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A B S T R A C T

Aging is inevitably associated with a decline in physical abilities and can pose challenges to the social lives
of elderly individuals. In long-term care facilities, group exercise is instrumental for keeping elderly residents
physically and socially healthy. Accommodating these needs in elderly care can be challenging due to staff
shortages and other lacking resources. A robotic exercise coach could be helpful in such contexts. Intelligent
human–robot interaction requires accurate and efficient human activity recognition. Several solutions focusing
on human activity recognition in healthcare robotics have been proposed. However, multiperson activity
recognition remains a challenging task in case of using vision-based or wearable sensors data, and past research
has mainly focused on single-person rather than multiperson or group activity recognition. Moreover, the
existing state-of-the-art methods for activity recognition mainly use heavyweight Convolutional Neural Network
(CNN) models to achieve good accuracy. However, these models have certain drawbacks, such as requiring
significant computational resources, higher memory and storage needs, and slower inference times. Another
challenge is the limited number of publicly available datasets containing few activities for physical activity
recognition. In this work, we propose a lightweight, deep learning-based, multiperson activity recognition
system for group exercise training of elderly persons. Considering the limited publicly available datasets, we
curated a new dataset named the Routine Exercise Dataset (RED), comprising 19 routine exercise activities
recommended for elderly persons. The RED dataset has 14,440 samples collected from 19 participants and is
one of the most extensive datasets of its kind. We evaluated our proposed activity recognition method based
on proposed feature extraction modules and a one-dimensional multilayer long short-term memory network
on 16 datasets, including 10 publicly available benchmark activity recognition datasets, an RED dataset, a
publicly available dataset combined with RED dataset, and four noise-corrupted RED datasets. The results
indicate the efficiency of the proposed method for real-time activity recognition compared to the state-of-the-
art methods. The proposed method achieved F1-scores of 98.64%, 97.95%, and 99% on large-scale datasets
named UESTC RGB-D, NTU RGB+D, and RED, respectively. We also developed a Robot Operating System
(ROS)-based application to deploy our proposed system in a social robot and test it in real-life scenarios.
1. Introduction

Intelligent robotic systems have the potential to offer assistance
in many domains, including healthcare (Jamil et al., 2022a; Zaabar
et al., 2021), education, entertainment, manufacturing, and other in-
dustries (Jamil et al., 2022b). Globally, the proportion of people above
65 in the general population is increasing in many countries and is
predicted to rise further in the following decades. Inadequate social
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engagement and physical inactivity are common among older adults,
negatively affecting their health (Jaarsma et al., 2015). Many research
studies suggest that elderly individuals may feel more motivated to
exercise in a social group rather than exercising alone (Ahmad et al.,
2022; Shah et al., 2022a, 2022b). Therefore, group exercise is usually
recommended by healthcare professionals and often administered as
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a joint activity in care facilities. However, daily group activity ses-
sions can be challenging for healthcare professionals since time and
other resources are limited. Integrating intelligent robotic systems in
healthcare to perform such jobs could mitigate these challenges in the
future (Blindheim et al., 2023). To be useful, these systems must be
able to recognize and understand specific and relevant human behav-
iors for successful human–robot interaction. In this context, Human
Activity Recognition (HAR) has emerged as a promising development.
HAR can be used in healthcare to monitor and detect changes in
the activity of patients (Schrader et al., 2020; Taylor et al., 2020)
and be integrated with personalized smart devices and smart-home
solutions based on individual needs (Mekruksavanich & Jitpattanakul,
2021). Many existing systems use powerful wearable sensors to acquire
time series data for HAR (Andrade-Ambriz et al., 2022). Among these
sensor systems, the Motion Capture (MoCap) system can capture and
transmit motion data from human users. MoCap has a high level
of accuracy when reproducing intricate movements. However, it is
an expensive technology and requires specialized training to be used
precisely (Stumpf, 2010). Furthermore, sensors such as gyroscopes,
accelerometers, magnetometers, and Global Positioning Systems (GPS)
embedded in smartphones or Inertial Measurement Units (IMU) are
also used to acquire time series data for HAR (Ihianle et al., 2020;
Qiu et al., 2022). The data are collected using multiple wearable
sensors attached to the wrist, ankle, and chest. HAR systems relying on
wearable or smartphone sensor data are popular because of their light
weight and ease of collection. However, achieving better accuracy, effi-
ciency, and effectiveness with less computational and financial cost in
multiperson activity recognition remains challenging. Using wearable
or smartphone-embedded sensors for multiperson activity recognition
is computationally and economically costly. Moreover, carrying these
sensors can be cumbersome for older people, making invasive HAR
methods challenging, especially for multiperson activity recognition.

Vision-based HAR using RGBD images and depth information ac-
quired by an RGB camera and an infrared projector is also a popular
and cost-effective approach. Several cameras, such as Intel RealSense
Depth Camera and Microsoft Kinect, are available on the market to
collect RGB-D images. However, processing color and depth images
for HAR is computationally expensive. Researchers have therefore pro-
posed several cost-effective vision-based solutions for HAR. For in-
stance, Andrade-Ambriz et al. (2022) proposed a method for HAR using
3D convolutions and convolutional Long Short-Term Memory (LSTM)
on short video sequences.

The work presented in this paper is motivated by pressing chal-
lenges faced by healthcare professionals working in long-term care
facilities for elderly individuals in Norway. In our interviews with the
healthcare professionals, we learned that conducting group activities
such as exercise or fun activities can become challenging to offer due
to a lack of resources. Group activities are often only provided once or
twice weekly for 15 to 30 min, which is not unique in the Norwegian
context. A US-based survey (CareerStaff Unlimited, 2023) suggests
that 98% of long-term care providers are experiencing difficulties in
hiring staff, with this shortage in labor having consequences for the
level of services staff are able to provide. Moreover, continuously
monitoring residents located in different areas of care facilities can
be challenging. Accordingly, there is a growing need for intelligent
systems to assist staff in care environments. Past research has focused
on noninvasive or vision-based solutions (Andrade-Ambriz et al., 2022;
Khan et al., 2022) for single-person activity recognition. On the other
hand, invasive methods (Cippitelli et al., 2016; Gaglio et al., 2014;
García-de Villa et al., 2022) based on sensors attached to the body are
not feasible for multiperson activity recognition due to the cost and
hardware complexity. The complexity of invasive methods for multiper-
son activity recognition extends beyond cost and hardware complexity.
Another reason these methods may not be feasible is the practical
challenges of simultaneously attaching sensors to multiple individuals.
2

This process can be time-consuming, intrusive, and uncomfortable for
the participants, limiting the usability and acceptance of such methods
in real-world scenarios. Additionally, the maintenance and calibration
of multiple sensor attachments for each person can be cumbersome,
making it less practical for large-scale applications. Therefore, the
limitations extend beyond cost and hardware complexity to encompass
practicality, user comfort, and scalability. Furthermore, the approaches
proposed for multiperson or group activity recognition are mainly fo-
cused on surveillance (Ullah et al., 2021) or sports activities (Gavrilyuk
et al., 2020) and not physical exercises. Moreover, these state-of-the-
art methods are based on heavyweight CNN models to achieve good
accuracy, regardless of the limitations of these models. Such limitations
include the need for significant computational resources, higher mem-
ory and storage requirements, slower inference times, and the potential
for overfitting on scarce datasets.

To the best of our knowledge, there are currently no existing meth-
ods for handling multiperson activity recognition, which is lightweight
and can be used for conducting group exercises of elderly individuals
using social robots in real time. Dealing with multiperson activity
recognition in changing environments where the position of persons in
video frames keeps changing is a challenging task. Furthermore, activ-
ity recognition based on ground robot vision is more challenging than
that based on stationary CCTV cameras due to various factors, such
as occlusions, limited view, and unstructured or diverse environments.
Limited publicly available datasets comprising routine upper and lower
body exercises required for maintaining physical health in older people
remain a significant problem. To address these knowledge gaps, our
contributions in the present paper are as follows:

• We proposed a lightweight vision-based multiperson activity
recognition system that can be easily integrated into a robot
or other interactive technologies in real time for group exercise
training of elderly individuals.

• A principal step for multiperson activity recognition is to local-
ize the persons throughout the video stream by detecting and
tracking each individual. The object detection models trained on
data comprised of objects from general categories are not feasible
in this task. Therefore, we have fine-tuned a lightweight CNN
model and trained it on new data for person detection to achieve
better results in a dynamic environment. In the following step, we
used an object tracker, which can perform tracking at a very high
speed, to track the persons in the video stream.

• LSTM is well known for learning sequential data. We presented
an efficient method for activity recognition based on a frame skip
strategy, feature extraction, and a Multilayer Long Short-Term
Memory (MLSTM) network. The use of multiple LSTM layers in
MLSTM enables the network to learn abstract and more complex
representations of sequential data.

• The lack of publicly available datasets comprising routine exercise
activities required for elderly individuals is a significant problem.
Therefore, we curated a new dataset called the Routine Exercise
Dataset (RED) in this work. This dataset consists of multiple
upper-body and lower-body physical exercises specifically de-
signed for the physical well-being of older adults. The dataset
includes 19 different exercises performed 40 times by each of the
19 participants.

