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Abstract

The amount of data that is created and used is increasing, and finding new

ways of analyzing data is becoming an increasingly more important problem.

Additionally this data can appear in multiple modalities, including text and

images. One research area that explores this problem is that of topic modeling.

This paper explores extending the use of pretrained embedding models

to multimodal domains. We compare a new approach to traditional topic

modeling methods as well as variations of the proposed method.

We show that this method is capable of finding coherent and diverse topics.

These topics are comparable to other methods if slightly worse on some met-

rics when comparing quantitatively, but also produce interesting qualitative

results.

We conclude that the approach could be useful for multimodal topic mod-

eling, but emphasize the need for further research in metrics, including metrics

that looks at more modalities, as well as exploring opportunities in a rapidly

evolving field.
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Sammendrag

Mengden data som blir skapt er økende, og det å finne nye m̊ater å analys-

ere denne dataen blir stadig et viktigere problem. Videre kan denne dataen

fremkomme med flere modaliteter, som tekst og bilde. Et forskningsomr̊ade

som utforsker dette problemet er det som omhandler emnemodellering.

Denne rapporten undersøker en utvidelse av bruken av forh̊andstrente

representasjonsmodeller p̊a multimodale domener. Vi sammenligner en ny

tilnærming til tradisjonelle emnemodelleringsmetoder samt variasjoner av den

foresl̊atte metoden.

Vi viser at den nye metoden klarer å finne sammenhengende og varierte

emner. Disse emnene er sammenlignbare med andre metoder, om litt d̊arligere

p̊a noen metrikker n̊ar man sammenligner kvantitativt, men har ogs̊a noen

interessante kvalitative egenskaper.

Vi konkluderer med at denne metoden kan være nyttig for multimodal

emnemodellering, men vektlegger behovet for videre forskning p̊a metrikk,

spesielt med tanke p̊a metrikker som tar hensyn til flere modaliteter, samt

utforskning av nye muligheter i et fagfelt med mange nye endringer.
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1 Introduction

This master thesis aims to explore the use of pretrained embedding models for use in

multimodal topic modeling. This chapter will serve as an introduction to the rest of

the report. Firstly it will go over some of the underlying background and motivation

for this report’s existence in Section 1.1. Then it will present the research goal and

questions in Section 1.2. The main contributions will be summarized in Section 1.3.

Finally it will outline the structure of the paper in Section 1.4.

1.1 Background and Motivation

The amount of data that is created every year is increasing (Hariri et al. 2019) and it

becomes increasingly difficult to manage all this information. One tool that is used

to explore and understand data is topic modeling. This is a type of model that tries

to find underlying structures or topics in a collection of documents. Traditionally,

statistical methods, such as Latent Dirichlet Allocation (LDA), have been used to

find semantic probability distribution that aims to model these topics (Chauhan and

Shah 2021).

In recent years, topic modeling has become more intertwined with the field of nat-

ural language processing and neural networks (Churchill and Singh 2021). In these

approaches, the models aim to find distributed representations. Meaning, in the case

of a neural network, that neurons participate in the representation of several topics

with changes to one topic affecting the information about other topics. These rep-

resentations often result in vector representations called word, sentence or document

embeddings for increasing lengths of texts. Additionally these models have become

increasingly more context sensitive. An older model, word2vec, would use a sliding

window to learn word embeddings. More recent models build on the transformer

architecture (Vaswani et al. 2017). This architecture uses an attention mechanism

to use more of the sequentiality and syntax to achieve many state-of-the-art results

in NLP. In topic modeling the transformers can be used for better embeddings, such

as used in the BERTTopic model (Grootendorst 2022).

1



Another problem when looking at data, is the different types of information that

can appear. Often you only consider the textual information, but you can also have

images, sound, metadata or sensor data. Using multiple modalities simultaneously

becomes important if you want to utilize more of the available data. Perhaps one

of the more common multimodal data is that of text and images. There are several

approaches for working with images, but one approach that tries to also incorporate

text is the CLIP model. Also spawning from the transformer architecture this model

tries to align a visual and textual transformer, to achieve very interesting results

(Radford et al. 2021).

In this paper, the aim is to explore these multimodal models for the use in topic mod-

eling. The use of transformer models, especially with regards to multimodal data,

is still in its early stages and there are many unanswered questions to investigate.

1.2 Goals and Research Questions

• Goal: To explore embedding-based multimodal topic models

The main goal of the thesis will be to see if you can improve topic models. More

specifically I am interested in if it’s possible to use pretrained embedding spaces on

multimodal data for the task of topic modeling.

• Research Question 1: Is it possible to use a pretrained embedding model for

multimodal topic modeling?

The first research question asks if it is possible to utilize a multimodal dataset to

generate topics. Based on earlier work, it seems like it should be possible to utilize

the embeddings on multimodal data to generate topics, but which challenges and

results lie in these models specifically?

• Research Question 2: How does such a model as outlined in research question 1

compare to other models?
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The second question asks how these topics compare to those of other models. Are

they an improvement over a model that does not exploit the multimodality of the

data. Do you get significantly different topics? Which new aspects can you utilize

with a multimodal model that is not possible or less practical with another model.

An important part of this question is also how to evaluate the different models.

1.3 Contributions

We propose a model for multimodal topic modeling that is capable of generating

meaningful topics. Its performance is compared to several different models across

modalities, including traditional topic modeling models and variations of the core

model. It is found to perform comparably, if slightly worse, when looking at quant-

itative metrics, but has more impressive qualitative results.

The contributions in the paper can be summarized in the following points:

• Exploring the task of multimodal topic modeling in existing literature.

• Creating and testing a multimodal topic model able to find topics utilizing both

image and text.

• Presenting and discussing various challenges and key areas for future research.

1.4 Thesis Structure

• Chapter 1 - Introduction: Explains the motivation behind this paper, including

background, research goals and questions, a summarizing of the main contri-

butions, and this overview.

• Chapter 2 - Background Theory: Contains theory used in the rest of the

thesis, including materials on topic modeling, attention models, multimodal

text-image models and evaluation of topic models.

• Chapter 3 - Method: Explains the method used in the paper. How the research

will be conducted. Describes the overall experimental setup.

3



• Chapter 4 - Experiments and results: Explains the experiments in more detail.

How the dataset has been utilized, and how the different models are used and

compared.

• Chapter 5 - Discussion: The analysis of the results and experiments, including

discussion of findings and limitations.

• Chapter 6 - Conclusion and future work: Summarizing the thesis and recom-

mendations for future developments.

4



2 Background Theory

This chapter contains relevant material and theory used in this paper. Firstly,

Section 2.1 will present an overview of topic modeling, what it is as well as relevant

methods. Secondly, Section 2.2 will discuss multi-modality and how image and text

can be related. Finally, Section 2.3 will explain how topics can be evaluated. This

chapter is not meant to be an exhaustive overview, but introduces some of the most

relevant or most common models or methods.

2.1 Topic Modeling

2.1.1 Definitions

Topic models M are unsupervised algorithms that takes a set of documents D =

{d1, d2, ..., dn} and outputs a set of topics T = {t1, t2, ..., tk} in an accurate and

coherent manner (Churchill and Singh 2021).

