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Abstract

Preserving historical artifacts is crucial as they carry cultural significance beyond their
artistic value and offer insight into their creation for future generations. Digitaliza-
tion of cultural heritage artifacts preserves them by enabling high-resolution digital
images for enhanced accessibility, broader dissemination, and improved conservation.
It also offers adaptability for various applications and reduces the need for physical
handling, minimizing the risks of damage and long-term deterioration. However,
the digital representation of cultural heritage faces challenges in the adaptation of
technology, economic sustainability, standardization, and quality control. To ensure
accuracy, completeness, fidelity, and legibility compared to the original object, inte-
grating quality assessment is essential during the digitization life cycle of cultural
heritage. Therefore, this thesis seeks to investigate and identify essential parameters
for characterizing and evaluating the behavior and content of digitized artifacts in
the domain of cultural heritage. The research presented in this thesis covers both
RGB imaging and spectral imaging techniques, focusing on two important cultural
heritage artifacts; paintings and microfiche.

For artwork such as paintings, it is essential to identify and classify pigments accu-
rately. It helps curators and conservators determine the historical context, authenticity,
and proper conservation methods. Conventional RGB imaging systems are valuable in
various applications, including cultural heritage. Nevertheless, their limited spectral
range makes them impractical when additional information is needed, such as mate-
rial identifications, composition analysis, detection of hidden features, etc. Spectral
imaging, such as multispectral and hyperspectral imaging, overcomes these limita-
tions by capturing much broader spectral information. In this thesis, hyperspectral
imaging is used to analyze paintings. The spectral quality of the imaging system was
evaluated on its accuracy in identifying pigments for classification purposes. Various
spectral metrics based on supervised algorithms and machine learning models were
used and analyzed for pigment classification.

Likewise, despite having a long lifespan of 500+ years, microfiche materials are
susceptible to physical degradation caused by light exposure, temperature fluctua-
tions, improper handling, and poor storage conditions. Consequently, digitization
becomes necessary. Microfiche relies on specialized devices for direct human eye
reading, primarily available in select archives or libraries. However, over time, these
devices can suffer from various problems that affect their usability. Given the impor-
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tance of preserving and accessing microfiche materials, in this thesis, we investigated
alternative options for microfiche digitization. The process of digitizing microfiche
involves magnification, which can introduce various factors that can impact the
overall reproduction quality, such as noise, distortion, and artifacts. Additionally,
these materials can suffer from poor legibility and clarity because of their reduced
size, potential degradation over time, or even limitations of the scanning device. To
address this, objective and subjective image quality assessments are considered in
this thesis to assess the quality of the digitized microfiche.

The objective of this Ph.D. research is to evaluate the quality of digitization of cultural
heritage artifacts. Through a compilation of articles, this dissertation contributes to
overall research objectives and seeks to provide a comprehensive understanding of
the research subject to assess the quality of digitized cultural heritage artifacts using
conventional and hyperspectral imaging technologies. The analysis and practical
recommendations of these articles discussed in this thesis are coherent and provide
valuable resources for researchers and practitioners involved in the preservation
and documentation of cultural heritage and those involved in imaging, and provide
valuable insights into potential directions for future research.
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Sammendrag

Bevaring av historiske artefakter er avgjørende ettersom de har kulturell betyd-
ning utover deres kunstneriske verdi og gir innsikt i deres skapelse for kommende
generasjoner. Digitalisering av kulturarvartefakter bevarer dem ved å muliggjøre høy-
oppløselige digitale bilder for bedre tilgjengelighet, bredere spredning og forbedret
bevaring. Det tilbyr også tilpasningsevne for ulike bruksområder og reduserer be-
hovet for fysisk håndtering, og dermed minimerer risikoen for skade og langvarig
forringelse. Imidlertid står den digitalisering av kulturarv overfor utfordringer med
teknologi, økonomisk bærekraft, standardisering og kvalitetskontroll. For å sikre
nøyaktighet, fullstendighet, trofasthet og lesbarhet sammenlignet med det origi-
nale objektet, er det avgjørende å integrere kvalitetsvurdering som en viktig fase
i digitaliseringssyklusen til kulturarv. Derfor fokuserer denne avhandlingen på å
undersøke og identifisere essensielle parametere for å karakterisere og evaluere atfer-
den og innholdet til digitaliserte artefakter innenfor kulturarvområdet. Forskningen
presentert i denne avhandlingen dekker både RGB-bildebehandling og spektral-
bildebehandling, med fokus på to viktige kulturarvartefakter, nemlig malerier og
mikrofiche.

