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Abstract

Time series forecasting is crucial for financial institutions and industries, requiring
diverse models for different seasons and timelines to achieve accurate predictions.
However, unexpected errors often occur due to shifts in underlying patterns or
external factors. In such cases, explanations of these errors can be valuable to
reduce forecasting inaccuracies.

This thesis looks at both the theory and practical sides of Explainable AI (XAI)
methods for time series and outlier detection. The theoretical part explores how
XAI concepts can be used in time series analysis and improvement. In contrast,
the experimental part focuses on generating explanations for both successful and
erroneous forecasts and using those to improve model performance. Comparative
evaluations of all experimental techniques are also conducted.

The investigation reveals that while various techniques can enhance model perfor-
mance, most are unsuitable for time series data structures, necessitating modifi-
cations. A key hypothesis proposes that modifying training data is more effective
in improving model performance than altering internal model structures or intro-
ducing value/policy functions. Indeed, the results demonstrate significant perfor-
mance improvements through data modifications. However, further experiments
with other available methods are pending.

The findings of this thesis show the potential of XAI in enhancing time series
forecasting accuracy. Moreover, the work suggests the importance of continued
research into different XAI techniques and their impact on model performance.
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Sammendrag

Tidsserieprognoser er avgjørende for finansinstitusjoner og bransjer, og krever
forskjellige modeller for forskjellige årstider og tidslinjer for å oppnå nøyaktige
spådommer. Uventede feil oppstår imidlertid ofte på grunn av endringer i under-
liggende mønstre eller eksterne faktorer. I slike tilfeller kan forklaringer av disse
feilene være verdifulle for å redusere prognoseunøyaktigheter.

Denne oppgaven ser på både de teoretiske og praktiske sidene av Explainable AI
(XAI) metoder for tidsserier og avvikdeteksjon. Den teoretiske delen utforsker
hvordan XAI-konsepter kan brukes i tidsserieanalyse og forbedring. Derimot
fokuserer den eksperimentelle delen på å generere forklaringer for både vellykkede
og feilaktige prognoser og bruke dem til å forbedre modellytelsen. Sammenlig-
nende evalueringer av alle eksperimentelle teknikker er også utført.

Undersøkelsen avslører at selv om ulike teknikker kan forbedre modellytelsen, er
de fleste uegnet for tidsseriedatastrukturer, noe som krever modifikasjoner. En
nøkkelhypotese foreslår at modifisering av treningsdata er mer effektivt for å
forbedre modellytelse enn å endre interne modellstrukturer eller introdusere verdi-
/policyfunksjoner. Faktisk viser resultatene betydelige ytelsesforbedringer gjen-
nom datamodifikasjoner. Imidlertid venter ytterligere eksperimenter med andre
tilgjengelige metoder.

Funnene i denne oppgaven viser potensialet til XAI i å forbedre nøyaktigheten
av tidsserieprognoser. Dessuten antyder arbeidet viktigheten av fortsatt forskning
på forskjellige XAI-teknikker og deres innvirkning på modellens ytelse.

ii



Preface

This thesis is the final work of the master’s program in Informatics at the Depart-
ment of Computer Science at NTNU.

I would like to express my sincere gratitude to my supervisor from NTNU, As-
sociate Professor Odd Erik Gundersen, whose invaluable guidance has been in-
strumental in shaping and enriching this entire project. Furthermore, I extend
my heartfelt appreciation to Aneo AS for granting me the opportunity to delve
into this fascinating topic and work with their remarkable dataset. I am deeply
grateful for their continuous support, insightful feedback, and unwavering guid-
ance. I would like to extend special thanks to Liyuan Xing for her exceptional
guidance throughout the project and to Gleb Sizov for his invaluable feedback,
domain expertise, and guidance. Their contributions have played a pivotal role in
defining the project’s ultimate direction and evaluating the outcomes.

I extend my heartfelt appreciation to Reinhard Leperlier from Technische Uni-
versität Kaiserslautern for his invaluable contributions to this project. I am im-
mensely grateful for his exceptional insight, innovative ideas, and unwavering mo-
tivation regarding the topic. His guidance and expertise have been instrumental
in shaping the trajectory of this work, and I am truly thankful for his support.

I am also immensely grateful to my dearest friend, Masruk Ahmed Rudro, whose
unwavering support and assistance have been a constant source of strength during
numerous late nights and anxiety-ridden days as the thesis deadline drew near.

iii



Contents

Abstract i

Sammendrag ii

Preface iii

Contents vi

List of Figures vi

List of Tables viii

Abbreviations x

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem and Motivation . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Goals and Research Questions . . . . . . . . . . . . . . . . . . . . . 3
1.4 Research Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.6 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background Theory 7
2.1 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Interpretability vs Explainability . . . . . . . . . . . . . . . . . . . 7
2.3 Importance of Interpretability . . . . . . . . . . . . . . . . . . . . . 8
2.4 Human friendly explanation . . . . . . . . . . . . . . . . . . . . . . 9
2.5 Time series forecasting . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.5.1 Forecasting methods . . . . . . . . . . . . . . . . . . . . . . 12
2.5.2 Forecasting model selection . . . . . . . . . . . . . . . . . . 14
2.5.3 Accuracy metrics . . . . . . . . . . . . . . . . . . . . . . . . 14

3 State of the art 17
3.1 XAI outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Model-specific or model-agnostic Methods . . . . . . . . . . . . . . 18

3.2.1 Model specific methods . . . . . . . . . . . . . . . . . . . . . 18
3.2.2 Model agnostic methods . . . . . . . . . . . . . . . . . . . . 24

3.3 XAI for time-series . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.3.1 TimeSHAP . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.4 Explain bad forecast . . . . . . . . . . . . . . . . . . . . . . . . . . 32

iv



CONTENTS v

3.4.1 Time Series Anomaly Detection . . . . . . . . . . . . . . . . 33
3.4.2 XAI for forecasting error . . . . . . . . . . . . . . . . . . . . 33

4 XAI-based model improvement 35
4.1 Enhance model properties with XAI . . . . . . . . . . . . . . . . . . 35

4.1.1 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.1.2 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.1.3 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.1.4 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.1.5 Reasoning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.1.6 Equality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Theoretical formalization for improvement . . . . . . . . . . . . . . 37
4.2.1 Data augmentation . . . . . . . . . . . . . . . . . . . . . . . 37
4.2.2 Intermediate features augmentation . . . . . . . . . . . . . . 39
4.2.3 Loss function augmentation . . . . . . . . . . . . . . . . . . 40
4.2.4 Gradients augmentation . . . . . . . . . . . . . . . . . . . . 41
4.2.5 Model augmentation . . . . . . . . . . . . . . . . . . . . . . 41

5 Method 43
5.1 Selection criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2 Choice of methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

6 Experiments 49
6.1 Dataset and data preprocessing . . . . . . . . . . . . . . . . . . . . 49

6.1.1 Data preprocessing . . . . . . . . . . . . . . . . . . . . . . . 49
6.2 Forecasting problem . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.3 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.4 Experimental Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.4.1 Experimental setup . . . . . . . . . . . . . . . . . . . . . . . 52
6.4.2 Baseline model . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.4.3 Forecasting method with Heat-map . . . . . . . . . . . . . . 54
6.4.4 XAI based improvement . . . . . . . . . . . . . . . . . . . . 55
6.4.5 Experiment 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.4.6 Experiment 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 55
6.4.7 Experiment 3 . . . . . . . . . . . . . . . . . . . . . . . . . . 55

7 Results 57
7.1 Heat maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.2 Forecasting error Heat maps . . . . . . . . . . . . . . . . . . . . . . 58
7.3 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.4 PDP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
7.5 Model Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.6 statistical significance . . . . . . . . . . . . . . . . . . . . . . . . . . 64

8 Evaluation and Conclusion 67
8.1 Research questions 1 and 2 . . . . . . . . . . . . . . . . . . . . . . . 67
8.2 Research question 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
8.3 Limitation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68



vi CONTENTS

8.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Bibliography 71

Appendices: 79

A - Github repository 79

B - Sidenote statistics 80



List of Figures

2.5.1 Structure of the RNN . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5.2 RNN computational process . . . . . . . . . . . . . . . . . . . . . . 13
2.5.3 Structure of the LSTM . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5.4 Overview Time Series Forecast Error Metrics. . . . . . . . . . . . . 15

3.2.1 CNN Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.2 Forward Pass Vs Backward Pass . . . . . . . . . . . . . . . . . . . . 20
3.2.3 DeConv of various dog images projected from layer 4 to input image

layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2.4 Guided BackProp Results on sample images . . . . . . . . . . . . . 21
3.2.5 BackProp Vs DeConv Vs Guided BackProp . . . . . . . . . . . . . . 21
3.2.6 GRAD-CAM visualization of an example image for the class of ‘Dog’ 22
3.2.7 Guided Grad-CAM as a combination of Grad-CAM and Guided

Backprop. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.8 PDPs for the bicycle count prediction . . . . . . . . . . . . . . . . . 25
3.2.9 The importance of each of the features for predicting cervical cancer

with a random forest. . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.10ICE plot of cervical cancer probability by age . . . . . . . . . . . . 29
3.3.1 TimeSHAP takes into consideration the recurrence of RNNs when

explaining them. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4.1 Modular architecture for Explaining bad forecasting. . . . . . . . . 34

4.2.1 Model improvement with XAI. Explanations offer information about
the model decision-making and behavior, which may, in turn, be
leveraged to improve models by augmenting different components
of the training process or by adapting the trained model. . . . . . . 37

4.2.2 Types of XAI-based augmentation. . . . . . . . . . . . . . . . . . . 38

5.2.1 Time series local spatial/temporal attention mechanism architecture 45

6.1.1 Density distribution of various cities . . . . . . . . . . . . . . . . . . 51
6.4.1 Experimental pipeline . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.4.2 Daily Demand . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.4.3 Weak apart comparison . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.4.4 Heat map generated by LSTM Model . . . . . . . . . . . . . . . . . 54

7.1.1 Base Model Heatmap (Trondheim city) . . . . . . . . . . . . . . . . 57
7.2.1 Forecasting error Heatmaps . . . . . . . . . . . . . . . . . . . . . . 58
7.3.1 Different experimental model prediction . . . . . . . . . . . . . . . . 59

vii



viii LIST OF FIGURES

7.4.1 Partial dependency plot (Trondheim) . . . . . . . . . . . . . . . . . 60
7.4.2 Base model Prediction (Some missing trend but captures variation) 61
7.5.2 R2 score for various cities Based on different models . . . . . . . . . 62
7.5.1 Varying performance compare to Baseline Model 6.4.2 of different

experimental models . . . . . . . . . . . . . . . . . . . . . . . . . . 63

B.1 Data distribution; city wise . . . . . . . . . . . . . . . . . . . . . . 83
B.2 Demand plot; City wise . . . . . . . . . . . . . . . . . . . . . . . . . 83
B.3 Heat maps; Across cities . . . . . . . . . . . . . . . . . . . . . . . . 83
B.4 Good and bad predictions heat maps; Across cities . . . . . . . . . 84
B.5 Models prediction; Among all cities . . . . . . . . . . . . . . . . . . 85



List of Tables

6.1.1 Data distribution by Cities . . . . . . . . . . . . . . . . . . . . . . . 50
6.1.2 Invalid Data distribution by Cities . . . . . . . . . . . . . . . . . . 50

7.5.1 Performance of the experiments in various cities. . . . . . . . . . . . 62
7.5.2 Skill scores obtained from the experiments of various cities . . . . . 64
7.6.1 Paired t-Test Results . . . . . . . . . . . . . . . . . . . . . . . . . . 65
7.6.2 Cross validation score . . . . . . . . . . . . . . . . . . . . . . . . . . 66

B.1 Cross validation score . . . . . . . . . . . . . . . . . . . . . . . . . . 81
B.2 Cross validation score . . . . . . . . . . . . . . . . . . . . . . . . . . 82

ix



Abbreviations

A-ClArC Additive Class Artifact Compensation. 40

ABN Attention Branch Network. 39

AI Artificial Intelligence. 1, 2, 5, 7, 8, 33

ALE Accumulated Local Effect. 25–27

ANN Artificial Neural Networks. 12

ARIMA Autoregressive Integrated Moving Average. 11, 59

ARMA Autoregressive Moving Average. 11

BiLSTM Bidirectional LSTMs. 68

CAGR Compound Annual Growth Rate. 17

CAM Class Activation Mapping. 18, 22, 39

CH Conceptual Hazard. 40

ClArC Class Artifact Compensation. 40

CNN Convolutional Neural Network. 18, 19, 22

CNNs Convolutional Neural Networks. 18, 19, 22, 24, 45, 68

DeepLIFT Deep Learning Important Features. 18, 23, 24

DL Deep Learning. 18

DNNs Deep Neural Networks. 36

FAT Fairness, Accountability, and Transparency. 2

FNNs Feedforward Neural Networks. 24

GAP Global Average Pooling. 22

GPU Graphics Processing Unit. 51

GRAD-CAM Gradient-weighted Class Activation Mapping. 18, 22, 44, 45, 55,
67, 68

x



xi

GRUs Gated Recurrent Units. 12

ICE Individual Conditional Expectation. 27–29

KernelSHAP Kernel SHapley Additive exPlanations. 31

KNN K-Nearest Neighbors. 69

LIME Local Interpretable Model-agnostic Explanations. 29, 30, 33

LoRE Local Rule-based Explanations. 33

LRP Layer-wise Relevance Propagation. 38

LSTM Long Short-term Memory. 12–14, 45, 51, 54, 59, 67, 68

MAE Mean Absolute Error. 15, 46, 55, 61

MAPE Mean Absolute Percentage Error. 15

ML Machine Learning. 2, 7, 8, 10, 12, 18, 35

MWh Megawatt-hours. 49

NN Neural Network. 68

NNs Neural Networks. 12, 43

P-ClArC Projective Class Artifact Compensation. 40

PAA Piecewise Aggregate Approximation. 33

PDP Partial Dependence Plot. 25, 26, 28, 29, 53, 56, 60, 68

PDS partial least squares. 27

PFI Permutation Feature Importance. 27

PRP Prototypical Relevance Propagation. 38

R2 R squared. 15, 61

ReLU Rectified Linear Unit. 19, 21, 22

RMSE Root Mean Squared Error. 15, 61

RNN Recurrent Neural Network. 12, 13

RNNs Recurrent Neural Networks. 12, 13, 24, 45

RRR Right for the Right Reasons. 40

SAX Symbolic Aggregate Approximation. 33



xii

SHAP SHapley Additive ExPlanations. 8, 31, 67

SpRAy Spectral Relevance Analysis. 40

TimeSHAP Time Series SHapley Additive exPlanations. 31, 32

TreeSHAP Tree SHapley Additive exPlanations. 31

TSF Time Series Forecasting. 11

VGG Very Deep Convolutional Networks. 22

VNN Variational Neural Networks. 68

XAI Explainable Artificial Intelligence. 1–5, 7, 17, 18, 32–35, 37–43, 52, 61,
67–69

XIL Explanatory Interactive Learning. 38





Chapter 1

Introduction

This chapter offers an overview of Explainable Artificial Intelligence (XAI) and
time series, along with the motivation behind and a description of the project’s
challenges. Additionally, the document outlines the project’s specific aims and ob-
jectives, which are further divided into a series of research inquiries. Furthermore,
various research methodologies are employed in order to address these research
questions. Subsequently, the contributions of the thesis are deliberated upon,
followed by the presentation of the remaining framework of the thesis.

