
Received 19 July 2023; revised 14 August 2023; accepted 26 September 2023. Date of publication 2 October 2023; date of current version 17 October 2023.

Digital Object Identifier 10.1109/OJCOMS.2023.3321405

Autonomous Flow-Based TSCH Scheduling for
Heterogeneous Traffic Patterns: Challenges, Design,

Simulation, and Testbed Evaluation
ANDREAS R. URKE 1,2, ØIVIND KURE 3, AND KNUT ØVSTHUS2

1Faculty of Information Technology and Electrical Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway

2Department of Computer Science, Electrical Engineering and Mathematical Sciences, Western Norway University of Applied Sciences, 5020 Bergen, Norway

3Faculty of Mathematics and Natural Science, University of Oslo, 0316 Oslo, Norway

CORRESPONDING AUTHOR: A. R. URKE (e-mail: andrerur@stud.ntnu.no)

ABSTRACT The Industrial Internet of Things needs wireless communication with bounded latency and
stronger robustness. Nodes employing the Time Slotted Channel Hopping (TSCH) MAC operate according
to a schedule, and recent work on flow-based autonomous schedulers has shown they can guarantee
dedicated resources to each flow of traffic. However, these works assume all nodes transmit toward one
destination. Industrial applications such as process control require heterogeneous traffic patterns, e.g.,
for sensor-to-actuator. We investigate how autonomous flow-based scheduling may support heterogeneous
traffic patterns. We have previously proposed the Layered scheduler that emphasized flow scheduling and
spatial reuse. In this work, we extend Layered to support heterogeneous traffic patterns. The extension
includes a novel mechanism where the first application traffic packet is sent in a shared cell to inherently
signal the need for scheduling dedicated cells. In adapting to heterogeneous traffic patterns, we encountered
seven challenges. These include, e.g., the schedule adapting to packets later found as invalid at the
routing layer and MAC queues leading to packets signaling outdated routing information to neighbors.
We identify a set of mitigations and key parameters to address these challenges, and we evaluate their
impact using the Cooja simulator and the FIT IoT-LAB testbed. The mitigation mechanisms are essential
to ensure predictable performance under all conditions. Shared cell capacity was crucial as insufficient
capacity can have a detrimental impact. Lastly, the scheduler was compared to the autonomous scheduler
Orchestra. In scenarios with heterogeneous traffic patterns, we found the extended Layered scheduler
retained performance independent of the number of flows. However, it comes at the cost of energy
per goodput. Compared to Orchestra, Layered requires approximately twice the energy to maintain the
schedule, yet Layered’s higher capacity allows for comparable efficiency as application traffic increases.

INDEX TERMS TSCH, autonomous scheduling, IIoT, IEEE 802.15.4, MAC.

I. INTRODUCTION

AS AN enabler of concepts such as Industry 4.0, the
Industrial Internet of Things (IIoT) must supply reli-

able wireless- and IPv6-connectivity to a large number of
devices. Realizing these requirements require research efforts
on all parts of the network stack. For media access con-
trol (MAC), the Time Slotted Channel Hopping (TSCH)
approach has shown promise as it allows for reservation-
based contention-free resource allocation [1]. Nodes in a

TSCH network operate according to a schedule that dictates
transmission and reception opportunities. The schedule is
built by a scheduler, which operates in a centralized, col-
laborative, or autonomous fashion, or in a combination of
these [2].
Autonomous schedulers work without any dedicated com-

munication between nodes. This improves fault tolerance
and reduces overhead and complexity, yet it may be chal-
lenging to construct schedules as optimal as centralized

© 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

VOLUME 4, 2023 2357

HTTPS://ORCID.ORG/0000-0002-3461-6239
HTTPS://ORCID.ORG/0000-0001-6299-0204

URKE et al.: AUTONOMOUS FLOW-BASED TSCH SCHEDULING FOR HETEROGENEOUS TRAFFIC PATTERNS

or collaborative schedules. Autonomous schedulers may be
advantageous, e.g., during network bootstrap, as a fall-back
option, or when requirements are less stringent.
Autonomous schedulers can be categorized based on

whether they assign cells to nodes, links, or traffic flows.
In [3], we argued that flow-based schedulers benefit indus-
trial applications as they can guarantee resource allocation
end-to-end for each traffic flow. In addition, they provide
flexibility such as scheduling multiple flows from one node,
and may open for flow concepts as in IETF’s Deterministic
Networking (DetNet) [4].

To our knowledge, all proposed autonomous flow-based
schedulers are designed for convergecast traffic, i.e., where
all nodes transmit to one destination, typically the network
root node. Such traffic patterns are common when moni-
toring industrial processes. However, the pattern does not
match, e.g., control applications with sensor-to-actuator traf-
fic. In this work, we study the challenge of supporting
heterogeneous traffic patterns in autonomous flow-based
scheduling.

II. BACKGROUND
A. APPLICATIONS
Concepts such as Industry 4.0 and Cyber-Physical Systems
envision a wide range of applications that the IIoT is required
to support. These include, e.g., monitoring, process- and
factory-control, asset tracking, safety alarms, etc. Typical
requirements for industrial applications include reliability,
bounded latency, low latency, energy efficiency, fault toler-
ance, scalability, resource utilization, and more [5], [6]. It is
not feasible to optimize for all these requirements simulta-
neously. The priority and rigorousness of each requirement
depend on the application, with, e.g., closed-loop control
being stringent on reliability and latency, while monitoring
applications may focus on energy. Our design does not target
a particular application, but its objectives are for reliability
and bounded latency while minimizing channel usage.
The traffic characteristics in the industrial domain are

diverse. Monitoring applications are more simplistic as all
sensors periodically transmit in a convergecast traffic pattern
to one more data collection nodes. However, industrial appli-
cations may also include peer-to-peer traffic such as control
traffic between controllers and actuators, or measurements
from sensors directly to actuators [7]. The traffic intensity
may also vary as periodic measurements are mixed with
alarms and control actions.
Our work focuses on heterogeneous traffic patterns. The

design of our scheduler permits heterogeneous traffic inten-
sity, yet we limit our evaluation to periodic transmissions.

B. 6TISCH
To meet the requirements of the IIoT, IETF formed the work-
ing group: “IPv6 over the TSCH mode of IEEE 802.15.4e”
(6TiSCH).1 Figure 1 shows the 6TiSCH network stack,

1. https://datatracker.ietf.org/wg/6tisch

FIGURE 1. The 6TiSCH protocol stack, defined in RFC 9030 [8]. Novel 6TiSCH parts
in cyan.

FIGURE 2. Link- and routing layer topologies. All available links on left, resulting
RPL topology on right.

which combines IPv6-enabling upper layers with industrial-
targeting wireless link- and physical-layers. We will describe
the 802.15.4 TSCH MAC and RPL routing protocol which
is crucial to our work. For further details on 6TiSCH, a
tutorial may be found in [9].

C. ROUTING: RPL
The “IPv6 Routing Protocol for Low-Power and Lossy
Networks” (RPL) [10] is designed for low-power and lossy
networks (LLNs) where constrained nodes are interconnected
by links with low reliability and data rates. RPL organizes
the network into a Destination Oriented Directed Acyclic
Graph (DODAG) which is rooted at an RPL root node. The
DODAG is built by nodes broadcasting DODAG Information
Object (DIO) messages, allowing recipients to select an
appropriate preferred parent node and maintain a default
route upwards. Downward routes are learned by nodes trans-
mitting Destination Advertisement Object (DAO) messages
upwards towards the root.
Figure 2 illustrates how the links (on the left) are utilized

to build the RPL topology (on the right). Note how this tree
requires traffic to travel upwards to a common parent before
going downward to the destination. E.g., when node 6 needs
to send to 4, the traffic would be transmitted via node 2.
A tutorial on RPL, and its interplay with TSCH, may be

found in [11].

D. MAC: TSCH
The Time-Slotted Channel Hopping (TSCH) MAC realizes
links for the network layer to utilize. Figure 3 shows a simple
4-node network and its corresponding TSCH schedule. The
schedule has repeating slotframes containing cells that dictate

2358 VOLUME 4, 2023

FIGURE 3. 4-node network with TSCH schedule.

transmission- and reception opportunities. A cell provides for
exchanging a packet and an optional acknowledgment at a
given time- and channel offset. The yellow-colored cells in
Figure 3 illustrate a dedicated transmission opportunity for
node 3, while the blue allows node 2 to forward a packet
to the root node. Empty cells let nodes sleep, thus enabling
energy-efficient operation.
TSCH is favored in industrial applications because the

time-slotted approach opens for the deterministic alloca-
tion of dedicated resources. Further, its channel hopping
scheme has been shown to significantly increase link relia-
bility [12]. TSCH is widely adapted in standards, e.g., the
industrial WirelessHART [13] employs a TSCH approach,
while 6TiSCH selected the IEEE 802.15.4 TSCH [14].