For kunstverk som malerier er det viktig å identifisere og klassifisere pigmenter nøyak-
tig. Dette hjelper kuratorer og konservatorer med å bestemme historisk kontekst,
ekthet og riktig bevaringsmetode. Konvensjonelle RGB bildebehandlingssystemer er
verdifulle for mange områder, inkludert kulturarv. Likevel er deres begrensede spek-
trale rekkevidde upraktiske når ytterligere informasjon er nødvendig, som materialei-
dentifikasjon, sammensetningsanalyse, deteksjon av skjulte informasjon osv. Spektral
bildebehandling, som multispektral og hyperspektral bildebehandling, overvinner
disse begrensningene ved å fange bredere spektral informasjon. I denne avhandlingen
brukes hyperspektral bildebehandling for å analysere malerier. Spektral kvalitet i
bildebehandlingssystemet ble evaluert med tanke på nøyaktighet i identifikasjon
av pigmenter for klassifisering. Forskjellige spektrale metrikker basert på veiledede
algoritmer og maskinlæringsmodeller ble brukt og analysert for pigmentklassifisering.

På samme måte, til tross av å ha lengre levetid, er mikrofiche-materiale sårbart for fy-
sisk nedbrytning forårsaket av lyspåvirkning, temperatursvingninger, feil håndtering
og dårlige lagringsforhold. Derfor er digitalisering nødvendig. Mikrofiche er avhengig
av spesialiserte lesere for direkte avlesning av menneskeøyne, primært tilgjengelig
i utvalgte arkiver eller biblioteker. Imidlertid kan disse enhetene over tid oppleve
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ulike problemer som påvirker brukervennligheten. Gitt viktigheten av å bevare og få
tilgang til mikrofiche-materiale, undersøkte denne avhandlingen alternative måter
for digitalisering av mikrofiche. Prosessen med å digitalisere mikrofiche innebærer
forstørrelse, noe som kan introdusere ulike faktorer som kan påvirke den overordnede
reproduksjonskvaliteten, som støy, forvrengning og artefakter. I tillegg kan disse ma-
terialene lide av dårlig lesbarhet og klarhet på grunn av redusert størrelse, potensiell
nedbrytning over tid eller til og med begrensninger i skanneutstyret. For å håndtere
dette, gjøres objektive og subjektive bildekvalitetsvurderinger i denne avhandlingen
for å vurdere kvaliteten på digitaliserte mikrofiche.

Dette doktorgradsarbeidet er en samling artikler som bidrar til de overordnede forskn-
ingsmålene og søker å gi en omfattende forståelse av forskningsobjektet for å vurdere
kvaliteten på digitaliserte kunstverk ved bruk av konvensjonelle og hyperspektrale
bildebehandlingsteknologier. Analysen og de praktiske anbefalingene av artiklene
som diskuteres i denne avhandlingen er sammenhengende og gir verdifulle ressurser
for forskere og praktikere som er involvert i bevaring og dokumentasjon av kulturarv,
samt de som er involvert i bildebehandling, og gir verdifulle innsikter i potensielle
retninger for fremtidig forskning.
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Chapter 1

Introduction

This Ph.D. research is part of the European Union-funded Marie Skodowska-Curie
Actions, Innovative Training Network project entitled Cultural Heritage Analysis for
New Generations (CHANGE). The project is coordinated by the Norwegian University
of Science and Technology (NTNU), within the Department of Computer Science
(IDI), Gjøvik, with the participation of the Center for Research and Restoration of
Museums of France (C2RMF), France, and other beneficiaries throughout Europe.
This thesis addresses a specific objective within the CHANGE project, which is to
assess the quality of Cultural Heritage (CH) artifact digitization.

This dissertation is a compilation of articles that together contribute to the overall re-
search goal and aim to provide a comprehensive understanding of the research topic.
The analysis and practical recommendations of these articles, as cohesive, serve as a
valuable resource for researchers and practitioners involved in preserving and docu-
menting CH artifacts, and provide insights into possible directions for future research.
This chapter provides an overview of the research work carried out during the Ph.D.
and is divided into five sections: Motivation (Section 1.1), Research Objectives (Sec-
tion 1.2), Research Framework (Section 1.4), List of Publications (Section 1.3), and
Thesis Organization (Section 1.5).

