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Cyber attacks and anomaly detection are problems where the data is often highly unbalanced towards
normal observations. Furthermore, the anomalies observed in real applications may be significantly dif-
ferent from the ones contained in the training data. It is, therefore, desirable to study methods that are
able to detect anomalies only based on the distribution of the normal data. To address this problem,
we propose a novel objective function for generative adversarial networks (GANs), referred to as STEP-
GAN. STEP-GAN simulates the distribution of possible anomalies by learning a modified version of the
distribution of the task-specific normal data. It leverages multiple generators in a step-by-step interac-
tion with a discriminator in order to capture different modes in the data distribution. The discriminator
is optimized to distinguish not only between normal data and anomalies but also between the different
generators, thus encouraging each generator to model a different mode in the distribution. This reduces
the well-known mode collapse problem in GAN models considerably. We tested our method in the areas
of power systems and network traffic control systems (NTCSs) using two publicly available highly imbal-
anced datasets, ICS (Industrial Control System) security dataset and UNSW-NB15, respectively. In both
application domains, STEP-GAN outperforms the state-of-the-art systems as well as the two baseline sys-
tems we implemented as a comparison. In order to assess the generality of our model, additional exper-
iments were carried out on seven real-world numerical datasets for anomaly detection in a variety of
domains. In all datasets, the number of normal samples is significantly more than that of abnormal sam-
ples. Experimental results show that STEP-GAN outperforms several semi-supervised methods while
being competitive with supervised methods.

� 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Cyber attack detection, as well as anomaly detection, have
become increasingly important with the digitization of most of
our critical infrastructure. Machine learning methods provide a
viable alternative to solving these problems. Most studies that
attempt to detect cyber attacks use some form of supervised learn-
ing, assuming the nature of the attacks is known [1–5]. However,
collecting attack data is a challenging process, and attackers, with
the advancement of technology, are able to use a variety of sophis-
ticated methods to perform innovative cyber attacks, making it dif-
ficult to predict the nature of the attacks. Furthermore, labeled data
is not always available in real-world applications, and data labeling
is a costly and time-consuming process, requiring the use of
human resources that can be associated with human error.
Similarly, in the more general area of anomaly detection, it is unre-
alistic to assume that the kind of anomalies that may occur in the
future are known in advance. Supervised methods have a tendency
to become highly optimized to the anomalies encountered in the
specific datasets. Therefore, in spite of high performance on the
specific dataset, these methods may be prone to failure if the char-
acteristics of the anomalies change at a future time.

A solution is to cast the anomaly detection problem into a one-
class classification problem where only normal data is used during
training. The attack data (anomalies) is assumed to belong to the
complement distribution [6–8] of normal data. In simple terms,
the complement distribution has probability mass in regions
where the data distribution has low probability mass, with some
extra constraints to ensure that the total probability is bounded.
Because no complement data samples are available during
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training, methods that fall into this category are usually generative
in nature. Among these methods, generative adversarial networks
(GANs) have been a popular choice for this problem [9–11]. How-
ever, GANs were originally designed to generate samples according
to the same distribution of the training data. In order to adapt the
GAN framework to this task, for example, an encoder can be added
and the reconstruction error can be used to discriminate between
normal and abnormal data [9,10]. Another possibility is to try to
explicitly model the complement distribution as in OCAN [11]
and BAD-GAN [6].

The aforementioned methods are inefficient in practice and
suffer from the fundamental problems of regular GANs, i.e., mode
collapse. Mode collapse [12] refers to a problem in which the
generator only learns to generate artificial data from a few modes
of the data distribution missing other modes despite these being
well represented in the training data. This problem limits the
ability of GAN-based methods to model and detect possible
anomalies.

In [13], we proposed STEP-GAN, a novel GAN-based counter-
measure to detect anomalies. This method falls under the category
of one-class classifiers previously described, in that it is only
trained using normal data. Differently from OCAN, which aims at
estimating the complement distribution explicitly, STEP-GAN aims
to find the boundary between normal and attack data by estimat-
ing a perturbed version of the normal data distribution. Moreover,
STEP-GAN provides a new technique for contrasting the mode col-
lapse problem by attempting to model all the modes in which
attacks (anomalies) can occur. As a result, our system is potentially
more robust to unseen attacks. In this study, we extend the results
obtained in [13] in several ways. We discuss the principles behind
STEP-GAN more thoroughly. We provide a detailed analysis of the
mode collapse problem and how STEP-GAN mitigates it in the con-
text of cyber security. Finally, we provide results on real-world
anomaly detection problems, comparing to several other methods
proposed in the literature.

Our contributions can be summarized as follow:

� We propose the STEP-GAN architecture for anomaly detection
tasks giving a detailed explanation of the motivation for its
objective function;

� We provide experimental evidence in the cyber-security
domain using two well-known, highly imbalanced, publicly
available datasets, namely ICS and UNSW-NB15, showing that:
– STEP-GAN significantly outperforms the state-of-the-art sys-

tems in terms of accuracy and F-measure;
– STEP-GAN performance is stable across domains, namely

power systems (ICS) and network traffic control systems
(UNSW-NB15);

� A thorough analysis showing that the proposed objective func-
tion considerably reduces the mode collapse issue in GANs;

� A demonstration that simply adding generations in a multi-
generator version of the OCAN technique, MG-OCAN, would
not address the mode collapse problem;

� A proof of the generality of our solution by reporting experi-
ments on seven real-world numerical datasets for anomaly
detection from a variety of domains. In all datasets, the number
of normal samples is significantly more than that of abnormal
samples.

