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Abstract – We present a theoretical analysis of a MEMS electrostatic energy harvester con-

figured as Bennet’s doubler. The steady–state operation of the circuit can be approximated by a

rectangular Q–V cycle in the ideal case or by a trapezoid diagram when the electrical losses are

taken into account. A similarity between the voltage doubler and charge–pump circuit is high-

lighted. The analytical solution of the saturation voltage is derived, providing a more insightful

comprehension of the system performance and the influence of its parameters. The results obtained

from studying the Q–V diagram coincide with those of circuit simulations for both cases when using

(i) a mathematically idealized diode or (ii) a realistic diode model that includes the electrical losses.

Voltage multiplier circuits with different topologies that can further increase the saturation voltage

are investigated, providing various alternatives for boosting the output voltage of an electrostatic

energy harvester when needed.

1. Introduction

Wireless sensor nodes (WSNs) are emerging as one of the most commonly used systems for moni-

toring and sensing applications [1,2]. Most current WSNs are powered by batteries. The lifetime of

batteries is limited to a few years, and improper disposal of batteries could pose a significant threat

to human health and the environment. Energy harvesting from vibration has become a potential

alternative to obtain electrical energy for WSNs, especially in some circumstances where batteries

may not be feasible due to size constraints. For the vibration energy harvesters, there are three com-

mon transduction mechanisms which includes piezoelectric, electromagnetic and electrostatic [3–5].

In this paper, we focus on an overlap–varying electrostatic energy harvesting system.

A challenge with energy harvesters is the implementation of power management circuits due to

the limited power available in the generators. In an early effort, Roundy et al. introduced a simple

charge pump circuit consisting of a voltage source, an electrostatic converter, and two switches and

demonstrated that mechanical–to–electrical energy transduction based on variable capacitance is

possible [6]. When connected to a load resistance, the correlation between the charge and voltage

of the variable capacitor can be described by a Q–V cycle of a triangular shape [7]. However, the

authors did not consider the regime where the generator saturates due to the lack of an energy

flyback path.

In order to overcome this issue, several solutions based on energy–renewal techniques for ex-

tracting electrical energy were investigated. For instance, Yen et al. proposed a configuration of

single variable–capacitance harvester, combining an asynchronous charge pump with an inductive

flyback circuit to recharge a scavenging capacitor [8]. Mitcheson et al. developed a buck–boost

topology with bi–directional switches for rectifying and increasing the AC voltage obtained from

electromagnetic, electrostatic and piezoelectric transducers [9]. However, these circuit topologies

face the challenges of power consumption of the control unit and harvester efficiency.
1
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Bennet’s doubler of electricity was introduced already in 1787 by Bennet and Kaye [10]. A

macro–scale device with three plates is used to continuously double a small initial charge through

a sequence of operations. Based on this approach, de Queiroz proposed a promising variation of

such a voltage doubler for vibration energy harvesters composed of variable capacitors and diodes

replacing switches [11–13]. In order to adapt this concept to micro–scale electrostatic generators,

several studies have been made [14–20], including attempts to increase the charging current for a

reservoir capacitor or to optimize the harvested power. In a recent work by Galayko [21], operation

of the doubler configuration with a single variable capacitor was thoroughly analyzed in the electrical

domain.

With ideal diodes (i.e., zero forward voltage and no leakage current), a rectangular conversion

cycle can be realized to investigate the performance of Bennet’s doubler. A complete model was

developed, taking the dynamics of the mechanical domain into account [22, 23]. When delivering

energy into a storage capacitor, higher voltages induce more electrical damping in the transducers.

As a consequence, the steady–state operation of the harvesting system is achieved, and the output

voltage saturates at a certain level. However, the operation of a transducer configuration with two

time–varying capacitors and closed forms of the saturated voltage (denoted as Vs) has not been

explored yet.

The saturation phenomenon was observed in both simulation and experiment [16,19]. Therefore,

the effect of electromechanical coupling on it is of interest to comprehensively investigate. This

paper further presents a theoretical analysis of Bennet’s doubler circuit based on the Q–V cycle.

In particular, the explicit dependence of Vs on input acceleration and harvester parameters is the

central objective. Non-ideal effect of diodes on the shape of the Q-V diagram is also an important

objective. A complete model of an anti–phase overlap–varying transducer electrically configured as

a voltage doubler is investigated. Numerical results for both ideal- and non-ideal diodes obtained

by a circuit simulator are used to verify the analytical solutions. In order to further increase the

saturated voltage across the storage capacitor, alternative topologies are introduced and analyzed.

2. Steady state operation with mathematically idealized diodes
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Figure 1. Overlap–varying energy harvesters employing Bennet’s doubler circuit.

2.1. Theoretical analysis. Overlap–varying energy harvesters can be utilized in a charge–doubling

circuit–configuration as shown in Figure 1 [14, 19]. The transducer capacitors are precharged to a

voltage V0. At time t = 0, the switch connecting the voltage source V0 with the harvester is turned

off. The proof mass is suspended by four folded–beam linear springs. The maximum displacement
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Xmax is defined by mechanical end–stops. Two anti-phase variable capacitors C1/2(x) = C0(1± x

x0
)

are connected to three diodes D1, D2, D3 and the storage capacitor Cs. Here C0, x0 and x are the

nominal capacitance, the nominal overlap and the proof mass displacement, respectively. Operation

of the doubler circuit does not require any control unit or switches but an initial bias voltage V0.

Figure 2. Equivalent circuit for mechanical domain and Bennet’s doubler config-

uration.

Figure 2 shows a complete lumped model of the doubler configuration, including an equivalent

circuit for the mechanical subsystem. where m - proof mass, b - mechanical damping, k - total spring

stiffness, F - external force, Fe - electrostatic force and Cp - parasitic capacitance of each transducer.

The impact force Fim acting on the proof mass when the displacement reach its maximum is simply

modeled as a spring–damper system. In particular, Fim = kimδ + bimδ̇ for |x| ≥ Xmax [24], where

δ = |x|−Xmax is relative displacement between the proof mass and the end–stops, kim is the impact

stiffness, and bim is the impact damping. The vibration frequency is chosen as f = f0 =
1

2π

√
k

m
.