M(D) = T

The topics are often represented as a collection of words, {w1, w2, ..., wi}, that in

some manner represents the related document. One can also measure how much

word in the collection represents the topic and give a weight or a degree of relevance

to each word.

2.1.2 Overview

There are many approaches to topic modeling. In Churchill and Singh 2021 the

authors discus the development of several topic models and different use cases. They

identify four main methodologies: generative, graph-based, matrix-based and NLP-

aided methods, with the most common being generative and NLP-aided. These

methods can also be used in conjunction with each other.

5



Generative models or generative probabilistic models aim to model documents as

probability distributions of topics. These are explained more in 2.1.3. NLP-aided

methods aim to use approaches from other NLP tasks to improve topic modeling.

Most common is to use word embeddings. This will be explained further in 2.1.5.

In addition they separate between static; one unchanging corpus, online; with the

introduction of new documents and vocabulary, and temporal; with documents over

time. In this paper the focus is on the use of a static corpus.

2.1.3 Generative Probabilistic Models

In generative probabilistic modeling, data is assumed to come from a generative

process that includes some hidden or latent variables. If known, these latent vari-

ables would specify a probability distribution over the observed and latent variables.

An example of this would be a distribution of the most likely words given a topic.

Since these hidden variables cannot be known, they have to be estimated using a

conditional distribution based on the observed variables. This is distribution is also

called the posterior distribution (Blei 2012).

The goal of generative probabilistic models is to find the posterior distribution that

best fits the observed data. One such method, Latent Dirichlet Allocation, will be

described in the following section.

2.1.4 Latent Dirichlet Allocation

One popular method of generative probabilistic modeling is Latent Dirichlet Alloca-

tion (LDA) introduced in Blei et al. 2003. As in other similar models, its purpose is

to find the latent or hidden topics in documents from a corpus, where each topic is

represented by a probability distribution of words. LDA finds these distributions by

sampling a distribution and then iteratively trying to find the optimal distribution

for each document.

6



The generative process can be described more precisely in the following fashion

based on the one used in Churchill and Singh 2021 and Blei et al. 2003: Given k

topics, parameters α, and β. Then for a set of documents D:

For d in D:

(1) Randomly draw number of N words for d from the Poisson distribution

(2) Randomly draw a topic distribution θ from the Dirchlet distribution, conditioned

on α

(3) for each w in the range of N

(a): Draw a topic z from a Multinominal distribution based on θ

(b) Draw a word w based on the probability of w given topic z, conditioned on β

One important point to notice from this generative process, is that the number of

topics k is assumed known.

The optimization task becomes maximising the the log likelihood of the data given

the parameters α and β. To do this you need to be able to calculate the posterior

distribution, but as shown in the original paper Blei et al. 2003 this is not possible

to do exactly and has to be estimated. Some common methods for this include

expectation propagation (EP)(Minka 2013) and Gibbs sampling (S. Geman and D.

Geman 1984)

Although LDA is a popular method, there are some key challenges with it and other

generative models. First of all they are computationally expensive. To deal with

this, you have to use methods of approximation. (Sontag and Roy 2012) Another

problem is that low information high frequency words, commonly called stopwords,

such as ”the” and ”and” often affect topics making them less informative and also

affect metrics (see Section 2.3). Therefore when working with these methods, one

must address how stopwords should be dealt with (Fan et al. 2019).

7



One common approach is to use various preprocessing techniques. These includes

removing the stopwords before applying the method. Another is lemmatization,

where different inflected forms are grouped together. One example is ’writing’ and

’writes’ being grouped with ’write’. Several other methods, often involving removal

of special characters or certain words, also exist (Churchill and Singh n.d.).

2.1.5 Modern Natural Language Processing Models

Many newer topic models incorporate methods from areas of natural language pro-

cessing (NLP). The main idea is to use prior knowledge about language to enhance

the found topics. This knowledge can come in the form of a pretrained language

model.

One common method is to use embeddings. Embeddings is a form of representing

text in a distributed representation, for example feature vectors, such that similar

vectors represent similar texts. Mikolov et al. 2013 introduced word embeddings

for finding similar words with the method now called word2vec. In Le and Mikolov

2014 they extend the idea to whole documents with doc2vec.

Another recent evolution in NLP is the introduction of transformer models in Vaswani

et al. 2017. This is an architecture buildings on the concept of attention. While

previous efforts often represents texts as bags of words (BOW) not caring about the

syntax and relationship between words, transformer models are context sensitive.

This means it can understand differences between similar words used in different

contexts with different meanings. The transformer model consists of a encoder, try-

ing to encode or compress the input data, and an decoder trying to decode or extract

the encoded data. Each part uses multi-head attention to figure out which part of

the input information is most important for the corresponding output. These mod-

ules can be stacked and combined to create larger models. The basic architecture

can be seen in Figure 1 with the encoder on the left side, and the decoder on the

right.

1https://commons.wikimedia.org/wiki/File:The-Transformer-model-architecture.png
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Figure 1: The transformer model architecture1.

As a result large language models (LLMs) based on the transformer such as GPT3

Brown et al. 2020 and BERT Devlin et al. 2019 have been shown to perform well

on a wide variety of NLP tasks. These models can also be used to create text

embeddings.

There are different ways to utilize embeddings for topic modeling. Examples include

combining them with traditional methods such as LDA, as done in Nguyen et al. 2018

and Bunk and Krestel 2018, or using clustering models such as top2vec. The latter

approach will be explained in more detail in the following section, Section 2.1.6.

9



2.1.6 Clustering Embeddings

Top2Vec Angelov 2020 is one method that utilizes clustering on document and word

embeddings to find topics. It works by first creating jointly embedded document

and word vectors using one of three methods: Doc2Vec, Universal Sentence Encoder

or BERTSentence Transformer. These word vectors are high-dimensional and very

sparse, so to make the embedding possible to work with, you need to using methods

for reducing the dimensionality. Top2Vec utilizes Uniform Manifold Approxima-

tion and Projection for Dimension Reduction (UMAP) which is a general purpose

dimension reduction technique that preserves global structure from McInnes et al.

2018.

Using the lower dimensionality embedding, Top2Vec finds dense areas or clusters

using hierarchical density based cluster selection (HDBSCAN) from Malzer and

Baum 2020. These dense areas are categorized as the same topic. For each topic

you find the centroid to find a representative called the topic vector.

From the topic vector you find the n-closest word vectors, these will then become

topic words that represent the topic.

In Angelov 2020 they found that the resulting topics were more informative and

representative of the used texts than probabilistic generative models.

Another method that utilizes clustering is BERTTopic (Grootendorst 2022). It is

quite similar to Top2Vec also using UMAP and HDBSCAN, but is generalized to

be able to use a wide variety of transformer models.

The main difference to Top2Vec is the use of the transformer embeddings. It does

not use joint word and document embeddings and therefore has to find another way

to represent the found topics. The way this is done is to use term-frequency inverse-

document frequency (tf-idf) for each cluster or class, named class-tf-idf (c-tf-idf).

Here higher scoring terms or words are chosen as representants for topics.

10



2.2 Multimodal Models

When working with texts or other forms of media in the real world, it is common

that other forms of information are included. For example news or social media posts

very often include pictures, and videos also include sound and pictures. Therefore

restricting topic models to only text leaves out a huge potential source of inform-

ation. Consequently there are many models that try to capture this additional

multimodal information. In the subsequent sections some image-text approaches

will be explained in further detail.

