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ABSTRACT

The effectiveness of federated learning (FL) in leveraging dis-
tributed datasets is highly contingent upon the accuracy of model
exchanges between clients and servers. Communication errors caused
by noisy links can negatively impact learning accuracy. To address
this issue, we present an FL algorithm that is robust to communication
errors while reducing the communication load on clients. To derive the
proposed algorithm, we consider a weighted least-squares regression
problem as a motivating example. We cast the considered problem as
a distributed optimization problem over a federated network, which
employs random scheduling to enhance communication efficiency,
and solve it using the alternating direction method of multipliers. To
improve robustness, we eliminate the local dual parameters and reduce
the number of global model exchanges via a change of variable. We
analyze the mean convergence of our proposed algorithm and demon-
strate its effectiveness compared with related existing algorithms via
simulations.

1. INTRODUCTION

With the increasing prevalence of smart devices, big data is becoming
more ubiquitous. Learning from big data can enhance the decision-
making capability of the end-users [1, 2]. However, this is challeng-
ing as the data is stored locally on edge devices and moving it to the
cloud or a central server may raise privacy/security or excessive re-
source utilization concerns. Federated learning (FL) is a distributed
learning paradigm that allows edge devices to collaboratively learn a
shared global model using their locally-stored data without compro-
mising their data privacy [3, 4]. FL is increasingly popular due to its
ability to handle heterogeneous data and devices [5]. Data heterogene-
ity may refer to data being non-IID or imbalance in client data used to
learn the global model [6, 7]. Device heterogeneity relates to diversity
in storage, energy, computational, or communication resources of the
clients participating in FL [8, 9].

The federated average (FedAvg) algorithm [3] is a popular base-
line FL method. In FedAvg, the global iteration round begins with
the server sharing its aggregated model with a subset of all clients se-
lected uniformly at random, typically over a wireless network. After
receiving the aggregated model from the server, the clients perform
local learning to update the model and share the updated model with
the server. Finally, the server receives the local models and aggre-
gates them to produce a new global model. This process repeats until a
specific convergence criterion is met. Many FL methods, including Fe-
dAvg, have been studied in the literature considering different aspects
such as data privacy [10], model poisoning attacks [11], and commu-
nication efficiency [12]. However, most FL algorithms assume ideal
communication links and do not take communication noise or error
into account [13–17].
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When the communication channels between the server and the
edge devices are noisy, the server receives noisy local updates due to
uplink noise, and each client receives a noisy version of the aggregated
model from the server due to downlink noise [18–20]. Using mod-
els that are corrupted by communication noise/error can deteriorate the
quality of the learned model. Many works on FL have primarily fo-
cused on the uplink noise [21, 22]. In [23], the impact of downlink
noise on FL is investigated. These studies show that the performance
of gradient-descent-based FL algorithms can degrade when noise is
present in the communication channels. In [19], a new loss function is
proposed for FL using the first-order derivative of the loss function as
a regularizer to overcome the problem of additive noise in communi-
cation links. In [23], two approaches are proposed to make FL more
robust to the downlink noise. The first approach is based on using
a quantization technique alongside transmitting the global model up-
date via digital links and employing channel coding with a common
rate. The other approach is based on an analog downlink transmission
scheme where the server transmits an uncoded global model update.

The authors of [24, 25] propose that by controlling the scale of the
communication signal-to-noise ratio, the noise can be tolerated and the
convergence rate of FedAvg with perfect communication links can be
maintained. However, they do not consider any countermeasure for the
effects of the noise. In [26], the authors use precoding and scaling upon
transmissions to alleviate the ill effects of noisy channels and ensure the
convergence of their algorithm. These and some other similar methods
proposed to deal with link noise in FL usually require additional re-
sources on the client side. This can be counterproductive as, in FL,
clients often operate with limited resources in terms of power/energy,
memory, or computational capacity.

FL approaches based on the alternating direction method of mul-
tipliers (ADMM) can exhibit some robustness to additive communica-
tion noise due to the nature of their design [27]. However, they require
all clients to participate in every FL round, which may be impractical
in real-life scenarios when the clients are resource-constrained or het-
erogeneous edge devices. Therefore, there is a great demand for FL
algorithms that are robust to noise in communication links with mini-
mal extra communication or computational requirements.