1.1 Background

The utilization of Artificial Intelligence (AI) and machine learning models experi-
ence significant annual growth. While the utilization of AI by firms has remained
relatively stable at a range of 50 to 60 percent in recent years, and its adoption
has experienced a significant increase of over 100 percent since 2017 [1]. According
to recent research [2], companies are currently experiencing significant financial
gains as a result of their utilization of AI technology. The specific domains in
which businesses derive value from AI have evolved over the course of time [3]. In
2018, the sectors of manufacturing and risk were identified by the majority of re-
spondents as the two functions that exhibited the highest levels of perceived value
from the implementation of AI. The domains of product and service development,
strategy formulation, and corporate finance have emerged as the primary areas
exhibiting notable revenue impacts resulting from the implementation of AI. Con-
versely, supply chain management has been identified as the domain yielding the
most significant cost benefits as reported in various studies.[1]. There is a growing
need for academics and practitioners to place greater emphasis on the process of
constructing models and the subsequent interpretation of their outcomes. This is
particularly important as these models are increasingly integrated into organiza-
tional practices and everyday work [4, 5]. The significance of this issue lies in the
fact that due to the problem of explaining the AI "black box" critical decisions
are progressively being automated by different algorithms that are not fully com-
prehended by individuals [6].

XAI plays a significant role in this context. Explainable AI (XAI) refers to a
branch of AI that has been designed to provide understandable explanations re-
garding its objectives, rationale, and the manner in which it arrives at decisions,

1



2 Md Amjad Hossain: Enriching models using XAI

using language that is accessible to individuals with average comprehension abili-
ties [7]. In order to enhance trust, XAI assists human users in understanding the
underlying logic of Machine Learning (ML) and AI systems [8]. The concept of
XAI is often discussed in relation to deep learning and plays a vital role in the Fair-
ness, Accountability, and Transparency (FAT) ML framework. Organizations that
aim to cultivate trust prior to implementing AI can derive advantages from ex-
plainable AI (XAI). Possible problems such as AI biases can be discerned through
a more comprehensive comprehension of an AI model’s behavior, facilitated by
the utilization of XAI [9]. Although significant progress has been made, partic-
ularly in the domain of image recognition, there have also been efforts directed
toward text, audio, and tabular data. However, a limited amount of research
has been conducted on time-series data [10]. Time series data possess distinct
characteristics that distinguish them from other data formats. These data exhibit
various patterns, including trends, seasonal fluctuations, irregular cycles, and oc-
casional shifts in level or variability [11]. These patterns are not easily discernible
in alternative data formats.

1.2 Problem and Motivation

Forecasting is a widely employed practice across various industries, including
but not limited to weather forecasting, climate forecasting, economic forecast-
ing, healthcare forecasting, engineering forecasting, financial forecasting, retail
forecasting, business forecasting, environmental studies forecasting, social studies
forecasting, and other practical domains. Individuals who possess precise histori-
cal data can utilize time series analysis methodologies to examine the data before
undertaking modeling, forecasting, and predictive tasks [11]. The importance of
predicting in financial institutions comes from the fact that even small mistakes
can have big financial effects [12].

This thesis uses electricity demand (consumption) data from Aneo As, which is
a large Nordic renewable group with investment power, innovation power, and
implementation power. Being a renewable energy company Aneo As has a couple
of wind power station that helps the company to produce and contribute energy.
‘Statnett’ is the company that is responsible for deciding the electricity price.
Now, based on the demand, Aneo As decided how much electricity they needed
to produce. As they also need to report that to ‘Statnett’, how much energy
they can contribute to the national grid. The national price is established by the
competent authorities, taking into consideration the aggregate quantity of power
generated and consumed. Aneo As will bear responsibility for mitigating losses
in the event of substantial deviations from the projected power production, either
by increasing the power supply or providing financial compensation.

Aneo As utilizes a considerable array of machine learning models to effectively
forecast and anticipate production outcomes. To assess the efficacy of these mod-
els, Aneo As implements monitoring protocols to carry out manual examinations
of the forecast. If substantial errors are detected, attempts are undertaken to clar-
ify and manually determine the required adjustments to correct those errors. The
aim of this study is to automate the process and generate a succinct explanation
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for the possible reasons behind inadequate performance, thereby improving the
model’s performance using these explanations.

The experiment outlined in this thesis was initially devised with the inten-
tion of integrating it directly into the system of Aneo As, thereby enhancing its
predictive capabilities. However, as the passage of time ensues, it becomes ev-
ident that the task at hand is not a straightforward one due to the multitude
of external factors that must be considered. These factors encompass the exist-
ing system, seasonal models, feedback on predictions, human involvement, and
various other elements. Nevertheless, this thesis has the potential to serve as a
foundational component for the development of a comprehensive automated sys-
tem. Such a system would possess the capability to identify substantial errors,
generate explanatory information, and provide reports on the potential causes of
these errors, all without requiring human intervention. This stands in contrast to
the conventional approach of relying on periodic human observers.

1.3 Goals and Research Questions

This section provides an overview of the primary goal of the project, along with
the three research questions that needed to be addressed in order to achieve the
objective. The research questions delineate the trajectory of the project and es-
tablish a systematic approach to attaining the objective. The primary objectives
of the study are outlined below.

Goal During the process of monitoring, come up with the most optimal explana-
tion for the forecast error, and if possible use that information to enhance
the model’s performance.

The phrasing of this objective contains certain underlying assumptions that re-
quire consideration. There are multiple methodologies available for the generation
of explanations; however, only a particular approach allows for the generation of
an explanation specifically for the error. Moreover, there are certain methodolo-
gies that are currently in the hypothesis stage. Moreover, the application of XAI
data to improve the performance of models is currently constrained to its extent.
Prior research has predominantly concentrated on improving the models for image
and tabular data while allocating limited consideration to the time series model.

This objective can be divided into a number of research questions, each of
which must be answered in order to fulfill the objective.

Research question 1 What is the most recent state-of-the-art in XAI in general
and for time series forecasting jobs in particular?

An analysis of the time series forecasting literature in the context of XAI is
required for this research subject. The results of this literature review include a
field overview and a discussion of significant techniques that are currently available
in this field. The review must describe methods with various approaches so that
it is feasible to choose which method or ways are acceptable for the particular use
case in order to serve as a foundation for further inquiry. With a discussion of the
paths within XAI and in-depth descriptions of significant methodologies, Chapter
3 provides a solution to this research topic.
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Research question 2 What are the best possible ways to generate an explanation
for forecasting error?

In order to evaluate the best possible ways that could possibly also explain
the forecasting error, either evaluation criteria or a matrix should be provided in
order to take the decision. It could be either qualitative or quantitative. The
project’s fundamental premise is that could the information provided, be used
in the third research question. Moreover, Is the information provided helps the
model to improve its performance or not, that’s the evaluation criteria. However,
there can be other evaluation criteria that can help in this regard.

Research question 3 What ways we could use the explanation information to
improve the model performance?

One of the primary objectives of this project is to identify strategies that
can enhance the performance of the time-series model through the utilization of
explanatory information. The crucial considerations encompass the nature of the
information that can be derived from the explanation, as well as the qualitative
or quantitative nature of said information. What might be a significant limitation
if the data is qualitative in nature? The primary objective in this context is to
enhance performance while minimizing human intervention.

1.4 Research Methods

The research conducted in this thesis can be divided into two distinct sections. The
initial phase entails conducting a comprehensive literature review on the current
state-of-the-art XAI methodologies, with a specific focus on those applicable to
time series data. Additionally, an examination of the existing methodologies for
leveraging XAI data to enhance the efficacy of models. The final component entails
conducting experiments on selected methodologies to determine the most optimal
solution for fulfilling the requirements.

The literature review for the initial section can encompass either a compre-
hensive examination of XAI techniques in general or a focused analysis of XAI
techniques specifically tailored for time-series data. Both the XAI technique and
performance improvements have been explored using the snowballing technique.
This technique involves examining the reference lists of selected papers to identify
additional relevant articles on the topic. To ascertain the efficacy of the methods
and evaluate their outcomes, an analysis of the citations pertaining to the meth-
ods was conducted. The initial search was performed using popular search engines
such as Google and Google Scholar, as well as the NTNU journal. Different com-
binations of keywords were used, including "XAI", "Explainable AI", "XAI for
TS", "Outlier detection in TS", and "Performance improvement through XAI".
In addition, we have utilized various synonym generator applications to generate
alternative terms for these words, thereby providing substantial assistance to our
research.

The justification for employing the literature review process lies in its ability to
facilitate access to a wide range of relevant scholarly articles on the topic, achieved
through comprehensive searches, survey articles, references, and citations. Addi-
tionally, the process of conducting a comprehensive and well-organized literature
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review requires a significant amount of time, which would inevitably reduce the
available time for the implementation of the project’s second phase.

The subsequent phase of this study involves the implementation of experiments
in order to assess the findings and validate the hypothesis. In order to assess the
efficacy of the methods employed, our primary approach involved the generation of
graphical representations and plots, which were subsequently subjected to quan-
titative verification.

1.5 Contributions

The contribution of this research is divided into multiple components. The initial
section of the discussion provides an overview of XAI and its application in the
context of time series analysis. Furthermore, this paper provides a comprehensive
examination of the methodologies that, when integrated with interpretable data,
have the potential to improve the efficacy of the model. In our perspective, the
most effective approach involves utilizing the grad-cam technique to track varia-
tions in gradients, evaluate the importance of the input dataset, and subsequently
modify the training data to improve performance. Potential future research direc-
tions have been discussed in Section 8.

1.6 Thesis Structure

The subsequent sections of this thesis are structured in the following manner. The
background theory presented in Chapter 2 encompasses various aspects, such as
definitions, an exploration of the significance of explanations to human beings,
guidelines for evaluation, and a comparison of time series forecasting problems
with other data formats. The comprehension of the remaining components of
the thesis is contingent upon a comprehensive understanding of the underlying
theoretical framework. Chapter 3 will provide an overview of explainable AI,
focusing specifically on its application in time series analysis. This chapter will
delve into the topic of outlier detection in time series, as well as the provision
of explanations for inaccurate forecasts. Chapter 4 provides an overview of the
various XAI techniques that can be employed to enhance the model’s performance.
It also discusses the categorization and theoretical formulation of these methods.
Chapter 5 delineates the chosen methods for XAI and enhancements, which have
been determined through a rigorous selection process based on specific criteria.
Furthermore, this chapter outlines the evaluation procedures that will be employed
to assess the effectiveness of these methods. Chapter 6 provides an overview of the
forecasting problem and the dataset that serves as the focal point of this thesis.
Additionally, it outlines the experimental design that will be employed to assess
and evaluate the proposed methods. Chapter 7 presents the findings obtained
from the conducted experiments, accompanied by a comprehensive assessment of
each individual experiment. Ultimately, the findings of this study are assessed
and deliberated upon in Chapter 8, leading to the formulation of a comprehensive
conclusion. Additionally, potential avenues for future research are proposed.
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Chapter 2

Background Theory

The primary emphasis of this project lies in the domain of XAI. The chapter
commences by presenting definitions of terminologies employed in the field of XAI.
This section draws heavily from the research conducted for the course IT3915
Computer Science, preparatory Project Given the assumption that the intended
audience of this thesis has not had access to the final report, certain details have
been reiterated. This chapter seeks to elucidate the concept of explainability as
it pertains to human understanding and explores the necessity of tailoring its
presentation to various demographic groups. This paper examines the various
XAI techniques that are currently available for both statistical models and neural
networks. Could you please elaborate on the functioning of XAI methods in the
context of time series analysis?

2.1 Terminology

The discipline of XAI endeavors to tackle the problem of algorithmic opacity.
According to van Lent et al [13], XAI refers to the capability of presenting users
with a coherent and comprehensible sequence of reasoning that connects the user’s
input, the AI’s knowledge and inference processes, and the subsequent behavior
exhibited by the AI system. However, the overarching inquiry persists: If a model
demonstrates strong performance, what rationale exists for not placing trust in it?

2.2 Interpretability vs Explainability

Interpretability plays an important role in research areas like bias and fairness in
ML models [14]. A deep dive into the inner workings of the AI/ML technique needs
to be done if it is required to know precisely why and how the model is producing
predictions. As a result, the offered output is determined by interpreting the
model’s weights and features. Interpretability refers to the ability to understand
and explain the reasoning or decision-making process of a particular system or
model.

Example 1 A multi-variate regression model may be constructed by an economist
to forecast the inflation rate, Now the economist can view the estimated
parameters of the model’s variables to determine the expected result given

7
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various data examples. Given complete transparency in this instance, the
economist can explain the precise why and how of the model’s behavior.

Example 2 As a physician, you want to predict how effective will some drug be
for a patient, and after getting the prediction, you want to know why such
a decision has been made.

Therefore, in data mining and machine learning, according to Finale Doshi-
Velez[15], interpretability is defined as the ability to explain or to provide meaning
in understandable terms to a human.

Because people are curious about the reasons behind a decision in a social situ-
ation, explanations play a significant role in human relationships[16]. According
to Miller [17], an explanation describes the process of abductive inference as well
as the final product, i.e., the answer to a why question. When machine learn-
ing models are used more frequently, explanations are needed for a variety of
reasons, including system verification, system improvement, system learning, and
legal compliance [7].

In general, Explainability is the ability to translate the behavior of an ML
model into understandable human language. You can’t fully comprehend how
and why the internal workings of complicated models (black boxes) affect the
forecast. However, you can find significance between input data attributions and
model outputs using model-agnostic techniques (such as partial dependence plots,
SHapley Additive ExPlanations (SHAP) dependence plots, or surrogate models),
which enables you to explain the nature and behavior of the AI/ML model.

Example 1 A neural network is used by a news organization to categorize various
articles. The news organization cannot fully interpret the model, but they
can compare the input article data to the model predictions using a model-
neutral technique. Using this method, they discover that the model places
business articles that mention sporting groups in the Sports category. The
news source was able to come up with an explicable response to show the
behavior of the model even though they did not use model interpretability.

Example 2 A convolutional neural network has been used in an educational in-
stitute to grade students’ assignments, now the advisory board wants to
know the inner working of the model considering that the board members
are laypersons. That’s explainability.

2.3 Importance of Interpretability

In Section 2.1, we have raised the question "If a machine learning model works
great, why not just trust it ?", now, is the time to answer that question. The simple
answer is “The problem is that a single metric, such as classification accuracy, is
an incomplete description of most real-world tasks” - According to Doshi-Velez
and Kim[15].

The need for interpretability arises from incompleteness in problem formaliza-
tion [15]. This implies that getting the prediction alone may not be sufficient for
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some issues or jobs. Since a successful prediction only addresses a portion of your
initial issue, the model must also justify how it concluded in terms of WHY.

In most cases, When something unexpected occurs, the mental model of the
environment that humans have is updated. To perform this update, an explanation
for the unexpected event must be found.

Example 1 If I am sick, then why I am sick?

Example 2 If I did poorly on my last exam, then why?

Example 3 If I failed my driving test, then why?

People like us enjoy memorizing contradictions or inconsistencies between ele-
ments in the knowledge model. For example, if the driving instructor can explain
why you have failed this time and what has improved compared to last time, that
makes much more sense, rather than saying why. The computer must explain its
behavior the more a decision it makes affects a person’s life. For instance, the
social credit system [18] is heavily utilized in China for critical human decisions
such as education, employment, housing, and others. Now, for this instance, the
model needs to explain why someone didn’t approve a loan request. The main idea
is that the model must provide an explanation when a human being is making a
decision that is of significant importance.

Also, Machine learning models by default incorporate biases from the training
set. Your machine learning models might then start to bias against underrep-
resented groups on account of this. To find bias in machine learning models,
interpretability is a helpful debugging tool. The artificial intelligence model you
trained to automatically approve or deny credit applications may discriminate
against a minority group that has traditionally been denied rights.

To promote social acceptance, the process of integrating algorithms and machines
into our daily lives needs to be interpretable.