• We conducted an ablation study to evaluate the performance
of the proposed activity recognition method with existing meth-
ods on various datasets (n = 16), including the RED dataset
without noise, four noise-corrupted RED datasets, RED dataset
combined with a publicly available dataset, and 10 publicly avail-
able activity recognition datasets. The proposed method proved
generalizable to exercise and daily activities with high accuracy
and minimal loss.

• We developed a Robot Operating System (ROS)-based (Stanford
Artificial Intelligence Laboratory, 2018) application to deploy our
proposed system on a humanoid robot and to test it in real-life

scenarios of group exercises.
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The remaining content of the paper is organized as follows: Sec-
tion 2 presents an overview of the literature related to the present work.
The implementation environment and the data acquisition process are
presented in Sections 3 and 4, respectively. The methodology for the
multiperson activity recognition system and our architecture of the
ROS-based application for testing it in a real-life environment are de-
scribed in Section 5. Section 6 details the experimentations and results,
Section 7 presents the general discussion about the contributions of
this research and some limitations of existing works, and finally, we
offer some conclusions and potential directions for future research in
Section 8.

2. Related work

Human–machine interaction requires developing systems that can
identify and replicate specific actions executed by humans. Several
methodologies allow robots to recognize human gestures (Ding &
Chang, 2015; Shah et al., 2021), detect vocal directives (Ding & Shi,
2017), or both, facilitating natural interaction with human beings.
Accurate and rapid detection of executed actions remains an obstacle to
recognizing and acting on human activity. Human Activity Recognition
(HAR) approaches have been proposed for identifying actions that
can contribute to fall aversion, as falls pose a severe risk for elderly
individuals (Flores-Barranco et al., 2015) or for aiding individuals in
physical rehabilitation. This section reviews work related to activity
recognition, group activity recognition, and publicly available datasets
for exercise recognition.

2.1. Activity recognition

In the past few years, researchers have introduced numerous activity
recognition techniques using hand-crafted and deep neural network-
based methods (Jamil et al., 2022c; Sarkar et al., 2022). The integration
of data from various sensors has enabled the precise identification
of numerous human activities, as demonstrated by Gil-Martín et al.
(2020) and Li et al. (2018). The processing of data from various sensors
requires additional computational procedures for synchronization and
filtration of pertinent information. Pose estimation models have been
widely employed in HAR to localize the 25 skeletal joints of the human
body. Utilizing skeletal data for storing examples results in a relatively
small dataset in terms of size, despite the large set of examples that
can be stored. According to previous studies (Neili et al., 2017), using
skeleton joints has yielded favorable outcomes in activity recognition.
At the same time, innovative techniques for activity recognition have
also been proven to be successful on color and depth images obtained
through the Kinect sensor, yielding favorable outcomes. These methods
encompass naïve Bayes (Yang & Tian, 2014), dynamic Bayesian mixture
models (Faria et al., 2014), and random forest (Krüger & Nguyen,
2015) in proximity networks. Moreover, Song et al. (2022) constructed
various baselines and Lee et al. (2021) tested various data-driven
machine learning-based methods for skeleton-based action recognition.

Several recent studies have suggested alternative methods for activ-
ity classification utilizing Convolutional Neural Networks
(CNNs) (Huynh-The et al., 2019; Wan et al., 2020). In those studies,
CNNs have been employed against different modalities of data from
multiple sources, such as wearable sensors, smartphones, and RGB
or RGBD cameras. Within this particular framework, the benefits of
CNNs are twofold, as they are capable of functioning concurrently
as both a feature extractor and a classifier, as noted by Tomas and
Biswas (2017) and Caetano et al. (2019). A study by Neili et al.
(2017) leveraged the characteristics of CNNs to propose a method
for recognizing human poses. This study involved estimating joint
positions and utilizing a Support Vector Machine (SVM) to achieve
a pose classification outcome. Tomas and Biswas (2017) developed a
deep learning-based architecture that combines a CNN with Stacked
Auto-Encoders (SAE) for activity recognition. The CNN component is
3

responsible for learning the representations of motion, while the SAE
component models the motions of the skeletal joints. Afterward, the
composite scores of the class derived from all networks are aggregated
to yield an ultimate score emanating from the selected frames. Kim and
Reiter (2017) employed a three-dimensional (3D) CNN architecture to
interpret the temporal features of human actions. Moreover, Andrade-
Ambriz et al. (2022) used 3D convolutions in combination with an
LSTM convolutional layer on RGB images for classifying daily activities
and achieved good accuracy. Another study (Mim et al., 2023) used
Gated Recurrent Units (GRU) along with an attention mechanism on
wearable sensor data and extracted temporal features, followed by
spatial feature extraction using an inception network (Ioffe & Szegedy,
2015), and finally classified the activity. In another study (Islam &
Iqbal, 2020), the researchers proposed an algorithm based on a mul-
timodal self-attention mechanism for daily life activity recognition and
achieved good accuracy on multiple publicly available datasets. Kumie
et al. (2023) also utilized a dual-attention network and achieved good
accuracy on the datasets, which comprise daily life activities. Another
multimodal HAR method (Yadav et al., 2022b) proposed for daily life
activity recognition and fall detection also achieved good results in
terms of accuracy. Various HAR methods have also been proposed for
yoga action recognition. A two-stream network (Yadav et al., 2022a)
based on skeletal and RGB data achieved good accuracy on a yoga
action recognition dataset with real-time performance. Some of the
recent works related to human activity recognition with their demerits
are presented in Table 1.

2.2. Group activity recognition

The methods mentioned above commonly employ wearable sensors,
smartphone sensors, or an RGB-D camera to capture human movements
through the fusion of images and joint positioning, aiming only for
single-person activity recognition. Recently, researchers have started
paying more attention to group activity recognition (Gavrilyuk et al.,
2020). The increased focus on group or multiperson activity recognition
is due to the availability of publicly accessible datasets such as the
Collective dataset (Choi et al., 2009) and Volleyball dataset (Ibrahim
et al., 2016). Methods specifically designed for group or multiperson
activity recognition extract information about the actions of each indi-
vidual from video streams. This extracted information is then utilized to
recognize individual actions and the overall group activity. Using wear-
able or smartphone sensors for multiperson activity recognition can be
computationally or economically expensive, making it an impractical
approach. Therefore, multiperson or group activity recognition using
data captured through RGB cameras can be a viable solution and
has been primarily explored in past research. In the initial stages,
approaches depended on hand-crafted features of each person extracted
from the video and subsequently analyzed by employing probabilistic
graphical models (Choi & Savarese, 2013; Lan et al., 2012, 2011).
The advancement of deep learning-based methods has led to a gradual
improvement in the efficacy of group activity recognition. Particular
Recurrent Neural Network (RNN)-based models have proven effec-
tive in their methodologies. In a method proposed by Ibrahim et al.
(2016), LSTM was employed to create a model that captures the
action dynamics of each person and integrates the data to forecast
group activity. Deng et al. (2016) incorporated graphical models into
RNNs to analyze the relations between different entities for group
activity recognition. Shu et al. (2017) developed a Multilayered LSTM
(MLSTM) architecture, which aimed to optimize both the accuracy of
the predictions and the confidence level of the model’s outputs. In
another study, Bagautdinov et al. (2017) utilized an RNN to ensure the
temporal consistency of box proposals, enabling the joint detection of
each person on video, prediction of their actions, and identification of
group activity in video footage. In a study conducted by Wang et al.
(2017a), an LSTM layer-based model was employed for analysis of the

dynamics of individual persons and within-group and between-group
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Table 1
Recent works related to the human activity recognition.

Ref. Main contribution Limitations

Ronald et al. (2021) Proposed a model based on Inception-ResNet for activity recognition
and achieved an accuracy of 95.09% on the UCI-HAR dataset.

A large number of parameters resulted in a decline in accuracy.

Andrade-Ambriz
et al. (2022)

Proposed an architecture based on temporal convolutional neural
network using 3D CNN for human activity recognition. The model was
best evaluated on the KARD and CAD-60 datasets with the precision of
100%.

The model was not evaluated on large-scale datasets, which may
affect its ability to perform well on new data. Moreover, it can be
challenging to adapt the proposed architecture for multiperson
activity recognition.

Yadav et al. (2022a) Proposed a dual-stream network comprised of time-distributed CNNs
and LSTM using skeletal and RGB data for real-time yoga action
recognition. Overall, a good investigation of using a dual-stream
network for real-time yoga action recognition is presented.

The model was trained and evaluated on a small dataset comprised
of 1,206 videos, which may limit its ability to generalize to the
new data. The proposed network is prone to a decrease in real-time
performance if there are more than two people in the scene.

Shojaedini and
Beirami (2020)

Presented a deep learning structure to minimize the phenomenon of
the accuracy situation as well as enhance the optimization ability of
LSTM-CNN. The proposed method achieved accuracy of 82.38% and
96.32% on two sets of the WISDM dataset.

The proposed method experienced a slight decrease in accuracy
against non-challenging activities.

Lee et al. (2021) Proposed a method to derive optical flow information using skeletal
data for human activity recognition. This method achieved high
accuracy using simple machine learning algorithms.