In addition, because STEP-GAN does not rely on labeled attack
data for the training process, we speculate that this method may
be more robust than supervised methods to unseen attacks in real
applications.

The rest of this work is organized as follows. First, we discuss
the related studies in Section 2. Then, we present the proposed
method in Section 3. Subsequently, we give a brief explanation of
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the experimental setup in Section 4. Results and conclusions are
given in Section 5 and 6, respectively.
2. Related works

Many anomaly detection techniques have been developed in
recent years. In this section, we will try to give a comprehensive
review, with special emphasis on those methods that are closely
related to ours or that have been tested on the data that we use
in our experiments.

In the domain of cyberattack detection in power systems, Krav-
chik and Shabtai [14] applied 1D convolutional neural networks
(CNN) and autoencoders on both the time and frequency domains,
reporting meaningful results on the Industrial Control System (ICS)
data [5] (see Section 4). In [15], a conditional GAN (CGAN) model
was employed to deploy cyber physical production systems robust
to cross-domain attacks.

Wang et al. [16] employed a neural network based model along
with an automatic behavioral abstraction technique (ABATe) to
detect anomalies in cyber-physical systems. ABATe models rela-
tionships between event vectors from normal data available in
abundance with cyber-physical systems (CPS). Then the abstract
model is used to detect anomalies. Jahromi et al. [4] employed
autoencoders (AE) [17] to extract meaningful features from the
power system data. Then, several traditional machine learning
based classifiers were employed on the ICS dataset, and a 92.47%
accuracy was achieved using the gradient boosting (GB) method
and learned features. For the original features, a 95.77% accuracy
was obtained using ANNs. Hassan et al. [18] combined a random
subspace (RS) method with a random tree (RT) classifier, named
RSRT, and delivered an ensemble of trees, which allowed to reduce
redundancy of features and prevent overfitting. Results showed
that the proposed solution achieved a high attack detection rate
(95.95% accuracy) on the ICS dataset. In [19], the authors modeled
the dynamic interactions of industry 4.0 [20] components, includ-
ing a smart management module and a threat intelligence module.
The former module handles heterogeneous data sources; whereas
the latter module is designed based on beta mixture-hidden Mar-
kov models (MHMMs) for the detection of anomalies in both phys-
ical and network systems. Accuracy of 98.45% on the ICS dataset.

The authors of [19] also report 96.32% accuracy on the UNSW-
NB15 dataset [21], which is in the domain of network traffic con-
trol systems. In the same domain, in [22], a deep stacked autoen-
coder (DSAE) with a softmax classifier was devised to tackle the
anomaly detection problem, achieving an 89.13% accuracy on the
UNSW-NB15 dataset. Rabbani et al. [23] applied a particle swarm
optimization-based probabilistic neural network (PSO-PNN) for
the detection and recognition process. In their first module, the
user behaviors are converted into an understandable format and
then classified by an ANN. A 96.4% detection rate was reported
on the UNSW-NB15 dataset. In [24], the averaged one-
dependence estimator (AODE) technique was adopted as the basic
block of the proposed multiple class classifier, and an accuracy of
83.47% was delivered on the UNSW-NB15 dataset. On the same
dataset, a random forest (RF) classifier was employed in [25]
attaining an accuracy of 81.62%. In [26], a feature reduction
method leveraging two types of pigeon inspired optimizer (PIO)
were used: sigmoid PIO and cosine PIO. The sigmoid PIO selected
14 features; whereas the cosine PIO selected 5 features. On the
UNSW-NB15 dataset, the Sigmoid PIO achieved an accuracy of
91.3%. In contrast, Cosine PIO obtained 91.7%.

Recently, Zheng et al. [11] proposed one-class adversarial nets
(OCAN) for fraud detection on online applications such as social
media. OCAN employs an LSTM-Autoencoder [27] to learn the rep-
resentations of benign users from their sequences of online activi-
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ties. It then detects malicious users by training a discriminator of a
complement GAN model. Whereas the generator in regular GAN
learns the distribution of normal data, the generator in comple-
ment GAN is trained to generate a distribution of data that is close
to the complement distribution of the normal data. The concept of
complement distribution was introduced in BAD-GAN [6] and
was defined as the reciprocal of the normal data distribution if
the latter exceeds a certain threshold and as a constant otherwise.
To ensure bounded probabilities, the data space is supposed to be
bounded by a convex set. Fig. 1 illustrates the difference between
regular GAN and BAD-GAN. According to the BAD-GAN paper, the
complement distribution p� in OCAN is defined as follows

p�ðxÞ ¼
1
s

1
pðxÞ ; if pðxÞ > � and x 2 Bx

C; if pðxÞ 6 � and x 2 Bx;

(
ð1Þ

where pðxÞ is the distribution of the normal data, s is a normalizer, C
is a small constant, � is a hyper-parameter, and the normal data
x � pðxÞ is bounded by convex set B (i.e Bx). Accordingly, the KL-
divergence between the generator G (with the corresponding distri-
bution pG) and p� in OCAN is

KLðpGjjp�Þ ¼ �HðpGÞ þ E
x�PG

log II½pðxÞ > �� þ E
x�pG

ðII½pðxÞ

> �� log s� II½pðxÞ 6 �� logCÞ; ð2Þ
where Hð:Þ is the cross-entropy, II½:� is an indicator function. Also,
the discriminator D in OCAN is a standard feedforward neural net-
work that uses the softmax function as an output layer which max-
imizes the following objective function

E
x�pðxÞ

½logDðxÞ� þ E
z�pðzÞ

½logð1� DðGðzÞÞÞ� þ E
x�pðxÞ

½DðxÞ logDðxÞ�; ð3Þ

where pðzÞ is the noise distribution, and z � pðzÞ is the input of the
generator. In Eq. 3 the first two terms are the objective function of
the discriminator in the standard GAN. Thus, the discriminator of
OCAN is trained to discriminate the normal data and complement
data. The third term in Eq. 3 is a conditional entropy term, pushing
the discriminator to detect normal samples with high confidence.
Similar to most GAN based methods, OCAN suffers from mode
collapse.

