If we have a matrix P which diagonalises the
matrix A, such that P−1AP = D, then the linearly independent columns of P will
be the eigenvectors.” In Task 9 b) they stated that: “If D is the diagonalised matrix
of A, then the values along the diagonal of D will be the eigenvalues of A.”
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In the interview, Kim first expressed some difficulty in explaining the concepts
orally:

Interviewer: How. . . What is your understanding of this now? If you
were to explain to me what an eigenvector and eigenvalue is?

Kim: Well, uhm, I think it is really easy... Or, you know... When we talk
about matrices, it is like... Uhm... Oh, it is a little difficult to explain
right now... I mean, I kind of know what it is.

After being encouraged to consider their written response, Kim appeared to re-
member their reasoning when working on the task:

Kim: Mm... Yes, right. So if we are talking about a matrix, then it is
that, uhm, the eigenvectors are, uh, the columns of the diagonalised
matrix.

Interviewer: Can you show me which is the diagonalised matrix? Just
to make sure I understand.

Kim: Uhm, yeah. It is that one [Points to the equation] matrix D in
the equation PDP−1. D is the diagonalised matrix.

Thus, Kim’s oral answer supported their written description of what an eigen-
vector is and which matrix represents the so-called “diagonalised matrix”. It is
our perspective that since this answer does not describe defining properties of
eigenvectors and eigenvalues, nor the formulas for computing them, nor their
geometric properties, the answer cannot be identified as clearly belonging to any
modes of thinking.

5.2 Task 10

In Task 9, we have seen aspects of students’ concept images as expressed in their
answers. This task was intended to explore and describe their concept image,
rather than testing an application of their knowledge. Moving on to Task 10 now,
we aim to observe how students make use of their concept image in a situation
where they have to solve a problem related to eigentheory. Our interest lies in
whether the modes of thinking that can be found here align with the distribution
we observed in our analysis of their answers to Task 9.

In Task 10, students were asked to determine whether a given vector

x⃗ =
[−1 2

]⊺
is or is not an eigenvector to the matrix A =

ï
1 1
−2 −2

ò
, and to

provide a justification. The purpose of this task was to examine which modes of
thinking, in the sense of Sierpinska (2000), students employed to argue for their
answer. In Section 4.2.3, we identified the following arguments corresponding to
Sierpinska’s (2000) modes of thinking:
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• An argument based on the vector fulfilling the eigenequation was charac-
terised as aligning with an analytic-structural mode of thinking.
• Performing computations to determine the eigenvectors and verify that the

given vector is among them was regarded as demonstrating an analytic-
arithmetic mode of thinking.
• An argument based on visual or geometric properties of eigenvectors, such

as the vector x⃗ lying on the same line as the vector Ax⃗ etc., or illustrating
this with a sketch was categorised as synthetic-geometric.

Additionally, combinations of the arguments above and other solution strategies
were also found. As we shall see next, an analytic-structural argument was the
most prevalent of those described above.

5.2.1 Analytic-Structural Mode of Thinking

Among the 170 students who took part in the study, a remarkable majority of 140
students exhibited an analytic-structural mode of thinking. This was evident in
their approach of checking examining whether the given vector x and the matrix
A fulfilled the eigenequation, Ax⃗ = λ x⃗ , where λ is the corresponding eigenvalue.
Specifically, the students computed the matrix product Ax⃗ and sought to identify a
scalar λ such that λ x⃗ would equal the vector Ax⃗ . If such a scalar could be determ-
ined, the vector x was deemed to be an eigenvector of A. It should be noted that
in our classification, we did not differentiate between correct or incorrect answers
due to computational errors.

An example of such an argument making use of the eigenequation was ob-
served in Robin’s answer which is depicted in Figure 5.17.

Figure 5.17: Robin’s written answer to Task 10, interpreted as aligning with an
analytic-structural mode of thinking.
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Here, Robin first computed the matrix product Ax⃗ to be
[
1 −2

]
. Afterwards,

Robin recognised that an eigenvalue of λ= −1 would yield the same vector when
multiplied by x⃗ . Based on this, Robin correctly concluded that x⃗ was in fact an
eigenvector of A with (corresponding) eigenvalue λ = −1. Because Robin based
their argument on the defining property of x⃗ fulfilling the eigenequation (Ax⃗ =
λ x⃗), the answer was characterised as corresponding to an analytic-structural mode
of thinking.

At the beginning of the interview, Robin had expressed that examples were an
important part of their learning process and that they enjoyed Task 10:

Robin: I think that. . . Like, Task 10. That one I felt was kind of, it is a
very kind of. . . task that I like, a kind of basic task which I really like.
Kind of just testing a bit basic. . . basic things.

However, when asked to explain their reasoning in Task 10, Robin struggled a bit
to remember or restate their argument:

Interviewer: I would like to ask you about Task 10 as well. Can you
explain to me how you solved this task? You said that you liked this
task.

Robin: I just [slight cough] tested and kind of that. . . uh. . . uh. . . I
think, I just multiplied them together, kind of, that one and that one,
and then. . .

Interviewer: The vector and the matrix?

Robin: I multiplied the vector and the matrix and then I saw that I,
well, and then I got, uh. . . uh, a new vector and then I saw that it was
possible to find a new number then, which I could multiply by uh. . .
the vector to obtain. . . No, I mean, I just saw that if I found a number
that, if I multiply it [the vector] by that number, I will get. . . uhm, the
vector. No, wait a minute. . . No, I saw that I found it, a number such
that if I multiply it by negative 1, then I will get the same result as
when I multiply the matrix by the vector.

Interviewer: Mm. . .

Robin: And. . . Well, yeah, it was, uhm, it was a formula that I had
written down that. . . uh. . . yeah, that the vector multiplied by the
eigenvalue is equal to the matrix multiplied by the vector.

In the final part of the excerpt, the student acknowledged that the formula, the
eigenequation, was just something they had written down. However, it remains
unclear whether the student fully appreciates this equation as a defining charac-
teristic of eigenvectors or merely views it as a useful “test” which can be applied.

Upon considering both the written and oral answers together, it becomes ap-
parent that they may reflect different modes of thinking. As we have argued, the

76



written argument is based on the defining property of satisfying the eigenequa-
tion, which aligns with an analytic-structural mode of thinking. In contrast, the
oral answer suggests that the student might be unaware of this property being de-
fining at all. Instead, it seems the student perceived Task 10 as a matter of "solving
an equation," which leans more towards an analytic-structural mode of thinking.

Nevertheless, the statement "It was a formula that I had written down" evokes
the concept of instrumental understanding, as discussed by Skemp (1978), wherein
formulas are applied without comprehension of their underlying rationale. How-
ever, identifying instrumental understanding falls beyond the scope of our re-
search question.

Another student, which we shall refer to as Student J, produced an answer with
the same underlying argument, yet with a different sequence of steps (see Fig-
ure 5.18). Similar to the first example, Student J began by computing the matrix
product Ax⃗ , obtaining the vector

[
1 −2

]⊺
. Then, they constructed two equations.

The first, a · (−1) = 1, likely pertains to a scalar multiplied by the first coordinate
of the vector x⃗ , equal to the first coordinate of the vector Ax⃗ . Similarly, the second
equation, b ·2= −2, likely pertains to a scalar b multiplied by the second coordin-
ate of the vector x⃗ to the second coordinate of the vector Ax⃗ . For the purpose of
clarity, we restate a more general version of this in Figure 5.19.

Figure 5.18: Student J’s answer to Task 10, based on solving a system of two
equations and two unknowns.

Subsequently, Student J solved these equations, determining that a=b=-1.
Consequently, they inferred that the eigenvalue called γ would be equal to -1.
Based on this computation, the student concluded that since gamma multiplied
by x⃗ equals Ax⃗ , then x⃗ is indeed an eigenvector of A.
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Let A be a 2× 2 matrix and let x=
ï

x1
x2

ò
be a vector.

Then Ax=
ï

y1
y2

ò
.

To compute the scalar value (the eigenvalue), construct a system of two equa-
tions.
Let ®

x1 · a = y1,

x2 · b = y2.

If there exists a solution such that a = b, then a is an eigenvalue of A.

Figure 5.19: An illustration of student J’s solution strategy in Task 10 (our ver-
sion).

However, we consider this argument to be somewhat disorganised and un-
clear, as Student J did not explicitly state the origin of the two equations. Con-
sequently, we had to make our own interpretation to reconstruct the argument-
ation. From our perspective, this example suggests an important aspect of an
analytic-arithmetic mode, to perform computations with efficiency and clarity. In
our perspective, Student J’s response highlights a challenge they faced in effect-
ively communicating the computations involved in their reasoning. Nevertheless,
the fundamental argument appears to be that the eigenequation is fulfilled, hence
x⃗ is an eigenvector, and the answer was characterised as representing an analytic-
structural mode of thinking. Next, our attention shifts to answers that predomin-
antly align with an analytic-arithmetic mode of thinking.

5.2.2 Analytic-Arithmetic Mode of Thinking

While verifying that the eigenequation is fulfilled can be considered an effective
solution strategy, there was an alternative approach which required more extens-
ive written work. This involved first computing the eigenvalues of the matrix A,
followed by determining the corresponding eigenvectors. The additional written
work stems from the calculations required to compute eigenvalues and eigen-
vectors. As this approach relied on the procedure for computing eigenvectors, it
was categorised as aligning with an analytic-arithmetic mode of thinking. Despite
our initial anticipation, only a limited number of students adopted this particu-
lar solution strategy. In Figure 5.20, we showcase an example of such an answer,
provided by Student K.

Student K first computed the eigenvalues of A by computing the roots of the
characteristic polynomial in solving the equation det(A−λI) = 0. Then, they com-
puted the corresponding eigenvectors for each eigenvalue, λ= 0 and λ= −1, by
applying the Gaussian algorithm to solve the homogeneous equation,
det(A−λI) x⃗ = 0⃗. For the eigenvalue λ = 0, they found a non-trivial solution
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Figure 5.20: Student K’s written answer to Task 10, where they employed the
procedure for computing eigenvectors to argue for why x⃗ is an eigenvector of A.
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(or rather infinitely many non-trivial solutions), x⃗ = s
[−1 1

]⊺
. From there, it

seems they selected s = 1 and concluded that
[−1 1

]⊺
served as an eigenvector

corresponding to the eigenvalue λ= 0.

