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Abstract: In this paper we explore the optimal positioning of an underwater snake robot (USR)
for energy harvesting in the wake of a bluff body. The USR and fluid are simulated jointly using
a coupled vortex particle-mesh method and multi-body system solver. The power dissipated in
the damped joints of the robot is used as a proxy for the harvested energy. Furthermore, the
effect of different damper coefficients on power dissipation is explored. An extremum-seeking
control (ESC) scheme for nonlinear systems with time-varying steady-state solutions is employed
to optimize the horizontal placement of the robot. The results show that the dissipated power
does have a clear optimum. Moreover, the horizontal position of the USR under the ESC scheme
is demonstrated to converge to a vicinity of the optimal position.
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1. INTRODUCTION

Our understanding of the oceans is crucial for meeting
challenges such as food sufficiency, bio-diversity, renew-
able energy, transport, and access to minerals and other
resources. To fully access the vast oceans we need efficient,
autonomous marine robots. One promising approach is
to use underwater snake robots (USRs), which are au-
tonomous underwater vehicles (AUVSs) consisting of sev-
eral slim segments connected by joints, allowing them to
move by undulating like an eel (Kelasidi et al. (2016)).
The advantage of this design is that it can access narrow
spaces and interact with its environment since the vehicle
is also a robotic manipulator.

Power delivery remains a challenge for AUVs. Battery con-
straints limit their operational time, while tethers would
limit their operational area and autonomy. Therefore, we
want to pursue the idea of achieving energy autonomy for
USRs by utilizing the motion induced in the joints when
the USR operates in the wake of a bluff body (Bernier
et al. (2019, 2018)). To this end, we investigate how the
energy dissipated in the rotational dampers between the
links changes as the distance to the bluff body is altered in
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Fig. 1. Snapshot from the simulation of the swimmer in
the vortex street behind a bluff body.

a numerical high-fidelity simulation. Then an extremum-
seeking controller is implemented to find the optimal dis-
tance to the bluff body and the results from the high-
fidelity simulations are used to assess the performance of
the ESC.

Energy harvesting for snake-like structures in vortex wakes
behind bluff bodies has been studied with promising re-
sults. In Allen and Smits (2001), four piezoelectric mem-
branes were placed in the wakes of two different bluff
bodies. It was observed that the snake-like structures ex-
hibited lock-in behavior to the bluff body shedding, which
is a requirement for achieving optimal coupling. Lock-
in behavior results in a resonance condition where the
membrane has a minimal damping effect on the vortex
street.
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The energy harvesting capabilities of an articulated three-
link swimmer were investigated computationally in Bernier
et al. (2019). The bodies are modelled as separated ellipses
and connected through rotational dampers. Several differ-
ent damping coefficients were studied, and the results indi-
cate an optimal damping coefficient for harvesting energy.
However, changing other parameters, such as the distance
to the cylinder and the swimmer’s size, might yield better
harvesting efficiency.

In the field of model-free optimization, extremum-seeking
control (ESC) has a long history. While the method can be
traced back as far as 1922 to the work of Maurice Leblanc
(Krstic and Wang, 1997), it has regained popularity in the
last few decades after receiving more rigorous analytical
treatment and systematization by e.g. Krstic and Wang
(1997) and Nesi¢ et al. (2010). However, for most of
its history ESC has been limited to the optimization of
systems that can be regulated to optimal constant set-
points. The method as such has not been applicable to
systems that exhibit periodic or generally time-varying
steady-state behavior (e.g. stable limit-cycles). In Haring
et al. (2013), a variation of ESC was developed for time-
varying nonlinear systems with stable periodic steady-
state behavior. However, the method requires that the
period of the steady-state behavior is known a priori.
Hazeleger et al. (2020) proposes a more general method,
which can be used for nonlinear systems with unspecified
time-varying steady-state solutions, as long as they are
stable and bounded for each choice of system input.

In this paper we investigate the optimal positioning of a
USR in a simulated vortex street. Specifically, we want to
investigate whether the distance to the cylinder can be an
important parameter to optimize the energy harvesting.
We use the power dissipated in the damped joints of the
robot as a proxy for the harvested energy, and we find
that this has a clear optimum. Furthermore, we utilize the
ESC method of Hazeleger et al. (2020) for nonlinear time-
varying systems to maximize the energy dissipated in the
joints of the robot by varying the distance between the
USR and the bluff cylinder. The simulation of the snake-
fluid system is performed using a vortex particle-mesh
(VPM) method coupled with a multi-body system (MBS)
solver based on an algorithm by Bernier et al. (2019).