The slotframe content is maintained by a TSCH scheduler.
Schedulers typically operate in a centralized, collaborative,
or autonomous fashion [2]: Centralized schedulers have a
view of the entire network and may create highly optimized
schedulers, yet with significant overhead when collecting
information and dispersing schedules. Collaborative sched-
ulers let nodes negotiate schedules between themselves,
allowing for dynamic scheduling at the cost of increased
complexity and signaling. Lastly, autonomous schedulers do
not exchange information and build schedules typically by
leveraging existing data from the link- and routing layer. This
may be advantageous for scalability and fault tolerance since
no additional signaling is required to establish and maintain
links. However, since a node has limited information con-
cerning its surroundings, it is challenging to autonomously
construct an optimal schedule in terms of key metrics such
as reliability, latency, and energy efficiency.

III. RELATED WORK
We proposed the Layered autonomous flow-based sched-
uler in [15], while Oh et al. proposed Escalator [16]. To our
knowledge, these are the only flow-based autonomous sched-
ulers. Their operation is similar, yet Escalator optimizes for
short latency while Layered minimizes the number of chan-
nels needed. However, both schedulers are designed for a
convergecast traffic pattern where all nodes transmit to the
network root node.

Orchestra [17] is considered the state-of-the-art
autonomous scheduler. It assigns a fixed amount of
cells to each node in the network. As such, it inherently
supports heterogeneous traffic patterns. However, since the
cells are uniformly allocated in the network, the scheduler
is vulnerable to traffic concentrations, such as funneling
effects close to the network root. These issues are tackled
by over-provisioning cells, which increases slotframe length
and may waste energy - and provides only a probabilistic
solution.
The autonomous ALICE [18] scheduler addresses some

of the shortcomings of Orchestra by assigning cells to links
instead of nodes. This improves the performance for hetero-
geneous traffic patterns since each link, in each direction, has
a dedicated cell. However, the amount of cells is the same
for each link, and ALICE thus suffers the same issues with
traffic concentrations and over-provisioning as Orchestra.
Both [19] and [20] treat the limitations of schedulers that

produce static schedules and survey adaptive autonomous
schedulers. These schedulers aim to support varying topolo-
gies and/or traffic patterns by dynamically adapting the
schedule. ATRIA [21] targets industrial applications and lets
each node autonomously implement a schedule based on the
network topology and fixed traffic intervals. The scheduling
algorithm is optimized to reduce collisions, yet conflict-free
cells can not be guaranteed, which may be a challenge if,
e.g., bounded latency is required. Similarly, A3 [22] lets
each node estimate the number of cells needed but does so
solely by observing transmission attempts. As with ATRIA,
conflict-free allocation cannot be guaranteed.
TESLA [23] and OST [24] aims to make Orchestra more

adaptable. Using different techniques, neighboring nodes
adjust their schedule in response to the current traffic load.
However, to synchronize schedules between neighbors, both
schedulers require nodes to signal each other by piggy-
backing information on acknowledgments, control traffic, or
application packets. As such, we do not consider OST and
TESLA strictly autonomous schedulers.
Kherbache et al. [25] provide an overview of nine differ-

ent schedulers and their support for heterogeneous traffic.
The survey includes Orchestra, ALICE, and OST, which
were evaluated through simulations. The evaluation included
nodes that generate traffic with different constant intensities,
yet the traffic pattern was limited to convergecast towards
the network root.
Collaborative schedulers inherently support heterogeneous

traffic patterns since neighboring nodes may negotiate to
adapt their schedule as traffic requirements change. A notable
mention is YSF [26], which schedules for traffic flows.

The interested reader may find our comprehensive survey
of TSCH schedulers in [2].

IV. PROBLEM STATEMENT AND CONTRIBUTION
In an industrial context, supporting heterogeneous traffic pat-
terns is crucial, yet they are inherently more challenging due
to their unpredictable nature. E.g., in a sensor-to-actuator

VOLUME 4, 2023 2359

URKE et al.: AUTONOMOUS FLOW-BASED TSCH SCHEDULING FOR HETEROGENEOUS TRAFFIC PATTERNS

application, the location of sensors and actuators in the RPL
tree is not known before deployment. Further, it may not be
known to which actuator each sensor transmits or the ratio
between sensors and actuators.
TSCH schedulers have to a large extent been designed for

convergecast traffic patterns with constant packet rate; 70 out
of the 76 schedulers surveyed in [2] were either designed
or evaluated solely for convergecast. To our knowledge, no
autonomous scheduler addresses heterogeneous traffic pat-
terns while guaranteeing resources to every traffic flow. We
aim to address this gap and widen the industrial applicability
of autonomous scheduling.
Our contribution is an investigation into the challenges

facing an autonomous flow-based scheduler that supports
heterogeneous traffic patterns. We expand our Layered
scheduler to conduct the investigations, yet we argue our
findings are valid for any scheduler meeting a short list of
assumptions. Using the extended scheduler, we show how
heterogeneous traffic patterns may be supported and evaluate
the resulting performance. In summation, our contribution is:

1) Extended the Layered scheduler to add support for het-
erogeneous traffic patterns and evaluate it in the FIT
IoT-LAB testbed. To our knowledge, this is the first
autonomous flow-based scheduler that supports other
traffic patterns than convergecast. The modifications
include a novel scheduling mechanism where applica-
tion traffic sent in a shared cell is used as a signal to
schedule a dedicated cell for future traffic.

2) Identified and described seven challenges met when
supporting heterogeneous traffic patterns in an
autonomous flow-based scheduler. For each challenge,
we propose mitigations and show their impact using
the Cooja simulator and FIT IoT-LAB.

3) Open-sourced implementation of all proposed
mitigations and the modified version of the Layered
scheduler. Available at https://github.com/arurke/
layered-scheduler.

The remainder of this paper is organized as follows: First,
we present the original Layered scheduler since this will be
used as a basis for our proposed scheduler. Next, we dis-
cuss flow-based scheduling for heterogeneous traffic patterns
and describe our design and the modifications needed on
the Layered scheduler. Section VII presents the challenges
we identified through our work with the scheduler and dis-
cusses potential mitigations. We next move on to evaluating
the scheduler and the proposed mitigations: Section VIII
describes our methodology and setup, while we present and
discuss our results in Section IX before concluding.

V. ORIGINAL LAYERED SCHEDULER
We proposed the autonomous Layered scheduler in [15] and
conducted testbed evaluations in [3]. Layered operates in
a flow-based manner by allocating cells to traffic flows
that are assumed destined for the RPL root. As dedicated
cells are reserved at every hop from source to destination,

FIGURE 4. 5-node network with corresponding schedule.

performance is retained independent of the network topology
or competing traffic flows.

A. SCHEDULE STRUCTURE
Layered divides the slotframe into two layers, both con-
taining one dedicated timeslot per traffic flow supported.
Each layer is designated to be used by nodes at either odd
or even depth.2 Thus, packets in all flows are forwarded
one hop after a layer has been executed. Figure 4 shows
an example network where 3 sensor-nodes generate traffic
flows (nodes 1, 2 and 4). The right side shows the schedule
structure and all cells that may be scheduled. The example
topology is only 3 hops deep, yet the Layered structure sup-
ports networks of any depth, with Figure 4(b) showcasing
the first 6 hops. The green cells are reserved for the flow
from node 1. Since node 1 is at the odd depth of three hops,
the cell at timeslot 3 and channel 1 will be utilized when a
new packet is generated. When node 2 (at depth 2) forwards
onward, the green cell at timeslot 0 and channel 0 will be
utilized.
Both node 1 and node 3 will utilize timeslot 3 when

forwarding node 1’s flow. These nodes are only two hops
apart and thus use different channels since they may interfere
with each other. As the number of hops between two nodes
increases, it is assumed a point is reached where they will
no longer interfere. Nodes at such a distance may employ
spatial reuse, i.e., the same cell being used by two or more
nodes simultaneously. The Layered schedule in our example
employs two channels which yield spatial reuse for nodes
four hops apart at depth 1 and 5, depth 2 and 6, and so on.
If needed, the distance may be increased by two hops per
additional channel.

B. SCHEDULING CELLS
To install the correct cells in its schedule, a node needs to
know 1) Its own depth in the routing tree, which may be
learned from RPL, and 2) The IDs of flows passing through

2. Number of hops from the root in the RPL tree.

2360 VOLUME 4, 2023

the node. We assume each node in our sub-tree generates one
flow each, and we let every node’s unique ID serve as flow
identifier.3 The last byte of each node’s IP address reflects
the node ID. To learn the descendant’s IP address and thus
the flow identifiers, nodes inspect the originator address of
RPL DAO messages that all nodes send to the root. This is
a feasible approach because the DAOs will travel the same
upwards path as the traffic flows.
The timeslot offset of a flow is decided by a hash function

that maps the flow identifier to a timeslot. In our usage, the
hash outputs the ID minus 1, such that ID 1 yields timeslot
0, ID 2 yields 1, and so on. The channel offset is decided
by the node’s depth and the configured number of channels
as illustrated in Figure 4(b). Formal descriptions of the cell
offset calculations may be found in [15].

