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a b s t r a c t

We propose Medial Atom Ray Fields (MARFs), a novel neural object representation that enables
accurate differentiable surface rendering with a single network evaluation per camera ray. Existing
neural ray fields struggle with multi-view consistency and representing surface discontinuities. MARFs
address both using a medial shape representation, a dual representation of solid geometry that
yields cheap geometrically grounded surface normals, in turn enabling computing analytical curvature
despite the network having no second derivative. MARFs map a camera ray to multiple medial
intersection candidates, subject to ray-sphere intersection testing. We illustrate how the learned
medial shape quantities applies to sub-surface scattering, part segmentation, and aid representing
a space of articulated shapes. Able to learn a space of shape priors, MARFs may prove useful for
tasks like shape retrieval and shape completion, among others. Code and data can be found at
https://github.com/pbsds/MARF.

© 2023 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Learning efficient and accurate ways to represent 3D geometry
s valuable to applications such as 3D shape analysis, computer
raphics, computer vision, and robotics. The recent discovery of
eural fields, also known as coordinate-based networks or implicit
eural representations, has brought a renewed interest in visual
omputing problems. While simple in construction, neural fields
xhibit an impressive ability to compactly represent, manipu-
ate and generate continuous signals of arbitrary resolution and
imensionality across a plethora of modalities, in our case 3D
eometry. They can also learn the underlying space of the training
hapes, useful in applications such as generative shape modeling,
hape infilling/completion, and shape retrieval.
While Cartesian neural fields represent 3D volumes admirably,

endering them requires ray-marching or sphere-tracing, where
ach sample along the ray in turn requires a full network evalu-
tion which is expensive. In this paper we avoid sphere-tracing
ntirely, by parameterizing the field in terms of rays instead of
oints. Visualized in Fig. 1, we explore neural fields that map
n oriented ray directly to its surface intersection point via an
ntermediate medial representation. This enables efficient real-
ime single-evaluation differentiable neural surface rendering and
xtraction.
We propose Medial Atom Ray Fields (MARFs), visualized in

ig. 2, which map oriented rays to a set of spherical intersection

∗ Corresponding author.
E-mail addresses: peder.b.sundt@ntnu.no (P.B. Sundt), theotheo@ntnu.no

T. Theoharis).
ttps://doi.org/10.1016/j.cag.2023.06.032
097-8493/© 2023 The Authors. Published by Elsevier Ltd. This is an open access art
candidates called medial atoms, that are maximally inscribed in
the represented shape pinned tangential to the ray-surface in-
tersection point. From a MARF prediction, a simple line-sphere
intersection test between the ray and the n predicted atoms
is all one needs to jointly determine where and whether the
ray hits. This medial representation also allows computing the
surface normal without analytical network differentiation, which
essentially means that we get it for free. This in turn enables
computing the surface curvature, a second derivative quantity,
despite the second derivative of our piecewise linear network
being zero.

We identify two key challenges that hinder the usefulness of
ray fields, which we address with the medial shape representa-
tion.

The first challenge is that ray fields are not by construction
multi-view consistent like their 3D Cartesian counterparts. This
is because the four Degrees of Freedom (DoF) of the input rays
may cause a predicted 3D point to change appearance across
views. Prior works focus on learning a latent manifold of sound
ray fields. Our proposed MARF instead phrase the output domain
in Cartesian space, which is stable w.r.t. change in incident view-
ing direction. We further enforce multi-view consistency during
training with a novel multi-view loss.

The second challenge is for ray fields to represent disconti-
nuities like sharp edges and overlapping geometry common to
depth maps. Neural fields being Lipschitz continuous in their
inputs [1,2] produce interpolation artifacts across such jumps.
Prior works either sidestep the issue by relaxing the problem
or use a filtering scheme to discard outliers. Our medial repre-

sentation allows us to regularize multiple predictions to behave
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Fig. 1. A 2D slice of the Stanford bunny. On the left we sphere-trace it. On
he right we show its medial axis, four medial atoms, and the projection p⊥ of
earest atom center c1 onto the line. Each tracing step requires an evaluation of
he distance field which proves expensive when represented with a neural field.
e explore MARFs which map the line to n medial intersection candidates in a

single evaluation. The medial representation has many downstream use-cases.

Fig. 2. A small MARF network Φθ illustrated. Given a ray ℓ with origin o and
direction q̂ it predicts the maximally inscribed medial atom/sphere (cℓ, rℓ) whose
ntersection point pℓ with the ray ℓ corresponds to the intersection between ℓ

nd the represented object (here shown with its medial axis in red). To uniquely
ncode rays we normalize q̂ and trade o for its moment m and perpendicular
oot o⊥ . The network is a simple MLP with skip connections, here illustrated
ith 4 hidden layers, where ⊕ denotes vector concatenation and → denotes a

inear map.

ell. We alleviate discontinuities by making each candidate spe-
ialize on different shape ‘‘limbs’’ while adhering to the medial
onstraints. This is achieved through a principled network initial-
zation scheme and through regularization. Also, by labeling each
ay hit by the candidate which produced it, a part segmentation
merges unsupervised.
The learned medial representation is of significant interest

n 3D shape analysis, being applicable to classification, semantic
anipulation, and segmentation. The represented medial axis,
lso known as the topological skeleton, produces smooth interpo-
ations in the learned latent space of shapes. The medial radius,
lso known as the local feature size, is useful in shape analysis
nd visualization.
In summary, we make the following contributions:

• We propose learning MARFs, which map oriented rays to a
set of medial atom intersection candidates that both classify
rays as hit/miss and deliver the point of intersection as well
as introduce a geometric 3D inductive bias, which oriented
ray fields thus far have lacked.

• We demonstrate how MARFs allow computing the analyti-
cal surface curvature, despite the network being piecewise
linear, using the medial atom normals.

• We introduce a multi-view consistency loss to constrain ray
fields to generalize better from sparse set of training views.

• We show that MARFs can learn a space of shape priors.
• We show that MARFs discover a part segmentation unsu-

pervised.
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cope. We target object-centric surface rendering. While one can
ompose multiple MARFs into a scene, we consider this outside
he scope of this paper. We explore a global shape representation,
here a single network represents the shapes without spatial
artitioning.

n Section 2 we outline prior work and establish key preliminar-
es, in Section 3 we discuss our method, in Section 4 we evaluate
ur method, and in Section 5 we conclude our work and discuss
uture directions.

. Background and related work

In this section we discuss related works while covering pre-
iminaries about neural (ray) fields and the medial axis.

epresenting 3D geometry and scenes with neural fields. Neural
ields emerged in 2019 as a compact, continuous and flexible
ay to represent signals parametrized with spatial and temporal
oordinates. The seminal papers [3–5] use them to represent a
et of closed 3D shapes {Oi ⊂ R3

}
n
i=1 of arbitrary topology, either

y learning their binary occupancy field or Signed Distance Field
SDF). The SDF d±

∂Oi
: R3

→ R in particular represents Oi by
mapping 3D coordinates to the distance of the nearest surface
boundary ∂Oi, where interior distances are negative and exterior
nes are positive:

±

∂Oi
(x) = min

x′∈∂Oi

x − x′
 ·

{
1 if x /∈ Oi

−1 if x ∈ Oi
(1)

Neural fields may in fact learn any field f : X → Y that maps
input coordinates x ∈ X to signal values y ∈ Y , given enough
(x, y) ∈ X × Y supervision examples. Examples include: Un-
signed distance fields [6,7] which can represent non-watertight
surfaces. Winding number fields [8] which can represent self-
intersecting geometry. Closest surface point fields [7] which map
to the nearest point on the surface (R3

→ ∂O). Deep medial
fields [9] which represent the local feature size of the nearest
surface. Category-level shape descriptor fields, used in robotic
manipulation [10].