The paper is organized as follows: In Section 2 the com-
putational fluid dynamics (CFD) solver used in this paper
is summarized and we present the methods used to in-
vestigate how the position of the USR affects the energy
dissipated in the dampers. Then, an overview of the ESC-
scheme applied to find the optimal position is presented.
The simulation setups and results from the simulations are
presented in Section 3. We demonstrate that there is an
optimal horizontal position where the energy dissipated in
the dampers of a multi-body swimmer is highest. Further-
more, it is shown that the ESC can be used to regulate
the system towards this optimal distance. In Section 4 a
conclusion is presented and future work is discussed.
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2. METHODS
2.1 Coupled Solver

This section shortly summarizes the algorithm used to
simulate a two-dimensional articulated swimmer in a com-
plex fluid environment with fluid-structure interaction.
The method is presented in Bernier et al. (2019) and relies
on VPM techniques coupled with a MBS solver.

The VPM method solves the incompressible flow past de-
forming objects by using the velocity-vorticity formulation
of the Navier-Stokes equations,

Do.)f

Dt (1a)
where D/Dt denotes the Lagrangian derivative, uy is
the velocity field, v is the kinematic viscosity and wy
is the vorticity field. The algorithm is summarized in
Algorithm 1.

= (wf : V)uf + I/VQWf,

The first step in Algorithm 1 consists of recovering the ve-
locity field from the vorticity field. Then, in the projection
step, the fluid evolves as if the swimmer is not there. The
resulting velocity field and position of particles, u’f and x,
are then used to predict the linear and angular momen-
tum, Pproj and Ipej, of the swimmer, respectively. The
resulting forces and moments are given by Fj,j and Mp,.;,
respectively. The dynamics of the swimmer are handled by
the MBS solver and given by (4c) derived in Spong et al.
(2006). The generalized coordinates of the swimmer are
given by ¢ = [q1, ..., qnq]T, where [g1, ¢2] are the horizontal
and vertical position of the first link, while g3 is the
absolute orientation of the first link. The relative angles
between the links are given by [q4, ..., qn,], an example-
configuration is given in Fig. 2. The number of generalized
coordinates is given by n,. The generalized hydrodynamic
forces and moments are obtained from the projection and
penalization forces through a mapping F, in our case the
transposed Jacobian of the generalized coordinates, and
given by Tyyq, while the actuation forces are given by Tocs.
The configuration is then translated into a characteristic
function that describes the swimmer’s shape xs through
the mapping function G. The velocity field of the structure
is represented by us, which is found in a similar fashion
through the mapping function H. The no-slip condition
is then enforced by use of Brinkman penalization in (6a),
resulting in the new velocity and vorticity fields, w) and
w) respectively. The forces and moments resulting from
constraining the fluid, F,en and My, are calculated in
(6¢) and (6d). Finally, the vorticity field is updated in
(7a). Additionally, the time-step is constrained so that
At" < min{C, h?/2v, At™**} where A" = (t"T1 —¢"),
C are the Lagrangian Courant-Friedrich-Levy conditions
(LCFL) (Bernier et al. (2019)), and h is the uniform
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Fig. 2. Three-linked swimmer configuration.
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Algorithm 1 Coupled Solver
While: " < tFnd

1: Retrieve velocity field from vorticity field by solving
the Poisson equation

Viu} = -V x w}. (2)
2: Calculate projection forces and moments
pril — prn
n+1 __ n+1 __ proj pro,
PprOJ = /prxl,’u:%da:, Fp]rOJ = Ap
(3a)

ITL+1 n

L 4
Il = /prx’;(x xuf)de, M= Zproj _ “proj

Atn
(3b)
3: Time integration of MBS and update swimmer posi-
tion and velocity

Tyt = F(Fodi + Fyons Mhi + M), (4a)

proj pen?’ proj
:;{1 — provided by a control law, (4b)
D( )q + C(qv ) = T;;Jtrl + T}?yzl. (4(})