Extracting skeletal data from RGB videos and deriving optical flow
information later on can be computationally expensive. The
proposed method was not tested against large-scale datasets.

Song et al. (2022) Proposed a graph convolutional network for action recognition based
on skeltal data. The proposed method achieved an accuracy of 92.1%
on NTU RGB+D 60 dataset.

The presented model can be computationally expensive in training
and deployment. Furthermore, it should be tested on more
challenging datasets for better understanding.

Mim et al. (2023) Proposed a hybrid model named GRU-INC for human activity
recognition that is based on the Gated Recurrent Unit (GRU) for
extracting temporal features and the Inception module for extracting
spatial features. It achieved an F1-score of 96.27% on UCI-HAR dataset.

The proposed model was unable to perform well against complex
activities.

Gao et al. (2021) Presented an attention module-based residual network for blending the
temporal attention module and channel information. The proposed
method achieved an accuracy of 98.85% on the WISDM dataset.

A huge number of parameters increased the computational
complexity of the model.

Proposed method Presented a lightweight multiperson activity recognition framework.
The proposed method was evaluated on multiple datasets comprised of
various activities and outperformed state-of-the-art methods in terms of
accuracy and computational complexity.

Our method utilizes 2D skeletal data, which may not be optimal for
exercise quality assessment as compared to 3D skeletal data.
interactions. In a method proposed by Xu et al. (2015), a 2D CNN-based
network and graph convolutional networks were used to construct a
persons’ relation graph that effectively captures the interplay between
persons’ appearance and position relations. Similar to Xu et al. (2015),
another approach (Gavrilyuk et al., 2020) also employed person-level
representations. However, this approach differed in utilizing the self-
attention mechanism, which enabled it to selectively emphasize persons
and group relations without requiring explicit graph construction. They
used pose data, optical flow representations, and RGB images as input
to their method. The existing approaches for multiperson activity recog-
nition mainly focus on sports activities. To the best of our knowledge,
real-time multiperson activity recognition to support group exercise
among elderly persons has not been investigated in past research. In
the present work, we propose a new framework for multiperson activity
recognition to conduct group exercises through robotic coaches. We
deployed the proposed framework on a social robot for testing in a
real-world environment.

2.3. Exercise datasets

Limited efforts have been made to curate datasets comprised of
whole-body exercises required for maintaining the physical health of
elderly individuals on a daily basis. Most existing datasets of rehabili-
tation exercises have utilized sensors affixed to the human body and are
limited to specific health issues. Ebert et al. (2017) collected a dataset
by utilizing five sensor devices that were affixed to the ankle, wrist,
and chest regions. The purpose was to capture six distinct exercises
that were executed by a cohort of 27 athletes. Additionally, data were
annotated with a qualitative rating system ranging from one to five.
The TRSP dataset (Dolatabadi et al., 2017) comprises 3D human pose
approximations of stroke patients as well as healthy individuals who
executed a series of movements utilizing a robot for stroke rehabil-
itation. The recorded data were annotated using a four-label system
per-frame basis, including the following categories: no compensation,
4

shoulder elevation, leaning forward, and trunk rotation. Participants
who had survived a stroke engaged in two distinct exercise modalities,
reach-side-to-side and reach-forward–backward, and performed them
bilaterally, using both their left and right hands. This study involved
the participation of healthy individuals who executed the prescribed
movements and emulated the typical compensatory actions exhibited
by patients who have suffered a stroke.

Wearable sensors can pose inconveniences for patients due to factors
such as their size and the need for specialized facilities to perform
required movements. This can make the utilization of wearable sensors
impractical or challenging for patients, affecting their comfort and
willingness to engage with the technology. Some approaches utilize
image sensors, such as cameras that detect color or depth, to monitor
human movements. Many available image-centric datasets for activity
recognition rely on using depth cameras, with the Kinect sensor (Lun
& Zhao, 2015) being a popular choice. These depth cameras pro-
vide valuable information about the spatial characteristics of human
movements, enabling more accurate and detailed analysis of activities.
As proposed by Parisi et al. (2015), a dataset was acquired at the
Kinesiology Institute of the University of Hamburg utilizing a Kinect
sensor. In total, 17 athletes participated in the collection process of this
dataset and performed three types of exercise activities. The dataset
known as the University of Idaho-Physical Rehabilitation Movement
Data (UI-PRMD) (Vakanski et al., 2018) comprises ten prevalent ex-
ercises for physical rehabilitation executed by ten healthy individuals.
Each participant executed ten accurate and ten inaccurate (suboptimal)
repetitions of the exercises. The motion data were captured using
two different sensor technologies: a Kinect sensor and a Vicon optical
tracking system. The KIMORE dataset proposed by Parisi et al. (2015) is
recent. This comprises audiovisual recordings of 78 individuals engaged
in rehabilitation exercises, consisting of 44 healthy controls and 34
patients. The data that have been gathered comprise joint positions,
along with RGB and depth videos. The dataset is limited in scope
because it includes only five gestures related to physical exercises for
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Table 2
Implementation environment for proposed multi-person activity recognition system and robot application.

Name Tools and technologies Description

System components

Central Processing Unit (CPU) Intel(R) Core(TM) i9-9900K @ 3.60 GHz
Operating System (OS) Ubuntu 16.04
Random Access Memory (RAM) 64.0 GB DDR4 @ 2800 MHz
Graphics Processing Unit (GPU) GeForce RTX 2080 Ti
Integrated Development Environment (IDE) Visual Studio Code
Programming Language Python 3.8

Core libraries

OpenCV Computer vision library (V 4.4.0)
Keras Open-source high-level neural networks API written in Python
Matplotlib Python library used for visualization of data
Pandas Python library for data preparation
TensorFlow Open-source deep learning framework
Robot Operating System (ROS) Support writing robot software
NAOqi SDK Support writing software for Pepper Social Robot
c
i
e
s
s
r
T
w
f
b

lower back pain. The dataset named IntelliRehabDS (IRDS) introduced
by Miron et al. (2021) involved the observation of 15 actual patients
and 14 healthy individuals who were instructed to perform nine distinct
gestures. Compared to the datasets discussed above, this one is not
confined to particular health issues. However, the number of samples
included is limited. Moreover, there is a publicly available dataset
named the Yoga Asana Recognition (YAR) database (Reyes-Ortiz et al.,
2012) for yoga action recognition. It has 1206 samples collected using
an RGB camera. As compared to the exercise datasets, there are more
publicly available datasets for normal daily life activity recognition. A
detailed description of various publicly available exercise and daily life
activity-based datasets is presented in Table 6.

3. Implementation environment

In this section, we present tools and technologies used to collect
the RED dataset and develop the proposed multiperson activity recog-
nition system. The overall summary of these tools and technologies is
presented in Table 2. The OpenCV library was initially used in data
acquisition. Later, the OpenCV library and deep learning models incor-
porated by Keras and Tensorflow were executed over GPU for data
reprocessing and feature extraction. Once the features were generated,
e cleaned data to handle the outliers, missing values, and noisy data
sing Pandas and stored the features along with the class label in a
csv file. Afterward, the stored features were loaded and used to train

he MLSTM architecture developed using Keras and Tensorflow.
inally, the robot application presented in Section 5.4 was developed
sing ROS and NAOQi to deploy the proposed multiperson activity
ecognition system through the Pepper robot.

. Data acquisition

In this section, we describe our new curated dataset, comprised of
arious whole-body exercises needed for elderly individuals in daily
ife. The data collection process involved utilizing an Intel RealSense
amera for capturing the RGB images at 30 frames per second from
single view. Based on the target application, the camera orientation

n terms of height and angle was set in such a way that it captures
isual information similar to the ground robot’s vision. Our dataset
omprises 19 exercises in total. These were selected based on the
ecommendations from physiotherapists working at a long-term care
acility located in Norway. The exercises are not tailored to address
articular medical conditions but rather comprise basic movements
hat physiotherapists incorporate in assessments of movement, reha-
ilitation regimens, or routine exercises for elderly clients. Based on
he activities in our dataset, we named it the Routine Exercise Dataset
RED). The dataset was collected in the Social Robots Lab at NTNU,
nd the total number of participants involved in the data collection
rocess was 19, aged between 26 and 48. It was not possible to collect
5

uch a large dataset with the help of elderly individuals because data
ollection involved multiple repetitions of each exercise, which makes
t a strenuous process. Each individual performed 40 repetitions for
ach exercise. All participants were healthy and could participate in a
trenuous process to collect a large dataset. A total of 14,440 exercise
amples were collected over multiple days. The length of each sample
anges from 3 s for the shortest exercise to 6 s for the longest exercise.
he research study was approved by the Data Protection Official, who
orks with the Norwegian Centre for Research Data (ref.: 508625). We

ollowed the protocols of ‘General Data Protection Regulation (GDPR)’
y Europian Union to keep the data secure and will ensure its

anonymity before making it publicly available. The names of the 19
exercises included in our dataset are arm circle, chair stand, elbow
flexion left, elbow flexion right, hip marching left, hip marching right,
neck flexion front, neck flexion left, neck flexion right, shoulder ab-
duction left, shoulder abduction right, shoulder flexion left, shoulder
flexion right, shoulder front elevation, side leg raise left, side leg raise
right, simple grapevine, upper body twist left and upper body twist
right Fig. 5.