Neural fields prove effective at learning complex mappings
one would consider ill-posed to optimize [11,12]. Atzmon et al.
[13] show this by learning the SDF without inside/outside super-
vision. This ability is thanks in part to over-parametrization, and
in part to being analytically differentiable w.r.t. input coordinates
[14]. Using double back-propagation one may fit neural fields
to satisfy Partial Differential Equations (PDEs), or supervise the
field gradient with sensor data, enabling data-driven discovery of
PDEs [15–18]. For SDFs such a PDE is the Eikonal equation, which
constrains the field gradient ∇xd±

∂O(x) to be of unit length [16].
Its direction equals the normal vector near the surface boundary.
Network differentiation is also useful during inference, as one
may compute differential geometric quantities such as surface
normals and curvature [19,20].

Neural fields excel in high-dimensional problems, since their
size grows with target signal complexity instead of resolution.
Mildenhall et al. [21] show this with NeRFs: a mapping with 5
Degrees of Freedom (DoF). NeRFs represent both the density and
anisotropic (view-dependent) radiance field of 3D scenes. By ray
marching these fields they achieve realistic novel-view synthesis
from registered 2D image supervision. NeRF advancements and
applications are plentiful [12,22,23], including adaptation to low-
light High Dynamic Range scenarios [24,25], modeling complex
materials [26] and registration [27]. Guo et al. [28] extend NeRF to
consider the incident light direction, making for a 7 DoF mapping.
Video NeRFs [29–32] go further by adding a temporal dimension,
an axis along which both density and radiance may undergo
extensive changes, showcasing impressive results.

For further details on neural fields, we encourage the reader

to view the excellent overview of Xie et al. [12].
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peeding up rendering. A forward map relates (e.g. 3D volume)
eural fields to domains where sensor data is available (e.g. 2D
aps). In volume rendering the forward map may integrate the

color contribution along rays cast through a 3D field [33], while in
surface rendering it may locate the first ray-surface intersection or
nearest distance [34,35]. One such forward map is ray-marching,
which samples points equidistantly along the ray to numerically
approximate the ray integral. This requires in the order of tens
or hundreds of field evaluations, proving expensive with neural
fields.

Several works address this problem which we divide into three
categories:

The first category is making field evaluations cheaper. Local
methods achieve this by subdividing the field into simple patches
or chunks represented by smaller separate networks [36–42],
while hybrid methods decode a grid of conditioning vectors with
a simple decoder network [43–48]. Local and hybrid methods
in effect bypass the difficulty of globally learning shapes with a
single network. Tabulation methods forgo the neural network in
favor of discrete data structures and interpolation [49–51]. Works
in this category often achieve higher fidelity but are often unable
to learn global shape priors. Some global methods bake their
fields offline before rendering, where one essentially extracts a
tabulation [52,53].

The second category seeks to algorithmically reduce the num-
ber of field evaluations, avoiding sampling empty or obscured
regions. Surface rendering methods often opt to learn a distance
field [5,9,54,55] such as the SDF which permits sphere-tracing
[34] (visualized in Fig. 1). Volume rendering methods may per-
form a coarse pre-evaluation to produce an index [53,56,57], or
construct a Monte-Carlo estimate of the ray integral [58].

The third category is our focus: directly predicting the ray
integral, discussed in the next subsection.

Neural ray fields. To represent a ray field one must parametrize
the domain of rays. Rays can be represented in a plethora of ways,
the simplest being a tuple of two 3D points through which the ray
passes. Front-facing neural light fields [59,60] prove with such
a representation able to map rays to observed colors in highly
realistic scenes. They consider rays cast between points on the
near and far plane, which cannot represent 360◦ ray fields. The
challenge is how to uniquely encode rays without symmetries.

A 3D line ℓ(t) = o + tq̂ parametrized by some origin o
and direction q̂, has 4 DoF: compared to the 6 DoFs of 3D rigid
bodies, lines lose two being invariant to translations along the
line direction and rotations about the line axis. Rays technically
gain a DoF over lines, featuring a starting point, but both we and
the prior works discussed below discard this DoF and consider
rays and lines equivalently. This effectively places the observer
infinitely far away.

It is impossible to represent the space of rays/lines in a 4D
vector space that is uniform and without singular directions, dis-
continuities or special cases [61–63]. Naively using the uniform
6D vector (o, q̂) however produces a highly symmetric space that
hinders learning.

Lindell et al. [18] learn segments of the volume rendering
equation integral [33] by splitting the ray into n sections. They
sample k points along each section and feed them along with
ray direction q̂ into their network. While this ray parametrization
enables the use of positional encoding [21,64], it is sensitive
to the ray sampling positions and to the number of segments
chosen. Mukund et al. [65] also sample k points along the ray,
but associate each point with colors from multiple source views,
then interpolate between them with a transformer model.

Neff et al. [66] accelerate rendering NeRFs by training an

accompanying oracle network which predicts, given a ray, the
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salient segments along that ray to be further ray-marched. Yena-
mandra et al. [67] accelerate sphere-tracing neural SDFs by train-
ing an accompanying network to predict, given a ray, some initial
starting point. They both represent ℓ as the 6D vector (o, q̂), and
remove two DoF by normalizing q̂ to be of unit size, and limit o to
lie on the sphere (with fixed radius r) circumscribed around the
reconstruction volume. This in effect restricts the 6D vector to a
4D subspace, or manifold, embedded in 6D: (r−1o, q̂) ∈ S2 ×S2 ⊂

R6 where S2 is the unit 2-sphere. This representation has a finite
reconstruction volume determined by r .

Sitzmann et al. [63] forgo the Cartesian radiance field and learn
360◦ neural light fields (LFN) directly. They represent rays us-
ing 6D Plücker coordinates [68]. Normalized Plücker coordinates
encode the ray ℓ as (q̂,m), where m = o × q̂ is the moment
vector of the ray origin o about the coordinate system origin.
Plücker coordinates are thus restricted to S2 × T 2

o ⊂ R6, where
T n
d = {x ∈ Rn+1

: x · d = 0} is the tangent space orthogonal to
d ̸= 0, containing the coordinate system origin.

Feng et al. [69] target with PRIF surface rendering instead of
light fields. They trade the moment m for the more geometrically
grounded perpendicular foot o⊥ = q̂ × m, i.e. the orthogonal
projection of the coordinate origin onto the ray ℓ. (q̂, o⊥) ∈ S2 ×

T 2
m. We visualize both m and o⊥ in Fig. 3(a).
Both [67] and [69] compute the ray-surface intersection point

by predicting the (signed) displacement along the ray from their
normalized ray origin. This does not represent whether the ray
intersects or not, which both works solve with a separate network
output classifying hit/miss rays. While it does allow representing
non-watertight geometry, it is an independent quantity that is
not geometrically grounded, which generalizes poorly to unseen
views.

Ray fields struggle to represent surface discontinuities, com-
mon near boundaries and overlapping geometry, due to neural
networks being Lipschitz continuous on their inputs. The works
of [66,67,69] all produce interpolation artifacts near surface dis-
continuities, and is addressed in two ways: [66,67] reduce the
impact of discontinuities by relaxing the task to aid sampling
a Cartesian network, and [69] opt to filter outlier predictions
with high gradients. Neff et al. [66] note how multiple depth
predictions do not improve their results.

An open problem for neural ray fields is multi-view consistency.
Neural fields feature an inductive bias inherited from the struc-
ture of the input domain, and Cartesian fields find success thanks
to this and to being multi-view consistent by construction. Ray
fields do not share these qualities. Their extra DoF may cause a
predicted point to change appearance across views. [63] address
this with meta-learning [70–72], learning a latent space of light
fields that are multi-view consistent. Sticking the latent manifold,
they achieve few-shot single-view reconstruction through latent
vector optimization.

Instead, we propose to address multi-view consistency by
modeling reconstructions in a dual domain which jointly de-
termines hit/miss classification, where multiple predictions are
geometrically grounded (addressing surface discontinuities), and
whose quantities are stable w.r.t. changes in incident viewing
direction. This domain is the medial axis.