For the eigenvalue λ = −1, Student K discovered non-trivial solutions of the
form x⃗ = s

[−1
2 1

]⊺
and stated that the eigenvectors corresponding to λ = −1

lie within the span of the vector
[−1

2 1
]⊺

. Following this, they concluded that
since the given vector x⃗ =

[−1 2
]⊺

could be expressed as a scalar multiple of
the previous vector (specifically for the scalar 2), then the given vector x⃗ was
in fact an eigenvector for the matrix A. Considering that their answer relied on
the procedure for computing eigenvectors, it was classified as corresponding to
an analytic-arithmetic mode of thinking, along with eight other answers with the
same argument.

It is our perspective that the provided answer is comprehensive and indicative
of an understanding that there exist infinitely many eigenvectors for a given ei-
genvalue. As we shall see later, there were students who appeared unaware of this
aspect, thinking there was a limited number of eigenvectors to an eigenvalue or
matrix/linear transformation. Nevertheless, we remark that the student’s answer
could have been enhanced in terms of clarity by using indices for the eigenval-
ues and eigenvectors, to avoid confusion with the given vector x= x⃗ =

[−1 2
]⊺

.
However, this is an aspect of formal accuracy, which is not at the focus of our study.
Moving forward, we delve into the discussion of the synthetic-geometric mode of
thinking in the context of Task 10.

5.2.3 Synthetic-Geometric Mode of Thinking

As mentioned earlier, a synthetic-geometric mode of thinking in Task 10 could
involve an argument that the vectors x⃗ and Ax⃗ lie on the same line or that Ax⃗
can be expressed as a scaled version of x⃗ . Additionally, a sketch illustrating this
relationship would also be interpreted as an argument aligning with a synthetic-
geometric mode of thinking.

However, within this study, there were only three answers incorporating such
elements of a synthetic-geometric mode of thinking in Task 10, and these were
always in conjunction with other modes. For an example of a solution pertaining
exclusively to a synthetic-geometric mode of thinking, the reader is referred to
Figure 4.3 in Section 4.2.3.2. Shortly, we explore examples of how the synthetic-
geometric mode presented in combination with other modes of thinking.

5.2.4 Multiple modes of Thinking

In contrast to Task 9, where a notable number of students exhibited multiple
modes of thinking in their answers, only eleven answers in Task 10 incorporated
such combinations. In the following, we present examples of students’ answers
to Task 10 that align with the combinations of modes of thinking. That is, the
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structural-arithmetic, structural-geometric and arithmetic-geometric mode. Be-
fore we close this section, we also provide an example of a student’s answer that
included all three modes of thinking.

5.2.4.1 Structural-Arithmetic Mode of Thinking

Among the ten students who incorporated two modes of thinking in their an-
swers, eight utilised the structural-arithmetic combination. These arguments in-
volved both the procedure for computing eigenvalues or eigenvectors (aligning
with an analytic-arithmetic mode), as well as the eigenequation to verify that
the given vector x⃗ was in fact an eigenvector (aligning with an analytic-structural
mode). In Figure 5.21, we present an example of an answer classified as structural-
arithmetic, provided by Student L.

Figure 5.21: Student L’s answer to Task 10, utilising the procedure for computing
eigenvalues as well as the eigenequation to verify that x⃗ is an eigenvector.

Student L began by introducing the characteristic polynomial, p(λ) as the de-
terminant of the matrix (A− λI). They proceeded to compute the determinant,
obtaining the second-order polynomial λ(λ+ 1). We presume that Student L ob-
tained the eigenvalues of the matrix as λ= 0 and λ= −1 by computing the roots
of this polynomial.
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Subsequently, Student L seemed to set up the eigenequation (λ x⃗ = Ax⃗), sub-
stituting the eigenvalue λ = 0, the given vector x⃗ =

[−1 2
]⊺

and the matrix A.
They concluded that the left side of the equation was not equal to the right, im-
plying that x⃗ =

[−1 2
]⊺

was not an eigenvectors corresponding to λ = 0. Next,
Student L computed the vector Ax to be

[
1 −2

]⊺
and recognised that this was

equal to the given vector x⃗ scaled by a factor of−1, i.e. Ax⃗ = −1 x⃗ . They concluded
by writing “Then x⃗ =

[−1 2
]⊺

is an eigenvector with eigenvalue λ= −1."

In summary, the answer demonstrated a structural-arithmetic mode of think-
ing by computing the eigenvalues from the characteristic polynomial and using
the eigenequation to verify that the given vector x⃗ was an eigenvector corres-
ponding to the eigenvalue λ = −1. In our interpretations, answers of this nature
allow students to demonstrate their computational skills within matrices and their
recognition of a characteristic property of eigenvectors, namely fulfilling the ei-
genequation.

In the following section, we discuss an example of another answer that had
elements of both analytic-structural and synthetic-geometric modes of thinking.

5.2.4.2 Structural-Geometric Mode of Thinking

In our study, we encountered only one answer to Task 10 suggesting a combina-
tion of an analytic-structural and synthetic-geometric mode of thinking (see Fig-
ure 5.22).

Figure 5.22: Student M’s answer to Task 10, where the eigenequation is solved
to derive the eigenvalue λ= −1 together with a sketch.
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This student, henceforth called Student M, initiated their answer by stating
that “

[−1 2
]⊺

is an eigenvector because A and x⃗ lie on the same line.” Below,
they included a sketch of a two-dimensional coordinate system, with a red vector
labelled x⃗ and a black vector labelled A, positioned in the opposite direction to x⃗ .
Their statement together with the sketch was identified to align with a synthetic-
geometric mode of thinking, as the argument was based on geometric properties of
particular eigenvectors. Based on this, we understood that the Student L’s concept
image included visual interpretations of eigenvectors.

However, it is important to note that A, as given in Task 10, is a 2×2 matrix, not
a vector. While vectors, such as

[−1 2
]⊺

are commonly represented as arrows in
a coordinate system, matrices do not have direct visual representation in the same
manner. In the context of a linear transformation, a matrix can be seen as a rule
mapping input vectors to output vectors. These may be rotated, scaled or displaced
relative to the original input vector. Thus, it is possible to visually interpret the
effect of applying the matrix to objects in the vector space. Consequently, stating
that “A [the matrix] and x⃗ [the vector] line on the same line” is inaccurate. Instead,
it would be more appropriate to argue that x⃗ and Ax⃗ are on the same line, and
thus, x⃗ is an eigenvector of A.

Adjacent to the sketch, Student M wrote the eigenequation, Ax⃗ = λ x⃗ . Sub-
sequently, they substituted the values of A and x⃗ into the equation and computed
the matrix product Ax⃗ to be

[
1 −2

]⊺
. Below, the student wrote that λ = −1, in-

dicating their recognition that this value satisfies the eigenequation. By verifying
the fulfilment of the eigenequation for the given matrix A, the given vector x⃗ and
the corresponding eigenvalue λ= −1, Student M exhibited an analytic-structural
mode of thinking about eigenvectors as well.

Upon revisiting the sketch, it becomes evident that the depicted arrows do not
accurately represent the vectors x⃗ =

[−1 2
]⊺

and Ax⃗ =
[
1 −2

]⊺
(as illustrated

in our proposed solution in Figure 4.3, Section 4.2.3.2). Instead, the student drew
arrows corresponding to the vectors

[
1 2

]⊺
and

[−1 −2
]⊺

. However, we con-
sider this to be a likely result of oversight, rather than a significant misconception
regarding the visual interpretation of vectors.

Because of the particularly interesting and exceptional character of Student
M’s answer in Task 10, we will compare it with their answer in Task 9, even if
such comparisons between the two tasks’ answers are not in the main focus of
our study. In Task 9, Student M explained eigenvectors as fulfilling the eigenequa-
tion, stating that: “The eigenvector is the vector that, based on the eigenvalue,
satisfies the requirements of Ax⃗ = λ x⃗". In doing so, their answer represented a
structural-arithmetic mode of thinking. However, in part b), Student M described
the concept of eigenvalue as “a concept which together with the eigenvector ful-
fils the equation (A− λI) x⃗ = 0 [sic]”, suggesting an analytic-arithmetic mode of
thinking (see Figure 5.23).
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Figure 5.23: Student M’s answer to Task 9 exhibited a structural-arithmetic-
geometric mode of thinking.

Additionally, they gave a sketch of a coordinate system and a red vector la-
belled x⃗ and a green vector labelled A, aligning with a synthetic-geometric mode
of thinking. Adjacent, they stated the equation “Ax⃗ = 2 x⃗”, possibly indicating
that the eigenvalue corresponding to x⃗ was 2. Thus, the student’s answer to Task
9 exhibited a structural-arithmetic-geometric mode, as opposed to a structural-
geometric mode in Task 10.

The example illustrates that students occasionally exhibited different across
tasks. However, it should be noted that a comparison between what a student
wrote in Task 9 and what they wrote in Task 10 was not the main focus of our
research question, and therefore was not done for all students.

5.2.4.3 Arithmetic-Geometric Mode of Thinking

Another infrequent combination of modes of thinking in Task 10, was the arithmetic-
geometric mode of thinking. This mode was distinguished by the inclusion of both
the computational procedure for determining eigenvalues and/or eigenvectors,
as well as an argument based on the geometric properties of the eigenvector or a
corresponding sketch. It is noteworthy that in our study, only one student, called
Student N, provided an answer exhibiting this particular combination of modes
in Task 10, as depicted in Figure 5.24.

Student N initiated their response by writing the matrix A and computing the
determinant of the matrix (A− λI) to obtain the characteristic polynomial. By
factoring the resulting second-degree polynomial in first degree polynomials, they
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Figure 5.24: Student N’s handwritten answer to Task 10, recreated for improved
readability.

were able to determine the two eigenvalues, λ = −1 and λ = 2. Given that the
answer involved the procedure for computing eigenvalues, it was considered to
align with an analytic-arithmetic mode of thinking.

In the second part of the answer, Student N concluded that the vector
[−1 2

]⊺
,

which they referred to as “v⃗egen”, is an eigenvector of A. However, despite the re-
quest for a justification, the student did not provide an explicit justification as to
why the given vector

[−1 2
]⊺

is indeed an eigenvector of A. The reason for this
omission is uncertain. It could be attributed to overlooking the requirement for
a justification, perceiving the claim as self-evident or a lack of understanding for
what constitutes a proper justification. However, without further information, it
is difficult to determine the exact reason for this omission.

