
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

David Ferenc Bendiksen

A Way to Lay Out Argument Maps

Master’s thesis in Computer Science
Supervisor: Srinivasa Rao Satti
June 2023

David Ferenc Bendiksen

A Way to Lay Out Argument Maps

Master’s thesis in Computer Science
Supervisor: Srinivasa Rao Satti
June 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Abstract

The author has undertaken a master’s project in collaboration with Disputas AS, a
Norwegian tech startup specialising in the graphing of informal logic. The goal of the
project was to produce a graph layout algorithm specifically tailored to argument maps.
The resulting product is Argumappr, which fulfils most of the specified requirements.
It is a library for automatic graph layout generation that supports argument diagrams.
It also provides the data structures necessary to represent them. The author presents
the project, the data structure and the algorithm. The algorithm generates layouts by
utilising the well-known Sugiyama framework for layered graph drawing. It borrows
heavily from established graph drawing literature and implements various customised
sub-algorithms for each of the four Sugiyama steps: cycle removal, node layering,
crossing minimisation and edge straightening. The author’s analysis suggests a total
running time of O

(
|V |4 + nk

)
, where n is some function of V and E, and 1 < k ∈ R.

Additional testing and refinements are recommended. To the author’s knowledge, the
application of graph drawing theory to drawing argument maps is novel, and he hopes to
inspire further inquiry into this field.

i

Sammendrag

Forfatteren har gjennomført et masterprosjekt i samarbeid med Disputas AS,
en norsk oppstartsbedrift som spesialiserer seg innen visualisering av uformell
logikk. Målet med prosjektet var å utvikle en graflayoutalgoritme spesifikt tilpasset
argumentasjonsdiagrammer. Resultatet av prosjektet er Argumappr, som oppfyller
de fleste av de spesifiserte kravene. Det er et bibliotek for automatisk generering av
graflayouter som støtter argumentasjonsdiagrammer. Det tilbyr også datastrukturene
som er nødvendige for å representere dem. Forfatteren presenterer prosjektet,
datastrukturene og algoritmen. Algoritmen genererer layouter ved å benytte det
velkjente Sugiyama-rammeverket for lagbasert graftegning. Den baserer seg på etablert
graftegningslitteratur og implementerer forskjellige tilpassede delalgoritmer for hver
av de fire Sugiyama-trinnene: syklusfjerning, laginndeling, krysningsminimering og
kantutretting. Forfatterens analyse antyder en total kjøretid på O

(
|V |4 + nk

)
, der

n er en funksjon av V og E, og 1 < k ∈ R. Det anbefales ytterligere testing og
raffinering. Så vidt forfatteren vet, er anvendelsen av graftegningslære til å tegne
argumentasjonsdiagrammer nytt, og han håper å inspirere til videre utforskning av dette
feltet.

ii

Preface

As of this writing, my studies at the Norwegian University of Science and Technology
(NTNU) are drawing to an end. Since this project is my, for now at least, final piece of
academic work, I would like this preface to be a tad bit informal. As might be expected,
I feel like the Computer Science Master’s Course has taken significant time to complete,
but at the same time, these past five years have gone by in a flash. I owe many
formative experiences and insights to my peers and the professors of NTNU. Suffice it
to say a more learned man leaves the University than he who entered. For that, I am
grateful. My period at NTNU now culminates in this master’s thesis, which I hope may be
of use to some of you.

I want to extend special thanks to the ones who made the master’s project possible.
First and foremost, thank you to Disputas AS for creating and proposing its problem
statement; it became the grounds for my thesis. Paal Fredrik Skjørten Kvarberg and
Andreas Odland Netteland were my contact persons from Disputas AS. I am indebted
to them for their support and counsel during the project, but I am also obliged for the
considerable freedom they gave me. Though they defined the goals, I always felt at
liberty to choose my path. Last but not least, I am beholden to Srinivasa Rao Satti of
NTNU for being my supervisor. For a spell, I doubted we would find a professor willing
to back the project in time, but Professor Satti came through for us. I appreciate his
allowing the project to naturally unfold.

At the end of this preface, I would like to thank the people whom I would not be here
without. Asgeir, Halvor and Matias, I feel we did not always see each other often enough,
especially during the Covid Pandemic. Please know that I will forever recall our time
together at NTNU and all the fun we had. You were more than my classmates; you
were my friends. Øivind, you may not know it, but I have always looked up to you as
an intellectual. You have, in many ways, inspired me. Your help and friendship have
been invaluable to me. Michael, our friendship has been a welcome constant in a sea of
change. Few words are needed to convey how close we are. I hope to see you as often
tomorrow as I do today. Sofie, my love, where would I be without you? Let us continue
to take good care of each other in the coming chapters of our lives.

David Ferenc Bendiksen

Trondheim, 6th June 2023

iii

This page was intentionally left blank.

iv

Contents

List of Figures vi

List of Tables vii

List of Code Blocks vii

Glossary vii

Acronyms viii

1 Introduction 1

2 Background 2

3 Methods 3

4 Technologies 5

5 Theory 8

5.1 Graph Theory . 8

5.2 Graph Drawing . 10

5.3 Argumentation . 11

6 Data Structure 12

7 Algorithm 16

7.1 Main Loop . 16

7.2 Cycle Removal . 19

7.3 Node Layering . 21

7.4 Crossing Minimisation . 25

7.4.1 Crossing Counting . 31

7.5 Edge Straightening . 33

v

8 Discussion 38

8.1 Evolution of Methods . 38

8.2 Requirement Satisfaction . 38

8.3 Testing Limitations . 39

8.4 Time Complexity . 40

8.5 Further Work . 42

9 Conclusion 43

References 46

List of Figures

1 The logos of the version control solution of the project 5

2 An unofficial but popular JavaScript logo . 5

3 The TypeScript logo . 6

4 The logos of the runtime environment and package manager of the project . 6

5 The logos of the testing technologies of the project 7

6 The logos of the linting and formatting tools of the project 7

7 The TypeDoc logo . 8

8 A directed graph with five nodes and five edges 9

9 A tree rooted in a . 9

10 The three basic argument structures . 11

11 A directed graph laid out using the Sugiyama framework 17

12 An illustration of how edges are drawn . 19

13 How conjunctions are handled during layering 24

14 How warrants are handled during layering . 25

15 How constraints work . 28

16 How bad merging order may halt progress . 29

17 How warrants are handled before crossing minimisation 29

vi

18 How conjunctions are handled before crossing minimisation 30

19 An illustration of how Brandes and Köpf’s algorithm works 36

List of Tables

1 The given algorithm requirements . 3

2 Some Graphlib functions . 13

3 The adjustable properties . 18

4 A summary of the time complexities of the steps 40

List of Code Blocks

1 How conjunctions and warrants are represented 14

2 How some Graphlib functions are overridden 15

3 The main loop of the algorithm . 18

4 The cycle removal procedure . 20

5 The greedy feedback set builder . 20

6 The network simplex implementation . 22

7 The feasible tree builder . 23

8 The crossing minimisation function . 26

9 The layer sorting function . 27

10 The crossing counting procedure . 32

11 The coordinate assignment algorithm . 34

Glossary

Agile Software development methodologies that emphasise agility over rigid and heavy
structures. Usually encompass iterative development, adaptive planning and self-
organising. 4, 38

Argument diagram See argument map. i, 1, 2, 11, 12, 23, 43, 44

Argument map A diagram providing a visual representation of the structure of one or
more arguments. Also argument diagram. i, 1, 2, 16, 27, 42, 44, 45

Backend The behind-the-scenes part of an application handling data access and logic.
The server. 6

vii

Bayesian reasoning The application of Bayesian probability theory to inductive
reasoning [1]. 2

Boolean A data type that can only hold either true or false as its value. 4, 26

Class A sort of template for creating virtual objects with specific behaviour. 12, 13, 15

Constructor In this context, an object constructor. A function that instantiates a virtual
object. 23

Docstring A piece of text in the source code intended to document and explain a code
segment. 4, 8

Frontend The user-near part of an application. The graphical user interface. 6

Functional test A test of functional requirements. Within software quality assurance,
functional refers to what the code does (as opposed to how it does it). 4

Lexicographic Describes a sequence, meaning it is in lexicographic order (a
generalisation of alphabetical order). 30–32

Linter A program that lints, i.e., analyses a piece of code and flags or fixes any identified
errors. vi, 7

Repository In this context, a software repository, which is a virtual storage location
containing the data that constitutes a piece of software and metadata. 2, 6–8, 16,
27, 35, 39

Single-threaded Indicates that the software in question only loads a single logical
processing core at a time. 5

String A data type for holding text characters. 12, 13

Type In this context, a data type. A definition of what values a variable can hold. 6, 12,
14, 15, 18

Unit test A test, usually an automated one, that checks whether a piece (a unit) of
software behaves as intended. 4, 7, 38, 39

Acronyms

AI artificial intelligence. 2

AS aksjeselskap (the Norwegian term for ‘joint-stock company’). i, 2

DAG directed acyclic graph. 10, 16, 19, 21, 38, 40, 42

FAS feedback arc set. 19

FS feedback set. vii, 19–21

JS JavaScript. 4–7, 12, 14, 16, 18, 39, 40, 44

viii

NTNU Norwegian University of Science and Technology. iii, 2

TDD test-driven development. 4, 7, 38, 44

TS TypeScript. 1, 5–8, 15, 22, 28, 30, 31, 33, 40, 44

URL uniform resource locator (a web address). 16

VCS version control system. 5, 44

ix

1 Introduction

Graphs are invaluable tools for visualisation and understanding. Among the numerous
types of graphs and their many uses, there are so-called argument maps or argument
diagrams that might assist us in analysing logic. These can be useful to academics
wishing to comprehend a piece of argumentation, or decision-makers may use them to
weigh points against each other and identify the best way forward. There are many use
cases for argument maps, but the information era has yet to produce comprehensible
tools for laying out such maps. Granted, there are several available general graphing
tools, and some software is aimed at argument maps, but there are none offering
automatic drawing of them. Graph drawing is well-researched by now, and it should
be possible to create algorithms for generating argument diagrams. As the complexity
of available information continues to increase, so does the need for accessible ways of
modelling it. And a program offering automatic layout creation for argument diagrams
of arbitrary size would help in this regard.

This article is a follow-up to a preparatory master’s report concerning the same issues.
In this paper, the author will introduce a Norwegian tech startup working with logic
graphing. This firm has presented some of its problems to serve as the grounds for a
master’s project. It is these problems that the author has addressed in his master’s
project, and which will be examined in this thesis. After briefly reviewing the company
and its needs, the author will describe his methods and his results, before discussing
various aspects pertaining to the project. One of the results will be a graph data
structure that is well-suited to represent argument diagrams. The main result will be a
graph layout algorithm that is specifically developed for argument maps. As far as the
author is aware, this algorithm will be the first application of graph drawing methods to
automatically lay out argument diagrams.

The structure of this article is as follows: Section 2 will provide some background
information. The said startup, its problems and the algorithm requirements will be
presented there. In Section 3, all practised methods will be explained. To shine some
light on the environment the software development occurred in, Section 4 will list
and concisely describe the technologies applied. Section 5 will review some relevant
theory. Namely, it will touch upon graph theory, graph drawing and argumentation
(also known as informal logic). In sections 6 and 7, the resulting code will be explored.
While Section 6 will present the data structure necessary to represent argument maps,
Section 7 will present the custom layout algorithm — i.e., the main result of the master’s
project. Finally, Section 8 will contain the discussion, before Section 9 summarises and
concludes the thesis.

Several means may help the reader comprehend the text. Technical terms are included
in the Glossary. Acronyms will be spelt out when first used, and they are listed in the
Acronyms section. Comments and supplementary information will be put into footnotes.
Though the theory section (Section 5) will provide a basis, several terms and symbols
will be defined underway. In general, the author has attempted to make this paper as
accessible as possible. Nevertheless, some knowledge of mathematics and programming
will be presupposed. Specifically, an understanding of mathematical notation and
TypeScript (TS) code will be presumed. This is simply because of practical limitations; not
everything can be explained down to the basics here.

1

2 Background

Disputas AS, hereafter referred to as just Disputas, is a Norwegian startup developing
IT tools that assist users in their reasoning. The company is primarily concerned
with education in critical thinking, Bayesian reasoning and natural language artificial
intelligence (AI). Kvarberg [2], a co-founder of Disputas, explains that they aim to
‘[…] build technologies that might have a strong impact on the state of the public
conversation’ via their three-step plan:

First, we develop Ponder, an interactive educational platform for text analysis
and critical thinking. Then we develop Hylas, an AI-powered assistant for
critical literacy and persuasive writing. And finally, we create the Web of Belief,
which is a logical knowledge graph for organizing thoughts in terms of their
logical interconnections.

Ponder [3], the current main product of Disputas, is an educational platform providing
text annotation and argument map creation. The application supports actions such as
logical analysis of texts, visualisation of one’s own argumentation and essay writing.
Educational exercises in Ponder leverage its graphical interface and automatic assessment
of free-form natural language to give students a unique way to practice and learn in
subjects involving critical thinking. One of the key selling points of Ponder is its ability
to automatically structure and display argument maps. Essentially, it draws graphs that
represent the argumentation in a targeted text or of a user.

Having attracted the attention of both mathematicians and computer scientists, graph
drawing is a fairly well-researched area (Oria gives circa 16000 hits on the subject),
and there exist several software libraries for drawing graphs (GitHub hosts almost
1800 related repositories). The developers of Disputas have tried to employ existing
graph drawing frameworks in Ponder, and they have produced reasonable results.
However, they are wrestling with a problem: Argument maps contain structures that
are unorthodox from a graph-theoretical standpoint. These peculiarities are discussed in
Section 5.3. Because of this, no available graph drawing code offers all of the required
functionality. The Disputas developers have tried to remedy this issue by applying post-
processing on top of the extant frameworks. These solutions have only been partially
successful, and Ponder often produces odd graph layouts. Moreover, the attempted fixes
have drastically increased the complexity of Ponder’s code base.

Because of the aforementioned issues, Disputas proposed a master’s project that would
involve researching graph drawing and creating a graph layout algorithm custom-
made for argument diagrams. Note that the firm wanted a graph layout algorithm,
not a graph drawing algorithm. I.e., the custom-made algorithm was not required to
generate any graphics; it merely had to assign positional data to elements. A set of more
specific requirements is listed in Table 1. These requirements and the terms used in their
definitions will be discussed later in this article.

As of this writing, the author is an employee of Disputas. Because of his affiliation with
the company, he was familiar with the graphing problems of Ponder. After being made
aware of Disputas’s project proposition, he asked to have this project as the grounds
for his master’s thesis. The representatives of Disputas concurred. After being queried
by the author, Professor Srinivasa Rao Satti of the Norwegian University of Science and

2

https://bibsys-almaprimo.hosted.exlibrisgroup.com/primo-explore/search?query=any,contains,graph%20drawing,OR&query=any,contains,graftegning,AND&tab=default_tab&search_scope=default_scope&vid=NTNU_UB&mode=advanced&offset=0
https://github.com/search?q=graph+drawing

Technology (NTNU) agreed to be the project supervisor. Thus, everything was in place for
the project to start.

Table 1: The given algorithm requirements.

Requirement Description

Layered DAG layout The output should be optimal positions of vertices
and links in a layered directed acyclic graph.

Adequate speed Computations should be fast enough (in absolute
terms) to handle graphs of expected size without
degrading user experience.

Minimise edge crossing Though a fairly obvious and standard goal, edges
should not cross each other or pass through nodes.

Large graph support Graphs containing more than 80 nodes should be
supported with minimal increase in time costs.

Edge–on–edge support 1–4 nodes should be able to point to an edge,
and said nodes should be allowed to be otherwise
connected.

Minimal layout changes Limiting layout changes (to not confuse users) should
be considered together with normal quality measures.

Conjoined edge support Multiple nodes should be able to share a single link to
another node.

Source: Based on [4, Table 2] .

The initial part of the project was dedicated to research and preparation. There will be
more about the structure of the master’s project in Section 3. Since the project was
partitioned, a preliminary report [4] precedes this thesis. Naturally, the content of the
report is highly relevant, and much of the work done in this project has been based on it.
Any facts or concepts that have been borrowed directly from the report will, of course, be
followed by a citation per standard rules.

3 Methods

As previously mentioned, the master’s project was divided into two parts: a preparatory
phase and a working phase. Each of them lasted one semester.