5. Methodology

This section discusses the core modules of the proposed method in
detail. The framework of the proposed method, which is mainly divided
into three core modules, is presented in Fig. 1, and the flowchart of the
proposed algorithm is demonstrated in Fig. 2. In the first module, we
extract the frames from the video and preprocess them to obtain key
frames. The second phase extracts features of each actor in the video
using pose estimation, person detection and tracking, and feature en-
gineering. Finally, we feed features extracted against each actor in the
video to our proposed Multilayer Long Short-Term Memory (MLSTM)
network for activity recognition. The detailed algorithm designed to
perform multiperson activity recognition is presented in Algorithm 1.

5.1. Preprocessing

In the preprocessing step, the frames are extracted from the video
stream. Then, each frame is resized for uniformity of the input of the
proposed framework. Each video frame is resized to 640 × 480 × 3 to
ensure that all frames are the same size, allowing consistent processing
and analysis of the video frames.

5.2. Actor feature extraction

Actor (person) feature extraction refers to the process of extracting
relevant and discriminative features representing each actor in a se-
quence of video frames. These features capture important information
about the actors’ poses, movements, or other relevant characteristics
for activity recognition. This phase is divided into two branches: actor
localization and pose estimation. Later, the final features are derived in
the feature extraction phase using information generated by these two

branches.
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Fig. 1. Overview of the proposed framework.
After preprocessing, the input video frames are processed by two branches: pose estimation and person localization. The pose estimation branch generates pose key points (Skeletal
joints), while the person localization branch tracks actors in the video frames and identifies bounding boxes around them. By matching the pose key points to each actor’s location
in the frames, angular features of each skeleton are obtained using 25 pose key points. Finally, these angular features are concatenated with the corresponding pose key points to
obtain pose vectors, which are then fed as input to the Multi-layer LSTM (MLSTM) network for learning sequential patterns.
Fig. 2. Flowchart of the proposed algorithm.

5.2.1. Actor localization branch
The actor localization branch mainly includes two steps, i.e., actor

detection and tracking. We fine-tuned a CNN-based model for actor de-
tection and then applied a correlation-based tracker for actor tracking,
as discussed below.
6

Actor detection is one of the crucial steps in activity recognition,
and different methods exist to perform this task. Their effectiveness and
efficacy, however, are not up to the mark for activity recognition in
the present application. One efficient existing object detection model is
YOLOv3 (Redmon & Farhadi, 2018), which can detect actors as well.
However, YOLOv3 is trained on datasets with different objects from
the general categories and actors, which are irrelevant in the context
of the present application. We have therefore fine-tuned the YOLOv3
model using two actor detection datasets, i.e., Caltech (Dollar et al.,
2011) and SPID (Wang et al., 2017b). The effectiveness of training
the YOLOv3 model on actor-specific data is better than the model
trained on data of objects from the general category. As a result, it
can detect actors in challenging video data with diverse poses, sizes,
and lighting conditions. We extracted features using Darknet-53 as the
backend for fine-tuning the YOLOv3 model in our approach. Small
successive convolutional filters of 3 × 3 and 1 × 1 are present in
Darknet-53, which assists in detecting actors of various scales, even
for large distances. Logistic regression is used to detect the objects
and confidence scores of their bounding boxes. Due to the better
efficiency of Darknet-53, we used it as a backend model. It was also
experimentally proven by Redmon and Farhadi (2018) that Darknet-53
possesses better efficiency than Darknet-19, ResNet-101, ResNet-152,
etc., as shown in Table 3.

Darknet-53 performs better than the state-of-the-art techniques
due to floating-point operations and its high speed. ResNet-101 and
Darknet-53 perform similarly, but ResNet-101 is two times slower.
Darknet-53 is 1.5 times faster than ResNet-101, and it performs better
than ResNet-101. Our fine-tuned model achieved 32.56 Mean Average
Precision (mAP) on the combined dataset, and it consumes only 22 ms
in processing each frame (Redmon & Farhadi, 2018), making it suitable
for our proposed multiperson activity recognition system in real-time.
Further details about YOLOv3 can be read in work by Redmon and
Farhadi (2018).

Tracking and analyzing the sequence of actions performed by actors
in a video stream is one of the main processes in activity recognition. In
the application environment, the activities are performed by each actor
at a time, which needs to be tracked. Therefore, we track all actors
in the sequence of video frames to capture the motion sequences for
their localization and further processing after the detection of actors.
Various deep learning-based architectures for actor tracking have been
proposed in previous research, such as DeepSORT (Wojke et al., 2017).
However, using deep learning models in the preprocessing step for
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Algorithm 1: Multi-person Activity Recognition in Exercise Videos
Input: Exercise Video Vexer
reparation

Load pretrained OpenPose model ME
Load fine-tuned person detection model MY
Initialize MOSSE tracker MT
Load our trained MLSTM model ML

unction Recognize_activity(𝑉𝑒𝑥𝑒𝑟):
Read frames (F ) ← (fi, Vexer)
while (i++ < 𝑟𝑎𝑛𝑔𝑒(𝑙𝑒𝑛𝑔𝑡ℎ(𝐹 ))) do

Pass frame fi to ME
for each actor 𝑎𝑗 detected in 𝑓𝑖 do

𝐾𝑃 _𝑡𝑒𝑚𝑝_𝑙𝑖𝑠𝑡[𝑖][𝑗] ← Obtain pose key points (𝑘𝑝𝑗)
end
Pass frame fi to MY
for each 𝑎𝑗 detected in 𝑓𝑖 do

Compute bounding box 𝑏𝑗
Pass 𝑏𝑗 to MT for tracking 𝑎𝑗
𝐵 ← Extract bounding box 𝑏𝑗 and track ID 𝑡𝑗

end
for each 𝑏𝑗 in 𝐵 do

for each 𝑘𝑝𝑗 in 𝐾𝑃 _𝑡𝑒𝑚𝑝_𝑙𝑖𝑠𝑡[𝑖][𝑗] do
𝑏𝑘 ← Create bounding box using 𝑘𝑝𝑗
if 𝑏𝑗 == 𝑏𝑘 then

𝐾𝑃 _𝑙𝑖𝑠𝑡[𝑖][𝑗] ← Save 𝑘𝑝𝑗 corresponding to 𝑎𝑗
based on 𝑡𝑗

end
end

end
for each 𝑘𝑝𝑗 in 𝐾𝑃 _𝑙𝑖𝑠𝑡[𝑖][𝑗] do

𝑎𝑓𝑗 ← Compute angular features from 𝑘𝑝𝑗
Pose vectors (Feature vectors) 𝑃𝑉 [𝑖][𝑗] ← Obtain pose
vector by concatenating 𝑘𝑝𝑗 and 𝑎𝑓𝑗

end
end
for each 𝑎𝑗 do

Forward pose vectors 𝑃𝑉 to ML, and Predict activity class
← ML(𝑃𝑉 )

end
return

Table 3
Comparison of different backbone models for object detection.

Model Ops Bn FlOpBn/s FPS Top-1 Top-5

ResNet-101 (He et al., 2016) 19.7 1039 53 77.1 93.7
ResNet-152 (He et al., 2016) 29.4 1090 37 77.6 93.8
Darknet-19 (Redmon & Farhadi, 2017) 7.29 1246 171 74.1 91.8
Darknet-53 (Redmon & Farhadi, 2018) 18.7 1457 78 77.2 93.8

activity recognition reduces the overall efficiency of real-time applica-
tion. Correlation-based object trackers are considered very fast (Shah
et al., 2020). Therefore, we have used an object tracker named the
MOSSE (Bolme et al., 2010) tracking filter for capturing actor se-
quences, which is ultrafast. It can process at a speed of more than 700
frames per second with high robustness toward different scales, abrupt
movements, poses, and illumination changes. It can simultaneously
track multiple actors and provides bounding boxes around them. We
passed the locations of actors detected by our actor detection model in
the first video frame to the MOSSE tracker for tracking in the remaining
video frames.

5.2.2. Pose estimation branch
All actions performed by human beings involve the movement of
7

skeletal joints. Hence, capturing the joint positions of each actor present
in the frames is essential. We used a pose estimation model M𝐸 named
OpenPose (Cao et al., 2017), which can be used for multiperson pose
estimation in real time and is well suited to our framework. It takes an
image frame F𝑖 and outputs 25 pose Key Points (KP) (Skeletal joints) in
the form of image coordinates for each actor A𝑗 present in the image
(Eqs. (1)–(3)).

𝐾𝑃 = 𝑀𝐸 (𝐹𝑖) (1)

KP(𝑖,𝑗) = [𝑘𝑝(𝑖,𝑗)1 , 𝑘𝑝(𝑖,𝑗)2 ,… , 𝑘𝑝(𝑖,𝑗)25 ] (2)

here, 𝑖 = 0, 1, 2,… , 𝑛; 𝑗 = 0, 1, 2,… , 𝑛 (3)

The positions of actors can change over time while performing an
ctivity. However, the OpenPose model does not provide tracking of
he actors in the video. Therefore, we used the pose estimation branch
nd the actor localization branch for tracking and obtaining the skeletal
oints against each actor in a video frame sequence, as shown in Fig. 1.