Adjacent, Student N presented an additional interpretation for their answer by
stating: “Practical/visually: The vector will not change direction under a lin.trans.
[short for linear transformation], but it will be scaled (stretching/shrinking).”
However, it is unclear whether Student N refers to how the particular eigenvector
x⃗ =

[−1 2
]⊺

is affected by the specific linear transformation expressed by the
matrix A (indicating a synthetic mode of thinking), or if they refer to how eigen-
vectors in general are affected by the linear transformation they correspond to
(indicating an analytic mode of thinking). Nevertheless, as Student N character-
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ised the eigenvector as being stretched or shrunk, the dominant mode of think-
ing in the statement was considered to align with a synthetic-geometric mode of
thinking.

Before we delve into the discussion of answers combining all three modes of
thinking, it is necessary to acknowledge a computational error that likely occurred
during the computation of the characteristic polynomial. This resulted in the poly-
nomial λ2 − λ − 2 instead of the correct polynomial λ2 + λ. Upon solving the
equation λ2 − λ− 2 = 0, the previously mentioned computational error resulted
in the identification of one correct eigenvalue λ= −1 and an incorrect eigenvalue
λ= 2. Fortunately, the eigenvalue λ= −1 was indeed the eigenvalue correspond-
ing to the given vector x⃗ . It is worth noting that there were other instances in
which computational errors resulted in incorrect conclusions regarding the status
of x⃗ as an eigenvector. However, our analysis has focused on characterising the
underlying argument in terms of the modes of thinking employed, regardless of
correct or incorrect conclusions stemming from computational errors.

5.2.4.4 Structural-Arithmetic-Geometric Mode of Thinking

In Task 9, a remarkable number of 55 students gave answers incorporating ele-
ments from all three modes of thinking described by Sierpinska (2000), aligning
with what we have named a structural-arithmetic-geometric mode of thinking. In
contrast, in Task 10, this combined mode of thinking was notably less prevalent,
as only one student, henceforth referred to as Student O, exemplified this mode,
as illustrated in Figure 5.25.

Student O began by restating the task: “Justify why x⃗ =
[−1 2

]⊺
is or is

not an eigenvector to the matrix A=
ï

1 1
−2 −2

ò
”. Below, they wrote: “To find the

eigenvectors of A we may first find the eigenvalues by using the relation Ax⃗ = λ x⃗”.
They proceeded to perform the computations to derive the equation det(A−λI) =
0 from the eigenequation. Next, they computed the eigenvalues to be λ1 = 0 and
λ2 = −1 by solving the equation.

Then, Student O wrote: “Now checking the eigenvectors corresponding to the
two eigenvalues!→ Find the nullspace:” For each eigenvalue, they set up a matrix,
likely corresponding to the homogenous equations (A−λ1 I) x⃗ = 0⃗ and (A−λ2 I) x⃗ =
0⃗, and computed the corresponding eigenvectors. In employing this procedure,
Student O’s answer was considered to incorporate an analytic-arithmetic mode of
thinking.
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Figure 5.25: Student O’s answer to Task 10, exhibiting elements aligning with
a structural-arithmetic-geometric mode of thinking. The answer has been repro-
duced to enhance readability.

Below, Student O observed that the given vector
[−1 2

]⊺
was a scaled ver-

sion of the computed eigenvector
[−1

2 1
]⊺

, and argued that this implied that[−1 2
]⊺

was also an eigenvector. They further noted “(lie on the same line)”,
likely referring to the vectors

[−1
2 1

]⊺
and

[−1 2
]⊺

. By recognising this, Stu-
dent O’s answer was interpreted as encompassing a synthetic-geometric mode of
thinking in their answer.
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On the right hand side, Student O presented an alternative solution strategy
in red, corresponding to checking the eigenequation, thus verifying that the given
vector [ x⃗ =

[−1 2
]⊺
] was in fact an eigenvector (of A). In doing so, they demon-

strated an analytic-structural mode of thinking, thus incorporating all three modes
in their answer to Task 10. This indicates a concept image that is rich and flexible
enough to generate two, equally-valid solution strategies and interpret the results
visually.

In the subsequent section, we summarise our findings and present an overview
of the modes and their distribution among the responses to Task 10.

5.2.5 Summary and Overview

So far, we have examined several examples of students’ written responses to Task
10, showcasing the alignment with the modes of thinking and combinations of
them. Figure 5.26 presents an overview of the distribution of the modes of think-
ing exhibited by the students’ written answers.

140 0

9

8 1

1

1

10

Figure 5.26: Overview of the distribution of modes of thinking exhibited in the
students’ answers to Task 10.

Remarkably, an overwhelming majority of 80% of the students’ presented an
analytic-structural mode of thinking (indicated in red) in checking the eigenequa-
tion to verify that x⃗ was an eigenvector. In contrast, fewer presented a purely
analytic-arithmetic mode (indicated in blue) in computing the eigenvectors and
verifying that x⃗ was indeed one of them, with only eight students doing so. Not-
ably, no students gave a standalone synthetic-geometric argument (indicated in
yellow area). We find this intriguing, as so many students gave such descriptions
of eigenvectors in Task 9.
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In contrast to Task 9, where multiple modes of thinking were commonly ob-
served, our analysis of the students’ answers to Task 10 revealed that only a
small number of the students incorporated a synthetic-geometric mode alongside
other modes of thinking. Specifically, one student presented a structural-geometric
mode (indicated in green), while another gave an argument aligning with an
arithmetic-geometric mode (indicated in orange). Finally, only one student incor-
porated elements from all three modes and was classified as structural-arithmetic-
geometric (indicated in white area in the middle).

Similar to Task 9, there were responses in Task 10 that could not be categor-
ised within any of the identified modes of thinking. This was either due to some
students leaving the task unanswered (3 students) or providing arguments that
did not align with any of the modes (7 students). These unclassified responses are
represented by the number 10 in Figure 5.26.

Uncategorised answers
An example of an answer that could not be categorised within the identified modes
of thinking was provided by Student P, as illustrated in Figure 5.27.

Figure 5.27: Student P’s answer to Task 10, which did not appear to align with
any of the modes of thinking.

Here, Student P argued that as long as the matrix product Ax⃗ does not result
in the nullvector, the vector x⃗ can be an eigenvector. Testing this, they computed
the matrix product for the given matrix A and vector x⃗ . Upon calculating the
resulting vector as

[
1 −2

]⊺
, Student P concluded that x⃗ could potentially be an

eigenvector of A. It should be noted that this argumentation does not definitely
conclude that x⃗ is an eigenvector. Rather, it signifies that Student P thinks x⃗ could
be an eigenvector of A. Thus, it appears that Student P implicitly conveys the idea
that there is insufficient information available to definitively draw a conclusion
about x⃗ ’s status as an eigenvector.

The assumption that Ax⃗ = 0⃗ is impossible for eigenvectors is incorrect. In gen-
eral, for eigenvectors with an eigenvalue of zero, the matrix product Ax⃗ will yield
the nullvector. This can also occur when A is the nullmatrix. Therefore, the Student
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P’s argument suggests a potential misconception about the possibility of Ax⃗ = 0⃗
for eigenvectors. It is possible that this confusion stems from conflating the exclu-
sion of the null vector as an eigenvector, as stated in Definition 4.2.1. However,
further information is necessary to draw any conclusive insights into this matter.

In the next subchapter, our attention shifts to other facets of students’ concept
images that extend beyond their modes of thinking. Thus, we delve into addi-
tional elements that contribute to students’ understanding of eigenvectors and
eigenvalues.

5.3 Concept Images

Thus far, we have made brief observations on elements of students’ concept images
of eigenvectors and eigenvalues which are not directly expressed in their modes
of thinking. In some cases, we have also assessed the level of development of
these concept images based on their written, and when available, oral responses.
We have observed answers suggesting that students possess rich concept images,
displaying several ideas about eigenvectors and eigenvalues, although some were
not yet at the stage of being able to unify these ideas into a coherent whole.
Conversely, other students have presented more brief answers and confusion sur-
rounding these concepts.

Recalling that the modes of thinking were considered to partially overlap with
the notion of concept image, we now delve deeper into additional aspects of stu-
dents’ concept images, not reflected in their modes of thinking. These encompass
the interrelationships that exist among matrices and linear transformations, ei-
genvectors and eigenvalues, as well as the nature of these relations. Furthermore,
we briefly touch upon the topic of the number of eigenvectors associated with an
eigenvalue of a matrix. We argue that this area is particularly interesting due to
its connections with other key concepts in linear algebra, such as eigenspaces and
bases.

Concluding this subchapter, we turn our attention to examining students’ ex-
periences in engaging with these tasks. We argue that such insights can provide
valuable information regarding their concept images, as well as their strengths,
challenges, motivation, learning styles, which in turn are important for our future
research.

5.3.1 The Objects and their Relations

To illustrate students’ descriptions of the objects and their relations, we revisit a
previous example of a students’ answer to Task 9 (see Figure 5.7). Here, Robin
described the notion of eigenvector as a “Vector which does not change direction”
and eigenvalue as “The scalar that determines the magnitude of the vector”. How-
ever, the matrix or linear transformation was omitted in both these descriptions.
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Figure 5.28: Robin’s answer to Tasks 9 a) and 9 b), characterising eigenvectors
as not changing direction and eigenvalues as scalars which determine the length
of the eigenvector.

However, as we saw earlier, another part of Robin’s concept image was evoked
in the interview, as they explained eigenvectors and eigenvectors in relation to the
matrix, and as fulfilling the eigenequation.

Robin: . . . Uh. . . So, basically, an eigenvalue is a value which you can
multiply by the matrix and a vector and obtain the same result.

Thus, Robin’s written answer indicated a synthetic-geometric mode of thinking,
whereas the oral discussion of the eigenequation aligned with a structural-arithmetic
mode. This example demonstrates how the interviews provided students with an
opportunity to further develop their understanding of eigenvectors and eigenval-
ues, and shed light on aspects of their concept images that may not have been
evident in their written responses.

However, an interesting discrepancy between Robin’s oral and written answers
arose in regards to the (in)dependence of the matrix. The written answer omitted
the matrix completely, while the oral answer depicted eigenvalues as dependent
on the matrix. This discrepancy suggested potential conflicting parts of Robin’s
concept image, or in Tall and Vinner’s (1981) terms, these aspects of the student
concept image represent potential conflict factors. To further explore this, Robin
was asked if eigenvectors and eigenvalues could exist without matrices, aiming
to provoke a cognitive conflict and potential alignment or modification of their
descriptions. An excerpt from this dialogue is illustrated below:

Interviewer: And I wonder, can we have eigenvectors, and eigenvalues
for that matter, without having a matrix?

[long pause]

Robin: According to what I wrote here [points to Task 9], you can

91



indeed have that if a vector is just something. . . a. . . or if. . . If an
eigenvector is simply something that. . . a vector that does not change
direction. So. . . it should be possible to have an eigenvector and an
eigenvalue without kind of having a matrix.