For a sufficient voltage V0 and an adequate input acceleration amplitude A, the voltage accumulated

on the storage capacitor Cs initially increases. Figure 3 indicates that after certain cycles of the

transient regime, the harvester attains its steady–state operation.The electrical energy is now no

longer scavenged, and the output voltage Vout maintains constant at Vs (i.e., saturation voltage).

The proof mass displacement amplitude X0 changes in a complicated manner. X0 first reaches

the maximum value X0 ≈ Xmax (i.e., which is limited by the mechanical end-stops), then decreases

and keeps fixed at X0 ≈ Xs in the saturation regime. For convenience, we define the rate of voltage

evolution v∗ as a ratio of the maximum output voltage in two subsequent period

v∗ =

max
(
Vout

∣∣∣
Ti+1

)
max

(
Vout

∣∣∣
Ti

) .(2.1)

As shown in Figure 3, v∗ is modified over cycles under the variation of X0, as follows. During

the transient regime, v∗ is small at the beginning and gradually increases, meanwhile X0 ≈ Xmax.

After reaching the maximum, v∗ decreases with the reduction of X0 and finally becomes unity at

which the steady state is achieved.



4 BINH DUC TRUONG, CUONG PHU LE AND EINAR HALVORSEN

10
1

10
2

10
3

-1

-0.5

0

0.5

1

x
=
X

m
a
x

 

 

10
1

10
2

10
3

5

10

15

t/T

O
u
tp

u
t

v
o
lt
a
g
e

[V
]

 

 

v
$ decrea

se

v$ increase

Saturation

regime

(steady

state)

Transient

regime

v$ : 1

 

 

10
1

10
2

10
3

1

1.0002

1.0004

1.0006

1.0008

1.001

t/T

v
$

 

 

Figure 3. Evolution of the proof mass displacement and the output voltage across

the storage capacitor with the input acceleration amplitude A = 2.0 g, the drive

frequency f = f0 and the initial bias voltage V0 = 7 V.

Table 1. Model parameters

Parameter Value

Proof mass, m 1.022 mg

Spring stiffness, k 3.595 N/m

Thin-film air damping, b 3.478e-5 Ns/m

Nominal overlap, x0 80 µm

Nominal capacitance, C0 15 pF

Parasitic capacitance, Cp 7.5 pF

Storage capacitance, Cs 10 nF

Contact stiffness, kim 3.361 MN/m

Impact damping, bim 0.435 Ns/m

Maximum displacement, Xmax 80 µm

The higher voltages through the conversion phase, the more effective electrical damping (repre-

sented by electrostatic force) is induced in the transducers, causing a decrease in the proof mass

displacement. As a consequence, the transducer capacitance ratio η = (Cmax +Cp)/(Cmin +Cp) is

reduced. Here, Cmax = C0(1 +Xs/x0), Cmin = C0(1−Xs/x0), and Xs < Xmax is the displacement
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amplitude at saturation. With the model parameters taken from [19] and listed in Table 1, we have

η ≈ 1.72. It is important to note that the necessary condition for the operation of the doubler

circuit is η ≥ ηcr = 2, where ηcr is the critical threshold ratio in the ideal case (i.e., without any

losses) [11]. Since this condition is no longer satisfied, Vout is saturated at Vs. In this paper, the

effect of the electromechanical coupling on the solution of Vs through the impact of the electrostatic

force is one of the primary objectives of the analytical investigation.

Figure 4 shows the waveform of the proof mass displacement, the voltages V1, V2 across C1, C2,

and the currents ID1, ID2, ID3 through three mathematically idealized diodes, respectively. Dy-

namic simulations are performed by using LTspice simulator. The operation of the doubler circuit

at the steady–state operation is divided into a sequence of four stages from t0 to t4. We observe

that the relation of Q1 and V1 now can be approximated by a rectangular Q–V cycle diagram since

the time interval between ∆t21 = t2 − t1 and ∆t43 = t4 − t3 are negligibly small. We now consider
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Figure 4. Waveforms of displacement, voltages on variable capacitors and currents

through three diodes at steady state with A = 2.0 g and f = f0.
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Figure 5. Approximated Q–V diagram of variable capacitor C1(x) at steady state

with mathematically ideal diodes.

each of the four stages in turn, as depicted in Figure 5, and all the following computations are based

on the Q–V diagram only.

Stage I: At t = t0, x(t0) = −Xs and V1(t0) ≈ V2(t0) ≈ Vs, where Xs is the maximum dis-

placement at the steady–state. From t0 to t1, all three diodes D1, D2 and D3 are blocked as the

condition VC2 < Vs < VC1 < VC2 + Vs is satisfied. The charges on the two transducers are

q1(t0) = Vs

[
Cp + C0(1 +

Xs

x0
)
]
,(2.2)

q2(t0) = Vs

[
Cp + C0(1− Xs

x0
)
]
.(2.3)

In the first stage, q1 and q2 are constants, V1 and V2 are given

V1

∣∣∣
t∈[t0, t1]

=
q1

C1
=
Vs

[
Cp + C0(1 + Xs

x0
)
]

Cp + C0(1− x
x0

)
,(2.4)

V2

∣∣∣
t∈[t0, t1]

=
q2

C2
=
Vs

[
Cp + C0(1− Xs

x0
)
]

Cp + C0(1 + x
x0

)
.(2.5)

Stage II: At t = t1, V1(t1) ≈ V2(t1) + Vs, and diode D3 starts to conduct. Since the time

interval between t1 and t2 is very small (i.e., see Figure 5), the proof mass displacement at t1 can

be approximated as x(t1) ≈ x(t2) = Xs, then

1 + C0
Cp

(
1 + Xs

x0

)
1 + C0

Cp

(
1− Xs

x0

) = 1 +
1 + C0

Cp

(
1− Xs

x0

)
1 + C0

Cp

(
1 + Xs

x0

) .(2.6)

The solution is given by

Xs =
(√

5− 2
)(

1 +
Cp

C0

)
x0.(2.7)

The peak values of voltages across C1 and C2 are

VI = V1(t1) = V1(t2) = Vs

√
5 + 1

2
,(2.8)

VII = V2(t1) = V2(t2) = Vs

√
5− 1

2
.(2.9)
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In this stage, net charges ∆Qs and ∆Q are pumped from C1 into Cs and C2, respectively. At steady

state, Vs is considered unchanged, thus ∆Qs is neglected. The detailed derivation is presented in

Appendix A.