Using Figure 4 as an example of the scheduling: When
node 2 receives a DAO from node 1, it uses its own depth
(2) and the DAO originator’s ID (1) to install cells for node
1’s traffic flow. An RX cell for traffic from node 1 is installed
at timeslot 3, channel 1, and a dedicated TX cell to forward
upwards is installed at timeslot 0, channel 0. This process
is repeated at every hop until the root node, providing each
flow with contention-free cells end-to-end.
Shared cells are inserted at fixed intervals through the slot-

frame, e.g., at every 7th timeslot. These have been omitted
from our examples for improved clarity. Share cells serve
RPL control traffic, TSCH beacons, and any downward traf-
fic. The number of shared cells passed in the slotframe
must be added when calculating the dedicated cell timeslot
offset.

VI. DESIGN - AUTONOMOUS FLOW-BASED
SCHEDULING FOR HETEROGENEOUS TRAFFIC
PATTERNS
Schedulers must adapt to the flow of traffic through a
network. With convergecast, the data flows upwards to the
network root following the same path as RPL DAO mes-
sages. With heterogeneous traffic patterns, the flow will be
upwards for some parts of the path and downwards for the
remaining. There is also no network control traffic following
the same path that may be exploited. Traffic concentrations
depend on the routing topology and the application, e.g., the
distribution of sensor and actuator nodes in the topology.
To meet the challenge of heterogeneous traffic pat-

terns, two functions are missing in autonomous flow-based
scheduling: Firstly, a schedule structure must be designed to
accommodate cells dedicated to each flow across every link
in the routing topology. Secondly, the cell scheduling must
autonomously respond to the heterogeneous traffic pattern
and schedule the correct cells.
Next, we discuss how these tasks may be solved and

present a modified version of the Layered scheduler designed
for heterogeneous traffic patterns.

3. Other flow identifiers may be envisioned such as the destination IP
and IPv6 header flow label, see discussion in [3, Sec. III-C1].

FIGURE 5. 6-node network with corresponding schedule.

A. SCHEDULE STRUCTURE
The Layered schedule structure must be modified to support
a heterogeneous traffic pattern. For the upwards direction
(towards the root), the existing structure can be reused
without changes. To support the downward direction, we
duplicate the upward schedule and create a second mirror-
ing part. The two parts do not conflict as channels separate
them: One set of channels is utilized in the upward direc-
tion and another in the downward. This leverages Layered’s
minimal channel usage, as the minimum amount of channels
needed is doubled to four.4

Figure 5(a) shows an expanded topology with 3 sensor-
nodes transmitting to an actuator node marked “A”. The
new Layered schedule structure for this network is shown
in Figure 5(b). It is identical to a regular Layered schedule
but includes a new downward section that utilizes channels
2 and 3, while the upward uses channels 0 and 1. Note that
the upward cells for depth 0 are omitted since the root node
cannot transmit upwards.
The regular Layered algorithms can be used to calculate

timeslot and channel offset,5 except for the channel offset,
which needs an additional term (marked in bold below) to
accommodate downward cells:

CH(n) =
(⌊

depthn − 1

L

⌋
mod CHdir

)
+(Dir ∗ CHdir) (1)

where depthn is the node depth in the RPL tree, L is the
number of layers, CHdir is the number of channel offsets
utilized per direction, and lastly Dir equals 0 for the upward
direction and 1 in the downward direction. In other words,

4. The common IEEE 802.15.4 physical layer in the 2.4 GHz band offers
16 non-overlapping channels.

5. See [15, Table 1].

VOLUME 4, 2023 2361

URKE et al.: AUTONOMOUS FLOW-BASED TSCH SCHEDULING FOR HETEROGENEOUS TRAFFIC PATTERNS

FIGURE 6. Runtime schedule for network in Figure 5(a). Colors denote the traffic
flow being served. SC = Shared Cell.

when scheduling for the downward direction, channels are
offset by CHdir.

B. SCHEDULING CELLS
Learning which cells to schedule in networks with heteroge-
neous traffic patterns typically requires a form of signaling
between neighbors. Collaborative schedulers may use proto-
cols such as the 6TiSCH 6P protocol [27], which allows
nodes to negotiate the cells to be scheduled. However,
autonomous approaches without dedicated communication
are also feasible by exploiting existing information such
as the neighbor- or routing-table and other traffic. RPL
DAO messages can however not be exploited, as done by
Layered and Escalator, since the application traffic does not
necessarily follow the same path as any control messages.
We propose a novel autonomous mechanism where the

application traffic is exploited for signaling between neigh-
bors: If a flow does not have a dedicated cell for a traffic
flow, the first packet is transmitted in a shared cell. Upon
receiving this packet, the neighbor reserves a dedicated RX
cell. When the transmitter receives the packet acknowl-
edgment, it reserves a corresponding dedicated TX cell.
Subsequent transmissions on this link will utilize the ded-
icated cells. Our approach is analogous to how Ethernet
switches map MAC addresses to ports: The first packet
is flooded, and the reply is used to ensure the correct
port/resource is used for future transmissions.
Figure 6 shows the cells that will be reserved as the

network in Figure 5(a) operates. Note firstly how the first
timeslot is utilized by a shared cell. When calculating the
dedicated cell timeslots, one offset must therefore be added.
Using the flow from node 1 as an example: The first

application packet is sent in the shared cell. As node 2
receives the packet, it uses the source IP address to learn
the flow identifier. Based on its own depth, node 2 knows
the transmitter is on depth 3 and that the packet is traveling
upwards. Node 2 can now calculate the RX cell for node
1’s flow and add it at timeslot 4 and channel 1. As node
1 receives the packet acknowledgment, it does the same
calculation using its own depth and adds a TX cell.
When the packet has progressed to the root node, the direc-

tion shifts downward. Node 4 will notice this as the packet
comes from its parent node. The only difference is the chan-
nel calculation where the offset described in Equation (1)
must be added, yielding an RX cell at timeslot 1 and chan-
nel 3. No spatial reuse is employed in this example, as the
network would need to be 5 hops deep.

Note that a traffic flow always has the same source node.
If actuator A wanted to reply to any sensor nodes, that would
constitute an entirely separate traffic flow that needs its own
scheduling. It is not possible to re-use reservations for a
flow in the reverse direction without encountering scheduling
collisions.
With the original Layered, the schedule convergence is

fixed to the convergence of RPL. Once the identity of the
nodes downstream is known via DAO messages, the schedule
is given. For the modified Layered, the schedule is built as
the flow uses a shared cell once and next migrates to a
dedicated cell. As the topology or traffic path changes, the
process is repeated to adapt the schedule. With shared cells,
e.g., every 7th timeslot, convergence for one flow is expected
in less than 70 ms,6 yet depends on the shared cell capacity,
as discussed later.
Both application traffic and RPL and TSCH control traf-

fic will utilize the same shared cells. We opted for this
approach as it increases cell utilization and thus allows for
fewer shared cells and a shorter slotframe, reducing latency
and increasing capacity. However, it opens for application
traffic to impact the network control since the transmissions
may interfere. It is, therefore, critical to ensure sufficient
shared cell capacity. Alternative schemes may be consid-
ered: Using a separate set of shared cells for application
traffic would remove the network control coupling. However,
this would reduce cell utilization and increase the slotframe
length. More complex schemes could involve using specific
channel offsets at different DODAG depths to reduce the
collision domains.

C. ASSUMPTIONS
The scheduler outlined above rests on a small set of assump-
tions, and we, therefore, argue that our findings hold for any
scheduler following these assumptions:
1) RPL in storing mode is utilized as the routing protocol.
2) The schedule structure can accommodate a dedicated

TX and RX cell for each traffic flow across every link
in the RPL DODAG.

3) Dedicated cell timeslot and channel offsets are cal-
culated based on the packet source IP address, the
current depth of a node in the DODAG, and the packet
direction (upward or downward).

4) Application traffic can intermittently use shared cells
to build the schedule.

VII. CHALLENGES AND MITIGATIONS
Based on the scheduler described in the previous section,
we identified seven challenges. We categorize them accord-
ing to their origin: 1) Common challenges that are found
in most TSCH schedulers yet are exacerbated in our use-
case, 2) Challenges specific to flow-based scheduling, and
3) Challenges specific to heterogeneous traffic patterns.
Table 1 overviews these challenges and their mitigations,
while we describe the details below.

6. Assuming 10 ms timeslots which are typical at 250 kbps datarate.

2362 VOLUME 4, 2023

TABLE 1. Challenges and mitigations.