2.4 Human friendly explanation

It might be useful to investigate how humans use explanations to obtain a feel of
what explanations can contribute to and what should be taken into account when
developing a system for producing explanations. Now, the goal is to generate ex-
planations mostly for developers and use the information further for debugging but
before doing that, it’s important to understand which criteria we should maintain
to make the explanation friendly.

Miller [17] outlined how people define, produce, select, assess, and provide ex-
planations. To concisely explain what explanation truly means, the article analyses
disciplines like cognitive psychology, human-computer interaction, and philosophy.
Let’s dive into,

Contrastive explanations Humans enjoy counterfactual justifications a lot. Where
"How would the forecast have been if input X had been different ?" is the
meaning of the counterfactual. More likely examples are: for instance getting
bad grades, people wanting to know which parameters they should change,
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or which categories they need to improve to get a good grade. In the case
of loan approval, the applicant might ask, which documents need to be
strengthened to get the load approved.

The concept of contrastive explanations is appealing to humans, as it in-
volves constructing an example to illustrate how a desired outcome can be
attained. However, the construction of examples is contingent upon the
specific domain and problem at hand. For instance, it may be relatively
straightforward to generate instances wherein the task at hand involves pre-
dicting residential property values. However, the analysis of time series data
presents significantly greater complexity [19].

Selective explanations This means producing a short explanation. People usu-
ally don’t love to see all the possible reasons for a cause, but rather the most
related ones to the situation.

For example: why the loan didn’t approve, because the last mortgage has
not been paid yet. Why the team X failed to beet team Y , because, they
had a very weak defense.

Social explanations This means that you should pay attention to the target
group’s social environment. Different classes of individuals should receive
different explanations. For instance, a technical person’s definition of ML
would be - "The study of algorithms and statistical models that computer
systems employ to carry out a particular task without being explicitly pro-
grammed is known as Machine Learning (ML). Learning algorithms for a
variety of daily-use applications "by Mahesh, Batta [20]. Yet, it may be
understood by laypeople as “It’s a way to train machines to behave like
humans”.

Emphasize the unusual This indicates that the focus of the explanation should
be more on abnormality. Whenever an input feature differs from what is
expected for a prediction, the explanation should concentrate more on it.
Technically speaking, even if other "normal" features have the same influence
on the prediction as the abnormal one if one of the input features for a
prediction was abnormal in any way (such as a rare category of a categorical
feature) and the feature affected the prediction, it should be included in an
explanation.

Accurate justifications The justifications must be truthful and realistic. But,
this is not the most crucial aspect of the justifications. Truthfulness is not
as vital as being selective. Nonetheless, the justifications must apply to all
of the inputs. For instance, a prediction model for grading students should
produce the same justification for all students in the same category.

Excellent justifications are general and likely Humans frequently struggle
to believe certain situations that have never happened before because they
exhibit confirmation bias. For a model that forecasts power usage, for in-
stance, the forecast should be low in the summer and during hot weather.
So, if the temperature rises, consumption ought to go down. This should
hold in any situation. Consistency is extremely difficult to maintain for ML
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models. In certain circumstances, monotonicity restrictions or linear models
are required.

The aforementioned considerations suggest that certain criteria should be used
when building explanations. One factor that is quite significant and essential to
our undertaking is the social one. Because the developers are the primary focus of
this thesis, it explains how the explanation information might be used to enhance
model performance.

2.5 Time series forecasting

One of the most often used data science techniques in business, finance, supply
chain management, production, and inventory planning is time series forecasting.
In the simplest terms, time-series forecasting is a technique that utilizes historical
and current data to predict future values over some time or a specific point in the
future [21]. For time series forecasting, the fact that the future result is wholly
unknown at the time of the task and can only be anticipated through analysis and
evidence-based priors is an essential distinction in forecasting [11].

The problem discussed in this thesis is a multivariate time series problem.
Consider n time series variables {y1t, . . . , ynt}. A multivariate time series is the
(n × 1) vector time series {Yt} where the ith row of Yt is {yit}. That is, for any
time t, Yt = (y1t, . . . , ynt)

T .

Multivariate time series, to put it simply, are situations where several variables
change over time. a tri-axial accelerometer, as an illustration. Each of the three
accelerations (x, y, and z) varies simultaneously over time.

Several industries use forecasting in a variety of ways. Weather forecasting,
climate forecasting, economic forecasting, healthcare forecasting, engineering fore-
casting, financial forecasting, retail forecasting, business forecasting, environmen-
tal studies forecasting, social studies forecasting, and many more practical appli-
cations are among them. Companies with consistent historical data can create
models and forecasts.

Time series models can be categorized into three main groups: traditional models,
machine learning models, and deep learning models. The categorization of tradi-
tional models can be delineated into two main types: linear models and nonlinear
models [22]. The Autoregressive Moving Average (ARMA) [23, 24] and Autore-
gressive Integrated Moving Average (ARIMA) models are widely recognized linear
models that are capable of addressing time series data with stationary and nonsta-
tionary characteristics, respectively. A time series is considered to be stationary
when its mean and variance remain constant over time, without any observable
trend or drift. The primary constraints associated with the conventional Time Se-
ries Forecasting (TSF) models pertain to their utilization of regression techniques
on a predetermined set of factors derived solely from the most recent historical
data in order to generate predictions. Furthermore, conventional approaches ex-
hibit an iterative nature and are frequently influenced by the initial conditions of
the process. Furthermore, it should be noted that achieving stationarity in volatile
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time series is a challenging task, as it requires addressing not only drift, seasonal-
ity, autocorrelation, and heteroskedasticity but also adhering to strict conditions.
Therefore, the utilization of machine learning models becomes necessary. Artifi-
cial Neural Networks (ANN) [25, 26] and deep learning Neural Networks (NNs)
[27] have demonstrated superior performance compared to conventional method-
ologies. The most suitable machine learning techniques for time series forecasting
are Recurrent Neural Network (RNN) [28] and Long Short-term Memory (LSTM)
[29].

2.5.1 Forecasting methods

Time series models are employed to make predictions by leveraging historical data
and established information. In the realm of time series prediction, one has the op-
tion to employ either statistical models, neural network models, or a combination
of both methodologies.

Extrapolation of time series data is one of the most important components
of time series forecasting [30]. It can be subjected to ML techniques including
regression, neural networks, support vector machines, random forests, and XG-
Boost. Using models created from historical data to anticipate future observa-
tions is known as forecasting [31]. Recurrent Neural Networks (RNNs), LSTM
networks, Gated Recurrent Units (GRUs), and the Transformer model are widely
recognized and utilized neural network-based models for time series [32]. Not all
models will yield the same results for the same dataset, so it’s critical to determine
which one works best based on the individual time series.

RNNs are particularly well-suited for the task of modeling time series data [33].
RNNs employ neural networks to represent the functional association between
input characteristics in the immediate past and a target variable in subsequent
time steps.

Figure 2.5.1: Structure of the RNN. Figure from [32]

As depicted in Figure 2.5.1, the RNN acquires knowledge iteratively from a
training dataset comprising past observations. This learning process primarily
emphasizes the evolution of an internal state, referred to as the hidden state, as
it progresses from time t − 1 to time t. The model’s outcome is determined by
three parameter matrices, namely Wx, Wy, and Ws, along with two bias vectors,
bs and by, which collectively contribute to the definition of the model. The value of
the output variable, denoted as yt, is contingent upon the internal state variable,
denoted as St. This internal state variable is influenced by both the current input
variable, denoted as xt, as well as the preceding state variable. The computational
process of each hidden state, which refers to either a hidden unit or a hidden cell,
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is depicted in Figure 2.5.2. In a mathematical context, the given information can
be expressed as follows:

St = tanh (Wxs.(xt ⊕ St−1) + bs

and yt = σ(Wy.St + by)
(2.1)

where xt ∈ Rm represents the input vector consisting of m input features at
time t, and Wxs ∈ Rn∗(m+n), the parameter matrices Wy ∈ Rn∗n are used in the
context of a RNN layer. Here, n represents the number of neurons in the RNN
layer. The bias vectors bs ∈ RN are associated with the internal state and output.
The sigmoid activation function σ is utilized in the RNN. The internal state is
denoted as St, while xt⊕St−1 represents the concatenation of vectors xt and St−1.

Figure 2.5.2: RNN computational process. Figure from [32]

One significant limitation of RNNs is the occurrence of the gradient vanishing
problem during the repeated multiplication of the recurrent weight matrix [34].
This issue leads to a gradual decrease in the gradient magnitude over time, result-
ing in the RNNs ability to retain information for only short periods.

LSTM networks, a type of RNNs, have been developed as a solution to the van-
ishing gradient problem [35] and to effectively capture long-term dependencies in
time series data. Further information regarding LSTM models can be accessed in
references [36].

Figure 2.5.3: Structure of the LSTM. Figure from [32]

The entities are characterized at a specific moment t with respect to an internal
(concealed) state denoted as St, as well as a cell state referred to as Ct. As depicted
in Figure 2.5.3, the LSTM cell (C − t) exhibits three distinct dependencies [37]:
(1) the preceding cell state, denoted as Ct−1; (2) the preceding internal state,
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denoted as St−1; and (3) the input at the current time point, represented as xt.
The depicted process in Figure 2.5.3 showcases the utilization of various gates,
namely the forget gate, input gate, addition gate, and output gate, to facilitate the
removal/filtering, multiplication/combining, and addition of information. These
gates correspond to the functions tt, it, C̃t, and Ot, respectively. This mechanism
enables more precise regulation of the learning of longer-term dependencies.

ft = σWf .(xt ⊕ St−1) + bf ;

it = σWi.(xt ⊕ St−1) + bi;

C̃ = tanhWc.(xt ⊕ St−1) + bc;

Ct = ft.Ct−1 + it.C̃t;

Ot = σWo.(xt ⊕ St−1) + bo;

St = tanhCt.Ot; and

Yt = σWt.St + by;

(2.2)

where xt ∈ Rm represents the input vector consisting of m input features at
time t, and Wf , Wi, Wc, and Wo ∈ Rn×(m+n) are matrices.The parameter matrices
Wy ∈ Rm∗n are used in the context of the LSTM layer, where n represents the
number of neurons. Additionally, the bias vectors bf , bi, bc, bo, and by ∈ Rn are
employed. The sigmoid activation function σ and the internal state St are also
relevant components in this context. The forget gate, input gate, addition gate,
and output gate are responsible for implementing the functions ft, it, C̃t, and Ot,
respectively.

2.5.2 Forecasting model selection

The key is to choose the best forecasting technique based on the properties of the
time series data. Univariate or multivariate, autocorrelation, stationarity, differ-
encing, and one-step or multi-step time series are some of the properties one could
consider when deciding which model to use [38].

In this project, recurrent neural networks will be utilized to predict/forecast
and generate explanations named LSTM, which has already been discussed in
Section 2.5.1. Also, an encoder and decoder layer will be added on top of LSTM
to generate an explanation, which will be discussed in Chapter 5. It is widely
used for many things, including time series analysis and language recognition [39].
Though there are ways like adding a delay to the input could make time series
problems into supervised machine learning problems [40]. Also, models like the
random forest or gradient boosting regressor could be used, to solve the problem.

2.5.3 Accuracy metrics

Any machine learning project must carefully consider accuracy measures. A bad
accuracy metric could taint your evaluation of models as well as the optimization
(loss function) of your model.

The loss function is based on the error, which is the difference between the
forecasted value and the true value for each time step [41]. The prediction error
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is the difference between an observed value and a prediction based on all previous
observations [42]. For instance, If the error is shown as e(t) In this case, the
prediction error can be written as e(t) = y(t) - ŷ(t|t−1) where, y(t) = observation
ŷ(t|t−1) = indicates the prediction of y(t) Based on all observations so far Forecast
error can be evaluated using various methods such as mean percent error, root
mean square error, mean absolute percent error and mean squared error.

Figure 2.5.4: Overview Time Series Forecast Error Metrics. Figure from [43]

Point forecast accuracy measures are categorized by Hyndman and Athana-
sopoulos [31] as scale-dependent, percentage errors, or scaled mistakes. As a result
of being expressed in the same unit as the original values, scale-dependent metrics,
like the Root Mean Squared Error (RMSE) specified in Equation 2.3 also Mean
Absolute Error (MAE) specified in Equation 2.6, depending on the scale of the
original data to determine how much the error is worth. As percentage mistakes
are unit-free, it could be simpler to compare accuracy between different data sets.
When the target variable’s true value at a given time step is zero or the unit of
measurement lacks a meaningful zero, percentage errors do not perform well. The
Mean Absolute Percentage Error (MAPE), which is provided in Equation 2.4, is
the most popular statistic that uses percentage error. Another percentage error,
the R squared (R2) score, commonly represented as R2, quantifies the extent to
which the variability in the dependent variable (y) can be accounted for by the
independent variables (x) included in the model. The calculation is performed us-
ing the subsequent equation 2.5. Scaled errors, which are comparison measures for
projections made for a variety of different units, are not pertinent to this theory.

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (2.3)

MAPE =
100

n

n∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (2.4)

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
(2.5)

MAE =
1

n

n∑
i=1

|yi − ŷi| (2.6)

Most of the experiments in this project used either MAE, RMSE, Or R2
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Chapter 3

State of the art

By outlining key work in the field of XAI, both in terms of general methodologies
and for time series forecasting specifically, this chapter offers a solution to research
questions 1 and 2 from Section 1.3. Also, the methods for describing forecasting
errors will be covered. This chapter’s goals are to provide an overview of the state-
of-the-art in XAI and to explore in-depth a number of the strategies for explaining
predictions in a variety of ways. The pros and cons of each strategy for achieving
explainability will be highlighted in this chapter, along with which will be crucial
to explain forecasting inaccuracy or whether we should look into any more specific
area. This chapter will focus on a few selected XAI approaches rather than all of
them.

With a classification of the methods used in the field and a description of the
level of explainability each class can offer, Section 3.1 of the chapter provides an
overview of the field. The description of intriguing XAI methods is then given,
broken down into sections3.2, 3.3, and 3.3, which are devoted to model-agnostic
methods, model-specific methods, time series data explanation methods. And
finally in section 3.4 XAI for explaining the poor performance of a model will be
discussed.

3.1 XAI outline

In the past few years, the XAI market has seen tremendous growth worldwide.
With a Compound Annual Growth Rate (CAGR) of 20.1 percent from 2020 to
2030, it is anticipated to grow from a size of USD 3.55 billion in 2019 to USD
21.78 billion by 2030 [44]. There are two major techniques to generate explana-
tions: either you create a black-box model and add a surrogate model to explain
it, or you create an intrinsically interpretable prediction model, such as one using
rule-based algorithms [45]. Applying methods that analyze the model after train-
ing is basically called the post hoc method [46]. Local and Global are two major
categories, that the post hoc method could be divided into. Local models are to
explain specific predictions and global models are to describe the typical behavior
of your black-box models. Short decision trees and sparse linear models are exam-
ples of machine learning models that are thought to be intrinsically interpretable
due to their straightforward form.

Model-specific and model-agnostic explanations are the two basic categories
when it comes to an explanation on a per-model basis. Tools for model-specific

17



18 Md Amjad Hossain: Enriching models using XAI

interpretation are restricted to particular model classes. For instance, how to
interpret a linear model’s regression weights. Moreover, techniques that are model-
specific, such as neural networks, only work with that sort of model. In order to
function, model-agnostic algorithms often examine feature input and output pairs.
These methods, by definition, are unable to access model internals like weights or
structural data.

3.2 Model-specific or model-agnostic Methods

The debate between model-specific and model-agnostic explainability approaches
is that they differ in that the XAI technique either makes use of the peculiarities
of the structure of the ML model being utilized or is independent of it. Similar to
how testing software applications is done using white box versus black box tech-
niques. White box approaches are model-specific, whereas black box approaches
are model-agnostic.