.2.3. Feature extraction
As discussed in Section 5.2.2, the pose estimation branch outputs

P(𝑖,𝑗) against each actor 𝑗 in frame 𝑖 using the OpenPose model; on
he other hand, the person localization branch (Section 5.2.1) tracks
ach actor in the video and finds bounding boxes with identification
umbers against them. We obtain the KP corresponding to each actor
n all frames by matching the bounding boxes generated by the person
ocalization branch with the bounding boxes formed around the KP
enerated by the pose estimation branch. After obtaining the KP for
ach actor in all frames, we compute the angular features stated in
ig. 1 using those pose key points. As an example, the computation
f the angle ∠𝑘𝑝1𝑘𝑝2𝑘𝑝3 made at key point k2 between vectors ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑘𝑝1𝑘𝑝2
nd ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑘𝑝2𝑘𝑝3 keypoints k1, k2, and k3 is determined as follows.

𝑘𝑝1𝑘𝑝2𝑘𝑝3 = cos−1
(

𝐔 ⋅ 𝐕
‖𝐔‖ ‖𝐕‖

)

(4)

Here, the vector U represents the vector connecting kp1 and kp2,
i.e., ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑘𝑝1𝑘𝑝2, while the vector V represents the vector connecting kp2
and kp3, i.e., ⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃖⃗𝑘𝑝2𝑘𝑝3. Description of all parameters or symbols used in
proposed framework are presented in Table 4. Finally, we obtain the
pose vector (1D feature vector) by concatenating the KP with angular
features. Each pose vector represents an actor in a single frame. The
pose vectors obtained against each actor in F representing an activity
sample are then fed into our proposed 1D MLSTM. We applied a frame
skip strategy before feeding the pose vectors for sequential learning.
The frame skip strategy is used to reduce the computational load by
selecting a subset of intermediate frames from the input sequence of
frames. Here, we have designed an adaptive frame skip strategy that
skips the frames at an adaptive skip rate depending upon the length
of the input sequence of pose vectors representing an activity sample
to extract 20 intermediate pose vectors for sequential learning. This
strategy allows us to extract a fixed sequence of pose vectors represent-
ing the intermediate movements of the actors. The time distribution of
skeletal data (25 keypoints) in an activity sample for various activities
is shown in Fig. 3. It shows which skeletal joints are primarily active
in different physical exercises, such as right and left wrists and elbows
in arm circle exercise (Fig. 3). The correlation between the skeletal
joints and angular features formed by them plays an important role in
achieving good model performance. Fig. 4 shows the strong correlations
between the skeletal joints as well as the angular features related to the
lower and upper body exercises. MLSTM processes these pose vectors to
learn the hidden sequential patterns. A detailed explanation of RNN, its

variants, and the proposed 1D MLSTM are presented in the next section.
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Fig. 3. Time distribution of the skeletal data in a sample of a few activities from the RED dataset.
Fig. 4. Correlation between skeletal joints in different types of exercises.
Table 4
Description of mathematical symbols/parameters for different operations used in our
proposed framework.

Symbols Description

KP Key points (skeletal joints).
V𝑖 Input video.
F𝑖 Frame i in V𝑖.
f𝑠 Number of the frames skipped during feature extraction.
x𝑡 Input to LSTM at time t.
f𝑡 Output of forget gate.
i𝑡 Output of input gate.
o𝑡 Output of output gate.
c𝑡 Output of current state of LSTM cell.
𝑐𝑡−1 Previous state of LSTM cell.
w𝑓 Weights of forget gate of LSTM cell.
w𝑖 Weights of input gate of LSTM cell.
w𝑜 Weights of output gate of LSTM cell.
b𝑓 Biases of forget gate.
b𝑖 Biases of input gate.
b𝑜 Biases of output gate.
h𝑡 Final output of LSTM cell.

5.3. Sequence learning using multilayer LSTM

Various tasks, such as machine translation and activity recogni-
tion, can be expressed with sequences having variable lengths. The
8

need for a method that can learn hidden patterns in time-series data
to solve problems related to sequential learning is crucial. A neural
network, named RNN, has been introduced, which can extract and
learn temporal features based on temporal relations from input time-
distributed data and classify sequential data. RNNs predict the future
output based on analysis of the hidden sequential patterns in both tem-
poral and spatial dimensions by building connections between previous
and current information. Many researchers have investigated various
sequence learning problems using RNNs and achieved good results.
However, despite being able to learn hidden patterns from sequential
data efficiently, RNNs tend to forget earlier information while pro-
cessing long-term sequences, which is called the vanishing gradient
problem. A special variant of RNN, known as LSTM, can be used to
solve this problem. Other methods, such as GRU and transformers,
can also be used for sequence learning (EK et al., 2022). However,
GRU suits simple tasks with fewer parameters, and transformers can be
computationally complex. The LSTM network has proven efficient in
tasks with long-range dependencies. Therefore, we have designed our
proposed method using multilayer LSTM for better efficiency and less
computational complexity to perform multiperson activity recognition.

5.3.1. Multilayer LSTM network
The extension of RNN named LSTM (Hochreiter & Schmidhuber,

1997) is specifically designed to model and analyze (interpret) long-
term sequences, which helps resolve the vanishing gradient problem
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Table 5
Architecture of the proposed 1D MLSTM model.

Model layers Layer attributes

LSTM No. of units = 256
Activation function = tanh

Batch normalization –

Dropout Dropout rate = 0.05

LSTM No. of units = 256
Activation function = tanh

Batch normalization –

Dropout Dropout rate = 0.05

Dense No. of units = 64
Activation function = ReLU

Dense No. of units = No. of classes
Activation function = Softmax

faced in RNNs. Multiple cell units comprise the LSTM’s internal struc-
ture. Each cell unit contains three gates, i.e., input, output, and forget
gates, that control the information flow and process of sequential
pattern recognition. The configuration of these gates is set in such a way
that each gate receives the input from the previous step and transmits
the computed output to the next gate. A sigmoid function controls each
of these gates. For example, the portion of the information that needs to
be updated is determined by the input gate i𝑏𝑚𝑡, while the output gate
o𝑡 retains the information for the following sequence. When necessary,
the forget gate f𝑡 processes the information from the previous cell state
before erasing it from memory and the input gate. The previous cell
state c𝑡−1 and the current input x𝑡 are computed by using the tanh
activation function in the recurrent unit g, whereas h𝑡 can be computed
by multiplying the value of the output gate by the tanh of the current
cell state c𝑡. One can obtain the final output by passing h𝑡 to the softmax
classifier. Following are the mathematical equations of the operations
executed by these gates:

𝑖𝑡 = 𝜎
(

𝑤𝑖 ∗
[

ℎ𝑡−1, 𝑥𝑡
]

+ 𝑏𝑖
)

(5)

𝑜𝑡 = 𝜎
(

𝑤𝑜 ∗
[

ℎ𝑡−1, 𝑥𝑡
]

+ 𝑏𝑜
)

(6)

𝑓𝑡 = 𝜎
(

𝑤𝑓 ∗
[

ℎ𝑡−1, 𝑥𝑡
]

+ 𝑏𝑓
)

(7)

𝑔 = 𝑡𝑎𝑛ℎ
(

𝑤𝑔 ∗
(

𝑥𝑡 + 𝑐𝑡−1
)

+ 𝑏𝑔
)

(8)

𝑐𝑡 =
((

𝑐𝑡−1 ∗ 𝑓𝑡
)

+
(

𝑔 ∗ 𝑖𝑡
))

(9)

ℎ𝑡 =
(

𝑡𝑎𝑛ℎ
(

𝑐𝑡
)

∗ 𝑜𝑡
)

(10)

𝑜𝑢𝑡𝑝𝑢𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(ℎ𝑡) (11)

Multiple layers can be stacked to improve the performance of a
deep neural network. Similarly, the capability of an LSTM to learn
complex and hidden sequential patterns can be improved by increasing
the number of network layers. Adding more layers to the network
allows for capturing higher-level representations and abstract features
from the input sequence. The choice of the number of layers in an
LSTM network depends on the complexity of the problem, the size
of available training data, and the computational resources. Thus, the
architecture of our network also contains multiple layers. We adopt a
1D MLSTM architecture to verify the accuracy of our proposed network.
Our 1D MLSTM architecture comprises six layers: two layers of LSTM,
two layers of batch normalization, and two dropout layers. Hierarchical
processing is applied to the input data fed to the MLSTM, which has
several layers. The hidden state of the previous layer is fed as input to
each layer in the network and then passes its output to the next layer.
9

The computational process of the memory cell of the MLSTM is similar
to the standard LSTM. The output of the last dropout layer then goes
through a sequence of dense layers, as given in Table 5, followed by a
softmax activation function for classification. The proposed 1D MLSTM
architecture is achieved after conducting numerous experiments, which
involve modifying the layers, adjusting the number of units in each
layer, and experimenting with different dropout rates.