During the preparatory phase, the author’s focus was to produce a literature review. The
resulting report [4] was meant to provide insight into the problem statement of Disputas
and the field of graph drawing. This knowledge was to allow the author to effectively
create a new graph layout algorithm that would fulfil all specified requirements. It was
during the preparatory period that the author and employees of Disputas discussed and
produced the requirements listed in Table 1. Project stakeholders were also identified [4,
Table 1], but the overview is not included here since it is of little direct relevance. The
requirements were based on identified use cases [4, pp. 2–6]. This method of creating
requirements is a common practice within software engineering [5, pp. 101–137]. As
tends to be the case with literature reviews, the lion’s share of the preparatory report was
documentation of previous work [4, pp. 7–22].

The working phase was conducted as one might expect of a software project: The author
developed new code based on the specified requirements and documented the project

3

in this thesis. As is commonplace within software engineering (at least when agile is
applied, which today means often) [5, pp. 72–74], there was a recurring short meeting
where the author reported on his progress and any challenges, and received feedback
from the customer (representatives of Disputas). To provide ample time for development
without too much interruption, this meeting occurred once a week throughout the project
period. Apart from the aforementioned, there were few formal methods applied during
development since the author worked alone on the project. However, some aspects still
warrant the attention of this section.

Functional testing, both via automated unit tests and manual tests by the author, was
used throughout the development process. Unit tests were written based on known
requirements before the targeted code segment was complete. Afterwards, the segment
was developed with the aim of having all tests pass. Such an interleaving of testing and
development is known as test-driven development (TDD), which is an agile method of
some renown [5, p. 221].

Ideally, the software produced in this project [6] should have provided a basis for further
development by others. The code should have been understandable, easy enough to
use and simple to modify. I.e., it ought to have had a high degree of maintainability [7,
p. 195]. To this end, various conventions were used during development. Modularity was
emphasised. The project was created as an npm module (npm is discussed in Section 4)
and also uses npm modules. This is the standard decomposition pattern [7, p. 210]
used in Node environments (Node is discussed in Section 4). Applying this pattern also
increased the portability [7, p. 195] of the project. The map structure was designed
to logically partition the project, give a good overview and inform developers of where
different content might lie. The algorithm was divided into a series of steps, and all
code segments performing a particular action were extracted into functions. Functions
were named as imperative phrases, clarifying their use cases. Moreover, all functions
were documented by docstrings. Variables were named using as simple and natural
language as possible. E.g., any boolean values were named as simplified fact statements
(like isSoftwareProject). The ordering and clustering of functions and variables were
intended to make reading and navigation easier. Modern language syntax was preferred
over legacy syntax when possible and sensible.1

As a last note for this section, it is worth noting that the author made specific efforts to
increase the portability of the project too. Section 4 will make it clear that the algorithm
was implemented in a Node environment. The official modern standard for packaging
JavaScript (JS) code for reuse is ECMAScript modules [8]. However, many frameworks
still rely on legacy code or have developers that prefer the older CommonJS standard
[9]. Support for ECMAScript modules is growing [10] but still a long way from common.
Therefore, the author decided to develop the project towards supporting both CommonJS
and ECMAScript modules.

1As an example of a sensible exception: Though JavaScript’s forEach() was preferred over older iteration
methods, conventional for loops were used when conditional breaks or continues were necessary.

4

4 Technologies

To implement the algorithm, the author had to decide which technologies to use. Note
that, in this context, technologies refer to programming languages, software systems,
frameworks and the like. The following will present the main technologies applied in the
project and argue why they were chosen.

(a) The Git logo. (b) The GitHub logo.

Figure 1: The logos of the version control solution of the project.

Source: Git Homepage and GitHub Homepage .

Git is the world’s most popular version control system (VCS), and it is predominantly
used together with GitHub, the world’s largest Git hosting service [11, p. 165]. The Git
logo and the GitHub logo are displayed in Figure 1. In software development, VCSs are
essential [11, p. 10]. They help document progress, make developer collaboration easier
and provide redundancy. With a VCS in place, project-crippling errors can quickly be
rectified by reverting files to previous known-to-work states, and information regarding
who made the breaking changes is readily available. Moreover, since several parallel
versions of the project may exist at any given time, segmenting work is simple, and
conflicting changes can be resolved at a later stage. The author struggled to imagine
any programming projects that would not benefit from using Git. Though Disputas never
had any explicit demands regardings VCSs, the firm already used Git and GitHub. Their
popularity and the author’s personal preferences also argued for using them.

Figure 2: An unofficial but popular JavaScript logo.

Source: Ramaksoud2000 via Chris Williams, Public domain, via Wikimedia Commons .

JS is a well-known programming language that is heavily used in web development [12].
One may see the JS logo in Figure 2 used on the internet, though it is not an official
one. Strictly speaking, JS was not used in this project, but TypeScript (discussed next),
which builds upon and compiles into JS, was. Therefore, JS is mentioned here. Though
JS may be best known as the scripting language for web pages, several non-browser
environments also use it. Among such JS-based non-browser environments, is Node.js,
which is listed further down in this section. JS is both lightweight and powerful. It is
multi-paradigm, meaning it supports several programming styles, and although it is
single-threaded, it supports asynchronous actions by leveraging a so-called event loop.

5

https://git-scm.com/downloads/logos
https://github.com/logos
https://commons.wikimedia.org/wiki/File:JavaScript-logo.png

However, a weakness of JS is that it is dynamically and weakly typed. Hence, developers
have lacklustre control over how objects look and how variables are stored.

Figure 3: The TypeScript logo.

Source: TypeScript Homepage .

TS is, in simple terms, strongly typed JS [13]. The official TS logo is displayed in
Figure 3. TS adds to the syntax of JS, allowing developers to specify the shape of objects
and fix variables to a single type. TS compiles into JS, so it can run in any environment
JS can. If type errors are encountered during compilation, the compilation halts and
informs the developer of the problem. TS may also work with code editors to highlight
problems in real time. Additionally, TS supports type inference, so even without the use
of extra syntax, TS can provide helpful hints to developers. From the author’s experience,
the only times JS is preferred over TS are when projects are too small to gain a lot from
TS and when projects are huge but implemented in JS, thus, making the transition to
TS too expensive. Disputas already used TS extensively, so writing this project in TS
made good sense. This was not only because it would make the new code a natural
extension of the existing code base of Disputas, but also because it would fit well with the
wish of creating an npm package. What npm packages are is explained in the following
paragraph.

(a) The Node.js logo. (b) The npm logo.

Figure 4: The logos of the runtime environment and package manager of the project.

Source: Node.js Brand Guide and npm Repository .

Node.js is a JavaScript runtime system that is designed to build scalable network
applications [14]. Figure 4a contains the Node.js logo. Code running in a Node
environment will behave just like it was running in a browser. This platform agnosticism
can be practical for web developers for a number of reasons. Using Node.js, they do not
have to use widely different technology stacks for frontend development and backend
development. Instead, they can use the same syntax and familiar frameworks to develop
all parts of an application. Moreover, Node applications, Node frameworks and smaller
Node projects can all be packaged, managed and shared by npm, the package manager
for Node.js [15]. It provides access to one of the largest developer ecosystems in the
world, and one can easily manage one’s own packages and implement others’ packages

6

https://www.typescriptlang.org/branding/
https://nodejs.org/static/documents/foundation-visual-guidelines.pdf
https://github.com/npm/logos

via the npm command line client. The official npm logo is shown in Figure 4b. Disputas,
like many other companies, uses Node.js in many of their web development projects.
Since Disputas wanted to use the graph drawing algorithm to dynamically calculate
layouts on the client side, using Node.js and creating a new npm package for this project
appeared best.

(a) The Mocha logo. (b) The Chai logo.

Figure 5: The logos of the testing technologies of the project.

Source: Mocha Homepage and Chai Repository .

Mocha and Chai were used together to form the testing solution for the project. Mocha
is a JS test framework that supports Node.js [16]. Figure 5a displays the logo of Mocha.
The Mocha framework is simple to use, yet powerful. It was well-suited to create unit
tests for this project. The Mocha test suite reports which tests passed, which tests did
not pass and in what way they failed, providing invaluable information to the developer.
Chai is an assertion library meant to be paired up with some JS testing framework [17].
It provides simple ways of checking various aspects of the targeted code. The Chai logo
is in Figure 5b. By using Mocha and Chai together, the author was able to specify the
requirements of different segments of code by writing tests. Afterwards, the author
could continue developing whilst aiming to have all tests pass. This is the TDD method
mentioned in Section 3. Having a solid testing framework is also very useful during
debugging.

(a) The ESLint logo. (b) The Prettier logo.

Figure 6: The logos of the linting and formatting tools of the project.

Source: ESLint Homepage and Prettier Repository .

ESLint and Prettier were used to aid the author during development. ESLint is a
configurable JS linter that supports TS [18]. Its purpose is to highlight potential problems
in one’s code, be it syntax errors, possible runtime bugs or breaches of best practices.
Figure 6a displays the ESLint logo. Prettier is an opinionated code formatter that supports
TS and other environments [19]. It refactors one’s code to ensure a consistent style
both within a file and across multiple files. Though it edits input source code to a degree,
it will never make changes that would affect the behaviour of the code. I.e., code that
is formatted by Prettier will always be functionally equivalent to the original code. The
author had a lot of experience with these tools and viewed them as very helpful. In this
project, ESLint was used together with TS to highlight mistakes and deviations from

7

https://mochajs.org/
https://github.com/simple-icons/simple-icons/issues/4983
https://eslint.org/branding/
https://github.com/prettier/prettier-logo

conventions. Although ESLint may be configured to handle styling issues too, Prettier is
created specifically for this purpose and was preferred by the author. Therefore, Prettier
was used to automatically format files upon saving.

Figure 7: The TypeDoc logo.

Source: TypeDoc Repository .

TypeDoc is a relatively new documentation generator for TS [20]. Its logo is shown
in Figure 7. As previously mentioned, all functions in the project were accompanied by
docstrings. These follow the TSDoc specifications that TypeDoc is based on. TypeDoc
could therefore be used read the source code files, find the docstrings and generate
HTML, resulting in a page that documents the entire project. The value of such a tool
should be self-evident.

5 Theory

To provide a foundation to build upon, this section will review a few theoretical concepts.
In addition to the definitions contained here, many other terms and symbols will be
defined underway during the presentation and discussion of the results, particularly
in Section 7. This duality stems from certain theory only being of relevance to sub-
components of the project and other theory having universal value (in the context of this
project).

5.1 Graph Theory

Graphs are discrete mathematical structures that model pairwise relations between
objects [21, pp. 641–642]. A graph G =

(
V, E

)
consists of a non-empty set of nodes

(also called vertices) V ̸= Ø and a set of edges (also called links) E ⊆ V × V that,
respectively, represent elements and their connections. u, v and w are often used to
denote arbitrary nodes. Let n be a positive integer. If there are many nodes to reference,
say n nodes, the notation v0, v1, · · · , vn−2, vn−1 is preferred. Note that, in this paper, the
author will consistently use zero-based numbering since it is the numbering scheme used
in most programming languages. If an edge connects the nodes u and v, the edge is
written as

(
u, v

)
, and it is incident with u and v [21, pp. 651–652]. Moreover, u and v are

neighbours. The degree of a node is the number of edges incident to it.

Figure 8 shows an example of a directed graph. In this project, directed graphs are
the most relevant of graph types. A graph is directed if its edges have direction — i.e.,
an edge

(
u, v

)
relates u to v but not v to u, and

(
v, u

)
̸=

(
u, v

)
[21, p. 643]. Given a

directed edge
(
u, v

)
, we say u is the tail node of the edge and v is the head node of the

edge. Furthermore,
(
u, v

)
is an outedge of u and an inedge of v. In a directed graph,

the indegree of a vertex u is its number of inedges and is denoted d+
(
u
)
[21, p. 654].

8

https://github.com/TypeStrong/typedoc-site/tree/master/images

Figure 8: A directed graph with five nodes and five edges.

Figure 9: A tree rooted in a.

9

Likewise, its outdegree is its number of outedges and is denoted d−(u). The graph in
Figure 8 contains one cycle,

{(
a, d

)
,
(
d, b

)
,
(
b, a

)}
, which is a path of edges that leads

back to the starting node [21, p. 680]. However, it does not contain any loops, which are
edges where the tail node and head node are the same [21, p. 643]. In other words, an
edge

(
u, v

)
is a loop only if u = v. If a directed graph has neither cycles nor loops, it is a

directed acyclic graph (DAG) [22, p. 224].

If an undirected graph has no simple circuits, it is a tree [21, pp. 746–748]. An example
of a tree is shown in Figure 9. The displayed tree is a rooted tree. A tree is rooted if it
has a node designated as its root and all edges are directed away from it. In the example
tree, a is the root, and every edge is implicitly directed downwards. The three outedges
of a lead to the three vertices b, c and d. These nodes are children of a, and a is their
parent. A vertex that has no children is a leaf. e, c, h and g are the leaves in Figure 9.
Trace a path from a given vertex u all the way to the root. All nodes encountered in this
process, excluding u itself and including the root node, are the ancestors of u. E.g., in
Figure 9, the ancestors of g are d and a. Construct a set of nodes D by adding all children
of an arbitrary node u, adding the children of the children, the children of their children
and so on until the leaves are reached. D is then the descendants of u. For instance, in
the displayed tree, the descendants of d are f, g and h. This terminology is also used
when discussing DAGs in general.

5.2 Graph Drawing

Although graphs are concepts from graph theory, graph drawing has come to be seen as
a field in and of its own [22, p. vii]. There exist a myriad of different approaches to how
to draw graphs, each with its strengths and weaknesses. The approaches applied in this
project will be explained underway. In preparation for this, it is useful to define some
terms and review what aesthetic properties are desired.

A graph drawing is a visual representation of a graph [22, p. 2]. Specifically, a drawing
Γ of a graph G is a mapping that associates every node u ∈ V to a particular point Γ

(
u
)

of the plane and every edge
(
u, v

)
∈ E to a simple curve Γ

(
u, v

)
with endpoints Γ

(
u
)
and

Γ
(
v
)
. Technically, Figure 8 and 9 are not graphs but graph drawings. In this project, so-

called layered graph drawings are the most relevant. These are a type of hierarchical
graph drawings [22, p. 409]. Put simply, a graph drawing is layered when it presents
nodes in a series of discrete, parallel layers. Incidentally, Figure 9 is a layered drawing
while Figure 8 is not. A formal definition of a hierarchy follows [22, p. 411]. Consider a
graph G with a mapping λ : V →

{
0, 1, . . . , n − 2, n − 1

}
where 0 ≤ n <

∣∣V∣∣ such that V is
partitioned V = V0 ∪V1 ∪ . . .∪Vn−2 ∪Vn−1, Vi = λ−1(i), i ̸= j ⇒ Vi ∩Vj = Ø and λ

(
v
)
= λ

(
u
)
+1

for every edge
(
u, v

)
∈ E . Such a graph G =

(
V, E, λ

)
is a level graph, and a hierarchy is a

level graph where ∀v ∈ Vi, 0 < i : ∃
(
u, v

)
∈ E such that u ∈ Vi−1.

Clearly, one would like to produce good drawings. To do that, a definition of what quality
entails in a graph drawing is needed. The following aesthetic criteria provide a notion of
how to ensure drawing quality [22, p. 411]:

• Edges should generally point in the same direction.

• Edges should be short.

• Vertices should be uniformly distributed.

10

• Edge crossings should be minimised.

• Edges should be as straight as possible.

These criteria are subject to some common sense. For example, edges may very well
be too short and reduce the overall quality of the drawing. Moreover, improving some
measures of quality often worsens others. Therefore, one must balance the different
criteria to produce good drawings.

5.3 Argumentation

The basics of logic are well-known, and everyone possesses some degree of logical
intuition. But there are different ideas on how to formally structure arguments and what
terms we should use. Moreover, ordinary people and experts alike can passionately
disagree on what seems logical. To be clear, the sort of logic discussed here is what is
called informal logic or argumentation theory [23, pp. 14–28]. This field is not orthogonal
to formal logic, but it includes rhetoric and often deals with ambiguous real-life aspects —
something mathematicians and certain types of logicians ignore in favour of an idealised
and pure form of logic.

(a) a implies b. (b) c explains
why a implies b.

(c) a and b
conjunctly implies c.

Figure 10: The three basic argument structures.