The medial axis. The Medial Axis TransformMAT(O) is a complete
descriptor of shape O ⊂ R3. The MAT is a set of 3D points and
radii which together form medial atoms (spheres) that are maxi-
mally inscribed in O. The MAT is invertible, since reconstructing O
from MAT(O) amounts to taking the union of the medial atoms.

The MAT has various downstream uses, including 3D shape
retrieval [73,74], segmentation [75], and manipulation [76]. MAT-
inspired sphere representations have further applications in con-
structing simplified static [77] and dynamic [78] shapes, closest

point computations [79], and volumetric physics simulation [80].
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Classically, Bouix et al. [81] compute the MAT from voxel
odels, Du et al. [76] and Tam et al. [82] compute the MAT from
urface meshes, and Rebain et al. [83] iteratively approximate
he MAT from oriented point clouds by phrasing the inscription
nd maximality constraint as optimization energies. The MAT is
nstable under noise [83,84], but Tam et al. [82] show how one
ay prune medial axis branches while maintaining the salient

eatures of the shape.
In the neural literature, Yang et al. [85] predict a set of medial

toms given a sparse surface point cloud, showing how data-
riven approaches fare better on sparse and noisy data thanks
o its learned priors. Rebain et al. [9] learn a relaxed MAT as
neural field. They model a R3

→ R medial field mapping
patial coordinates to the radius of the medial atom tangential
he nearest surface.

There are many ways to define and apply the MAT, and we
ncourage the reader to view excellent overview by Tagliasacchi
t al. [86]. In short there are four MAT definitions: (1) the set of
aximally inscribed balls tangent to the surface, (2) the ridges
f the (signed) distance d±

∂O (i.e. the grassfire transform), (3) the
axwell set, i.e. the set of points with more than one near-
st surface neighbor, (4) all local axes of reflectional symmetry,
.e. the set of all bi-tangent spheres. In this work we use the first
efinition.

. Method

We start by establishing a mathematical framework for ori-
nted ray intersection fields in Section 3.1. We then define our
roposed Medial Atom Ray Field (MARF) in Section 3.2, followed
y a discussion on how MARFs address the challenges in learn-
ng ray fields. We define our neural architecture in Section 3.3,
nd outline training data pre-processing, losses and optimization
trategy in Section 3.4.

.1. Oriented ray intersection fields

Consider a closed 3D shape O ⊂ R3 with regular surface
oundary ∂O, and the oriented ray as the line ℓ ∈ R with origin
and unit direction q̂:

(t) = o + tq̂ (2)

The oriented ray intersection field fO : R → R3 maps 3D oriented
rays to their nearest intersection points on the surface ∂O. fO is
in essence a single-ray ray caster. Formally fO maps ℓ to the point
pℓ ∈ ∂O along ℓ(t) minimizing t:

fO(ℓ) = pℓ = ℓ

(
argmin
t : ℓ(t)∈∂O

t
)

(3)

fO is a partial map, since not all rays intersect with the shape.
In such cases we may still observe by how much a ray misses,
dubbed the silhouette distance sℓ, which exhibits the property
∄pℓ ⇔ sℓ > 0:

sℓ = min
t∈R, x∈∂O

∥ℓ(t) − x∥ (4)

Differential geometry in rays fields. A surface normal n̂ℓ is a unit
ector (in the 2-sphere S2) whose orientation is orthogonal to the
lane tangent at point pℓ on the surface ∂O, and whose direction
etermines the shape exterior (R3

\O). Computing normals is not
traight forward given the view-dependent ray parametrization
(t) = o + tq̂. We first compute, for each coordinate axis êi,
surface tangent vector as the partial derivative ti = ∂pℓ/∂oi,
isualized in Fig. 3(b). The normal n̂ℓ, orthogonal to the tangent
pace, is determined by the cross product of two tangents. But our
angents may, depending on view direction, become zero (since
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ˆ ∥ êi ⇒ ti = 0) or change the cross-product handedness
etermining the exterior. We thus compute the cross product of
ll three tangent pairs, then modulate their sign and contribution
sing the viewing direction before summation and normalization:

ˆ ℓ =
n′

ℓ

∥n′
ℓ
∥
, n′

ℓ = − q̂1 (t2 × t3) = −q̂1
(

∂pℓ

∂o2
×

∂pℓ

∂o3

)
− q̂2 (t3 × t1) −q̂2

(
∂pℓ

∂o3
×

∂pℓ

∂o1

)
− q̂3 (t1 × t2) −q̂3

(
∂pℓ

∂o1
×

∂pℓ

∂o2

) (5)

where oi and q̂i are the ith scalar components of o and q̂ from
Eq. (2).

Curvature describes how a surface deviates from the tangent
plane and is intrinsic to the shape. The curvature κ along a single
direction is the reciprocal of the radius of an osculating circle,
where positive curves osculate inside. Curvature on 3D surfaces
(i.e. 2-manifolds) may be expressed as two principal curvatures
κ1, κ2, respectively the maximum and minimum curvatures. The
principal directions of curvature are always perpendicular, except
at umbilical points and on flat surfaces where κ1 = κ2.

Curvature is contained in the shape operator Dn̂ℓ, defined as
the total derivative of the unit normal n̂ℓ along the tangent space
[87]. The ray origin o, our input, is not restricted to the tangent
space. As such we compute Dn̂ by projecting the total derivative
onto the tangent plane:

Dn̂ℓ =
(
I − n̂ℓn̂⊤

ℓ

)
∇on̂ℓ (6)

The principal curvatures and directions equal the maximal and
minimal eigenvalues of the shape operator Dn̂ℓ and associated
eigenvectors. In our case the total derivative ∇on̂ℓ is a 3×3 matrix
with three eigenvectors, but the eigenvector with the smallest
absolute eigenvalue is associated with the normal and can be
discarded [20]. The mean curvature is half the trace of the shape
operator Dn̂ℓ, and the Gaussian curvature is its determinant [19].

We can compute these differentials analytically for continuous
neural representations, unlike for meshes which do not admit a
continuous normal field in turn requiring an approximation like
the discrete shape operator [88]. Computing curvature requires
a sufficiently smooth activation function [17,20] since piecewise
linear activations have no second derivative.

3.2. The Medial Atom Ray Field (MARF)

We propose learning Medial Atom Ray Fields (MARFs), a dual
field that also represents the ray intersection field. A MARF MO
maps an oriented ray ℓ ∈ R to a medial atom (sphere) with center
cℓ ∈ R3 and radius rℓ ∈ R+, such that the atom:

• intersect ℓ at the same point (pℓ) where ℓ intersects the
surface ∂O of O,

• is tangential to surface ∂O at pℓ (i.e. share n̂ℓ from Eq. (5)),
• is fully inscribed in shape O, and
• is maximal.

The atoms of MARF are thus members of the Medial Axis
Transform (MAT) [86] of O. The MARF MO relates to the ‘‘ray-
caster’’ fO and its normal n̂ℓ (Eqs. (3), (5)) as follows:

MO(ℓ) = (cℓ, rℓ) : ∥fO(ℓ) − cℓ∥ = rℓ, n̂ℓ =
fO(ℓ) − cℓ

∥fO(ℓ) − cℓ∥
(7)

To determine the point pℓ where the ray ℓ intersects a medial
atom (cℓ, rℓ) we solve the system pℓ = ℓ(t), ∥ℓ(t) − cℓ∥ = rℓ:

pℓ = o + q̂
(
−(q̂ · (o − cℓ)) ±

√
δℓ

)
2 2 2

(8)

where δℓ = (q̂ · (o − cℓ)) − (∥o − cℓ∥ − rℓ )
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Fig. 3. (a) illustrates the relation between ray origin o and direction q̂ to the moment m and perpendicular foot o⊥ which are invariant to changes in the length
f q and translation of o along q. (b) illustrates how Eq. (5) determines the normal vector n̂ℓ , orthogonal to the tangent space, by projecting the x, y, z coordinate

unit vectors onto the plane tangent at pℓ where ray ℓ intersects.
This phrasing of intersection pℓ yields up to two real solutions (a
near and far hit) when ℓ hits (δℓ ≥ 0), and a complex solution
when ℓ misses (δℓ < 0). We can as such use δℓ to determine ray
hit/miss classification.