5.4. Social robot application and experiments

As an interactive technology, social robots are more effective than
2D screens in improving cognitive function and reducing depression
and loneliness among elderly individuals (Lim, 2023). However, 2D
screens can also provide similar functionality more economically.
Therefore, we have designed our application to efficiently deploy
and function on any interactive technology. This section presents the
architecture of the Robot Operating System (ROS)-based (Stanford
Artificial Intelligence Laboratory, 2018) application developed in the
present study and describes the experiments conducted in a real-world
environment. We developed this application to deploy it on a humanoid
social robot named ‘Pepper’ developed by SoftBank Robotics (Soft-
Bank Robotics, 2023). ROS is specifically designed for developing robot
software, providing advantages such as reusability and modularity.
Hence, we designed our ROS-based application to easily integrate it
with any digital interactive device, such as a robot or 2D screen,
with minimal changes. Our application is more robust, modular, and
adaptable compared to the basic applications developed in previous
studies (Andrade-Ambriz et al., 2022). The ROS architecture of the
proposed application is presented in Fig. 5. In Fig. 5, the entities shown
in green color represent the ROS nodes, and the incoming arrow to a
ROS node shows that it is subscribed by another ROS node and the
outgoing arrow shows that it is subscribing to another ROS node. The
ROS architecture consists of four modules presented from top left to
bottom right in Fig. 5: the module in the upper left corner represents
the activity recognition process, followed by the module in the upper
right corner representing data management, and the modules at the
bottom right and bottom left corners representing verbal and nonverbal
interactions, respectively.

The experimental environment was created in the Social Robots Lab
at NTNU, which included an RGB camera in front of the participants.
The camera and the Pepper robot were connected to a computer that
runs the proposed multiperson activity recognition system presented in
Fig. 1. During the experiment, the robot plays the role of an artificial
exercise coach to demonstrate the exercises and monitor the partic-
ipants while they perform those exercises. Our multiperson activity
recognition system then processes the video to recognize the activity
performed by participants. Later, the robot responds to the situation
using a dialog box based on the activity performed by the participants.
Fig. 6 illustrates the experiment conducted in a real-world environment
with multiple participants using the Pepper robot. Fig. 6(a) shows
the interaction of participants with the robot, and intermediate frames
from the video stream of participants performing a physical exercise are
shown in Fig. 6(c). Moreover, Fig. 6(b) depicts the RViz visualization
platform, which allows real-time analysis of the robot’s state.

6. Experimental results

We performed a series of experiments on our proposed MLSTM
sequence learning method using three datasets, including our dataset
named the Routine Exercise Dataset (RED) (Section 4) without noise,
four noise-corrupted RED datasets, and 11 publicly available bench-
mark datasets. Among all datasets, eight consist of daily life activities,
and four comprise physical exercise activities. We also combined a
physical exercise activity dataset with a daily life activity dataset to
test the performance and generalizability of our proposed method.
The motivation behind conducting experiments on datasets of different
categories was to test the generalizability of our proposed method on



Expert Systems With Applications 241 (2024) 122482S.H.H. Shah et al.
Fig. 5. ROS architecture for the proposed multiperson activity recognition system.
Fig. 6. Illustration of the experiments conducted in real-life environment with three participants.
various activities and find the potential of the proposed system in
multiple applications in addition to supporting group exercise through
intelligent virtual coaches. A detailed description of the benchmark
datasets included in our experiments is provided in Section 6.1. Overall
results showing the performance achieved by our proposed method and
comparison with the related works are presented in Section 6.3.

6.1. Datasets used in our experiments

Extensive experiments were conducted on 13 datasets without noise
and four noise-corrupted datasets. The RED dataset is described in
Section 4, and a description of the remaining datasets is given below.
The summary of datasets used in the experimental evaluation of the
proposed activity recognition method is presented in Table 6.

6.1.1. Kinect activity recognition dataset (KARD)
The KARD dataset (Gaglio et al., 2014) is a benchmark dataset

for human activity recognition. It contains 18 classes: horizontal arm
wave, two-hand wave, high arm wave, high kick, draw tic, draw x,
side kick, front kick, grab a hat, fold, throw paper, hand clap, hold an
umbrella, phone call, drink, walk, sit, and stand. Ten different subjects
performed each activity three times. This dataset provides RGB videos
(640 × 480 × 3), the respective depth maps, and the joint positions.
10
6.1.2. IntelliRehabDS (IRDS)
The IRDS dataset (Miron et al., 2021) is based on activities involving

physical rehabilitation movements. It is a benchmark dataset com-
prising nine classes: elbow flexion left, elbow flexion right, shoulder
flexion left, shoulder flexion right, shoulder abduction left, shoulder
abduction right, shoulder forward elevation, side tap left, and side
tap right. A total of 29 subjects participated in the collection of this
dataset, and all subjects performed each activity a variable number
of times. The repetitions of activities performed by each subject were
categorized as correct or incorrect. However, we included only those
samples (n=2047) from all activities that were performed correctly.

6.1.3. Cornell activity datasets: CAD-60
CAD-60 (Sung et al., 2012) is a video dataset containing daily

activities recorded using an RGB-D camera. It has 12 activities, includ-
ing brushing teeth, rinsing mouth, putting in contact lenses, drinking
water, talking on the phone, opening a pill container, cooking–stirring,
cooking–chopping, talking on the couch, writing on a whiteboard,
relaxing on the couch, and working on a computer. Four subjects
participated in the data collection, resulting in 60 samples.

6.1.4. MSR daily activity 3D
Wang et al. (2012) prepared this dataset based on daily life activ-

ities. It has 16 activities, including eating, drinking, reading a book,
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Table 6
Summary of the datasets used in experimental evaluation.

Dataset Activity Total Total
type classes samples

KARD (Gaglio et al., 2014) Common Daily Life 18 540
IRDS (Miron et al., 2021) Physical Exercise 9 2047
CAD-60 (Wang et al., 2012) Common Daily Life 12 60
MSR daily activity 3D (Wang et al., 2012) Common Daily Life 16 320
YAR (Yadav et al., 2022a) Yoga Exercise 20 1206
UP-fall detection (Martínez-Villaseñor et al., 2019) Common Daily Life 11 1122
UTKinect-Action3D (Xia et al., 2012) Common Daily Life 10 200
UTD-MHAD (Chen et al., 2015) Common Daily Life 27 861
UESTC RGB-D (Ji et al., 2019) Physical Exercise 40 25,600
NTU RGB+D (Shahroudy et al., 2016) Common Daily Life 40 37,920
RED Physical Exercise 19 14,440

RED + KARD Physical Exercise and 37 14,980Common Daily Life
Laplacian noise-corrupted RED (Mean (𝜇) = 0.5, Variance (𝜎2) = 0.5) Physical Exercise 19 14,440
Laplacian noise-corrupted RED (𝜇 = 0, 𝜎2 = 1) Physical Exercise 19 14,440
Heteroscedastic noise-corrupted RED (𝜇 = 0.5, 𝜎2 = 0.5) Physical Exercise 19 14,440
Heteroscedastic noise-corrupted RED (𝜇 = 0, 𝜎2 = 1) Physical Exercise 19 14,440
(

writing on paper, calling on a cellphone, using a laptop, cheering up,
using a vacuum cleaner, sitting still, playing a game, tossing a paper,
walking, laying down on a sofa, playing the guitar, sitting down or
standing up. A total of ten subjects participated in the data collection,
resulting in a total of 320 samples. This dataset provides depth, vision,
and skeletal information.

6.1.5. Yoga asana recognition (YAR) database
YAR is a benchmark dataset (Yadav et al., 2022a) comprising

20 yoga exercises, also known as asanas. This dataset was collected
through the participation of 16 subjects. The participants performed
each yoga exercise a variable number of times. Overall, the YAR dataset
has 1206 samples, with a total video duration of more than six hours.
This dataset was collected using an RGB camera with a frame rate of
30 fps and a resolution of 1280 × 720.

.1.6. UP-fall detection dataset
The UP-fall Detection dataset is a publicly available dataset pro-

osed by Martínez-Villaseñor et al. (2019). It is a large-scale dataset
ocused on activities of daily living collected from 17 healthy par-
icipants. It consists of 11 daily life activities divided into six basic
ctivities (standing, walking, sitting, jumping, picking up an object,
aying down) and five falls (falling forward using knees, falling forward
sing hands, falling backward, falling, falling sideward, sitting in an
mpty chair). The UP-fall detection dataset is recorded using wearable,
mbient, and vision sensors. We used only vision data collected through
wo RGB cameras from the front and lateral views in our experiments.
very participant performed each activity three times, resulting in 1122
amples and a size of 277 GB.

.1.7. UTKinect-Action3D dataset
The UTKinect-Action3D dataset (Xia et al., 2012) consists of actions

rom daily life. It has ten classes: sit down, walk, stand up, carry,
ick up, throw, pull, push, clap hands, and wave hands. This dataset
as collected with the help of 10 participants who performed each
ction twice, resulting in 200 samples. The dataset was recorded using a
icrosoft Kinect sensor with information on visual, depth, and skeleton

oint locations.