In the context of this project and argument diagrams, it is sufficient to understand
three basic argument structures. The simplest structure, sometimes called a simple
argument, is shown in Figure 10a. In this example, a is a premise that logically implies
the conclusion b.2 When presented with such an argument, a reasonable person
might wonder why a implies b. Hence, a backing of the implication between a and b
is necessary. This need gives rise to the structure in Figure 10b. Here, premise a still
implies b as its conclusion, and c is a statement that provides reason to believe why the
implication is valid. In the Toulmin Framework [24, pp. 89–95], a (the premise) is called
the data, b (the conclusion) is referred to as the claim, and c (the implication backing) is
named the warrant. Therefore, structures like the one in Figure 10b — a, b, c,

(
a, b

)
and(

c, (a, b)
)
— will be called warrant structures. Links like the one going from c to

(
a, b

)
will be referred to as warrant edges. Because it is where the warrant edge comes from,

2This is basically modus ponens. I.e., a ⇒ b, a ⊢ b.

11

c will at times be called the warrant source. In this article, c and
(
c, (a, b)

)
will be called

a warrant and denoted ω. Sometimes, a single statement is not enough to deduce any
conclusions. But it might be the case that one or more additional statements lead to a
conclusion by logical conjunction. This leads to the structure of Figure 10c, which shows
that a and b collectively form a premise that implies the conclusion c.3 Let a premise set
P consist of a and b from Figure 10c. Conjoined edges like

(
P, c

)
and its premise nodes P

will be called conjunctions and denoted ς.

Note that, in argument diagrams, different argument structures may be chained and
extended, resulting in complex graphs: Several statements may independently imply
the same conclusion; these statements might be conclusions of yet other statements;
warrants could function as parts of other arguments, and the number of statements in
conjunctions is not limited. From here on out, argument diagrams will be denoted as Garg

in mathematical contexts.

When considering Figure 10 from a graph-theoretical perspective, one can make a couple
of relevant observations. Firstly, edges between nodes and other edges (i.e., warrant
structures) are unheard of. Secondly, the way conjunctions are represented means that
an argument diagram is a form of hypergraph.4 Regardless, since these diagrams were
to be presented in a layered manner, they will be viewed as special cases of traditional
directed graphs. The practical implications of this should be clear once the graph layout
algorithm has been understood.

6 Data Structure

To represent nodes and edges, a fitting data structure was required. Instead of creating
a new class from scratch, the author based himself on the graph structure of Graphlib
[25]. Graphlib is a JS library for creating and modifying graphs. Its graph class is built
to represent typical graph information and provides various helpful functions. In fact, it
arguably offered more than what was needed for this project, which is a luxury problem.

Graphlib [25] graphs can associate any data with itself, any of its nodes or any of its
edges. The associated data of an element is called a label, and it can be of any type.
Labels are very handy for flagging elements or storing away information for later use, and
they were used extensively in this project. For instance: In Section 7, various processing
functions are described. The changes made in these processes must generally be undone
at later stages. Information about original states is therefore held in appropriate labels.

To provide some context to the code blocks of this section and Section 7, Table 2 contains
a list of all graph class functions shown. As a note on removeNode(), removing a node
implicitly deletes all incident edges as well. Also note that when an edge class is the
expected argument, one can generally provide either such a class or its constituents
— a tail node (ID string), head node (ID string), label (any) and name (string, but it is
only intended for undirected graphs). Table 2 is non-exhaustive in two ways. Firstly,
the author utilised other functions too, but these are not used in any of the displayed
code blocks. For conciseness, they were not listed. Secondly, there are many more
Graphlib functions that are available but were not put to use in this project and are
therefore omitted. Regardless, all graph class functions will be available to consumers of

3Mathematically,
(
a ∧ b

)
⇒ c,

(
a ∧ b

)
⊢ c.

4This is just a technicality. Hypergraphs (graphs in which a single edge can connect several nodes at a time)
are not relevant to this project.

12

the produced npm package [6] because, as is about to be explored, the author’s graph
class extends (i.e., inherits from) the Graphlib graph class. For the sake of clarity, the
implementation of the modified class is split up into Code Block 1 and Code Block 2.

Table 2: Some Graphlib functions.

Name Argument(s) Returns

parent() A node ID (string) The meta-node containing the node
setNode() A node ID (string) N/A

and a label (any)
setParent() Two node IDs (strings) N/A
edge() An edge (edge class) The label of the edge
setEdge() An edge (edge class) N/A
removeEdge() An edge (edge class) N/A
hasEdge() Two node IDs (strings) Whether the implied edge is in the graph
hasNode() A node IDs (string) Whether the node is in the graph
removeNode() A node ID (string) N/A
node() A node ID (string) The label of the node
isDirected() N/A Whether the graph is directed
nodeCount() N/A The number of nodes in the graph
sinks() N/A All sinks in the graph
sources() N/A All sources in the graph
graph() N/A The label of the graph
edgeCount() N/A The number of edges in the graph

Considering that Graphlib [25] was built for plain old discrete graphs, an obvious
modification to its graph class was the addition of warrant and conjunction data
structures. How this was done is shown in Code Block 1. The setConjunctNode()
function contained in lines 4–22 takes a node u and an edge

(
v, w

)
and combines them.

It presumes that a simple argument or a conjunct argument already exists and adds u
as a premise. That is, either

(
v, w

)
is simple and becomes the conjunction

(
{u, v} , w

)
or

(
v, w

)
is conjoined and u is added to its premise set. In Ponder [3], users must build

arguments step-by-step. This is why an extant edge can safely be presumed. Note how a
meta-node is used to contain all premises and the conjoined edge goes from this meta-
node to the conclusion. Since this meta-node is just a representation of the premise
set and a handy tail for the conjoined edge, it should be ignored during a rendering
of the final layout. This can be done by, when drawing, skipping over any node with a
label where isConjunctNode is set to true. Lines 24–43 display the implementation of
setWarrantEdge(). It takes a warrant source–to-be v0, a target edge

(
v2, v3

)
and an

optional label and name for the warrant edge. Like setConjunctNode(), it presumes an
existing argument, which it obviously has to. setWarrantEdge() creates a dummy node
v1 to serve as a head for the warrant edge

(
v0, v1

)
and then adds the edge. Because

v1 is merely a dummy target for
(
v0, v1

)
— which represents

(
v0, (v2, v3)

)
— it should

not be drawn during rendering. Achieving this may be done by either skipping any
nodes with a isWarrantSink property of true or respecting the zero-valued width and
height. A keen-eyed reader might see that lines 32–35 open for the possibility of calling
setWarrantEdge() on an existing warrant. This is to allow modification of the warrant
edge label. Lastly, note how warrants and conjunctions are not mutually exclusive. I.e., a
conjoined edge may have a warrant.

13

1 class Graph extends graphlibGraph {
2 // ...
3
4 setConjunctNode(node: NodeId, edge: Edge) {
5 let vParentNode = this.parent(edge.v);
6
7 if (!vParentNode) {
8 vParentNode = `-> ${edge.w}`;
9

10 this.setNode(vParentNode, { isConjunctNode: true });
11 this.setParent(edge.v, vParentNode);
12
13 const edgeLabel = this.edge(edge) || {};
14
15 this.setEdge(vParentNode, edge.w, edgeLabel, edge.name);
16 this.removeEdge(edge);
17 }
18
19 this.setParent(node, vParentNode);
20
21 return this;
22 }
23
24 setWarrantEdge(
25 sourceNode: string,
26 targetEdge: Edge,
27 label?: any,
28 name?: string
29) {
30 const dummyNodeId = `${targetEdge.v} -> ${targetEdge.w}`;
31
32 if (this.hasEdge(sourceNode, dummyNodeId)) {
33 if (label) this.edge(sourceNode, dummyNodeId, name).label = label;
34 return this;
35 }
36
37 this.setNode(dummyNodeId, { isWarrantSink: true, width: 0, height: 0 });
38 const edgeLabel =
39 label || (this as any)._defaultEdgeLabelFn(sourceNode, dummyNodeId, name);
40 this.setEdge(sourceNode, dummyNodeId, edgeLabel, name);
41
42 return this;
43 }
44
45 // ...
46 }

Code Block 1: How conjunctions and warrants are represented.

Code Block 2 displays the rest of the graph class code (except for setConjunctNode()
and setWarrantEdge(), which have already been reviewed). It shows off some further
tweaks that were needed. A Graphlib [25] graph class takes a set of options when it is
instantiated. These can be used to set the graph to be a directed graph, a multigraph5

and a compound graph. The constructor in lines 2–4 simply changes the default
compound setting to true. In this context, making a graph compound means that meta-
nodes are allowed. These are necessary for the author’s solutions. Note that Graphlib
uses parent and child for meta-node and sub-node. In this article, the latter terms will be
preferred, and the former terms will be used as defined in Section 5.1. Lines 6–8 have no
functional effect, but they correct an erroneous return type — graph labels can be of any
type. In lines 12–44, the default edge removal is overridden. The addition of warrants
and conjunctions puts more requirements on it. Originally, removeEdge() was a JS

5Multigraphs are graphs in which several edges can connect the same pair of nodes. They are not relevant to
this project.

14

1 class Graph extends graphlibGraph {
2 constructor(options?: GraphOptions) {
3 super({ compound: true, ...options });
4 }
5
6 override graph(): any {
7 return super.graph();
8 }
9

10 // ...
11
12 override removeEdge(v: NodeId | Edge, ...wAndName: string[]) {
13 let _v: NodeId;
14 let _w: NodeId;
15 let _name: string | undefined;
16
17 if (wAndName.length) {
18 _v = v as NodeId;
19 [_w, _name] = wAndName;
20 } else {
21 const edge = v as Edge;
22 _v = edge.v;
23 _w = edge.w;
24 _name = edge.name;
25 }
26
27 if (this.node(_v)?.isConjunctNode) {
28 this.removeNode(_v);
29 } else if (this.node(_w)?.isWarrantSink) {
30 this.removeNode(_w);
31 }
32
33 const possibleWarrantSink = `${_v} -> ${_w}`;
34
35 if (this.hasNode(possibleWarrantSink)) {
36 const warrantSource = this.predecessors(possibleWarrantSink)![0];
37 this.removeNode(possibleWarrantSink);
38 this.node(warrantSource).isWarrantSource = false;
39 }
40
41 super.removeEdge(_v, _w, _name);
42
43 return this;
44 }
45 }

Code Block 2: How some Graphlib functions are overridden.

function that counted the number of arguments and accordingly changed its behaviour. It
is one of the functions that, as mentioned earlier, take an edge class or its constituents.
Unfortunately, there is to the author’s knowledge no elegant way of implementing two
different behaviours for the same function in TS. Therefore, the trick of using a rest
parameter, which allows an indefinite number of arguments, and subsequently asserting
the argument types was used. This is shown in lines 12–25. The if-statement in lines 27–
31 checks whether the edge to be removed is conjoined or a warrant edge. If a conjoined
edge is deleted, this implicitly removes its conjunction. Hence, there is no more use for
the conjunction meta-node, and it should be deleted. If a warrant edge is deleted, the
dummy node (i.e., the head node of the edge) should be removed. It is also possible that
an edge targeted by a warrant could be passed to removeEdge(). This case is handled
in lines 33–39. Since the targeted edge is gone, the warrant is also deleted. No more
custom logic is necessary, so the rest is delegated to the default function.

15

7 Algorithm

In the preliminary study [4, pp. 7–9], it was explained that Disputas currently uses the
Dagre JS Library [26] for generating graph layouts. Apart from Dagre’s lack of native
support for argument maps, Disputas was generally happy with its performance. Because
of this, the author explored Dagre and the literature cited in its documentation [4,
pp. 12–14]. Though this effort proved valuable, extending Dagre was decided against,
and an entirely new graph layout algorithm was produced. The new algorithm builds on
previous work and established graph drawing theory. However, the application of this
knowledge towards producing argument maps is novel. Additionally, the particular way
of implementing methods and the special handling of argument structures is entirely new.

The customised graph layout algorithm is the primary result of this master’s project, and
it will be presented in this section. It is implemented in the open-source library called
Argumappr [6], which contains both the algorithm and the data structure described in
Section 6. Per the time of this writing, the project consists of approximately 8000 lines
of code. For brevity and clarity, only the most relevant code blocks will be included here.
However, every step of the algorithm will be duly explained. The interested reader may
find all written code in the Argumappr repository. Please note the visit date of the URL in
this paper. Argumappr may continue to be developed after the conclusion of the master’s
project.

7.1 Main Loop

Firstly, it is useful to formally define the problem that needs solving. Given an argument
map Garg, there must be produced a layered graph drawing Γ. In addition to the regular
mapping of traditional nodes V and edges E (i.e., simple arguments), warrants W and
conjunctions C must be handled. Γ must map warrant edges Eω to simple curves with one
endpoint in the associated warrant source vω and the other in the centre of the targeted
edge

(
u, v

)
. This is done in Figure 10b. Further, Γ must map conjunct edges Eς to a set

of simple curves such that: Each sub-node u ∈ Vς is an endpoint of a curve; all curves
with an endpoint in a sub-node share their other endpoint A; the point A has an x-value
equal to the average x-value of the sub-nodes and a y-value between the y-value of the
sub-nodes and the y-value of the target node; one curve has an endpoint in A and the
other in the target node. Figure 10c is drawn in this fashion.

To generate layered graph layouts, the algorithm partitions the problem and solves it in
four steps, not counting pre- and post-processing. These steps are:

1. Eliminate any cycles in the graph, producing a DAG.

2. Assign all nodes to discrete layers.

3. Reorder nodes within their layers to minimise the number of edge crossings.

4. Position nodes in a way that favours straight edges.

This is the Sugiyama method for layered graph drawing [27]. It is highly effective and
by far the most popular approach to layered graph drawing [22, p. 410]. The process is
illustrated in Figure 11. In Figure 11b, the bold edges have been reversed to make the
example graph acyclic. The dark dots in Figure 11c and Figure 11d are dummy vertices.

16

(a) A directed graph G. (b) G with its cycles removed.

(c) G after layering. (d) G after edge crossing minimisation.

(e) G after edges are straightened (final drawing).

Figure 11: A directed graph laid out using the Sugiyama framework.

Source: Based on [22, Fig. 13.2] .

17

These are removed in the final drawing shown in Figure 11e. Each step and how they are
handled will be detailed in this section.

1 function layOutGraph(graph: Graph) {
2 if (!graph.isDirected()) {
3 throw new Error("Graph must be directed for layered drawing");
4 }
5
6 const layoutGraph = buildLayoutGraph(graph);
7
8 // Primary algorithm steps
9 const originalEdges = removeCycles(layoutGraph); // Step 1

10 const ranks = layerNodes(layoutGraph); // Step 2
11 const graphMatrix = minimiseCrossings(layoutGraph, ranks); // Step 3
12 straightenEdges(layoutGraph, graphMatrix); // Step 4
13
14 restoreEdges(layoutGraph, originalEdges);
15 finaliseWarrantPositions(layoutGraph);
16 drawBezierCurves(layoutGraph);
17 removeDummyNodes(layoutGraph);
18
19 updateInputGraph(graph, layoutGraph);
20 }

Code Block 3: The main loop of the algorithm.

The main loop of the algorithm is displayed in Code Block 3, and lines 9–12 show the four
steps of the Sugiyama framework. Each of the procedures has its own dedicated section
(Section 7.2–7.5). The input is expected to be a directed graph of the type described in
Section 6. To provide some protection against bad inputs, an error is thrown if a non-
directed graph was provided (lines 2–4). After this assertion, the input graph is copied in
line 6. During copying, default values are assigned to the graph, nodes and edges. These
properties, their default value and what they control are listed in Table 3. Any properties
explicitly set in the input graph will not be overwritten. This provides consumers of
the function with a way of affecting how layouts are produced. The properties (except
maxrankingloops and maxcrossingloops) and their use are borrowed from the Dagre
JS library [26]. Once the copying is complete, the four primary steps of the algorithm are
run. As previously mentioned, these will be explored further in their respective sections.

Table 3: The adjustable properties.

Name Default Element Description

ranksep 225 Graph Spacing between layers
nodesep 100 Graph Horizontal node separation
maxrankingloops 100 Graph Max iterations during layering
maxcrossingloops 100 Graph Max iterations during crossing minimisation
width 300 Node Node width
minlen 1 Edge Minimum edge length

In Code Block 3, lines 14–17 perform post-processing that is necessary for the final
layout. Since cycle removal might modify edges (see Section 7.2), any affected edges
must be restored in line 14. Warrant arguments are transformed in the crossing
minimisation step reviewed in Section 7.4. Therefore, they must receive some final
positioning in line 15. All edges spanning more than one layer will have been split up by
the crossing minimisation function. Line 17 removes produced dummy nodes and makes

18

the divided edges whole again. Finally, line 19 assigns all elements of the input graph
their positional data.