A. COMMON CHALLENGES
1) LINK METRIC VOLATILITY

RPL makes decisions based on link metrics such as the
estimated transmission count (ETX). Links may, however,
be implemented by a mix of dedicated and shared cells
with significantly different ETX. The neighbor link metrics
may therefore fluctuate as the scheduler remove and add
dedicated cells. These fluctuations may trigger undesirable
RPL topology changes.
A straightforward solution is to use metrics that are agnos-

tic to the particular cell, such as hop count or energy
mentioned in RFC 6551 [28]. If ETX is preferred, an option
is to employ the Minimum Rank with Hysteresis Objective
Function (MRHOF) [29], which aims to reduce parent
switches when metric changes are small. Further, applying
a low-pass filter to the ETX calculations, as done with a
moving average in the Contiki-NG operating system [30],
may smooth out short-lived changes. Lastly, more complex
solutions could be envisioned, such as making the link ETX
calculation cell-aware by weighing or ignoring the ETXs of
particular cells.

2) SHARED CELL CAPACITY

Estimating the appropriate shared cell capacity is diffi-
cult since, in addition to serving control traffic, the shared
cells must also serve the application traffic needed to build
the schedule. Unfortunately, the increased need for shared
cells may be synchronized between the network control and
scheduler: For example, network topology changes increase
the routing protocol traffic, while the scheduler simultane-
ously needs shared cells to schedule dedicated cells to the
new routes. Similarly, at the application-level, shared cell
capacity may be strained if several nodes start transmitting
simultaneously, e.g., due to events or alarms.
Ensuring appropriate shared cell capacity is a difficult

balance act: Fewer cells reduce energy consumption yet
increase contention and may lead to prolonged RPL, TSCH,
and scheduling convergence. Conversely, adding more shared
cells improves capacity yet increases energy consumption
and lengthens the slotframe, increasing latency and reducing
overall throughput. 6TiSCH RFC 9033 [31] recommends that
broadcast traffic among a node and its neighbors not exceed
one-third of the available capacity. However, identifying the

amount of traffic before deployment is challenging since the
radio environment unpredictably influences link topology,
spurs retransmissions, and control traffic, etc.
Quality of Service (QoS) mechanisms such as traffic shap-

ing may be applied to ensure the shared capacity is not
overwhelmed. Similar techniques are mentioned in RFC
9033, pointing to the Trickle algorithm [32] used to con-
trol RPL DIO message intervals. Further, prioritization could
mitigate issues by emphasizing network control and critical
applications. In our flow-based queuing implementation,7 the
shared cells first serve the RPL and TSCH beacon queues
before serving the application. Parameters in 802.15.4 TSCH
may also be tuned, including the number of retransmissions
and the maximum backoff after a failed transmission attempt.
More complex mechanisms could be envisioned where the

schedule dynamically adjusts to the traffic needs. Schedulers
TESLA [23] and OST [24] address this issue by changing
the slotframe length based on traffic load. However, they
are unable to achieve this autonomously as both schedulers
require information to be embedded into packets exchanged
between neighbors.
A pragmatic approach involves conducting tests as the

network is deployed to identify an appropriate amount of
shared cells. In our evaluations, we utilized this approach in
combination with tuning TSCH parameters.

3) NEIGHBOR SCHEDULE SYNCHRONIZATION

Neighboring nodes must have corresponding TX and RX
cells for transmissions to succeed. Latency, reliability, and
energy consumption suffers as nodes transmit or listen in
vain. Further, it may impact the routing protocol as trans-
mission failures degrade the link’s ETX. As the scheduling
decisions for flow-based heterogeneous patterns are more
complex than typical autonomous schedulers, care must be
taken for schedules to stay synchronized.
We found it necessary to add a cell timeout: If a cell

is left unused for a configurable time, it is automatically
deallocated. This is needed to remove stale cells but also
ensures the cleaning of erroneous reservations.
In addition, we adopted a rule of thumb to be cautious

about removing RX cells. This is crucial since the neighbor

7. See [3, Sec. IV-B] for details.

VOLUME 4, 2023 2363

URKE et al.: AUTONOMOUS FLOW-BASED TSCH SCHEDULING FOR HETEROGENEOUS TRAFFIC PATTERNS

is unaware of the removal, causing failed transmissions. The
same guideline applies when adding cells - we are wary
of restricting the scheduling of RX cells. One example is
the schedule quarantine mechanism described later, which
restricts scheduling TX cells, but always allows RX cells.

B. CHALLENGES SPECIFIC TO FLOW-BASED
SCHEDULING
1) ROUTING TABLE SYNCHRONIZATION

Dedicated cells are scheduled for a specific traffic flow.
However, a routing table change may route a traffic flow to
a different next-hop neighbor. The new next-hop, unaware
of the changes, does not have dedicated RX cells for the
flow, and the transmission will fail if the schedule is not
adapted.
We identified a set of schedule changes to be executed for

each routing table event. Following our discussion on neigh-
bor schedule synchronization, note how we restrict removing
RX cells to avoid unnecessary transmission failures.

• Default route change: Remove all upwards TX cells,
as all are directed to our old default route. Downward
TX links are preserved since our child nodes remain
unchanged.

• Route added: Remove all TX cells serving flows with
the same destination but a different next-hop than the
added route. This requires the scheduler to maintain an
overview of the destination and next-hop of each traffic
flow, which we argue is trivial.

• Route removed: Remove all TX cells serving flows with
the same destination as the removed route. If this route
was for a neighbor, it is no longer reachable, and all
TX and RX cells toward the neighbor are removed.

• DODAG depth changed: Remove all TX cells. RX
cells will be timed out or removed by the forwarding-
inconsistency mechanism described below.

2) FORWARDING OUTSIDE THE DODAG

RPL allows traffic, in certain conditions, to be forwarded
without following the DODAG - see Section 11.2.2.2 in
RFC 6550 [10]. If the packet, e.g., crosses from one branch
of the DODAG to another, it might be forwarded at the
same depth twice. This may cause scheduling collisions
and interference because the flow-based scheduling approach
allocates one cell for each direction at each depth, as
described in Section VI-A.
We propose a forwarding-inconsistency mechanism that

detects and mitigates forwarding outside of the DODAG. To
detect, a receiving node inspects each packet’s IPv6 hop-by-
hop header.8 The header indicates the transmitter depth and
the packet’s intended direction (downward or upward). If this
information does not correspond to the receiver’s depth and
direction, inconsistent forwarding is assumed. In response,

8. RPL adds an IPv6 hop-by-hop header to every packet as part of the
RPL loop avoidance and detection mechanism described in Section 11.2 of
RFC 6550 [10], and in RFC 6553 [33].

the receiver poisons the link to the transmitter by removing
the relevant RX cell. This will cause future transmissions to
fail, increase the link ETX, and lead the transmitter to drop
the erroneous route.
The inconsistency-mechanism is not without cost, as the

poisoned link wastes energy on failed transmissions and may
cause packet loss. The mechanism is, however, disabled for
a period of time after any routing changes. This is done
to avoid unnecessary poisoning in cases where 1) Ongoing
topology changes cause temporary forwarding issues, and
2) To allow DIO messages with updated depth information
to be dispersed.
Alternative solutions from the RPL perspective may also

be considered: Shortening the route lifetime would reduce
the duration of a problematic situation at the expense of
energy since more frequent DAO messages are needed to
refresh routes. Furthermore, RPL could be modified to be
less tolerant of traffic outside the DODAG.

C. CHALLENGES SPECIFIC TO HETEROGENEOUS
TRAFFIC PATTERN
1) OUTDATED INFORMATION IN QUEUED PACKETS

Since the scheduler reacts to incoming application packets,
the traffic flow must reflect the current routing and schedul-
ing state. Contiki-NG makes the routing decision before
queuing the packet at the MAC layer. As queues grow,
the routing decision might be outdated when the packet
is forwarded. The packet thus inherently signals outdated
information to the receiving scheduler.
This topic is discussed from the perspective of ad-hoc

networks by Landmark et al. in [34]. They argue for ingress
queuing, where packets are queued before any routing deci-
sion. The ingress queue is served only when there is room
in the minimal egress queue at the MAC layer. Thus the
routing decision is made shortly before packet transmission.
Keeping changes limited to the scheduler, we opted to

add a schedule quarantine timer: For a configurable time
after any routing changes, no TX cells may be added to
the schedule. This aims to empty the queues of outdated
packets before scheduling changes are allowed. Not adding
TX cells increased shared cell usage during the quarantine
time, causing drawbacks such as increased contention and
prolonged time before the application could benefit from
dedicated cells.

2) NETWORK-LAYER PROCESSING

Incoming packets are first handled at the link layer where
the scheduler resides. The packet may cause scheduling
changes, e.g., adding dedicated cells if an application packet
is received in a shared cell. However, later processing
in the network layer may reveal information relevant to
the scheduling decision. Specifically, RPL may find the
packet was forwarded incorrectly.9 The scheduler should not
accommodate such traffic.