.1.8. UTD multimodal human action dataset (UTD-MHAD)
The UTD-MHAD dataset (Chen et al., 2015) is publicly available

nd consists of 27 daily life actions. It was collected using a Kinect
amera and an inertial sensor. This dataset has 861 samples collected
ith the help of eight subjects. It provides visual, skeletal joint, depth,
nd inertial data information. We included only visual data in our
11

xperiments.
6.1.9. UESTC RGB-D varying-view action database
The UESTC RGB-D dataset (Ji et al., 2019) is based on activities

involving 40 types of aerobic exercises. A total of 118 subjects partic-
ipated in the data collection process for this dataset. The participants
performed each exercise three times in a fixed direction. The dataset
was collected using RGB-D cameras from eight views, resulting in
25,600 samples. The USTC RGB-D dataset consists of visual, depth, and
skeletal joint information, but we used only visual information in our
experiments.

6.1.10. NTU RGB+D dataset
A large-scale dataset for 3D human activity analysis known as the

NTU RGB+D dataset (Shahroudy et al., 2016) is a large-scale bench-
mark dataset. This dataset provides visual, depth, skeletal joint, and
infrared data. It has 60 classes and a total of 56,880 samples. It is
mainly divided into three categories, i.e., daily actions (n=40), med-
ical conditions (n=9), and mutual actions or two-person interactions
n=11). In our experiments, we have included the data of daily actions,

which has 40 classes and 37,920 total samples.

6.1.11. Noise corrupted RED dataset
To test the tolerance of our proposed method against noise-corrupted

data, we added Laplacian and heteroscedastic noise to our RED dataset.
We evaluated the performance of our model against two different
values of means and variances (Table 6) for both types of noises. We
randomly chose skeletal joints and samples from the overall dataset to
add noise to it instead of adding noise to all 25 skeletal joints. Four
noise-corrupted datasets were generated by adding noise to the RED
dataset.

6.2. Implementation details

First, we processed all datasets using the preprocessing and feature
extraction modules discussed in Section 5. Then, in accordance with
generic machine learning protocols, we divided each shuffled dataset
into training (90%) and testing (10%) sets. The data were stratified to
ensure that the class distribution was maintained in the training and
testing sets. We validated the outcome of our proposed 1D MLSTM
architecture through K-fold cross-validation. We used stratified K-Fold
to ensure that the class distribution was maintained in the training
and validation sets. The tools and technologies used in the study are
presented in Table 2. Initially, we employed the Adam optimizer and
‘Categorical Cross Entropy’ loss function with a default learning rate of
0.001, which resulted in overfitting. To address this, we performed
vast experiments with different learning rates and achieved optimal
results with a learning rate of 0.00003 and a batch size of 32. We also

used a scheduling strategy called ‘ReduceLROnPlateau’, which adjusts
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Table 7
Comparative analysis of the proposed method with existing state-of-the-art methods.

Dataset Precision (%) Recall (%) F-1 Score (%) Accuracy ± S.D (%)

Andrade-Ambriz et al. (2022) KARD 100 100 100 –
Andrade-Ambriz et al. (2022) CAD-60 100 100 100 –
Andrade-Ambriz et al. (2022) MSR daily activity 3D – – – 95.6
Khan et al. (2022) KARD 84 87 85 86.8 ± 0.73
Khan et al. (2022) IRDS 97.6 98.4 98 96.14 ± 0.64
Khan et al. (2022) RED 87.9 89.1 88 91.1 ± 0.81
Yadav et al. (2022a) YAR 96.74 97.05 96.52 96.31
Yadav et al. (2022b) UP-fall detection 96.90 96.70 96.60 96.60
Lee et al. (2021) UTKinect-Action3D – – – 97.00
Islam and Iqbal (2020) UTD-MHAD – – – 95.12
Kumie et al. (2023) UESTC RGB-D – – – 97.70
Song et al. (2022) NTU RGB+D – – – 95.70

Proposed method

KARD 100 100 100 99.27 ± 0.53
IRDS 100 100 100 99.61 ± 0.64
CAD-60 100 100 100 99.77 ± 0.33
MSR daily activity 3D 100 100 100 99.90 ± 0.12
YAR 98.65 99.01 99.01 98.79 ± 0.21
UP-fall detection 98.80 98.90 98.84 98.90 ± 0.11
UTKinect-Action3D 100 100 100 99.16 ± 0.39
UTD-MHAD 98.65 98.90 98.77 98.42 ± 0.28
UESTC RGB-D 98.60 98.69 98.64 98.90 ± 0.33
NTU RGB+D 97.60 98.21 97.95 97.75 ± 0.37
RED 99.3 99 99 98.88 ± 0.66
RED + KARD 99 99 99 99.16 ± 0.48
Noise-corrupted RED* 98.56 98.60 98.57 98.24 ± 0.47
Noise-corrupted RED** 98.05 98.20 98.12 98.15 ± 0.69
Noise-corrupted RED*** 97.98 98.10 98.03 98.11 ± 0.53
Noise-corrupted RED**** 97.61 97.79 97.69 97.88 ± 0.38

* Laplacian noise (𝜇 = 0.5, 𝜎2 = 0.5).
** Laplacian noise (𝜇 = 0, 𝜎2 = 1).
*** Heteroscedastic noise (𝜇 = 0.5, 𝜎2 = 0.5).
**** Heteroscedastic noise (𝜇 = 0, 𝜎2 = 1).
he learning rate based on training loss. Furthermore, we examined our
ethod over 50 epochs and gradually increased the number of epochs

o 350.

.3. Experimental evaluation and comparison with related works

Once the design of the proposed MLSTM with optimal parameters
as completed, we trained it using datasets discussed in Section 6.1.
his section presents the validation results of the proposed 1D MLSTM
rchitecture and its comparison with related works. We used four
valuation metrics for performance evaluation, including precision,
ecall, F1-score, and accuracy. The results obtained using our proposed
ethod and state-of-the-art approaches presented in related works on

arious datasets are presented in Table 7. It appears in Table 7 that the
roposed method outperformed other existing methods with accuracies
f 99.27%, 99.77%, 99.90%, 98.90%, 99.16%, 98.42%, and 97.75%
n common daily life activity datasets, including KARD, CAD-60, MSR
aily activity 3D, UP-fall detection, UTKinect-Action3D, UTD-MHAD,
nd NTU RGB+D, respectively. Moreover, the proposed method also
erformed better than the existing methods on exercise datasets includ-
ng IRDS, YAR, UESTC RGB-D, and RED with accuracies of 99.61%,
8.79%, 98.90%, and 98.88%, respectively. These results prove the
eneralizability of the proposed method on different types of activities.
n architecture proposed by Khan et al. (2022) achieved good accuracy
n the exercise dataset but could not achieve the same performance on
ther datasets. The 3D CNN-based architecture proposed by Andrade-
mbriz et al. (2022) also achieved maximum precision and recall;
owever, it cannot be adapted for multiperson activity recognition.

Furthermore, the confusion matrices for various datasets are shown
n Fig. 7. Fig. 7(a) demonstrates that our proposed architecture was able
o classify almost all classes of the KARD dataset correctly. Moreover,
ll classes in the IRDS dataset were also accurately classified by the
roposed architecture, as shown in Fig. 7(b). Fig. 7(c) shows a slight
ecrease in accuracy due to a high level of similarity between the
12
classes ‘Neck Flexion Front’ and ‘Neck Flexion Right’, resulting in an
accuracy of 98.88% for the RED dataset. We also combined the RED and
KARD datasets, resulting in 37 classes in total, and observed 99.16%
accuracy. It can be observed from the training and validation accuracy
and loss shown in Fig. 8 that our method achieved high accuracy with a
minimal loss on various datasets. Overall, our method outperformed the
state-of-the-art 3D CNN-based method (Andrade-Ambriz et al., 2022),
CNN hybrid model (Khan et al., 2022; Yadav et al., 2022a, 2022b), and
attention-based (Islam & Iqbal, 2020; Kumie et al., 2023) approaches
for HAR in terms of precision, recall, accuracy, and computational
complexity. Fig. 9 presents the analysis of K-fold cross-validation based
on the average accuracy of the proposed 1D MLSTM architecture
on various datasets. We have also performed sensitivity analysis of
the proposed method with RED dataset to critically analyze different
parameters’ effects on model’s performance in terms of accuracy. The
sensitivity analysis is shown in Fig. 10. Furthermore, we added noise
to the RED dataset (Section 6.1.11) to test the performance of the
proposed method on noise-corrupted datasets. Our proposed method
shows a minimal decrease in accuracy on noise-corrupted datasets
compared to the performance on datasets without noise (Table 7).

We also evaluated the competence of the proposed method using
the Receiver Operating Characteristic curve (ROC) and Area Under
the Curve (AUC) values. The ROC calculates the contrast between
the False Positive Rate (FPR) and the True Positive Rate (TPR) at
different threshold values for classification decisions. It can be seen in
Fig. 11 that the proposed method achieved the best AUC values and
ROC curves out of the large-scale datasets, i.e., UESTC RGB-D, NTU
RGB+D, and RED, used in our experiments. AUC values of 0.98, 0.94,
and 0.99 were achieved for UESTC RGB-D, NTU RGB+D, and RED,
respectively. Furthermore, we evaluated the performance of proposed
method using precision–recall curve. As shown in Fig. 12, the proposed
method achieved best precision–recall curves out of the large-scale
datasets used in our experiments. We have also performed statistical
tests to evaluate the performance of our model in terms of accuracy
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Fig. 7. Confusion matrices for all datasets, with the predicted labels displayed on the 𝑥-axis and the true labels on the 𝑦-axis.
Table 8
Number of parameters, training time and classification time of the proposed MLSTM architecture compared to state-of-the-art.