In our experiments, we will compare our results with those
reported by the above mentioned works. We also include a
detailed comparison with OCAN which inspired our model.
Fig. 1. A comparison of data generation in regular and complement GAN. T
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Because OCAN was never tested on the ICS, UNSW-NB15, and
real-world datasets, we re-implemented the method. Moreover,
to make the comparison fairer, we propose and implemented a
multi-generator version of OCAN, which we call MG-OCAN. With
the help of MG-OCAN, we show how the STEP-GAN optimality cri-
terion is superior to OCAN’s in avoiding the mode-collapse prob-
lem, even when both methods use multiple generators.
3. Proposed method

In this work, we propose a GAN-based model, which we call
STEP-GAN, with a novel objective function, with the goal of detect-
ing anomalies (attacks) when only normal data is available for
training. In a regular GAN, a generator Gðz; hgÞ produces fake sam-
ples according to a distribution pg with parameters hg given ran-
dom samples z � pðzÞ as input. A discriminator Dðx; hdÞ tries to
distinguish between these fake samples and the real data
ðxni¼1Þ � pd. In the GAN objective, however, the adversarial opti-
mization between generator and discriminator is used to make
pg a close approximation of the distribution of the real data pd

[28]. Consequently, in the original formulation, GANs are not suit-
able for anomaly detection tasks. Moreover, GANs are affected by a
number of issues, such as i) mode collapse (Section 1), ii) the need
for large amounts of training data, and iii) difficult optimization.

STEP-GAN attempts to generate fake data by estimating a per-
turbed version of the real data distribution. This is achieved by
making the optimization of the generator dependent on the perfor-
mance of the discriminator during training. Furthermore, this
approach allows us to extend the model to incorporate multiple
generators. The objective function ensures that different genera-
tors will tend to model different nodes in the data distribution,
thus reducing the mode collapse problem.

The overall architecture of the proposed system is shown in
Fig. 2. The model involves n generators and one discriminator.
The discriminator Dðx; hdÞ assigns each observation x to one of
nþ 1 classes determining if the observation has been generated
by one of the n generators or belongs to the real data (class nþ 1Þ.

To train our system, we first apply noise z � pðzÞ to the input of
the multiple generators. Each generator i outputs a fake sample
~xi ¼ Giðz; higÞ according to the distribution pgi

. The parameters hig
of each generator are optimized by minimizing
he blue regions indicate the high density regions of the normal data.



Fig. 2. The architecture of the proposed system with n generators. The discriminator returns nþ 1 softmax values determining the probability of the input data belonging to
either one of the n generators or the normal data.
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E
z�pðzÞ

logð1� Dnþ1ðGiðz; higÞ; hdÞÞ; ð4Þ

which corresponds to the expected value with respect of the noise
distribution pðzÞ of the log probability that the generated sample ~xi
is classified as fake by the discriminator.

The parameters of each generator are updated by computing
the gradient

rhig
E

z�pðzÞ
logð1� Dnþ1ðGiðz; higÞ; hdÞÞ: ð5Þ

Note that all generators, in this case, can be updated simultane-
ously. The joint objective of all the generators is to minimize

Xn
i¼1

E
x�pgi

logð1� Dnþ1ðxÞÞ: ð6Þ

where we have expressed the expectation in terms of the generated
samples x instead of the input samples z.

If we keep the parameters hig of the generators constant, the the-
oretically optimal distribution for the discriminator D has the fol-
lowing form:

DiðxÞ ¼
1

NðxÞpgi
ðxÞ; i 2 ½1; . . . ; n�

1
NðxÞpdðxÞ; i ¼ nþ 1;

(
ð7Þ

with

NðxÞ ¼ pdðxÞ þ
Xn
j¼1

pgj
ðxÞ ð8Þ

where, DiðxÞ 2 ½0;1�;Pnþ1
i¼1 DiðxÞ ¼ 1 represents the ith index of

Dðx; hdÞ, and pgi
the distribution of the ith generator given hig . If

we consider a sample x (real or fake) to be distributed according
to a distribution p with SuppðpÞ ¼ [n

i¼1Suppðpgi
Þ [ SuppðpdÞ, we can

approximate the optimal discriminator by maximizing the expected
value of the negative cross entropy function

E
x�p

Hðn;Dðx; hdÞÞ; ð9Þ

where n 2 f0;1gnþ1 is the indicator function that specifies if a sam-
ple is generated by the ith generator (i 2 f1; . . . ;ng) or belongs to
the real data (nðnþ 1Þ ¼ 1). This encourages the discriminator to
push different generators towards different identifiable modes in
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order to accurately recognize which generator produced a given
fake data point. This phenomenon is responsible for the reduction
of the mode collapse problem in the proposed method that will
be demonstrated experimentally.

For the discriminator, given x � p (real or fake) and the corre-
sponding n, the gradient is rhd logDjðx; hdÞ, where Djðx; hdÞ is the
j-th index of Dðx; hdÞ for which nðjÞ ¼ 1. Therefore, using this
approach requires very minor modifications to the standard GAN
optimization algorithm and can be easily used with different vari-
ants of GAN.