Figure 12: An illustration of how edges are drawn.

The astute reader might have noticed that line 16 has not yet been discussed. At that
point in the algorithm, all nodes have their final positions, and edges can be drawn.
This is done by drawBezierCurves(). It simply associates each edge with three points
(start, middle and end) on a standard quadratic Bézier curve [28, pp. 303–307] from its
tail node to its head node. Bézier curves are well-known and heavily used in computer
graphics. Though they are derived from less than trivial mathematics, the recursive
definition [28, pp. 310–311] allows one to easily use Bézier curves in programming (the
so-called De Casteljau’s Algorithm) and may also provide a more intuitive geometric
interpretation of them. Figure 12 illustrates the concept with two non-aligned nodes. The
corners of the biggest triangle are the control points. Each endpoint of the red line is in
the middle of each blue line. The middle of the red line touches the Bézier curve, and this
point is the centre green point. Together with the other two green points, these form the
collection of points to be associated with the edge.

7.2 Cycle Removal

The first step of the algorithm is to search for and eliminate any cycles or loops. This is
necessary because the layering step (see Section 7.3) must be provided with a DAG. Of
course, changes made during this step must be corrected before the completion of the
main algorithm. Optimally, this step should modify as few edges as possible. Any deleted
edges will not be taken into account during the rest of the algorithm. Additionally, any
reversed edges will be going against the flow in the final drawing. For a directed graph
G, a feedback arc set (FAS) is a (possibly empty) set of edges F ⊆ E that if removed,
leaves G acyclic [22, p. 413]. Similarly, a feedback set (FS) is a (again, possibly empty)
set of edges R ⊆ E that if reversed, leaves G acyclic. Using these definitions and recalling
the goal of minimising edge mutations, an optimal solution would be to reverse all edges
in the smallest cardinality FS R∗. Sadly, the minimum FS problem is as hard as the
minimum FAS problem [22, p. 413], which is known to be NP-hard [29]. Thus, heuristics
must be resorted to.

19

1 function removeCycles(graph: Graph) {
2 const graphCopy = buildSimpleGraph(graph);
3 const { nodes0, nodes1 } = greedilyGetFS(graphCopy);
4 const modifiedEdges = handleEdges(graph, nodes0, nodes1);
5
6 return modifiedEdges;
7 }

Code Block 4: The cycle removal procedure.

The main procedure is shown in Code Block 4. In principle, the function is rather simple.
In line 2, a simple copy (a copy of only nodes and edges, not any associated data) of the
graph is made. It is then provided to the sub-routine that does most of the interesting
work in line 3. This sub-routine, presented in Code Block 5, generates an implicit FS. It
will be discussed shortly. In line 4, the information is passed on to a handler function that
does two things. It reverses all edges in the FS, and it deletes any loops. The original
edges and any associated data are returned so that they can be recovered in the final
layout.

1 function greedilyGetFS(graph: Graph) {
2 const nodes0: NodeId[] = [];
3 const nodes1: NodeId[] = [];
4
5 while (graph.nodeCount() > 0) {
6 let remainingSinks = graph.sinks();
7 while (remainingSinks.length > 0) {
8 const sink = remainingSinks[0];
9 graph.removeNode(sink);

10 nodes1.push(sink);
11 remainingSinks = graph.sinks();
12 }
13
14 let remainingSources = graph.sources();
15 while (remainingSources.length > 0) {
16 const source = remainingSources[0];
17 graph.removeNode(source);
18 nodes0.push(source);
19 remainingSources = graph.sources();
20 }
21
22 if (graph.nodeCount() > 0) {
23 const maxNode = getMaxNode(graph);
24 graph.removeNode(maxNode);
25 nodes0.push(maxNode);
26 }
27 }
28
29 return [...nodes0, ...nodes1];
30 }

Code Block 5: The greedy feedback set builder.

The FS builder in Code Block 5 is an implementation of Eades et al.’a greedy cycle
removal [30]. As just mentioned, it builds an implicit FS. Consider a graph G with n
nodes. Let all nodes v0, v1, · · · , vn−2, vn−1 be arbitrarily ordered on a straight line.
Clearly, the set of all edges going from a higher-numbered vertex vi to a lower-numbered
one vj, where i > j, is an FS. This is how greedilyGetFS() provides an FS. It imposes a
linear ordering on all nodes, and it attempts to do so in a clever way.

20

Suppose two vertice sets V0 and V1 where V0, V1 ⊆ V and V0 ∩ V1 = Ø. The i th node of
V0 is denoted v0i , and the i th node of V1 is denoted v1i . Put all sources of G into V0, and
place all sinks in V1. Notice how edges that are incident to a source or a sink cannot be
part of any cycles. Hence, in an ordering where v0i ≺ v1j for all 0 ≤ i <

∣∣V0∣∣ and 0 ≤ j <∣∣V1∣∣, all edges will be going in the same direction. That is, no edge will go from a higher-
numbered to a lower-numbered vertex. Let δ

(
u
)
= d+

(
u
)
− d−(u). If G has no sources nor

sinks, it seems reasonable that appending the vertex with the highest δ value to V0 would
lead to few edges going against the flow. I.e., doing so should not needlessly increase
the cardinality of the implied FS.

Based on these observations, a greedy strategy emerges. The FS builder starts by
defining two node lists. Then, as long as there are nodes in the graph, it puts all sinks
into nodes1 and all sources into nodes0, removing the processed nodes (and all incident
edges) as it goes along. At the end of each loop, if there are still nodes left, the node
with maximum δ value is appended to nodes0. When the graph is out of vertices, the
lists are concatenated, imposing a total order on the vertices. As shown, an implicit FS
attains.

Eades et al. [30] show that the size of the resulting FS is always less than
∣∣E∣∣/2 −

∣∣V∣∣/6.
Let Δ

(
G
)
be the maximum degree in a graph G. In directed graphs with Δ ≤ 3, the

FS cardinality will be at most 2/3
∣∣E∣∣. Furthermore, they show that their algorithm has

a performance bound of O
(
|E|

)
. In the author’s opinion, compared to other ways of

computing FSs [22, pp. 413–417], Eades et al.’s method seems to strike a superior
balance between speed and accuracy.

7.3 Node Layering

Some further definitions are necessary to explore this step. Let G be a DAG. To produce
a layering is to impose a hierarchy (as defined in Section 5.2) on G. A layering or ranking
L divides the nodes V into layers, which are subsets

{
L0, L1, . . . , Ln−1, Ln

}
where 1 ≤ n

[22, p. 417]. It does so such that if u ∈ Li and v ∈ Lj where
(
u, v

)
∈ E, then i < j. Layers

are also known as levels or ranks. Given a vertex u ∈ V layered in L, its layer number is
denoted l

(
u,L

)
. That is, u ∈ Li ⇔ l

(
u,L

)
= i. Denote e =

(
u, v

)
∈ E. The span or length

of e is s
(
e,L

)
= l

(
v,L

)
− l

(
u,L

)
. An edge e is associated with a minimum length, written

δ
(
e
)
= i where 0 < i [31]. The slack of an edge is defined as the difference between its

span and minimum length. If s
(
e,L

)
= δ

(
e
)
, the slack of e is zero, and we say that e is

tight. Non-tight edges are long. Lastly, a ranking L is feasible if ∀e ∈ E : s
(
e,L

)
≥ δ

(
e
)
,

and it is proper if ∀e ∈ E : s
(
e,L

)
= δ

(
e
)
.

As a note on long edges, the next steps in the layout algorithm, crossing minimisation
and edge straightening (reviewed in Section 7.4 and 7.5, respectively), assume that
all edges are tight. Therefore, long edges must be split up into a series of tight edges
by the insertion of dummy vertices. In the author’s implementation of the Sugiyama
framework, the actual splitting procedure happens as a pre-processing step during
crossing minimisation. Regardless, it is important to understand the idea now since
layering has a direct impact on edge lengths and, therefore, the number of dummy
nodes.

The problem of generating a ranking is called the layering problem or the layer
assignment problem [22, p. 417]. The optimal layering of vertices is one of the few
problems (in the context of this project) that can be feasibly solved with exact methods.

21

In this case, an optimal layering of nodes is one which introduces the fewest dummy
nodes. Granted, this view of optimality might lead to layouts that are unnecessarily wide,
but the resulting layouts are generally compact and readable [22, p. 427].

In this project, the author decided to implement Gansner et al.’s network simplex
algorithm [31]. Gansner et al. formulate the layering problem as the following integer
linear program6:

Minimise
∑

(u, v)∈ E

l
(
v,L

)
− l

(
u,L

)
subject to l

(
v,L

)
− l

(
u,L

)
≥ δ

(
u, v

)
, ∀

(
u,v

)
∈ E

l
(
u,L

)
≥ 0, ∀u ∈ V

all l
(
u,L

)
are integer.

They note that the constraint matrix is totally unimodular and that the program can
therefore be solved by applying the simplex method. Further, they state that: ‘Although
its time complexity has not been proven polynomial, in practice [our procedure] takes few
iterations and runs quickly’ [31, p. 217].

1 function layerNodes(graph: Graph) {
2 const conjunctNodes = mergeConjunctNodes(graph);
3 const metaWarrantNodes = mergeWarrantStructures(graph);
4 const treeAndRanks = getFeasibleTree(graph);
5 const tree = treeAndRanks.tree;
6 let ranks = treeAndRanks.ranks;
7 const edgeIterator = new NegativeCutValueEdgeIterator(tree);
8 let loopCount = 0;
9

10 while (edgeIterator.hasNext() && loopCount < graph.graph().maxrankingloops) {
11 loopCount++;
12
13 const treeEdge = edgeIterator.next()!;
14 const nontreeEdge = getNontreeMinSlackEdge(graph, tree, ranks, treeEdge);
15
16 if (!nontreeEdge) continue;
17
18 tree.removeEdge(treeEdge);
19 tree.setEdge(nontreeEdge, graph.edge(nontreeEdge));
20 ranks = updateTreeValues(graph, tree, ranks, nontreeEdge);
21 }
22
23 normalizeRanks(graph, ranks);
24 balanceLayering(graph, ranks);
25 splitWarrantStructures(graph, ranks, metaWarrantNodes);
26 splitConjunctNodes(graph, conjunctNodes, ranks);
27 setYCoordinates(graph, ranks);
28
29 return ranks;
30 }

Code Block 6: The network simplex implementation.

Code Block 6 is the author’s TS implementation of Gansner et al.’s network simplex
[31, Fig. 4], and Code Block 7 shows his TS implementation of their initial feasible tree
procedure [31, Fig. 5]. The general approach remains the same, and the changes that
were needed are only related to the special argument elements. Luckily, the original

6Integer linear programming might not be what can be regarded as common knowledge, but it is beyond the
scope of this article to explore. The interested reader is referred to [32].

22

network simplex algorithm did not need much editing to support argument diagrams.
As is about to be explained, only minor pre- and post-processing was needed to make
it work for this use case. Firstly, the core of the algorithm will be detailed; then an
explanation of the processing will follow.

1 function getFeasibleTree(graph: Graph) {
2 const ranks = setRanks(graph);
3 const tree = getTightTree(graph, ranks);
4
5 if (graph.edgeCount() === 0) return { tree, ranks };
6
7 while (tree.nodeCount() < graph.nodeCount()) {
8 const { minSlack, minSlackEdge } = getMinSlack(graph, tree, ranks);
9 const { v, w } = minSlackEdge;

10 let rankDelta: number;
11 let newNode: NodeId;
12
13 if (tree.hasNode(v)) {
14 rankDelta = minSlack;
15 newNode = w;
16 } else {
17 rankDelta = -minSlack;
18 newNode = v;
19 }
20
21 tree.setNode(newNode, graph.node(newNode));
22 tree.setEdge(minSlackEdge, graph.edge(minSlackEdge));
23
24 for (const node of tree.nodes()) {
25 if (node === newNode) continue;
26 const newRank = ranks.getRank(node)! + rankDelta;
27 ranks.set(node, newRank);
28 }
29 }
30
31 setCutValues(graph, tree);
32
33 return { tree, ranks };
34 }

Code Block 7: The feasible tree builder.

In Code Block 6, line 4 is the start of the main part of the layering algorithm. The
function it calls, getFeasibleTree(), will be explained afterwards. For now, consider
that it somehow generates a feasible tree. In lines 5 and 6, the return value of
getFeasibleTree() is destructured into the tree structure itself and a rank table. Line
7 hands the tree to a constructor to get an edge iterator. The iterator provides a tree
edge that has a negative cut value if such an edge exists. It is designed to cyclically
search through the edges of the tree since Gansner et al. claim that doing so can save
many iterations [31, p. 220]. Now, a loop count is instantiated, and the optimisation loop
starts. If there are no tree edges with negative cut values, or if the maximum number
of allowed iterations is reached, the loop terminates. The while loop iteratively improves
the layering by strategically replacing tree edges with non-tree edges and updating node
ranks. In line 13, a negative tree edge is found. In line 14, a non-tree edge suitable to
replace the tree edge and with as little slack as possible is found. A non-tree edge is
suitable if it connects the tail and head components of the tree edge. If no such edge is
found, line 16 skips to the next iteration. In lines 18–20, the tree edge is cut, the non-
tree edge replaces it and the ranks of affected nodes (along with some additional data
that helps make the procedure more efficient) are updated. After the loop terminates, the
ranks are normalised. That is, all rank numbers are adjusted so that the smallest rank

23

number is 0. Line 24 marks the end of the main part of the algorithm. Here, the layering
is balanced. This is done by moving nodes with d+ = d− and several feasible ranks to the
feasible layer with the fewest nodes.

The construction of an initial feasible tree happens in Code Block 7. This is an important
procedure since it is often the biggest timesink during layering, and the initial solution
tends to be close to optimal [31, p. 219]. In line 2, an initial ranking is computed. This is
done by first assigning all sources to layer 0 and then iteratively assigning nodes whose
parents have been ranked to the layer imposed by their parents. I.e., for each node u
with only ranked parents Vu, assign u to layer number max

(
{l (v,L) + δ (v, u) |v ∈ Vu}

)
. A

tight tree is produced in line 3 by picking an arbitrary node as the root node and adding
all nodes that are reachable via tight edges to the tree. Line 5 merely handles graphs
without edges. A loop aimed at adding all graph nodes to the previously constructed
tree starts in line 7. Line 8 finds an edge that is incident to the tree and has the smallest
amount of slack. Lines 21 and 22 add the edge and the incident node to the tree.
Intuitively, when the goal is to minimise dummy nodes (and, therefore, also slack) this
seems like a good way to grow the tree. The logic in lines 9–19 simply checks whether
the new node is the tail or head of the incident edge and sets the appropriate sign for the
slack. In lines 24–28, all tree nodes have their rank updated so that the incident edge is
made tight. Lastly, after all graph nodes are part of the tree, all tree edges are assigned
cut values in line 31.

(a) A graph G with a conjunct argument. (b) G after merging the conjunction.

Figure 13: How conjunctions are handled during layering.

Lines 2 and 3 from Code Block 6 contain the added pre-processing for conjunctions and
warrants. In this case, conjunctions are simple to handle. All sub-nodes of a conjunct
node are merely merged into one meta node. To be clear, any edges incident to sub-
nodes are made to be incident to the meta node, and the conjoined edge is also made to
be incident to it. The idea is illustrated in Figure 13. Warrant structures are a bit trickier.
Not only is the source of a warrant edge positioned on a half layer (which violates the
constraints of the integer linear program), but the targeted edge should also preferably
not be long. This is solved by a trick similar to the one used on conjunctions. The
warrant source, its edge, the target edge and the incident nodes are all merged into one
meta node. Again, any edges incident to sub-nodes will be made to be incident to the
meta node. Furthermore, any edges going from the warrant source or the head node

24

of the targeted edge are assigned a minimum length δ of 2. This process is illustrated
in Figure 14, and the red edges in Figure 14b are the ones with δ = 2. After the
pre-processing, the layering algorithm can run its course without any further special
considerations.

(a) A graph G with a warrant argument. (b) G after merging the warrant structure.

Figure 14: How warrants are handled during layering.