When ray ℓ misses, the real component of pℓ equals the
orthogonal projection of cℓ onto ℓ, yielding the following relation
with the silhouette sℓ from Eq. (4):

sℓ = ∥ Re(pℓ) − cℓ∥ − rℓ (9)

It is cheaper to compute the surface normal n̂ℓ using the
medial atom than to compute the differential in Eq. (5). From here
on we use the term ‘‘analytical normal’’ to tell Eq. (5) apart from
this ‘‘medial normal’’:

n̂ℓ =
pℓ − cℓ

∥pℓ − cℓ∥
(10)

By construction the medial normal will naturally ‘‘roll off’’ as
the ray approaches the edge of the represented shape.

Learning the medial axis. We do not assume the medial axis is
available for supervision, meaning the network must discover
it during training. Inspired by Rebain et al. [83] we phrase the
medial axis conditions – maximality and inscription – as op-
timization energies. The maximality energy induces a positive
pressure on radius rℓ, increasing the atom size, whereas the
inscription energy penalizes any medial atom candidate visible
from the outside, violating the inscription constraint. We define
these losses in Section 3.4. We omit their pinning energy, since
we pin atoms tangential to the surface hit point pℓ.

Representing surface discontinuities. Neural fields produce inter-
polation artifacts near sharp edges and discontinuities due to
being Lipschitz continuous on their inputs. We address this by
predicting multiple medial atom candidates (in this work we
predict 16), the winner of which we chose using the following
metric:

mℓ,i =

⎧⎨⎩
q̂ ·

(
pℓ,i − o

)
if sℓ,i = 0

∞ if sℓ,i > 0 ∧ ∃k(sℓ,k = 0)
sℓ,i if ∀k(sℓ,k > 0)

(11)

The first case is when the ith atom candidate intersects ray ℓ,
computing the signed displacement with regard to the ray origin
o. The second case is when candidate i misses ℓ but at least one
other do hit. The final case is when all candidates miss ℓ, in which
case the metric falls back on the silhouette distance.

Under this metric we may supervise pℓ,i,nℓ,i and sℓ,i for can-
didate argmini mℓ,i. It is not perfect, as discussed in Fig. 4, but
it ensures the validity of the aforementioned quantities. From
here on if we omit the i subscript, then only the winning atom

is concerned.
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This metric alone is not enough. Neff et al. [66] discuss how
multiple network outputs do not alone improve their results. This
is likely because only the winning output receives supervision
while the others drift. We observed atoms either going unused,
or ‘‘fighting’’ to represent the same geometry. As such we add a
‘‘specialization’’ regularization which incentivizes each candidate
to target separate regions. We do so by enforcing a spherical
prior distribution, centered in the per-candidate centroid, further
detailed in Section 3.4. All atom candidates are subject to the
medial axis inscription constraint.

Enforcing multi-view consistency. Ray fields are not multi-view
consistent by construction. We observe the following trait of
multi-view consistency: surface hit points do not move when the
viewing angle changes. For any oriented ray intersection field fO
(Eq. (3)) this means that if we shift the ray origin o, i.e. its pivot
point, to the hit pℓ, then its derivative w.r.t. view direction must
be zero:

∃pℓ ⇒
∇q̂fO(pℓ, q̂)

 =
∇q̂pℓ

 = 0 (12)

This is not a trivial property for signed displacement methods like
[67,69] to learn, as they must learn the inverse of the change in
displacement origin. But it extends cleanly to fixing the medial
atom in place:

∃pℓ ⇒
∇q̂MO(pℓ, q̂)

 ≤
∇q̂cℓ

 +
∇q̂rℓ

 = 0 (13)

In Section 3.4 we express Eqs. (12), (13) as loss functions.

3.3. Network architecture

We model a neural network Φθ with learned parameters θ ,
optionally conditioned on latent codes, to fit the medial atom ray
fieldMOi from Eq. (7) for shapes {Oi ⊂ R3

}
n
i=1. Shown in Fig. 2 we

model the network as a Multi-Layer Perceptron (MLP) with skip
connections (inspired by [5,63]) to the middle and final hidden
layer. Formally:

Φθ (x) = Wk (φk−1 ◦ φk−2 ◦ · · · ◦ φ0) + bk

φi(xi) = σi (Wixi + bi)

θ = {(Wi, bi)}ki=0

(14)

where Φθ is the composition of k layers where φi : Rmi →

Rni is the ith network layer, each applying some affine trans-
formation/linear map on intermediate activation xi followed by
an element-wise application of an activation σi. For all σi we
use Leaky ReLU and layer normalization [89], but the middle
and final σi also concatenates the original input x0, forming skip

connections [5]. During training, σi also applies dropout.
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d

Fig. 4. Four MARF supervision scenarios. For each ray ℓ with origin o and
irection q̂ we predict n atom candidates then pick and supervise the one (a)

that minimizes metric mℓ (see Eq. (11)). In short the metric favors the atom
closest to the ray, then the atom closest to the camera. The TP case supervises
toward a target intersection point pGT

ℓ , applying a pressure along ℓ (visualized
as red arrows), while the FP, FN and TN cases all supervise toward a target
silhouette distance sGTℓ , shown as a red cylinder lathed about the ray, applying
an orthogonal pressure to the atom. Of interest is how atom b might be a better
supervision candidate than a in TP, TN and FN, demonstrating a shortcoming of
metric mℓ .

We encode the ray ℓ as the following 9D input vector with 4
DoF:

x = (q̂,m, o⊥), where
q̂ = q/∥q∥

m = o × q̂
o⊥ = q̂ × m

(15)

where m is the moment proposed by [63] and o⊥ is the per-
pendicular foot used in PRIF [69]. Either o⊥ or m would have
sufficed: they are of equal length and separated by a 90◦ rotation,
virtually equivalent to the linear maps that neural networks learn.
Redundant information however improves learning [2], so we
combine them in turn forming an orthogonal basis when ℓ does
not pass though the origin. With this in mind we add an extra skip
connection to the final layer, since our network predicts points in
R3, improving performance.

The final output is 4 × n features wide, split into n medial
atom centers and radii {(cℓ,i, rℓ,i)}ni=1, ensuring rℓ ∈ R+ by using
the absolute predicted value. Inspired by [13,90] we propose
a principled initialization strategy for MARFs. As customary we
sample the network parameters θ from a uniform distribution
according to [91], but we then scale the final layer weights Wk
by 0.05, in effect reducing the variance of the final predictions.
We initialize the final bias bk to n random atoms 0.6 units away
from the origin and with 0.1 radius. This initialization is multi-
view consistent, with each atom candidate starting in a different
region as opposed to them all clustering near the origin.

To condition the network on multiple shapes we use the auto-
decoder framework by Park et al. [5], where the latent vector
zi ∈ Rk which represents shape Oi is concatenated with the input
coordinates before being fed into the network and are optimized
alongside the network weights. We concatenate zi at two sites:
the initial input and at the middle skip connection. We do not
condition the final skip connection.

3.4. Training

We train unconditioned (i.e. single-object) MARFs to represent
the Stanford Armadillo, Buddha, Bunny, Dragon, and Lucy [92], and
conditioned (i.e. multi-object) MARFs to represent the four-legged

object class in COSEG [93].
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Data pre-processing. We sample ground truth data points from
3D triangle meshes for training. We scale and translate the
meshes to fit inside the unit sphere, then render 200×200 depth
and normal maps with the rendering pipeline of [94] from 50
equidistant virtual camera views. We unproject the depth maps
to 3D points, then compute silhouette distances. We accelerate
this with a ball tree index [95] on the hit-points which we sphere-
trace along the miss-rays with a 25% step-length. The smallest
observed distance approximates the silhouette.