In this paper, we propose a resource-efficient ADMM-based FL al-
gorithm that is robust to communication noise/error while imposing no
additional computational burden on the participating clients. We con-
sider the presence of noise in both uplink and downlink communica-
tions. Considering the weighted least-squares (WLS) regression prob-
lem as a motivating example, we develop our proposed FL algorithm
by iteratively solving an appropriately-formulated distributed convex
optimization problem via the ADMM. To achieve communication ef-
ficiency, we employ random scheduling of the clients. Furthermore,
to prevent error accumulation from degrading the learning, we com-
municate a linear combination of the last two global model updates
as well as eliminating the dual model parameters at all participating
edge devices. Through theoretical analysis, we show that the conver-
gence of the proposed algorithm is ensured when the server chooses a



random subset of the clients at each iteration even with noisy commu-
nication links. Our simulation results also attest to the effectiveness of
the proposed algorithm in comparison with the state of the art as well
as corroborating our theoretical findings.

2. PROBLEM FORMULATION

We consider a federated network consisting of N edge devices
(clients), each directly connected to a server. Each client i has a
dataset denoted by Di = {Hi,yi} where yi is a column vector with
di entries and Hi is a matrix of size di ×L. For every client i, a linear
regression model relating Hi to yi can be described as

yi = Hix+ νi, (1)

where x is the global regression parameter vector of size L× 1 and νi

represents perturbation/noise.
The main goal of FL is to estimate the parameter vector x by col-

laboratively minimizing a global objective function over the federated
network. To this end, we define a global WLS estimation problem in
the federated setting as

min
{xi}

N∑
i=1

Ji(xi) s.t. xi = x, i = 1, 2, · · · , N, (2)

where Ji(x) = ∥yi − Hix∥2Wi
is the local objective function for

estimating x at client i and Wi is the error weight matrix of client i.
In addition, xi represents the local model estimate at client i and x
denotes the global model estimate.

We use the ADMM to solve (2) whose associated augmented La-
grangian function can be expressed as

N∑
i=1

Li(x,xi,πi) =

N∑
i=1

Ji(xi)+ ⟨xi −x,πi⟩+
ρi
2
∥xi −x∥22, (3)

where πi and ρi > 0 are the Lagrange multiplier vector and the penalty
parameter associated with client i, respectively. Therefore, we obtain
the following recursions at each client

πi,k = πi,k−1 + ρi(xi,k − xk) (4a)

xi,k+1 = x̂i −N−1
i (πi,k − ρixk) (4b)

and at the server

xk+1 =
1

N∑
i=1

ρi

N∑
i=1

(ρixi,k+1 + πi,k) (5)

where we define Ni = 2H⊺
iWiHi + ρiI and x̂i = 2N−1

i H⊺
iWiyi,

and the index k denotes the iteration number. In the above algorithm,
after performing local learning, i.e., (4a) and (4b), each client shares
the local estimate ρixi,k+1 + πi,k with the server. The server then
obtains the global estimate as in (5) and broadcasts it to every client
while the FL process continues.

In the formulation (4) and (5), there is a need to send both primal
and dual model updates to the server in order for the server to be able
to aggregate the global model update. However, the information in
the dual update can be incorporated inside the primal update using a
careful choice of the initial value. Therefore, we can reformulate the
recursions (4)-(5) as

xi,k+1 = (I− ρiN
−1
i )xi,k + ρiN

−1
i (2xk − xk−1) (6a)

xk+1 =
1

N∑
i=1

ρi

N∑
i=1

ρixi,k+1. (6b)

via initializing x−1 = 0, πi,−1 = 0, and xi,0 = x̂i and eliminating
the Lagrange multipliers πi,k. Defining si,k = 2xi,k − xi,k−1 and
sk = 2xk − xk−1, we can further rewrite (6) as

xi,k+1 = (I− ρiN
−1
i )xi,k + ρiN

−1
i sk (7a)

si,k+1 = 2xi,k+1 − xi,k (7b)

sk+1 =
1

N∑
i=1

ρi

N∑
i=1

ρisi,k+1. (7c)

In this algorithm, the clients share si,k+1 with the server, and the server
broadcasts sk+1 to the clients. As we will show later, this formulation
is favorable when the communication links are unideal.