The post-processing is done in lines 25–27 of Code Block 6. Line 25 restores warrant
structures to their original shape. Let u be the tail node of the targeted edge, v the head
node of the targeted edge and w the warrant source. Clearly, u can be assigned to the
same layer as the meta node. Note how having set δ = 2 for the out-edges of v and w
now provides an easy way of incorporating them into the layering. The ranking process
has been completed by this point, so all other nodes have optimal ranks. But children of
v and w have been layered exactly one layer further down than they would have been
if δ remained 1. Hence, v and w can be placed on layer l

(
u,L

)
+ 1 and l

(
u,L

)
+ 0.5,

respectively. In line 26, meta conjunction nodes are split up again. All sub-nodes are
simply assigned the same rank number as the meta nodes. Finally, line 27 assigns y-
coordinates to all nodes. It gets the rank separation Δy (the ranksep property of the
graph) and for all nodes u ∈ V, it assigns u to y-coordinate l

(
u,L

)
· Δy.

7.4 Crossing Minimisation

The crossing minimisation step is also known as the vertex ordering step [22, p. 432].
This is because crossing minimisation is achieved through the reordering of nodes within
layers. There are primarily three ways of approaching crossing minimisation: one-sided
optimisation, multi-layer optimisation and planarization [22, pp. 434–441]. Based on the
research of the preparatory project [4, pp. 19–20], considering the issue as a series of
one-sided optimisation problems seemed to be the way to go. It has been proven that
globally minimising edge crossings is NP-hard [33]. Sadly, reducing the problem to a
one-sided one does not change this result [34]. Once again, good heuristics are needed.

In this step, it is assumed that the input graph G is properly layered. Remember from the
definition in Section 7.3 that a layering L is proper if all edges are tight. Consider a pair
of layers, Li−1 and Li for some 0 < i <

∣∣L∣∣. For now, let E be the set of edges between

25

Li−1 and Li. That is, E =
{
(u, v) | u ∈ Li−1 ∧ v ∈ Li

}
. A permutation πj of a layer Lj is an

ordering of the vertices in Lj. Let the nodes in Li−1 have some order along a horizontal
line. Likewise, let the nodes in Li be ordered along a parallel horizontal line. The crossing
count C

(
G, πi−1, πi

)
is the number of crossings among the edges in E. It is trivial to

see that C is only dependent on the ordering of nodes, not their specific x-coordinates.
Hence, the goal of this step is to generate the set of permutations Π =

{
πj |0 ≤ j < |L|

}
that minimises C

(
G, πn−1, πn

)
for all 0 < n <

∣∣L∣∣. In one-sided approaches, this goal
is achieved by pairwise considering adjacent layers and producing one permutation at a
time. I.e., in each sub-problem, one layer is fixed and the other is permutated to reduce
the number of edge crossings.

In the same paper [27] where Sugiyama et al. introduced the Sugiyama Framework,
they propose the so-called Barycenter Heuristic for one-sided crossing minimisation.
Despite its simplicity, it is one of the two most popular vertex ordering methods, and
its popularity is warranted — not only is it fast, but it also produces excellent results
[35, pp. 5–11]. Additionally, it will always find an ordering with no crossings if such an
ordering exists. Because of these reasons, the author wanted to implement a version of
the Barycenter Heuristic in this project.

1 function minimiseCrossings(graph: Graph, ranks: RankTable) {
2 const constraintGraph = preprocessDataStructures(graph, ranks);
3 const graphMatrix = readRankTable(ranks);
4
5 sortLayers(graph, constraintGraph, graphMatrix, true);
6
7 let orderHasChanged = true;
8 let loopCount = 1;
9

10 while (orderHasChanged && loopCount < graph.graph().maxcrossingloops) {
11 orderHasChanged = sortLayers(graph, constraintGraph, graphMatrix);
12 loopCount++;
13 }
14
15 return graphMatrix;
16 }

Code Block 8: The crossing minimisation function.

The main logic of the crossing minimisation procedure is shown in Code Block 8. Line 2
does some pre-processing that will be explained later. Line 3 converts the rank table to
a two-dimensional array, which is better suited for tracking and changing the positions
of nodes. After setting a boolean tracking whether any reordering has happened and
instantiating a loop count, a while loop starts. For each iteration, it calls a barycentric
sorting function and increments the loop count. The idea is that the total number
of edge crossings should be reduced iteratively. If the maximum number of allowed
iterations is reached or the sorting function makes no changes (meaning that the iterative
improvements have flattened out), the loop is broken, and the final node ordering is
returned. One might notice that the sorting function is called once in line 5 before the
first iteration. The reason is that calling sortLayers() with true as its third argument
ensures that any constraints are respected. This will be further explained in the following.

Code Block 9 displays the definition of sortLayers(). All this function does is sweep
all layers, once from the top and once from the bottom, by calling the sweep layer
function. It is sweepLayer() that implements a barycentric ordering algorithm. It will
be explained next. The layer sorting function provides sweepLayer() with two layers at

26

a time. Remember that the Barycenter Heuristic is a one-sided optimisation approach.
Thus, the previous layer in the iteration will be viewed as fixed, and only the current layer
in the iteration will be mutated. Since the first iteration in lines 6–17 gets the previous
layer by decrementing the current index, it starts at 1 instead of 0. Obviously, layer 0
has no layer previous to it. Lines 19–30 follow the same principle, but because it iterates
the other way, it increments the current index to get the previous layer. Therefore, it
starts at the final layer index minus one.

1 function sortLayers(
2 graph: Graph,
3 constraintGraph: Graph,
4 graphMatrix: NodeId[][]
5) {
6 for (let layerIndex = 1; layerIndex < graphMatrix.length; layerIndex++) {
7 const previousLayer = graphMatrix[layerIndex - 1];
8 const layer = graphMatrix[layerIndex];
9

10 graphMatrix[layerIndex] = sweepLayer(
11 graph,
12 constraintGraph,
13 previousLayer,
14 layer,
15 "down"
16);
17 }
18
19 for (let layerIndex = graphMatrix.length - 2; layerIndex >= 0; layerIndex--) {
20 const layer = graphMatrix[layerIndex];
21 const nextLayer = graphMatrix[layerIndex + 1];
22
23 graphMatrix[layerIndex] = sweepLayer(
24 graph,
25 constraintGraph,
26 layer,
27 nextLayer,
28 "up"
29);
30 }
31 }

Code Block 9: The layer sorting function.

Much of the interesting work happens in the sweep layer function. Unfortunately, even
without including the definitions of sub-procedures, the function consists of almost 130
lines, so sweepLayer() will not have its code block included here. As always, the reader
can see the full function definition in the project repository [6].

The Barycenter Heuristic of Sugiyama et al. [27] is designed around conventional and
unconstrained discrete graphs. Therefore, the author based his implementation on
Forster’s constrained version of the Barycenter Heuristic [36]. It lent itself better for
drawing argument maps. Here, a constraint is a limitation on how a pair of nodes, u
and v, can be placed in relation to each other. In general, a constraint states that either
u ≺ v or v ≺ u must hold in the linear order imposed by the ordering of nodes within
a layer. Consider an arbitrary layer Li, and let u, v ∈ Li. Constraints are represented
by a constraint graph GC =

(
Li, C

)
where C ⊆ Li × Li is a set of constraint edges. A

constraint edge
(
u, v

)
∈ C imposes u ≺ v. Hence, an ordered layer will fulfil its constraints

only if all edges in its constraint graph go to the right. Figure 15 displays a pair of
layers with two different permutations of the lower layer. The bold edge represents a
constraint. In Figure 15a, a constraint is violated, visible by its edge going to the left.
The permutation in Figure 15b, however, does not violate the constraint. Note how the

27

problem of producing an ordering such that no constraints are violated only has a solution
if the constraint graph is acyclic.

(a) Two layers with a violated constraint. (b) Two layers with no violated constraints.

Figure 15: How constraints work.

Source: Based on [36, Fig. 1] .

Now on to describing how sweepLayer() works. The underlying idea is the same as in the
original Barycenter Heuristic [27]:

• Consider two and two layers at a time.

• Let one of the layers be fixed and the other one mutable.

• For each node in the mutable layer…

– Find all neighbours of the node in the fixed layer.

– Calculate the average neighbour index, the barycenter of the node.

• Sort the nodes of the mutable layer based on their barycenters.

• (Prioritise letting nodes keep their original positions if…)

– (Any two nodes have equal barycenters.)

– (Or any node has no parents and, thus, an undefined barycenter.)

• If the resulting permutation reduces the number of crossings…

– Let it be the new order of the mutable layer.

– Else, discard the results.

However, there is also the issue of respecting constraints. The sweep layer function is
a nigh unmodified TS implementation of Forster’s CONSTRAINED-CROSSING-REDUCTION
procedure [36, Algorithm 1]. This procedure handles constraints by partitioning nodes
into node lists that, initially, only contain themselves, and then concatenating them
according to violated constraints. Doing this does not allow any nodes to be placed
between any constrained pair of nodes. Forster argues that, although not generally
optimal, doing this does not reduce result quality [36, p. 209]. The algorithm assigns
all nodes in the mutable layer a barycenter per the normal approach and creates a list

28

for each node. It then searches for a constraint that would be violated by the ordering
implied by the barycenters. If such a constraint is found, the nodes incident to the
constraint edge is merged by concatenating their node lists. This way, their position
relative to each other is conserved. The new node resulting from the concatenation is
assigned a barycenter by considering the neighbours of all sub-nodes. The search for
violated constraints continues until none is found. Finally, the nodes implied by the node
lists are sorted based on their barycenters.

(a) A pre-merging constraint graph GC.

(b) GC after merging a and c first. (c) GC after merging a and b first.

Figure 16: How bad merging order may halt progress.

Source: Based on [36, Fig. 4] .

(a) A graph G with a warrant. (b) G after pre-processing.

Figure 17: How warrants are handled before crossing minimisation.

Picking a violated constraint to handle is non-trivial. Haphazard choices may introduce
cycles to the constraint graph. As stated earlier, a constrained crossing minimisation
problem with a cyclic constraint graph has no solution. In Figure 16, an example is
shown. Here, the nodes a, b and c are to be merged. If c2 is found first, a is merged

29

with c, and a cycle is introduced to the constraint graph. This is shown in Figure 16b. On
the other hand, if c0 is found first, the result in Figure 16c attains, and progress remains
unhindered. Because of these nuances, sweepLayer() uses a more or less unchanged TS
implementation of Forster’s FIND-VIOLATED-CONSTRAINT procedure [36, Algorithm 2].
It is a modified topological sorting algorithm (see, e.g., [37, p. 573] for a review of
topological sorting), and it considers constraints in a lexicographic order based on the
topological sorting numbers of head and tail nodes in ascending and descending order,
respectively [36, pp. 210–211].

Obviously, the described algorithm adds a fair bit of complexity on top of the method
described by Sugiyama et al [27]. The Barycenter Heuristic simply calculates a set of
averages and sorts a layer. Consider two adjacent layers. Let V denote the nodes of
the mutable layer, and allow E to be the edges between the layers. To calculate the
barycenters, every node in V and the neighbours of each is considered once. Hence, it
takes O

(
|V | + |E|

)
time to find the barycenters. Afterwards, the nodes in V can be sorted

in O
(
|V | log|V |

)
time [37, p. 207]. The total running time of the Barycenter Heuristic is

therefore O
(
|V | + |E| + |V | log |V |

)
per sweep. Have C denote constraints. Forster shows

that finding an appropriate constraint takes O
(
|C|

)
time [36, p. 212]. He then goes on to

prove that the running time of his modified barycenter algorithm is O
(
|C|2+ |E|+ |V | log |V|

)
[36, pp. 212–213]. This is notably worse than the bare Barycenter Heuristic, but the
added functionality is clearly necessary for this project.

(a) A graph G with a conjunction. (b) G after pre-processing.

Figure 18: How conjunctions are handled before crossing minimisation.

Returning to the pre-processing in line 2 of Code Block 8 will elucidate how warrants and
conjunctions are translated into constraints. Three things happen in this line: Warrant
structures are handled, conjunct nodes are handled and long edges are split into series
of dummy vertices and edges. The idea underlying edge splitting was reviewed in
Section 7.3. As a reminder, long edges are split into a series of tight edges to ensure that
the layering L is proper. Warrants are handled by the introduction of two dummy nodes,
an edge and two constraints. The concept is shown in Figure 17. The warrant source and
edge are temporarily removed. Two dummy nodes are added. Let v0 be the tail node of
the targeted edge and v1 be the head node. Denote the warrant source as v2. Since the
warrant source v2 is layered by now, one dummy node v3 can be placed at layer number
l
(
v2,L

)
− 0.5 and the other one v4 at l

(
v2,L

)
+ 0.5. A dummy edge

(
v3, v4

)
is added. Then,

the constraints
(
v0, v3

)
and

(
v1, v4

)
are added. This ensures that warrant structures

remain clustered correctly. Note that any edges of v2 will be rerouted so that all incoming
edges

(
u, v2

)
become inedges of v3, and any outgoing edges

(
v2, w

)
become outedges of

v4. Conjunctions are handled by introducing two dummy nodes to act as delimiters to the
rest of the layer. Moreover, the conjoined edge is split into a series of simple edges going

30

from each sub-node to the target node. This is illustrated in Figure 18. Consider a set of
conjunction sub-nodes P with a conjoined edge to a target node w. The conjoined edge
is temporarily replaced by the set of edges

{
(p, w) | p ∈ P

}
. Two dummy nodes, u and v,

are introduced as delimiters. All sub-nodes are constrained to keep to the right of u and
to the left of v. This is sufficient handling for conjunct structures.

7.4.1 Crossing Counting

Another non-trivial procedure that is implicitly part of crossing minimisation is crossing
counting. Before a permutation is accepted as the new order, the algorithm must assert
that it results in fewer crossings than the old order. Thus, an efficient way of counting
the number of edge crossings is needed. The naive approach would be to iterate over
all edges and for each edge, count the number of crossing edges [22], [38]. Whether
a pair of edges cross or not can be checked by comparing the relative ordering of their
end nodes. The naive algorithm runs in O

(
|E|2

)
time. Since the number of crossings in

a graph is Θ
(
|E|2

)
, this running time is optimal. I.e., there cannot be a more efficient

algorithm if reporting the actual crossings is a requirement. However, only the count is
of interest in this context. It is therefore possible to do better.

Based on the preliminary research [4], Barth et al.’s counting algorithm [38] seemed
to be the best easily implemented fast method. Consider a pair of layers. Let E be the
set of edges between them, and have Vsmall be the nodes of the smallest of the two
layers. The impressive running time of Barth et al.’s algorithm can then be expressed
as O

(
|E| log |Vsmall|

)
. The author’s TS implementation of this algorithm [38, Fig. 5] is

contained in Code Block 10.

Because of the mathematical nature of the counting algorithm, it seems more useful to
explain the underlying idea than to review the code step-by-step. Nevertheless, some
code ought to be directly commented on. In Code Block 10, lines 6–15 were added to
handle varying sizes of the input layers. The reasoning behind this stems from the fact
that Barth et al. [38] assumed that the north layer would be bigger than the south layer.
Such an assumption is a luxury the author could not afford. Furthermore, lines 26–31 get
the edges between the layers in a seemingly over-complicated way. Doing it this way is
in fact necessary to have the edges be appropriately ordered. Why the ordering is crucial
will be explained shortly.

First, a couple of additional definitions are in order. An inversion is a pair of elements
that is unordered [38]. Specifically, in a sequence π of pairwise comparable elements,
a pair (a, b) where a, b ∈ π is called an inversion if a ≺ b in π but a > b. The number
of inversions in a given sequence is called the inversion number. Consider a graph G
with two adjacent layers, Li−1 and Li, each with an associated permutation, πi−1 and
πi, and the edges between them E. In the graph drawing being produced, the lower-
indexed layer Li−1 will have its nodes spread on a horizontal line above the horizontal line
containing the nodes in Li. Therefore, when considering any pair of neighbouring layers,
the lower-indexed one is called the nothern layer, and the higher-indexed one is named
the southern layer. Write out πi−1 = n0, n1, . . . , nk−1, nk and πi = s0, s1, . . . , sl−1, sl. Let
πE = e0, e1, . . . , em−1, em be an ordering of E, and have it be lexicographically sorted such
that

(
no, sp

)
≺

(
nq, sr

)
only if either o < q or o = q ∧ p < r. E.g., for Figure 15a, πE would

be
(
a, e

)
,
(
b, d

)
,
(
b, f

)
,
(
c, e

)
,
(
c, f

)
. Allow πS to be a sequence of indices to nodes in the

southern permutation πi such that each entry is the index of the end node of each edge in
πE. Once again using Figure 15a to provide an example, πS would be 1, 0, 2, 1, 2. Notice

31

how every inversion in πS corresponds to an edge crossing among the edges of E. Hence,
the inversion number of πS equals C

(
G, πi−1, πi

)
.