On non-watertight meshes we classify back-face depth pixels
as neither hits nor misses, to avoid training on missing data vis-
ible as the black holes in Fig. 6(a). We designate these ‘‘missing’’
Ground Truth (GT) pixels as non-hits, i.e. ∄pGT

ℓ . We still subject
these rays to regularization during training – maintaining a fixed
batch size in the process – but they otherwise provide no direct
supervision. This violates the property ∄pℓ ⇔ sℓ > 0; we thus
introduce the notational convenience in Eq. (16) to ‘‘gate’’ losses
where ground truth rays hit (hGT

ℓ ), miss (mGT
ℓ ), or are hitting but

the intersection data is missing (h̄GT
ℓ m̄GT

ℓ ). Some losses supervise
only true hits, denoted hℓhGT

ℓ .

hGT
ℓ =

{
1 if ∃pGT

ℓ

0 if ∄pGT
ℓ

, mGT
ℓ =

{
1 if sGTℓ > 0
0 otherwise

(16)

Loss. We use the following losses to train our network:

• Intersection loss Lp and normal loss Ln: When ray ℓ hits
we supervise the Euclidean distance between the hit pℓ

(from Eq. (8)) and ground truth pGT
ℓ . In addition we super-

vise the cosine similarity between medial normal n̂ℓ (from
Eq. (10)) and ground truth n̂GT

ℓ :

Lp =
1
|B|

∑
ℓ∈B

hℓhGT
ℓ

pℓ − pGT
ℓ

 (17)

Ln =
1
|B|

∑
ℓ∈B

hℓhGT
ℓ

n̂ℓ · n̂GT
ℓ

∥n̂ℓ∥∥n̂GT
ℓ ∥

(18)

• Silhouette loss Ls and Lh: We supervise the silhouette
distance sℓ from Eq. (9) with ground truth sGTℓ :

Ls =
1
|B|

∑
ℓ∈B

mGT
ℓ

(
sℓ − sGTℓ

)2
(19)

Ls only supervise misses, since we found it alone to be in-
sufficient to ensure rays hit when they should. We introduce
this additional loss gated on hits, whose strength we tune
with a separate hyperparameter:

Lh =
1
|B|

∑
ℓ∈B

hGT
ℓ s2ℓ (20)

• Maximality regularization Lr : To ensure the maximality
property of medial atoms we apply a constant positive pres-
sure to the radius of all predicted atom candidates, inspired
by Rebain et al. [83]:

Lr =
1

|B|n

∑
ℓ∈B

n∑
i=1

⏐⏐(sg(rℓ,i) + 1
)
− rℓ,i

⏐⏐ (21)

where sg(·) returns its input detached from the auto-
differentiation graph such that it is considered a constant
during back-propagation.

• Inscription loss Lih and Lim: To enforce the inscription
requirement of medial atoms we supervise all predicted
atom candidates w.r.t. a second ray. We randomly permute
the order of the training batch of rays B into K , and use K
to compute intersections and silhouettes against all n atom
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Fig. 5. MARF renderings of the Stanford bunny, visualizing the different network outputs. (a) is a Lambertian shading using the normals shown in (e). (b) tints
he surface with a unique color associated which atom candidate was chosen by metric mℓ,i in Eq. (11), indicating a learned unsupervised part segmentation. (c)
llustrates the medial axis, also known as the topological skeleton, by superimposing the predicted medial atom centers associated with each hitting camera ray,
nto (a). (d) maps the predicted radius of the intersected medial atom onto a color scale, in effect visualizing local thickness which is useful when approximating
ranslucency. (e) visualizes the normals derived from the intersected medial atoms as RGB (see Eq. (10)), while (f) visualizes the normals derived by differentiating
he whole network (see Eq. (5)). (g) visualizes the mean curvature with positive values in red and negative in blue. This curvature is contained in the shape operator
Eq. (6)) which is computed by analytical differentiation of the medial normals shown in (e). (a-e) perform a single network evaluation per pixel, as they are shaded
olely using the predicted medial quantities, while (f-g) perform a backward pass to compute the true analytical gradients of the network outputs.
candidates of B. Lih penalizes atoms that obscure the target
intersection of the second ray, while Lim penalizes atoms
closer than the second ray silhouette permits.

Lih =

∑
ℓa∈B

ℓb=ρ(ℓa)

n∑
i=1

hGT
ℓb
hℓb|a,i

max
(
0, q̂b ·

(
pGT

ℓb
−pℓb|a,i

))
|B|n

(22)

Lim =

∑
ℓa∈B

ℓb=ρ(ℓa)

n∑
i=1

mGT
ℓb

max
(
0, sGTℓb

− sℓb|a,i
)2

|B|n
(23)

where ρ : B → K is a random bijection (a one-to-one
mapping) from B to K , and pℓb|a,i and sℓa|b,i denote the
intersection or silhouette of the ith atom candidate pre-
dicted with ℓa as the network input, but with the ray-atom
intersection tests computed using ℓb.

• Specialization regularization Lσ : To avoid atom candidates
all clustering on top of each other we introduce Lσ , which
incentivizes each atom candidate i to cluster its predictions
to a smaller volume surrounding a per-candidate centroid
c̄i.

Lσ =
1

n|B|

n∑
i=1

∑
ℓ∈B

∥cℓ,i − c̄i∥2, where c̄i =

∑
ℓ∈B

cℓ,i

|B|
(24)

This in effect amounts to learning an unsupervised part
segmentation of n classes. (Imagine each atom candidate
targeting separate limbs of the shape.) This regularization
assumes the rays in the training batch cover the whole
reconstruction volume.

• Multi-view loss Lmv: We phrase the multi-view consistent
property in Eqs. (12), (13) as a loss penalizing change in
predicted geometry with change in viewing direction. It
requires pGT

ℓ being used as the ray origin, becoming its
pivot point. For any oriented ray intersection field, it can be
phrased as:

Lmv =
1
|B|

∑
ℓ∈B

hℓhGT
ℓ

∇q̂pℓ

2
: o = pGT

ℓ (25)

For MARFs we use this simplified loss:

Lmv =
1
|B|

∑
ℓ∈B

hℓhGT
ℓ

(∇q̂cℓ

2
+

∇q̂rℓ
2

)
: o = pGT

ℓ (26)

• Latent code regularization Lz: As customary when training
auto-decoders we enforce a prior over the latent space to
ensure the n embeddings {z }

n do not stray too far apart.
i i=1
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Table 1
Hyperparameters for Eq. (28); some scheduled using a linear (el) or sinusoidal
(es) easing function (see Eq. (29)) which ease in from 0 to 1 over ‘duration’
epochs, starting at ‘offset’ which by default is 0.
λp λn λs λh λr λih λim λσ λmv λz

2 es(85,15)
4 10 100 5 × 10−4 20 300 10−9 el(40)

100
el(50)
10 0.012 el(30)

Like Park et al. [5] we use a spherical prior:

Lz =
1
n

n∑
i=1

∥zi∥2 (27)

• Total training loss. The complete training loss is given by

LMARF = λpLp + λnLn + λsLs + λhLh + λrLr

+ λihLih + λimLim + λσLσ + λmvLmv + λzLz
(28)

where we tune the λ hyperparameters (see Table 1) to
balance the loss terms such that none dominate. We sched-
ule some hyperparameters to ease either in or out during
training. The training starts with high specialization loss
eased out as the solution becomes more stable. We ease in
the normal, multi-view, and latent code losses, as they prove
counterproductive early in training.

el(duration, offset) = clamp
( epoch−offset

duration , 0, 1
)

es(duration, offset) = −
1
2 (cos (π el(duration, offset)) −1)

(29)

Optimization. We optimize the network in a stochastic gradient
descent scheme, iteratively minimizing the loss in Eq. (28) by
tuning the network weights θ through back-propagation. We use
the Adam optimizer [96] in PyTorch [97], with default momentum
and 5 × 10−6 weight decay, layer normalization [89] and 1%
dropout. We warm up to a learning rate of 5 × 10−4 over 100
steps, held for the first 30 epochs, then decay to 1 × 10−4 over
the next 170 epochs in a cosine annealing scheme. We train for
200 epochs total, clipping loss gradients exceeding a norm of 1.