Stage III: From t2 to t3, all diodes are blocked, q1 and q2 are constants

q1

∣∣∣
t∈[t2, t3]

= q1(t2) = Vs

[
Cp + C0(1 +

Xs

x0
)
]
−∆Q,(2.10)

q2

∣∣∣
t∈[t2, t3]

= q2(t2) = Vs

[
Cp + C0(1− Xs

x0
)
]

+ ∆Q.(2.11)

At t3, x(t3) = x3 and

V1(t3) = Vs.(2.12)

Diode D2 starts to conduct, transferring an amount of charge ∆Q∗ from Cs into C1. Similarly,

since Vs is treated as constant, ∆Q∗ is thus negligible. The relation (2.12) now can be written as

V1(t3) =
q1(t3)

C1(t3)
=
Vs

[
Cp + C0(1 + Xs

x0
)
]
−∆Q

Cp + C0(1− x3
x0

)
= Vs.(2.13)

Due to the small interval time between t3 and t4, x3 ≈ x(t4) = −Xs, resulting in ∆Q ≈ 0. In other

words, the charge transfered from C1 into C2 is insignificant.

Considering the voltage across the capacitor C2 at t3, we have

V2(t3) =
q2(t3)

C2(t3)
=
Vs

[
Cp + C0(1− Xs

x0
)
]

+ ∆Q

Cp + C0(1 + x3
x0

)
≈ Vs.(2.14)

Since the condition V2 ≈ Vs holds, D1 also starts to conduct at t3 .

Stage IV: From t3 to t4, D1 is conducting, and ∆Q is transfered from C2 into C1. The charge

q1(t4) is

q1(t4) = q1(t3) + ∆Q = Vs

[
Cp + C0(1 +

Xs

x0
)
]
.(2.15)

The condition q1(t4) = q1(t0) is fulfilled, showing that the state of the doubler circuit at t4 is the

same as when t = t0. A new cycle then starts. This result proves that the right–angle trapezoid

Q–V diagram is capable of describing the operation of the doubler circuit in the case of using

idealized or low–loss diodes.

2.2. Similarity of Bennet’doubler and charge-pump circuit. Among electronic interface

circuits for MEMS capacitive energy harvesters [25,26], the charge pump circuit [6] and its varieties

are widely investigated. A well-known charge pump variation that combines with an inductive

flyback circuit was developed by Yen et al. [8]. An alternative technique to implement flyback is

to use a load resistance, which was first introduced in [27] and thoroughly analyzed in [23].

Comparing the results reported in the literature with those obtained in the first sections of this

paper, it is worth noting that the Q-V cycle for the charge pump circuit with resistive flyback is

very similar to that of Bennet’s doubler circuit. Both the charge pump and voltage doubler can

be approximated by a rectangular conversion cycle in the ideal circumstance in that the electrical

loss is neglected. Furthermore, at the steady–state operation, the Q–V cycle of the two topologies

almost degenerates into a line (as seen in Figure 5).
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Figure 6. Normalized waveforms of the input acceleration in comparison with the

electrostatic force obtained from simulation and formula (3.5).

3. Approximation of the saturation voltage with mathematically ideal diode

The electrostatic force Fe plays an essential role in the saturation phenomenon of the output

voltage. Therefore, it is the primary objective of the study in this Section. Fe is modeled as

Fe = −1

2

∂C1(x)

∂x
V 2

1 −
1

2

∂C2(x)

∂x
V 2

2 =
1

2

C0

x0

(
V 2

1 − V 2
2

)
.(3.1)

V1 and V2 can be simplified as anti–phase sinusoidal signals for the sake of analysis, although they

are more complicated than that in general. Based on the dynamic simulations, we observe that the

phase difference between the input acceleration and the voltage across C1 is negligibly small and is

ignored.

Using expressions (2.8) and (2.9), the waveforms of V1 and V2 are then represented as

V1 =
VI + Vs

2
+
VI − Vs

2
sin(ωt) = Vs

3 +
√

5

4
+ Vs

−1 +
√

5

4
sin(ωt),(3.2)

V2 =
VII + Vs

2
− Vs − VII

2
sin(ωt) = Vs

1 +
√

5

4
− Vs

3−
√

5

4
sin(ωt),(3.3)

yielding

V 2
1 − V 2

2 =
2 +
√

5

4
V 2

s

(
1 + sin(ωt)

)(
1 +

(
√

5− 2)2

2
sin(ωt)

)
.(3.4)

The coefficient (
√

5− 2)2/2 ≈ 0.028� 1 is negligible, and the electrostatic force thus becomes

Fe =
2 +
√

5

8

C0

x0
V 2

s

(
1 + sin(ωt)

)
= F0

(
1 + sin(ωt)

)
(3.5)

where

F0 =
2 +
√

5

8

C0

x0
V 2

s .(3.6)

The harmonic term of Fe is in phase with the input acceleration. Figure 6 shows the comparison

between the input acceleration and the electrostatic force over the same time duration as in Figure

4. The expression of Fe in (3.5) is in good agreement with the wave form obtained by the simulation.

The differential equation of the spring–mass–damping system, which is set in continuous oscilla-

tion by a sinusoidal force acting on the proof mass, is

mẍ+ bẋ+ kx = mA sin
(
ωt
)
− Fe.(3.7)
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The steady–state solution of (3.7) is x = −x̄+ xh, where x̄ = F0/k is the offset displacement. The

harmonic term is [28]

xh = X0sin
(
ωt+ ϕ

)
(3.8)

where

X0 =
(mA− F0)/m√(

ω2 − ω2
0

)2
+
(
b
m

)2
ω2

.(3.9)

In the saturation regime, the proof mass displacement does not reach its physical constraint defined

by the rigid end–stops, Xs < Xmax. With ω = ω0 =
√
k/m, the peak value of xh is

Xs = X0 =
mA− F0

bω0
.(3.10)

The ratio x̄/X0 obtained from simulations is less than 2.1% for all A ∈ [1, 2] g, the acceleration

range of interest. Therefore, x̄ is assumed negligible, and approximately x ≈ xh. By considering

amplitudes of the harmonic term and ignoring phase differences, the saturation voltage is

Vs =

√
8

2 +
√

5

mA−
(√

5− 2
)(

1 + Cp/C0

)
x0bω0

C0/x0
.(3.11)

The details of derivation are included in Appendix B.