Compute g™t and ¢*t! for t"+! =7 + At

X =6(g"), witt =H(g" ¢, (5a)

4: Penalization of vorticity field and calculation of penal-
ization forces and moments
ulf + AAE Lyt

un—i—l _ , 6
A 14 AAtny 2! (62)
A=Voxui (6b)
F;Cil _ / /\ijnJrl( n+l ?+1)d:13, (60)
MG = / Mppxs e x (uy ™ —uide.  (6d)
5: Time integration of vorticity field
0
% = V2w — V- (upw)) (7a)
w?“ witt (7b)

End while.

spacing in the Cartesian discretization grid. The LCFL
conditions may allow for time-steps that destabilize the
MBS solver, therefore the time-step is constrained by a
maximal time-step At™** which was found empirically.

2.2 Investigating the Optimal Positioning of USRs

As discussed in the Introduction, we want to investigate
whether the distance to the cylinder can be an important
parameter in optimizing the energy harvesting. In this
section, we describe the method we will use to investigate
whether there exists a well-defined optimal distance be-
hind a bluff body with respect to the energy dissipated and
whether the variation in dissipated energy is substantial as
a function of distance.

A cylinder with diameter Dy and a planar USR with
three links are submerged in a uniform free stream with
a velocity Uy. The harvesting performance of the planar
USR is assessed by considering the summed energy dis-
sipated in the revolute dampers at each time step, given
by
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where the damper-coefficients are given by {Kd,i}i:zlu-nq’

P, is the energy dissipated for a given generalized velocity,
and P; is the average dimensionless dissipated power
over a solution of the discretized system. Additionally we
define P* as dimensionless power, and t* = tUy/Dcy1 as
dimensionless time, where ¢ is simulation time. The USR
is prescribed to hold a constant position in the horizontal
direction. The simulation is run several times at different
distances from the bluff body, and the resulting Py is
compared. To avoid disturbances from the transient effects
while the wake forms, the starting time for measurements,
t*, has to be selected sufficiently large.

As the steady-state behavior of a USR will be quasi-
periodic, so will the dissipated power. However, we are
interested in the average dissipated power. Thus, we find
a smooth approximation of the average dissipated power
as a function of distance. This approximation is obtained
by placing the USR at a distance ds from the bluff body.
The dissipated energy is measured and fed through a low-
pass (LP) filter with a cutoff frequency sufficiently low to
filter out transients from the quasi-periodic oscillations of
the USR when it operates in the wake. The distance is
constant until the wake is fully formed and the LP-filter
estimation has reached the quasi-constant equilibrium.
The horizontal distance to the bluff body is then reduced
at a constant rate ag, sufficiently slow in comparison to
the quasi-periodic behavior of the USR and the filter
cutoff frequency. The filter acts as a very slowly-moving
averaging operator, while the horizontal movement is slow
enough to let the change in average power dissipation
propagate through the filter. This allows us to assess
whether P, with the LP filter is a good evaluation of the
performance while the USR is moving and if the optimal
position coincides with the results from the grid-search
where the USR held a constant position. Additionally, the
results can be used as a ground truth when evaluating the
performance of the ESC scheme.

2.8 Extremum-Seeking Control

In this section we present the ESC scheme which we will
use to optimize the horizontal position of the robot. ESC is
a method for model-free, online optimal control. Consider
a non-specified time-invariant plant on the form

x(t) = £(x(t), u(t), w(t)), x(0) = %o (9a)
y(t) = g(x(t), u(t)) (9b)

where x(t) is the system state, u(¢) is the input, w(t) is an
unknown disturbance and y(t) is the output of the system.
Define a cost function c(y(t)). Assume that the plant is
globally exponentially stable for any constant choice of u,
and that there exists an unknown function 1(u) mapping
a constant u to the corresponding equilibrium of the sys-
tem. An objective function F(u) = ¢(g(l(u),u)) can be
associated to the cost, and F(u) is not known explicitly.
Then, an ESC scheme can be devised to drive u arbitrarily
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close to its optimal value with respect to F(u) (Ariyur
and Krsti¢, 2003, pp.71 -73). ESC schemes are useful in a
variety of scenarios due to its model-free nature. However,
conventional ESC concerns itself only with plants whose
steady-state behavior consists of convergence to an equilib-
rium point. In our case, a given horizontal position of the
snake with respect to the cylinder will result in an oscilla-
tory, periodic or quasi-periodic motion. We conjecture that
by varying the horizontal position we can drive the plant to
a time-varying steady-state behavior which is optimal with
respect to power dissipation. In Hazeleger et al. (2020), an
ESC scheme for nonlinear systems with arbitrary, time-
varying steady-state behavior was introduced, and we will
thus use this method to control the USR to its optimal
position.