4. Experiments

We detail in Section 4.1 our experimental setup. In Section 4.2
evaluation single-shape MARF results, followed by extensive ab-
lation studies in Section 4.3. In Section 4.4 we demonstrate two
applications of MARFs in visualization. Finally in Section 4.5 we
present a multi-shape MARF, applicable to inverse rendering ap-
plications benefiting from learned shape priors.
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Fig. 6. Splitting single-view depth and silhouette training images (a) into
ultiple into smaller images during training. Here we show how a simple 8 × 8

training image (b), a representative proxy of (a), is split into 22 smaller parts
when using a stride size of 2.

4.1. Experimental setup

Training. We model all networks with 8 hidden layers, 512 neu-
rons wide, using PyTorch 1.13 [97] and train with PyTorch Light-
ning [98] on Python 3.10. To compute analytical derivatives we
use the torch.autograd.grad function. We reserve 30% of the 50
virtual camera views for validation while tuning hyperparame-
ters, and train for 200 epochs. While the loss in Eq. (28) seemingly
assumes a single training image, we construct batches of multiple
views and multiple objects to make each batch more diverse. We
compute their loss independently and average the results. To fit
more views and objects in memory per batch while maintaining a
sparse set of training views, we split (as illustrated in Fig. 6) the
200 × 200 training images into 42 coarser 50 × 50 sub-images
by using a stride of 4. We randomize the order of sub-images
across objects and views into batches of 8 in each epoch. We
train with CUDA 11.7 using mixed 16 bit float precision and
medium matrix multiplication precision. The single-shape MARFs
took about 44 min to train on an Nvidia A100 GPU, while the
20-shape MARFs took about 7 h using two A100s, provided by
[99].

Evaluation. To render a MARF we evaluate it on the rays asso-
ciated with each canvas pixel, discard rays that miss, optionally
compute analytical network gradient depending on what we vi-
sualize, then compute shading. To visualize the medial axis we
superimpose the medial atom centers associated with each hit-
ting ray. For quantitative evaluation we sample ground-truth
point clouds from each object mesh by casting rays between 4000
viewpoints spaced equidistantly on the enclosing unit-sphere
with PyEmbree [100]. In effect this means we evaluate using
4000 camera views while training using only 35. We extract point
clouds from the MARF and baseline using the same set of rays,
and compute the Precision, Recall and Intersection over Union
(IoU) of rays that hit. We then sample 30,000 hit points and
compute the Chamfer (CD) and cosine similarity (COS) distance
with [101]. Unlike Feng et al. [69] we do not fit a surface to the hit
points to compute the CD. The metrics are defined in Appendix.

MARF renders 256 × 256 resolution images at 18.7 frames/s
on an Nvidia GTX 3070 8 GB Laptop edition when using medial
normals (Eq. (10)). With analytical normals (Eq. (5)) calls we see
MARF renders at 4.8 frames/s, while PRIF renders at 5.2 frames/s.

Baseline. We train our reproduction of PRIF by Feng et al. [69] us-
ing the same training data, input encoding, learning rate, dropout,
normalization and network dimensions as for MARFs. In short,
PRIFs predict the signed displacement from the perpendicular
foot o⊥ (Eq. (15)) along the ray direction q̂ – essentially the t
in Eq. (2) – as well as whether the ray intersects with a second
network output supervised with binary cross-entropy loss. We
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train PRIF with its original loss function denoted LPRIF. As an
xperiment we also train PRIF with 2× our normal loss Ln added
see Eq. (18)), where we compute normals through network dif-
erentiation using Eq. (5). We also train PRIF with our multi-view
oss Lmv (see Eq. (25)). Both additions are scaled according to
able 1.

.2. Learning a single shape

Here we examine MARFs trained from scratch to represent a
ingle shape.

ualitative results. We visualize in Fig. 7 MARFs and PRIFs trained
o represent five Stanford 3D Scanning Repository [92] objects.
e visualize the medial quantities represented by MARFs in more
etail in Fig. 5 on the bunny. The reconstructions are convincing
nd stay consistent across views.
MARFs perform well in areas with positive curvature (shaded

ed in Fig. 5(g)), where atoms stay relatively still w.r.t. a moving
ay. In negatively curved areas however the MARFs must learn
o ‘‘swing’’ atoms about the curve on the interior, consuming
earning capacity. As such MARFs with sufficient number of atom
andidates tend to specialize separate atoms to represent each
ide of sharp negative curves, evident on the body of the bunny
n Fig. 9(a).

The MARFs allocated atom candidates where needed. The
umber of discontinuities possible to represent however is upper
ounded by number of atom candidates available. 16 candidates
roved insufficient for the dragon in Fig. 7(e), which used a single
tom candidate to represent both the upper and lower part of
ts open mouth. On the other end we find atoms going unused.
n the bunny in Fig. 5(b) we only see 9 out of 16 total atom
andidates. The other atoms are hidden inside the main body.
ully occluded atom candidates receive no supervision, and if
ccluded early during training they may not get used at all. We
elieve this is why the Buddha in Fig. 7(e) fit a single atom
o both hands. Maximality regularization is the only pressure
ounteracting occlusion, but it tends to slide atoms along medial
ranches when no intersection loss pins it in place [83].
The PRIF baseline reconstructs the training set admirably but

truggles with unseen views. MARFs perform better but some
op-ins can be found. In Fig. 7(c) we see a MARF fail to reconstruct
he left ear of the bunny. While visible from most camera angles
ike Fig. 5(a), it is not visible from this one.

MARFs discover sound medial axes on organic shapes like
he bunny where the true MAT is simple but struggles on more
ntricate geometry like the angel Lucy and the Buddha. We shade
n Fig. 7(c) using analytically computed normals, which reveal
hen compared to Fig. 7(d) that MARF in such cases ‘‘cheat’’
y varying the atom radii instead of properly moving the atoms
long the medial axis. The lowered medial axis accuracy results
n less multi-view consistency, with some warping visible when
oving the camera.
The renders in Fig. 7(c) are more accurate than Fig. 7(d),

ndicating that MARFs prioritize accurate surface intersections
ver accurate medial normals. We believe this is because the
osine similarity in the normal loss Ln (Eq. (18)) is in effect a
quared distance while the intersection loss Lp (Eq. (17)) is not.
The normal loss proposed in [16] proved unstable however.

Quantitative results. We score MARFs in Table 2 with metrics
for both reconstruction quality and ray hit/miss accuracy. There
we find that MARF outperform three PRIF [69] variations trained
under the same conditions.