2.2.1 Multimodal LDA

One of the first topic models to take use of multimodal data was MoM-LDA Barnard

et al. 2003. It uses a mixture of LDA models for the task of image annotation. It

uses a segmentation of the image as visual words. It then assumes the visual and

textual words are generated independently from the topic distribution in the LDA

process.

2.2.2 Text-image Models

Another topic model that works on images and text is the Social Media based

Multimodal Topic Model, SMMTM, (Huakui Zhang et al. 2022) which focuses on

short social media texts with a corresponding picture. It also models text and images

as bag-of-word features using feature extractors in the form of SIFT and CNNs to

represent the images as visual words. The model follows a generative process similar

to LDA, but with some important differences. They assume visuals can belong to

multiple topics while texts only can belong to one. Another important factor they

consider is if the image is consistent with the text, which is often but not always the

case as the information can be complementary or contradictory. They model this

in a variable called consistency. They also use a version of Gibbs Sampling in the

training process.
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They evaluate their model on coherence, uniqueness, and classification, using hasht-

ags as labels, against MoM-LDA and mmETM, and outperform the other models

on all metrics. They also qualitatively evaluate their models capabilities in finding

topics by visualizing topics from the topic words and images and find them to be

more meaningful than compared models.

12



2.2.3 CLIP

In Radford et al. 2021 they introduce the Contrastive Language-Image Pre-training

(CLIP) model. This is a model that learns a multi-modal embeddings space by

jointly training an image encoder and a text encoder to maximise the cosine simil-

arity of the embeddings between N pairs, and minimizing it between the incorrect

pairs. This training task can be see in Figure 2 with the paired text-image pairs

that are to be maximized along the diagonal. This model is able to carry out a wide

a variety of image related tasks with no to little additional training. These tasks

include classification, image retrieval, and search.

Figure 2: Contrastive language-image pretraining training process. The model is

trained to find the corresponding text and images. (Radford et al. 2021)

Grootendorst 2021 has adapted the CLIP model to the task of topic modeling on

images, referred to as concept modeling. This shows that the CLIP latent space is

also capable of producing topics based on the images.

13



2.2.4 The Modality Gap

While the CLIP model tries to align text and images by maximizing cosine similarity,

there is still a gap among the modalities as demonstrated in Liang et al. 2022.

They show that the embeddings lie in a narrow cone, meaning even though each

representation is closer too its pair than any other in the other modality, most

of the same embeddings are still closer too each other. This impacts downstream

performance, as well as which tasks can be performed by the model.

2.3 Evaluation of Topic Models

After using a topic model, it is important to evaluate the model to see how it per-

formed, meaning whether or not it identified useful or good topics. Churchill and

Singh 2021 identifies three general categories for evaluation of textual topics: cov-

erage, coherence, and qualitative. These will be discussed in the following sections.

2.3.1 Coverage

Coverage is about whether or not concepts in the document collection are repres-

ented. This can be in both topics, are all topics identified, and in documents, are

the assigned topics relevant to the document. Different metrics for coverage exists

based on the availability on ground truth data. If such data exists, you can use

metrics such as topic recall, accuracy and kl-divergence. If no such ground truth

data is available, perplexity is a commonly used metric. However perplexity and

human evaluations have been showed to be poorly correlated Chang et al. 2009.

2.3.2 Coherence

Coherence aims to measure how useful individual topics are. Common metrics

include precision, pointwise mutual information (PMI), Diversity, and Signal-to-

Noise Ration (SNR). Precision measures how well the most fitting topic words match

the ground truth.
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PMI attempts to measure closeness of words based on cofrequencies. It has become

popular since it requires no ground truth (Churchill and Singh 2021) . However,

in Fang et al. 2016 they find that a coherence metric based on word embeddings

performed better matched with human evaluation. This measure aims to find a

distance measure between the words within a topic.

Diversity looks at word overlap across all topics and sees how different these are.

SNR uses ground truth to compare correct and incorrect topic words.

2.3.3 Qualitative

Qualitative evaluation methods are used to gain insight often through common sense.

This can help evaluation multiple criteria at once, as well as compare human under-

standability of topics. Qualitative analysis has the challenge with coverage, where

it i s easy to choose a non representative subset of the results to be evaluated.

2.3.4 Computing Metrics

This section will go into some details on how to compute coherence using word

embeddings, and how to compute diversity.

Coherence with word embeddings is calculated as an average across the topics. For

each topic you look at a chosen number of words. Using all the words vector rep-

resentation you find an average vector,or a centroid, representing the topic using

the normalized vector representations. Then for each word in the topic you find the

distance, using a metric such as cosine similarity, to the topic vector. Using these

distances you find the average distance for each topic. This can be summarized in

the following equation:

Cwe =

∑
T

∑k
i=0 dist(tc,twi )

k

|T |
(1)
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Where Cwe is the final coherence score, T the topics, k the number of chosen words

from each topic, tc the topic centroid, twi
the is a word in the topic and the dist

function being the cosine distance.

To calculate diversity you choose a number of words for each topic to consider. Then

you find the number of unique words among all topics. The diversity is the ratio

of unique words to number of words considered. This can be summarized in the

following equation:

D =
|W ∗|
k ∗ |T |

(2)

Where D is the final diversity score, and W ∗ is the unique words among all of the

k first words in each topic.

2.4 Additonal Related Work

In the following section some other methods working on multimodal topic modelling

will be presented.

Zosa and Pivovarova 2022 propose M3L-Contrast to work on both multilingual and

multimodal data. Its based on ZeroshotTM (Bianchi et al. 2021), and they utilize

pretrained embeddings to find a topic distribution for each modality and language,

then they train a separate network to minimize loss in Kullback-Leibler divergence

between the different distributions. They evaluate topics on alignment, meaning

they look for similar distributions for different languages and images, using retrieval

tasks as well as evaluate topics using coherence metrics. They outperform Zer-

oshotTM in the multimodal setting.
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Zheng et al. 2014 take a different approach to multimodal topic modeling. They

build on DocNADE (Larochelle and Lauly 2012) to learn a joint representation on

visual words, class labels and annotation textual words. The model they use is a

neural autoregressive network. They train using a supervised method on two annot-

ated datasets, LabelMe and UIUC-Sports. They achieve competitive performance

compared to similar methods.
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3 Method

This chapter describes the key components that are used in the experiments. First,

the dataset that is used will be discussed, including information about the dataset as

well as how it is used. Second, an overview of the multimodal topic modeling system

will be given, with the core pieces of the architecture and how it is intended to work.

Third, the evaluation metrics and how the models are tested will be described.

3.1 Dataset

When choosing the dataset, some key features were important. As the system

that is tested works on multimodal data, the dataset of course needed to have

both modalities in it. In this instance this was text and images. Furthermore, I

was interested in data with text and images that were related too each other, but

not necessarily a close substitution. A close substitution would for instance be an

image captioning or description as in the COCO dataset(Lin et al. 2015). Another

interesting feature were more substantial texts, as opposed to shorter texts like those

used in social media like tweets. This would exclude datasets like Twitter100k (Hu

et al. 2017) used in Huakui Zhang et al. 2022 .