Finally, in order to lead the generators to generate data in a per-
turbed version of the distribution of normal data, we apply a con-
dition on the min–max interaction between generators and
discriminators. The generators continue learning as long as the
sensitivities (SEs) and specificities (SPs) [29] of the discriminator
are above the values of two hyper-parameters a and b, respec-
tively. When these values fall below the thresholds a or b, we
pause training for the generators until the discriminator learns to
perform better than those threshold values. The complete objective
function can be expressed as:

min
hg ðSE>a;SP>bÞ

max
hd

Vðhd; hgÞ :¼ E
x�pd

logDnþ1ðxÞ

þ
Xn
i¼1

E
x�pgi

logð1� Dnþ1ðxÞÞ

þ E
x�p

Hðn;Dðx; hdÞÞ: ð10Þ

This is fundamentally different from estimating the complement
distribution explicitly (OCAN, BAD-GAN) as illustrated in Fig. 3.
Our goal is not to estimate a distribution of abnormal data but
rather to estimate a perturbed version of the distribution of real
data that allows us to find good boundaries between normal data
and potential anomalies. The pseudo-code of the training and test-
ing phases of the proposed method is illustrated in Algorithm 1 and
Algorithm 2, respectively.

Fig. 4 illustrates the effect of our objective function in the case
of two generators and two modes in the training data. The gener-
ators are pushed by the discriminator toward the different modes.
Furthermore, the generated data spans wider support than the real
data, allowing the discriminator to estimate boundaries between
normal data and potential anomalies.



Fig. 3. Illustration of the difference between Complement GAN (OCAN, BAD-GAN) and STEP-GAN. In both cases the real data distribution is shown in blue. a) OCAN estimates
the complement distribution to find the optimal discriminator. b) STEP-GAN estimates a perturbed version of the real data distribution.

Fig. 4. Visualization of multiple generators that are driven towards different identifiable modes (M1 and M2) during the training cycle. After convergence, the discriminators
are also shown.
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Algorithm 1 STEP-GAN training algorithm.

Inputs:
training data X ¼ fx1; . . . ; xNg, .only normal data
number of generators n,
training parameters a; b,
prior noise distribution pðzÞ,
maximum number of epochs MaxEpochs, and BatchSize
procedure STEP-GAN-Training X;n;a; b; pðzÞ
Initialize model parameters: hd; h

i
g ; i 2 ½1;n�

while (Epoch Number < MaxEpochs) do
for i 2 ½1;n� .for each generator

Generate BatchSize=n fake samples Giðz; higÞ with z � pðzÞ
end for
Combine fake samples and a batch from X into training

batch B
Compute SE and SP over B using current discriminator hd
Update hd using training batch B and

rhd logDðGiðz; higÞ; hdÞ
if SE > a and SP > b

For each generator Gi, update hig using

rhig
ðlogð1� DðGiðz; higÞÞÞÞ

end if
Increment Epoch Number

end while

Return trained hd; h
i
g ; i 2 ½1;n�

end procedure
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Algorithm 2:STEP-GAN testing algorithm.

Inputs:
Number of generators n,

Model parameters hd; h
i
g ; i 2 ½1;n�,

Test data D ¼ fðx1; t1Þ; . . . ; ðxM; tMÞg .both normal and attack
data

procedure STEP-GAN-Testn; hd; h
i
g ;D

for x 2 D do
Discriminate normal data from attack data by: DðxÞ
outputting nþ 1 softmax values specifying the

probability of the input data belongs to the fake
distribution (1 to n) or the real distribution (nþ 1).
end for

end procedure
3.1. Assumptions and possible limitations

In the proposed solution, we assume that future normal data
will be distributed according to the distribution of the normal data
in the training set. If the characteristics of normal data shift in
time, some form of adaptation will be required to make our
method work, similarly to any other machine learning method.
Furthermore, we assume that generators that are not fully trained
will model a distribution having roughly the same support as the
data distribution but with longer tails (see Fig. 3 (b)). If this is
not the case, our method may place the boundaries between nor-
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mal and attack data in an unreliable manner. However, Fig. 9 (d)
shows experimental support for this assumption.
Fig. 5. Distribution of benchmark ICS dataset.

Table 1
The ICS dataset statistics of binary classification events.

Subset #Event Scenario #Instances

No Events 1 294
Natural Event 8 1221
Attack 28 3711

Total 37 5226

1 https://cve.mitre.org/
4. Experimental setup

We conducted experiments in the cyber-security domain using
two well-known open-source datasets: ICS [5] and UNSW-NB15
[21]. Furthermore, in order to prove the generality of our model,
we also conducted experiments on seven real-world numerical
datasets for anomaly detection in several domains. These datasets
are listed in DevNet paper [30] and are characterized by having a
significantly higher number of normal samples compared to the
anomalies. We will first describe the data and then give details
on the experimental setup.

4.1. The ICS dataset

The ICS dataset was obtained from supervisory control and data
acquisition (SCADA) power systems provided by Mississippi State
University. The dataset contains three groups, including Binary,
Three-Class, and Multiclass datasets. Each group is made from
one initial dataset, including 15 subsets that consist of 37 power
system event scenarios, comprising 8 Normal Events, 1 No Events,
and 28 Attack Events. Different possible types the attack scenarios
are listed as follows: Remote tripping command injection: in this
attack, a command is sent to a relay in order to open a breaker.
Such an attack happens when an attacker has infiltrates outside
defenses. Relay setting change: relays are configured with a distance
protection scheme, and the attacker changes the setting to disable
the relay function such that the relay will not trip for a valid fault
or a valid command. Data Injection: attackers try to change values
to various parameters such as current, voltage, and sequence com-
ponents to imitate a valid fault. Such an attack intends to blind the
operator, which results in a blackout. The benchmark distribution
of each dataset instance is shown in Fig. 5.