Although the performance of the harvesting system using a mathematically ideal diode is ana-

lyzed, the effects of power loss (due to diode imperfections such as leakage current and junction

capacitance) on the shape of the Q–V cycle and the solution of Vs are still open for investigation.

This issue is even of greater interest and to be explored in the next section.

4. Operation of the Bennet’s Doubler with non–ideal diode

4.1. Approximated Q–V Cycle at steady state. A realistic model of diode 1N6263 is chosen to

use in LTspice simulation to assess the effects of diode losses on the harvesting system performance,

as the magnitude of the reverse current is comparable with the charging current through the storage

capacitor, and the zero bias junction capacitance is in the range of transducer nominal capacitance.

Other authors, such as Dragunov [14,29], utilized similar diode parameters to estimate the average

charging current for a configuration of the doubler circuit based on a single variable–capacitor.

Figure 7 shows waveforms on the same time scale of the proof mass displacement, the voltages

V1, V2 across and the charges q1, q2 on the variable capacitors C1 and C2, respectively. Similarly,

the operation of the doubler circuit at the steady–state can be divided into a sequence of four

stages. However, the time interval between stages is more significant than those when utilizing

mathematically idealized diodes. Based on the observation from the simulation, the relation of

Q1 (Q2) and V1 (V2) is then approximated by a right–angled trapezoid Q–V cycle diagram, as

shown in Figure 8.

For the sake of simplicity, the dynamics of the diodes, such as the time evolution of the diode

currents, are disregarded in analyzing the Q–V conversion. In addition, we assume that the effects of

diode losses are accounted for and represented in the change of the Q–V cycle from a rectangular to

a right–angled trapezoid. Charges transferred from or into Cs are negligible since the output voltage

is unchanged at steady state. Under these assumptions, the following analyses are developed based

on the Q–V diagram only. Differentiating from the previous section, the displacements of the proof

mass at t1 and t3 are still unknown, and the system behavior is more complicated.
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Stage I : Similar to the previous analysis, the charges on the two generators and variations of

V1 and V2 from t0 to t1 are expressed by equations (2.2), (2.3), (2.4) and (2.5).

Stage II : At t = t1, x(t1) = x1, V1(t1) = V2(t1) + Vs and diode D3 starts to conduct, this yields

1 + C0
Cp

(
1 + Xs

x0

)
1 + C0

Cp

(
1− x1

x0

) = 1 +
1 + C0

Cp

(
1− Xs

x0

)
1 + C0

Cp

(
1 + x1

x0

) .(4.1)

From t1 to t2, charge ∆Q is pumped from C1 into C2.

Stage III : From t2 to t3, all diodes are blocked. Charges q1 and q2 are constants that are

described by (2.10) and (2.11). At t = t3, D2 starts to conduct due to V1(t3) = Vs. This condition

is expressed by (2.13), which results in

∆Q = VsC0

(Xs + x3

x0

)
.(4.2)

The voltage across C2 at t3 is

V2(t3) =
q2(t3)

C2(t3)
=
Vs

[
Cp + C0(1− Xs

x0
)
]

+ ∆Q

Cp + C0(1 + x3
x0

)

=
Vs

[
Cp + C0(1− Xs

x0
)
]

+ VsC0

(
Xs+x3
x0

)
Cp + C0(1 + x3

x0
)

= Vs.

(4.3)

Since the condition V2 = Vs is fulfilled, D1 also starts to conduct at t3. Substituting (4.2) into

(2.10), we get

q1(t3) = Vs

[
Cp + C0(1 +

x3

x0
)
]
.(4.4)

Stage IV : From t3 to t4, D1 is conducting and ∆Q is transfered into C1 from C2. At t4,

x(t4) = −Xs = x(t0) and the state of the doubler circuit is the same as when t = t0, leading to

q1(t4) = q1(t0)(4.5)

where

q1(t4) = q1(t3) + ∆Q = Vs

[
Cp + C0(1 +

Xs + 2x3

x0
)
]
.(4.6)

From equations (2.2), (4.5) and (4.6), the displacement at t3 is given by x3 = 0. As the consequence

∆Q = VsC0
Xs

x0
.(4.7)

Substituting this result back into (2.10) and (2.11), the voltages across C1 and C2 at t2 are derived

as follows

V1(t2) =
q1(t2)

C1(t2)
=

Vs(Cp + C0)

Cp + C0(1− Xs
x0

)
,(4.8)

V2(t2) =
q2(t2)

C2(t2)
=

Vs(Cp + C0)

Cp + C0(1 + Xs
x0

)
.(4.9)

At t2, D3 starts to stop conducting since V1 is slightly less than V2 + Vs. This relation can be

approximated as V1 ≈ V2 + Vs. Similarly as equation (4.1), we have

1 + C0
Cp

1 + C0
Cp

(
1− Xs

x0

) = 1 +
1 + C0

Cp

1 + C0
Cp

(
1 + Xs

x0

) .(4.10)
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The solution of the maximum displacement at the steady–state is

Xs = (
√

2− 1)

(
1 +

Cp

C0

)
x0.(4.11)

Substituting (4.11) back into (4.1), the proof mass displacement at t1 is determined by

x1 =
3

2

(√
4− 2

√
2− 1

)
x0.(4.12)

Therefore, the peak values of V1 and V2 are

VI = V1(t2) = Vs

(
1 +

1√
2

)
,(4.13)

VII = V2(t1) = Vs

√
1− 1√

2
.(4.14)

V1 and V2 are then approximated by

V1 =
VI + Vs

2
+
VI − Vs

2
sin(ωt) = Vs(1 +

1

2
√

2
) + Vs

1

2
√

2
sin(ωt),(4.15)

V2 =
VII + Vs

2
− Vs − VII

2
sin(ωt) = Vs

1 +
√

1− 1√
2

2
− Vs

1−
√

1− 1√
2

2
sin(ωt),(4.16)

yielding

V 2
1 − V 2

2 = V 2
s

(
α+ γ

)[(
α− γ

)
+
(
β + λ

)
sin
(
ωt
)](

1 +
β − λ
α+ γ

sin
(
ωt
))

(4.17)

where

(4.18) α = 1 +
1

2
√

2
, β =

1

2
√

2
, γ =

1 +
√

1− 1√
2

2
, λ =

1−
√

1− 1√
2

2
.