One candidate that was found and subsequently used in this project was theWikipedia-

based Image Text Dataset (Srinivasan et al. 2021).

This dataset was released by Google in 2021 and is a large multimodal-multilingual

dataset extracted from Wikipedia articles. It was the largest such dataset at the

time at release, and is a diverse and context rich dataset. Meaning there is little

repetition in a large selection of the entries in the dataset and that the texts in the

dataset are descriptive, verbose and use specific terminology. They released this

dataset to be able to be used in a wide variety of NLP tasks, including for use with

multimodal models. Additionaly, it was released along with a Kaggle competition

with texts and images in an accessible format.
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The full dataset contains roughly 37.1 million entries with 11.4 million unique im-

ages, and each entry having rich context in the form of image descriptions, article

text, and metadata, often in multiple languages. Some of the more interesting con-

text is the reference description which is often a description of the image, and the

page description which is the Wikipedia article intro. In Figure 3 we see an example

of what information can be found along with an image.

Figure 3: An example from the WIT dataset, an image along with its corresponding

textual information.2

For the experiments in this paper, the full dataset is not in use. Additionally each

entry is reduced to the main image of a Wikipedia article along with the page

description in English. This is mostly to make the amount of data manageable to

work with, as well as to focus on the most important aspect of the dataset for the

system, namely the image with a related text. But more or a different part of the

data could be used for a similar project.

In the end the experiments use 11548 rows of image-text entries.

2https://1.bp.blogspot.com/-JBtMJO3UGqg/YUnuRPCqW3I/AAAAAAAAIJY/

QOFyL3ALtAIKYKYdPcOVfOJ8Jss MJIowCLcBGAsYHQ/s1565/image3.png
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3.2 Model Structure

The model that will be tested in the following experiments is an NLP-aided cluster-

ing based model as explained in Section 2.1.6 It builds on the idea of Grootendorst

2022 and Grootendorst 2021, but extends the model into a multimodal domain.

The model framework finds topic representations of a set of multimodal documents

through four core steps. Firstly, it finds vector representations for the image and

text, using an embedding model for each modality before combining them into lar-

ger representations. Then it reduces the dimensionality of the representation, before

clustering the reduced vectors using a density based clustering. Using the assigned

clusters, it finds topic representations using the class based variation TF-IDF. Addi-

tionally it finds image exemplars from the cluster representation to further explain

found topics.

A summarization of the architecture can be seen in the high level overview in Figure 4

Figure 4: Architecture overview, includes creating embeddings with CLIP (Radford

et al. 2021), reduce dimensionality and cluster with UMAP (McInnes et al. 2018)

and HDBSCAN (Malzer and Baum 2020), and create topics from clusters

An alternative overview, with functions corresponding to the steps described in more

detail in this section, can be seen in Algorithm 1.
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Algorithm 1 A high abstraction level algorithm describing the proposed model

T, I ← Texts, Images

textEmbedding ← EmbedText(T )

imageEmbedding ← EmbedImage(I)

combinedEmbedding ← CombineEmbeddings(textEmbedding, imageEmbedding)

reducedEmbedding ← ReduceDimension(combinedEmbedding)

clusterTree← ClusterEmbeddings(reducedEmbeddubg)

topics← FindTopics(clusterTree, T )

imageExemplars← FindExemplars(clusterTree, I)

The model uses an embedding model to create vector representations of the input

data, separately for the image and for the text. By using an embedding based

model we assume that documents with similar topics are semantically similar and

thus will have similar vector representations. The embedding model that is used can

be varied, since it only affects the clustering. But in this work, transformer based

architectures with variations of CLIP and BERT are used.

More specifically the models from the SentenceTransformer framwork (Reimers and

Gurevych 2019) are utilized. This framework provides pre-trained models with good

performance with regards to embedding tasks and computation speed.

Due to the modality gap described in Section 2.2.4, one cannot cluster the image and

text data as distinct data points at the same time as this would lead to meaningless

clusters. Since we want to use both sources of data, we try to combine the text and

image vectors by simply combining the vectors and increasing the dimensionality

for each datapoint.

21



However it’s almost impossible to work with very high dimensional data for the

purposes of many clustering algorithms. Therefore it is necessary to simplify the

structure with the use of a dimensionality reduction algorithm like UMAP. The

goal of this algorithm is to lower the dimensionality while keeping as much of the

local and global features intact as possible. UMAP achieves this in two main steps.

Firstly to create a fuzzy topological representation. And then secondly to optimize a

low dimensionality representation to the fuzzy topological representation measured

by cross entropy. More detail about the UMAP algorithm can be found here3.

For the clustering, the HDBSCAN algorithm is used. This is an extension of the

DBSCAN algorithm, with the additional features of allowing different densities in

the clusters and being a hierarchical clustering algorithm. The algorithm works in

five main steps. First, transform the space by finding mutual reachability distances,

the max of the distance between two points and the distances of a ball around the

neighbourhood of each point. Secondly, build a minimum spanning tree on these

distances. Thirdly, build the cluster hierarchy by sorting the edges on distance and

creating a cluster for each edge. Next, condense the tree using a minimum cluster

size, denoting splits with fewer points as ’falling out’ of the cluster. Finally, extract

the clusters by finding the most persistent clusters when looking at the stability of

the cluster splits. To define stability we introduce the inverse distance to the root

λ. With λb being the value when the cluster was split of and became a new cluster

and λp as the value were points fell out of a cluster. The stability for a cluster is a

sum of (λp − λb) for each point in the cluster. If the stability of a cluster is greater

then the sum of the stabilities of its children, it is chosen as a selected cluster. This

also means the number of clusters is determined by the algorithm and not by the

user. More details can be be found here 4

3https://umap-learn.readthedocs.io/en/latest/how umap works.html
4https://hdbscan.readthedocs.io/en/latest/how hdbscan works.html
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With each datapoint assigned to a cluster, c-tf-idf is used to find topic representa-

tions for each respective cluster. C-tf-idf is based on the tf-idf or term frequency-

inverse document frequency metric. The term frequency counts the number of times

a term or word, t, appears in a document, d. While the inverse document is a meas-

ure of the information provided found by looking at how often the term appears

across all the documents, D, and then taking the logarithm of that value. Combing

these you obtain the following equation for tf-idf:

tfidf(t, d,D) = tft,d ∗ log( |D|
|d∈D:t∈d|)

This is generalized to the cluster by looking at each cluster as one large document,c,

and adjusting in the following manner:

ctfidf(t, c) = tft,c ∗ log(1 + A
tft
)

The inverse-document frequency is replaced by the inverse class frequency. Where

A is the average words per class and tft is the frequency of a term across all classes.

The 1 is added to keep the value of this term positive. Seen as a whole this value

increases if a word is common in a document/class but uncommon across all docu-

ments/classes.

Additionally stopwords are ignored during this process for the same reasons as de-

scribed in Section 2.1.4.

To find representative image for each cluster, we use the idea of utilizing exemplars

from the HDBSCAN generated clusters from Grootendorst 2021. Here we find the

most persistent points in each cluster with regards to the λ value. For each cluster

these will consist of several points, so an additional selection has to be made. This is

done by utilizing maximal marginal relevancy Carbonell and Goldstein 1998. This

a ranking method that tries to maximize the diversity within the subset by looking

at a similarity measure of the image embeddings.