We now present a brief overview of the method introduced
in Hazeleger et al. (2020) that is required to contextualize
our application of the method. Please see Hazeleger et al.
(2020) for further details of the method and proof of
stability. A nonlinear system on the form (9) is considered.
It is further assumed that the system is globally uniformly
exponentially convergent, i.e., there is some uniformly
exponentially stable trajectory denoted X (¢, u) which is
defined and bounded Vt € R, for each constant choice of
u, and for all piece-wise continuous and bounded w(t).

Central to the method is the utilization of a dynamic cost
function: A cost function ¢(t) = Z(y(t),u(t)) is processed
through a filter subject to choice:

z(t) = azh(z(t), c(t)) (10a)
U(t) = k(z(t)) (10b)

where [(t) is referred to as the dynamic cost function.

We may denote the steady-state solution of the cost-
function éy(t,u) = Z(y,(t,u),u), where y,(t,u) =
g(Xw(t,u),u,w(t)). While w(t,u) is generally time-
varying for any time-varying steady-state output, the filter
acts so as to average Gy (t, u) over time, leading to a slowly-
varying dynamic cost which is quasi-constant even for
time-varying input.

We then denote the solution of z under the input signal
Cw(t,u) as Zy(t,u). While the choice of h(-) is left as a
design parameter, the magnitude of a, can be chosen so
as to make the dynamics of (10) arbitrarily slow. In the
limit, the filter state becomes constant. We assume the
existence of a twice continuously differentiable function
Q,, (u) defined as follows:

— A . —
Q) £ T 7w (t,w) (11)

and refer to q,, (u) as the constant performance cost. We
are now ready to define our objective function, and denote
it as Fy(u) = k(@ (u)). It is assumed that the dynamic
cost function (10) is designed such that Fy(u) is twice
continuously differentiable and has a unique minimum
on R"™ the domain of system inputs. Furthermore, it
is assumed that its directional derivative towards the
optimum exhibits super-linear growth from the optimal
point, and that its Hessian with respect to u is uniformly
bounded, on R™. The input for which Fy(u) reaches its
minimum is referred to as uj,.

The Jacobian of the objective function is utilized to formu-
late an adaptation law for the current best approximation
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of uf,, denoted a(t). As information about Fy, is only
available through observing [(t), and as one in practice
wants to choose «, low but nonzero, our knowledge of
Fy is incomplete. Thus, we want to estimate both F,
and its Jacobian with respect to 0(t). In order to get
information about the Jacobian of Fy,, we choose our input
asu(t) = a(t)+a,w(t), where w(t) = vec ({w;(t)};c1 )
is a periodic signal designed to persistently excite the
system.

A model is formulated to describe the behavior of the
series-connected system from the nominal input, a(t), to
the filter output I(¢), in such a way that the state of the
model becomes m(t) £ [Fw(ﬁ(t)),aw%Fw(ﬂ(t))T]T. A
least-squares observer is employed in order to produce an
estimate m(t), thereby also producing an estimate of the

Jacobian of Fy,, denoted %Fw(ﬁ(t)).

Finally, an adaptive law can be formulated for u(t):
nuDm(t)

Y1 + Au[[Di ()]

where Ay, 7y are tuning parameters, and D = [0,,,x1 Ln,].
Under certain assumptions, which are given in Theorem 14
and Lemma 17 in Hazeleger et al. (2020), the system under
the ESC scheme is semi-globally practically asymptotically
stable, and lim;_,, [[0(¢t) — u*|| has an upper bound de-
pendent on controller parameters and the bound of the
disturbance w(t).

a(t) = -\

(12)