9. See, e.g., Section 11.2.2.3 on DAO Inconsistency in RFC 6550 [10].

2364 VOLUME 4, 2023

We addressed this issue in a direct manner by imple-
menting a cross-layer mechanism where RPL notifies the
scheduler when forwarding errors are identified. In response,
schedule changes that were triggered by the erroneous packet
are reverted. A general caution is needed for cross-layer
mechanisms: They create couplings between functionality
designed to be agnostic to each other’s implementations. This
opens a slippery slope where new mechanisms are required
for each new protocol to be integrated, or restrictions are
placed on operators regarding protocols that may be uti-
lized. In our case, this is alleviated since employing RPL is
a preexisting requirement for the scheduler to operate.

VIII. EVALUATION
A. METHODOLOGY
Reproducibility is crucial in scheduler research, and we,
therefore, open-sourced our implementation and utilized
openly available tools for analysis of the results. We preferred
using the Cooja simulator from Contiki-NG v4.6 since simu-
lations allow for rapid executions and detailed control. When
a realistic radio environment was needed, we employed the
FIT IoT-LAB [35] testbed. Further, we based our methodol-
ogy on the TriScale approach [36]. TriScale aims to improve
experiment replicability and provides a methodology and
statistical toolchain which allows researchers to draw sound
conclusions with quantifiable certainty. We briefly describe
our methodology below and refer the interested reader to [36]
for full details on TriScale.
Each experiment is repeated in a given number of runs.

For each run, we calculate metrics such as latency, packet
loss, and radio duty cycle. The resulting set of metrics is
next used to calculate Key Performance Indicators (KPI).
While the metrics describe each run, a KPI describes the
underlying distribution from which the runs are drawn,
i.e., the performance for any set of runs. The KPI is a
one-sided confidence interval of a given percentile of the
metric performance. In other words, the KPI provides a pes-
simistic10 bound for a given percentile of the metric for any
runs.
The number of runs decides the percentiles that are pos-

sible to calculate. As we target industrial applications, we
aim for tail performance: For our simulations, we use 93
runs, which allows us to calculate the 95 percentile, with
the worst run providing robustness against outliers. In this
paper, we always use 95% confidence. Consequently, the
simulation results are, with 95% confidence, at minimum,
as presented, for at least 95% of any runs. Testbed exper-
iments are time-consuming, and we, therefore, execute 14
runs. Thus, the testbed results are as presented, or better, for
at least 70% of any runs.
We utilize the following metrics:

1) PDR: Packet delivery ratio. The number of pack-
ets received at the recipient application layer, to all
generated packets.

10. E.g., higher for latency and energy, lower for packet delivery ratio.

FIGURE 7. 5 x 5 grid network used in simulations. Green circle indicates
transmission range, grey indicates interference range.

2) Latency: The time between a packet is generated at
the sender application layer to it is received at the
recipient application layer.

3) Energy: Radio duty cycle. The duration of which the
radio is powered, to the experiment duration.

4) Dedicated cell ratio: The number of application data
transmissions using dedicated cells, to the number
of all transmissions (dedicated + shared). A high
dedicated cell ratio indicates application traffic is for-
warded in cells with a guaranteed capacity and without
contention, as opposed to shared cells.

B. SETUP
In Cooja simulations, we employ a 5 x 5 grid network seen
in Figure 7. Grids are a common topology used in sched-
uler evaluation and are ideal in our case as they yield a
variety of routing topologies. The circles in Figure 7 illus-
trate the radio propagation model, where nodes within the
green transmission range have perfect links if not interfered
with by other transmissions.
The FIT IoT-lab testbed has different sites with differ-

ing properties, which we select according to our needs.
The Grenoble site has nodes placed along hallways, typ-
ically yielding elongated line topologies. Strasbourg has
nodes arranged in a grid and thus allows for more varying
topologies.
We emulate a control application with sensors transmitting

to actuators. This could be realized using, e.g., multicast, yet
we employ unicast peer-to-peer. In a typical deployment, it
will be known which nodes are sensors that transmit and
which are actuators that receive. However, we aim for a
more challenging situation by having all nodes transmit to
random destinations. The traffic paths follow the RPL tree
upwards to the common ancestor before going downward to
the destination. In the simulation grid topology, the paths
have a typical mean length of 5-6 hops, with a maximum
length of around 10-15 hops. At boot, all nodes except the
root node randomly select a destination node that it will
transmit towards every 3 sec. The slotframe is typically 67
timeslots long, i.e., 0.67 sec. Thus there is more than four
times over-provisioning to allow for retransmissions.
The scope of our work is limited to converged

performance. The duration of transient states was found
through experiments by noting when metrics reached a stable
state. As such, application traffic transmissions starts after

VOLUME 4, 2023 2365

URKE et al.: AUTONOMOUS FLOW-BASED TSCH SCHEDULING FOR HETEROGENEOUS TRAFFIC PATTERNS

TABLE 2. Experiment parameters.

the initial TSCH and RPL convergence at 6 minutes and last
throughout the experiment. The introduction of application
traffic creates a new convergence period that depends on the
setup and is listed in Table 2. After the convergence, data
is collected for 10 minutes, with the last minute disregarded
to avoid packets in flight. Note that the converged state
also included RPL topology changes and scheduling adjust-
ments. As such, the impact of any re-scheduling, such as
parent switches and link failures, is included in our results.
Table 2 lists all experiment parameters and all non-default
settings.

C. COMPARISON WITH OTHER SCHEDULERS
We compare the performance of our modified Layered
scheduler with the Orchestra scheduler briefly described
in Section III. Orchestra is considered the state-of-the-art
autonomous scheduler, it is widely used when comparing
schedulers, and an open-source implementation is found in
Contiki-NG. The original Layered scheduler is not eligible
for comparison since it only supports convergecast traffic.
As discussed in Section III, other autonomous schedulers
aim for heterogeneous traffic patterns, yet unfortunately, no
open-source implementations are available. An exception is
found for ALICE,11 yet the implementation has not been
kept up-to-date with the operating system. We deem it nec-
essary to run all schedulers on the same operating system
version to ensure comparable results.

D. ISSUES IN CONTIKI-NG RPL IMPLEMENTATION
Through our work, we identified and mitigated three bugs
and issues with the Contiki-NG RPL implementation. All
are related to the handling of situations that are expected
not to be common:

1) A sub-optimal handling of DAO inconsistency where
No-Path DAOs were used to respond to forwarding

11. See https://github.com/skimskimskim/ALICE.

FIGURE 8. PDR and duty cycle for different shared cell intervals, in simulator.

errors. This is as opposed to setting the Forwarding
Error ‘F’ bit as suggested in Section 11.2.2.3 in RFC
6550. This led to a prolonged time before a DAO
inconsistency would be corrected.12

2) A bug in handling No-Path DAOs where the packet
could be discarded erroneously. This would allow
incorrect routes to remain in the routing table longer
than necessary.13

3) A bug where No-Path DAOs would be incorrectly seri-
alized on the transmitter. Thus, the receiver could not
parse the message, and the route would remain in the
routing table until timeout.14

In addition, we encountered and added a workaround
for an RPL issue recently discovered in Contiki-NG. This
could, in specific scenarios, lead to application packets
being discarded although they were eligible for further
processing.15

IX. RESULTS
In the following, we evaluate the impact of our proposed mit-
igation mechanisms and key parameters (see Table 1). We
do not investigate the volatile link metrics (challenge A.1)
since it can be viewed as a general caution, nor the routing
table synchronization (challenge B.1) since the mitigations
were strictly necessary for the scheduler operation. We final-
ize this section with a brief investigation into scalability and
a performance evaluation of the scheduler, comparing it to
the Orchestra scheduler.

A. SHARED CELL CAPACITY
As discussed in Section VII-A2, the shared cell capacity is
vital since the schedule convergence relies on it (challenge
A.2).
We evaluate inserting shared cells at every 5th, 7th, 9th,

or 11th timeslot. Figure 8 shows the PDR for the different
intervals. Thus, with 95% confidence, for 95% of any runs,

12. See https://github.com/contiki-ng/contiki-ng/issues/2386.
13. See https://github.com/contiki-ng/contiki-ng/issues/2385.
14. See https://github.com/contiki-ng/contiki-ng/issues/2377.
15. See https://github.com/contiki-ng/contiki-ng/issues/2285.