1.1 Motivation

In essence, digitization means the process of converting analog signals or data
into digital signals or data (Lee 2001). In the context of CH, digitization refers to
creating digital surrogates of physical materials, such as documents, photographs,
and other artifacts. CH digitization is not recent; museums, libraries, and archives
have created digital versions of their collections for several decades. The practice of
digitizing CH materials began in the 1960s, when institutions started exploring the
use of computer systems to manage and preserve their valuable resources. Electronic
catalogs were an early form of digital documents created in the 1970s and continued
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Chapter 1. Introduction

with the conversion of printed source material into digital files in the 1980s (Horik
2005). Before the advent of digital technologies in the 1960s, microforms 1 were
one of the available methods for archiving and preserving large documents. In the
1930s, the Library of Congress microfilmed several books and manuscripts, making it
one of the earliest known applications of microfilm for the preservation of cultural
heritage (Brown et al. 2012). For a comprehensive overview of digital imaging and
its application in the CH domain, refer to the books 2 (Kenney et al. 2000; MacDonald
2006).

Historical artifacts, such as sculptures, paintings, documents, and manuscripts, carry
great cultural significance beyond their artistic value, and serve as vital resources to
understand the cultural context in which they were created. However, these works
of art are vulnerable to degradation caused by human handling, natural aging, and
environmental conditions. Thus, safeguarding these artifacts is of utmost importance
in preserving our CH. One of the effective solutions is to use various digital imaging
techniques to digitize these CH artifacts, which can play a crucial role in their preser-
vation, documentation, and utilization. By creating high-resolution digital images,
digitization enables improved accessibility, wider dissemination, and improved con-
servation, thereby safeguarding these artifacts for future generations. An effective
approach to mitigate these artifacts’ risks is using various digital imaging techniques
to digitize them. This process aids in their preservation, documentation, and utiliza-
tion. Additionally, the use of digital imaging techniques reduces the need to handle
artifacts physically, particularly those that are fragile and delicate, further mitigating
the risk of damage and deterioration over time, furthermore providing a means to
protect and disseminate their cultural significance to forthcoming generations.

The lack of space and inadequate documentation pose challenges to accessibility,
resulting in a considerable portion of museum collections being kept in storage. Con-
sequently, only a few museums can display a significant part of their entire collections.
To improve the accessibility of stored collections, museums have implemented various
strategies, including visible storage, lending, and exchange of items (Corona 2023).
Although these efforts contribute to addressing the issue, digitization of collections
offers an essential solution by creating virtual exhibitions that make these artifacts
accessible to a broader audience without the limitations of physical space. Despite
the inherent advantages, the digital representation of CH artifacts presents several
challenges. These include adapting to modern imaging technology, addressing eco-
nomic considerations related to maintaining large digital repositories, establishing
standardized digitization procedures, and implementing effective quality control

1Microforms are media formats, such as microfilm, microfiche, microcards, and microprints, that
are used to store and preserving information in compact and reduced formats.

2These books provide a comprehensive overview of digital imaging for libraries and archives,
covering topics such as user requirements, digital camera principles, high-resolution imaging, image
processing limits, image databases, color management, image compression, conservation imaging,
online monument accessibility, panoramic visualization, virtual restoration, and research policy. They
provide extensive information and guidance on these topics and their theoretical constructs, guiding
the reader in their practical application while being informed of previous practice and theory.
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measures (Conway 2011). One crucial aspect of quality control is evaluating the
accuracy of the digital version compared to the original object, with completeness,
fidelity, and legibility being critical factors (ISO19264 2021). Therefore, it is imper-
ative to introduce quality assessment as an essential stage in the life cycle of CH
digitization.