Method Number of Dataset Training time Classification time
parameters (millions) (m) (milliseconds)

Kumie et al. (2023) 6.20 UESTC RGB-D – –
Song et al. (2022) 1.10 NTU RGB+D – –

Proposed method 0.85

KARD 1.12 ± 0.6 145 ± 10
IRDS 2.19 ± 0.9 145 ± 10
CAD-60 0.89 ± 0.3 145 ± 10
MSR daily activity 3D 0.97 ± 0.2 145 ± 10
YAR 1.83 ± 0.7 145 ± 10
UP-fall detection 1.80 ± 0.5 145 ± 10
UTKinect-Action3D 0.93 ± 0.3 145 ± 10
UTD-MHAD 1.76 ± 0.47 145 ± 10
UESTC RGB-D 23.19 ± 0.79 145 ± 10
NTU RGB+D 29.80 ± 0.9 145 ± 10
RED 14.50 ± 2.0 145 ± 10
RED + KARD 18.50 ± 2.1 145 ± 10
Noise-corrupted RED 15.83 ± 1.64 145 ± 10
on various datasets using K-fold cross-validation. Our null hypothesis
states that various diverse datasets do not cause a significant difference
in the performance of the proposed method. To test the hypothesis,
we performed a Kruskal–Wallis test with a confidence interval of 95%.
During the statistical tests, we found a 𝑝-value greater than 0.05 against
all tests, which indicates that the various datasets did not cause a
significant difference in the performance of the proposed method, and
it performed equally well on each dataset.

6.4. Computational complexity of the proposed framework

A fast classification/execution time is one of the principal objec-
tives of the proposed framework. The hardware components and core
libraries used in the present work are described in Table 2. Table 8
presents the time required to train the proposed MLSTM architecture
on various datasets. Variance in the processing time occurs due to
13
the variable size of the datasets. As Table 8 indicates, the proposed
architecture takes 145 ms to classify the input sequence and has fewer
parameters compared to state-of-the-art methods. Moreover, the time
complexity analysis of the subsequent tasks involved in the proposed
multiperson activity recognition system is visualized in Fig. 13.

6.5. Tracking results and discussion

In the proposed framework, accurate tracking plays a vital role be-
cause accurate tracking in real time yields precise activity recognition
results. We have investigated different tracking methods and used the
MOSSE tracker in the proposed framework for multiperson activity
recognition due to its high accuracy and fast processing. A comparison
to investigate tracking methods in terms of tracking visualization and
processing rate in FPS is presented in Fig. 14. The state-of-the-art
tracking methods, i.e., boosting (Grabner et al., 2008), TLD (Kalal et al.,
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Fig. 8. Visualization of the training and validation loss and accuracy of the proposed MLSTM architecture on various datasets.

Fig. 9. Analysis of proposed 1D MLSTM architecture on various datasets using K-Fold cross-validation.
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Fig. 10. The impact of varying LSTM layers, batch normalization, and dropout on the accuracy achieved by the proposed method.
Fig. 11. ROC curves and AUC values achieved by the proposed method on UESTC RGB-D, NTU RGB+D, and RED datasets.
Fig. 12. Precision–Recall curve achieved by the proposed method on UESTC RGB-D, NTU RGB+D, and RED datasets.
Fig. 13. Time required for the subsequent tasks for one video sequence analysis.
2011), KCF (Henriques et al., 2014), and CSRT (Lukezic et al., 2017),
drift in the case of fast-moving objects and challenging situations. In
addition, their processing speed is very slow. Fig. 14 shows that the
15
MOSSE tracker achieved better accuracy and a fast processing rate
(FPS), making it most suitable for real-time activity recognition. It is
vulnerable to drifting; however, most failures and drifting occur in
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Fig. 14. Comparison of the results achieved by different tracking algorithms.
the case of a large out-of-plane rotation of the object being tracked.
The reason behind this problem is that the MOSSE tracker uses naïve
filtering (Bolme et al., 2010). Therefore, we used Peak-to-Sidelobe
Ratio filtering (MOSSE PSR) rather than naïve filters in the proposed
framework. MOSSE PSR filtering can efficiently track failure or detect
occlusions by measuring the correlation peak’s strength to halt the
online update and resume tracking the object when it reappears with
the same appearance. The detection-based tracker known as Deep-
SORT (Wojke et al., 2017), which introduced deep learning in tracking,
also achieved good accuracy. However, its processing speed is not
feasible for real-time multiperson activity recognition.

7. Discussion

In this work, we proposed a vision-based, lightweight multiperson
activity recognition framework for group exercise training of elderly in-
dividuals. Moreover, we curated a new dataset named Routine Exercise
Dataset (RED), which consists of 19 daily physical exercise activities for
elderly people. A total of 19 subjects participated in the data collection
process held in the Social Robots Lab at NTNU. Besides testing the
proposed method on datasets comprising exercise activities, we tested
it on other datasets comprising various activities such as yoga actions
and daily life activities. A detailed comparison of the proposed method
with multiple RNN-based, CNN-based, transformer-based, and hybrid
models was performed to evaluate its performance. Our method was
able to outperform state-of-the-art methods on various datasets in terms
of accuracy (Table 7) and computational complexity (Table 8). We
also tested our proposed system by deploying it on a social robot
and executing a group exercise session in a real-life environment. A
limitation of the existing methods focused on skeleton-based activity
recognition is the lack of testing on noise-corrupted datasets. There
are significant chances of receiving noisy skeletal data in real-life
environments. Therefore, we added various noises to our RED dataset
(Section 6.1.11) for testing the performance of the proposed method
against noise-corrupted datasets. Our method was able to perform well
16
on noise-corrupted datasets with a minimal rise in training time, which
makes it robust to noisy skeletal data in real-life environments.

The proposed method generalizes well to different types of activi-
ties, making it suitable for various applications in eldercare. The target
application for the proposed research is multiperson activity recogni-
tion for group exercise by elderly individuals. Due to the high gener-
alizability of our developed framework, there can be various real-life
applications of the proposed research, including exercise recognition,
daily life activity recognition, and fall detection in multiperson environ-
ments. The proposed system can be deployed with different interactive
technologies, such as 2D screens or social robots, to achieve various
real-life applications for eldercare. Moreover, it can also be deployed
to monitor distributed environments with various numbers of people
at a time. Furthermore, the proposed system can also be utilized for
activity recognition in lone or social virtual reality (metaverse)-based
applications.

8. Conclusions and future work

Human Activity Recognition (HAR) is considered of prime impor-
tance for efficient human–machine interaction. It can play a vital role
in various fields of life, including healthcare, and has been a popular
research domain in the last few years. However, past research focusing
on HAR applications in healthcare has mainly focused on single-person
rather than multiperson or group activity recognition. Moreover, these
methods mainly use data from wearable sensors, sensors placed on the
body of users or sensors in mobile phones, making them cumbersome to
use for multiperson activity recognition. On the other hand, the existing
HAR methods using vision data employ heavyweight CNNs, which
makes them less favorable for real-time applications. Maintaining good
accuracy and efficiency in activity recognition systems reported in pre-
vious research is challenging. Another challenge is the limited number
of publicly available datasets comprised of physical exercise activities.

To accurately and efficiently address these challenges, we proposed
a real-time method for multiperson activity recognition with a primary
focus on group exercise training of elderly individuals. The main steps
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included in this framework are person detection and tracking, pose
estimation, feature extraction, and using the proposed 1D MLSTM for
activity classification. We fine-tuned and utilized a lightweight CNN
model for person detection and an ultrafast object tracker for person
tracking. Then, a pose estimation model is used to obtain skeletal data,
and features are extracted for each person based on these data. Finally,
the MLSTM architecture trained to learn the sequential patterns in a
sequence of frames is used to classify the activity. Experiments on 16
datasets in total, including our newly curated Routine Rxercise Dataset
(RED) without noise presented in this paper, four noise-corrupted
RED datasets, 10 benchmark activity recognition datasets, and one
combined dataset, confirm the efficiency of the proposed framework
in terms of accuracy, generalizability, and computational complex-
ity. Moreover, testing the proposed system in a real-life scenario by
integrating it into a social robot confirms its efficiency in real-time
applications.

Currently, our present work has some limitations we wish to address
in future research. In this work, we used 2D pose estimation that cannot
be used to derive angular features in 3D space. In future research, we
will investigate 3D pose estimation in a multiperson environment to
obtain 3D angular features in real time for better analysis of exercise
dynamics and quality assessment of exercise. Moreover, we will collect
and contribute another exercise dataset that can assist in the quality
assessment of exercise activities tailored to elderly individuals. Finally,
we want to conduct user studies in long-term care facilities to analyze
the behavior of elderly individuals with the proposed system and
discuss its overall impact on society. The present framework can help
healthcare professionals conduct group exercise training and recognize
other daily life activities to monitor elderly individuals for better health
and safety.
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