Each observation includes 128 fixed-length dimensional fea-
tures obtained from the phasor measurement units (PMUs). A
PMU estimates the magnitude and phase of an electrical current
or voltage. These features include 29 types of measurements, con-
taining a total of 116 synchronized phasors (synchrophasor) mea-
surement columns. The synchrophasor, or PMU is built upon the
cyber layer and provides real-time data to the energy management
system (EMS) in order to control the physical system. Such pro-
cesses are presented as a sequence of execution events in the
cyber-physical environment. The synchrophasor data comprises
not only the measurements (e.g., voltage and current phasors)
but also the status of system devices consisting of relays, breakers,
switches, and transformers. Furthermore, there are 12 types of
measurements of control panel logs, snort alerts, and relay logs
of the 4 synchrophasor measurement unit and relay.

In this study, we used binary classification events for detecting
false data injection attacks on the SCADA system. In order to
reduce the effect of small sample sizes, the datasets were randomly
sampled at 1% to reduce the size and evaluate the effectiveness of
small sample sizes. The dataset statistics of binary class events
classification are summarized in Table 1.

4.2. The UNSW-NB15 dataset

There are many publicly available datasets on network intru-
sion detection systems (NIDSs). The most widely used among them
are DARPA 98 [31], KDD Cup 99 [32], NSL-KDD [33]. DARPA 98 con-
tains several weeks of network data and audit logs, but this dataset
does not depict real-world traffic. KDD Cup 99 was published to
improve the problems of DARPA 98. However, this dataset contains
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issues such as duplicate and redundant records. NSL-KDD dataset
was released to refine KDD 99 problems. However, many studies
have shown that NSL-KDD does not inclusively reflect network
traffic and modern low footprint attacks of real environment
[21]. UNSW-NB15 was introduced in 2015, claiming to contain
the most comprehensive attack scenarios. The UNSW-NB15 data-
set was obtained from 9 types of modern attack methods, and
new patterns of normal network traffic flows. The traffic generator
tool, called IXIA traffic generator, is utilized as an attack traffic gen-
erator along with as normal traffic. The attack behavior is nour-
ished from the CVE site1 for the purpose of a real representation
of a modern threat environment. Due to the speed of network traffic
and the way of exploiting by modern attacks, the IXIA tool is config-
ured to generate one attack per second during the first simulation to
capture the first 50 GBs. On the other hand, the second simulation is
configured to make ten attacks per second to extract another 50 GBs.
The dataset includes 49 features, containing the flow based between
hosts (i.e., client-to-server or server-to-client) and the network pack-
ets inspection to distinguish between the normal or abnormal sam-
ples [21]. The list of features is reported in Table 2. Flow-based
features are generated using the sequencing of packets from a source
to a destination, traveling in the network. In contrast, Packet-based
features are extracted from the packet header and its payload (also
called packet data). The features are classified into 3 sets, called basic
features (6 to 18), content features (19 to 26), and time features (27
to 35). In addition, features 36 to 40 and 41 to 47 are labeled as
general-purpose features and connection features, respectively. Fea-
tures in the dataset are represented in both quantitative (i.e.,
numeric) and qualitative (i.e., symbolic) types. Since the model can
process only quantitative data, we used a unified format to convert
all non-quantitative features into numeric ones like [23]. Details of
UNSW-NB15 are summarized in Table 3.

In Fig. 6, we visualize the training sets in UNSW-NB15 and ICS-
S1 by means of t-SNE dimensionality reduction. As can be seen,
attack data are more prevalent in regions where normal data has



Table 2
Features in the UNSW-NB15 dataset.

Category No. Name Data Type Category No. Name Data Type

Flow 1 scrip nominal Content 25 trans_depth Integer
2 sport Integer 26 res_bdy_len Integer
3 dstip Nominal Time 27 Sjit Float
4 dsport Integer 28 Djit Float
5 proto Nominal 29 Stime Timestamp

Basic 6 state Nominal 30 Ltime Timestamp
7 dur Float 31 Sintpkt Float
8 sbytes Integer 32 Dintpkt Float
9 dbytes Integer 33 tcprtt Float
10 sttl Integer 34 synack Float
11 dttl Integer 35 ackdat Float
12 sloss Integer General 36 is_sm_ips_ports Binary
13 dloss Integer Purpose 37 ct_state_ttl Integer
14 service nominal 38 ct_flw_http_mthd Integer
15 Sload Float 39 is_ftp_cmd Binary
16 Dload Float 40 ct_fto_cmd Integer
17 Spkts Integer Connection 41 ct_srv_src Integer
18 Dpkts Integer 42 ct_srv_dst Integer

Content 19 swin Integer 43 cv_dst_ltm Integer
20 dwin Integer 44 ct_src_ltm Integer
21 stcpb Integer 45 ct_dst_dport_ltm Integer
22 dtcpb Integer 46 ct_dst_sport_ltm Integer
23 smeansz Integer 47 ct_dst_src_ltm Integer
24 dmeansz Integer 48 attack_cat Nominal

49 class Binary

Table 3
The UNSW-NB15 dataset statistics and descriptions of binary classification events.