Interviewer: Mm. . .

Robin: So I guess ‘Yes’.

In the excerpt above, Robin begins by reflecting on their written answer, admit-
ting that if what they wrote was correct, then eigenvectors and eigenvalues could
indeed exist independently of matrices. In terms of our previous visual represent-
ations of the relations between the objects, we can illustrate the students’ answer
as in Figure 5.29:

Matrix /
Linear

transformation

Eigenvalue Eigenvector

Figure 5.29: A visual interpretation of the students’ description of the relation
between eigenvectors and eigenvalues, illustrating the possibility of their exist-
ence independent of a matrix.

Hence, our prompt did not seem to provoke an actual cognitive conflict and or
lead to a revision of Robin’s concept image. Instead, Robin appeared to presume
the correctness of their written answer, and infer that eigenvectors and eigenval-
ues could exist independently of matrices.

However, it is our perspective that awareness of the fact that eigenvectors and
eigenvalues can be understood as properties of matrices is crucial as it highlights
the fundamental relations between these objects and the linear transformation.
Recognising these relations between the objects can serve as important motiva-
tion for various applications of eigenvectors and eigenvalues, such as the solution
of differential equations or stability and equilibriu analysis. Thus consciously omit-
ting any of these objects is, in our opinion, a clear indication that their concept
images are at an early stage of development. However, it is important to note that
Robin is clear that they are guessing, and in doing so they admit a degree of un-
certainty. Thus, we do not find it appropriate to categorise this as a misconception
per se. Instead, we see this as a potential angle to further guide the student to
reflect upon and develop their concept image.
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Next, we consider a related aspect of students’ concept images of students’
concept images of eigenvectors and eigenvalues. That is, the apparent confusion
in students’ answers regarding the relationships that exist between the matrix or
linear transformation, the eigenvalue and the eigenvector.

5.3.2 Confusion of Roles

In the data, we also observed examples where students confused the roles of the
matrix, eigenvector and eigenvalue, particularly in regards to which objects act
upon which, and the resulting effects. For instance, one student, which we will
call Student Q, stated that: “An eigenvector is a vector which does not change the
direction of a matrix in a transformation, but could change size.” (see Figure 5.30).

Figure 5.30: Student Q’s answer to Task 9 a), giving a description of how an
eigenvector acts upon a matrix by changing its magnitude.

As we have observed earlier, a matrix acts upon its corresponding eigenvector
by scaling it, allowing the magnitude to change or remain unchanged. Further-
more, in the real case, the direction of the vector is maintained or reversed. Thus,
it is inaccurate to suggest that the eigenvector acts upon the matrix, as described
by Student Q. A more appropriate description would imply that it is the matrix
that acts upon the eigenvector. Additionally, as we discussed in an earlier example,
it is not meaningful to discuss the direction of a matrix. The concept of direction
is typically associated with vectors. Thus, it appears Student Q is aware that there
is a relationship between the matrix, linear transformation and eigenvector, and
that the relationship has visual interpretations. However, there appears to be some
confusion concerning the nature of these relations.

However, so far we have only discussed Student Q’s answer to Task 9 a), where
they were asked to explain the concept of eigenvectors. As eigenvectors and ei-
genvalues are closely interconnected, we may examine their description of eigen-
values in b) to gain further insights into their concept images (See Figure 5.31).
Here, Student Q described the relationship between the eigenvalue and the eigen-
vector as follows: “The eigenvalue indicates the size of the eigenvector and which
direction. So, 1 means the same size, 2= 2x the length,−1= opposite direction.”.

Considering this, we are of the impression that Student Q tried to describe
how multiplication by the eigenvalue affects the eigenvector (not the matrix) by
preserving its magnitude (λ= 1), doubling its magnitude (λ= 2) or reversing its
direction and preserving magnitude (λ = −1). Thus, our analysis of parts a) and
b) reveal potential inconsistencies in their concept image. Additionally, the de-
scription in Task 9 a) can illustrate inconsistencies between the students’ concept
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Figure 5.31: Student Q’s answer to Task 9 b), describing the eigenvalues’ effect
on the corresponding eigenvectors, along with specific examples..

image of eigenvectors and the formal concept definition, which Tall and Vinner
(1981) characterised as a more problematic form of inconsistency. However, an al-
ternative interpretation is that our analysis can exemplify how the translation from
ideas to written responses may result in the loss or distortion of information. This
example further underscores the importance of considering these closely interre-
lated concepts together to gain a comprehensive understanding of the students’
concept images.

Next, we consider another important aspect of eigentheory, namely the number
of eigenvectors associated with an eigenvalue, and by extension, a matrix.

5.3.3 The Number of Eigenvectors

The number of eigenvalues associated with an n× n matrix is n. However, some
eigenvalues may be repeated (have a multiplicity greater than 1), resulting in
at most n distinct eigenvalues for an n × n matrix. Conversely, as indicated by
Student K (see Figure 5.20) and Student O (see Figure 5.25), there are infinitely
many eigenvectors associated with an eigenvalue, as any scalar multiple of an
eigenvector is also an eigenvector with the same eigenvalue. Hence, if x⃗ is an
eigenvector corresponding to the eigenvalue λ, then kx⃗ is also an eigenvector
corresponding to λ for all scalars k. In examining students’ written answers, we
came across answers suggesting students may have concept images conflicting
with these aspects. An excerpt of a such an answer, provided by Student R, is
depicted in Figure 5.32.

Figure 5.32: An excerpt of Student R’s answer to Task 9 addressing the issue of
the number of eigenvectors associated with each, unique eigenvalue.

In describing eigenvectors and eigenvalues, Student R stated that: “An eigen-
value is a value that belongs to a matrix and is denoted by λ. For every unique
eigenvalue found for a matrix, there exists a corresponding eigenvector.”. While it
is true that each eigenvalue has a corresponding eigenvector, we were curious if
students were aware how many eigenvectors were associated with an eigenvalue.
Thus, we decided to include this aspect in the subsequent interviews. However, it
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is important to note that Student R did not take part in the interviews. Thus, the
following excerpts are collected from interviews with other students.

In discussing Task 10, it was established that x⃗ =
[−1 2

]⊺
was an eigenvector

to the matrix A. Then, the student was asked to explain if there were more possible
eigenvectors of A, upon which the student explained that a 2× 2 matrix has two
possible eigenvectors. Consider the following excerpt:

Interviewer: Are there other eigenvectors here?

Robin: Mm.. Probably. . . Maybe? Mm. . .

[long pause]

Robin: [clears throat] There is something like, since it is. . . a matrix
is. . . or I feel like I remember something about if it is. . . It is a matrix
in R2, then there are two eigenvectors, or something like that, so then
I guess there are two. Or there is one more possible eigenvector.

Interviewer: Mm. . .

Robin: Um. . . Yeah.

This answer could suggest that the student believes that a real 2×2 matrix has only
two eigenvectors, rather than recognising that there are infinitely many possible
eigenvectors. It is our perspective that the number of eigenvectors associated with
an eigenvalue or a matrix is an interesting topic because it is closely connected
to other key concepts in linear algebra that the students are familiar with. These
include the notion of basis, span, eigenspace and linear (in)dependence.

However, an alternative interpretation is that Robin meant that the matrix A
can have two linearly independent eigenvectors. The concept of linear independ-
ence was introduced to the students approximately five weeks prior to the home-
work on eigenvalues and eigenvectors. In another interview, Kim was asked to
state the number of eigenvectors of A, and responded that it has two linearly in-
dependent eigenvectors:

Interviewer: So if we consider the matrix A in Task 10, how many
eigenvectors does this matrix have?

Kim: Well, I would think it has two. Or that it could have two. But it. . .
But it is. . . Because it becomes zero if you. . . Could it matter? Since it
is. . . It is not symmetric, but it could cancel itself. But, uhm. If. . . If A. . .
is diagonalisable, well, then it must have two linearly independent
eigenvectors. So if you find out if A is diagonalisable, then you know
if there are two eigenvectors or one.

Similar to the previous example, Kim initially stated that the matrix A from
Task 10 has two eigenvectors. However, they then corrected themselves, in stat-
ing that A could have two eigenvectors. Additionally, they made connections to the
notion of linear independence diagonalisation in stating that if A was diagonal-
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isable, it would have two linearly independent eigenvectors. Making connections
between concepts is considered an important aspect of understanding in linear
algebra, as highlighted by Harel (1997). In our opinion, Kim’s ability to make
these connections indicates a developed concept image at an early stage in their
learning process.

Next, we explore the aspect of students’ experiences in working with the tasks
we designed and implemented as part of their coursework.

5.3.4 The Students’ Experiences with the Tasks

The interviews presented an opportunity to inquire about students’ experiences
with the tasks. We contend that by exploring their experiences, we can better
understand their concept images of eigenvectors and eigenvalues, as well as their
modes of thinking. Additionally, these insights into their experiences provide valu-
able information about their competencies and the challenges they encounter in
learning about eigenvectors and eigenvalues.

Furthermore, it is important to note that our tasks were intentionally designed
to elicit several aspects of students’ concept images, possibly going beyond the
scope of “traditional” tasks focused on developing computational proficiency. Con-
sequently, we anticipated that at least some of our tasks would be perceived as
different or inauthentic. As we shall see, the interviews provided an opportunity
to test this hypothesis.

On a side note, understanding students’ experiences can generate valuable
insights for the future PhD study, where we aim to design instructive tasks and
improve teaching practices at the university level.

Upon analysing the interview recordings and transcripts, we observed that stu-
dents had various experiences in working with the tasks, particularly in relation to
the perceived level of difficulty. When prompted to describe the level of difficulty,
Kim expressed that they had trouble meeting the deadline, which consequently
limited the amount of time and effort they could allocate to our tasks.

Interviewer: Okay, so this homework assignment. Now it is. . . I will
mainly ask you about these tasks [pointing to Tasks 9-12], their level
of difficulty.

Kim: Uhm. . . Well, uhm, I remember that when I worked on the as-
signment, I had limited time, so those tasks were a bit deprioritised.”

Kim went on to explain that the tasks turned out to be more challenging than they
had anticipated:

Kim: Yeah, I guess I heard that they were kind of. . . Since we had
not covered that topic much yet, there would be some easy tasks on
eigenvectors and stuff.
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Interviewer: Mm. . .

Kim: Uhm, but at that time, I did not think they were easy.