Since β−λ
α+γ ≈ 0.058� 1 is negligible and α− γ = β + λ, the electrostatic force is given by

Fe =
1

2

C0

x0
V 2

s

(
α2 − γ2

)(
1 + sin(ωt)

)
=

1

2

C0

x0
V 2

s

5(1 +
√

2)− 2
√

4− 2
√

2

8

(
1 + sin(ωt)

)
,(4.19)

which can be represented as

Fe = F0
(
1 + sin(ωt)

)
(4.20)

where

F0 =
5(1 +

√
2)− 2

√
4− 2

√
2

16

C0

x0
V 2

s .(4.21)

Using the same analysis procedure in the previous section, the saturation voltage is

Vs =

√√√√ 16

5(1 +
√

2)− 2
√

4− 2
√

2

mA−
(√

2− 1
)(

1 +
Cp

C0

)
x0bω0

C0
x0

≈

√√√√1.61
mA−

(√
2− 1

)(
1 +

Cp

C0

)
x0bω0

C0
x0

.

(4.22)

All the algebraic calculations in this section are presented in Appendix C. Both expressions (3.11)

and (4.22) provide a quick means to predict the saturation voltage for any acceleration amplitude

and harvester parameters. They can also be utilized as guidelines for designing the overlap-varying

anti-phase transducers in order to obtain the desired value of Vs.
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The ratio between the two solutions of Vs corresponding to the ideal and realistic cases is

V r
s =

V ideal
s

V non−ideal
s

≈

√√√√1.17
mA−

(√
5− 2

)(
1 +

Cp

C0

)
x0bω0

mA−
(√

2− 1
)(

1 +
Cp

C0

)
x0bω0

.(4.23)

Since
(√

5−2
)
<
(√

2−1
)
, it is obvious that V r

s > 1. Although the diode parameters do not appear

in the latter solution of Vs (which follows the assumptions that we made at the beginning of Section

4.1), expression (4.22) still coincides with the fact that diode losses reduce the saturation voltage.

In order to verify the accuracy of the analytical results, a comparison with SPICE simulations is

to be performed and presented in the following section.
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Analytical solution: Ideal diodes

Simulation: Ideal diodes
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(a) Ideal/Low-losses diode
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Analytical solution: Non-ideal diodes

Simulation: 1N6263

Simulation: BAT41

(b) Realistic diode models

Figure 9. Acceleration responses of output voltages at steady state: a comparison

between simulations and analytical solutions.

4.2. Numerical verification. Figure 9a shows the saturation voltage with different acceleration

amplitudes. The simulation results that use idealized diodes and those obtained by analytical

solution (3.11) are compared. The figure also exhibits that low–loss diode such as BAS716 performs
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Table 2. Diodes parameters: reverse saturation current Is, zero-bias junction ca-

pacitance Cj and built-in junction voltage Vj

Diode Is [nA] Cj [pF] Vj [V]

1N6263 3.87 1.77 0.39

BAS716 3.52e-6 1.82 0.65

BAT41 10.00 5.76 0.37

BAT54LPS 20.90 10.60 0.39

close to that of the mathematically idealized diode. In the same manner, Figure 9b presents

the analytical solution given by (4.22) compared against the numerical simulations with the use

of different non-ideal diode models. Despite disparities in the reverse current Is, the junction

capacitance Cj, and the built–in junction voltage Vj, both diodes 1N6263 and BAT41 give almost

the same saturation voltages. The agreement between theoretical and numerical results in both

cases verifies our approach and the predictions of the analytical solutions.

The simulations also show that diodes with very high reverse current and large junction capaci-

tance, e.g., BAT54LPS, cause the average charging current through the storage capacitor Cs to be

negative, which leads to the discharge of Cs and drop of Vout to zero (not shown in the Figure).

Those diodes, therefore, are not of interest for doubler configuration. Diode parameters used in the

simulations are listed in Table 2. All simulation results are obtained from the LTspice.
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4.3. Effect of diode operation on mechanical dynamics. The Q–V cycle is a useful geomet-

rical tool that enables us to realize the operation of the voltage doubler circuit at the steady-state.

However, the performance of a harvesting system is more sophisticated in the transient regime.

Therefore, considering a dynamic simulation may be more appropriate to explore the system be-

havior.

Figure 10a shows waveforms of the normalized proof mass displacement (x/Xmax), the normalized

external force â = sin(ωt), and the electrostatic force (Fe/mA) along with the diode currents at

the first several operating cycles, utilizing ideal diodes. We observe that the phases of F , x, and

Fe are initially different. However, those differences gradually decrease due to the effects of the

diode states (i.e., blocking and conducting). This phenomenon is most clearly present in the shift

of phase of the electrostatic force. Examples of such behavior are marked by the vertical dash lines

in the same Figure. This variation process leads to the negligible phase shift between F and Fe at

the steady–state that we presented in Section 3 and allows us to describe the electrostatic force as

the form Fe = F0(1 + sin(ωt)). In other words, the dynamic motion of the proof mass also strongly
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(a) Mathematically idealized diode.
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(b) Diode 1N6263.

Figure 10. Waveforms of normalized displacement, vibrational excitation, electro-

static force and currents through diodes D1, D2 and D3 at the first several cycles of

operation, with A = 2.0 g and f = f0.

depends on both the transducing force and the diode operation mechanism. This statement is also

valid when a realistic diode model is utilized, as seen in Figure 10b.

5. Circuits to improve the saturation voltage

Analyzing Bennet’s doubler circuit operation, we realize that there are several promising tech-

niques to enhance the saturation voltage with the same harvester. The main objectives of this

section are to introduce and study these alternative configurations. The Q–V cycle is still a useful

tool to explore some important properties of the saturation voltage under certain conditions.