Subset #Training
set

#Testing
set

Description

Normal 56000 37000 Natural transaction data.
Analysis 2000 677 Contains different attacks of port scan, spam and html files penetrations.
Backdoor 1746 583 A technique in which a system security mechanism is bypassed stealthily to access a computer or its data.
DoS 12264 4089 Attempts to make a server or a network resource unavailable to users, usually by temporarily interrupting or suspending

the services of a host connected to the Internet.
Exploits 33393 11132 The attacker knows of a security problem within an operating system or a piece of software and leverages that knowledge

by exploiting the vulnerability.
Fuzzers 18184 6062 Attempting to cause a program or network suspended by feeding it the randomly generated data.
Generic 40000 18871 A technique works against all blockciphers (with a given block and key size), without consideration about the structure of

the block-cipher.
Reconnaissance 10491 3496 Contains all Strikes that can simulate attacks that gather information.
Shellcode 1133 378 A small piece of code used as the payload in the exploitation of software vulnerability.
Worms 130 44 Attackers try to iterate themselves to spread to other systems. These types of attack mostly use a computer network to

spread itself, based on security failures on the target computer to access it.
Total 175341 82332 –

M. Adiban, S.M. Siniscalchi and G. Salvi Neurocomputing 537 (2023) 296–308
a low probability of existing, while its distribution is very similar to
normal data distribution, i.e., complement distribution. Note that
only the normal data is used for training our model.

4.3. Real-world datasets

The seven real-world datasets used in this work are: Annthy-
roid, Campaign, Celeba, Fraud, Donors, Backdoor, and Census.
Those datasets cover a wide variety in sample size, feature dimen-
sionality, and anomaly ratio in the real world, which provide a suit-
able benchmark to assess the robustness of the tested solution
against different types of anomalies. Details for each dataset that
are relevant to this study are given in Table 5. More information
can be found in the DevNet paper [30].

4.4. Models

Both the generators and the discriminator in the model are
composed of fully connected layers. The first layers in the genera-
tors share weights in order to reduce computational requirements
and speed up convergence. The hyperparameters of the models are
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optimized for each dataset using an independent evaluation set.
Details about the configuration of the architecture for both ICS
and UNSW-NB15 datasets are given in Table 4. The configuration
used for UNSW-NB15 was employed for real-world datasets. The
only difference is the input size, which depends on the dimension
of the input data.

For all configurations, we use the Adam optimizer [35] for train-
ing generators and the discriminator. The cross-entropy is also
used as a loss function. The main experimental parameters that
are varied in our experiments are the number of generators in
the model that can assume any value in f1;2;3;5;10;15;20g and
the hyper-parameters a and b that are varied between 0:55 and
1:0 in intervals of 0:05, for both ICS and UNSW-NB15 datasets.
With a real-world dataset, we trained our model using 10 genera-
tors, and a and b were set equal to 0:9.

4.5. Evaluation metrics

Anomaly detection is a binary classification task. Therefore, to
verify the performance of the proposed method we used three
metrics: Accuracy, F-measure, receiver operating characteristic



Fig. 6. 2D t-SNE visualization of training sets of the datasets. Green points indicate normal data, and other points indicate different types of attack data. Note that only normal
data is used to train our model.

Table 5
The statistics of the real world dataset.

Name Data size Dimensionality # Anomaly Ratio Category

Annthyroid 7,200 21 7.42% Healthcare
Campaign 41,188 62 11.27% Finance
Celeba 202,599 39 2.23% Image
Fraud 284,807 29 0.17% Finance
Donors 619,326 10 5.93% Sociology
Backdoor 95,329 196 2.44% Network
Census 299,285 500 6.20% Sociology

Table 4
Architecture details. n is the number of generators.

Input Hidden Output

Data Model nodes layers nodes activation nodes activation

ICS generator 50 3 300 Parametric ReLU [34] 128 tanh
discriminator 128 4 300 Leaky ReLU nþ 1 softmax

UNSW-NB15 generator 20 4 250 Parametric ReLU 49 tanh
discriminator 49 3 300 Leaky ReLU nþ 1 softmax

Fig. 7. The heat-map diagram of the accuracies obtained from the proposed model for different values of a and b and a fixed ten generators on (a) ICS and (b) UNSW-NB15
dataset.
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Table 6
STEP-GAN accuracy (%) as a function of hyper-parameters on ICS and UNSW-NB15 development sets.

#Generators Hyper-parameters (a; b)

(0.95,0.95) (0.9,0.9) (0.8,0.8) (0.7,0.7) (0.6,0.6)

ICS
1 59.46 64.18 53.84 55.17 49.21
2 81.07 86.34 74.67 53.78 54.23
3 93.34 93.55 73.56 61.45 53.09
5 94.67 97.59 92.31 67.93 65.40
10 95.21 98.60 94.88 75.43 74.98
15 87.57 98.44 87.07 64.23 64.94
20 90.49 96.23 83.71 62.53 57.69

UNSW-NB15
1 68.45 75.45 71.45 64.15 59.01
2 85.58 92.63 81.46 65.18 57.93
3 96.77 95.05 90.66 73.56 64.17
5 96.23 97.37 93.90 75.89 69.55
10 97.24 98.45 95.84 76.57 72.11
15 94.34 97.06 91.20 74.84 62.56
20 90.69 96.42 90.03 78.84 64.67

Table 7
Comparison between MG-OCAN (OCAN) and STEP-GAN depending on the number of generators evaluated on the test sets for the ICS and UNSW-NB15 datasets.