The parameter exchanges between the clients and the server are of-
ten carried out over wireless communication channels. Therefore, both
uplink and downlink channels may be corrupted by noise. In the down-
link, the clients receive noisy versions of the aggregated model updates
from the server, i.e., s̃ik = sk + ζi

k where ζi
k denotes the downlink

noise of client i at iteration k. In the uplink, the server receives a noisy
version of the local model update of each client, i.e., s̃i,k = si,k +ηi,k

where ηi,k denotes the uplink noise of client i at iteration k.
Comparing the recursions (4)-(5) and (6) with (7), we hypothe-

size that introducing si,k+1 as a linear combination of xi,k+1 and xi,k

and sending it instead of xi,k+1 can result in less noise corruption in
the estimates of the clients due to using a single noisy global estimate
rather that two. Hence, it can lead to improved performance in terms
of robustness against additive communication noise.

However, the recursions (7) require all clients to take part in a
global model update iteration. In FL, the clients may have different
communication capabilities due to having limited resources. There-
fore, the participation of all clients at each global update round may
come at a considerable cost, e.g., slow convergence time or increased
resource utilization. To tackle this, the server may implement a ran-
dom scheduling of the clients and have only a subset of the clients de-
noted by Sk participate in model aggregation at each iteration k. The
scheduling can lower the communication overhead of FL significantly.
Due to the choosing of a random subset of the clients, some clients
may not be selected at two consecutive iterations. As a result, the re-
cursions (7) will fail to work as two consecutive updates xi,k+1 and
xi,k may not be available at the client and it is not always possible to
calculate the signal si,k+1 at the clients, i.e., if client i is selected at
k + 1 and k′ ̸= k, then 2xi,k+1 − xi,k′ ̸= si,k+1. Therefore, we
consider sending the local model updates xi,k+1 instead of si,k+1 in
order to guarantee convergence.

3. RESOURCE-EFFICIENT FEDERATED LEARNING OVER
NOISY CHANNELS

Communication efficiency is essential for FL in real-world applica-
tions, as it directly affects its scalability and cost-effectiveness. The
efficiency of communication is closely tied to the amount of data that
needs to be transmitted among the clients and the server during the
model training process. When communication load is high, it can
lead to increased resource usage and longer training times, resulting in
higher costs and decreased system utility. Therefore, minimizing data
transmissions while maintaining high accuracy is a critical challenge
in FL.

Random scheduling of the clients for communication is one way
to improve the communication efficiency in FL. However, as it is man-
aged by the server, at any given time, two consecutive updates may not
be available at the client. Hence, it may not be possible to calculate
si,k+1 at all clients and iterations. Therefore, the recursions (7) may
fail to converge. As a solution, we propose to calculate the local model



Algorithm 1 : RERCE-Fed. N clients, penalty parameters ρi, set of
all clients S.
Initialization: global model x0 = x−1 = 0, local models xi,0 = x̂i

For k = 1, ...

The server randomly selects a subset Sk of its clients and sends the
aggregated global model sk = 2xk − xk−1 to them.
Client Local Update:
Each client i ∈ Sk receives a noisy version of sk and updates its model
via (8a), then sends its updated model xi,k+1 to the server.
Aggregation at the Server:
The server receives noisy versions of the locally updated models and
aggregates them via (8b).
EndFor

updates at the clients selected by random scheduling i ∈ Sk and send
them to the server. The server then aggregates the received local up-
dates and sends sk = 2xk − xk−1 to the new set of selected clients.
Note that sk is corrupted with different noise for two different sets of
clients and the last two global iterations.

In each global iteration k, the selected clients receive s̃ik from the
server and update their model by (8a). Then, the server receives the sig-
nal x̃i,k+1 from the selected clients and aggregates the received signal
via (8b) and broadcasts the latest global update to the selected client
in the next iteration. The clients that are not selected maintain their
last update until they are selected again. Therefore, the recursions of
the proposed resource-efficient FL algorithm robust to communication
errors, called RERCE-Fed, are expressed as

xi,k+1 = xi,k − ai,kρiN
−1
i xi,k + ai,kρiN

−1
i s̃ik (8a)

xk+1 =
1

N∑
i=1

ai,kρi

N∑
i=1

ai,kρix̃i,k+1, (8b)

where ai,k is the variable that represents random scheduling such that
ai,k = 1 when the client i in selected by the server in iteration k,
i.e., i ∈ Sk, and ai,k = 0 otherwise. We summarize the proposed
RERCE-Fed in Algorithm 1. In the following section, we study its
mean convergence.