5.1. An alternative voltage doubler with single switch. The diode D1 plays a vital role in

initially charging C1. However, in principle, it could be removed after a few transient vibration
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C2(x)C1(x)

Cp
D2

D3
Cs

D1

Cp

V0

t=0

SW

Figure 11. An alternative topology with single switch connected in series with the

diode D2.
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=
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V Vs

Q

III

Figure 12. Q–V diagram of Bennet’s doubler at the steady–state for both variable

capacitors when the switch SW is added.

Table 3. Model parameters of SW . Ron – On resistance, Roff – Off resistance.

SW Ron [Ω] Roff [Ω]

Lossless 1e-3 1e12

Lossy 2 1e9

cycles without causing negative effects on the operation of the circuit. Disconnecting D2 also

enhances the charging current through the storage capacitor due to the relation ICs = ID3 − ID2.

The performance of the harvester, in this case, becomes of interest to investigate.

As shown in Figure 11, an electronic switch SW in series with D2 is utilized to disconnect this

diode when needed. With the use of mathematically–ideal diodes, the operation of the circuit can be

described by two rectangular Q–V cycles as in Figure 12. The only constraint of Vs extracted from

the Q–V diagram is Vm ≤ Vs ≤ VI, where Vm and VI are the minimum and maximum voltages across

the capacitor C1(x). Any value of Vs ∈ [Vm, VI] satisfies the circuit operation. Thus, Vs cannot

be solved for an explicit form of system parameters (e.g., C0, Cp, and b) and input excitation.

However, based on the fact that the displacement at the steady–state is limited, Xs ≤ Xmax, the

maximum possible saturation voltage is estimated as

maxVs =


mA

√
2

(C0 + Cp)bω0
, if 0 <

mA

2x0bω0
≤ Xmax

x0

2
√

2

√
Xmax(mA−Xmaxbω0)

C0 + Cp
, otherwise.

(5.1)

The detailed analysis is shown in the Appendix D.
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(b) Acceleration responses

Figure 13. Comparison of different cases without/with lossless/with lossy switch:

(a) The time evolution of output voltage at A = 2 g, and (b) The saturation voltage

versus acceleration amplitudes.

In the simulation, switch SW is only ON in the first several vibration cycles. It then is turned

OFF to eliminate the effect of D2 on ICs. Two different models representing so–called lossless (or

low–loss) and lossy SW are utilized with the model parameters listed in Table 3. Figure 13a shows

the evolution of the output voltage in various cases, including without and with the presence of
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lossy SW . The saturation voltage in the latter case is about ∼ 15.60 V, a significant improvement

over the 13.84 V achieved for the circuit topology in Figure 2. As expected, the output voltage is

further increased when the power loss of the switch is neglected and an ideal switch model is used.

Similar results are obtained with different acceleration amplitudes in Figure 13b. In comparison

with dynamic simulations, maxVs obtained from expression (5.1) is higher since the steady–state

displacement Xs in the analytical solution is assumed to attain its maximum possible value (see

Appendix D). The corresponding displacement in LTspice simulation may not reach this maximum

with the given harvester parameters.

5.2. Cockcroft-Walton generator applied to MEMS device. Another topology of the voltage

doubler developed from the Greinacher circuit [30] is depicted in Figure 14, in which the feedback

diode D2 is added to connect the storage capacitor and the two transducers. Both theoretical

operation analysis and simulation results show that the performances of Bennet’s doubler and the

Greinacher configuration are identical. The roles of the three diodes D1, D2, and D3 are the same

as those in Figure 2.

Based on the Greinacher doubler circuit, a well–known voltage cascade was early proposed by

the British and Irish physicists John D. Cockcroft and Ernest T. S. Walton in 1932 [31, 32]. The

Cockcroft–Walton generator (named after the two authors) was proven to be able to generate a high

DC output voltage from a low AC input voltage, which is hence interesting to be utilized for micro–

scale harvesters. Figure 15 shows the circuit diagram of the two–stage Cockcroft–Walton generator,

in which the voltage across two capacitors Cs1 and Cs3 is the output voltage, denoted as Vout. The

simplified operation of such a multi–stage voltage doubler is depicted in Figure 16. Similar to

Bennett’s configuration, the operation of the Cockcroft–Walton multiplier can also be divided into

C2(x)

C1(x)

Cp
Cp D1

D2

Cs

D3

V0

t=0

Figure 14. An adapted configuration of the Greinacher’s doubler.

C2(x)

C1(x)

Cp

Cp D1 D2

Cs1

V0 t=0

Cs2

D5

D3 D4

Cs3

+– Vout

Basic cell

Figure 15. Two–stage Cockcroft-Walton multiplier.
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Figure 16. Main operation of the two-stage Cockcroft-Walton multiplier.
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Figure 17. Comparison of the saturation voltage versus acceleration amplitude for

the Bennet’s doubler and the two-stage Cockcroft-Walton voltage multiplier.

a sequence of four stages. At first, all diodes are blocked. In the second stage, D1 and D3 are

simultaneously conducting, and the charges are transferred to C2 and Cs2. All diodes are reverse–

biased and blocked in the third stage. In the final stage, D2 and D4 are conducting, transferring

the scavenged energy to Cs1 and Cs3. D5 is mainly used to pre–charge C1, and its conduction

during operation is insignificant and disregarded. In principle, the steady–state operation of these

stages can also be approximately described by a rectangular Q–V diagram. However, the relations

between voltages at circuit nodes and diode states (ON/OFF) of such a multiplier are much more

complicated than that of Bennet’s doubler. Therefore, the analytical derivation of the saturation

voltage is still left as an open question.

Figure 17 shows a substantial increase of the saturation voltage when the Cockcroft-Walton

multiplier and the Bennet’s doubler are compared. Since the topology discussed in Section 5.1

requires a control unit for controlling the switch, the Cockcroft–Walton multiplier may be more
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convenient to keep the simplicity of the energy harvesting system in practical implementation.

More importantly, our simulations reveal that, unlike Bennet’s doubler, the Cockcroft–Walton

circuit topology can operate with a low ratio of capacitance variation. In particular, the lowest

capacitance ratio is found as ηmin = 1.52, making such a circuit attractive for further investigation

in future work.