Conventional RGB imaging 3 system has proven useful in many applications in
CH (Derrien 1993; Martinez 1991). However, its usefulness may be limited when more
information is required, for example, material identification, addressing metamerism,
revealing underdrawings, and pigment classification 4, which cannot be achieved
with the limited spectral range of RGB imaging. Spectral imaging systems, such as
multispectral and hyperspectral, can overcome this limitation. Image Quality Assess-
ment (IQM) has been an active research area for several decades, showing significant
progress, and continues to develop in many fields (Z. Wang and A. C. Bovik 2006).
However, defining image quality remains a complex subject. In general, the concept
of quality is subjective and context-dependent. The International Organization for
Standardization (ISO) definition reflects this by defining quality as the complete set
of traits and attributes of a product or service that are relevant to its capacity to meet
explicitly or implicitly expressed needs. In other words, a product is considered to
have good quality if it meets the requirements specified by the customer (ISO9000
2015). In terms of an image, quality can be assessed subjectively and objectively,
which can be further assessed in the spatial or spectral domain. Although the quality
criteria for RGB imaging are often subjective, reflecting the visual perception of a
human observer (Engeldrum 2004; Z. Wang, A. Bovik, et al. 2004), this is not the
case for spectral imaging, as it captures data beyond the visible range and is used
for a wide range of applications (Khan et al. 2018), which makes it challenging to
generalize the definition of quality. In the literature, various definitions of spectral
quality can be found (Shrestha, Pillay, et al. 2014; Stefanou et al. 2009; Sweet et al.
2000). For instance, one such definition delineates quality as the suitability of a
specific dataset for a particular purpose (Fryskowska et al. 2018), which is more
appropriate for spectral imaging in general.

Preserving and restoring paintings are critical endeavors that come with various
challenges. Such as the removal of dirt and old varnish without damaging the paint
layer (Stulik et al. 2004) and the selection of appropriate materials for retouch-
ing (Digney-Peer et al. 2020). To address these problems, it is essential to accurately
identify the pigment used by the artist in an artwork. Scientific analysis sometimes
requires physical samples; however, due to the nature of CH objects, it is not rec-
ommended to take samples from the object, which in fact destroys the object even
at a microscale, and so very often it is not permitted (Quye et al. 2019; Tite 2002).

3In this thesis, conventional RGB imaging refers to capturing and displaying images using three
additive primary colors; red (620-750 nm) green (495-570 nm), and blue (450-495 nm).

4In the context of this thesis, pigment classification refers to the identification of the specific
pigment used in the artwork by analyzing its spectral characteristics and then accurately grouping the
pixels within the artwork according to the correct pigment class to which they belong.
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Therefore, HSI techniques have gained significant attraction due to their non-contact
and non-destructive imaging capability, and several studies have demonstrated the
effectiveness of HSI in CH applications (Bai et al. 2017; George et al. 2019; Picollo
et al. 2020).

Microfiche, a type of microform (De Haas 1958), was widely used to archive and
preserve historical documents before the introduction of advanced digital technolo-
gies. Given the fragile state of these objects, gaining access to numerous historical
documents stored in libraries around the world can be challenging, and in some
cases, manuscripts or fragments have even been lost (Garcia-Spitz 2017; Tigchelaar
2004). As a result, microfiche copies of these documents may be the only surviving
records of these objects or the sole accessible option for a broader audience, rendering
them valuable artifacts and essential components of our cultural heritage. Although
microfiche has a long lifespan, it is still susceptible to damage (NEDCC 2017), and
requires digitization to ensure preservation and broader accessibility. The need to find
solutions to these issues motivates the research and thus this thesis aims to address
some of the identified issues by examining and quantifying potential problems. It
proposes practical workflows, tools, and methodologies to mitigate them effectively,
ultimately contributing to the preservation and accessibility of CH.

1.2 Aims and Research Questions

The aim of this Ph.D. research is to investigate and identify crucial parameters for
characterizing and evaluating the behavior and content of digitized artifacts in the CH
domain. The primary objective of the research is to evaluate the quality of digitization
of CH artifacts, which is further divided into two main areas. The first area is the
evaluation of image quality in the Visible and Near-Infrared (VNIR), and the second
is the assessment of image quality in the visible region. These areas encompass four
main research questions.

RQ1 How does acquisition parameters impact the accuracy of pigment classifi-
cation in digitizing artworks using HSI ?