As we shall see later, Kim was not the only one who found the tasks to be challen-
ging. However, another student, Sam, expressed the opinion that our tasks were
easier compared to the other tasks in the homework assignment:

Sam: Uhm. . . So it was this last chapter that you had? Then it was a
lot easier.

The students who found the tasks challenging gave several reflections on what
made the tasks difficult. In Kim’s own words:

Kim: And I felt it was more about understanding than actually calcu-
lating. Uhm...

Interviewer: Mm. . .

Kim: So then, I did not have a complete understanding of what. . .
what eigenvectors and eigenvalues were.

In the excerpt above, Kim explained that they perceived the tasks to be more ori-
ented towards what they refer to as “understanding” rather than calculation. This
suggests that our tasks were perceived as somewhat different from the tasks they
were accustomed to. In other words, they could be seen as inauthentic. However,
it is important to acknowledge that the students’ perception of "understanding”,
a complex and potentially contentious term, may differ from our own.

Recall now that in Section 5.1.5.1, Iben expressed their discomfort with ex-
plaining concepts and their confidence in performing computations. They ex-
pressed feeling more comfortable with “applying” concepts, rather than explain-
ing them. It is our perspective that this highlights the student’s confidence, and
possibly also their preference for hands-on procedures, rather than abstract con-
ceptualisation. This sentiment was not unique to Iben, as Robin also reflected
upon their experience working with Task 9:

Interviewer: What about Task 9, the first task?

[Long pause]

Robin: I found that one a bit difficult, like. . . uhm. To articulate, be-
cause I kind of understood how to find it and how to test it and stuff
like that, and then we were supposed to explain what it actually was.
So. . . That was a bit trickier.

The excerpt above suggests the students perceive themselves as confident and
competent in performing calculation-based procedures, such as computing eigen-
vectors and eigenvalues. However, they expressed a perceived lack of competence
in explaining concepts. We found this both surprising and interesting, considering
the majority of the students in our study were able to produce relatively accur-
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ate descriptions of eigenvectors and eigenvalues. Together, the students presented
various concept images and modes of thinking. While some responses were elab-
orate and accurate, reflecting several aspects of their concept image, others were
less comprehensive. Nevertheless, all students were able to communicate some
aspects of their concept images, which according to our interpretation of Vinner
(2002), is a necessary condition for understanding.

The attentive reader may have noticed that our analysis includes transcripts
of utterances from four out of the five interviewed students. Quotes from the fifth
student were omitted due to their responses closely aligning with those of Sam.
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Chapter 6

Discussion

This master study aimed to gain more knowledge on students’ understanding of ei-
genvectors and eigenvalues. In particular, we aimed to describe students’ concept
images and their modes of thinking as expressed in their written answers to our
tasks and subsequent interviews. We addressed the followings research questions:

1. What concept images can be described from the students’ reasoning about ei-
genvectors and eigenvalues?

2. What modes of thinking can be identified in the students’ reasoning about
eigenvectors and eigenvalues?

In the following, we offer an overview of our main findings to demonstrate that
our analysis effectively addressed our research questions, which were approached
and answered together. We engage in a brief comparative analysis of our results
with studies from the literature review and theory, to enhance our understanding
of students’ comprehension of eigentheory and showcase the contributions of this
master study to the existing body of knowledge.

Subsequently, we engage in a critical reflection on our chosen theoretical per-
spective, evaluating the extent to which it enabled us to address our research
questions. Furthermore, we briefly introduce an alternative theoretical perspect-
ive that may inform our future research.

We then turn our attention to the limitations inherent in our chosen methods
and their impact on the extent to which our research questions were addressed.
We include some reflections on how these limitations can be mitigated in future
studies involving students’ written work and interviews. We conclude our discus-
sion by offering an outlook on potential future research areas that have emerged
from this study, to support students in their learning of linear algebra at the ter-
tiary education level.
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6.1 Main Findings and Empirical Comparison

Our analysis has highlighted the presence of diverse concept images and modes
of thinking in students’ written and oral answers. Not only have we observed
the manifestation of Sierpinska’s (2000) analytic-structural, analytic-arithmetic
and synthetic-geometric mode, we have also identified answers encompassing
elements from multiple modes of thinking. This discovery led us to develop addi-
tional categories for the combinations of modes, namely the structural-arithmetic,
structural-geometric, arithmetic-geometric and structural-arithmetic-geometric
mode.

Through our analysis of Task 9, we discovered that a considerable number of
students adeptly integrated elements of an analytic-structural mode of thinking.
They skillfully connected eigenvectors and eigenvalues with other crucial con-
cepts of linear algebra, such as span, linear transformations, and vector spaces
— an ability emphasized by Harel (1997) as vital for understanding in linear al-
gebra. Additionally, when describing eigenvectors and eigenvalues using relevant
formulas like the homogeneous system of equations ((A−λI) x⃗ = 0⃗) and the roots
of the characteristic polynomial (det(A−λI) = 0), the students showcased their
mathematical prowess.

Our analysis of students’ answers to Task 9 revealed that many students in-
corporated elements of an analytic-structural mode of thinking. They connected
eigenvectors and eigenvalues to several key concepts, such as span, linear trans-
formations and vector spaces - an ability highlighted by Harel (1997) to be an
important aspect of understanding linear algebra. In describing eigenvectors and
eigenvalues using the formulas for computing them, some students were able to
demonstrate their engagement with an arithmetic mode of thinking as well.

Remarkably, as many as half of the students participating in this study could
aptly describe the geometric or visual properties of eigenvectors and eigenvalues,
such as scaling, flipping, or remaining on the same line, showcasing a synthetic-
geometric mode of thinking. Although we explicitly encouraged the inclusion
of sketches, only some students took this approach. However, the diversity in
their sketches, with some reflecting analytic-structural modes of thinking and oth-
ers suggesting synthetic-geometric modes of thinking, demonstrated an ability
to visualise both examples and non-examples of eigenvectors and eigenvalues.
This ability to handle representations, according to Duval (2006), may promote a
deeper understanding of the mathematical concepts.

Interestingly, our analysis revealed that the majority of students engaged with
multiple modes of thinking in their characterisations of eigenvectors and eigenval-
ues. It is our perspective that in doing so, the students demonstrated a cognitive
flexibility in thinking about these concepts, and concept images encompassing
various elements.
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Sierpinska (2000) found no empirical foundation to assert that students gen-
erally prefer one mode of thinking over another. Upon reflecting on our own ana-
lysis, we concur with this observation. Instead, we have developed an impression
that specific types of tasks might elicit particular modes of thinking in students.
In Task 9, where students were asked to explain eigenvectors and eigenvalues,
we observed that most students presented answers incorporating elements from
multiple modes of thinking. In contrast, an overwhelming majority of students
gave answers corresponding to a single mode of thinking in Task 10, namely the
analytic-structural mode.

Diverging from the findings of Thomas and Stewart (2011), our study revealed
that many students demonstrated an ability to describe eigenvectors and eigenval-
ues in terms of their geometric properties in Task 9. We found it particularly inter-
esting that while numerous students incorporated such elements of the synthetic-
geometric mode in describing eigenvectors and eigenvalues, only a few students
applied these characteristics in Task 10 to determine whether x⃗ was an eigen-
vector of the matrix A. Based on these findings, we hypothesise that our tasks
may have lead students to particular modes of thinking. This observation high-
lights a potential limitation of our current task design.

The Students’ Experiences with the Tasks
To obtain a comprehensive and nuanced understanding of students’ concept im-
ages and modes of thinking, we conducted individual, semi-structured interviews
with a targeted sample of five students. By incorporating our analysis of these
interviews alongside their written answers, we aimed to bridge the gap between
their expressed knowledge and the knowledge they may possess. This approach
deepened our insights into students’ concept images of eigenvectors and eigenval-
ues and their modes of thinking about these objects. Furthermore, the interviews
allowed us to uncover another interesting aspect of students’ learning process,
namely their experiences in working with the tasks.

In the previous chapter, we saw that the majority of these students experi-
enced difficulties with some of our tasks, with Task 9 proving particularly challen-
ging. Interestingly, some of these students expressed general struggles with tasks
involving explanation, while expressing confidence in performing computation,
such as in Task 10. These findings align with an earlier study by Thomas and
Stewart (2011), which highlighted students’ proficiency in performing computa-
tions.

Our findings suggest that students may not have received adequate training in
tasks involving explanations. Nonetheless, we contend that the ability to provide
clear and coherent explanations is not only an essential characteristic of under-
standing a concept, but also an important skill in personal and professional life.
Consequently, if our students perceive themselves as ill-equipped to handle such
tasks, we posit that it is necessary to provide them with targeted-training to foster
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this skill. In doing so, we may effectively close the gap between their current
proficiency and the desired level of competence and confidence in solving tasks
involving explanations.

6.2 Reflections on the Theoretical Framework

In this master’s study, we made use of Tall and Vinner’s concept image and Sier-
pinska’s modes of thinking as theoretical lenses to illuminate aspects of students’
understanding of eigentheory. Additionally, we adopted Von Glasersfeld’s radical
constructivism as a background theory to clarify our perspective on the nature of
learning and understanding, and how they occur. However, it should be noted that
we do not consider radical constructivism as a main part of our analytical frame-
work. Taking a reflective stance, we now engage in a critical evaluation of the
strengths and limitations of these theories in providing insights and addressing
our objectives.

6.2.1 Radical Constructivism as the Theoretical Foundation

Radical constructivism was adopted as the underlying perspective on learning,
which posits that knowledge is constructed and resides in minds of individual’s,
rendering direct observation of students’ understanding of eigenvectors and ei-
genvalues inaccessible. Instead, we relied on students’ written and oral answers
to gain insights into their thinking, assuming that their communication reflects
their understanding adequately. However, our experience revealed the limitations
of radical constructivism in providing explicit guidance on which aspects of com-
munication to focus on when examining students’ thinking.

This has led us to consider Anna Sfard’s commognition, where communication
and cognition are viewed as closely connected processes, while still respecting
their differences (the reader is referred to Sfard, 2015; 2020 for further insights
on this notion). The commognitive perspective encompasses both individual cog-
nitive construction as well as the co-construction of meaning through social inter-
action and communication. Furthermore, commognition offers a detailed analytic
approach to examining students’ thinking by considering the dynamic interactions
in communication and thinking in the learning process. Thus, it is our opinion that
the commognititve perspective presents as a promising lens for investigating the
nuances of students’ understanding beyond the individual aspect emphasised by
radical constructivism, and that it could be applied in our future research.