2366 VOLUME 4, 2023

FIGURE 9. Latency for different shared cell intervals, in simulator.

the PDR is at least 99.3% with a shared cell every 7th times-
lot. When decreasing to every 11th timeslot, the capacity is
insufficient as the PDR drops to 40.5%. The drop is caused
by a lack of scheduler and RPL convergence as transmissions
of both application- and RPL-packets fail.
Figure 8 also shows the energy consumption illustrated

through the radio duty cycle. Notably, the scenario with
the least shared cell capacity, every 11th, yields the highest
consumption. This is explained by topology instability which
spurs significant control traffic. As expected, the remaining
scenarios show that energy consumption decreases with the
declining shared cell capacity. This illustrates the trade-off
between capacity and energy consumption - increasing the
shared cell interval from every 7th to every 5th timeslot
increases consumption by ~17%.
Figure 9 shows how the shared cells’ capacity influences

the mean and 99-percentile latency. All scenarios have a
median latency in line with the expectations: The slotframe
is ~0.67 s long, and the mean path length is 5-6 hops.
Each slotframe has two layers, with each layer advanc-
ing the packet one hop. Thus the minimum latency without
retransmissions would be around 1.7 - 2 s. With shared cells
every 7th and 9th timeslot, we note there is only a mod-
erate increase in latency even at the extreme 99-percentile.
Such robust performance is a desirable property in industrial
applications.
However, we note a significant increase in 99-percentile

latency when shared cells are inserted every 5th timeslot.
This was not caused by the shared cell interval directly but
by the cell timeout parameter (see Section VII-A3) being
set too short. Re-running simulations with a longer timeout
resolved the issue and demonstrated the importance of proper
parameter settings.
In detail, we found that the link poisoning discussed in

Section VII-B2 would fail. Links are poisoned by removing
dedicated RX cells such that link ETX rises, and the neighbor
is deemed unreachable. With a short cell timeout, a node
would too quickly switch away from the poisoned dedicated
cells and over to shared cells. The shared cells improve
the link ETX since they had minimal interference when at
every 5th timeslot. Thus, the link ETX never passes the
unreachable threshold and the link loops between shared
and poisoned cells until the route times out. Increasing the

cell timeout reduces shared cell usage such that the link
ETX increases sufficiently for the neighbor to be deemed
unreachable.
Our key takeaway is the significant impact of shared cell

capacity on performance. Care should be taken to ensure suf-
ficient shared cells in the schedule. Secondly, more capacity
is not always better, as seen in the increased energy con-
sumption and latency. Lastly, it must be stressed how our
specific capacity values are valid only in this setup since
capacity requirements vary between deployments.

B. CELL TIMEOUT
To mitigate challenge A.3, neighbor schedule synchroniza-
tion, we proposed a cell timeout mechanism in Section VII-B
which removes a cell if no packets are successfully trans-
mitted or received for a configurable timeout period. This
is done to clear the schedule for no longer needed cells
and to clean up any erroneous allocations. The duration of
the period has several implications: A short period allows
for faster cleaning up of stale allocations, thus reducing the
energy consumption on idle listening. However, shorter peri-
ods also risk useful cells being removed in cases where, e.g.,
retransmissions earlier in a path cause a temporary halt in
the traffic flow.
Since retransmissions are expected to have a significant

impact, we opt to use the FIT IoT-LAB testbed, which pro-
vides a realistic radio environment. The network scale should
not influence the results, and we, therefore, utilize 16 nodes
at the Grenoble site.
All nodes in our experiment transmit to a random destina-

tion in 2.8-second intervals. We then vary the timeout values:
The shortest timeout is at 3 seconds, i.e., only 200 ms more
than the transmission interval. Thus, any retransmissions risk
a cell being timed out and unscheduled along the flow path.
The following scenarios increase the timeout to 4, 6, 9, and
ultimately 15 seconds.
Using only the best performing channels at the Grenoble

site,16 we saw close to 100% packet reception rate (PRR)17

across all links. In such an environment, the timeout values
were of no consequence, with the PDR and dedicated cell
ratio at ~100% for all values. This makes sense since cells
can only time out when transmissions fail. To bring forward
the timeout impact, we moved to use all available channels,
yielding a PRR of around 70 - 90%. With the added volatility,
tests showed an additional 8 minutes was needed for the
network to converge. We also conduct 5 extra runs, which
allows two runs instead of one to provide robustness against
outliers.
Figure 10 shows the PDR and dedicated cell ratio for the

different timeouts. The shortest timeout illustrates the impact
of too aggressive removal of cells. Every retransmission will
trigger a cell timeout and a corresponding use of shared

16. We identified the best channels as 18 - 21 in earlier work [3].
17. Packet Reception Rate measures the quality of a link by taking

the number of received acknowledgments to the number of transmission
attempts.

VOLUME 4, 2023 2367

URKE et al.: AUTONOMOUS FLOW-BASED TSCH SCHEDULING FOR HETEROGENEOUS TRAFFIC PATTERNS

FIGURE 10. Dedicated cell ratio and PDR for different cell timeouts, in testbed.

FIGURE 11. Duty cycle for different cell timeouts, in testbed.

cells to re-schedule. As such, we see the PDR suffer, and
only 76.9% of the application packet transmissions are done
in dedicated cells. As the timeout increases, so does the
robustness against retransmissions, and we see the PDR and
dedicated cell ratio remain high. Any remaining cell timeouts
are due to topology changes.
The duty cycles of each scenario are seen in Figure 11.

Although the longer timeout risk stale allocations incurring
idle listening, the effect is offset by the increased schedule
stability, avoiding shared cell usage. This negation holds until
the longest timeout, 15 s, where we see a slight increase
in energy consumption. This could be explained by idle
listening in lingering cell allocations.
In summation, the cell timeout does not significantly

impact deployments where the PRR is close to 100%.
In challenging environments with lower PRR, the timeout
should be adapted to the deployment characteristics. In our
setup, we found the timeout needed to be at least 1.5 times
the transmission interval to ensure reliability and less than
5 times the interval to maintain energy efficiency.

C. MITIGATION MECHANISMS
In Section VII, we proposed a set of mechanisms to meet dif-
ferent challenges. These were 1) A forwarding-inconsistency
mechanism, which tackles traffic being forwarded outside
of the DODAG (challenge B.2), 2) The scheduling quar-
antine timer, which combats outdated routing information
signaled by enqueued packets (challenge C.1), and 3) A
cross-layer mechanism which informs the scheduler about
packets deemed invalid by RPL (challenge C.2).
These mechanisms are primarily relevant for specific and

rare cases. E.g., only in particular conditions may an RPL

FIGURE 12. CDF of PDR, with and without mechanisms, in simulator. Note y-axis
has a break to improve readability.

FIGURE 13. Dedicated cell ratio and PDR, with and without mechanisms, in testbed.

topology change cause traffic to be forwarded outside the
DODAG or such that RPL recognizes packets as invalid.
Therefore, the performance impact of each mechanism is
difficult to quantify without designing specific experiments
for each. However, when combining all mechanisms, the
effect becomes more pronounced. Consequently, we com-
pared scenarios with all mechanisms applied to those without
any.
Through simulations, we found the mechanisms have min-

imal impact on the dedicated cell ratio yet improve the
minimum PDR by ~2%. As mentioned, the mechanisms are
applicable only under certain conditions, and their impact is
therefore found in the more extreme percentiles. Figure 12
illustrates this point by showing the cumulative distribu-
tion function of the PDR for percentiles 3 to 97. Note
how approximately 80% of runs have a PDR close to 100%
regardless if mechanisms are applied or not. For the remain-
der, we see the mechanisms can avoid and reduce PDR
degradation. Similar results were seen for latency.
The simulation has perfect radio conditions, and we, there-

fore, corroborate our results by employing 26 nodes at the
FIT IoT-LAB Strasbourg site. The testbed radio environment
has a mean PRR between 70-90% and is expected to more
frequently produce situations addressed by the mechanisms.
Figure 13 shows the minimum PDR and dedicated cell ratio
for 70% of runs. Whereas the simulations had no difference
at the 80-percentile, the testbed environment shows an ~1.7%
increase already at the 70-percentile. A slight improvement
in the utilization of dedicated cells was also found, indicating
the scheduler spends more time converged.

2368 VOLUME 4, 2023

FIGURE 14. 99-percentile and mean latency, with and without mechanisms, in
testbed.

Figure 14 shows a similar story for the latency. Applying
the mechanisms mitigates the rare cases, as demonstrated by
the 16% decrease in 99-percentile latency.
The takeaway from our investigation is that the proposed

mechanisms do indeed improve performance, yet the condi-
tions for which they are applicable may be rare. As such, the
mechanisms provide operators with an option for increased
robustness and predictable performance. These properties are
desirable in, e.g., industrial control applications where the
worst-case behavior is more critical than the mean behavior.
The necessity of the mechanisms depends on the deploy-
ment site since the mechanism’s impact is more significant
in challenging radio environments. Some mechanisms have
drawbacks, such as the cross-layer mechanism, which cre-
ates couplings between different layers in the network stack.
Thus, the benefit must be weighed against the disadvantages
for each deployment.