The heterogeneity of pigment structures in artwork and the use of varnish
layers can cause specular reflection, especially due to the angle of illumina-
tions (Kubik 2007), affecting the spectral accuracy and resulting in incorrect
pigment classification. Objects at varying depths from the camera may appear
out of focus in an imaging device with a low depth of field if they are away from
the focus plane (Ray 2011; Webb et al. 2020). Capturing CH objects requires
maintaining a sharp focus across the entire object. However, variations in image
sharpness can occur due to irregularities of objects, resulting in blurry images
and degraded quality (Martinez and Hamber 1989). Furthermore, objects in
CH applications are sensitive to temperature, and prolonged exposure to illu-

4



1.2 Aims and Research Questions

minants during acquisition can cause material property changes and damage.
Therefore, investigating how acquisition parameters affect spectral data and
classification accuracy is crucial in CH applications.

RQ2 What is the effectiveness of existing classification algorithms for pigment
classification in artwork, and how can they be optimized ?

Many supervised-based classification algorithms exist for HSI, mostly in remote
sensing applications, for example, mineral identification (Melgani et al. 2004;
Tripathi et al. 2019). However, some of these algorithms are being adopted
directly or with some modification in other application domains such as medi-
cal imaging (N. Liu et al. 2020; Zhi et al. 2007), food and agriculture (Melit
Devassy et al. 2020; B. Park et al. 2007), and forensics (Deepthi et al. 2022).
HSI acquisition in CH is done in a controlled environment with close proximity
to the object, allowing for controlled illumination. In contrast, remote sensing
HSI is collected under natural illumination with a greater distance from the
target, causing atmospheric effects and temporal illumination variations. The
classification algorithms used in remote sensing may not be directly applicable
or effective in CH due to these differences. For example, an algorithm insensi-
tive to intensity variation may perform well in remote sensing but not in CH.
Because of faded or aged pigments (Weerd et al. 2005), pure pigment mixed
with different binding mediums (Cosentino 2014a), mixed pigments, that is,
pigment mixed with percentages of different weights of lead white (Cavaleri
et al. 2013), etc. can have variations in magnitude, which is essential for both
diagnostic and conservation purposes. Few of these algorithms have been used
for the identification of pigments in artwork using HSI, and therefore it is
necessary to explore and evaluate them.

RQ3 How does the elevation affect the accuracy of pigment classification in
artworks ?

CH artworks are not limited to two-dimensional canvases or boards, which
implies that they may not always be flat. The addition of relief, which creates
2.5D or 3D effects, is a significant consideration (Rubens n.d.; Townsend 1995).
Various factors can contribute to this third dimension (Barrett et al. 1995; Baxter
et al. 2004; Sinclair 1995), such as the morphological textures of brushstrokes
on the painted surface (Fu et al. 2018) and the application of a thick layer
of pigments to create depth by artists (impasto technique) (Elkhuizen et al.
2019; Gonzalez et al. 2019; Groen 1997; Plisson et al. 2014). The geometry of
a relief created through brush painting, impasto techniques, or other factors
can affect the interaction of light with the surface, which consequently might
influence the spectral signature captured by the hyperspectral sensor for a given
pixel. Given the importance of pigment identification or classification in the
artwork, it is essential to investigate the impact of such factors. Additionally,
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this research question is also motivated by the feedback received during the
publication review process (Article A) within this thesis.

RQ4 What are the available imaging technologies for microfiche digitization
and how can they be improved to improve the quality of the resulting
images ?

The content documented in a microfiche is too small to be read by the naked eye
due to its significantly reduced size (Saffady et al. 1978), and requires a special
device to enlarge, scan, and print the microforms in readable format. Access and
availability to microfiche readers or other similar microform reader machines
are limited today, although they were once a central aspect of archiving. Such
devices are designed primarily for reading rather than digitization, and only a
handful of specialized archives or libraries may still have microfiche readers
to access their microform collections. Therefore, it is necessary to explore
other imaging devices as a feasible solution to digitize microfiche and enhance
accessibility to historical collections in addition to traditional microfiche readers.
Image enhancement through image processing is a well-established technique
that is used to improve visual quality. This is achieved by adjusting various
image attributes, such as brightness, contrast, and sharpness, which can produce
a more aesthetically pleasing result for a given scenario (Singh et al. 2014).
Given the importance of digitizing microfiche collections for preservation and
accessibility purposes, exploring the potential of image enhancement techniques
in this domain can be highly beneficial.