2.4 FExtremum-Seeking Control for the Snake-Fluid System

We now describe how we apply ESC to address the prob-
lem of maximal energy dissipation in damped joints, which
we use as a proxy for maximal energy harvesting. Firstly,
consider the USR rigid body system as formulated in
(4c), where the horizontal position of the first link is
directly prescribed by u(t). We now define as our output
y(t) = q(t). Then, we simply define the cost function
as the negated sum of energy dissipated in the revolute
joints of the robot, i.e. c(y(t)) = —Pu(y(t)), with Py(+)
defined as in (8a). Except from the prescribed, slowly-
varying motion of the horizontal position of the first link,
the USR is completely unactuated. Thus, the vast majority
of the energy dissipated in the joint come from external
disturbances on the system. The USR is affected by the
forces from the fluid on each link. However, the dynamics
of the fluid are too complex to be captured in closed-form,
and the forces on the snake from the fluid are therefore in-
cluded in the control scheme as an unknown, time-varying
disturbance w(t). We are interested in maximizing the
power dissipated in the USR, but the time-varying nature
of the steady-state behavior at any given position means
that the dissipated energy will also fluctuate greatly. The
dynamic cost function described in (10), however, allows us
to consider an averaged dissipated power which converges
to a quasi-constant steady-state behavior for a constant u,
and which we wish to optimize.

3. RESULTS
8.1 Simulation Setup

This section presents the parameters used during the sim-
ulations presented in this paper. The Reynolds number
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is selected as Re = 100 for all simulations with a com-
putational domain size given by [0,1.0] x [0.0,0.5] with a
discretization grid resolution of [1024, 512]. The remaining
parameters used in the simulations are given in Table 1.
The parameter H:RxR"™ — RmuXnu jg function, here
chosen constant, which factors into estimation of higher-
order terms of Fy(u(t)) and is considered a controller
design choice, see Hazeleger et al. (2020) for details. The
swimmer dimensions are illustrated in Fig. 3, where the
length and width from the center are given by a and b,
respectively. The length from the tip of the ellipse to the
rotational joint is given by ¢. A circular rigid body is po-
sitioned in front of the swimmer to act as a 2-dimensional
bluff body and generate the vortex street. The horizontal
and vertical positions of the cylinder centre mass are given
by [z&, yg;,‘}]T. See Fig. 1 for a snapshot of the simulation

C
of the swimmer in the vortex street.

o { ST 5o

Fig. 3. Link and joint configuration.

3.2 Optimal Positioning

This section presents the results from the grid search of the
average steady-state dissipated power as a function of the
constant distance dg. The distances used in the simulation
are [1.5,1.75,2.0,2.25,2.5,2.75, 3.0] X Dcy1. We also present
the results of a smooth approximation of the average
steady-state dissipated power as a function of distance.
This smooth approximation was rendered through a low-
pass-filtering of the dissipated power resulting from a
constant-velocity swipe of horizontal position, as described
in Section 2.2. The resulting dissipated energy from the
grid search with [t*,##"4=1] = [20s,30s] and the smooth
approximation are shown in the left and right subplots of
Fig. 4, respectively.

The results from the grid search indicate that there is an
optimal position that can be utilized. As can be seen in
the left plot of Fig. 4, the optimal position is acquired at
ds = 2.25 X D,y for all configurations except K4 = 0.005,
which has a optimal position at ds = 2.5X Dcy1. The results
indicate that the maximal dissipation rate increases with
higher K; up to K4 = 0.01. For K; = 0.0125 the maximal
dissipation rate is the same as that for K; = 0.01, while
the maximal dissipation rate is lower for K; = 0.0150.
However, we suspect this is a result of the grid being too
coarse and that a finer grid would reveal that the optimal
position varies continuously as a function of K4, and is
located between dy = [2.0,2.75] x Dy for the depicted
choices of K. This also implies that the exact maximal
value might not be captured in the grid search. We expect
that a higher damper stiffness would lead to a higher
P;. The optimal distance is slightly different for the grid
search and the continuous approximation in Fig. 4, which
may also be a result of the grid resolution or a result of
the constant forward motion that induces some additional
energy into the system.

The smooth approximation of average steady-state power
dissipation further indicates that there are no local optima
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Fig. 4. Plots of the average dissipated power 13,2‘ for
different damper coefficients K4 (left) and plot of the
estimated average dissipated power from a low-pass
filter as a function of the distance (right).

close to the global optimum on the interval considered.
This lack of local peaks indicates that the distance may
be well-suited for gradient-based optimization schemes,
which will often struggle with local optima. However, one
should also note that the slope seems to flatten out for
greater distances from the cylinder, which may lead to
slow convergence in these areas.