3.2.1 Model specific methods

The benefits of utilizing model-specific models are that they enabled the develop-
ment of a more individualized explainable model, hence gaining a deeper knowl-
edge of the decision [47]. On the other hand, because the ML or DL model has to
be recreated, the entire model’s structures have to be revisited, which will affect
the model’s performance [48]. The deconvolution-based methods for deep learning
models, which follow Convolutional Neural Networks (CNNs) (which go from im-
age input to the final class) journey in reverse order, are some of the popular model-
specific approaches to these models (from final class to original image pointing out
specific regions in the image which contribute to the decision). Guided backpropa-
gation, Deep Learning Important Features (DeepLIFT), Gradient-weighted Class
Activation Mapping (GRAD-CAM), Score Class Activation Mapping (CAM), and
Grad-CAM++ are extensions of the deconvolution-based methods.

3.2.1.1 Deconvolution Networks

It is important to understand Deconvolution before jumping into guided back-
propagation. The research done by Zeiler et al [49] on deconvolutional networks
(deconvnets) is where the concept of deconvolution originated. Deconvnets [50]
can be trained using an unsupervised method and are designed to function simi-
larly to convolutional networks but in reverse (reversing pooling, reversing filter,
etc.). In the context of model analysis, a deconvolutional approach involves uti-
lizing a deconvolutional network not for training purposes, but rather as a means
to investigate the inner workings of a Convolutional Neural Network (CNN).

The CNN, also known as ConvNet, is a type of deep neural network primarily
employed for tasks such as image recognition, image classification, and object
detection [51]. In the context of CNNs, an image is utilized as input, wherein the
network is capable of attributing significance to the diverse aspects or features
present within the image, thereby enabling the network to discern and distinguish
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Figure 3.2.1: CNN Architecture. Figure from [51]

between them. The amount of pre-processing needed in CNNs is significantly
lower in comparison to alternative classification algorithms.

A typical CNN architecture generally comprises three fundamental layers: a
convolutional layer, a pooling layer, and a fully connected layer. The primary aim
of convolution is to extract various features, including edges, colors, and corners,
from the given input. As the network delves further into its layers, it progres-
sively discerns more intricate characteristics, including shapes, numerical figures,
and facial components. The primary objective of the pooling layer is to reduce
the computational workload necessary for data processing. The final layer, known
as the fully connected layer, is tasked with transforming the image into a single-
column vector. This flattened output is then passed through a feed-forward neural
network, and the process of backpropagation is applied during each iteration of
the training process.

Starting from the desired layer, the activation signal is passed down through the
layers (similar to back-propagation), through the max pooling layer, Rectified
Linear Unit (ReLU), and weight multiplication [52].

Initialize: Start with the desired layer to project down and set the initial value
of the reconstructed signal to correspond to its activations. back-propagate
the signal that was rebuilt downward.

MaxPool: Look for indices from where the inputs were pooled and passed up in
the forward pass when the MaxPooling layer is encountered. Pass the values
of the reconstructed signal to these indices during the backward pass while
zeroing out the other places.

ReLU: Pass the rebuilt signal only if it is positive when the ReLU layer is en-
countered; otherwise, zero it out.

Weights: Transpose the weights to the reconstructed signal and multiply it before
passing it down when the CNN layer is encountered or any other weight
multiplication.

The CNN is not perfectly inverted with this technique. Just the pixels that
encourage the activation of a hidden layer are projected. The majority of decon-
volution processes resemble gradient backpropagation.
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Figure 3.2.2: Forward Pass Vs Backward Pass. Figure from [49]

Figure 3.2.3: DeConv of various dog images projected from layer 4 to input
image layer. Figure from [49]
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3.2.1.2 Guided backpropagation

With a few exceptions, gradient backpropagation and deconvolution are very sim-
ilar. How different is the deconvolution approach from gradient backpropagation,
given that gradients can be utilized as a saliency map for comprehending the
choices made by a neural network?

In deconvolution, the (gradient-like) reconstructed signal is only transmitted when
it is positive, or in other words, we only transmit signals that contribute to the
activation is increased. In contrast, whenever the ReLU passed the inputs up in
the forward pass, the gradient was passed down through the ReLU. The differences
between the two are subtle.

Initialize g(x) = xN for the desired layer of the project. Starting from the
desired layer, propagate g down the layers till the input image.

According to Jost Tobias Springenberg [53] guided backpropagation combines
gradient and deconvolution backpropagation techniques. At the ReLU stages,
the gradient only back propagates for guided backpropagation if the gradient is
positive. The formulas are as follows:

Gradient backpropagation except at ReLU:

Zn = max(Yn, 0) (3.1)

The backward pass:

gyn =

{
gzn gzn > 0 and yn > 0
0 Otherwise

(3.2)

Only at the ReLU stage does Guided BackPropagation diverge from "vanilla"
gradient backpropagation.

Figure 3.2.4: Guided BackProp Results on sample images. Figure from [53]

Figure 3.2.5: BackProp Vs DeConv Vs Guided BackProp. Figure from [53]



22 Md Amjad Hossain: Enriching models using XAI

3.2.1.3 GRAD-CAM

In this research project, we have used the grad-cam extensively to identify and
improve prediction.

CAM is an explanation method for CNNs, introduced by [54]. The authors
evaluate networks with Global Average Pooling (GAP) architecture, which av-
erages feature map activations, concatenates them, and outputs a vector. This
architecture highlights important regions by projecting back the output weights
on convolutional feature maps.

According to the GRAD-CAM paper [55] GRAD-CAM, a more flexible variation
of CAM, can create visual explanations for any CNN, even if the network also
contains a stack of fully linked layers (e.g. the Very Deep Convolutional Networks
(VGG) networks). A saliency map and importance score based on the gradients,
respectively, were constructed in order to get the GRAD-CAM of a given image
and a class of interest. This coarse localization map highlighted the key areas in
the image for predicting that notion.

More formally, at first, the gradient of the target class, and the activations
maps of the final convolutional layer are computed and then the gradients are
averaged across each feature map to produce an importance score.

αc
k(GlobalAveragePooling) =

1

z

∑
i

∑
j

(3.3)

Gradients via backprop =
∂yc

∂Ak
ij

(3.4)

Where c is the class of interest and k is the index of the activation map in the
final convolutional layer. The above-calculated alpha indicates the significance of
feature map k for the intended class c. Lastly, after multiplying each activation
map by its alpha importance score, the results are produced. A ReLU nonlinearity
is also used in the summation in order to only take into account the pixels that
have a favorable impact on the score of the class of interest. The final equation:

Lc
Grad−CAM = ReLU(

∑
k

αc
kA

k) (3.5)

Figure 3.2.6: GRAD-CAM visualization of an example image for the class of
‘Dog’. Figure from [55]
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The authors suggest Guided Grad-CAM after incorporating guided backprop-
agation into their methodology. It merely accomplishes this by elementally mul-
tiplying Grad-visualization CAMs and guided-backpropagation visualization:

Figure 3.2.7: Guided Grad-CAM as a combination of Grad-CAM and Guided
Backprop. Figure from [55]

3.2.1.4 DeepLIFT

DeepLIFT [52] is a technique for breaking down a neural network’s output pre-
diction from a particular input by backpropagating each neuron’s contribution to
the input’s many features.

Each neuron’s activation is compared to its "reference activation" by DeepLIFT,
which then calculates contribution scores based on the difference. DeepLIFT may
choose to separately take into account positive and negative contributions, which
can help it identify dependencies that other methods might have overlooked [56].

Let t be a target neuron, and t0 denote the target neuron’s reference activa-
tion, which represents the target neuron’s activation for the reference input. Using
the formula ∆t = t − t0 as a reference, define the difference amount as ∆t. Let
x1, x2, ..., xn represent the necessary and sufficient neurons in one or more interme-
diate layers for computing t. Then DeepLIFT assigns C∆xi∆t contribution scores
to ∆xi such that the sum of the contribution scores for all xi equals the deviation
from the reference, ∆t shown below,

n∑
i=1

C∆xi∆t = ∆t (3.6)

A neuron’s activation on the reference input is the reference output of the
neuron. The user must choose the reference input, which typically involves subject
expertise in order to select an appropriate reference that produces useful results.
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CNNs, RNNs, and Feedforward Neural Networks (FNNs) are just some of
the deep learning designs that can benefit from using DeepLIFT. The model’s
output reveals which properties or neurons are crucial to its decision-making.
The resulting importance scores can be shown graphically as heatmaps or feature
attributions, respectively, to draw attention to the most influential regions or
features in producing the model’s predictions [57].

3.2.2 Model agnostic methods

In simple terms, a model-agnostic method can be applied to any model [58]. It
is recommended by Ribeiro, Singh, and Guestrin[59] to Separate the explanations
from the machine learning model as it has some advantages.

Model-agnostic interpretation methods offer flexibility for machine learning de-
velopers, allowing them to use any model they like. This approach is independent
of the underlying model, making it easier to compare models in terms of inter-
pretability. This approach is particularly useful for evaluating multiple types of
machine learning models.

3.2.2.1 Global methods

Global methods reflect typical behavior. The interpretation techniques are ideal
for debugging and understanding the underlying mechanisms of a model’s data.

3.2.2.1.1 Partial dependence plot

If a machine learning model has features x1, x2, ..., xn, the partial dependency
plot can determine whether the relationship between the target and a feature is
linear, monotonic, or more complex. Partial dependence function for regression,
shown in Equation, 3.7.

f̂S(xS) = EXC

[
f̂(xS, XC)

]
=

∫
f̂(xS, XC) dP(XC) (3.7)

Often, S contains simply a single or a small number of features. We are inter-
ested in the impact on the prediction of the feature(s) in S. To implement partial
dependence, we marginalize the output of the machine learning model across the
distribution of the features in set C. This allows us to see how features in set S
relate to the anticipated outcome.

The Monte Carlo function, which is used to calculate the partial function, is
given in Equation, 3.8.

f̂S(xS) =
1

n

n∑
i=1

f̂(xS, x
(i)
C ) (3.8)

With a set of feature S values, the partial function will reveal the average
marginal effect on the prediction. The formula looks like this, where n is the total
number of instances in the dataset and x

(i)
C are the actual feature values from the

dataset for the features in which we are not interested.
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Figure 3.2.8: PDPs for the bicycle count prediction. Example and Figure from
[60]

3.2.2.1.2 Accumulated local effect plots

Accumulated Local Effect (ALE) is a faster and unbiased alternative to a Partial
Dependence Plot (PDP). Both ALE and PDP share lots of common characteris-
tics and similar goals.

The PDP approach shares a commonality in that it simplifies the complex predic-
tion function f to a function that depends on only one (or two) features. All three
approaches involve averaging over the impacts of the other features to bring down
the function, but the details of how this is done and whether or not the effects
are averaged over the marginal or conditional distribution are what set these two
approaches apart. Partial dependency plots with marginal distribution, are shown
in equation 3.9.

f̂
(
S,PDPx) = EXC

[
f̂(xS, XC)

]
=

∫
Xc

f̂(xS, XC) dP(XC) (3.9)

For PDP, the effect of a particular feature has been calculated by replacing the
other elements with the same value and averaging them, Which in terms generates
some unrealistic relation sometimes. ALE plots solve this problem by focusing on
the variance between predictions rather than averaging them. We can prevent the
influence of linked traits by focusing on differences rather than averages [60].

In general, ALE means that we can make a reasonably accurate estimate of the
change across a relatively short time range. Next, we can get a complete picture
of how our input impacts our output by adding together all of the regional results.
To calculate the impact of temperature on our runners at 20 degrees Celsius, we
would measure the impact at 21 degrees and then deduct the difference at 19
degrees. The impact of the feature during that window can be determined by
averaging the changes in prediction. After that, we aggregate the results across
all of the data [61].

3.2.2.1.3 Feature interaction
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Most of the time, prediction can not be expressed as the sum of the feature effects.
As the effect of one feature depends on the other feature as well.

The feature interaction method basically deals with two scenarios. First, it
establishes the relationships between features, and second, it provides a global
measure of interaction that indicates if and to what extent a given feature interacts
with all other features in the model.

If two features do not interact, we can use PDP to determine the dependency
or ALE for another case. The main attraction of the Feature interaction method
is the H statistics. Given below in equation 3.10 and 3.11.

H2
j k =

∑n
i=1[PDjk(x

(i)
j , x

(i)
k )− PDj(x

(i)
j )− PDk(x

(i)
k )]2∑n

i=1 PD2
jk(x

(i)
j , x

(i)
k )

(3.10)

H2
j =

∑n
i=1[f̂(x

(i))− PDj(x
(i)
j )− PD−j(x

(i)
−j)]

2∑2
i=1 f̂

2(x(i))
(3.11)

The 3.10 equation helps to determine the relationship between the feature j
and k. And the other equation 3.11 helps to determine the relationship between
feature j and others.

The H-statistic is time-consuming to calculate since iterating over all n data points
is required, and at each point, the partial dependence must be calculated. To
calculate the two-way H-statistic (j versus k), we need at most 2n2 invocations of
the predicted function of the machine learning models, and 3n2 in total (j vs. all).
We can use sampling to quickly evaluate n data points.

If no interaction exists, the statistic is zero, and if all of the variances have the
same PDjk or if the total variance f̂ can be described by the partial dependence
functions, it is one. Having an interaction value of 1 between two features indicates
that the effect on the prediction comes solely from the interaction, as both features
PD functions are held constant.

3.2.2.1.4 Functional decomposition

When given a high-dimensional feature vector, a supervised machine learning
model can be thought of as a function that returns a prediction or classification
score. An interpretation method called functional decomposition takes a high-
dimensional function and expresses it as the combined effects of its features and
interactions.

Let’s consider a prediction function f̂ , that takes p features as input, where
f̂ : Rp → R that generates the output. It’s possible for this to be a regression
function, but it can also be a classification probability, a cluster score, or a cluster
score (unsupervised machine learning). When broken down into its constituent
parts, the prediction function looks like this:

f(x) =f̂0 + f̂1(x1) + · · ·+ f̂p(xp)

+ f̂1,2(x1, x2) + · · ·+ f̂1,p(x1, xp) + · · ·
+ f̂p−1,p(xp−1, xp) + · · ·+ f̂1,...,p(x1, . . . , xp)

(3.12)
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Let’s shorten the equation, Let’s consider all features from 1, ..., p as S, Which
in terms S ⊆ {1, . . . , p}. Within S, the set contains the intercept (S = ∅) and
main effects (|S| = 1) and all interactions (|S| ≥ 1). The final equation would be
like 3.13.

f̂(x) =
∑

S⊆{1,...,p}

f̂ s(xS) (3.13)

In the formula, xS is the vector of features in the index set S. And each subset
S represents a functional component, for example, a main effect if S contains only
one feature or interaction if |S| > 1.

The functional decomposition is the core concept of machine learning inter-
pretability [60]. Decomposing high-dimensional and complicated machine learning
models into individual effects and interactions is a vital step toward interpreting
individual effects, and this is where functional decomposition comes in. Statistical
regression models, ALE, (generalized) functional analysis of variance, partial least
squares (PDS), the H-statistic, and ICE curves all have their roots in the concept
of functional decomposition.

3.2.2.1.5 Permutation feature importance

The significance of permutation features largely follows the prediction error, mod-
ifies the feature value, and follows the forecast shortfall.

Permutation feature importance was first introduced by Breiman [62] in his pa-
per about random forests. Based on this idea, Fisher, Rudin, and Dominici [63]
proposed a model-agnostic version of the feature importance and called it model
reliance. The concept is really straightforward: We measure the importance of a
feature by calculating the increase in the model’s prediction error after permuting
the feature. A feature is “important” if shuffling its values increases the model
error because in this case, the model relied on the feature for the prediction. A
feature is “unimportant” if shuffling its values leaves the model error unchanged
because in this case, the model ignored the feature for the prediction.