1.3 List of Publications

This research study resulted in five main articles that advocated the objective estab-
lished in Section 1.2 and constitute the core of this thesis. Three of those articles have
been published, one has been accepted for publication, and one is under revision.
The summary and analysis of these articles can be found in Chapter 3 of this thesis.
In addition, a supporting article is listed that is not part of the core thesis, but is
closely associated with the work presented here. Finally, a book chapter is submitted
for publication that summarizes the entire thesis.

Core Contributing Articles:

Article A: D. J. Mandal, S. George, M. Pedersen, and C. Boust (2021). “Influence
of Acquisition Parameters on Pigment Classification using Hyperspectral
Imaging.” In: Journal of Imaging Science and Technology 65.5, 050406-
1–050406–13
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Article B: D. J. Mandal, M. Pedersen, S. George, H. Deborah, and C. Boust (2023).
“An Experiment–based Comparative Analysis of Pigment Classification Al-
gorithms using Hyperspectral Imaging.” In: Journal of Imaging Science and
Technology 67.3, pp. 030403-1–030403-18. DOI: 10.2352/J.ImagingSci.
Technol.2023.67.3.030403

Article C: D. J. Mandal, M. Pedersen, S. George, and C. Boust (2023). “Compar-
ison of Pigment Classification Algorithms on Non–Flat Surfaces using
Hyperspectral Imaging.” In: Manuscript under revision in Journal

Article D: H. Deborah and D. J. Mandal (2021). “Evaluation of Text Legibility in
Alternative Imaging Approaches to Microfiche Digitization.” In: Proc. IS&T
Archiving, pp. 96–101. DOI: 10.2352/issn.2168-3204.2021.1.0.22

Article E: D. J. Mandal, H. Deborah, and M. Pedersen (2023). “Subjective Quality
Evaluation of Alternative Imaging Techniques for Microfiche Digitization.”
In: Journal of Cultural Heritage. Accepted for publication

Supplementary Contributions:

Article : A. Kadyrova, M. Pedersen, B. Ahmad, D. J. Mandal, M. Nguyen, and
P. H. Zimmermann (2022). “Image enhancement dataset for evaluation
of image quality metrics.” In: Electronic Imaging 34, pp. 1–6

Book
Chapter

: D. J. Mandal, S. George, M. Pedersen, and C. Boust (2023). “Quality Eval-
uation in Cultural Heritage Digitization.” In: Cultural Heritage Analysis
for new Generations (CHANGE). Submitted for publication. Routledge

1.4 Research Framework

Figure 1.1 illustrates an overview of the research structure and the publication
originating from a specific topic of interest. Quality assessment of cultural heritage
artifacts is carried out in both VNIR and visible regions, specifically on painting
mockups and microfiches, respectively.

For VNIR, the acquisition was made using HSI in a laboratory setup for flat and
elevated mockups. The first step involved applying a classification algorithm for
pigment classification and analyzing the impact of various acquisition parameters on
pigment classification accuracy, which resulted in Article A and addressing research
question RQ1. Different supervised and machine learning-based models were then
applied to compute pigment classification and tested on the flat region of a newly
prepared mockup B with selective pigments, resulting in Article B and addressing
the research question RQ2. A similar procedure was carried out for elevated regions
and the results were published in Article C, addressing the research question RQ3.

In addition, we digitized the microfiche materials containing typewritten text in the
visible region using various imaging devices. Objective image quality assessment was
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performed using metric OCR, and the results were published in Article D. However,
since microfiche materials can also contain handwritten text and photographs, our
study included microfiche with natural scenes and ancient handwritten fragments in
addition to typewritten text. A subjective quality assessment was conducted using
pair comparison methods to address the limitation of off-the-shelf OCR systems. The
results are incorporated into Article E. Both Article D and Article E addressed the
research question RQ4.
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Figure 1.1: A diagrammatic representation of the research structure addressed in
this thesis and their relationship to the articles included.

1.5 Thesis Organization

This thesis is organized into two main parts. Part I comprises five chapters, with
Chapter 2 providing essential background knowledge to aid the reader in understand-
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ing the research work. Chapter 3 presents a summary of the articles included in the
study, while Chapter 4 discusses the contributions made to the field and the research
results obtained. Lastly, Chapter 5 contains the study’s conclusions, which include a
summary of the key findings and their implications and recommendations for future
research. Part II comprises all the core contributing articles and is included as an
attachment.
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Chapter 2

Background

In order to ensure a clear understanding of the presented research work, it is crucial
to establish a comprehensive understanding of the fundamental concepts and tech-
nologies underlying this field. Therefore, this chapter provides an introduction to
these topics, facilitating the reading and understanding of the subsequent content
presented in the thesis.