D. SCALABILITY
We briefly investigate scalability by expanding our Cooja
grid network to 9 x 9. The size of each layer in the Layered
schedule was increased to 81 to accommodate all flows.
Together with the shared cells, the slotframe length was
thus 202 timeslots. Consequently, the schedule can accom-
modate 1 new packet every 2.02 seconds in each flow. We
therefore configured each node to generate a packet every
9 seconds, yielding practically identical over-provisioning as
earlier simulations.
As the network grows, the need for shared cell capacity

may increase and must be considered, i.e., challenge A.2.
In our setup, we needed to increase the number of shared
cells from every 7th to every 5th timeslot. Secondly, we
increased the max. TSCH backoff exponent from 3 to 5 to
further spread retransmissions in time.
Results showed the PDR was retained at 99.7% with a

mean duty cycle at 8.3%. This is comparable to the 99.3%
PDR and 8.2% duty cycle seen for the smaller 5 x 5 network
scenario in Section IX-A.

Latency increased significantly, with a median latency at
13.5 s and 99-percentile at 27.1 s. This is, however, expected
due to the design of Layered: Firstly, the slotframe grows by
2 timeslots for every flow supported, which increases latency

FIGURE 15. PDR for different traffic intensities, in testbed.

and reduces the throughput per flow. Secondly, Layered for-
wards flow packets one hop per layer. With two layers in
a slotframe, each hop adds 1.01s to the latency. Larger
networks with longer paths will therefore see the maximum
latency increase. In our simulations, the flow path mean
length grew to 11 hops, with the typical maximum length at
25 hops - corresponding to the measured latencies. This prop-
erty is the cost of Layered’s optimization towards minimal
channel usage [15].

An option to limit the maximum latency is to segment the
deployment into several networks of fewer nodes and shorter
paths. Layered favors such a solution due to its minimal
channel usage allowing for co-located deployments.

E. PERFORMANCE COMPARISON
We compare the performance of our modified Layered sched-
uler with the Orchestra autonomous scheduler. Orchestra
assigns a fixed amount of cells to every node. This allows
Orchestra to support any traffic patterns as long as the traf-
fic concentration is below its capacity. We, therefore, utilize
Orchestra as a baseline where applicable and do not con-
sider its suitability to Layered. The Strasbourg site of FIT
IoT-LAB is employed as it offers the most diverse and chal-
lenging deployment. Orchestra is optimally configured in
its sender-based mode, with collision-free hash and a 29
timeslot long unicast slotframe.
A key property of the flow-based approach is retaining

performance independent of competing flows. This should
also hold with heterogeneous traffic patterns. To evaluate this
claim, we create three scenarios where the number of nodes
generating application traffic differs. In the first, only 13
out of the 26 nodes generate traffic. Next, we increase to 19
before, finally, all nodes except the root transmit. Packets are
generated every 6 seconds to fit the capacity of Orchestra.
As detailed in Section VIII-B, the destinations are randomly
chosen, yielding a heterogeneous traffic pattern.
Figure 15 and 16 show the PDR and latency for the differ-

ent traffic intensities. Note how Layered retains performance
regardless of intensity, while Orchestra suffers as the uniform
cell distribution cannot cope with traffic concentrations in
the network. Orchestra has a shorter mean latency when 13
nodes are transmitting. This is due to the shorter slotframe

VOLUME 4, 2023 2369

URKE et al.: AUTONOMOUS FLOW-BASED TSCH SCHEDULING FOR HETEROGENEOUS TRAFFIC PATTERNS

FIGURE 16. Mean latency for different traffic intensities, in testbed.

FIGURE 17. Mean duty cycle for different traffic intensities, in testbed.

FIGURE 18. Mean duty cycle per kilobyte goodput for different traffic intensities, in
testbed.

of Orchestra (29 vs. 72 timeslots) which allows for more
frequent transmission opportunities for each node.
The trade-off for the Layered performance can be seen in

Figure 17. It shows how Layered has approximately double
the energy consumption compared to Orchestra. However,
Layered has a higher goodput, i.e., application data success-
fully delivered. Layered utilize shared cells also for the initial
part of the application traffic. As such, nodes must spend
more energy listening to shared cells compared to alterna-
tive schedulers. This “energy overhead” is amortized over the
data traffic, and the energy per goodput will decrease with
increasing traffic intensity as seen in Figure 18. By further
increasing the transmission interval, we found Layered could
reach 0.06% duty cycle per kilobyte while retaining PDR
and latency. Consequently, Layered requires more energy to
maintain the network yet provides a schedule with higher

throughput. Layered may thus be more suitable for applica-
tions with higher traffic intensity. These findings are similar
to our earlier work on convergecast traffic patterns.18

We conclude that the extended Layered scheduler is able
to support heterogeneous traffic patterns independent of the
number of flows. This property is crucial for industrial use-
cases. The performance comes at a significant penalty in
terms of energy, with the efficiency improving as the traffic
intensity increases. In our scenario, we found the duty cycle
to be double that of Orchestra, yet accommodating double
the throughput.

X. CONCLUSION
Existing autonomous flow-based schedulers assume a con-
vergecast traffic pattern where all nodes transmit toward the
RPL root. However, industrial applications require hetero-
geneous patterns, e.g., in the case of control applications
employing a sensor-to-actuator pattern. We modified our
autonomous flow-based Layered scheduler to support hetero-
geneous traffic patterns. The modifications included a novel
mechanism to learn which cells to schedule autonomously.
Using the scheduler, seven challenges and critical parameters
were identified. For each challenge, we identified mitigations
that were evaluated along with the key parameters using the
Cooja simulator and FIT IoT-LAB testbed.
The expanded Layered scheduler could support het-

erogeneous traffic patterns while retaining reliability and
latency regardless of competing traffic. However, scheduler
convergence and performance cannot be achieved without
adequately configured shared cell capacity. Too few cells
are detrimental to convergence, while too many penalize
energy efficiency and throughput. The appropriate amount
differs between deployments and depends on the radio envi-
ronment, network density, traffic intensity, etc. This is a
common issue with autonomous schedulers, and tackling it
may require a combination of approaches, such as parameter
tuning and network surveying.
Supporting heterogeneous traffic in a TSCH, RPL-based

network proved challenging. Some challenges were found
to degrade performance during particular conditions; in the
testbed, they occurred only rarely. Examples include rout-
ing changes that lead packets to be forwarded outside the
RPL DODAG or in an invalid direction. We proposed miti-
gation mechanisms in the scheduler which negate the impact
yet introduce cross-layer dependencies and increased com-
plexity. The mechanisms may therefore be employed if
robustness and predictable performance are prioritized - as is
often the case in industrial applications. The mitigation bene-
fit increases in challenging radio environments, and operators
should consider each deployment against their application
requirements.
As the network scales and path lengthens, the expected

latency of Layered increases due to its design for minimized
channel usage. To mitigate this, operators may consider

18. See [3, Sec. VII-B].

2370 VOLUME 4, 2023

dividing a deployment into multiple smaller networks.
The scheduler Orchestra was used as a baseline to com-
pare performance. When traffic intensity increased, we
found Layered could retain PDR and latency. However,
the performance comes at a significant cost in energy as
Layered requires more shared cells to maintain the network.
The resulting schedule provides higher throughput than
Orchestra. Layered’s efficiency therefore improves as appli-
cations increase their traffic intensity, and in our scenarios
reached 0.06% duty cycle per kilobyte goodput which is
comparable to Orchestra.

REFERENCES
[1] D. Dujovne, T. Watteyne, X. Vilajosana, and P. Thubert, “6TiSCH:

Deterministic IP-enabled Industrial Internet (of Things),” IEEE
Commun. Mag., vol. 52, no. 12, pp. 36–41, Dec. 2014.

[2] A. R. Urke, Ø. Kure, and K. Øvsthus, “A survey of 802.15.4 TSCH
schedulers for a standardized Industrial Internet of Things,” Sensors,
vol. 22, no. 1, p. 15, 2022.

[3] A. R. Urke, Ø. Kure, and K. Øvsthus, “Experimental evaluation of
the layered flow-based autonomous TSCH scheduler,” IEEE Access,
vol. 11, pp. 3970–3982, 2023.

[4] N. Finn, P. Thubert, B. Varga, and J. Farkas, “Deterministic networking
architecture,” IETF, RFC 8655, Oct. 2019.

[5] E. Grossman, “Deterministic networking use cases,” IETF, RFC 8578,
May 2019.

[6] M. O. Demir, A. E. Pusane, G. Dartmann, G. Ascheid, and G. K. Kurt,
“A garden of cyber physical systems: Requirements, challenges, and
implementation aspects,” IEEE Internet Things Mag., vol. 3, no. 3,
pp. 84–89, Sep. 2020.