1 function countCrossings(
2 graph: Graph,
3 northLayer: NodeId[],
4 southLayer: NodeId[]
5) {
6 let layer0: NodeId[];
7 let layer1: NodeId[];
8
9 if (northLayer.length >= southLayer.length) {

10 layer0 = northLayer;
11 layer1 = southLayer;
12 } else {
13 layer0 = southLayer;
14 layer1 = northLayer;
15 }
16
17 let firstindex = 1;
18
19 while (firstindex < layer1.length) firstindex *= 2;
20
21 const treesize = 2 * firstindex - 1;
22 firstindex -= 1;
23 const tree = new Array(treesize).fill(0);
24 let crosscount = 0;
25
26 const edges = layer0.reduce<Edge[]>((accumulator, node0) => {
27 layer1.forEach((node1) => {
28 if (graph.hasEdge(node0, node1) || graph.hasEdge(node1, node0)) {
29 accumulator.push({ v: node0, w: node1 });
30 }
31 });
32
33 return accumulator;
34 }, []);
35
36 edges.forEach((edge) => {
37 const head = edge.w;
38 const headIndex = layer1.indexOf(head);
39 let index = headIndex + firstindex;
40 tree[index]++;
41
42 while (index > 0) {
43 if (index % 2) crosscount += tree[index + 1];
44 index = Math.floor((index - 1) / 2);
45 tree[index]++;
46 }
47 });
48
49 return crosscount;
50 }

Code Block 10: The crossing counting procedure.

Based on these observations, Barth et al. [38] propose leveraging insertion sort (a well-
known algorithm, see [37, pp. 17–19]) as a possible method of calculating the crossing
count. πE can be lexicographically sorted according to πi−1 and πi by radix sort (another
widely known algorithm, see [37, pp. 211–214]). From there, πS attains as explained
above. While running an insertion sort function, one can track the number of positions
each element moves forward, and the sum of these will be the crossing count. Without
any modifications, such a procedure would yield a performance of O

(
|E|2

)
, no better

than the naive method. However, Barth et al. also suggest using Waddle and Malhotra’s
accumulator tree [39] to improve the running time to O

(
|E| log |Vsmall|

)
.

32

Let c be a natural number such that 2c−1 <
∣∣Li∣∣ ≤ 2c, and have T be a balanced binary

tree with 2c leaves [38]. In Code Block 10, T is represented as an array of size 2c+1 − 1.
The tree root is in position 0. A node in position i has its parent in position

⌊
(i − 1)/2

⌋
.

Thus, left children are at odd indices, and right children are at even indices. Initially, all
entries are 0. Every southern vertice s ∈ πi corresponds to a leaf. The crossing count
is initialised to 0. While traversing πS, the algorithm stores the accumulated number of
times the index of a southern vertice was encountered in its leaf node. Internal nodes
contain the sum of the entries in their children. For each entry in πS, the leaf of the
indexed southern vertice has its value incremented. Then, all predecessors of the leaf
also have their entry incremented by the algorithm working its way up the tree to the
root. During this process, if a left child is visited, the value of its right sibling is added
to the crossing count. After πS is traversed, the crossing count will be correct. Using this
method, a running time of O

(
|E| log |Vsmall|

)
is achieved.

7.5 Edge Straightening

After having layered the graph and permutated the layers, the next step is to assign
explicit x-coordinates to each node. It appears that most coordinate assignment methods
build on the assumption that straight edges are preferable [22, pp. 441–443]. This is
probably not a bad supposition, and there is some evidence that we have a perceptual
preference for straight edges [40]. Because it entails assigning coordinates so that edges
are straightened, this step is known both as the edge straightening step and as the x-
coordinate assignment step [22, p. 441]. Favouring straight edges during the coordinate
assignment is likely to increase the width of the graph drawing. This is unfortunate
since compact drawings are preferred (this follows from the criterion of short edges in
Section 5.2). Nonetheless, the trade-off is viewed as agreeable.

It is particularly desirable for long edges to be straight [22, p 441]. Recall that any
long edges have been partitioned into dummy vertices and edges. Hence, given a set
of dummy vertices

{
v0, v1, . . . , vn−1, vn

}
, a long edge

(
u, w

)
will have become the path(

u, v0
)
,
(
v0, v1

)
, . . . ,

(
vn−1, vn

)
,
(
vn, w

)
. It seems sensible that at least the sub-path(

v0, v1
)
, . . . ,

(
vn−1, vn

)
can be drawn as a perfectly vertical line, and any necessary bends

can appear at
(
u, v0

)
or

(
vn, w

)
. In fact, most edge straightening algorithms prioritise

this.

As with the other steps of the Sugiyama framework, coordinate assignment too has many
different approaches [22, pp. 441–443]. But a particular algorithm has ended up being
regarded as ‘the algorithm of choice’ for this case. Brandes and Köpf’s algorithm for
horizontal coordinate assignment [41] is preferred because of its linear running time of
O
(
|V | + |E|

)
, good result quality and ease of implementation. The author saw little reason

not to implement this acclaimed method.

The main loop of the author’s coordinate assignment algorithm is shown in Code
Block 11. As just alluded to, it is basically a TS implementation of Brandes and Köpf’s
main algorithm [41, Alg. 4]. The overall idea is to generate four extreme layouts that
are skewed top-left, bottom-left, top-right and bottom-right. Then, combine the results
to get a balanced final layout. Note that it is presupposed that edge crossings have been
minimised before this algorithm is run. Lines 4, 18, 19, 27 and 28 are directly related to
the algorithm as described by Brandes and Köpf. The functions alignVertically() and
compactHorizontally() contain the meat of the functionality, but markConflicts() is
also important. For the sake of clarity, the overall approach will be described first. Then,

33

the three mentioned functions will be explored in more detail.

1 straightenEdges(graph: Graph, graphMatrix: NodeId[][]) {
2 restoreConjunctNodes(graph, graphMatrix);
3 const conjunctNodes = mergeConjunctNodes(graph);
4 markConflicts(graph, graphMatrix);
5
6 const biasedGraphs: BiasedGraphTuple = [
7 buildSimpleGraph(graph, REQUIRED_PROPERTIES),
8 buildSimpleGraph(graph, REQUIRED_PROPERTIES),
9 buildSimpleGraph(graph, REQUIRED_PROPERTIES),

10 buildSimpleGraph(graph, REQUIRED_PROPERTIES),
11];
12
13 biasedGraphs.forEach((biasedGraph, graphIndex) => {
14 const horizontalDirection = ITERATION_ORDERS[graphIndex].split(" ")[0] as
15 | "right"
16 | "left";
17
18 alignVertically(biasedGraph, graphMatrix, ITERATION_ORDERS[graphIndex]);
19 compactHorizontally(
20 biasedGraph,
21 graphMatrix,
22 horizontalDirection,
23 graph.graph().nodesep
24);
25 });
26
27 alignToMinWidthGraph(biasedGraphs);
28 balanceAndAssignValues(graph, biasedGraphs, conjunctNodes);
29 }

Code Block 11: The coordinate assignment algorithm.

Remember from Section 5.2 that short edges are preferable. Sugiyama et al. [27]
propose a mathematical programming solution that seeks to minimise total edge length
among other things. Let x

(
u
)
be the x-coordinate of some node u. Since y-values are

already fixed (from the layering process), only x-coordinates matter. Sugiyama et al. use
Σ(u, v)∈ E

(
x (u) − x (v)

)2 to describe the total edge length. Gansner et al. [31], however,
simplify the issue by using

∣∣x (u) − x (v)
∣∣ as a surrogate for edge length. In the same

vein, Brandes and Köpf [41] base themselves on the
∣∣x (u) − x (v)

∣∣ expression. Clearly,
any solution that minimises

∣∣x (u) − x (v)
∣∣ also minimises

(
x (u) − x (v)

)2. Notice how for
any set of real numbers X =

{
x0, x1, . . . , xn−1, xn

}
, Σn

i=0

∣∣x − xi
∣∣ is minimised when x is

equal to the median of X. Therefore, Brandes and Köpf’s algorithm focuses on aligning
nodes with their median neighbour. For instance, if a node u has three neighbours — v0,
v1 and v2 — that are ordered v0 ≺ v1 ≺ v2 in their layer, u should be aligned with v1.
A more interesting case arises when the number of neighbours is even. Say, if a node u
has two neighbours, v0 and v1, u must be aligned with either v0 or v1. In Brandes and
Köpf’s algorithm, the viable neighbour first encountered is chosen. Another point is that
either upper neighbours or lower neighbours must be considered first. Thus, the results
of an alignment process will depend on the iteration order. Either the neighbours above
or the ones below any given node must be considered first, and among the neighbours,
either the left or the right neighbour must be prioritised. This is why there are four
layouts with different biases, and these must be combined to produce the final layout.
Luckily, combining the four layouts are comparatively simple. Consider a sequence of
real numbers x0, x1, . . . , xn−1, xn in increasing order. The average median is defined as(
x⌊n/2⌋ + x⌈n/2⌉

)
/2. Brandes and Köpf [41, p. 40] show that for every node, combining

the four calculated x-coordinates using the average median is order- and separation-
conserving, and leads to balanced layouts of high quality.

34

Refer to Code Block 11. First to address the pre-processing in lines 2–4. In line 2,
the processing of conjunct nodes from the crossing minimisation step is undone.
Delimiter nodes and temporary edges are deleted, and conjoined edges are readded. In
addition, the width of all conjunctions is calculated. In line 3, the same trick employed
during layering is used. Conjunctions are once again merged into a single node
incident to all edges that were incident to the conjunction sub-nodes. This is done
to make the alignment of conjunctions and their target easier. Line 4 does the pre-
processing described by Brandes and Köpf [41]. It will be discussed afterwards. In
lines 6–11, four copies of the input graph are made to track the four different layouts.
buildSimpleGraph() is intended for fast copying of nodes and edges while ignoring
associated data. In this case, there are a couple of properties the algorithm presupposes.
Therefore, these properties are listed in the constant REQUIRED_PROPERTIES and passed
as a second argument, instructing the function not to ignore them. In lines 13–25
each of the four constructed graphs is assigned x-coordinates. A list of four iteration
directions is stored in ITERATION_ORDERS: right and down, right and up, left and down,
and left and up. Traversing nodes in this fashion is what skews the layouts. Lines 14–
16 simply get the horizontal direction of the current iteration order. This is because
compactHorizontally() only takes the horizontal iteration order as an argument. On the
other hand, alignVertically() takes both iteration directions. alignVertically() and
compactHorizontally() will be detailed in a bit. Lines 27 and 28 implement the post-
processing as described by Brandes and Köpf. Line 27 identifies which of the four layouts
has the smallest width. It then aligns the left-skewed graphs such that their minimum
x-coordinate coincides with the minimum x-coordinate of the smallest width graph.
Likewise, the right-skewed graphs are adjusted to make their maximum x-coordinate
coincide with the maximum x-coordinate of the smallest width graph. Then, line 28
combines the four layouts to attain the final one.

As a short preamble to the following explanations: Although Brandes and Köpf’s [41]
blocks of pseudocode are relatively compact, the author’s implementations of their
procedures are fairly lengthy. For brevity, they will not be included in this thesis.
However, they will be duly described. Moreover, both the referenced code blocks of
Brandes and Köpf and the full implementation in the project repository [6] should provide
the interested reader with the specifics.

The pre-processing function markConflicts() is a modified version of Brandes and Köpf’s
pre-processing procedure [41, Alg. 1]. It is meant to flag edges that are conflicted so
that they may be resolved in a predictable and productive way. Recall that long edges
have been subdivided. An inner segment is an edge going between two dummy nodes.
That is, it is part of a sub-path that ought to be straight in the final drawing. A non-inner
segment (i.e., an ordinary edge between two nodes) crossing an inner segment is what
Brandes and Köpf call a type 1 conflict. The original algorithm of Brandes and Köpf only
flags type 1 conflicts. This is to ensure that they are resolved in favour of straight inner
segments. The author has modified this pre-processing procedure to also flag conflicts
related to warrants and conjunctions. For warrants, keeping the target edge straight is
essential for aesthetic reasons. Consider an edge

(
u, v

)
targeted by a warrant. Marking

any out-edges of u other than
(
u, v

)
as conflicted, guarantees that u will be aligned with

v, which in turn ensures that Γ
(
u, v

)
will be vertical. Remember that conjunctions have

once again been merged into meta nodes. It is desirable to keep the conjoined edge
straight. To achieve this, the trick just described is put to use again. Contemplate a
conjunction ς in which its premise nodes P have been merged into a single meta node
p, and let c denote its conclusion (target) node. Marking any out-edges of p other than

35

the conjoined edge
(
p, c

)
as conflicted ensures that the final line segment of Γ

(
p, c

)
(the

curve said to go from A to c in the main problem formulation of Section 7.1) is vertical.

alignVertically() is based on Brandes and Köpf’s vertical alignment procedure [41,
Alg. 2]. Prior to any iterations, each node is assigned a root node and a next node
property, and both of these are set to be the node itself. This allows the algorithm to
view each node as a linked list (a known data structure, see [37, pp. 258–259]) that
initially contains one element. The idea is that the linked lists can represent vertical
sequences of aligned nodes. Now all layers are iterated through once. Depending on
the specified iteration direction, layers will be considered top-down or down-up, and the
nodes within layers will be considered either left-right or right-left. For each node, its
median neighbour is found. If the iteration direction is downwards, upper neighbours are
considered. Elsewise, lower neighbours are considered. In the case of an even number
of neighbours, two candidates for median neighbour arise. If the direction iterated
is rightwards, the left candidate will be considered first, while the right candidate is
considered first if the iteration direction is leftwards. An identified median neighbour v0
will be aligned with the current node v1 only if the edge

(
v0, v1

)
is non-conflicted and

the alignment is possible. That is, v0 cannot already have been aligned with some other
node. Nor can a node v2 in the neighbour layer (the layer of v0) have been previously
aligned with a node v3 in the current layer (the layer of v1) such that v0 ≺ v2 and v1 ≻ v3.
If a node does not have neighbours or it cannot be aligned with its median neighbour(s),
the node remains unaligned. The final result of alignVertically() is a biased alignment
of the nodes. In the example illustrated in Figure 19, the produced links between nodes
are shown as thin edges.

Figure 19: An illustration of how Brandes and Köpf’s algorithm works.

Source: Based on [42, Fig. 1] .

The horizontal compaction procedure of Brandes and Köpf [41, Alg. 3] is implemented
in the author’s compactHorizontally(). Based on the alignment generated by
alignVertically(), it assigns x-coordinates to the nodes. It is imperative to understand
a few key points before moving on. View Figure 19. The blue rectangles are blocks,

36

which contain all nodes within a linked list (and, hence, a set of aligned nodes). A block
graph is created by introducing directed edges from every node to the node preceding it
within its layer (if any). These newly introduced edges are represented by the bold edges
of Figure 19. With basis in the constructed block graph, the blocks can be subdivided
into classes, which are displayed in green. A class is defined by the topmost reachable
root of the block graph. Coordinates can now be easily determined within the classes.
Amusingly, a layering method is applied here as a sub-algorithm: The Longest Path
Algorithm [22, pp. 420–421]. This is not as computationally expensive as one might
intuitively suspect. The Longest Path Algorithm is a simple process that has linear
running time [43]. It works by recursively determining the coordinates of each block
relative to the defining sink of its class. It starts at the defining sink, then works its way
rightwards. Let β be the block with the currently highest relative coordinate within a
class. Have x

(
β
)
denote its relative x-coordinate. The next block is assigned a relative x-

coordinate of x
(
β
)
+ Δx, where Δx is the minimum seperation (i.e., the value of nodesep).

This process should feel familiar since it is, in fact, the same principle applied to produce
an initial ranking in Section 7.3.

With these explanations out of the way, compactHorizontally() can be reviewed. It
performs three sequential iterations over all nodes. In the first one, it assigns each node
a classSink property that is initialised to be the node itself and an xShift property
that is initialised to an infinite value. In the second iteration, it looks for nodes that are
sinks defining a class in the block graph and runs the longest path algorithm. I.e., for
each defining sink, the class it defines have its blocks assigned relative coordinates. The
relative coordinate of a block is stored in each of its nodes — specifically, in the xShift
property. In the third and final iteration, all nodes are assigned absolute x-coordinates.
Each class is placed with minimum separation from previously placed classes, and the
final coordinate of each node then attains since all coordinates relative to the class
are known. Once again, notice how horizontal direction or preference will skew the
resulting layout. Because of this, compactHorizontally() takes the preference as its
third argument, iterationOrder. If iterationOrder is "right", xShift is set to ∞ and
the algorithm runs as explained by using maximum values. This gives results like the
example in Figure 19. On the other hand, if iterationOrder is "left", xShift is set to
−∞ and the algorithm runs by using minimum values, giving an opposite bias.