The algorithm to generate PFI is based on Fisher, Rudin, and Dominici. Let’s
consider the model equation as f̂ , feature matrix X, target vector y, and error
measure L(y, f̂).

1. Estimate the original model error

eorig = L(y, f̂(X))

(e.g., mean squared error)

2. For each feature j ∈ {1, . . . , p}, do:

• Generate feature matrix Xperm by permuting feature j in the data X.
This breaks the association between feature j and true outcome y.

• Estimate error eperm = L(Y, f̂(Xperm)) based on the predictions of the
permuted data.
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• Calculate permutation feature importance as the quotient FIj =
eperm
eorig

or difference FIj = eperm − eorig.

3. Sort features by descending FI.

It was recommended by Fisher, Rudin, and Dominici that, instate of permu-
tating the feature, split the dataset in half and swap the values of feature j of the
two halves.

Figure 3.2.9: The importance of each of the features for predicting cervical
cancer with a random forest. Example and Figure from [60]

3.2.2.2 Local methods

Local methods only explain certain inputs of a model. Over global methods, local
methods could help to understand the data patterns.

3.2.2.2.1 Individual conditional expectation curves

Individual conditional expectation curves are quite similar to PDP. PDP gen-
erates the overall effect of a particular feature. According to [64] The equivalent
to a PDP for individual data instances is called an Individual Conditional Expec-
tation (ICE) plot.

In contrast to partial dependency plots, which only show the dependence of the
prediction on a feature as a single line, ICE plots show the dependence of the
forecast on a feature for each instance as a separate line. The mean of the ICE plot
lines is the PDP. By maintaining the status quo for all other features, generating
variants of this instance by substituting values from a grid in place of the feature’s
value, and then making predictions with the black box model, the values for a
line (and one instance) can be determined. The end result is a set of points
representing a single instance, each of which contains the grid’s feature value and
the related predictions.



CHAPTER 3. STATE OF THE ART 29

Figure 3.2.10: ICE plot of cervical cancer probability by age. Example and
Figure from [60]

There are a couple of variants of ICE plots available, ex: Centered ICE Plot
and Derivative ICE Plot. Those are there to solve the centering and heterogeneity
problem of the PDP/ICE plot.

3.2.2.2.2 Local surrogate models (LIME)

Local interpretable model-agnostic explanations were first introduced in a paper
by Ribeiro, Marco Tuli, and others [65]. LIME is mostly used to explain black
box machine learning individual prediction. LIME is a surrogate model, which in
terms could be either Lasso or a decision tree, or any other explainable model.

The concept is simple to grasp. To begin, preclude the training data and treat
the model as a black box into which you can feed data and obtain predictions.
As often as you like, probe the container. Your mission is to figure out how the
machine-learning model arrived at its conclusion. LIME investigates how machine-
learning model predictions change when inputted with different data. Using the
black box model’s predictions and the original data, LIME creates a new dataset
with perturbed samples. LIME then trains an interpretable model on this new
dataset, giving more weight to instances that are closer to the instance of interest.

Mathematically, Local surrogate models with interpretability constraints can
be expressed as equation 3.14.

explanation(x) = argmin
g∈G

L(f, g, πx) + Ω(g) (3.14)

Model g (e.g. a linear regression model) is chosen as the explanation model
x if and only if it minimizes loss L (e.g. a mean squared error) as a measure of
how closely the explanation matches the prediction of the original model f (e.g.
an xgboost model) while keeping the model complexity Ω(g) to a minimum (e.g.
prefer fewer features). For example, all feasible linear regression models belong to
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the family G of plausible explanations. The size of the region around Instance x
that is taken into account for the explanation is specified by the proximity measure
πx. In actuality, LIME merely works to reduce losses. The complexity is set by
the user, who may, for instance, limit the number of features available to the linear
regression model.

To generate a local surrogate model, The below steps could be followed.

• Choose the case you’re interested in understanding better by selecting it
from the drop-down menu.

• Make changes to your data and see what the black box predicts will happen.

• The additional samples should be weighted based on how close they are to
the instance of interest.

• Use the dataset with the variants to train a weighted, interpretable model.

• Justify the foresight by detailing how you understood the regional model.

3.2.2.2.3 Counterfactual explanations

Counterfactual explanations fall into the example-based explanation category. It’s
mostly used to describe a particular instance or prediction behavior.

If "X" hadn’t happened, then "Y" wouldn’t have happened; this could be an
example of a counterfactual explanation. A more realistic example would be -
"you didn’t get the house loan because of your low household income". Or the
example could explain a world, where you could get your desired result. That’s
why it’s called counterfactual.

“A counterfactual explanation of a prediction describes the smallest change to the
feature values that changes the prediction to a predefined output” - by Molnar,
Christoph [60]. During generating a counterfactual explanation, it is recommended
to take into consideration of the human aspect of the explanation, referring to
section 2.4.

There are a lot of optimization algorithms to generate counterfactual expla-
nations, but the simple approach would be a search algorithm, trial, and error,
maybe with some guidance. As mentioned, some algorithms work with loss func-
tion and optimization methods. One by Wachter et al [66] and Dandl et al [67].
Both of the algorithms work by measuring the distance between x and x′. Where
x′ is the target instance. Different distance measuring technique has been used by
both of the methods. Also, another Nobel technique related to genetic algorithms
has been discussed in the paper [68] to generate a counterfactual explanation and
gradually improve it.

3.2.2.2.4 SHAP

Shapley Additive exPlanations was first introduced by Lundberg and Lee [69]
in one of their research papers. It’s a method to explain individual predictions
based on the game’s theoretically optimal Shapley values.
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SHAP aims to explain a data instance’s prediction by computing the contribution
of each feature to the prediction. It uses Shapley values from coalitional game
theory, where feature values act as players in a coalition. Shapley values help dis-
tribute the "payout" among features, and SHAP is an additive feature attribution
method, a linear model. SHAP explanation equation 3.15, given below.

g(Z ′) = ϕ0 +
m∑
j=1

ϕjz
′
j (3.15)

Here, g is the explanation model z′ ∈ {0, 1}M is the coalition vector, M is the
maximum coalition size, and ϕj ∈ R is the feature attribution for a feature j, the
Shapley values.

Time Series SHapley Additive exPlanations (TimeSHAP), Tree SHapley Addi-
tive exPlanations (TreeSHAP), and Kernel SHapley Additive exPlanations (Ker-
nelSHAP) are some of the versions of SHAP, which have been most eligible for
different types of Models and Data formats.

3.3 XAI for time-series

The majority of cutting-edge techniques used in time series are deep learning tech-
niques, which are too complicated to be understood. In contrast to the domains
of computer vision or natural language processing, the explainability of models
applied to time series has not attracted much attention.

3.3.1 TimeSHAP

The TimeSHAP recurrent explanation is a novel model-neutral extension of the
KernelSHAP architecture that operates in the recurrent domain [70]. Since our
method uses input perturbations to get several forms of explanation, TimeSHAP
can be used to explain any tabular recurrent or sequential model.

TimeSHAP offers three local explanations: event-, feature-, and cell-level, en-
abling users to understand the relevance of past events and features in current
predictions.

TimeSHAP is a sequential domain adaptation of KernelSHAP, working with
input sequences as matrices representing features throughout time and contiguous
events. It aims to attribute importance to both rows and columns, obtaining
cell-level attributions for specific features.
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Figure 3.3.1: TimeSHAP takes into consideration the recurrence of RNNs when
explaining them. Example and Figure from [71]

TimeSHAP generates event-level, feature-level, and cell-level explanations, the
latter of which indicates which characteristic of which historical event was most
essential for the present prediction.

Feature level: The rows of our input matrix represent time, and TimeSHAP
perturbs characteristics during this time period to provide explanations for
them.

f f
X(z) = DzX + (1−Dz)B where Dz = diag(z) (3.16)

Event level: TimeSHAP executes perturbations on events by toggling entire
columns on and off in our input matrix in order to gain explanations at
the event level.

he
X(z) = XDz +B(1−Dz) (3.17)

Cell level: Cell-level explanations require turning individual cells on and off, but
this approach has a fast scaling problem. For example, with 40 features and
20 events, 800 cells can lead to two possible coalitions. To obtain relevant
explanations, the total number of cells considered needs to be reduced.

3.4 Explain bad forecast

Explaining bad forecasting is an important branch of this research. According to
the section 1.3 the final goal of this research is to improve model performance, and
the way to do so, is to explain the reason for poor performance. It is important for
the end users to understand if a particular forecast instance can be relied upon,
in terms says detect the anomaly.

Anomaly detection algorithms and the XAI method are two practical approaches
to explaining poor forecasts, as described in the paper [72] explaining by Joe
Roanec, Elena Trajkova, and others. This abstract is derived from that paper.
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3.4.1 Time Series Anomaly Detection

Available anomaly detection algorithms can be classified into three categories: sta-
tistical, distance-based approaches, and model-based approaches. Non-parametric
techniques, such as histogram-based approaches and bitmap time series anomaly
detectors, allow fast computations and are adopted when speed is of primary
importance. Parametric methods, such as Gaussian methods and least squares
regression, can be used to estimate outliers based on kernel density estimation.

Statistical anomaly detection methods cannot be applied to datasets with un-
known distribution, so different approaches have been developed to overcome this
issue. Model-based techniques can be divided into learning and predicting whether
a value is anomalous and comparing the potential outlier with expected values
drawn from a generative model or data distribution. Active learning can be uti-
lized to minimize labeling efforts.

Isolation Forest models, random forests, gradient-boosted machines, artificial
neural networks, and voting ensembles are also used for anomaly detection. Models
from this group have multiple configurations, varying generative methods, and
outlier detection criteria.

Anomaly detection algorithms can identify anomalous forecasts in the con-
text of a particular time series. Further insights can be obtained through XAI
to understand which features were most influential to such forecasts and provide
counterfactual examples to highlight value changes that would produce a better
outcome.

Z-Score, Modified Z-Score, Percentile-based, Histogram-based, and Quantile-based
techniques available within histogram-based approaches.

Piecewise Aggregate Approximation (PAA), Symbolic Aggregate Approximation
(SAX), and Shapelet Transform are the techniques available within the Bitmap-
based approach.

3.4.2 XAI for forecasting error

Researchers have developed a number of methods, ex: LIME, Anchors, Local Foil
Trees, and Local Rule-based Explanations (LoRE) to provide black-box explana-
tions of forecasting models, some of them have already been discussed in section
3.2. Using an approximation of Shapley values, explanations based on cooperative
game theory calculate the relevance of features.

Research on XAI for time series has mainly focused on explainability for deep
learning models. Methods like Gradient*Input, Deep Learning Important Fea-
tures, integrated gradients, and Smooth-Grad have been developed to provide
insights into which points in time are relevant to the forecast. Attention mecha-
nisms have also been introduced to explain detected anomalies.

Comparative explanations, such as counterfactual and directive explanations,
are used to explain the underlying reasoning of AI models. Good explanations
should convey meaningful information, target a specific user profile, focus on ac-
tionability, and provide counterfactual examples. They should consider relevant
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context, such as the target user profile, explanation goals, and focus.

Joe Roanec, Elena Trajkova, and others also proposed a novel architecture that
combines anomaly detection and explainability methods to improve forecast accu-
racy and give users access to more relevant background data. A bad forecast can
be found with the help of the anomaly detection module. When this occurs, the
forecast is either reverted to a local statistical model or the user is warned that
they should not place faith in the prediction because of how the underlying time
series has behaved in the past. Details can be found in their paper [72].

Figure 3.4.1: Modular architecture for Explaining bad forecasting.Figure from
[72]

The methodology and dashboard presented in this study are designed to be
applicable to a wide range of global time series models. These models are lim-
ited to machine learning algorithms that utilize input features that can be easily
understood by humans. Additionally, a significant number of the explanations
presuppose that the features communicate a specific significance to the user. This
requirement can only be fulfilled by handcrafted features. As a consequence of
this constraint, the efficacy of this methodology is not infallible for deep learning
models. However, we contend that it is highly motivating to establish a framework
for enhancing time series through XAI.



Chapter 4

XAI-based model improvement

Despite the recent advancement in the field of XAI, both for statistical models and
neural networks, these tools have only been used for visualization purposes [73].
But, there have been some works recently, that use the explanation information
to improve model performance.

Incorporating human knowledge into machine learning models for reasoning
correction is an old idea. Expert Systems, Rule-Based Systems, and Case-Based
Reasoning are some of them. However, recent years have seen a rise in efforts to
incorporate explanations similarly, all with the end goal of enhancing the present
ML models’ many good qualities.

This chapter offers a solution for research question 3 from section 1.3. The
goal of this chapter is to review the available methods to leverage XAI to obtain
better models.

4.1 Enhance model properties with XAI

Talking about ML models or algorithms, just being accurate is not enough, it also
has to be trustworthy and reliable. Though the traditional optimization matrix is
not enough to judge an ML model, there are some other properties that need to
be considered. Not only performance, but explanation could also help to improve
several other desirable properties.

4.1.1 Performance

In the realm of machine learning, models that exhibit a strong capacity for general-
ization and high levels of accuracy are generally regarded as desirable. However, in
certain cases, the phenomenon of overfitting and the utilization of domain-specific
input features can lead to an escalation in complexity, consequently affecting the
overall performance of the model. The accuracy of a test is primarily determined
by the test data set. However, it is important to note that this characteristic may
not always accurately reflect the model’s true generalization ability.

4.1.2 Convergence

The desirability of faster convergence is often hindered by the challenge of striking
a balance between convergence speed and achieving an optimum that attains state-
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of-the-art performance.

4.1.3 Robustness

The concept of domain dependency refers to the extent to which a particular
phenomenon or concept is influenced by the specific domain Neural networks ex-
hibit a degree of sensitivity to the quantity of data available. Minor alterations
can lead to significantly divergent forecasts. The justifications for their decisions
can be subject to manipulation through the arbitrary alteration of inputs, while
still maintaining the same prediction outcome. Both effects can be alleviated by
enhancing the model’s resilience to minor modifications of the input.

4.1.4 Efficiency

Deep Neural Networks (DNNs) necessitate a substantial volume of data. At times,
it can be challenging to collect a substantial volume of data. Frequently, a substan-
tial amount of data can be acquired through the utilization of expert opinion or
crowd-sourcing methods. Training this particular model and attaining the desired
level of accuracy poses a considerable challenge. It is prudent to take into account
the reduction of data complexity as a means to enhance model performance.

4.1.5 Reasoning

Enhancing reasoning abilities can often pose a challenge. However, it can be
argued that reasoning is closely linked to performance. Modern machine learning
models exhibit a high degree of reliance on data, making them susceptible to
capturing patterns present in the training data, regardless of their applicability to
real-world scenarios. It is imperative that specific attributes are present in both
the training and test datasets.

4.1.6 Equality

Ensuring that the training data exhibits a balanced distribution of examples across
all classes is of utmost significance. In order to attain optimal performance across
various scenarios, it is imperative to ensure equitable treatment of all populations
and data sources. It should be noted that this particular characteristic is distinct
from the concept of fairness, which is a subject of extensive research in its own
right but is not addressed in this study.