6.2.2 The Concept Image as a Theoretical Lens

In our quest to gain insights into students’ understanding of eigenvectors and ei-
genvalues, we made use of Tall and Vinner’s notion of the concept image, wherein
the possessing of a concept image was deemed a necessary condition for under-
standing the concept. Here, the concept image was desribed as consisting of all the
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cognitive structures associated with a concept, including all its visual represent-
ations, formulas, examples and non-examples. This holistic perspective provided
us with a range of observable indicators to effectively describe students’ under-
standing of the concepts of eigenvectors and eigenvalues.

Nevertheless, the complexity and richness inherent in the concept image rendered
it too vast to describe in its entirety. To address this challenge, we made the de-
cision to narrow our focus to Sierpinska’s modes of thinking, which we identified
as partially overlapping with the concept image. In adopting this deductive ap-
proach, we aimed to shed light on specific aspects of the concept image, while
acknowledging that this decision would leave some aspects of the concept image
unexplored.

During our analysis of students’ responses, we came across intriguing aspects
of students’ concept images that were not adequately accounted for within the
modes of thinking framework. In response, we developed an inductive approach to
describe these aspects, which we referred to as the objects and their relations. By
incorporating this lens into our analysis, we sought to describe a broader portion
of students’ concept images. However, it is important to acknowledge that despite
our efforts, there may still be dimensions of students’ concept images pertaining
to eigenvectors and eigenvalues that remain unexplored in our study.

6.2.3 The Modes of Thinking as a Theoretical Lens

The incorporation of Sierpinska’s (2000) modes of thinking in our selection of the-
ories allowed us to effectively describe specific facets of students’ concept images.
However, it is important to acknowledge that this theory was originally developed
in the context of linear algebra in general, not for eigentheory in particular. As a
consequence, we had to interpret and adapt her framework to suit our specific
focus on the concepts of eigenvectors and eigenvalues.

During our analysis of students’ written responses, we encountered a chal-
lenge with our interpretation of the three modes, as many of the students’ an-
swers exhibited characteristics that fell between or combined multiple modes. As
a result, we found it necessary to expand upon Sierpinska’s framework by introdu-
cing additional categories, namely the structural-arithmetic, structural-geometric,
arithmetic-geometric and structural-arithmetic-geometric mode, to better capture
the complexities and nuances observed in the data. Thus, the Venn diagram (see
Figure 5.15 and Figure 5.26) reflect this process of modifying and expanding upon
Sierpinska’s (Sierpinska, 2000) original modes of thinking.

It is worth noting that our study is not alone in building upon this framework.
In a previous study conducted by Gol Tabaghi and Sinclair (2013), they also em-
ployed the modes of thinking to analyse students’ answers. In their work, they
identified a mode of thinking which they named the dynamic-synthetic-geometric
mode, which emerged from students’ emphasis on the dynamic aspects of eigen-
vectors.
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Despite our efforts to develop the modes of thinking as an analytical frame-
work, we encountered difficulties in distinguishing between them at times. A
notable example arises from how the inclusion of the eigenequation was inter-
preted as aligning with different modes of thinking in Tasks 9 and 10. As we
have seen, in the context of Task 9, describing eigenvectors and eigenvalues as
fulfilling the eigenequation could suggest both analytic-structural and analytic-
arithmetic modes of thinking. As fulfilling the eigenequation can be considered a
defining property of eigenvectors and eigenvalues, the inclusion of the eigenequa-
tion could suggest an analytic-structural way of thinking about these concepts.
However, the eigenequation can be utilised to compute eigenvectors and eigen-
values through a series of arithmetic steps, suggesting the potential presence of an
analytic-arithmetic mode of thinking as well. In Task 10 on the other hand, the use
of the eigenequation to verify the vector x⃗ ’s status as an eigenvector was associ-
ated with an analytic-structural mode of thinking exclusively. These complexities
highlight the limitations and potential subjectivity in interpreting and employing
these modes to characterise students’ thinking.

In aligning our study with an interpretative research paradigm, we recognise
that our interpretation of the modes might not be flawless, as it could be influ-
enced by our subjective meanings and experience. Moreover, we acknowledge
that others might perceive the modes differently than we do. Thus, we contend
that our future studies might profit from considering alternative theoretical lenses,
which may better capture the intricacies and variations in students’ understanding
of linear algebra and eigentheory in particular. However, we caution that different
theoretical lenses will inevitably highlight certain aspects of students’ reasoning,
while leaving others unseen.

Thus far, we have discussed some affordances and constraints of employing
the chosen theoretical lenses to investigate the research questions and sugges-
ted some alternative approaches for future studies. In the following section, we
engage in a critical reflection on the benefits and limitations associated with the
selected methods, aiming to evaluate their ability to effectively address the re-
search questions.

6.3 Reflections on the Methods

In this study, we collected students’ written homework and conducted semi-
structured individual interviews to explore students’ concept images of eigen-
vectors and eigenvalues, as well as their modes of thinking.

6.3.1 Reflections on the Tasks

In light of our objective to describe students’ understanding of eigenvectors and
eigenvalues, we designed four tasks as part of students’ written homework. How-
ever, for the purpose of our analysis, we chose to focus specifically on students’
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answers to Tasks 9 and 10, as they aligned more closely with our research ques-
tions.

Through our analysis of students’ written answers to these tasks, we were able
to identify elements of students’ concept images. However, we must acknowledge
that due to the sheer vastness of the concept image and our choice of theoretical
lenses, we were unable to capture students’ concept images in their entirety. Dur-
ing our analysis, we encountered an interesting example of a student exhibiting
one mode of thinking in Task 10 and additional modes in Task 9. However, we
did not perform such comparisons across tasks for all individual students. Con-
sequently, it is likely that additional insights could have been gained had we com-
pared each student’s response to Task 9 with their response to Task 10. We see
such comparisons and the inclusion of Tasks 11 and 12 as potential for our future
research.

6.3.2 Reflections on the Interviews

In considering students’ written answers as a fallible representation of their know-
ledge, we acknowledged the inherent limitations of solely relying on students’
written answers to address the research objectives. To address these limitations,
we decided to conduct interviews to gain a more comprehensive and nuanced
understanding of students’ concept images and modes of thinking.

In the previous chapter, we witnessed an interesting example of a student who
demonstrated different modes of thinking in their written answer compared to
their oral response during the interviews. This observation supports our belief
that triangulation of data can yield additional insights regarding students’ reason-
ing about eigenvectors and eigenvalues. We posit that students may not express
their complete line of thinking in writing, as they may strive to produce a pol-
ished version with exclusively correct answers for their homework assignments.
Consequently, we conjecture that their written responses primarily reflect the out-
comes of their learning process. However, through the interviews, we observed
that students’ oral answers offered a glimpse into the stages of their thinking, al-
lowing us to witness their learning process in action. Thus, we hypothesise that
students’ oral reasoning may align more closely with their actual thinking com-
pared to their written answers.

However, it is important to acknowledge the inherent limitations associated
with interviews as well. For this master study, we were only able to interview a
limited selection of five students out of a total of 170. Consequently, it is likely that
our findings may not capture the full range of concept images among these 170
participants. Furthermore, the interviews took place 2-4 weeks after the students
submitted their homework, potentially affecting their ability to recall and reason
about these concepts. Thus, it is possible that the passage of time influenced their
explanations and insights provided during the interviews.
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During the interviews, we observed a potential influence of social desirability
bias, where interviewees (in our case, the students) tend to provide answers they
perceive to be socially acceptable or desirable (Bordens & Abbott, 2011, p. 147;
p. 273). As mentioned earlier, the interview setting might resemble an oral ex-
amination for students, where an expert (in this case, the interviewer) tests and
evaluates the students’ understanding of a topic (in our case, eigenvectors and ei-
genvalues). This could have led students to tailor their answers to align with their
perception of the interviewer’s expectations, such as providing correct answers
about eigenvectors and eigenvalues or adjusting their experiences with the tasks
to match what they believed the interviewer desired. As a result, we contemplate
whether the students’ reasoning about eigenvectors and eigenvalues would have
differed if they had engaged in conversations with peers instead. While we were
unable to test or establish the presence of such biases at the time, it is crucial to
acknowledge the potential influence of bias on our research findings.

6.3.3 Reflections on the Combined Methods

Through our analysis of both students’ written and oral answers, we observed
concept images exhibiting various stages of development. Some answers revealed
an ability to engage in multiple modes of thinking, indicating the presence of rich
and comprehensive concept images. Other responses were brief, providing lim-
ited insight into students’ concept images. Moreover, we came across answers that
suggested flawed concept images, such as believing there exists a finite number of
eigenvectors corresponding to a matrix. These findings align with an observation
made by Wawro et al. (2018), who cautioned against an overemphasis on com-
putational procedures as this may lead students to erroneously deduce that there
is only one eigenvector to an eigenvalue (when there are in fact infinitely many).

Our approach not only allowed us to identify areas of students’ proficiency,
such as their ability to compute eigenvectors and eigenvalues, and to characterise
them through multiple modes of thinking. It also enabled us to recognise potential
flaws and misconceptions in their concept images of these objects. It is our per-
spective that these insights hold great promise for the development of future tasks
that effectively address these challenges and support students in building a more
robust understanding of these concepts. For instance, tasks could be designed to
prompt students to reflect upon the number of eigenvectors associated with a mat-
rix or eigenvalue. Furthermore, prompting students to connect this reflection to
the visual representations of eigenvectors and their corresponding eigenspaces,
could contribute to deepen their understanding of these mathematical concepts.
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6.4 Summary and Outlook

In our quest to describe students’ understanding of eigenvectors and eigenvalues,
it is important to acknowledge that as students express their ideas in sentences,
(whether written or oral) and illustrations, there is a potential for meaning to
be lost, transformed or even added to their utterances. Therefore, we must ac-
knowledge that our methods do not enable us to identify all concept images and
modes of thinking employed by the students. However, by analysing the collected
data through our theoretical lenses, we have been able to provide descriptions of
certain aspects of students’ concept images of eigenvectors and eigenvalues, and
highlight some modes of thinking that emerged from the data.

Thus, our theoretical lenses and methodological approaches enabled us to ef-
fectively address the research questions, while leaving several potential pathways
to be explored in future research. For instance, we believe that further insights
can be gained from analysing the students’ written responses and oral reasoning
concerning Tasks 11 and 12, and comparing their answers across all four tasks.