3.8 Extremum-Seeking Control

We now present the simulation results using the ESC
scheme presented in Section 2.3 to maximize the energy
dissipated in the joints of the USR through varying its
horizontal distance behind a vortex-shedding bluff body.
In Fig. 5, we see the resulting horizontal position and
the corresponding dissipated power in the USR found by
the ESC scheme. To initialize the system, the position is
first held constant until a constant steady-state is reached
in the filtered dissipated power, before the system is
subjected to the ESC scheme.

The ESC scheme is seen in Fig. 5 to move fairly slowly at
first, before picking up speed right before t* = 2000 and
converging shortly after. As is seen in Fig. 5, the horizontal
position converges to an oscillatory behavior around the
optimal distance d op¢ as obtained from the approxima-
tion depicted in Fig. 4. The flat slope of the dissipated
power in the neighborhood around d, = 4.0 in Fig. 4 helps
explain the slow convergence towards the optimum when
the position is in this interval. This demonstrates that
the ESC scheme is capable of converging to the correct
neighborhood, even when moving through difficult areas
where || & Fy (u)|| is small.

Fig. 5 shows that the dissipated power actually peaks
before the ESC scheme converges, and that the peaks in
the steady-state response are slightly above the maximum
power Py, max as obtained from the approximation depicted
in Fig. 4. This may first seem counter-intuitive, but has
a plausible explanation. The prescribed motion dictated
by the ESC scheme also introduces kinetic energy, which
propagates through the system and shows up as increased
dissipated energy in the joints. While the added energy
is small for slow movements, the increased rate of conver-
gence before t* = 2000, and the resulting increased change
in input, likely results in more energy introduced through
the prescribed motion for a short time interval. Nonethe-
less, as can be seen, the estimate of the gradient is not
disturbed by this in a way that impedes the convergence of
the scheme. We also observe that the oscillation in position
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Table 1. Simulation parameters

Uy Deyy a b c P Ps C Agmax mgiﬂ yé?;ri

0.2 0.1 0.3125Dy1  0.2a 0.1D¢y1 997 997 0.02 0.001 0.2 0.25
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Fig. 5. Plots of the dissipated power and low-pass filtered
dissipated power of the snake (left) and the prescribed
horizontal position (right) under ESC.

towards the end of the simulation is not symmetric around
the optimal position. This might be in part due to the
scheme not having fully converged, and the small slope
close to the optimum slowing down further convergence to-
wards the actual steady-state behavior. This is supported
by the slight upward trend that can be observed during
the last oscillations in the position seen in Fig. 5.

It should be noted that there is a gap between even high-
fidelity simulations and reality. However, we conjecture
that the model-free nature of the ESC method makes the
results resilient to minor simulation inaccuracies so long
as the qualitative behavior of the system is captured.

4. CONCLUSIONS AND FUTURE WORK

In this paper, the optimal horizontal positioning of a
USR in the vortex street of a bluff body with respect to
power dissipation was investigated through high-fidelity
simulations. It was found through a grid search that
such an optimal position did indeed exist, and a smooth
approximation of the dissipated power as a function of
distance further indicated that no local optima exist in
the close vicinity of the global optimum on the interval
considered, for the bluff body in question. This supports
that energy autonomy of USRs can be achieved by utilizing
the motion induced when the USR operates in the wake of
a bluff body, which was the motivation for our research.

Furthermore, an ESC scheme for nonlinear systems with
time-varying steady-state solutions was employed to opti-
mize over the distance from the bluff body to maximize
steady-state power dissipation in the joints of the USR.
Simulations show that the system under the ESC scheme
autonomously converges to a neighborhood around the
optimum that was previously determined through the grid
search.

Future work involves experiments to confirm the simula-
tion results on the existence of an optimal distance from
the cylinder. Additionally, results from the grid search
indicate that the damping coefficients in the joints may
also have a significant impact on power dissipation. Thus,

employing ESC for joint optimization over distance and
damping coefficients will be an interesting avenue of in-
vestigation.
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