Furthermore, it is imperative to consider additional factors such as data quality,
outliers, data drift, and concept drift. The topic of Outliers has been previously
addressed in Chapter 3. The efficacy of the models employed may diminish over
time as a result of a phenomenon referred to as "model drift". The deployed
model is continuously being updated with incoming data to generate predictions.
Nevertheless, it is plausible that this data could exhibit a distinct probability
distribution in comparison to the one utilized for training the model. ML model
drift can be classified into two overarching categories: concept drift and data
drift. Concept drift occurs when there is a change in the posterior probabilities
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Figure 4.2.1: Model improvement with XAI. Explanations offer information
about the model’s decision-making and behavior, which may in turn be leveraged
to improve models by augmenting different components of the training process or
by adapting the trained model. Figure from [73]

of X (input) and Y (output), specifically referring to the probability of Y being
the output given X as the input [74]. On the contrary, data drift refers to the
scenario in which there is a change in the input distribution of the model. Data
drift can occur when there is an uneven distribution of training data, leading to
an imbalance in certain terms.

4.2 Theoretical formalization for improvement

In the given scenario, we have a model denoted as f t
θ that is parameterized by θt

after undergoing training iteration t ranging from 1 to T . The model consists of L
layers, denoted as l, with each layer’s parameters represented as θl,t after t training
iterations. The input features to layer l are denoted as f l

θt , where X represents
the input data, and fθt(X) represents the model’s output obtained from the last
layer L, i.e., fθt(X) = fL

θt(X).

Additionally, we assume the availability of a (local) XAI technique that provides
explanations Rl,t for the model’s decisions at each intermediate layer l and iteration
t. These explanations correspond to the intermediate features f l

θt(X). According
to [73] utilizing these explanations, we can enhance each component separately, in-
cluding Data, Feature Representations, Loss Function, Gradient, and the Trained
Model.

4.2.1 Data augmentation

XAI is a field of study that focuses on interpretability and transparency The pro-
cess of augmentation utilizes explanations to modify the arrangement of the data.
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Figure 4.2.2: Types of XAI-based augmentation. Figure from [73]

As shown in Fig. 4.2.2 (top left), this form of augmentation is implemented during
the initial phase of the forward-backward training loop.

The aforementioned methodologies seek to mitigate the presence of biased or erro-
neous decision-making in models through the manipulation of the sample distribu-
tion. Explanations are employed for the purpose of generating synthetic samples
that serve as countermeasures against undesirable behavior [75, 76]. Explanatory
Interactive Learning (XIL) allows users to intermittently provide input in order to
rectify the decision-making process of a model. The utilization of local explana-
tions and heatmaps has been found to improve model reasoning and foster human
trust in decision-making processes [75, 76].

The researchers in reference [77] direct their attention towards enhancing model
reasoning capabilities through the identification and elimination of artifacts present
in the dataset. They achieve this by employing the ProtoPNet architecture and
Prototypical Relevance Propagation (PRP) technique, which is based on Layer-
wise Relevance Propagation (LRP) as described in [78]. In the context of Medical
Image Analysis, the utilization of local explanations is observed in [79]. This
approach involves the selection of informative samples by considering their expla-
nation scores.

The issue of imbalanced data is addressed in a study by [80], where XAI-
guided imbalance mitigation techniques are proposed. Scalar metrics that are
derived from attribution maps, such as entropy and pairwise distances, aid in the
estimation of a model’s generalization performance and convergence. The utiliza-
tion of these metrics serves the purpose of achieving equilibrium in class-specific
performances during the training process, resulting in accelerated convergence and
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enhanced accuracy.
In brief, these methodologies utilize explanations as a means to mitigate bias,

enhance model reasoning, optimize sample selection, and tackle challenges related
to imbalanced data.

4.2.2 Intermediate features augmentation

The utilization of explanations can be advantageous in determining the significance
of different features. This knowledge can then be applied to adjust, conceal, or
modify intermediate features. As depicted in Figure 4.2.2 (located in the center-
left position), the augmentation of intermediate features has no impact on the
inputs of the model, but it does affect all subsequent components of the training
process. Mainly two types of methods exist in this category.

4.2.2.1 Attention and Intermediate Feature Masking

The objective of this XAI-guided feature augmentation technique is to enhance
the performance of a model by leveraging explanations to differentiate between
relevant intermediate features and irrelevant ones. In order to fulfill this objective,
it is necessary to employ XAI techniques that are capable of offering intermediate
explanations. The intermediate explanations exhibit a similar structure to the
features they elucidate, enabling their direct utilization for generating a mask that
represents the importance of these features and assigns weights to them during
the forward pass, akin to an attention mechanism.

In the domain of image recognition, the Attention Branch Network (ABN) [81]
interprets local explanations as an attention map provided by extending CAM
[82]. ABN consists of a feature extractor, an attention branch, and a perception
branch. The attention branch computes the attention map based on the feature
extractor’s output, while the perception branch acts as a standard classifier. The
attention map masks the perception branch input, enabling the model to focus
on the most important parts of a given sample. The ABN is trained using a
loss function that combines the losses from the attention branch (Latt) and the
perception branch (Lper):

Labn(fθt(xi), yi) = Latt(fθt(xi), yi) + Lper(fθt(xi), yi) (4.1)
To further improve the ABN, a reason loss term (Lreason) can be added,

which measures the discrepancy between the original attention maps (al, ti) and
the edited attention maps (ril,t) generated by a human expert:

Labn(fθt(xi), yi) = Latt(fθt(xi), yi) + Lper(fθt(xi), yi) + γLreason(ri, ai) (4.2)

where Lreason(ri, ai) = |al, ti − ril,t|2. This additional term encourages align-
ment between the model’s attention and the human expert’s corrections.

Another technique, dropout, is employed to prevent overfitting by randomly
setting a subset of features to zero during training. In [83], an improved dropout
method based on XAI, specifically Excitation Backpropagation, is proposed. This
method identifies and drops out more important neurons with a higher probability,
resulting in enhanced generalization ability and reduced degradation compared to
random dropout.



40 Md Amjad Hossain: Enriching models using XAI

4.2.2.2 Intermediate Feature Transformation

The aforementioned attention and feature masking techniques make use of the
feature-wise information provided by XAI to assess the significance of intermediate
features and adjust their weights accordingly. In contrast, the methods discussed
in this section take a more indirect approach by leveraging explanations and relying
on intricate feature transformations like translation and projection to rectify a
model’s reasoning.

With this goal in mind, the Class Artifact Compensation (ClArC) framework
[84] aims to identify and remove biases, artifacts, and Conceptual Hazard (CH) be-
havior. The framework involves three steps: artifact identification, artifact model
estimation, and updating the predictor model. The Spectral Relevance Analysis
(SpRAy) algorithm [84] is extended for artifact identification using local expla-
nations to identify behavioral patterns. Once an artifact is found, two variants
of ClArC are used for removal: Augmentative Additive Class Artifact Compensa-
tion (A-ClArC) and Projective Class Artifact Compensation (P-ClArC). A-ClArC
adds the artifact to all samples, desensitizing the model, while P-ClArC suppresses
the artifact during inference. Both approaches can be applied in feature space or
input space. The effectiveness of artifact mitigation depends on the complexity of
the artifact and the layer in which it occurs.

4.2.3 Loss function augmentation

The loss function determines the behavior of a model. Thus, augmenting the loss
function based on explanations can help specify which behavior is desired, using
explanations as feedback. Augmenting the loss function in this manner only af-
fects the backward pass (see Fig. 4.2.2 (top right)).

The introduction of a regularisation term in the loss function allows for the ad-
justment of a model’s learning behavior to achieve a range of desired outcomes.
An approach was to ensure that reasoning aligns with expert knowledge, by eval-
uating explanations against a ground truth that incorporates human expectations
[85, 86, 87]. In contrast, the implementation of a human-independent constraint
on explanations may yield enhanced reasoning abilities, increased robustness, and
improved performance [88].

Right for the Right Reasons (RRR) is one such framework, that is designed to
enhance the optimization of a model’s reasoning process. The researchers make
the assumption of a dataset X that includes, alongside the ground truth class
labels, a binary annotation mask ali for each sample Xi ∈ X. This mask indicates,
for each input dimension δ ∈ (1 . . . D), whether it should be considered irrelevant
(ali[δ] = 1) to the decision-making process of the model.

It should be noted that in the initial approach, the value of l is set to 0, resulting
in the consideration of only annotation masks a0i within the input space. The
loss function can be enhanced by incorporating an additional regularisation term,
which seeks to align the explanation of each prediction with the corresponding
annotation mask.

Lrrr(fθ(xi), yi) = Lpred(fθ(xi), yi) + λLreason(r
l,t
i , ali) (4.3)
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In the given context, the symbol λ represents a regularisation parameter. The
term Lpred refers to the standard prediction loss, which measures the discrepancy
between the actual and predicted class probabilities. This term also encompasses
any regularisation terms that are not based on explainable artificial intelligence
(XAI). In conjunction with acquiring the ability to make accurate predictions
using Lpred, the inclusion of the reasoning loss term Lreason serves to ensure the
correctness of reasoning.

4.2.4 Gradients augmentation

In a manner akin to the utilization of explanations for enhancing feature repre-
sentations in the forward pass, the insights provided by explanations regarding
feature importance can also be applied in the backward pass. There exist two
distinct forms of feature augmentation that can be employed. To begin with,
as illustrated in the upper section of the lower right panel of Figure 4.2.2, it is
possible to manipulate the intermediate feature gradients at layer l through scal-
ing, masking, or transforming. This mirrors the feature augmentations discussed
earlier during the forward pass. In an alternative approach, the gradients of the
parameters can be directly augmented by calculating importance scores Rl

w for
each parameter.

The gradient is responsible for determining both the direction and magnitude of
the updates made to a model’s parameters during the backward pass. The conver-
gence behavior and performance can be enhanced by controlling the backward flow
of weight updates through the modification of either the intermediate feature gra-
dients or the parameter gradients directly. In contrast to the intermediate feature
masking methods discussed in Section 4.2.2.1, which involve generating a mask
from intermediate explanations to assign weights to features during the forward
pass, a comparable mask can be computed using XAI techniques to indicate the
significance of gradients during the backward pass. All gradient transformation
approaches aim to modify the proportion in which model parameters are updated.

4.2.5 Model augmentation

Even after a model has been trained, the XAI’s provision of intermediate feature
importance information can still be utilized to enhance the overall model. This
can involve modifying the model’s structure or reducing the storage space needed
for its parameters.

In practical applications, XAI techniques are commonly utilized for two pur-
poses: pruning the model (as depicted in Figure 4.2.2, on the left side of the
bottom left panel) or quantizing the model (as depicted in Figure 4.2.2, on the
right side of the bottom left panel). It is important to acknowledge that in the
field of literature, the aforementioned categories of XAI-based augmentation are
generally implemented individually rather than simultaneously. Nevertheless, as
a result of each category modifying distinct elements of the training process, it
is theoretically possible to apply multiple augmentations simultaneously, such as
targeting the same model property, thereby altering different components of the
training process concurrently.
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Most of the above types of augmentation are used during training to improve the
model’s performance. But even if you get a good model, it may still have some
bad things about it, like too many factors that take up a lot of space on your
hard drive and require a lot of processing power. The above properties depend
on how the model is defined, so the best way to improve these qualities would be
to improve the model. How well algorithms work for trimming or quantization
depends on how well they can estimate how important each parameter is to how
the model makes decisions and how well it works. So, the information given by
XAI is essentially a criterion that can be used to improve the efficiency of models
in terms of how much computing power is needed for inference or how much space
they can take up. To reach this goal, you need to use XAI methods that can
explain each layer. Based on what was found, a model’s connections and features
are changed. Previous methods [89, 57] calculated intermediate attributions to
help with model trimming. These attributions are calculated for a small number
of reference samples and then averaged to come up with a pruning measure shown
as importance scores. So, the first thing that happens is that the neurons or filters
with the least value are cut. This makes the model more space-efficient. In the
same way, the importance scores can be used to separate the model’s weights,
which makes them easier to remember.



Chapter 5

Method

This chapter describes the approach used for the practical part of this thesis.
The original plan was to build an explanation prototype for our wind production
forecasting errors, which is used in monitoring after the wind production forecast
is done, and also improve model performance using XAI. Which in terms revived
in a form that unified model that will be integrated within the production forecast
and can generate explanations and fix itself based on the explanations.

But the plan changed later due to technical issues and limited time and other
external factors. Instead, the plan becomes to explore and find the best possible
way to explain forecasting errors and improve the model based on XAI. This
chapter examines the methods that have been chosen based on specific selection
criteria outlined in Chapters 3 and 4. It also explores the process by which the
explanations generated by these methods will be assessed. Moreover, explanation
data could be analyzed to enhance the model’s performance.

As outlined in the existing literature, there exist two primary methodologies
to explain how forecast predictions are made. The first approach involves employ-
ing interpretable forecasting models that generate internal information, which can
subsequently be utilized as explanations or serve as the foundation for explana-
tions. The second approach entails the application of post-hoc explanation models
on non-interpretable forecasting models.

One benefit of employing an interpretable model lies in its ability to provide ex-
plicit details regarding its internal mechanisms, thereby enabling a comprehensive
understanding of how these components utilize the available data. Conversely, a
post-hoc explanatory model has the capability to be employed across various fore-
casting methods, thereby allowing for flexibility in selecting a forecasting method
and subsequently altering it without compromising the ability to provide expla-
nations. Nevertheless, post-hoc techniques are inherently limited in their abil-
ity to comprehensively comprehend the internal workings of a forecasting model.
Though it’s extremely difficult to understand the internal working of NNs model
due to the model complexity and millions of gradients.

5.1 Selection criteria

Chapter 3 provides an overview of prominent techniques in XAI, which encompass
diverse approaches for generating explanations. Additionally, it explores time
series forecasting methods that exhibit varying levels of interpretability.
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And chapter 4 provides an overview of the available techniques for XAI-based
model improvements. Not all the available methods are going to be suitable for
all types of models, Bet methods related to Data modification and augmentation
could be suitable for any kind of ML problem.

To determine the suitability and relevance of various approaches for the pur-
pose of this thesis, a set of selection criteria is established. These criteria aim to
characterize the problem under investigation and outline the expectations for an
explanation method that is deemed suitable for the task.

First, the explanation target group has to be identified as described in Section
2.4. For this research project, the target group would be mostly developers. Or
more specifically, the explanation should be qualitatively interpretable. As for
our research goal, we will use interpretable information to improve the prediction
model. Though qualitative information could be converted to mathematical terms,
the other way around is preferable.

Second, why the target group wants explanations are critical to understanding
what type of information the models should output. Which we have already
discussed in the first criterion.

Third, It’s important to determine how useful the explanation information is,
Which in terms directly affects the model improvement ratio for this thesis.

Finally, As discussed in Section 1.2, the prediction problem related to this the-
sis is financially sensitive. So, It’s very important to keep a balance between the
explanation and accuracy.

Overall, the implementations of the methods must be taken into account, as the
implementation affects how closely the methods achieve their goal. In this thesis,
rather than focusing on the popular explainable method, we take into consider-
ation the numerical explainability of methods Due to the final goal and chose
accordingly.

5.2 Choice of methods

Based on the selection criteria outlined in section 5.1, the chosen methods or
approaches should possess the capability to offer developers pertinent and com-
prehensible explanations. The temporal dynamics or explanation holds paramount
significance in the context of this research endeavor. The results should be dis-
played in both graphical and numerical formats. An XAI-based model enhance-
ment approach should possess the capability to leverage this information in order
to enhance the accuracy of predictions. The methods discussed in both Chap-
ter 3 and Chapter 4 are presented in this section, as they were emphasized and
aligned with the research questions and objectives of the thesis. There may exist
alternative methodologies that could potentially yield superior results within each
respective approach. However, it is imperative that these methodologies remain
indicative of the various approaches to explanations.