Returning to Code Block 11, line 28 deserves a final note. Recall how conjunction
nodes have been merged. Thus, when x-coordinates were assigned, only the meta
nodes were assigned coordinates. Line 28 therefore iterates through the sub-nodes
and give them explicit absolute x-coordinates too. All vertices have now been assigned
x- and y-coordinates. Only the warrants require some minor tweaking because of the
processing done during crossing minimisation. But this has already been explained back
in Section 7.1.

37

8 Discussion

The previous sections have reviewed the project and the resulting product. In this
section, various aspects pertaining to the project will be discussed.

8.1 Evolution of Methods

The methods of the author developed over the course of the project. Section 3 mentions
that TDD was employed during development. This practice was only followed to a
certain point. Many if not all of the algorithms implemented in this project were of
a highly mathematical nature. Of course, this is nothing unusual. All algorithms are
mathematical in nature. But the literature covering the algorithms generally focused
more on theoretical correctness and theoretical performance. Because the author
invested much time into understanding the concepts and then meticulously implementing
them in an actual programming language (i.e., not pseudo-code), he often got ahead
of himself and built an algorithm before adequate testing had been prepared. That
is not to say that testing was not extensively used, but rather that the development
method oscillated between actual TDD and plain post hoc testing. Moreover, as the
project matured, unit tests were deprioritised in favour of less formal, manual testing
by the author. When actual layouts could be produced, it seemed in many cases as
simply throwing various inputs at the algorithm and correcting any observed errors was
an effective strategy. It is doubtful that either of the said deviations from the planned
TDD approach adversely affected the author’s efficiency or the quality of the code. The
deviations were not made thoughtlessly, and one could argue that changing methods to
suit current needs is quite agile [5, pp. 58–62].

Another note on the project methods is that the weekly check-ins with Disputas became
shorter and less frequent towards the end of the project. This is viewed by the author
as a natural progression. As the final state of a project becomes easier to predict, it
is simply less to talk about. What the author ought to do with his remaining time was
already evident, and any further improvements that were desired would have to be done
by the company itself after the end of the master’s project. Additionally, since most of
this thesis was written in the final stage of the project period, less development occurred
and, hence, there were even fewer relevant matters to discuss.

Excluding the two above paragraphs, the author kept to the methods described in
Section 3 throughout the project. Granted, there were not many particular methods to
adhere to or deviate from, but it is still worth stating that the few described development
principles were indeed followed.

8.2 Requirement Satisfaction

See the requirements in Table 1, and for more details, the requirements section of the
preliminary report [4, pp. 2–7]. The Argumappr library [6] produced in this project
clearly meets most of the stated requirements, but it does not perfectly satisfy all of
them. As far as the tests performed by the author show, Argumappr does produce
layered DAG layouts with optimal positionings per the definitions used in this thesis.
The goal of minimising edge crossings was achieved by using the modified Barycenter
Heuristic. Conjoined edge support, or conjunction support, was implemented without
any size restrictions. Edge-on-edge support, or warrant support, was also implemented.

38

However, at the time of writing, Argumappr does not support more than one warrant
per edge. Furthermore, Disputas’s wish of constraining layout changes was not fulfilled.
These shortcomings will be discussed in Section 8.5.

The requirement of adequate speed is thought to have been met. Large graph support,
which is tied to the speed requirement, is also believed to have been achieved. The
expressed uncertainty stems from the ambiguous requirement definition, limited
testing and the nature of the implementation language. Adequate speed was defined
as an absolute running time low enough not to impact user experience. Ignoring the
obvious subjective aspect (in the preparatory project, a low enough running time was
estimated to be below 2.5 seconds [4, p. 23]), judging performance in absolute terms is
problematic. This is because hardware plays too big a role. Although the author had no
performance issues while performing tests on the hardware at his disposal, Ponder users
with lower-end PCs might. Moreover, many of the built-in JS functions used in the project
may have different implementations based on the platform that compiles the code. This
greatly diminished the author’s control over code efficiency, but, more importantly, it
implies that different users with comparably powerful hardware may experience different
running times (both asymptotically and absolutely). These are merely speculated issues;
it is not known whether performance will be problematic. Regardless, further and more
rigorous testing is warranted. Testing will be further discussed in Section 8.3, and
theoretical performance will be reviewed in Section 8.4.

8.3 Testing Limitations

Primarily, two types of testing methods were used in the project: automated unit tests
and manual white-box testing. Most of the applied unit tests may be found in the project
repository [6]. It is perhaps obvious, but most of the available tests have gone through
a series of refinement stages. Some have also been completely rewritten several times
over. Moreover, some written tests were used in a white-box manner to probe the
algorithm during development. Though useful, these tests were informal and intended
to assist the author with specific issues before being summarily discarded. It is the
author’s opinion that such methods are both common and helpful. Nonetheless, further
documenting such an amorphous process would likely serve little purpose. It is therefore
only mentioned here in passing. After the algorithm was developed to the point of
producing layouts, manual testing gained ground on automated testing. The manual
tests were performed in an ad hoc fashion without much planning. One of Disputas’s
proprietary test repositories were put to use to see how the algorithm performed. It was
a flexible way of debugging and visually presenting problems.

The author attempted to write unit tests with wide coverage. I.e., the tests were written
to provide many test cases and use diverse inputs that were realistic. Nevertheless, it is
of course infeasible to test every case and all inputs. This implies the possibility of certain
inputs breaking the algorithm. Checking various expected inputs lessens the odds of bugs
affecting most users, but there are always edge cases, and these are notoriously easy
to miss. It is therefore hard to say how robust the software is with certainty. Manual
white-box testing has the advantage of letting the developer play around. A plethora of
inputs can be thrown at the program on a whim, and the behaviour of the algorithm is
clearly visible by the quality and speed of outputs. Additionally, if the developer feels
uncertain about the robustness or correctness of some particular piece of code, they can
try to produce inputs targeting the associated functionality. Even with a lot of testing,

39

both automated and manual, there are still no guarantees. It is often observed that
users, despite having no knowledge of the inner workings of the software, simply stumble
upon errors during regular use. At least some minor bugs are likely to be in the code at
the end of the project period. Performing several user tests over time may uncover any
mistakes missed by the author.

8.4 Time Complexity

No formal running time tests were made for this project. This is partly because of the
aforementioned vagueness of the performance requirements, and partly because there
were no performance issues discovered during manual testing. Knowing full well that
Disputas intended to use the algorithm to dynamically generate layouts user-side, the
author kept performance in mind during development. Sub-algorithms were picked
to balance speed and accuracy, and their implementations should be efficient. That
is, the TS code was written to make limited use of costly built-ins, avoid unnecessary
computations, etc. But recall that the performance of JS (which TS compiles into) is
never guaranteed. To provide some semblance of an objective performance measure,
this section will perform a theoretical running time analysis. Firstly, Table 4 summarises
the time complexities of the algorithms employed in the different steps of the Sugiyama
method. However, it lists the default algorithms, and the author customised these to
handle warrants and conjunctions. They must therefore be evaluated again.

Table 4: A summary of the time complexities of the steps.

Step Performance

Cycle removal O
(
|E|

)
in total

Node layering Unproven polynomial but fast in practice
Crossing minimisation O

(
|C|2 + |E|+ |V | log |V|

)
per sweep

(Crossing counting) (O
(
|E| log |Vsmall|

)
per layer pair)

Edge straightening O
(
|V |+ |E|

)
in total

Before analysing the steps as they were implemented, an important fact must be kept
in mind. Consider an arbitrary DAG G. See how the number of vertices and edges are
connected. Clearly, there cannot be more edges than what is allowed in a DAG. Take one
node at a time. The first one can be linked to all other nodes except itself; the next one
can be linked to all nodes except itself and the first one; the next must exclude itself, the
second and the first; and so on. Hence, the maximum number of edges is Σ|V |

i=0

(
|V | − i

)
=(

|V |2 − |V |
)
/2, so 0 ≤ |E| ≤

(
|V |2 − |V |

)
/2. From this, many of the below statements follow.

Looking at the cycle removal step, there were no real changes made to the original
algorithm. Both copying the graph and handling edges (iterating over them, deleting
loops and reversing against-the-flow edges) can be done in linear time. However, the use
of lists to impose a node ordering means that for each edge

(
u, v

)
, the indices of u and

v must be found, which is generally done as a linear search. Thus, two O
(
|V |

)
operations

must be done for every edge. The resulting product asymptotically dominates the linear
terms, giving the cycle removal step a total running time of O

(
|V | · |E|

)
.

The node layering algorithm has an unproven but presumed polynomial running time.
Consider a polynomial expression of arbitrary degree that expresses the running time of

40

the network simplex algorithm. Let n be a dominating term of degree k > 0 that depends
on V and E. Instead of n

(
V, E

)
, the term is simply denoted n. The running time can then

be written as O
(
nk

)
. As far as the author knows, there are no implementation details that

ought to impact running time. The pre- and post-processing is done in linear time. Have
a and b be positive real numbers. Since a

∣∣V∣∣+b
∣∣E∣∣ = O

(
nk

)
, the processing obviously does

not impact the time complexity.

Recall that during crossing minimisation, the layers are iterated from top to bottom and
bottom to top. When a single pair of layers is considered, the Constrained Barycenter
Heuristic sweeps the mutable layer before the new number of crossings is found. This
means that each sweep takes O

(
|C|2 + |E| + |V | log |V | + |E| log |Vsmall|

)
time. Remember

that here, C is the constraints in the swept layer, E is the edges between the fixed and
mutable layer, V is the vertices in the mutable layer and Vsmall is the vertices of the
smallest of the two layers. The per sweep bound is precise, but it is difficult to gauge
the total running time based on it. Therefore, a few relaxations will be made. From
now, denote the full node set V. Assume that after layering, the nodes are uniformly
distributed such that if there are l layers, there are precisely m nodes in each. There
is a maximum of Σm−1

i=1 i =
(
m2 − m

)
/2 constraints per layer. This results in a simpler

but admittedly less tight bound per layer of O
(
m4 + m2 + m2 logm

)
= O

(
m4

)
. By the

assumptions made, there will be made l sweeps with this running time. Hence, a single
full pass takes O

(
lm4

)
time. See how there are three natural extreme distributions:

l = 2 ∧ m =
∣∣V∣∣/2, l = m and l =

∣∣V∣∣ ∧ m = 1. The worst out of these three is
clearly the first since it gives a running time of O

(
|V |4

)
for a single full pass. The second

and third imply O
(
|V |5/2

)
and O

(
|V |

)
, respectively. Because m4 dominates l (and because

of the assumed uniformity), one would expect any increase in the number of layers
to decrease the overall running time. Thus, a worst-case running time is O

(
|V |4

)
. This

expression is still just a measure of a single pass. There will be made several passes until
a plateau is reached. However, by assuming the default maximum number of allowed
iterations (the default of maxcrossingloops), a constant upper bound attains. Therefore,
O
(
|V |4

)
is the total asymptotic running time. Of course, these results presuppose an even

distribution of nodes. It is possible that some other combination of uneven layers could
imply worse running times. At least intuitively, one would expect the results to be a fair
representation of the algorithm’s run time.

Straightening edges can be done in linear time. The core procedure must run four times
to generate the four extreme layouts. Additionally, the pre-processing must visit all nodes
once. However, this does not affect the time complexity. Any positive linear combination
of

∣∣V∣∣ and ∣∣E∣∣ is asymptotically comparable to
∣∣V∣∣+ ∣∣E∣∣. I.e., for all a, b ∈ R greater than 0,

a
∣∣V∣∣+ b

∣∣E∣∣ = Θ
(
|V |+ |E|

)
.

In the main loop, the graph is copied twice in linear time. Restoring reversed or deleted
edges, finalising warrant positions, drawing Bézier curves and removing dummy nodes all
take linear time too. As was just mentioned, positive linear combinations of the number
of nodes and edges are asymptotically comparable. Since the edge straightening step
takes linear time, there is no need to consider the linear time functions of the main loop.
The total running time of the main loop can thus be expressed O

(
|V |·|E|

)
+O

(
nk

)
+O

(
|V |4

)
+

O
(
|V |+ |E|

)
= O

(
|V |4 + nk

)
.

41

8.5 Further Work

It is the hope of the author that the developed data structure and algorithm in the form
of the Argumappr package [6] will continue to be maintained and built upon. There
are several improvements that could easily be made to Argumappr given enough time.
Even if this specific library does not see further development, the methods described in
this paper can be adopted and refined by others. There might be flaws in the described
procedures or they might be sub-optimal in different ways. Correcting things the author
may have overlooked and generally improving the graph layout algorithm would provide a
better way to draw argument maps.

As previously mentioned, Argumappr does not support more than one warrant per edge
at the time of this writing. Additionally, warrant sources will always be placed to the
right of the target edge. The limited number of warrants is merely caused by the time
constraints of the master project, but the placement of warrant sources is because of
Disputas’s convention of putting pro warrants to the right and con warrants to the left.
However, this implies that Argumappr does not support con warrants either. Having an
option for changing side placements and supporting placement on both sides would be
beneficial. It should be trivial to extend the functionality, allowing for arbitrary numbers
of warrants per edge and adjustable side placement. The handling applied by the author
is not limited by these parameters, so customising it to add the said functionality should
not be problematic.

Since Ponder performs on-the-fly calculations of layouts for interactive graphs, one
of the requirements was to limit the amount of change between each iteration of the
graph. This would help users keep track of the elements and lessen any confusion caused
by the layout shuffling around. The problem of constraining layout changes is a non-
trivial one. When ranking the importance of the different requirements put forward by
Disputas, the stability requirement was deemed the least important one. Unfortunately,
there was not enough time to explore it. Thus, it remains unknown to the author how
difficult implementing such a constraint would be. North [44] presents a promising idea
for producing incremental DAGs layouts. Granted, North’s work is highly relevant to the
stability requirement, but it is not clear how hard it would be to merge his solution with
the author’s. In addition, it is unclear what impact this would have on the total running
time. Future projects might shed light on this.

Though the asymptotic time complexity gives a good pointer to what performance
to expect, it is best not to forget that overhead and linear-time operations do in fact
matter. There are many feasible optimisations that the author is aware of and, possibly,
several more that author might be unaware of. Two points of concern struck the author
as the most obvious. The first one was mentioned in passing during the analysis of
Section 8.4. Lists were used to impose the linear ordering of nodes during cycle removal.
This worsened the running time from its theoretical O

(
|E|

)
to the actual O

(
|V | · |E|

)
.

This could easily be rectified by assigning each node an index (using their label) instead
of using lists. This would turn the repeated linear searches into a series of constant
time operations, and the O

(
|E|

)
running time would attain. The second point is a bit

broader. Recall that during development, the author emphasised modularity. He also
first implemented a fully functional layout algorithm for normal graphs, before extending
this algorithm to support argument maps. This resulted in somewhat of a pipe-and-
filter pattern [7, pp. 215–217] where the input and output of each step were statically
defined. One may argue that this is positive for the software architecture, but it is

42

certainly not positive for the performance. Warrants and conjunctions are often processed
and restored to their original states, before being processed in a similar fashion yet
again. By relaxing the standards of how inputs and outputs should be and holistically
viewing the algorithm, one could eliminate several redundant processing steps. How
much of an impact this would have is not known, but it would however not affect the time
complexity.

Perhaps this project might also inspire entirely new methods of laying out argument
diagrams. Though the author focused on utilising the Sugiyama framework, there might
be other suitable hierarchical drawing procedures out there. In the preliminary report
[4, pp. 22–23], numerous other graph drawing methods are mentioned. Maybe force-
directed algorithms or genetic algorithms could be applied to laying out argument
diagrams. Other views of hierarchies (i.e., not horizontal layers) might be interesting
to research — e.g., radial level drawings, in which the layers are arranged as concentric
circles [22, p. 444].