In general, MARFs perform better with multi-view loss Lmv
(Eq. (26)) than without, justifying the doubled training time
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Fig. 7. Single-shape MARF and PRIF renderings from a view not present in the training set, with no outlier filtering. ∇ denotes shading with analytical normals
(Eq. (5)), and M denotes shading with medial normals (Eq. (10)).
Table 2
Single-shape results on five Stanford [92] objects shown in Fig. 7. We present with best in bold mean CD (×104) and COS scores
of reconstruction quality, and IoU scoring ray hit accuracy. We compute IoU on rays cast between 4000 equidistant points, then
sample 30,000 hit points to compute CD and COS. We score COS with analytical surface normals (∇) using Eq. (5), For MARF we
also score COS with medial normals (M) using Eq. (10). We present MARFs trained with and without multi-view loss Lmv (Eq. (26)),
and PRIFs [69] with its original loss LPRIF scored it with and without outlier point filtering. We also train PRIFs with Ln (Eq. (18))
and with Lmv (Eq. (25)), scored with filtering. The IoU score considers filtered rays as misses. MARFs are not filtered.
Metrics & objects PRIF PRIF PRIF MARF + Lmv MARF − Lmv

No Filter LPRIF +2Ln +Lmv ∇ M ∇ M

CD↓

Armadillo 24.578 22.705 21.653 18.015 2.745 2.560
Buddha 12.538 12.534 13.991 9.547 2.996 2.948
Bunny 16.171 15.274 13.746 12.653 1.816 2.450
Dragon 16.484 16.028 15.180 13.713 3.187 4.046
Lucy 11.615 10.039 9.841 7.969 2.064 2.203

COS↑

Armadillo 0.597 0.603 0.632 0.644 0.815 0.788 0.793 0.762
Buddha 0.508 0.517 0.503 0.554 0.715 0.665 0.706 0.677
Bunny 0.753 0.757 0.763 0.780 0.937 0.924 0.907 0.881
Dragon 0.558 0.562 0.582 0.583 0.802 0.768 0.743 0.698
Lucy 0.439 0.440 0.462 0.443 0.630 0.586 0.624 0.580

IoU↑

Armadillo 84.0% 80.8% 81.5% 81.8% 92.5% 91.3%
Buddha 91.8% 88.2% 88.9% 90.3% 93.1% 91.5%
Bunny 93.2% 90.4% 90.9% 91.3% 95.7% 94.9%
Dragon 88.6% 83.8% 84.7% 86.1% 92.0% 90.5%
Lucy 86.6% 84.0% 85.0% 85.2% 89.8% 88.3%
thanks to double back-propagation. The Armadillo is the excep-
tion, which as shown in Fig. 7(e) used a single atom candidate
to represent both ears. The multi-view loss spikes as the atom
quickly ‘‘jumps’’ from one ear to the other. We visualize such a
discontinuity in Fig. 9(b).

The benefits of our normal loss Ln (Eq. (18)) and multi-view
oss Lmv transfers over when applied to PRIF. The exception is the
uddha, which sees a decrease in reconstruction quality.
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4.3. Ablations

We conduct extensive ablation studies in Table 3 on the terms
of our loss function in Eq. (28), as well as on three of our
architecture choices: the input encoding scheme, our principled
initialization scheme, and number of atom candidates predicted
per ray. For each experiment we train five MARFs, one for each
of the five Stanford objects explored in Section 4.2.

Our ray input encoding scheme outperforms both LFN [63] and
PRIF [69]. While it does not raise the spectral bias nor provide
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Fig. 8. (a–b) compares two MARFs (shaded with mean curvature) trained with and without surface normal supervision. The latter fails to represent negative curvature
(blue) in its medial normals (Eq. (10)). (c), shaded with unique colors per atom candidate, illustrates what happens when using too strong silhouette supervision.
The MARF overfits small atom candidates near edges to reconstruct the inaccurate ground truth silhouettes, which we approximated using sphere-tracing.
Fig. 9. Two Stanford bunny MARFs shaded with mean curvature using medial
normals. In (a) we compare the MARF from Fig. 5 against a MARF trained
without our initialization scheme (Section 3.3) in (b), which failed to specialize
its atom candidates to deal with discontinuities. (b) uses a single atom candidate
to represent the head and both ears. While negatively curved areas (blue) on
the body are better represented, it also produces artifacts where atoms ‘‘jump’’
across discontinuities under a Lipschitz bound.

any additional information it does raise the Lipschitz bound,
demonstrating how much a positional encoding [21,64] scheme
would benefit neural ray fields.

We see accuracy increase and decrease with the number of
atom candidates predicted, diminishing in return as it increases.
Past 16 candidates we observe a decline in hit precision, where
atoms become prune to occlude each other.

Without our initialization scheme or specialization regulariza-
tion, we find the training getting stuck in a local minima where
the atom candidates fail to target separate limbs, illustrated in
Fig. 9, causing interpolation artifacts near discontinuities.

Without intersection loss we find the atoms still intersect the
ray thanks to the silhouette loss, but nothing pins the atoms
tangential to the ray-surface intersection point. Inscription loss
constrains the atoms to stay on the interior, but no counteract-
ing force ‘‘pulls’’ them back out toward the surface. Maximality
regularization instead slides the atoms down medial branches
where larger medial radii are supported, in effect eroding the
represented shape.

Without silhouette loss we observe a large drop in ray hit/miss
accuracy. While the intersection and normal losses only supervise
true hits, they are still able to gradually ‘‘roll’’ atoms to where
they are needed thanks to their non-zero size. If we further
increase the silhouette loss we find IoU and CD improve, but the
normal accuracy decrease. We suspect our approximate silhou-
ette ground truths are too inaccurate, causing overfitting where
some atom candidates are specialized to extend the outline, as
evident in Fig. 8(c).

Without normal loss we see ray hit precision and surface
reconstruction improve, at the cost of medial normal accuracy
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and hit recall. In Fig. 8(b) we show a MARF without normal su-
pervision which fails to represent negative curvatures. In theory
the combination of intersection and inscription loss should suffice
making atoms ‘‘swing’’ about negative curvature, indicating that
our inscription testing may be too coarse.

We enforce inscription on each ray using just one other ray in
the batch chosen at random. Without inscription loss we find the
ray hit recall improving as expected, but at the cost of a lowered
ray hit precision. Atom candidates that miss the ray (i.e. the
majority) become free to violate the inscription constraint, be-
coming prone to getting stuck in local minima as a result. Further
increasing inscription loss overpowers the other losses, in effect
eroding the represented shape.

Without maximality regularization we observe a non-
significant decline on all metrics. In our object-centric setup, its
function overlaps with the silhouette loss which stretches atoms
to fill in the shape contour from all camera views. When we
further increase the effect of maximality regularization we find
reconstruction quality improving, but also more false ray hits.
This indicates that the atoms grow beyond the confines of the
surface boundary. While the amount of inscription loss seems
ideal, we believe its resolution may be insufficient.

Without multi-view loss the accuracy drops across all metrics.
The surface visibly wobbles as we move the camera, indicating
that the MARF is overfitting to the sparse set of training views.
Adding too much multi-view loss also causes a drop in accu-
racy, effectively pruning branches of the medial axis, which is a
common strategy to simplify shapes [82].

4.4. Applications in visualization

In this section we showcase two real-time applications in vi-
sualization made possible due to the medial quantities predicted
by MARFs.

Translucency. Light traveling inside translucent objects attenu-
ates and scatters rapidly. How this phenomenon appears on the
surface is commonly approximated using some measure of local
thickness, for which the medial radius predicted by MARFs, also
known as the local feature size, is an excellent candidate. We
showcase in Fig. 10 approximate translucency, using the shading
model of Barré-Brisebois et al. [102]. It contributes the following
shading coefficient at each point pℓ on surface ∂O:

ktranslucency =
1

rℓ + ϵ
· max

(
q̂ ·

(
sn̂ℓ − l̂

)
, 0

)p
(30)

where rℓ is the thickness (medial radius) at pℓ, ϵ = 0.05 avoids
division by zero, q̂ is the unit ray direction (Eq. (2)), s = 0.08 is
a distortion determining the amount of subsurface scattering, nℓ

is the medial normal (as per Eq. (10)), l̂ is the incident light unit
vector, and p = 16 is a sharpness coefficient.
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Table 3
Ablation studies. We present reconstruction quality CD and COS scores, and ray hit IoU, Precision. and Recall scores. Each row is the
average score of five single-shape MARFs, one for each object explored in Section 4.2. The first row is our proposed configuration,
while the following rows make a single modification each. We mark scores 0.5% worse than MARF red and scores 0.5% better green.
∇ denotes analytical normals (Eq. (5)) and M denotes medial normals (Eq. (10)).
Configuration IoU↑ P↑ R↑ CD↓ COS↑