System #Generators ICS Dataset UNSW-NB15 Dataset

Accuracy% F-measure Accuracy% F-measure

OCAN 1 63.97 0.2791 75.03 0.6184

MG-OCAN 2 64.70 0.3054 75.12 0.6138
3 71.36 0.5116 78.95 0.6396
5 74.08 0.5491 79.38 0.6549
10 77.53 0.6054 85.03 0.7723
15 80.14 0.6290 89.31 0.8674
20 82.56 0.6739 90.62 0.8932

STEP-GAN (ours) 1 65.74 0.6012 76.28 0.6274
2 88.21 0.8446 90.14 0.8817
3 92.54 0.9012 95.48 0.9128
5 98.73 0.9537 96.52 0.9330
10 99.51 0.9762 97.24 0.9644
15 98.12 0.9495 96.78 0.9348
20 97.38 0.9375 96.55 0.9317
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(ROC) curve, and the area under the curve (AUC) (i.e. AUC-ROC)
[36], which is insensitive to the number of outliers:
Accuracy ¼ TP þ TN

TP þ TN þ FP þ FN
; ð11Þ

F�measure ¼ 2� TP

2� TP þ FN þ FP
; ð12Þ
where TP ; TN; FP and FN indicate true positive, true negative, false pos-
itive and false negative, respectively.
Fig. 8. A comparison of STEP-GAN with baseline systems for UNSW-NB15 test set
(a) and each subset of ICS test sets (b) obtained from the best configurations of each
system for 5 repetitions.
4.6. Training and test phases

In order to train our model, for the ICS dataset, we randomly
selected 80% of the dataset as the training set, 10% for the valida-
tion set, and the rest as the test set. For UNSW-NB15, we randomly
selected 10% of the training data and used as a validation set. The
validation sets were used to fine-tune all of the parameters in our
models. Importantly, only the discriminator was used during the
testing phase to detect anomalies, that is, malicious attacks. For
real-world datasets, we used a 10-fold technique, where each data-
set is randomly divided into 90% for training and 10% for testing. In
addition, we use 50% abnormal data in training and the remaining
50% in test data.
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4.7. Baseline systems

In order to evaluate the performance of our method, we com-
pare STEP-GAN with a complement GAN-based model, namely
one-class adversarial networks (OCAN) [11] as a baseline system,
which was described in Section 2. In order to have a fair
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comparison between STEP-GAN and OCAN, as mentioned in Sec-
tion 2, we also implemented OCAN with multiple generators
(MG-OCAN). We optimized the number of generators in MG-
OCAN in a similar way as for STEP-GAN.
5. Results

5.1. Hyper-parameter optimization

The number of generators n, and the thresholds a and b were
optimized using an independent development set resulting in an
optimum at n ¼ 10;a ¼ b ¼ 0:9 both for the ICS and for the
UNSW-NB15 datasets. Part of this optimization is shown in Fig. 7
where we keep the number of generators constant (n ¼ 10) and
we make a and b vary with intervals of 0.05. These results show
that variations in a values affect the performance of the model
more than b variations. This means that the model is more depen-
dent on the performance of the discriminator for detecting normal
Fig. 9. Simulated example to demonstrate the behavior of the models with respect
correspond to the training (real) data. Orange histograms show the distribution of the g

Table 8
Comparison with state-of-the-art on the ICS and UNSW-NB15 test sets.

System ICS Dataset

Accuracy% F-measur

GB (learned features) [4] 92.47 0.9057
ANN (original features) [4] 95.77 0.9150
MHMM [19] 98.45 –
RSRT [18] 95.95 –
PSO-PNN [23] – –
DSAE [22] – –
Sigmoid PIO [26] – –
Cosine PIO [26] – –

STEP-GAN (10 generators) 99.51 0.9762
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data (higher value of sensitivity) than the performance of genera-
tors for simulating fake data (higher values of specificity).

Table 6, shows the optimization of the number of generators
(for some of the values of a and b) on ICS and UNSW-NB15 data-
sets. These results show that the optimal values of the hyper-
parameters are consistent across tasks. They also show that perfor-
mance is strongly dependent on both the number of generators
and the values of the hyperparameters. After optimizing hyper-
parameters for ICS and UNSW-NB15 datasets, those same hyper-
parameters were used to build our model using real-world data
(i.e. a; b ¼ ð0:9;0:9Þ, and n ¼ 10).
5.2. Comparison with baselines and state-of-the-art

Table 7 shows a comparison between STEP-GAN and the base-
line models (OCAN and MG-OCAN) as a function of the number
of generators. The evaluation is performed on the ICS and UNSW-
NB15 test sets. From the table, it is clear that STEP-GAN
to model collapse. Each model was trained for 210,000 epochs. Blue histograms
enerated samples.

UNSW-NB15 Dataset

e Accuracy% F-measure

– –
– –
96.32 –
– –
– 0.9750
89.13 0.9085
91.30 0.9040
91.70 0.9090

97.24 0.9644



Table 9
Average AUC-ROCs " (ranking #) obtained by different model on the real-world datasets.