It has been mentioned before that the Sugiyama method is the go-to method for drawing
hierarchical graphs. Since this is a popular and highly researched framework, there are
likely many new details, expansions and refinements available. Some of these could be
useful for this use case but might have escaped the author’s attention. For instance,
a recent discovery by the author was the erratum of Brandes et al. [42]. There, they
point out two flaws in the original algorithm made by Brandes and Köpf [41] and suggest
how to fix them. One flaw is double shifting since ‘[…] offsets are actually added twice
for vertices whose root has already been shifted to its final x-coordinate’ [42, p. 4].
The other flaw is shift accumulation, which is serious but might not lead to many visible
problems in practice, and it is explained by Brandes et al. [42, p. 5]:

During compaction, shift values are determined for preceding classes relative
to the current class. The implicit assumption in line (A) is, however, that
the current class is not shifted itself. As a consequence, shift values are not
accumulated along critical paths in the DAG of classes. It is not sufficient to
consider the shift value of sink[v] in line (A) because it may not be in its final
state, yet.

When Brandes et al. use ‘line (A)’ in the quote, they refer to the line of the horizontal
compaction procedure that assigns the shift of a node to be equal to the minimum of its
own value and the last positioned class plus minimum separation. Sadly, this erratum
was discovered after the project had been finalised. Thus, implementing Brandes et al.’s
fixes is another target for future work. But this goes to show that there might be several
relevant papers that have yet to be identified. Moreover, the recency of Brandes et al.’s
article (2020, which is only three years prior to this thesis) points out the need to keep
track of newly published graph drawing literature.

9 Conclusion

Disputas, a Norwegian tech startup working with logic graphing, was introduced. Their
problems and the subsequent project suggestion became the grounds for the author’s
master’s project, which was documented in this thesis. The project was to initially
research graph drawing literature, and then produce a graph layout algorithm specifically

43

tailored to argument maps. In collaboration, Disputas and the author formulated a set of
requirements for the aforementioned algorithm. The project was divided into two parts:
a preparatory phase, resulting in a literature review serving as the theoretical grounds
for the project, and a working phase, in which the actual development of the customised
algorithm took place. Few formal methods were employed by the author. There were
weekly meetings with the customer (Disputas), TDD was utilised, various common
development best practices were used and some extra focus was put on modularity.
The technologies applied in this project were listed and their use was justified. Git and
GitHub were used for VCS. TS was the programming language, and development took
place in a Node.js environment to produce an npm package. Mocha and Chair formed
the testing solution for the project. During development, ESLint and Prettier helped the
author via formatting assistance. TypeDoc was used to generate documentation so the
code was self-documenting. Various definitions from graph theory, graph drawing and
argumentation were reviewed.

The project resulted in Argumappr, a library for automatic graph layout generation.
It contains the data structure explored in Section 6 and the algorithm presented in
Section 7. The data structure serves as a representation of argument diagrams. It is built
upon the extant Graphlib JS library, which provides a data structure for discrete graphs
and an assortment of relevant algorithms. The custom graph layout algorithm was the
main result of this thesis. Based on the literature uncovered in the preliminary report,
a framework consisting of several discrete steps and sub-algorithms for each of these
steps were chosen. The algorithm leverages the Sugiyama framework, which partitions
the problem of creating a layered layout into four steps: cycle removal, node layering,
crossing minimisation and edge straightening. During cycle removal, a version of Eades
et al.’s greedy cycle removal is used. It eliminates cycles by reversing as few edges
as feasibly possible. The node layering is based on Gansner et al.’s network simplex
algorithm, and it layers nodes optimally, meaning it produces a layering that minimises
the number of long edges. Crossing minimisation is achieved by using a modified
version of the barycenter heuristic, originally proposed by Sugiyama et al. The author’s
implementation has its basis in Forster’s constrained barycenter heuristic, allowing the
necessary limitations of node positions to be applied. As long as it does not violate any
constraints, the constrained barycenter heuristic places nodes at the average position of
their neighbours. It iteratively improves the number of crossings by repeatedly sweeping
all layers from top to bottom and visa versa. The barycenter heuristic must count the
number of crossings between pairs of layers. A hitherto optimal counting algorithm by
Barth et al. was used for this purpose. If a permutation of a layer does not reduce the
number of crossings, the permutation is discarded. To straighten edges, the author based
himself on Brandes and Köpf’s renowned algorithm. It tries to minimise edge length by
aligning nodes with their median neighbours. Then, it creates a block graph and applies
a longest path layering algorithm to assign explicit x-coordinates. This results in a layout
that is skewed depending on the iteration directions. This is resolved by calculating four
extreme layouts, and assigning each node the median average of its four coordinate
candidates.

The author’s methods changed somewhat during the project. TDD was not always
used, and different testing methods were used at different times. Towards the end of
the project, the weekly meetings became less frequent. Generally, the conventions
described in Section 3 were followed. Argumappr sufficiently fulfilled most requirements
but not all. However, only one warrant per edge is currently supported, and there are
no constraints on how much the layout may change. The algorithm is believed to have

44

adequate speed, but it is ambiguous. Only limited testing has taken place, and there
are likely undiscovered issues with the produced code. More testing is warranted. The
asymptotic running time of the algorithm is O

(
|V |4 + nk

)
. Future experiments have a lot

to look at. Both the Argumappr package and the concepts it was built upon can likely be
refined and improved. It is probably simple to add more complex warrant functionality
to Argumappr, and there are several optimisations that may be done. Though the author
did not have time to look at layout stability, North’s incremental layout generation seems
like a good place to start. Hopefully, others will find argument map drawing interesting
and produce more work related to it. Maybe entirely new vectors of approach may lead
to superior performance. Existing and new papers on graph drawing will probably contain
information that is useful for drawing argument maps. As of this writing, the author notes
that Brandes et al.’s erratum points out flaws in the edge straightening method that may
be fixed by implementing their suggestions.

45

References

[1] U. Schreiber, D. Corfield and T. Bartels, ‘Bayesian reasoning’, nLab, 7th Mar. 2023.
[Online]. Available: https://ncatlab.org/nlab/show/Bayesian+reasoning (visited on 9th May
2023).

[2] P. F. S. Kvarberg, ‘Technologies to bolster public debate’, Teknovatøren, vol. 20,
4th Aug. 2021. [Online]. Available: https://www.teknovatoren.no/2021/08/technologies
- to-bolster-public-debate/?fbclid=IwAR1R3i4RZpYOROxkw8zx97QfHATX1xAEi73E5Bgh4Mniiez
QMYx21wZze-Y (visited on 13th Apr. 2023).

[3] Disputas AS, Ponder, 20th Mar. 2023. [Online]. Available: https://ponder.disputas.no/
(visited on 9th May 2023).

[4] D. F. Bendiksen, ‘Preparatory Master’s Project: Laying Out Logic Graphs’, Norwegian
University of Science and Technology (NTNU), 14th Dec. 2022.

[5] I. Sommerville, Software Engineering, eng, 10th ed., global ed. Boston Mass.:
Pearson, 2016, ISBN: 978-1-292-09613-1.

[6] D. F. Bendiksen, Argumappr, version 1, 11th Jun. 2023. [Online]. Available: https:
//github.com/davider90/argumappr (visited on 11th Jun. 2023).

[7] L. Bass, P. Clements and R. Kazman, Software Architecture in Practice, 3rd.
Addison-Wesley Professional, 2012.

[8] S.-y. Guo, M. Ficarra and K. Gibbons, ‘16.2 Modules’, ECMAScript® 2024 Language
Specification, 11th May 2023. [Online]. Available: https://tc39.es/ecma262/#sec-modules
(visited on 11th May 2023).

[9] OpenJS Foundation, ‘Modules: CommonJS modules’, 5th Mar. 2023. [Online].
Available: https ://nodejs .org/api/modules .html#modules - commonjs - modules (visited on
11th May 2023).

[10] Mozilla Corporation, ‘JavaScript modules’, 5th Oct. 2023. [Online]. Available: https:
//developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules (visited on 11th May
2023).

[11] S. Chacon and B. Straub, Pro Git, version 2, 12th Apr. 2023. [Online]. Available:
https://github.com/progit/progit2 (visited on 13th Apr. 2023).

[12] Mozilla Corporation, ‘JavaScript’, 5th Apr. 2023. [Online]. Available: https://developer
.mozilla.org/en-US/docs/Web/JavaScript (visited on 13th Apr. 2023).

[13] Microsoft Corporation, ‘TypeScript’, 12th Apr. 2023. [Online]. Available: https://www.t
ypescriptlang.org/ (visited on 13th Apr. 2023).

[14] OpenJS Foundation, ‘About Node.js®’, 13th Apr. 2023. [Online]. Available: https://n
odejs.org/en/about (visited on 13th Apr. 2023).

[15] npm, Inc., ‘About npm’, 13th Apr. 2023. [Online]. Available: https://www.npmjs.com/ab
out (visited on 13th Apr. 2023).

[16] OpenJS Foundation, ‘Mocha’, 13th Apr. 2023. [Online]. Available: https://mochajs.org/
(visited on 13th Apr. 2023).

[17] Open source, ‘Chai’, 18th Jan. 2023. [Online]. Available: https : / / www . chaijs . com/
(visited on 13th Apr. 2023).

[18] OpenJS Foundation, ‘Core Concepts’, 27th Apr. 2023. [Online]. Available: https://esli
nt.org/docs/latest/use/core-concepts (visited on 27th Apr. 2023).

[19] Open source, ‘What is Prettier?’, 27th Apr. 2023. [Online]. Available: https://prettier.io
/docs/en/index.html (visited on 27th Apr. 2023).

46

https://ncatlab.org/nlab/show/Bayesian+reasoning
https://www.teknovatoren.no/2021/08/technologies-to-bolster-public-debate/?fbclid=IwAR1R3i4RZpYOROxkw8zx97QfHATX1xAEi73E5Bgh4MniiezQMYx21wZze-Y
https://www.teknovatoren.no/2021/08/technologies-to-bolster-public-debate/?fbclid=IwAR1R3i4RZpYOROxkw8zx97QfHATX1xAEi73E5Bgh4MniiezQMYx21wZze-Y
https://www.teknovatoren.no/2021/08/technologies-to-bolster-public-debate/?fbclid=IwAR1R3i4RZpYOROxkw8zx97QfHATX1xAEi73E5Bgh4MniiezQMYx21wZze-Y
https://ponder.disputas.no/
https://github.com/davider90/argumappr
https://github.com/davider90/argumappr
https://tc39.es/ecma262/#sec-modules
https://nodejs.org/api/modules.html#modules-commonjs-modules
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Modules
https://github.com/progit/progit2
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://developer.mozilla.org/en-US/docs/Web/JavaScript
https://www.typescriptlang.org/
https://www.typescriptlang.org/
https://nodejs.org/en/about
https://nodejs.org/en/about
https://www.npmjs.com/about
https://www.npmjs.com/about
https://mochajs.org/
https://www.chaijs.com/
https://eslint.org/docs/latest/use/core-concepts
https://eslint.org/docs/latest/use/core-concepts
https://prettier.io/docs/en/index.html
https://prettier.io/docs/en/index.html

[20] Open source, ‘What is TypeDoc?’, 27th Apr. 2023. [Online]. Available: https://typedoc
.org/guides/overview/ (visited on 27th Apr. 2023).

[21] K. H. Rosen, Discrete Mathematics and Its Applications, eng, 7th ed., global ed.
New York: McGraw-Hill, 2013, ISBN: 0071315012.

[22] R. Tamassia et al., Handbook of Graph Drawing and Visualization. CRC press, 2013.

[23] T. Stephen, Return to Reason. Harvard University Press, 2001, ISBN:
9780674012356.

[24] S. E. Toulmin, The Uses of Argument. Cambridge University Press, 2003,
vol. Updated ed. ISBN: 9780521827485.

[25] C. Pettitt, Graphlib, version 2.1.8, 17th Apr. 2023. [Online]. Available: https://github
.com/dagrejs/graphlib (visited on 14th May 2023).

[26] C. Pettitt, Dagre, version 0.8.5, 10th May 2023. [Online]. Available: https://github.co
m/dagrejs/dagre (visited on 15th May 2023).

[27] K. Sugiyama, S. Tagawa and M. Toda, ‘Methods for visual understanding of
hierarchical system structures’, IEEE Transactions on Systems, Man, and
Cybernetics, vol. 11, no. 2, pp. 109–125, 1981.

[28] J. Vince, Mathematics for Computer Graphics. London: Springer, 2022, ISBN: 978-
1-4471-7520-9. DOI: 10.1007/978-1-4471-7520-9_1.

[29] R. Karp, ‘Reducibility among combinatorial problems’, vol. 40, Jan. 1972, pp. 85–
103, ISBN: 978-3-540-68274-5. DOI: 10.1007/978-3-540-68279-0_8.

[30] P. Eades, X. Lin and W. F. Smyth, ‘A fast and effective heuristic for the feedback arc
set problem’, Information Processing Letters, vol. 47, no. 6, pp. 319–323, 1993.

[31] E. R. Gansner, E. Koutsofios, S. C. North and K.-P. Vo, ‘A technique for drawing
directed graphs’, IEEE Transactions on Software Engineering, vol. 19, no. 3,
pp. 214–230, 1993.

[32] L. A. Wolsey and G. L. Nemhauser, Integer and Combinatorial Optimization. John
Wiley & Sons Ltd., 1988, ISBN: 9781118627372.

[33] M. R. Garey and D. S. Johnson, ‘Crossing number is np-complete’, SIAM Journal on
Algebraic Discrete Methods, vol. 4, no. 3, pp. 312–316, 1983.

[34] P. Eades and N. C. Wormald, ‘Edge crossings in drawings of bipartite graphs’,
Algorithmica, vol. 11, pp. 379–403, 1994.

[35] M. Jünger and P. Mutzel, ‘2-Layer Straightline Crossing Minimization: Performance
of Exact and Heuristic Algorithms’, eng, Journal of Graph Algorithms and
Applications, vol. 1, pp. 1–25, 1997.

[36] M. Forster, ‘A Fast and Simple Heuristic for Constrained Two-Level Crossing
Reduction’, in Graph Drawing, J. Pach, Ed., Berlin, Heidelberg: Springer Berlin
Heidelberg, 2005, pp. 206–216, ISBN: 978-3-540-31843-9.

[37] T. H. Cormen, C. E. Leiserson, R. L. Rivest and C. Stein, Introduction to algorithms,
4th ed. MIT press, 2022.

[38] W. Barth, M. Jünger and P. Mutzel, ‘Simple and efficient bilayer cross counting’, in
International Symposium on Graph Drawing, Springer, 2002, pp. 130–141.

[39] V. E. Waddle and A. Malhotra, ‘An E log E Line Crossing Algorithm for Levelled
Graphs’, in International Symposium Graph Drawing and Network Visualization,
Springer, 1999, pp. 59–71.

[40] W. Huang, P. Eades and S.-H. Hong, ‘A graph reading behavior: Geodesic-path
tendency’, in 2009 IEEE Pacific Visualization Symposium, IEEE, 2009, pp. 137–144.

47

https://typedoc.org/guides/overview/
https://typedoc.org/guides/overview/
https://github.com/dagrejs/graphlib
https://github.com/dagrejs/graphlib
https://github.com/dagrejs/dagre
https://github.com/dagrejs/dagre
https://doi.org/10.1007/978-1-4471-7520-9_1
https://doi.org/10.1007/978-3-540-68279-0_8

[41] U. Brandes and B. Köpf, ‘Fast and simple horizontal coordinate assignment’, in
International Symposium on Graph Drawing, Springer, 2001, pp. 31–44.

[42] U. Brandes, J. Walter and J. Zink, Erratum: Fast and simple horizontal coordinate
assignment, 2020. arXiv: 2008.01252 [cs.DS].

[43] K. Mehlhorn, Data structures and algorithms 2: graph algorithms and NP-
completeness. Springer Science & Business Media, 2012, vol. 2.

[44] S. C. North, ‘Incremental layout in dynadag’, in Graph Drawing, F. J. Brandenburg,
Ed., Berlin, Heidelberg: Springer Berlin Heidelberg, 1996, pp. 409–418, ISBN: 978-
3-540-49351-8.

48

https://arxiv.org/abs/2008.01252

	List of Figures
	List of Tables
	List of Code Blocks
	Glossary
	Acronyms
	Introduction
	Background
	Methods
	Technologies
	Theory
	Graph Theory
	Graph Drawing
	Argumentation

	Data Structure
	Algorithm
	Main Loop
	Cycle Removal
	Node Layering
	Crossing Minimisation
	Crossing Counting

	Edge Straightening

	Discussion
	Evolution of Methods
	Requirement Satisfaction
	Testing Limitations
	Time Complexity
	Further Work

	Conclusion
	References