As stated in Chapter 3, GRAD-CAM has been extensively utilised in this research
endeavour. As stated in Section 3.2.1.3 The GRAD-CAM technique demonstrates
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a high level of effectiveness when applied to fully connected layers, particularly in
the context of various neural network architectures such as CNNs, LSTM networks,
and others. In accordance with the objective of this research endeavor, we have
opted to employ an architecture based on LSTM, which has been augmented with
an attention mechanism and guided backpropagation. This proposed approach
aims to facilitate prediction while also providing local temporal interpretability
for each input, as outlined in the work by Schockaert et al. (2020) [90]. The
utilization of temporal attention will afford us a significant opportunity to leverage
the available information in order to enhance the model. This approach primarily
employs RNNs, while sharing the same fundamental mechanism as GRAD-CAM.

Figure 5.2.1: time series local spatial/temporal attention mechanism architec-
ture. Figure from [90]

The architecture depicted in Figure 3.2.6 was initially introduced by Cedric
Schockaert, Reinhard Leperlier, and Assaad Moawad in their scholarly publica-
tion [90]. The input time series, denoted as n, is augmented by incorporating time
series generated through the utilization of a one-dimensional convolutional layer
(conv1d). This augmentation process facilitates the learning of significant trans-
formations of the original n time series. The architecture incorporates an LSTM
layer that produces a hidden state hi for each time step i within the time range
[t − w, . . . , t] of the multivariate time series X. This LSTM layer is concatenated
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with the output of conv1d within a time window of size w. The application of dy-
namic temporal attention involves considering the w − l preceding hidden states,
while the calculation of the context vector vt follows the procedure outlined in
Figure 5.2.1. The dense layer within the attention mechanism block acquires
knowledge of the context, which is specifically defined within the n time series
denoted as X. By acquiring knowledge of the context, we are able to produce
dynamic attention weights α = {αt−w, αt−w+1, . . . , αt−1}, which offer a means of
local temporal interpretability for the prediction Ypred,t+horizon.

For each time step t, a guided backpropagation-based approach is employed to
compute the relationship between the modified hidden state ha

i and the original
input vector xi, where i ranges from t−w to t. The aim is to identify the specific
time series within the input vector xi that is causing a change in the hidden state
ha
i .

In order to enhance the XAI-based model, we have chosen to employ the data
augmentation technique, as discussed in Section 4.2.1, taking into account the con-
straints imposed by the available information and time limitations. The heatmap
produced by the aforementioned model has the potential to serve as a diagnostic
tool for pertinent time series data, which we utilized to enhance the predictability
of the model.

The partial dependency plot, as discussed in Chapter 3, has also been utilized
for enhancing the model. A partial dependency plot enables the assessment of the
impact of individual features on the target variable. Based on the aforementioned
information, it is possible to make modifications to the training data in order to
enhance the model.

5.3 Evaluation

The comparative evaluation of the forecasting method’s accuracy will be conducted
by comparing it to a baseline model, as discussed in [91]. The MAE, as defined in
Section 2.5.3, serves as an accuracy metric. It is widely recognized as a dependable
measure of accuracy, particularly in the context of time series prediction. Aneo
As, in its extensive machine learning models, also employs MAE as an accuracy
metric.

The thesis incorporates multiple accurate matrices, not solely relying on MAE.
Additionally, the accuracy metric known as "skill score" [92] has been extensively
employed in this project. As presented in equation 5.1.

Skill Score =
score for the forecast − score for the standard forecast

perfect score − score for the standard forecast
(5.1)

The skill score quantifies the precision of a prediction by comparing it to the
precision of a standard forecast or baseline model, as elaborated in Section 6.4.2.
The baseline model typically refers to a forecast that is readily accessible to a
forecaster, although it does not necessarily demand any exertion or expertise on
their part for its preparation. For instance, in the context of forecasting the
required quantity of goods in a grocery store, it is possible that the amount needed
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on a particular day could be equivalent to the quantity required during the previous
week on the same day.

A skill score refers to the evaluation of a forecast’s score in relation to the
score achieved by a standard forecast, both of which are based on the same set
of verification data. The accuracy score utilized can be any of the prevalent
metrics employed in the field of verification. Skill scores for continuous variables
are typically derived from either the mean absolute error or the mean squared
error. In general, the skill score is a numerical metric that evaluates the efficacy of
a model by comparing its performance to a predetermined reference value. This
metric typically falls within the range of 0 to 1.
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Chapter 6

Experiments

The following section provides a detailed account of the experimental procedures
carried out in the course of this study. The text commences by providing an
overview of the dataset and the preprocessing techniques employed on the dataset.
Subsequently, it delineates the time series forecasting predicament that this study
aims to elucidate. Subsequently, a comprehensive account of the experimental
configuration and the experimental methodology is provided.

6.1 Dataset and data preprocessing

The dataset employed in this study is derived from Aneo AS, a Norwegian power
producer. The dataset, referred to as the "electricity demand (consumption)
dataset", offers a comprehensive representation of the hourly electrical energy
demand in various cities within the Nordic countries. The data is employed to
predict the projected demand in various cities for the forthcoming 24-hour period,
with particular emphasis on the temperature factor. Aneo AS is the operator of
multiple wind power plants located in various cities within Norway. Aneo As relies
on the observed demand in various cities to provide information to Statnett, the
Norwegian state-owned enterprise, regarding the potential energy contribution to
the Nordic power line.

The dataset comprises hourly data, temperature data, and location (city) in-
formation. Each row in the dataset contains a timestamp indicating the date and
hour, the temperature recorded at that specific time, and details regarding the
corresponding location. The dependent variable within the dataset pertains to
the electricity demand for a specific hour and city, measured in Megawatt-hours
(MWh). The temperature is expressed in the Celsius scale. Subsequently, there
will be further supplementary features that will be elaborated upon in subsequent
sections.

6.1.1 Data preprocessing

The dataset consists of 49,494 rows that correspond to six cities: Bergen, Helsing-
fors (Helsinki), Oslo, Stavanger, TromsÃ, and Trondheim. With the exception of
Helsinki, all the aforementioned locations are situated in Norway. However, it is
important to note that the data pertains to a specific group of clients within these
cities, rather than representing the overall demand for the entire city. For security
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City Data Count
Bergen 8641
Helsingfors 6289
Oslo 8641
Stavanger 8641
TromsÃ 8641
Trondheim 8641

Table 6.1.1: Data distribution by Cities

Date Place Count
2022-04-07 bergen 3
2022-04-07 oslo 3
2022-04-07 stavanger 3
2022-04-07 tromsø 3
2022-04-07 trondheim 3
2022-07-14 helsingfors 3
2023-04-02 bergen 22
2023-04-02 helsingfors 22
2023-04-02 oslo 22
2023-04-02 stavanger 22
2023-04-02 tromsø 22
2023-04-02 trondheim 22

Table 6.1.2: Invalid Data distribution by Cities

purposes, the company name has been substituted with the names of the cities in
which they are situated. The dataset encompasses a time period commencing on
April 7, 2022, at 21:00 and concluding on April 2, 2023, at 21:00 for all cities, with
the exception of Helsingfors. For Helsingfors, the data collection begins on July
14, 2022, at 21:00 and concludes on April 2, 2023, at 21:00. In order to enhance
simplicity and optimize training effectiveness, the dataset is partitioned accord-
ing to the distinct cities, each of which possesses a varying number of records, as
outlined in Table 6.1.1. For training and testing split city-based dataset has been
split into 80% and 20% margins.

Given the distribution of data based on hours, it is expected that each hour
would consist of 24 records. However, Table 6.1.2 reveals discrepancies (Days that
have less than 24 records) in this pattern for certain cities. The removal of these
records has been undertaken with the aim of enhancing training efficiency.

Various features have been incorporated into the process of feature engineering,
including Month, Day, Hour, Business Hour, Season, Weekend, Daylight, and
Holiday. Additionally, the Lag feature and baseline target have been incorporated
as special features.

The variability in data distribution across different cities is depicted in figure
6.1.1. The findings presented in Chapter 7 exhibit a significant correlation with
the distribution of the data, primarily impacting the performance of the models.
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(a) Density Distribution(Bergen) (b) Density Distribution (Helsingfors)

(c) Density Distribution (Oslo) (d) Density Distribution (Stavanger)

(e) Density Distribution (TromsÃ) (f) Density Distribution (Trondheim)

Figure 6.1.1: Density distribution of various cities

6.2 Forecasting problem

The present thesis addresses the time series forecasting issue pertaining to the
demand forecasting problem encountered by Aneo As. Specifically, the task in-
volves predicting the demand for each hour of the following day, based on data
collected at 24-hour intervals. Although the historical data is not accessible within
a 24-hour timeframe, this limitation does not affect the interpretation of either the
heatmap or the assessment of performance improvement. If t is the current time
series then the prediction could be [t, (t+ 24)].

6.3 Experimental setup

The programming language utilized for all experimental code is Python. The
implementation of the Time series forecasting method and heatmap generation
method is based on the architecture depicted in Figure 3.2.7. The code was imple-
mented and validated utilizing Jupyter Notebooks. The versions of each package
are indicated in Section 6.4, where the explanation of each method is provided.
The LSTM model utilized for prediction has been trained on a Graphics Process-
ing Unit (GPU) specifically the NVIDIA GeForce RTX 3070. The methods were
trained and tested using a laptop equipped with an Intel Core i7-10750H CPU.
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6.4 Experimental Plan

This section provides a description of the experiments carried out in the course of
this study. The process commences with the utilization of a prediction model to
forecast the desired outcome and produce a Heatmap, as outlined in Chapter 5.
Additionally, a baseline model is employed as a point of comparison for subsequent
experiments. Subsequently, the insights gained from XAI are leveraged to enhance
the precision of the predictions, as elucidated in Chapter 4. The objective of the
experiments is to provide empirical evidence in addressing research question 3 as
outlined in Section 1.3, pertaining to the efficacy of the chosen methodology in
enhancing the predictive model.

6.4.1 Experimental setup

Elaborating on the experimental pipeline is of paramount importance in order to
facilitate the replication of the obtained results.

Figure 6.4.1: Experimental pipeline.

As depicted in Figure 6.4.1, the pipeline has been partitioned into two distinct
layers. The initial layer denotes the preprocessing steps involved in any machine
learning project. Upon receiving a dataset, it is necessary to conduct data cleaning
and feature engineering, as elaborated in Section 6.1. In the context of the neural
network-based model, the process of scaling plays a crucial role in ensuring effective
training and optimal performance [93]. While various scaling algorithms can be
employed, we suggest utilizing the Min-Max scaler, which has also been utilized in
the present study. In this project, a train/test split of 80-20 has been employed,
although other train test sizes could also be considered.

The subsequent layer initiates with the process of model training, where the
initial model is referred to as experiment 0. The training data for this model is
supplied by the preceding layer. This project has provided a concise overview
of three experiments, labeled as Experiment 1, Experiment 2, and Experiment 3
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in Section 6.4.5, 6.4.6, and 6.4.7, correspondingly. The experimental model has
been addressed in Section 5.2 within the context of this project. The central
focus of Experiments 1 and 2 centered on improvements in data augmentation,
particularly in the context of heat maps and PDP plots. After the completion
of training the model, it becomes capable of making predictions. At this stage,
we can utilize the model to generate heatmaps and PDP plots for the purpose of
conducting inference. Additionally, the data has been divided into two subsets
based on performance to further investigate the limitations of prediction infer-
ence. PDP plots have been exclusively employed for the purposes of enhancing
models and providing explanations on a feature-by-feature basis. The heat-map
technique is commonly employed to generate graphical representations that illus-
trate the importance of features and data. In the present study, the noise was
deliberately incorporated into the training data, and the target variable was sub-
sequently modified to facilitate the analysis of PDP. Following this, the data has
been transferred to the train/test pipeline.

6.4.2 Baseline model

The utilization of a baseline model for the purpose of comparing the performance of
predictive models is a widely prevalent practice. In more straightforward language,
a baseline in forecast performance serves as a reference point for comparison.

The algorithm is designed to make predictions based on the majority class in
classification scenarios or the average outcome in regression scenarios. This ap-
proach may be applicable for analyzing time series data, but it does not adequately
account for such datasets’ inherent serial correlation structure. The persistence
algorithm is the corresponding technique employed for time series datasets. The
persistence algorithm employs the value observed at the preceding time step (t-1)
in order to forecast the anticipated outcome at the subsequent time step (t+1). In
the context of this particular problem, the expression can be represented as (t-(24
* 7)), where t represents the variable of interest. Exactly one week ago, at the
same hour.

Figure 6.4.2: Daily demand plot; Trondheim city; year 2022; month May.
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Figure 6.4.3: Weak apart comparison; Trondheim city; year 2022; month May.

The rationale for selecting a reference point from a previous week as a baseline
can be confirmed by examining Figures 6.4.2 and 6.4.3. The similarity in trends
between the dates of May 1st and May 8th is readily apparent.

6.4.3 Forecasting method with Heat-map

As previously mentioned in Section 5.2, it is imperative that the explanation be ca-
pable of being interpreted numerically. Based on the LSTM architecture depicted
in Figure 5.2.1, it is plausible to express the generated heatmap in numerical form.

Figure 6.4.4: Heat map generated by LSTM Model. Fig from [90]

Based on the provided image (see Figure 6.4.4), it is evident that certain time-
lines have been assigned greater significance, both at a local and global level. Ac-
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cording to Selvaraju et al [55], the GRAD-CAM technique suggests that regions
in the heatmap exhibiting light blue or dark red coloration may indicate their
relevance. According to this assertion, the model can be enhanced by employing
the Data-Augmentation technique discussed in Chapter 4.

6.4.4 XAI based improvement

Each of the experiments will be evaluated using a consistent time window and
prediction horizon. However, it is important to note that for every experiment
conducted, a novel model will be trained using a modified dataset. As outlined
in Section 5.2, our primary emphasis will be on Data augmentation as one of the
model improvement techniques examined in Chapter 4.

6.4.5 Experiment 1

In this experimental study, the model undergoes training using the complete
dataset, considering the input window as the data from the previous seven days,
which corresponds to a total of 24 hours multiplied by 7 days. Furthermore, the
model accurately forecasted the anticipated demand for the upcoming 24-hour
period. This process is iterated for each day in the test set, ensuring that any
potential information leakage is carefully considered. The Mean Absolute Error
(MAE) is computed and subsequently compared against both the test and actual
data. This experiment was regarded as a foundational study, as we have not yet
undertaken any form of model enhancement.

The heatmap derived from this experiment will be utilized in Experiment 2.
The model in question will be referred to as the Base Model.

6.4.6 Experiment 2

The prediction window, test matrix, and all other matrices utilized in this experi-
ment are consistent with those employed in Experiment 1. In this experiment, we
employed both the MAE metric and the Skill score, as discussed in section 5.3, to
assess and compare the performance of various models.

The primary objective is to substitute the information contained within these
temporary, less valuable data points with arbitrary noise throughout the training
process. Furthermore, it is imperative to preserve the model by incorporating the
adjusted data and subsequently evaluating its performance.

6.4.7 Experiment 3

The experiment is based on the principles of Parallel Distributed Processing, as
depicted in Figure 7.4.1. In the initial experiment, it was noted from the prediction
plot that the model demonstrated a deficiency in accurately capturing the trend
for a particular component, as depicted in Figure 7.4.2. Nevertheless, it was suc-
cessful in accurately capturing the variability linked to this particular component.
The majority of observations did not accurately document the declining pattern.
A decision was taken to reduce the demand for particular influential feature tar-
get variables by employing a data augmentation technique. The objective is to
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identify the influential feature with a higher demand using PDP and determine its
corresponding timeline, such as observing a significant increase in demand during
the summer season. The initial idea was to reduce the demand for data augmen-
tation to a specific level, either the minimum or average, in order to enhance the
performance of the model.

In this experiment, we employed the same evaluation matrices and configura-
tions that were utilized in previous studies.



Chapter 7

Results

This chapter will provide an exposition of the findings derived from the analysis
that was undertaken. Initially, a concise examination is conducted to assess the
predictive performance of the models.