×104
∇ M

MARF Table 1 92.6% 95.1% 97.2% 2.56 0.780 0.746

LFN [63] encoding x = (q̂,m) 92.2% 94.5% 97.4% 2.81 0.761 0.724
PRIF [69] encoding x = (q̂, o⊥) 92.1% 94.7% 97.1% 2.70 0.771 0.737
No init scheme. Section 3.3 91.8% 94.8% 96.7% 2.79 0.763 0.724
1 atom candidate 87.4% 95.2% 91.5% 4.54 0.720 0.679
4 atom candidates 90.7% 95.0% 95.2% 3.36 0.761 0.722
8 atom candidates 91.9% 95.1% 96.4% 2.67 0.770 0.736
32 atom candidates 92.7% 94.7% 97.7% 2.60 0.778 0.749
64 atom candidates 92.7% 94.6% 97.8% 2.39 0.778 0.747

No intersection loss 0λp 91.3% 93.9% 97.0% 12.29 0.546 0.528
No silhouette loss 0λs 0λh 87.6% 90.5% 96.5% 3.69 0.744 0.709
More silhouette loss 5λs 5λh 93.4% 96.2% 97.0% 2.45 0.772 0.738
No normal loss 0λn 92.7% 96.2% 96.3% 2.15 0.782 0.725
No inscription loss 0λih 0λim 92.3% 93.7% 98.4% 2.67 0.778 0.747
More inscription loss 5λih 5λim 92.3% 95.5% 96.5% 2.62 0.776 0.742
No maximality reg. 0λr 92.4% 95.0% 97.1% 2.56 0.776 0.744
More maximality reg. 100λr 92.5% 94.5% 97.8% 2.54 0.781 0.748
No specialization reg. 0λσ 92.5% 95.0% 97.3% 2.58 0.776 0.743
No multi-view loss 0λmv 91.3% 94.6% 96.3% 2.84 0.755 0.720
More multi-view loss 2λmv 92.3% 94.8% 97.2% 2.66 0.769 0.734
E
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Fig. 10. Approximate translucency and subsurface scattering. In (a) we use
he medial radius (shown in Fig. 5(d)) as a measure of local thickness, while
b) assumes uniform thickness, here set to the mean medial radius for a fair
omparison. We render each pixel independently using only a single network
valuation and no differentiation.

nisotrophy. To show how we can compute the full shape oper-
tor Dn̂ℓ (from Eq. (6)) of a MARF using only a single network
ifferentiation, we shade in Fig. 11 a MARF with the anisotropic
pecular reflectance model of Ward [103]. Anisotropic materials
eature view-dependent properties, in our case reflectance, whose
istribution Ward determines using two perpendicular surface
angents. For these a good fit are the principal directions of
urvature v̂1 and v̂2, the eigenvectors of Dn̂ℓ. The Ward model
ontributes the following specular coefficient at each point pℓ on
urface ∂O:

specular =

exp

⎛⎜⎝−2

(
ĥ·v̂1
a1

)2
+

(
ĥ·v̂2
a2

)2

1 + n̂ℓ · ĥ

⎞⎟⎠
4πa1a2

√
(n̂ℓ · l̂)(n̂ℓ · q̂)

(31)

where n̂ℓ is the medial normal from Eq. (10), l̂ is the incident light
unit vector, ĥ = (l̂ + q̂)/∥l̂ + q̂∥, and a1 and a2 are the standard
deviations of anisotropy along principal directions of curvature v̂1
and v̂ .
2

132
Fig. 11. A Stanford bunny MARF shaded with Ward anisotropic specular re-
flectance [103] determined by principal directions of curvature. We render each
pixel independently with a single forward and backward pass. a1 and a2 (see
q. (31)) determine the anisotropic deviation along each principal direction.

.5. Learning multiple shapes

Here we examine a MARF trained to represent multiple shapes.
e visualize in Fig. 12 MARF reconstructions of the four-legged
OSEG [93] object class, reconstructed from learned auto-
ecoding latent vectors in R16. We also show, to demonstrate
ow smooth the latent space is, in-between interpolations in
atent space. This MARF has a CD score of 2.424 × 10−4, an
nalytical COS score of 0.868, and a medial COS score of 0.843,
nd a 90.9% IoU score.
MARFs proves able to represent a space of multiple species

ith different articulations with a consistent part segmentation.
he latent space appears smooth despite a sparse training set,
ith meaningful interpolations. On some in-betweens the pre-
icted atoms fail to intersect the ray, visible on the legs leg of
he giraffe-dromedary interpolation and on the dogs. This should
mprove with more training shapes.

. Conclusion

The novel 3D object representation MARF is a neural ray-to-
urface mapping that outperforms prior work, achieving accurate
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Fig. 12. Row-wise MARF interpolations in latent space. We illustrate the medial axis by superimposing the medial atom centers associated with each hitting camera
ay on top of a Lambertian shading using analytical normals (Eq. (5)). We trained this MARF on the COSEG [93] ‘‘four-legged’’ object class, featuring a total of 20
hapes. Gray renders use known auto-decoder latent vectors, while the blue-tinted renders are in-betweens interpolations. Despite the sparse dataset, we find the
ARF propose smooth and meaningful in-betweens.
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urface rendering with a single network evaluation per camera
ay. The geometrically grounded medial representation of MARFs
ffers more insight while benefiting reconstruction quality, multi-
iew consistency, and representing discontinuities. We demon-
trated how its medial quantities can be used in visualization and
nform part-based segmentation. While learning ray-fields re-
ains a difficult problem, we find our results exciting, warranting

urther study.

imitations. Like prior neural ray fields, MARFs assume the cam-
ra ray is cast from infinitely far away. This makes rendering
iews where the camera is placed in-between occluders, such
s overhangs, impossible. While this does not affect inter-object
catter rays if adapted to a global-illumination ray-tracing setup,
t will affect intra-object bounces whose contribution to illumi-
ation must be learned/baked.

uture work. There are many challenges to address concerning
oth MARFs and neural ray fields in general. Ray fields lack an
nalog to both positional encoding and local conditioning com-
on in Cartesian neural fields, which drastically improve their

idelity. Our proposed multi-view loss requires 3D supervision,
n turn requiring two forward passes if adapted to 2D data. For
ARFs in particular, we look to explore less naive candidate
election strategies that select the atom candidate best suited to
eceive supervision, which is not necessarily the one closest to the
ay. We would further like to explore alternatives to fully opaque
toms such that no atom are fully occluded from supervision.
inally, work is needed to reduce the number of MARF loss terms,
educing the effort required to balance their contribution.
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ppendix

recision, Recall, and Intersection over Union (IoU). IoU quan-
ifies the overlap between two binary classifiers, in our case ray
it/miss classification. Precision and recall scores the relevance of
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t
t

P

he classification. For a batch of rays B with hits being positive,
he Precision, Recall, and IoU is:

recision =
TP

TP + FP
=

⏐⏐{ℓ ∈ B : sℓ = 0 ∧ sGTℓ = 0
}⏐⏐

|{ℓ ∈ B : sℓ = 0}|

Recall =
TP

TP + FN
=

⏐⏐{ℓ ∈ B : sℓ = 0 ∧ sGTℓ = 0
}⏐⏐⏐⏐{ℓ ∈ B : sGTℓ = 0

}⏐⏐
IoU =

TP
TP+FP+FN =

⏐⏐{ℓ ∈ B : sℓ = 0 ∧ sGTℓ = 0
}⏐⏐⏐⏐{ℓ ∈ B : sℓ = 0 ∨ sGTℓ = 0
}⏐⏐

(32)

Chamfer Distance (CD) and Cosine Similarity (COS). CD is the
‘‘average-case’’ distance between two point clouds U and V . COS
scores orientation using the same matching between U and V as
CD, and computes the normal vector cosine similarity.

CD =
1

|U |

∑
u∈U

min
v∈V

∥u − v∥

+
1

|V |

∑
v∈V

min
u∈U

∥u − v∥

COS =
1

|U |

∑
u∈U

n̂u · n̂argminv∈V ∥u−v∥

+
1

|V |

∑
v∈V

n̂v · n̂argminu∈U ∥u−v∥

(33)

where n̂x is the unit normal vector of oriented point x.
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