4. CONVERGENCE ANALYSIS

To facilitate the analysis, we define the extended optimal global model
as x⋆

e = 12N ⊗x⋆ and the vector containing the client model estimate
as x̃e,k = col{x̃1,k, · · · , x̃N,k}, where 12N is the 2N × 1 vector of
all ones, x⋆ is the optimal solution to (2), ⊗ is the Kronecker product,
and col{·} denotes column-wise stacking.

With ideal communication links, it can be shown that the iterates
xi,k and xk converge as k → ∞. Our goal here is to show that they
still converge when the communication channels are noisy.

Substituting (8b) in (8a), the global recursion of the proposed al-
gorithm can be stated as[

xe,k+1

xe,k

]
= Ak

[
xe,k

xe,k−1

]
+ ζk + ηk, (9)

where

Ak =

[
Ak,1 Ak,2

Ak,3 Ak,4

]
(10)

and the noise vectors ζk and ηk stack

ai,kρiN
−1
i ζi,k (11)

and

ai,kρiN
−1
i

N∑
j=1

2aj,k−1ρjηj,k−1

N∑
u=1

au,k−1ρu

− aj,k−2ρjηj,k−2

N∑
u=1

au,k−2ρu

 , (12)

respectively, for 1 ≤ i ≤ N and zero for N + 1 ≤ i ≤ 2N .
The value of Ak ∈ R2LN×2LN depends on the iteration number

k as the server selects a random number of clients at each iteration.
Its sub-matrices of size LN × LN are block matrices whose L × L
client-wise sub-matrices are

[Ak,1]ii = I− ai,kρiN
−1
i + 2ai,kai,k−1

ρ2iN
−1
i

N∑
u=1

au,k−1ρu

, (13a)

[Ak,1]ij = 2ai,kaj,k−1
ρiρjN

−1
i

N∑
u=1

au,k−1ρu

, (13b)

[Ak,2]ij = −ai,kaj,k−2
ρiρjN

−1
i

N∑
u=1

au,k−2ρu

, (13c)

Ak,3 = I, and Ak,4 = 0.
Applying the expectation operator E[·] to both sides of (9) and con-

sidering the fact that the noises are zero-mean, we obtain

E
[
xe,k+1

xe,k

]
= AkE

[
xe,k

xe,k−1

]
. (14)

Since Ak is a right-stochastic matrix as the entries of all its columns
add up to one, (14) can be recursively unfolded as

E
[
xe,k+1

xe,k

]
= A′

kE
[
xe,1

xe,0

]
,

where A′
k =

∏k
i=1 Ai. The matrix A′

k is right-stochastic as the
multiplication of right-stochastic matrices produces a right-stochastic
matrix, i.e.,A′

k1 =
(∏k

i=1 Ai

)
1 = 1. An important property of a

right-stochastic matrix is that all its eigenvalues λi satisfy |λi| ≤ 1.
Therefore, A′

k is stable and the recursions (9) converge.
Furthermore, defining E [ϵe,k+1] = x⋆

e − E[x⊺
e,k+1x

⊺
e,k]

⊺, and
utilizing the fact that x⋆

e = A′
kx

⋆
e , E [ϵe,k+1] can be recursively ex-

pressed as E [ϵe,k+1] = A′
kE [ϵe,1] . As both A′

k and E [ϵe,1] are
bounded, the expected error E [ϵe,k+1] is bounded and the proposed
RERCE-Fed algorithm converges. In the next section, we verify the
convergence and robustness of the proposed algorithm to link noise via
numerical simulations.

5. SIMULATION RESULTS

In this section, we conduct a series of experiments to examine the per-
formance of the proposed RERCE-Fed. We consider a scenario having
N = 100 clients connected to a server. The clients aim to learn a model
x of dimension L = 128. To induce data imbalance, we draw the local
dataset size of each client, di, randomly from a uniform distribution,
i.e., di ∈ U(50, 90). Every client i has imbalanced synthetic non-IID
data {Hi,yi} with the matrices Hi drawn from a normal distribution
N (µHi , σ

2
Hi

) where µHi ∈ U(−0.5, 0.5) and σ2
Hi

∈ U(0.5, 1.5).
We set the weight matrices at each client i to the inverse covariance ma-
trix of yi, i.e., Wi = Σ−1

yi
= E[(yi − E[yi]) (yi − E[yi])

⊺]−1. The
parameter vector x is drawn from a normal distribution N (0, 1). The
observation noise νi is taken as zero-mean IID Gaussian with variance
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Fig. 1. Normalized mean-square deviation (NMSD) versus iteration index: (a) Learning curves of (4)-(5) and (7) for |Sk| = N = 100. (b).
Learning curves of (4)-(5) and (7) for different values of |Sk|. (c). Learning curves of the proposed RERCE-Fed for different values of |Sk|.