Data Semi-Supervised Supervised

STEP-GAN VAE [40] OCAN [11] MG-OCAN MO-GAAL [38] GANomaly [39] REPEN [41] Naive Bayes SVM MLP Random Forest

Annthyroid 0.846(3) 0.840(4) 0.475(11) 0.566(10) 0.690(9) 0.768(8) 0.833(5) 0.801(6) 0.820(7) 0.966(2) 0.993(1)
Campaign 0.879(2) 0.730(7) 0.677(8) 0.693(8) 0.780(6) 0.583(10) 0.579(11) 0.811(4) 0.784(5) 0.829(3) 0.912(1)
Celeba 0.777(6) 0.794(5) 0.641(10) 0.684(9) 0.758(7) 0.698(8) 0.576(11) 0.894(3) 0.880(4) 0.954(1) 0.894(2)
Fraud 0.981(1) 0.968(2) 0.942(5) 0.950(4) 0.955(3) 0.908(7) 0.922(6) 0.885(8) 0.771(11) 0.863(10) 0.881(9)
Donors 0.942(5) 0.820(9) 0.768(10) 0.845(6) 0.830(7) 0.576(11) 0.828(8) 0.996(4) 0.999(2) 1.000(1) 0.998(3)
Backdoor 0.874(6) 0.886(5) 0.517(11) 0.641(10) 0.625(11) 0.864(8) 0.896(4) 0.851(8) 0.962(3) 0.976(2) 0.996(1)
Census 0.794(4) 0.657(9) 0.623(8) 0.665(7) 0.586(10) 0.584(11) 0.694(6) 0.733(5) 0.853(3) 0.856(2) 0.908(1)

avg. AUC 0.871(3) 0.813(6) 0.663(11) 0.720(9) 0.746(8) 0.711(10) 0.761(7) 0.853(5) 0.867(4) 0.922(2) 0.931(1)
avg. rank 3.85 5.85 9.00 7.17 7.57 9.00 7.28 5.42 5.00 3.00 2.57
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outperforms MG-OCAN and OCAN on the proposed tasks for all
configurations. It is also interesting to point out that, while the
accuracy does not degrade when we go past the optimal number
of generators in STEP-GAN, the F-measure degrades considerably.
This suggests that the method can still correctly predict the dom-
inant class (normal data) but makes more mistakes on the anoma-
lies. The best configuration for STEP-GAN and baseline models are
compared in Fig. 8. The boxplots show the results over 5 indepen-
dent repetitions. This figure reveals how the performance improve-
ment for our system is consistent and stable over repetitions and
over UNSW-NB15 and subsets of the ICS databases.

Table 8 summarizes the results with respect to the state-of-the-
art on the two tasks we have considered. STEP-GAN achieves the
overall best results. It is also worth noting that a suboptimal con-
figuration of STEP-GAN with 5 generators still outperforms most
competing systems.
5.3. Mode collapse

To investigate the behavior with respect to mode collapse, we
designed a simple simulated experiment. We consider the distribu-
tion of one dimensional Gaussian mixture model (GMM) [37]
including five mixture components with modes at
f10;20;60;80;110g, and standard deviations of f3;3;2;2;1g,
respectively. In this experiment, the first two modes clearly over-
lap. However, the fifth mode lies separately as depicted in Fig. 9.
For MG-OCAN, we used 4 generators, and for STEP-GAN, We
trained the model with 4 generators using a ¼ 0:95; b ¼ 0:95. As
shown in Fig. 9, STEP-GAN estimates a distribution that is close
to the real data distribution but with broader support. On the other
hand, both OCAN and MG-OCAN suffer from mode collapse and
cover only a limited domain of complement distributions of exist-
ing modes. Although MG-OCAN is trained with 4 generators, it still
fails to capture different modes, while can successfully capture all
5 modes. This is mainly due to the STEP-GAN objective function,
which pushes multiple generators to generate samples into differ-
ent identifiable modes.
5.4. Results on real-world datasets

Here we compare the results of STEP-GAN with 6 semi-
supervised techniques and 4 supervised methods on seven real-
world datasets for anomaly detection [30]. The AUC-ROC results,
along with corresponding rankings, are shown in Table 9. The
methods listed in Table 9 except OCAN and MG-OCAN are trained
using PyOD2 implementation with the default parameters. STEP-
GAN outperforms all GAN-based models (OCAN [11], MG-OCAN,
MO-GAAL [38], GANomaly [39]) on all tested datasets. Moreover,
2 https://pyod.readthedocs.io/
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STEP-GAN attains better results than variational autoencoder (VAE)
[40] on 5 out of 7 datasets and REPEN [41] on 6 out of 7 datasets.

In our opinion, comparing semi-supervised and supervised
models in this domain is not entirely fair because the second has
an advantage when the test material is not too dissimilar from
the training material. However, even though STEP-GAN is a semi-
supervised method and only uses normal data in the training pro-
cess, it still shows better average performance than 2 of the 4 listed
supervised methods.

These results prove how STEP-GAN generalizes well across
domains and is highly competitive among semi-supervised
techniques.
6. Conclusions

In this study, we propose a novel countermeasure to detect
cyber attacks, also known as anomalies in the literature, that we
call STEP-GAN. STEP-GAN is a multi-generators GAN-based model
that utilizes a novel optimality criterion in conjunction with a
step-by-step training procedure in order to simulate possible
attacks on the system using only normal training data. We report
results on two highly imbalanced publicly available ICS and
UNSW-NB15 datasets showing that our model significantly outper-
forms the state-of-the-art on these tasks, as well as OCAN and MG-
OCAN that were not previously tested in these domains. We also
show that the reason for this performance improvement is that
the proposed training procedure mitigates the mode collapse issue
in GAN based systems and therefore generates more diverse sam-
ples with fewer generators.

Finally, we prove the generality of our method by testing on
seven real-life anomaly detection datasets. Here STEP-GAN is very
competitive compared to other semi-supervised techniques and
even outperforms, on average some supervised techniques.
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