6. Conclusion

This article presented a theoretical analysis of MEMS electrostatic energy harvesters configured

as Bennet’s doubler, particularly at the saturation regime. The study is based on the combination of

Q–V diagrams and dynamic simulations. The steady–state operation of the voltage doubler circuit

was approximated by a right–angled trapezoidal conversion cycle. The use of mathematically

idealized and non–ideal diode models was investigated, resulting in different analytical solutions

for the saturation voltages. The theoretical approach was verified by circuit simulation results

obtained from a complete model of the energy harvesting system. We discussed the effects of the

diode operation mechanism on an important behavior of the system, in which the input mechanical

vibration and the electrostatic force are in–phase. A similarity between Bennet’s doubler and

the resistive flyback charge pump circuit was highlighted by comparing their Q–V diagram. A

variation circuit of Bennet’s doubler with a single switch was introduced, where the saturation

voltage was significantly improved in comparison with the conventional configuration. Cockcroft-

Walton multiplier is another promising alternative since it shows the potential to work with MEMS

harvesters that have a small varying capacitance ratio.

Appendix A. Derivation of Xs, VI and VII in Section 2

Equation (2.6) is rewritten as

1 +
C0

Cp

(
1 +

Xs

x0

)
1 +

C0

Cp

(
1− Xs

x0

) =

2
(
1 +

C0

Cp

)
1 +

C0

Cp

(
1 +

Xs

x0

)(A.1)

⇐⇒
(

1 +
C0

Cp
+
C0

Cp

Xs

x0

)2

= 2

(
1 +

C0

Cp
− C0

Cp

Xs

x0

)(
1 +

C0

Cp

)
(A.2)

⇐⇒
(
C0

Cp

Xs

x0

)2

+ 4

(
1 +

C0

Cp

)(
C0

Cp

Xs

x0

)
−
(

1 +
C0

Cp

)2

= 0.(A.3)

One solution of (A.3) is (
C0

Cp

Xs

x0

)
=
(
−
√

5− 2
)(

1 +
C0

Cp

)
< 0,(A.4)

and therefore is eliminated. The positive solution is(
C0

Cp

Xs

x0

)
=
(√

5− 2
)(

1 +
C0

Cp

)
(A.5)

⇐⇒ Xs

x0
=
(√

5− 2
)(

1 +
Cp

C0

)
.(A.6)
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Substituting (A.5) into (2.4) along with x(t1) = Xs, we get

VI = V1(t1) = Vs

1 + C0
Cp

(1 + Xs
x0

)

1 + C0
Cp

(1− Xs
x0

)
= Vs

(
1 + C0

Cp

)
+
(√

5− 2
)(

C0
Cp

+ 1
)(

1 + C0
Cp

)
−
(√

5− 2
)(

C0
Cp

+ 1
)

= Vs

(√
5− 2

)(
1 + C0

Cp

)(
3−
√

5
)(

1 + C0
Cp

) = Vs

√
5 + 1

2
.

(A.7)

The solution of VII is then

VII = VI − Vs = Vs

√
5− 1

2
.(A.8)

Appendix B. Derivation of Vs in Section 3

From (3.10), F0 can be expressed as

F0 = mA−Xsbω0.(B.1)

Substituting Xs and F0 from (2.7) and (3.6), respectively, into (B.1), we have that

2 +
√

5

8

C0

x0
V 2

s = mA−
(√

5− 2
)(

1 +
Cp

C0

)
x0bω0,(B.2)

which results in the closed form of Vs in (3.11).

Appendix C. Derivation of Xs, x1, VI and VII in Section 4

Equation (4.10) is equivalent to

1 + C0
Cp

1 + C0
Cp

(
1− Xs

x0

) =
2
(
1 + C0

Cp

)
+ C0

Cp

Xs
x0

1 + C0
Cp

(
1 + Xs

x0

)(C.1)

⇐⇒
(

1 +
C0

Cp

)[
1 +

C0

Cp

(
1 +

Xs

x0

)]
=

[
1 +

C0

Cp

(
1− Xs

x0

)][
2

(
1 +

C0

Cp

)
+
C0

Cp

Xs

x0

]
(C.2)

⇐⇒
(

1 +
C0

Cp

)2

− 2
C0

Cp

Xs

x0

(
1 +

C0

Cp

)
−
(
C0

Cp

Xs

x0

)2

= 0.(C.3)

Similarly, the positive solution of (C.3) is

1 +
C0

Cp
= (
√

2 + 1)
C0

Cp

Xs

x0
(C.4)

⇐⇒ Xs

x0
= (
√

2− 1)

(
1 +

Cp

C0

)
.(C.5)

Substituting (C.5) into (4.1), we have(
3− 2

√
2
)(

1 +
C0

Cp

)2

− 2
C0

Cp

x1

x0

(
1 +

C0

Cp

)
−
(
C0

Cp

x1

x0

)2

= 0.(C.6)

Eliminating any negative solutions, x1 = x(t1) is then determined by

1 +
C0

Cp
=
(
3 + 2

√
2
)(√

4− 2
√

2 + 1
)C0

Cp

x1

x0
(C.7)

⇐⇒x1

x0
=
(√

4− 2
√

2− 1
)(

1 +
Cp

C0

)
.(C.8)
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The closed forms of VI and VII are given as follows

VI = V1(t2) = Vs

1 + C0
Cp

1 + C0
Cp

(1− Xs
x0

)
= Vs

1 + C0
Cp

(2−
√

2)
(
1 + C0

Cp

) = Vs

(
1 +

1√
2

)
,(C.9)

VII = V2(t1) = Vs

1 + C0
Cp

(1− Xs
x0

)

1 + C0
Cp

(1 + x1
x0

)
= Vs

(2−
√

2)
(
1 + C0

Cp

)√
4− 2

√
2
(
1 + C0

Cp

) = Vs

√
1− 1√

2
.(C.10)

Appendix D. A summary of the operation and derivation of the upper-bound

saturation voltage in Section 5.1

With the use of the mathematically ideal diode model, the relations of charge and voltage at the

saturation regime for both transducers are approximated as a rectangular in Figure 12. The Q–V

cycle is very similar to that of the case presented in Section 2, except that the saturation voltage

Vs is unknown and Vm ≤ Vs ≤ VII. All the following computations are only based on the Q–V

diagram.