3.3 Evaluation metrics

The performance of the models will be measured using two key metrics:
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Coherence: measures semantic similarity within each topic

Diversity: measures semantic dissimilarity within different topics

These metrics are calculated using Equation 1 and Equation 2 from Section 2.3.4.

Scoring closer to 1 on these metrics indicates a better performance. Only looking at

diversity is less useful as both noise and fewer topics could lead to higher diversity,

so this metric needs to be considered in relation with other evaluation methods.

Additionally qualitative assessments are performed on both found topic words and

found image exemplars. This qualitative assessment will also look at coherence and

diversity trying to see if they are coherent within a topic and diverse across topics.
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4 Experiments and Results

In this chapter we first introduce the different experiments in Section 4.1 going over

the overall experimental plan, as well as some technical details. Finally the results

from the experiments are presented in Section 4.3.

4.1 Experimental Plan

The experiments were designed with the goal of studying relative performance of the

proposed system, referred to as MMETopic (MultiModalEmbeddingTopic model) in

the following sections, to other closely related systems including the use of different

modalities. Therefore several versions of model were used on the dataset to establish

several reference points for comparing the performance of the multimodal model.

Firstly a traditional LDA model was used to establish a baseline for performance

on the text data. Then we ran the multimodal model, using several parameters.

The best performing parameters where then used to look at the single modality

performance of a similar model. Note that the textual model is essentially similar

to a BERTopic model (Grootendorst 2022). Finally we also looked at the use of

different embedding models for the proposed system. For each model evaluation

metrics in the form of topic diversity and word embedding coherence as outlined in

Section 3.3 were calculated. Additionally the output of the model in the form of

topics and image exemplars were compared at qualitatively.

4.2 Experimental Setup

All experiments were performed with the dataset that is described in Section 3.1.

For the LDAmodel the experiments were ran with the choice of k topics ∈ {5, 10, 15}.

For this model preprocessing was done using the OCTIS library which among other

steps included removal of stopwords and lemmatization.
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For the NLP-aided models the UMAP model had parameters of n neighbours and

n components of 5, min dist of 0.1 and using cosine distance for the distance metric.

The HDBSCAN model were tested with min cluster size of 100, 200 and 400 for the

base multimodal model and 200 for all subsequent models. Additionally, all models

were run 10 times to get more robust results.

Metrics were calculated using the OCTIS library and were the ones described in

Section 2.3.4.

Training was performed locally on machine with one NVIDIA GTX1060 GPU with

6GB memory and an Intel i5-7600K processor.

The code used for running the experiments, the processed dataset, as well as the

results from the experiments are available on this5 GitHub repository.

4.3 Experimental Results

In the following section the results from the experiment are presented. There are

results from the different variations in the form of tables for metrics over several runs

of each model, as well as the topics found by one run that are used to qualitatively

assess the different models.

In Table 1 we see the performance of the LDA model for the different choices of

parameters. With Table 2 and Table 3 showing examples of topics found by the

LDA5 and LDA10 versions. This model had no image part and we therefore only see

the textual topic.

Table 4 shows the performance of the MMETopic model with different choices of

parameters. Table 5, Table 6 and Table 7 shows the topics found for the different

versions of the model.

Table 8 shows the performance for the single modality comparisons. With Table 9

showing the topics for the textual model and Table 10 showing the the topics for

image model.

5https://github.com/Halleland/masterDatatek
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Table 11 shows the performance of an embedding model alternative for MMETopic,

as well as the performance of the text embedding only model. With Table 12 and

Table 13 showing the topics for each respective model.

Table 14 shows an overview of all models for the different modalities, with the best

model based on coherence were there are multiple models. Embedding based models

are grouped based on the embedding model used instead of other parameters. Note

that there is only one unique image-only model. Additionally, Table 15 shows an

overview of two topics for each model, with one example for each topic chosen to be

similar to the other models.

Model Coherence Diversity

LDA5 0.6788 0.8667

LDA10 0.7320 0.7222

LDA15 0.7064 0.7700

Table 1: LDA performance, average across 3 runs

Row Topics LDA5

0 [’building’, ’church’,

’house’, ’know’,

’build’, ’american’,

’film’, ’historic’,

’band’, ’locate’]

[’island’, ’know’, ’dis-

trict’, ’south’, ’large’,

’museum’, ’family’,

’bridge’, ’river’, ’year’]

[’station’, ’play’,

’railway’, ’line’, ’pro-

fessional’, ’world’,

’win’, ’national’,

’locate’, ’team’]

1 [’district’, ’locate’,

’municipality’,

’county’, ’town’,

’north’, ’population’,

’south’, ’region’,

’area’]

[’united’, ’states’,

’county’, ’census’,

’population’, ’city’,

’township’, ’state’,

’place’, ’war’]

Table 2: All topics, LDA5
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Row Topics LDA10

0 [’station’, ’railway’,

’line’, ’locate’, ’build-

ing’, ’build’, ’church’,

’house’, ’historic’,

’street’]

[’united’, ’states’,

’township’, ’school’,

’county’, ’national’,

’historic’, ’serve’,

’class’, ’navy’]

[’film’, ’know’, ’amer-

ican’, ’band’, ’album’,

’singer’, ’work’, ’well’,

’music’, ’release’]

1 [’air’, ’airport’, ’force’,

’year’, ’saint’, ’de’,

’war’, ’th’, ’battle’,

’day’]

[’united’, ’states’,

’census’, ’county’,

’population’, ’play’,

’footballer’, ’city’,

’area’, ’professional’]

[’district’, ’municipal-

ity’, ’locate’, ’town’,

’population’, ’village’,

’city’, ’area’, ’south’,

’region’]

2 [’play’, ’american’,

’world’, ’football’,

’professional’, ’win’,

’player’, ’league’,

’team’, ’national’]

[’county’, ’state’, ’s’,

’city’, ’census’, ’u’,

’population’, ’united’,

’states’, ’river’]

[’france’, ’commune’,

’department’, ’north’,

’region’, ’south’,

’west’, ’eastern’,

’central’, ’east’]

3 [’family’, ’specie’,

’genus’, ’species’,

’plant’, ’season’,

’know’, ’large’, ’find’,

’tropical’]

Table 3: All topics, LDA10
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Model Coherence Diversity

MMETopic100 0.6630 0.7854

MMETopic200 0.6688 0.8062

MMETopic400 0.6306 0.8038

Table 4: MMETopic performance, average across 10 runs

Row Topics MMETopic100

0 [’us’ ’state’ ’town’

’townships’ ’census-

designated’ ’city’

’township’ ’united’

’population’ ’states’

’county’ ’census’]

[’production’ ’series’

’motor’ ’mitsubishi’

’mercury’ ’cars’

’model’ ’manufac-

tured’ ’toyota’ ’car’

’ford’ ’produced’]

[’region’ ’province’

’census’ ’located’

’season’ ’district’

’area’ ’city’ ’county’

’municipality’ ’pop-

ulation’ ’tropical’]

1 [’national’ ’basket-

ball’ ’team’ ’baseball’