This section primarily presents the findings of the experiments described in
Chapter 6. Additionally, statistical test results will be presented in order to eval-
uate their differences.

7.1 Heat maps

(a) Global Heatmap (Data-Wise) (b) Global Heatmap (Feature-Wise)

(c) Individual Heatmap (Data-Wise) (d) Individual Heatmap (Feature-
Wise)

Figure 7.1.1: Base Model Heatmap (Trondheim city)

The heat map generated by the model described in Experiment 1. Heatmaps
are produced for both global(The average heat map of every instance) and local(for
a single instance) datasets. Furthermore, a heatmap has been generated to visually
depict the features and data. The production of the heatmap is limited to the city
of Trondheim, as described in Section 6.1, where a city-specific model has been
constructed. With respect to the remaining cities, the Heatmap demonstrates a
comparable visual depiction, albeit with noticeable numerical discrepancies.

57
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The heat map displayed in this study is the outcome of data generation using
a window size of seven days and integrating 16 unique features. According to
the findings presented in Section 6.4.3, it can be observed that the colors light
blue and dark red exhibit the greatest level of significance. The heatmap facili-
tates the identification of the features and data points that have been assigned the
highest degree of significance. The provided information possesses the potential
to be employed for the purpose of data augmentation in subsequent endeavors.
To facilitate the execution of experiment 2, it is feasible to introduce extraneous
variables into the less consequential data. Based on the depicted diagram, it can
be inferred that features 14, 15, 12, 10, 7, 5, 2, and 0 exhibit the greatest signifi-
cance. Furthermore, the analysis of the 168 input data enables the differentiation
between data points of importance and those of lesser significance. However, when
comparing the global heatmap to the individual heatmap, it is evident that the
former is generally more effective. The frequent and dynamic changes in individual
circumstances make it challenging to effectively monitor and interpret them.

7.2 Forecasting error Heat maps

(a) Good Prediction Heatmap (Feature Wise)

(b) Good Prediction Heatmap (Data Wise)

(c) Bad Prediction Heatmap (Feature Wise)

(d) Bad Prediction Heatmap (Data Wise)

Figure 7.2.1: Forecasting error Heatmaps
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Figure 7.2.1 visualize the heatmap for both good predictions and bad predictions.
The test set has been split into two on the basis of the MAE average and considers
the first half as good and the second half as bad.

7.3 Prediction

However, it has been observed that LSTM models exhibit less favorable perfor-
mance when applied to time series data compared to their performance in linguistic
models. However, in order to generate an explanation, we have employed LSTM
as a predictive model instead of ARIMA [94] or NeuralProphet [95], among other
alternatives.

(a) Base model prediction

(b) Noise model prediction

(c) Low demand model prediction

Figure 7.3.1: Different experimental model prediction

In this context, the models referred to as the Base Model, Noise Model, and
Low-demand Model correspond to the models that were trained for Experiments
one, two, and three, respectively. While the visual representation is limited to
Trondheim City, a comprehensive representation of the data is provided in Table
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7.5.1. It is evident that the Noise model has emerged as the superior performer in
terms of performance.

7.4 PDP

Experiment 3 utilized the PDP analysis method. Despite its limitations and the
lack of comprehensive numerical analysis, the PDP remains a valuable tool for aug-
menting training data and improving model performance, as discussed in Chapter
3. This discourse aims to examine the data concerning Trondheim City, taking
into consideration the potential applicability of the findings to other urban regions.

Figure 7.4.1: Partial dependency plot (Trondheim)
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Figure 7.4.2: Base model Prediction (Some missing trend but captures variation)

A total of fifteen plots have been generated, with each plot corresponding to
a distinct set of fifteen features. The issue of missing trends is clearly illustrated
in Figure 7.4.2. In order to tackle this matter, it is possible to explore alternative
methodologies such as feature engineering, utilization of diverse models, or mod-
ification of data representation. However, in order to improve the performance
of our model using XAI, we made the decision to utilize data augmentation, as
shown in Figure 7.4.1. The comprehensive performance is displayed in Table 7.5.1.

7.5 Model Performance

Table 7.5.1 presents the accuracy matrix outcomes for three distinct experiments
as outlined in Chapter 6. RMSE, MAE, and R2 scores are provided for six dis-
tinct split datasets. During the training process, the RMSE matrix is utilized
for both forward and backward propagation. The MAE is employed to assess
the performance, while the R2 score is employed to quantify the percentage per-
formance. Figure 7.5.1 illustrates the comparative prediction performance of the
three distinct models in relation to the baseline model.

The skill score in comparison to the baseline model has been presented in Table
7.5.2. In order to gain a comprehensive understanding and facilitate visualization
of the models that have exhibited strong performance. Figure 7.5.2 illustrates the
comparative evaluation of the performance of different experimental models across
multiple cities, as measured by their respective R2 scores.
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City Model RMSE MAE R2 Score K-Fold
R2 Score
(Average)

Bergen Base 1.100 0.296 88.0 59.7
Bergen Noise 1.109 0.295 89.0 69.6
Bergen Low-

Demand
1.103 0.478 75.0 73.9

Helsingfors Base 0.630 0.287 54.0 42.0
Helsingfors Noise 0.619 0.258 60.0 33.3
Helsingfors Low-

Demand
0.626 0.273 61.0 65.0

Oslo Base 4.525 1.742 77.0 46.0
Oslo Noise 4.474 1.034 92.0 65.6
Oslo Low-

Demand
4.531 1.296 86.0 47.5

Stavanger Base 2.012 0.592 89.0 72.9
Stavanger Noise 2.012 0.518 90.0 71.0
Stavanger Low-

Demand
2.026 0.565 88.0 60.7

Tromsø Base 0.540 0.141 90.0 55.0
Tromsø Noise 0.534 0.130 91.0 83.4
Tromsø Low-

Demand
0.542 0.149 89.0 67.5

Trondheim Base 1.081 0.404 79.0 50.9
Trondheim Noise 1.091 0.377 81.0 66.9
Trondheim Low-

Demand
1.084 0.469 72.0 47.1

Table 7.5.1: Performance of the experiments in various cities.

Figure 7.5.2: R2 score for various cities Based on different models
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(a) Base model performance

(b) Noise model performance

(c) Low demand model performance

Figure 7.5.1: Varying performance compare to Baseline Model 6.4.2 of different
experimental models

Based on the aforementioned data, it is evident that the "Noise" model exhibits
the highest R2 scores among the Base, Noise, and Low-Demand models across var-
ious cities. This finding highlights the superior predictive accuracy of the "Noise"
model, as it achieves an average R2 score of 81.3%. The "Low-Demand" model
demonstrates varied outcomes, with an average R2 score of 75.2%, indicating
strong performance in certain cities but relatively lower efficacy in others. The
performance of the "Base" model exhibits variability, as evidenced by an average
R2 score of 80.5%. This suggests that while the model yields satisfactory out-
comes in certain cities, it tends to produce higher errors in others. In general, the
"Noise" model demonstrates the highest potential for precise prediction across a
range of urban datasets, surpassing alternative models in terms of R2 scores and
overall accuracy in forecasting.
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City Base Noise Low-Demand
Bergen 0.818 0.819 0.650
Helsingfors 0.683 0.732 0.706
Oslo 0.645 0.798 0.742
Stavanger 0.759 0.796 0.773
TromsÃ 0.916 0.938 0.900
Trondheim 0.718 0.743 0.657

Table 7.5.2: Skill scores obtained from the experiments of various cities

The presented table displays skill scores at the city level for the Base, Noise,
and Low-Demand models. The models developed by Bergen achieved accuracy
scores of 0.818, 0.819, and 0.650. Helsingfors achieved scores of 0.683, 0.732, and
0.706. The Oslo models achieved scores of 0.645, 0.798, and 0.742. The scores
obtained by Stavanger were 0.759, 0.796, and 0.773. Trondheim achieved scores of
0.718, 0.743, and 0.657, whereas Tromsø attained scores of 0.916, 0.938, and 0.900.
The skill scores provide an assessment of the performance of each model across
various cities. In the majority of cities, Noise models exhibit superior skill scores
compared to both Base and Low-Demand models. The Noise model exhibits supe-
rior performance in the cities of Bergen, Oslo, Stavanger, and Trondheim, thereby
showcasing its robustness. The performance of the Base model is superior to that
of the Noise model specifically in the Tromsø region, but this discrepancy is not
observed in other locations. The models characterized by low demand exhibit the
lowest skill scores, yet demonstrate superior performance in the context of Helsing-
fors. Based on the findings, it can be concluded that the Noise model exhibits the
highest level of reliability and adaptability in urban settings. Additional research
and careful examination of domain-specific factors may be necessary in order to
determine the most suitable model for each individual city.

7.6 statistical significance

Based on the results of the paired t-test given in Table 7.6.1, Model A(Base model)
is statistically different from Model B(Noise model) in Bergen, Stavanger, Tromsø,
and Trondheim, as shown by the T-values of -1.484, 0.403, -5.522, and -2.293
and the P-values of 0.155, 0.691, 3.041, and 0.033. Model A is also statistically
different from Model C(Low-Demand model) in the cities of Helsingfors, Tromsø,
and Trondheim, with T-values of -4.360, -2.083, and 0.468 and P-values of 0.000,
0.051, and 0.645, respectively. The T-values of -1.098 and -5.109 and the P-values
of 0.286 and 7.333 show that there is no statistically significant difference between
Model A and Model C in Bergen and Oslo. Also, there are statistically significant
differences between Model B and Model C in all areas, with T-values ranging from
0 to 3.694 and P-values from 0.001 to 0.082. Based on these data, it seems that
the performance of Model A is different in different cities, while Models B and C
are always different.
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Chapter 8

Evaluation and Conclusion

This study investigates five distinct methodologies for augmenting models and
diverse strategies for effectively leveraging models. It is crucial to begin by de-
veloping a comprehensive comprehension of the notion of model explanations and
the need for variations in explanations depending on different target classes. In
the following section, we will explore different methodologies that can be utilized
to effectively leverage the information provided by XAI in order to improve the
model’s performance. The advantages and disadvantages of these noble techniques
have also been taken into consideration.

In order to perform a comparative analysis of the chosen methodologies, we pro-
ceeded with the training of a LSTM model using the dataset provided by Aneo
As. Furthermore, statistical significance tests were performed in order to ascer-
tain whether there was any discernible enhancement in the model. The practical
implementation of the measures provided empirical evidence for their theoretical
characteristics. The achievements of this thesis are concisely summarised through
a reexamination of the research inquiries:

8.1 Research questions 1 and 2

This thesis explores the application of both model-agnostic and model-dependent
XAI methods. Additionally, there are methodologies that closely align with mod-
els based on time series. Time series data poses challenges for methods that
incorporate features. Due to the observed correlation patterns exhibited by the
data. Methods that are designed to handle feature interaction tend to have longer
processing times for data and are often considered to be less reliable. Although the
time series version of SHAP demonstrates satisfactory performance, it does not
align with the primary objective of this thesis. The utilization of GRAD-CAM
effectively fulfills our objectives and is in line with the overarching goal of our
thesis. This has the potential to generate importance in terms of both features
and data.

While the detection of anomalies and the improvement of model performance using
XAI can provide explanations for poor model performance, it’s still not clear how
well these methods fit with the goals of this thesis. Using the GRAD-CAM heat
map, on the other hand, makes it clear how to tell the difference between correct

67
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and incorrect estimates.

8.2 Research question 3

Data augmentation is a highly promising technique that has been discussed in
this thesis as a means to enhance model performance. This approach is in line
with the objectives of the thesis and is also aligned with the time constraints that
have been imposed. By integrating data argumentation techniques with GRAD-
CAM explanation, we have achieved significant enhancements in the performance
of the model. We have seen 0.122%, 7.19%, 23.72%, 4.88%, 2.40%, and 3.48%
improvement across Bergen, Helsingfors, Oslo, Stavanger, Tromsø, and Trond-
heim respectively. The overall noise model is 6.90% better compare to the base
model. The utilization of the PDP plot technique has proven to be effective in
enhancing the performance of our model. However, it should be noted that this
method does not align with the objectives outlined in our second research question.

Based on the conducted statistical analysis and subsequent cross-validation, it can
be concluded that the p-values for all cities are found to be less than the signif-
icance level of 0.05. This indicates that there exists sufficient evidence to reject
the null hypothesis. Therefore, it can be concluded that there is a significant dis-
tinction between Model B and Model C across all cities. However, it is important
to acknowledge that the use of different data subsets for cross-validation could po-
tentially influence the results observed in null hypothesis analysis. Nevertheless, it
is crucial to undertake comprehensive research or surveys to conclusively establish
this assertion.

8.3 Limitation

There exists variation in the quantity of data points across different cities. Despite
the existence of various trained models, it has been noted that the data distribu-
tion deviates from normality. The factor mentioned above has implications for
both the statistical analysis and the performance of cross-validation.

This thesis employed a LSTM based model in conjunction with GRAD-CAM.
However, alternative models such as Variational Neural Networks (VNN), CNNs,
Bidirectional LSTMs (BiLSTM), and various other variations of Neural Network
(NN) could have been considered and investigated. Furthermore, potential im-
provements in performance could have been achieved by modifying and fine-tuning
the hidden layers of the LSTM, as well as optimizing and adjusting the loss func-
tion.

The model’s performance is not optimal; however, it is widely acknowledged within
the scientific community that the inclusion of LSTM and XAI techniques can lead
to a decrease in model performance. However, there has been a lack of emphasis
on parameter optimization as a means to enhance the performance of the model.
Additionally, it should be noted that the dataset provided lacks sufficient features
to capture the entirety of the variance and enable comprehensive generalization.
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Merely relying on date-time and weather variables is insufficient for accurate pre-
diction.

The objective of this research was to employ XAI techniques in order to enhance
the performance of the model from a time-series perspective. In the theoreti-
cal framework, several techniques for enhancing the model have been examined.
However, due to constraints on time, not all of these methods were implemented.

8.4 Future Work

The extension of this project could involve an exploration of various improvement
methods that have been discussed in the research, such as loss function-based and
feature augmentation-based methods. One of the primary objectives at the outset
of this thesis was the development of a robust methodology for analyzing time
series data.

One proposed approach involved the utilization of K-Nearest Neighbors (KNN)
clustering algorithms to identify clusters based on given input and assess the dis-
tance of their target values by employing any suitable distance-measuring algo-
rithm. The hypothesis is that data points within the same cluster will exhibit
similar behavior/target values. If not, the data could be changed based on real-
world findings and advice from experts in the field to make the model work better.
However, it should be noted that the presence of the same cluster does not neces-
sarily imply similar targets, particularly in the context of time-series data, which
introduces additional complexities. It is necessary to take into account the histor-
ical value effect, window effect, and other properties associated with time series
data.
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Appendices

A - Github repository

The Github repository linked below contains all the codes utilized in this project.
Additional elucidations are provided within the readme file.

Github repository link

• https://github.com/nayan2/XAI-based-Model-Improvement
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B - Sidenote statistics

B1 - Cross validation Results
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B3 - Data distribution(Across all cities)

Figure B.1: Data distribution; city wise

Figure B.2: Demand plot; City wise

(a) Feature wise global heatmap (b) Data wise global heatmap

(c) Feature wise local heatmap (d) Data wise local heatmap

Figure B.3: Heat maps; Across cities
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(a) Feature wise good prediction heat map

(b) Data wise good prediction heat map

(c) Feature wise bad prediction heat map

(d) Data wise good prediction heat map

Figure B.4: Good and bad predictions heat maps; Across cities
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(a) Base model prediction

(b) Noise model prediction

(c) Deducted city prediction(Oslo)

(d) Low demand model prediction

Figure B.5: Models prediction; Among all cities
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