The findings of this master’s study are expected to inform the future PhD study,
which seeks to develop tasks that effectively address students’ challenges and
foster a deeper understanding of key concepts in linear algebra. While this master
study has focused on individual students’ concept images and modes of thinking,
it could be interesting to explore the collective meaning-making as students col-
laborate in future studies. We contend that the ability to collaborate effectively
to solve conceptually challenging problems is an important skill both in academic
and professional contexts.
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Chapter 7

Conclusion

In this study, we aimed to explore students’ concept images of eigenvectors and
eigenvalues, and the modes of thinking, as presented their written answers and
oral reasoning concerning a set of specifically designed tasks. Through the ana-
lysis of these answers, we have encountered a range of concept images pertain-
ing to eigenvectors and eigenvalues among the participating students. Further-
more, we have observed answers that align with our interpretation of Sierpinska’s
modes of thinking, as well as our added modes, which we called the structural-
arithmetic, structural-geometric, arithmetic-geometric and structural-geometric-
arithmetic. Our analysis has shed light on concept images at various stages of
their development. While some students gave comprehensive answers suggesting
rich concept images, others presented more brief answers suggesting concept im-
ages at the early stages of formation. It is worth noting that our examination also
revealed instances of confusion and occasional conflicts within students’ concept
images, underscoring the dynamic nature of the concept image and its role in
students’ learning process.

Through the interviews, like the one conducted with Robin in Section 5.3.1, we
made a noteworthy observation that students appeared to develop their concept
images and incorporate additional modes of thinking in articulating their ideas or-
ally. We posit that a similar learning process is likely to unfold as students engage
in the process of writing their homework. However, if we solely analyse students’
written work, we gain insights solely into the learning outcome, devoid of un-
derstanding for the learning process that occurs in the shadows. This raises an
intriguing question of how we can encourage students to integrate their thinking
process into their written responses, presenting an avenue to be explored in future
research.

From this study, I personally have seen the valuable insights that can be gained
from allowing students to express their knowledge in multiple ways. Simultan-
eously, it has revealed the limitations inherent in relying solely on students’ writ-
ten work to evaluate their understanding of mathematics. Engaging in conversa-
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tions with students’, both in and outside the interview situation, has shed light
on another interesting aspect, as students report spending a significant amount of
time to complete their homework. Yet, their final grade in the course is determ-
ined solely by a four-hour written exam at the end of the term. This creates a
stark distinction between the continuous learning activities during the semester
and the isolated assessment that awaits them. It is my perspective that as educat-
ors and researchers, we should carefully consider whether the current approach to
learning and assessment can truly and accurately reflect students’ comprehension.
Perhaps embracing a more holistic approach with formative assessment, where
assessment and learning walk hand in hand, could foster more meaningful and
reflective learning experiences
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Appendix A

Information Part 1

Appendix A contains the information provided to students about the purpose of
collecting their homework, handling of the data and their rights as (potential)
participants.
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DEL 1

Emilie Lyse-Olsen
Mellomila 88
7018 Trondheim
Telefon: 94186805
E-post: emilie.l.olsen@ntnu.no

Trondheim, 28.06.2022

Til studenter i emnet TMA4110 høsten 2022 ved NTNU

Anmodning om tillatelse til innsamling av øvingsbesvarelser

Formål
Jeg er student på lektorprogrammet i realfag og følger integrert PhD-utdanning ved NTNU.
Høsten 2022 fortsetter jeg arbeidet med min masteroppgave i matematikkdidaktikk, og skal i
den forbindelse gjennomføre en undersøkelse med en gruppe studenter. Målet med
undersøkelsen er å få kunnskap om studenters forståelse og utfordringer knyttet til et tema
innen lineær algebra. På bakgrunn av denne undersøkelsen, vil jeg utvikle ressurser som kan
bidra til å øke læringsutbyttet og berike studenters forståelse av lineær algebra gjennom
arbeidet med både masteroppgaven og doktorgradsavhandlingen.

Datamateriale
Denne undersøkelsen består av studentenes skriftlige besvarelser på øvingsopplegget i emnet
TMA4110 Matematikk 3. De skriftlige besvarelsene vil bli samlet inn gjennom den digitale
læringsplattformen (Blackboard eller ovsys) hvor du normalt leverer øvingene dine. Ved å gi
ditt samtykke kan du, på bakgrunn av din besvarelse, senere kan bli kontaktet med
forespørsel om å delta i et oppfølgingsintervju, men du er ikke forpliktet til å delta på dette.

Behandling
Din besvarelse vil bli sett av meg, Emilie Lyse Olsen, og muligens også min veileder Yael
Fleischmann, førsteamanuensis ved institutt for matematiske fag. I masteroppgaven og
doktorgraden vil alle personer bli anonymisert for å unngå at enkeltpersoner kan identifiseres.

Varighet
Besvarelsen vil bli analysert og benyttet til å skrive min masteroppgave (planlagt levert våren
2023) og doktorgrad (planlagt levert høsten 2026). Det er ønskelig å oppbevare og eventuelt
benytte datamaterialet fram til avsluttet doktorgrad. For å ta høyde for eventuelle forsinkelser
settes varigheten til 31.12.2028.

Rett til innsyn i, retting eller sletting av personopplysninger
Forutsetningen for tillatelsen er at alt innsamlet materiale blir behandlet med respekt og blir
anonymisert, og at prosjektet ellers følger gjeldende retningslinjer for etikk og personvern.
Det er frivillig å delta i denne undersøkelsen og du kan til enhver tid trekke seg fra deltakelse
uten å måtte oppgi noen grunn til det. Så lenge du kan identifiseres i datamaterialet har du rett
til innsyn i hvilke personopplysninger som er registrert om deg, rett til å få utlevert en kopi av
personopplysningene som er registrert om deg, rett til å få rettet personopplysninger om deg,
rett til å få slettet personopplysninger om deg, og rett til å sende klage til Datatilsynet om



behandlingen av dine personopplysninger. Ved ønske om innsyn, retting eller sletting, ta
kontakt med meg, Emilie Lyse-Olsen (se kontaktinformasjon øverst på første side).

Dersom du vil vite mer om dette prosjektet, eller hva det innsamlede materialet skal brukes
til, kan du kontakte meg per e-post eller telefon (se øverst på første side for
kontaktinformasjon).

Kontaktinfo for øvrige involverte
Veileder er Yael Fleischmann: tlf.: 96732597; e-post: yael.fleischmann@ntnu.no.

NTNUs personvernombud er Thomas Helgesen: tlf. 93079038; e-post:
thomas.helgesen@ntnu.no.

Dersom du har spørsmål knyttet til NSD sin vurdering av prosjektet, ta kontakt med:
● NSD – Norsk senter for forskningsdata AS på epost (personverntjenester@nsd.no)

eller på telefon: 55 58 21 17.

Jeg håper du synes denne forskningen er av verdi, og at du er villig til å være med på den.

På forhånd takk!

Vennlig hilsen

Emilie Lyse Olsen



Appendix B

Consent Form

Appendix B contains a copy of the digital consent form in Nettskjema.
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Samtykkeskjema TMA4110
 
Hva heter du (fornavn og etternavn)?  
Hva er din e-postadresse?  
Hva er ditt mobilnummer?  
Hva er din fødselsdato?  
Hvilket studieprogram følger du?  
  
Som del av arbeidet med min masteroppgave og doktorgradsavhandling, ber jeg om tillatelse til å
anvende og gjengi deler av dine besvarelser på øvingsopplegget i TMA4110. Forutsetningen for
tillatelsen er at arbeidet blir anonymisert og behandlet med respekt, samt at prosjektet følger
retningslinjer for etikk og personvern i tråd med vurderingen fra Norsk senter for forskningsfata (NSD).
Formålet med prosjektet er å utvikle læringsressurser og undervisningssekvenser som støtter
studenters læring. Du kan lese mer om prosjektet, samt finne min kontaktinformasjon dersom du har
spørsmål eller ønsker å trekke tilbake ditt samtykke her: 
https://drive.google.com/file/d/1CqcX4JNOYYvogSofbp_oB22HobxK6JC_/view?usp=sharing 
Huk av nedenfor dersom du vil gi tillatelse.

Jeg gir tillatelse til å anvende og gjengi deler av min besvarelse på øvingsopplegget i TMA4110.

Generert: 2023-08-11 19:44:24.



Appendix C

Information Part 2

Appendix C contains the information provided to students about the purpose and
duration of the interviews, handling of the data and their rights as (potential)
participants.
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DEL 2

Emilie Lyse-Olsen
Mellomila 88
7018 Trondheim
Telefon: 94186805
E-post: emilie.l.olsen@ntnu.no

Trondheim, 28.06.2022

Til studenter i emnet TMA4110 høsten 2022 ved NTNU

Anmodning om tillatelse til video-/lydopptak av intervju

Formål
Jeg er student på lektorprogrammet i realfag og følger integrert PhD-utdanning ved NTNU.
Høsten 2022 fortsetter jeg arbeidet med min masteroppgave i matematikkdidaktikk, og skal i
den forbindelse gjennomføre en undersøkelse med en gruppe studenter. Målet med
undersøkelsen er å få kunnskap om studenters forståelse og utfordringer knyttet til et tema
innen lineær algebra. På bakgrunn av denne undersøkelsen, vil jeg utvikle ressurser som kan
bidra til å øke læringsutbyttet og berike studenters forståelse av lineær algebra gjennom
arbeidet med både masteroppgaven og doktorgradsavhandlingen.

Datamateriale
Denne undersøkelsen består av studentenes skriftlige besvarelser på øvingsopplegget i emnet
TMA4110 Matematikk 3, samt video-/lydopptak av intervjuer med enkelte studenter. På
bakgrunn av din besvarelse ber jeg deg om å delta på et kort intervju (maksimalt 45 minutter)
hvor du kan bli bedt om å utdype, forklare og begrunne svarene på din øving. For å få så
nøyaktige data som mulig, er det ønskelig å ta video-/lydopptak av intervjuet. Intervjuet vil
gjennomføres fysisk eller digitalt vha. videosamtaletjenesten Zoom, avhengig av hva som
passer best for deg. Det understrekes at intervjuet ikke vil benyttes i vurderingen av ditt
arbeid i emnet TMA4110.

Behandling
Opptaket og eventuelle transkripsjoner av dette vil kun bli sett av meg, Emilie Lyse Olsen, og
muligens også min veileder Yael Fleischmann, førsteamanuensis ved institutt for matematiske
fag. I masteroppgaven og doktorgraden vil alle personer bli anonymisert for å unngå at
enkeltpersoner kan identifiseres.