’former’ ’player’

’league’ ’professional’

’football’ ’plays’

’footballer’ ’played’]

[’bird’ ’america’

’small’ ’also’ ’known’

’genus’ ’species’ ’nat-

ive’ ’common’ ’plant’

’found’ ’family’]

[’south’ ’town’ ’river’

’building’ ’railway’

’county’ ’located’

’built’ ’station’ ’his-

toric’ ’city’ ’district’]
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2 [’united’ ’region’

’czech’ ’district’ ’mu-

nicipality’ ’th’ ’army’

’population’ ’repub-

lic’ ’town’ ’force’ ’air’]

[’former’ ’womens’

’championships’ ’cup’

’player’ ’football’

’national’ ’league’

’team’ ’played’

’world’ ’professional’]

[’actor’ ’member’

’known’ ’politician’

’also’ ’film’ ’band’

’american’ ’served’

’first’ ’best’ ’one’]

Table 5: All topics, MMETopic100

Row Topics MMETopic200

0 [’tropical’ ’town’

’state’ ’municipal-

ity’ ’township’ ’area’

’city’ ’population’

’county’ ’states’

’united’ ’census’]

[’draft’ ’played’ ’base-

ball’ ’college’ ’league’

’football’ ’former’

’basketball’ ’pro-

fessional’ ’player’

’hockey’ ’american’]

[’population’ ’loc-

ated’ ’one’ ’known’

’czech’ ’th’ ’municip-

ality’ ’army’ ’district’

’also’ ’air’ ’republic’]

30



1 [’small’ ’also’ ’bird’

’america’ ’common’

’native’ ’plant’ ’fam-

ily’ ’known’ ’genus’

’species’ ’found’]

[’uss’ ’first’ ’world’

’class’ ’aircraft’

’states’ ’air’

’ship’ ’war’ ’built’

’navy’ ’united’]

[’church’ ’area’ ’loc-

ated’ ’city’ ’river’ ’dis-

trict’ ’building’ ’his-

toric’ ’station’ ’rail-

way’ ’town’ ’county’]

2 [’national’ ’wo-

mens’ ’played’ ’mid-

fielder’ ’player’ ’club’

’former’ ’football’

’plays’ ’professional’

’footballer’ ’team’]

[’one’ ’politician’

’actor’ ’served’ ’mem-

ber’ ’first’ ’known’

’band’ ’also’ ’best’

’film’ ’american’]

Table 6: All topics, MMETopic200
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Row Topics MMETopic400

0 [’small’ ’bird’

’common’ ’also’

’plant’ ’native’

’america’ ’known’

’found’ ’genus’

’species’ ’family’]

[’township’ ’district’

’state’ ’town’ ’area’

’united’ ’census’

’municipality’

’county’ ’popula-

tion’ ’states’ ’city’]

[’united’ ’region’

’located’ ’popula-

tion’ ’czech’ ’town’

’th’ ’municipal-

ity’ ’air’ ’army’

’district’ ’republic’]

1 [’south’ ’building’

’railway’ ’district’

’built’ ’city’ ’historic’

’located’ ’county’

’river’ ’town’ ’station’]

[’one’ ’played’ ’former’

’member’ ’band’ ’film’

’american’ ’first’ ’best’

’known’ ’world’ ’also’]

Table 7: All topics, MMETopic400
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Model Coherence Diversity

MMETopicTextOnly 0.7080 0.8364

MMETopicImageOnly 0.6783 0.8182

Table 8: Embedding with single modality performance, average across 10 runs

Row Topics

MMETopicTextOnly

0 [’area’ ’new’ ’county’

’built’ ’city’ ’first’

’known’ ’loc-

ated’ ’one’ ’also’]

[’world’ ’car’ ’ship’

’aircraft’ ’uss’ ’war’

’designed’ ’pro-

duced’ ’built’ ’navy’]

[’historic’ ’town’

’city’ ’located’

’census’ ’county’

’population’ ’states’

’united’ ’township’]

1 [’common’ ’amer-

ica’ ’known’ ’native’

’bird’ ’endemic’

’found’ ’genus’

’family’ ’species’]

[’eastern’ ’northcent-

ral’ ’northeastern’

’northern’ ’northwest-

ern’ ’southwestern’

’region’ ’department’

’commune’ ’france’]

[’city’ ’germany’ ’km’

’town’ ’province’

’village’ ’region’

’municipality’ ’loc-

ated’ ’district’]
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2 [’basketball’ ’former’

’football’ ’team’

’player’ ’league’

’plays’ ’footballer’

’played’ ’professional’]

[’member’ ’french’

’singer’ ’known’

’american’ ’actor’

’actress’ ’band’

’politician’ ’best’]

Table 9: All topics, MMETopicTextOnly

Row Topics

MMETopicImageOnly

0 [’building’ ’river’

’town’ ’historic’

’railway’ ’city’

’county’ ’located’

’station’ ’district’]

[’first’ ’world’ ’air-

craft’ ’air’ ’united’

’states’ ’war’ ’built’

’navy’ ’ship’]

[’town’ ’municipal-

ity’ ’area’ ’township’

’city’ ’united’ ’pop-

ulation’ ’census’

’states’ ’county’]
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1 [’south’ ’united’ ’one’

’family’ ’known’ ’also’

’municipality’ ’genus’

’species’ ’found’]

[’national’ ’world’

’played’ ’football’

’basketball’ ’team’

’professional’ ’player’

’plays’ ’footballer’]

[’politician’ ’member’

’served’ ’best’ ’amer-

ican’ ’band’ ’also’

’film’ ’first’ ’known’]

Table 10: All topics, MMETopicImageOnly
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Model Coherence Diversity

MMETopicSBERT 0.6832 0.8214

MMETopicTextOnly,SBERT 0.6371 0.9323

Table 11: MMETopic with alternative embedding model performance and single

modality, average across 10 runs

Row Topics

MMETopicSBERT,CLIP

0 [’district’ ’state’

’town’ ’municipal-

ity’ ’county’ ’census’

’city’ ’township’

’united’ ’states’

’area’ ’population’]

[’force’ ’uss’ ’first’

’air’ ’aircraft’ ’world’

’states’ ’ship’ ’built’

’united’ ’navy’ ’war’]

[’area’ ’south’ ’dis-

trict’ ’railway’

’county’ ’station’

’historic’ ’loc-

ated’ ’building’

’city’ ’town’ ’river’]

1 [’football’ ’world’

’hockey’ ’basketball’

’national’ ’league’

’played’ ’footballer’

’player’ ’profes-

sional’ ’team’ ’plays’]

[’one’ ’actor’ ’politi-

cian’ ’member’

’band’ ’served’ ’best’

’first’ ’film’ ’also’

’known’ ’american’]

[’region’ ’located’

’czech’ ’town’ ’th’

’force’ ’repub-

lic’ ’population’

’air’ ’army’ ’dis-

trict’ ’municipality’]
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2 [’also’ ’common’ ’de-

scribed’ ’america’

’extinct’ ’genus’ ’fish’

’family’ ’species’

’known’ ’found’ ’sea’]

Table 12: All topics, MMETopicSBERT,CLIP

Row Topics

MMETopicSBERT,TextOnly

0 [’endemic’ ’small’