[7] D. Baumann, F. Mager, U. Wetzker, L. Thiele, M. Zimmerling,
and S. Trimpe, “Wireless control for smart manufacturing: Recent
approaches and open challenges,” Proc. IEEE, vol. 109, no. 4,
pp. 441–467, Apr. 2021.

[8] P. Thubert, “An architecture for IPv6 over the time-slotted chan-
nel hopping mode of IEEE 802.15.4 (6TiSCH),” IETF, RFC 9030,
May 2021.

[9] X. Vilajosana, T. Watteyne, T. Chang, M. Vučinić, S. Duquennoy, and
P. Thubert, “IETF 6TiSCH: A tutorial,” IEEE Commun. Surveys Tuts.,
vol. 22, no. 1, pp. 595–615, 1st Quart., 2020.

[10] R. Alexander et al., “RPL: IPv6 routing protocol for low-power and
lossy networks,” IETF, RFC 6550, Mar. 2012.

[11] O. Iova, F. Theoleyre, T. Watteyne, and T. Noel, “The love-hate rela-
tionship between IEEE 802.15.4 and RPL,” Commun. Mag., vol. 55,
no. 1, pp. 188–194, Jan. 2017.

[12] T. Watteyne, A. Mehta, and K. Pister, “Reliability through frequency
diversity: Why channel hopping makes sense,” in Proc. 6th ACM
Symp. Perform. Eval. Wireless Ad Hoc Sensor Ubiquitous Netw. (PE-
WASUN), 2009, pp. 116–123.

[13] Industrial Networks—Wireless Communication Network and
Communication Profiles—WirelessHART, IEC Standard 62591:2016,
2016.

[14] IEEE Standard for Low-Rate Wireless Networks, IEEE Standard
802.15.4-2020, 2020.

[15] A. R. Urke, Ø. Kure, and K. Øvsthus, “Layered autonomous TSCH
scheduler for minimal band occupancy with bounded latency,” Internet
Technol. Lett., vol. 4, no. 2, p. e255, Oct. 2020.

[16] S. Oh, D. Hwang, K.-H. Kim, and K. Kim, “Escalator: An autonomous
scheduling scheme for convergecast in TSCH,” Sensors, vol. 18, no. 4,
pp. 1–25, Apr. 2018.

[17] S. Duquennoy, B. A. Nahas, O. Landsiedel, and T. Watteyne,
“Orchestra: Robust mesh networks through autonomously scheduled
TSCH,” in Proc. 13th ACM Conf. Embedded Netw. Sensor Syst.
(SenSys), Nov. 2015, pp. 337–350.

[18] S. Kim, H. Kim, and C. Kim, “ALICE: Autonomous link-based
cell scheduling for TSCH,” in Proc. 18th ACM/IEEE Int. Conf. Inf.
Process. Sensor Netw. (IPSN), Apr. 2019, pp. 121–132.

[19] S. Rekik, N. Baccour, and M. Jmaiel, “Limitations of static
autonomous scheduling for TSCH protocol and advances in adaptive
scheduling,” in Proc. IEEE 12th Annu. Comput. Commun. Workshop
Conf. (CCWC), 2022, pp. 1124–1129.

[20] F. Righetti, C. Vallati, A. Gavioli, and G. Anastasi, “Performance
evaluation of adaptive autonomous scheduling functions for 6TiSCH
networks,” IEEE Access, vol. 9, pp. 127576–127594, 2021.

[21] X. Cheng and M. Sha, “ATRIA: Autonomous traffic-aware scheduling
for industrial wireless sensor-actuator networks,” in Proc. IEEE 29th
Int. Conf. Netw. Protocols (ICNP), 2021, pp. 1–12.

[22] S. Kim, H.-S. Kim, and C.-K. Kim, “A3: Adaptive autonomous allo-
cation of TSCH slots,” in Proc. 20th Int. Conf. Inf. Process. Sensor
Netw. (IPSN), 2021, pp. 299–314.

[23] S. Jeong, J. Paek, H. Kim, and S. Bahk, “TESLA: Traffic-aware
elastic slotframe adjustment in TSCH networks,” IEEE Access, vol. 7,
pp. 130468–130483, 2019.

[24] S. Jeong, H.-S. Kim, J. Paek, and S. Bahk, “OST: On-demand TSCH
scheduling with traffic-awareness,” in Proc. IEEE Conf. Comput.
Commun. (IEEE INFOCOM), Jul. 2020, pp. 69–78.

[25] M. Kherbache, O. Sobirov, M. Maimour, E. Rondeau, and
A. Benyahia, “Decentralized TSCH scheduling protocols and het-
erogeneous traffic: Overview and performance evaluation,” Internet
Things, vol. 22, Jul. 2023, Art. no. 100696.

[26] Y. Tanaka, P. Minet, M. Vučinić, X. Vilajosana, and T. Watteyne,
“YSF: A 6TiSCH scheduling function minimizing latency of data gath-
ering in IIoT,” IEEE Internet Things J., vol. 9, no. 11, pp. 8607–8615,
Jul. 2022.

[27] Q. Wang, X. Vilajosana, and T. Watteyne, “6TiSCH operation sublayer
(6top) protocol (6P),” IETF, RFC 8480, Nov. 2018.

[28] D. Barthel, J. P. Vasseur, K. Pister, M. Kim, and N. Dejean, “Routing
metrics used for path calculation in low-power and lossy networks,”
IETF, RFC 6551, Mar. 2012.

[29] O. Gnawali and P. Levis, “The minimum rank with hysteresis objective
function,” IETF, RFC 6719, Sep. 2012.

[30] G. Oikonomou, S. Duquennoy, A. Elsts, J. Eriksson, Y. Tanaka,
and N. Tsiftes, “The Contiki-NG open source operating system
for next generation IoT devices,” SoftwareX, vol. 18, Jun. 2022,
Art. no. 101089.

[31] T. Chang, M. Vučinić, X. Vilajosana, S. Duquennoy, and
D. R. Dujovne, “6TiSCH minimal scheduling function (MSF),” IETF,
RFC 9033, May 2021.

[32] P. Levis, T. H. Clausen, O. Gnawali, J. Hui, and J. Ko, “The trickle
algorithm,” IETF, RFC 6206, Mar. 2011.

[33] J. Hui and J. P. Vasseur, “The routing protocol for low-power and lossy
networks (RPL) option for carrying RPL information in data-plane
datagrams,” IETF, RFC 6553, Mar. 2012.

[34] L. Landmark, K. Øvsthus, and Ø. Kure, “Test-bed evaluation of ingress
queuing for improved packet delivery,” in Proc. 4th Int. Conf. Netw.
Services (ICNS), 2008, pp. 102–108.

[35] C. Adjih et al., “FIT IoT-LAB: A large scale open experimental IoT
testbed,” in Proc. IEEE 2nd World Forum Internet Things (WF-IoT),
Dec. 2015, pp. 459–464.

[36] R. Jacob, M. Zimmerling, C. A. Boano, L. Vanbever, and L. Thiele,
“Designing replicable networking experiments with triscale,” J. Syst.
Res., vol. 1, no. 1, p. 42, Nov. 2021.

ANDREAS R. URKE received the B.S. degree
in engineering and communication technology
from the Western Norway University of Applied
Sciences, Bergen, Norway, in 2009, and the M.S.
degree in informatics and mobile communication
from the University of Oslo, Oslo, Norway, in
2011. He is currently pursuing the Ph.D. degree
in information security and communication tech-
nology with the Norwegian University of Science
and Technology, Trondheim, Norway.

From 2016 to 2020, he was a Ph.D. Research
Fellow with the Western Norway University of Applied Sciences. His
research interests include the Industrial Internet of Things, scheduling
algorithms for low-power short-range communication, autonomous and
deterministic network operation, satellite communication, and embedded
real-time software.

VOLUME 4, 2023 2371

URKE et al.: AUTONOMOUS FLOW-BASED TSCH SCHEDULING FOR HETEROGENEOUS TRAFFIC PATTERNS

ØIVIND KURE received the Ph.D. degree from the
University of California at Berkeley in 1988.

He is a Full Professor with the Department
of Technology Systems, Section for Autonomous
Systems and Sensor Technologies Research
Group, University of Oslo. In 1988, he joined
Telenor Research, where he worked as a Senior
Researcher and a Research Manager from 1989 to
2000. His current research interests include various
aspects of QoS, data communication, performance
analysis, and distributed operating systems.

KNUT ØVSTHUS received the master’s degree
from the Norwegian University of Science and
Technology in 1986, and the Ph.D. degree from
the University of Oslo in 1998. He joined
Telenor Research and Development in 1987 as
a Research Scientist, and in 2001, he joined
Norwegian Defence Research Establishment as
a Research Scientist. Since 2006, he has been
a Full Professor with the Western Norway
University of Applied Sciences. His research
interests include healthcare technology, industrial

networks, conditioning-based maintenance, and CPS.

2372 VOLUME 4, 2023

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