Varighet
Opptaket og eventuelle transkripsjoner av dette vil bli analysert og benyttet til å skrive min
masteroppgave (planlagt levert våren 2023) og doktorgrad (planlagt levert høsten 2026). Det
er ønskelig å oppbevare og eventuelt benytte datamaterialet fram til avsluttet doktorgrad. For
å ta høyde for eventuelle forsinkelser settes varigheten til 31.12.2028.

Rett til innsyn i, retting eller sletting av personopplysninger
Forutsetningen for tillatelsen er at alt innsamlet materiale blir behandlet med respekt og blir
anonymisert, og at prosjektet ellers følger gjeldende retningslinjer for etikk og personvern.
Det er frivillig å delta i denne undersøkelsen og du kan til enhver tid trekke seg fra deltakelse



uten å måtte oppgi noen grunn til det. Så lenge du kan identifiseres i datamaterialet har du rett
til innsyn i hvilke personopplysninger som er registrert om deg, rett til å få utlevert en kopi av
personopplysningene som er registrert om deg, rett til å få rettet personopplysninger om deg,
rett til å få slettet personopplysninger om deg, og rett til å sende klage til Datatilsynet om
behandlingen av dine personopplysninger. Ved ønske om innsyn, retting eller sletting, ta
kontakt med meg, Emilie Lyse-Olsen (se kontaktinformasjon øverst på første side).

Dersom du vil vite mer om dette prosjektet, eller hva det innsamlede materialet skal brukes
til, kan du kontakte meg per e-post eller telefon (se øverst på første side for
kontaktinformasjon).

Kontaktinfo for øvrige involverte
Veileder er Yael Fleischmann: tlf.: 96732597; e-post: yael.fleischmann@ntnu.no.

NTNUs personvernombud er Thomas Helgesen: tlf. 93079038; e-post:
thomas.helgesen@ntnu.no.

Dersom du har spørsmål knyttet til NSD sin vurdering av prosjektet, ta kontakt med:
● NSD – Norsk senter for forskningsdata AS på epost (personverntjenester@nsd.no)

eller på telefon: 55 58 21 17.

Jeg håper du synes denne forskningen er av verdi, og at du er villig til å være med på den.

På forhånd takk!

Vennlig hilsen

Emilie Lyse Olsen



Appendix D

Interview Guide (Example)

Appendix D gives an example of an interview guide. It should be noted that while
all the interviews followed the same basic structure, the semi-structured approach
provided the flexibility to omit certain questions while incorporating others.
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Intervjuguide

Innledning
● Takk: Takke respondenten for oppmøte
● Formålet med intervjuet: Få dypere innsikt i studentens forståelse av egenvektorer

og resonnement i oppgavene.
● Anonymitet: Informere om databehandling og rett til å trekke seg fra intervjuet.
● Innhold:

○ Bakgrunn (studieprogram, arbeidsvaner osv)
○ Spørsmål om oppgavene 9.-12.
○ Spørsmål om din opplevelse av innleveringen og intervjuet
○ Siste 10 min styrer respondenten (ekstra tid)

● Tid: Ca 45 minutter.
● Hjelpemidler

○ Du får skrivesaker, ark, oppgaveteksten og en kopi av egen besvarelse

Spørsmål

Bakgrunn
● Hva heter du?
● Hvilket studieprogram følger du?
● Hvor langt har du kommet i progresjonen på ditt studieprogram?

Arbeidsvaner
● Hvordan jobber du med emnet (videoforelesninger, interaktive, mattelab,

plenumsregning)?
● Hvordan jobber du med innleveringene (alene/sammen med andre, på

campus/hjemme)?
● Hvilke ressurser bruker du for å løse oppgavene (youtube, forelesningsnotater,

mattelab, geogebra, kalkulatorer på nett etc.)?
● Hvor mye tid brukte du på innleveringen?
● Hvordan opplever du vanskelighetsgraden/arbeidsmengden i emnet?
● Hvordan lærer du best (løse eksamensoppgaver, forelesning, lese etc.)?

Spørsmål om temaet og oppgavene

Oppgave 9
● Hva er en egenvektor og hva er en egenverdi?

○ Er det sånn at hvis en vektor er en egenvektor for en matrise A, så må den
også være det for en annen matrise B?

○ Har alle kvadratiske matriser egenvektorer/egenverdier?



Oppgave 10
● Hvordan løste du oppgave 10?

○ Kunne du løst den på en annen måte?
○ Hvor mange egenvektorer har denne matrisen?

Oppgave 11
● Hvordan resonnerte du i oppgave b)?

○ c)?
○ d)?

● Du har skrevet at Ax ikke kan være 0-vektoren. Hvordan resonnerte du her?
○ Hva med nullmatrisen?

● Hvorfor kan ikke lambda være 0?
● Hvorfor kan ikke x være 0-vektoren?

Oppgave 12 - Byttet om egenverdiene
● Hvordan tenkte du for å løse denne oppgaven?
● Så her har du skrevet at e) ikke er en egenvektor fordi Ax = 0
● Hvordan ser du at egenverdien i a) er ½?
● Hvordan ser du at egenverdien i f) er 3)?

Tanker rundt oppgavene og emnet
● Hvordan opplever du arbeidet med å løse disse oppgavene?
● Var det noen oppgaver du opplevde som spesielt krevende? Evt hvilke og hvorfor?
● Hvordan vil du beskrive din egen forståelse av temaet egenvektorer, egenverdier,

egenrom?

Avslutningsspørsmål
● Er det noe mer du vil legge til eller noen spørsmål?
● Kan jeg kontakte deg igjen dersom det blir aktuelt?
● Takk for at du stilte opp!



Appendix E

Tasks (Norwegian Version)

Appendix E shows the Norwegian version of Tasks 9-12, as it was presented to the
students of this study,
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TMA4110 Matematikk 3 Side 2 av 3

Oppgaver til kapittel 10
9. Forklar med egne ord:

Hva er en egenvektor?a)
Hva er en egenverdi?b)

Bruk gjerne tegninger for å illustrere.

10. Begrunn hvorfor x=

�
−1

2

�
er eller ikke er en

egenvektor til matrisen A=

�
1 1

−2 −2

�
.

11. La Avære en n× n-matrise og λ ∈ R være en egen-
verdi av A med tilhørende egenvektor x ∈ Rn. Avgjør
i hver av deloppgavene nedenfor om påstanden er
sann eller usann og forklar hvorfor:

a) Ax= λx

b) (A−λI)x= 0

c) det(A−λI) = 0

d) Multiplikasjon
med x skalarer A

med en faktor λ

e) Multiplkasjon
med A skalerer x

med en faktor λ

f) Ax kan ikke være 0

g) λ kan ikke være 0

h) x kan ikke være 0

12. La A være en 2× 2-matrise og x være en todimensjonal vektor. Svar på spørsmålene

1) Er x en egenvektor for A?
2) Hvorfor/hvorfor ikke?
3) Hvis x er en egenvektor, hva tror du egenverdien λ ∈ R er lik?

for hvert av tilfellene a)–f) nedenfor:

x

y

Ax
x

a)
x

y

x

Ax

b)
x

y
Ax

x

c)

x

y
Ax

xd)
x

y

Ax = 0

xe)
x

y
x

Axf)



Appendix F

Coding handbook (Task 9)

Appendix F shows the coding handbook that was created to code the students’
answers to Task 9. The handbook contains the codes and a description of their
use, some chosen examples and the corresponding modes of thinking.
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Task 9
Code Description Example Theme

9-transformation Transformation
Describing eigenvectors
as vectors that are
transformed by a linear
transformation.

“En egenvektor til en lineær transformasjon T:V->V et element i vektorrommet V
som ikke endrer retning når det avbildes av transformasjonen”

Analytic-
structural

9-span Span
Describes eigenvectors
as preserving their span
(during a
transformation/matrix
multiplication).

“An eigenvector is a vector remaining in its own span after a transformation.”

“An eigenvector is a vector of a lin-trans which spans the same space before and
after undergoing a transformation.”

Analytic-
structural

9-vector space Vector space
Tying eigenvectors and
eigenvalues to vector
spaces. Either
describing eigenvectors
as elements of vector
spaces (fulfilling certain
properties) or as
vectors of
transformations that
span the same space
before and after the
transformation.

Analytic-
structural



9-image Image
Describing eigenvectors
as imaged by linear
transformations.

Analytic-
structural

9-real.eig.val Figure_structural
A general sketch
illustrating the notions
of eigenvectors and
eigenvalues, not
restricted to particular
examples of
eigenvectors or
eigenvalues.

Analytic-
structural

9-eigen
equation

Eigen equation
Describing eigenvectors
as fulfilling the
eigenequation (Either

, or𝐴𝑥 = λ𝑥 𝑇(𝑥) = λ𝑥
a verbal rephrasing of
either of these
equations).

" . From the equation above is - the vector, eigenvector, if and A is𝐴𝑥
→
= 𝑥

→
𝑥
→

𝑥 ≠ 0
an matrix. [...]..”𝑛 × 𝑛

Structural-
arithmetic

9-procedure Procedure
Describing eigenvectors
and eigenvalues as
stemming from the
process for computing
them.

Analytic-
arithmetic



9-scaling Scaling
Describing eigenvectors
s vectors that are
scaled (by a
transformation/matrix
multiplication).

Synthetic-
geometric

9-direction Direction
Describing eigenvectors
as preserving their
direction (under a
transformation/matrix
multiplication).

“An eigenvector of a linear transformation T: V->V [is] an element in the vector
space V which does not change direction [emphasis added] when imaged by the
transformation.”

Synthetic-
geometric

9-line Line
Describing eigenvectors
as remaining on the
same line (after
undergoing a
transformation/matrix
multiplication).

Synthetic-
geometric

9-rotation/angle Rotation-angle
Describing eigenvectors
as not being rotated or
moved by an angle.

“En egenvektor er en vektor som ikke endrer vinkel i forhold til origo når matrisen
påvirker rommet den eksisterer i, den blir bare skalert med en faktor.”

Synthetic-
geometric

9-parallel Parallel
Describing the
eigenvector x as
parallel with the
transformed (multiplied)
vector, Ax.

“En vektor som er parallel med seg selv etter den er blitt transformert av
matrisen…”

Synthetic-
geometric



9-visual
description

Visual description
A visual description of
eigenvectors, including
“changing length”,
"stretching", "shrinking",
"flipping" etc.

Synthetic-
geometric

9-figure Figure_geometric
Student provided a
sketch of eigenvectors
and/or eigenvalues,
illustrating a particular
example of them.

Synthetic-
geometric

9-misc Miscellaneous
The answer does not fit
into any other codes
and differs significantly
from other answers.

--

9-NA Not answered
The student did not
provide an answer.

-- --
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