’found’ ’america’

’genus’ ’also’ ’plant’

’species’ ’native’ ’com-

mon’ ’family’ ’known’]

[’one’ ’former’ ’war’

’played’ ’film’ ’united’

’world’ ’first’ ’pro-

fessional’ ’also’

’american’ ’known’]

[’united’ ’states’

’area’ ’municipal-

ity’ ’town’ ’census’

’county’ ’station’

’district’ ’located’

’population’ ’city’]

Table 13: All topics, MMETopicSBERT,TextOnly
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Topic LDA MMETopicTextOnly MMETopicImageOnly

0 [’united’, ’states’,

’census’, ’county’,

’population’, ’play’,

’footballer’, ’city’,

’area’, ’professional’]

[’historic’ ’town’

’city’ ’located’

’census’ ’county’

’population’ ’states’

’united’ ’township’]

[’town’ ’municipal-

ity’ ’area’ ’township’

’city’ ’united’ ’pop-

ulation’ ’census’

’states’ ’county’]

1 [’family’, ’specie’,

’genus’, ’species’,

’plant’, ’season’,

’know’, ’large’, ’find’,

’tropical’]

[’common’ ’amer-

ica’ ’known’ ’native’

’bird’ ’endemic’

’found’ ’genus’

’family’ ’species’]

[’south’ ’united’ ’one’

’family’ ’known’ ’also’

’municipality’ ’genus’

’species’ ’found’]
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Topic MMETopicCLIP MMETopicSBERT,Text MMETopicSBERT,CLIP

0 [’tropical’ ’town’

’state’ ’municipal-

ity’ ’township’ ’area’

’city’ ’population’

’county’ ’states’

’united’ ’census’]

[’united’ ’states’

’area’ ’municipal-

ity’ ’town’ ’census’

’county’ ’station’

’district’ ’located’

’population’ ’city’]

[’district’ ’state’

’town’ ’municipal-

ity’ ’county’ ’census’

’city’ ’township’

’united’ ’states’

’area’ ’population’]

1 [’small’ ’also’ ’bird’

’america’ ’common’

’native’ ’plant’ ’fam-

ily’ ’known’ ’genus’

’species’ ’found’]

[’endemic’ ’small’

’found’ ’america’

’genus’ ’also’ ’plant’

’species’ ’native’ ’com-

mon’ ’family’ ’known’]

[’also’ ’common’ ’de-

scribed’ ’america’

’extinct’ ’genus’ ’fish’

’family’ ’species’

’known’ ’found’ ’sea’]

Table 15: Topic comparison overview, two selected topics with most relevant ex-

ample from each model
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Text-only Image-only Multimodal

TC TD TC TD TC TD

LDA 0.7320 0.7222 - - - -

MMETopicCLIP 0.7080 0.8364 0.6783 0.8182 0.6688 0.8062

MMETopicSBERT,CLIP 0.6371 0.9323 0.6783 0.8182 0.6832 0.8214

Table 14: Performance overview with topic coherence and topic diversity, all models

with best performance based on coherence where different parameters have been

tested.

40



5 Discussion

In the chapter the results from the previous chapter will be analyzed and discussed

in more detail. First, the quantitative metrics will be discussed in Section 5.1. Then

the output will be looked at for a qualitative evaluation in Section 5.2. Finally, in

Section 5.3 the results will be discussed in relation to the research questions from

Section 1.2.

5.1 Discussion of Metrics

Looking at the overall metrics we see that the overall most coherent model is LDA10.

We see that both more and less topics, affect the coherence. This might be because

with fewer topics, one topic might try to incorporate too much, we can see hints

of this in Table 2. Having too many topics does not have this issue, but we might

instead introduce overlapping topics, such as the first and third topics in row 1 in

Table 5. This obviously affects diversity, but might also affect coherence, as the

differences between similar topics can come from uncommon combinations which

affects coherence.
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(a) MMETopic100 (b) MMETopic200 (c) MMETopic400

Figure 5: HDBSCAN trees for MMETopic models with chosen clusters

We also see that all the MMETopics versions are quite close to each other. With

minimum cluster size of 200 we get around 10 topics, (8 for the example run). With

100 we get 9 topics and a very similar score. With 400 we see the score falling quite

a bit, and it only has 5 topics. We can also look at the hierarchical tree created

by HDBSCAN algorithm. This shows which clusters were chosen, their size, and

where they diverged from other clusters. Figure 5a and Figure 5b shows several

quite balanced clusters with regards to their size, with Figure 5b having quite a few

candidates that were not chosen. These smaller branches increases the complexity

of the tree, but might be a result of variance. This suggests a higher minimum size

for the clusters is appropriate. Figure 5c has fewer clusters of more varied size. The

impact on the coherence score might suggest that these larger clusters resulted in

worse topics.

When comparing the metrics to the single modality models,Table 8, we see that

both of them are slightly higher in both coherence and diversity. The text-only

being higher is more expected since the metrics focuses on the text, while in the

multimodal model we try to also use the visual information to create topics. But the

high score for the image-only is less expected. This might mean the image clusters

were quite similar to the text-only clusters. This could be because the dataset was

chosen to have similar info in text and images and that this held for similar texts,

meaning similar texts also had similar images. You could also look at larger or

different part of the dataset, to see if this performance can be replicated there.
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(a) Multimodal embedding (b) Text embedding (c) Image embedding

Figure 6: Projection of reduced embeddings for different modalities used in the

MMETopic model

We can also look closer and compare projections of the reduced embeddings of

the MMETopic model to the single modalities. In Figure 6a one can see that the

clusters are more spread out while in Figure 6b and Figure 6c we get more distinct

clusters, even though Figure 6b appears to be more noisy. These distinct clusters

might explain the higher coherence scores as that means both single modality models

found groups with similar characteristics.

The models scoring highest on diversity are the LDA5 and MMETopicTextOnly,SBERT

models. As mentioned fewer topics can often lead to increased diversity since there is

less chance of overlap, and these had 5 and 3 topics respectively. Excluding these, we

see that most of the clustering models score quite similarly, while the LDA variations

are quite a bit behind. It makes sense that these models have higher diversity as to

be considered for a topic, there needs to be a large distance between clusters and

words that are unique for each cluster are considered to a larger degree.

It is interesting to see that the MMETopicSBERT outperforms the MMETopic on

both metrics even with the text only version being considerably worse. The reason

for the performance of the text only might be the more dense clusters as seen in

Figure 7b, meaning the chosen parameters weren’t able to find distinct enough

clusters. For the multimodal version it’s hard to say why it outperforms. Often you

see that an average of multiple models outperforms a single model Wang et al. 2022.

Using two different base models, might have had the same effect here.
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(a) Multimodal SBERT embedding (b) Text SBERT embedding

Figure 7: Projection of reduced embeddings for different modalities used in the

MMETopicSBERT variation

5.2 Discussion of Output

When looking at the output we can look at both the chosen topic words and the

image exemplars for the different models. Starting with the textual output of the

LDA model in Table 3, it becomes clear why this model had lower diversity score.

Several of the topics show signs of overlapping topics such as geographical and

sociological information about areas of the United States.