Stage I :

At t = t0, x(t0) = −Xs and V1(t0) = V2(t0) = Vm. The charges q1, q2 and the voltages V1, V2

when t ∈ [t0, t1] are expressed as follows

q1

∣∣∣
t∈[t0, t1]

= Vm

[
Cp + C0(1 +

Xs

x0
)
]
,(D.1)

q2

∣∣∣
t∈[t0, t1]

= Vm

[
Cp + C0(1− Xs

x0
)
]
,(D.2)

V1

∣∣∣
t∈[t0, t1]

=
q1

C1
=
Vm

[
Cp + C0(1 + Xs

x0
)
]

Cp + C0(1− x
x0

)
,(D.3)

V2

∣∣∣
t∈[t0, t1]

=
q2

C2
=
Vm

[
Cp + C0(1− Xs

x0
)
]

Cp + C0(1 + x
x0

)
.(D.4)

Stage II :

At t = t1, x(t1) = x1, V1(t1) = VII, V2(t1) = VI and diode D3 starts to conduct, which yields

VII = Vs + VI(D.5)

⇐⇒Vm

1 + C0
Cp

(
1 + Xs

x0

)
1 + C0

Cp

(
1− x1

x0

) = Vs + Vm

1 + C0
Cp

(
1− Xs

x0

)
1 + C0

Cp

(
1 + x1

x0

) .(D.6)

The net charge pumped from C1 into C2 is considered negligible ∆Q ≈ 0.

Stage III :

From t2 −→ t3, q1 and q2 are constant,

q1

∣∣∣
t∈[t2, t3]

= Vm

[
Cp + C0(1 +

Xs

x0
)
]
−∆Q ≈ Vm

[
Cp + C0(1 +

Xs

x0
)
]
,(D.7)

q2

∣∣∣
t∈[t2, t3]

= Vm

[
Cp + C0(1− Xs

x0
)
]

+ ∆Q ≈ Vm

[
Cp + C0(1− Xs

x0
)
]
.(D.8)
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At t = t2, V1(t2) = V1(t1) and x(t2) = Xs, we get

Vm

1 + C0
Cp

(
1 + Xs

x0

)
1 + C0

Cp

(
1− Xs

x0

) = Vm

1 + C0
Cp

(
1 + Xs

x0

)
1 + C0

Cp

(
1− x1

x0

)(D.9)

⇐⇒ x1 = Xs.(D.10)

The equation (D.6) then becomes

1 + C0
Cp

(
1 + Xs

x0

)
1 + C0

Cp

(
1− Xs

x0

) =
Vs

Vm
+

1 + C0
Cp

(
1− Xs

x0

)
1 + C0

Cp

(
1 + Xs

x0

) .(D.11)

Stage IV :

At t = t3, V1(t3) = V2(t3) = Vm and D1 starts to conduct, hence

Vm

[
Cp + C0(1 + Xs

x0
)
]

Cp + C0(1− x3
x0

)
= Vm

[
Cp + C0(1− Xs

x0
)
]

Cp + C0(1 + x3
x0

)
= Vm(D.12)

⇐⇒ x3 = −Xs.(D.13)

The charge on C1 at t = t4 is

q1(t4) ≈ q1(t3) = Vm

[
Cp + C0(1 +

Xs

x0
)
]

= q1(t0).(D.14)

Thus, the state of the circuit at t4 is identical to that at t0, and a new cycle starts.

The aim of analyzing the Q–V diagram is to express VI and VII in terms of Vs for further

investigation. Unfortunately, the exploration above only leads to one equation (i.e., (D.11)) for two

unknowns Vr = Vs/Vm and Xs, therefore such a goal cannot be done. However, due to the fact

that 0 < xr = Xs/x0 ≤ Xmax/x0, a closed–form expression for maximum Vs (denoted as maxVs) as

a function of transducer parameters and external input is possible.

Denote C0/Cp = Cr, from equations (D.5) and (D.11), VI, VII and Vr are written as

γ =
1 + Cr + Crxr

1 + Cr − Crxr
> 1,(D.15)

VI = Vmγ,(D.16)

VII = Vm
1

γ
,(D.17)

Vr = Vm
γ2 − 1

γ
.(D.18)

The harmonic forms of V1 and V2 are then

V1 =
1

2
Vm(γ + 1) +

1

2
Vm(γ − 1) sin(ωt),(D.19)

V2 =
1

2
Vm

(1

γ
+ 1
)

+
1

2
Vm

(1

γ
− 1
)

sin(ωt),(D.20)

resulting in

V 2
1 − V 2

2 = V 2
m

(γ2 − 1)(γ + 1)2

4γ2
(sin(ωt) + 1)

[
1 +

(
γ − 1

γ + 1

)2

sin(ωt)

]
.(D.21)
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Since

(
γ−1
γ+1

)2

� 1 is negligible, the electrostatic force is

Fe = F0(sin(ωt) + 1),(D.22)

where F0 = V 2
m

[
1

8

C0

x0

(γ2 − 1)(γ + 1)2

γ2

]
= V 2

mβ.(D.23)

At the resonance frequency, equations (B.1) and (D.23) imply that

V 2
mβ = mA− x0xrbω0,(D.24)

=⇒ V 2
m =

mA− x0xrbω0

β
.(D.25)

From (D.18), (D.23) and (D.25), the expression of Vs is determined by

Vs = 2
√

2

√
γ − 1

γ + 1

mA− x0xrbω0

C0
x0

= 2
√

2

√
Crxr

Cr + 1

mA− x0xrbω0

C0
x0

.(D.26)

The derivative of Vs with respect to xr is

∂Vs

∂xr
= 4

x0

C0

Cr

Cr + 1

mA− 2x0xrbω0

Vs
.(D.27)

The optimal values of xr as a function of the input acceleration is

optxr =


mA

2x0bω0
, if 0 <

mA

2x0bω0
≤ Xmax

x0
Xmax

x0
, otherwise.

(D.28)

Therefore, the maximum saturation voltage is

maxVs =


mA

√
2

(C0 + Cp)bω0
, if 0 <

mA

2x0bω0
≤ Xmax

x0

2
√

2

√
Xmax(mA−Xmaxbω0)

C0 + Cp
, otherwise.

(D.29)
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