10−4 for each client. The additive noise in both uplink and downlink is
zero-mean IID white Gaussian with variance 6.25× 10−4. In all sim-
ulated algorithms, the penalty parameter is set to ρi = 1 for all clients.
The server randomly selected a subset of clients with uniform probabil-
ity in every iteration k. We evaluate the performance of the considered
algorithms via the network-wide average normalized mean-square de-
viation (NMSD) defined at iteration k as

NMSD(k) =
1

N

N∑
i=1

∥xi,k − x∥22
∥x∥22

. (15)

The learning curves (i.e., NMSD in dB vs. iteration number k) pre-
sented in the following figures are obtained by averaging over 100 in-
dependent experiments.

In our first experiment, we simulate (4)-(5) and (7) solving the re-
gression problem outlined in section 2 when all clients participate in
FL, i.e., |Sk| = N = 100. We present the corresponding learning
curves in Fig. 1(a). We notice that (7) exhibits improved performance
(7dB improvement) over (4)-(5) in the presence of noisy communica-
tion links.

In many practical applications, the FL clients operate under re-
source constraints. Thus, we next examine the performance of the
considered algorithms when only a small subset of the clients partic-
ipate in every communication and learning round. Hence, we sim-
ulate (7) when the server chooses only a subset of the clients, e.g.,
|Sk| ∈ {4, 75, 90}. We also simulate (4)-(5) when |Sk| = 4. We
present the corresponding learning curves in Fig. 1(b). We observe
that, when only a small subset of the clients participate in each FL
round, (4)-(5) exhibit poor performance at the presence of link noise.
In addition, (7), which exhibited good performance in the previous ex-
periment, fails to converge. It appears to diverge due to error accu-
mulation even when the majority of the clients participate in every FL
round, e.g., |Sk| ∈ {75, 90}. Therefore, it is evident that (7) cannot
cope with noise in the communication links when only a small number
of clients are selected during each iteration.

In our last experiment, we evaluate the performance of the pro-
posed RERCE-Fed algorithm at the presence of noise in the commu-
nication links while incorporating random scheduling for communica-
tion efficiency. We simulate RERCE-Fed when |Sk| ∈ {4, 10, 20}.
We present the corresponding learning curves in Fig. 1(c). We observe
that the proposed algorithm exhibits robustness against communication
noise/error despite even when a small portion of the clients participate
in every FL round. It is also clear that there is a trade-off between |Sk|

and NMSD. Moreover, as the number of participating clients increases,
the convergence rate increases. As the number of the participating
clients increases, their number becomes less important, i.e., by setting
the number of the participating clients to |Sk| ≥ 10, the performance is
close to when all clients participate. Therefore, a desired performance
can be attained with a relatively low number of clients participating at
every iteration. This means, using the proposed algorithm, it is possi-
ble to achieve accurate model estimates in FL while making efficient
use of the available communication resources, even when the commu-
nication links are imperfect. The proposed algorithm also delivers an
effective trade-off between estimation accuracy and convergence rate
on one side and communication resource utilization on the other. This
trade-off can be easily governed by controlling the number of clients
that participate in FL at every iteration. The participation rate need
not necessarily be uniform. That is, depending on resource availability
or conditions of the communication links, different numbers of clients
may be summoned for FL at different iterations.

6. CONCLUSIONS

We developed a resource-efficient FL algorithm that has improved
robustness against noise/error in communication links. To motivate
the developed algorithm, we considered a weighted least-squares re-
gression problem. To achieve the robustness, we proposed to combine
the last two global model updates and send them together alongside
eliminating the dual model update performed at each participating
edge device. The proposed algorithm, called RERCE-Fed, ensures that
clients receive a less corrupted global model update from the server
even when the server uses random scheduling to achieve communi-
cation efficiency. We proved the convergence of RERCE-Fed in the
mean sense at the presence of link noise. We also verified the de-
sirable performance of RERCE-Fed via simulations, particularly, its
robustness against additive communication link noise in comparison
to existing related algorithms. In future work, we will analyze the
mean-square performance of RERCE-Fed and consider applying it
to different applications with potentially non-linear/non-quadratic or
non-convex objective functions. We will also study the case when
different numbers of clients may participate in different iterations of
FL.
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