Looking at the output of MMETopic models we see that the models are able to find

very distinct topics with regards to both images and texts. There is some overlap

for example with geographical topics and sports overlapping somewhat with the

LDA model. But when we look at the images, for example the geographical topics,

they are more distinct from each other, such as the first and third topic in row 0 in

Table 5 . It’s important to remember that the images are chosen from exemplars,

meaning among the core points in a cluster, and there might be more actual overlap

in each cluster where the model is not as certain.

We also see a car topic appearing only in MMETopic100, in the second topic of row

0 of Table 5. This looks like quite a clear topic with all words and images being

seeming related. The reason that it only appears here, might be that this is a smaller

topic that gets overshadowed by other topics and does not get to be a part of the

core for another topic as to not show up in other exemplars.
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Some of the less clear clusters are those related to people, such as the third topic in

row 2 for Table 5 and the second topic in row 1 for Table 12. Here the topic words

covers quite a few different areas such as actors, politicians, and musicians, with the

images often being portraits. This might be a topic covering biographies or similar

entries, which is a reasonable grouping, but makes the topic less clear.

When we look at the single modality outputs we see that they perform well with

regards to their respective modality. The text modality, Table 9, has varied topics,

meaning there is little overlap, again a little with regards to geography. We see alot

of the same topics found including navy, sports, biographies, nature and buildings.

But if we look at the images they are much less coherent. For the text model these

are the exemplars based only on the text clusters, so there of course no reason to

see a lot of similar images apart from the fact that they should come from similar

texts.

For the image model, Table 10, we again see lots of the same topics, and here the

text seems as coherent as the images compared to the other models for the similar

categories. This could be as mentioned because the images and texts are supposed to

be linked so they likely find lots of the same clusters. However we see one topic that

makes much less sense then the others that have been discussed, namely the first

topic in row 1. Here the images have some similar traits, mainly the background,

but otherwise are not very coherent. We see this in the textual topic as well with

no obvious topic presenting itself. This could be a case were a pure image model is

not ideal.

The variation MMETopicSBERT is also able to find many of the topics as the other

models. All the topics and related images seems reasonable, meaning there are no

obvious failure cases. Additionally, in the ”nature” topic we see a more specific

topic with some aquatic themes showing in both words and images. For the text

only version we don’t see as clear results, but as discussed this is most likely due to

the number of topics.

45



Overall we see that the multimodal models are able to find similar topics to the

single modality models, but are able to additionally extract image exemplars that

are more coherent while being similar to the textual topic. One challenge that has

not been looked at is how well the images in the core of the cluster represent the

cluster as a whole. This would require new metrics or methods.

5.3 Discussion of Results and Research Questions

• Research Question 1: Is it possible to use a pretrained embedding model for

multimodal topic modeling?

Based on the results from the experiments in Section 4 and the literature review

it seems very possible to use pretrained embedding models for multimodal topic

modeling. Looking at Table 4 and figures Table 5, Table 6 and Table 7 we see that

we get meaningful output from the model with word topics and image exemplars

being both coherent and diverse as described in Section 3.3.

However, there is a challenge in the modality gap described in Liang et al. 2022.

Here we used a direct approach of combing the embeddings to work around this

problem, but other methods could be used. One will be discussed in the future work

section, Section 6.2.

• Research Question 2: How does such a model as outlined in research question 1

compare to other models?

Though we conclude for RQ1 that it is possible to use the proposed model to take a

multimodal approach to topic modeling, this does not mean it is necessarily better.

From the previous discussion we see that using single modalities, both for the tradi-

tional and embedding based methods, score higher on coherence. The multimodal

method is not far off, however, and additionally is able to identify coherent image

clusters for the topics. We also see that even though the image only model is able

to find similar image clusters, it looks more prone to worse topics. Therefore the

proposed system could be useful in cases were images are an important factor in the

topic generation.
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In addition we find that using two different embedding models for the image and

textual mode outperformed using CLIP for both modalities. This performance was

quite close both in metrics and output, so it is difficult to say where this difference

stems from. In Section 5.1 we propose that this might be an averaging effect.
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6 Conclusion and Future Work

This chapter is gonna provide a conclusion of the thesis and present some future

work opportunities for multimodal topic modeling.

6.1 Conclusion

Methods of communication are rapidly changing and often require more and more

data. We are not only limited to text, but use images, sound and video. Therefore it

is not a good idea to limit the modalities that are used in fields like topic modeling.

This thesis has studied one way of using text and images for multimodal topic

modeling with the use of embedding models. The WIT dataset was utilized due to

the context rich images-text pairs which made it a useful dataset for topic modeling.

Building on the ideas in BERTTopic, the MMETopic model was created with a

couple of variations. The performance of this model, and related models using

single modalities, and an LDA model was tested and compared using quantitative

metrics as well as qualitative analysis of the model outputs. It was shown that

it was possible to use the proposed system to find suitable topics, but with worse

performance than the LDA baseline when looking at coherence, and slightly worse

than the single modality embedding models when looking a both coherence and

diversity. However, the multimodal models were able to find useful information in

the images and could present image clusters that looked representative of the topics,

and to a larger degree than the single modality embedding models. That means this

type of model could be useful in applications were using both images and text is

important. These images were only evaluated qualitatively and a need for better

metrics regarding images in topic modeling was identified.
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6.2 Future Work

6.2.1 The WIT Dataset

The WIT dataset that was used has a lot of opportunities to be explored further.

In this thesis we only used a small part of the full dataset, as well as just the most

important parts for each entry. It could be possible to use the additional information

that exists in some interesting way. Of course you could also use different parts of

the dataset to see if similar results as found in this thesis holds, and use a larger

part to test scalability of different systems.

6.2.2 Improved Metrics

As mentioned earlier in the thesis there is a need for better metrics for topic model-

ing, especially in a multimodal setting. Coherence and diversity metrics for images

calculated in a similar manner as for the texts could probably used, but these would

have to be tested up against human evaluation as it’s not always easy to see which

metrics correlate well as demonstrated by the perplexity metric. More importantly

for multiomdal models is some metrics that can describe the visual information, and

its connection to the text. For example how well chosen visual info and textual topic

words correspond to each other.

Another related point is how to use the visual information. Here we used image

exemplars, but in the related work we saw others using visual words. Yet another

method could be to somehow utilize graph methods as in Yang et al. 2018 to find

common elements in a different manner.
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6.2.3 Model Variations

Liang et al. 2022 demonstrate a modality gap in the CLIP embeddings. However, So

et al. 2022 try to remove this gap by using a Mixup (Hongyi Zhang et al. 2018) data

augmentation and introducing interpolated hard negative samples to decrease the

gap between pairs and increase robustness. Similar methods could make it possible

to treat text and images as separate data points and cluster them as one larger

dataset. How you categorize topics becomes an even more important part for this

method.

As seen with OpenAI 2023 multimodal models are rapidly changing and new oppor-

tunities and approaches for topic modeling could present themselves. Several models

trying to connect text and images, such as Midjourney6, DALL-E7 and Stable Dif-

fusion8, many building on CLIP, could probably be utilized in different manners to

improve topic models in a similar fashion as attempted in this thesis. It is therefore

important to keep up to date in the field.

6https://www.midjourney.com/home/
7https://openai.com/product/dall-e-2
8https://stability.ai/stable-diffusion
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