In this chapter, we first present the Cultural Heritage (CH) artifacts used in this
study. After that, we provide a brief overview of the different imaging technologies
used for the acquisition of these artifacts. We begin by explaining the principles
of electromagnetic radiation and its role in imaging, followed by an introduction
to conventional three-channel and Hyperspectral imaging (HSI), highlighting their
differences, advantages, limitations, and application in the context of CH studies.
In addition, the chapter briefly discusses the preprocessing of hyperspectral data,
which is a critical step in the data processing pipeline. We then provide a brief
overview of Image Quality Assessment (IQM), covering objective and subjective
quality assessment and various image enhancement techniques. Finally, the chapter
provides an overview of classification algorithms and their accuracy assessment
methods.

2.1 Cultural Heritage Artifacts

CH refers to the collection of cultural resources and traditions that have been inher-
ited from previous generations. It serves as a representation of our past, present, and
the continuation into the future, forming a vital link between these temporal dimen-
sions (Blake 2000). The concept encompasses both tangible and intangible forms
of a society’s cultural expressions that hold historical, cultural, aesthetic, scientific,
and social importance. CH plays a crucial role in shaping a society’s identity and
influencing its values, norms, and customs (Prott et al. 1992). It is widely recognized
as a communal asset that belongs to all members of a community, and therefore
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we must all conserve and safeguard it for future generations (Jeffers 2015). CH is
often associated with artifacts, such as paintings, sculptures, historical monuments,
and archaeological sites. However, this understanding of CH fails to capture its full
breadth and depth. Over time, the definition of CH has expanded to include all forms
of evidence of human creativity and expression. This includes photographs, docu-
ments, books, manuscripts, and instruments as singular objects and comprehensive
collections. In this thesis, we focus mainly on studying and analyzing two distinct
valuable CH elements: paintings and microfiche.

2.1.1 Painting

Tangible artwork, such as paintings, has significant artistic value and offers unique
insights into the social, cultural, and historical context of their creation (Fichner-
Rathus 2008). Paintings serve as historical repositories, influenced by human actions
and natural forces. Analyzing how time and the elements have shaped these artworks
provides valuable insight into the properties of materials and artistic techniques used
during their creation (Taft et al. 2000). A painting consists of several materials, such
as the support (canvas, wood, etc.), ground or primer, pigment (providing color),
binder (adhering pigment to the support), vehicle (liquid medium used to mix with
pigment and binder), varnish (protecting the surface), and mediums for altering
paint properties. Brushes and palette knives are used for the application, while an
easel supports the artist to work comfortably. The artist’s skill and these materials
combine to shape the final artwork’s appearance and expression. In paintings, while
other materials are undoubtedly essential, pigments, on the other hand, play a crucial
role as integral components of any artwork. Therefore, their analysis is of utmost
importance.

Pigments in Artworks

The use of pigments in artwork dates back thousands of years (Feller 1986; Harley
1982), and over time various natural and synthetic pigments have been developed
and used. Pigments are a vital component of such works of art, as they provide color
and contribute to its overall aesthetic appeal (Feller 1986). In the past, most of the
powdered pigments used were derived from minerals, plants, and animals sources
and subsequently mixed with organic compounds derived from animals or plants as
a binding agent (Barnett et al. 2006). Generally, pure pigments were dominated by a
single mineral compound, which possessed distinctive absorption coefficients and
absorption bands (Cosentino 2014b). Combining various minerals was a common
practice among artists to produce a diverse range of pigment shades, resulting in
distinct spectral reflectance curves.

The study of pigments in the artwork can provide valuable insights into the history
and development of art and the cultural and social context in which it was created.
For example, some pigments were more expensive or difficult to obtain, indicating
the social and economic status of the artist or patron. Pigments are also sometimes
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used for symbolic or religious purposes, reflecting the beliefs and values of the culture
that produced the artwork. Analyzing the composition and properties of pigments
can help researchers determine the age, authenticity, and origin. It can also help
conservators develop appropriate preservation strategies to protect and extend the
useful life of these important cultural artifacts. Pigment mockups are physical replicas
of a painting, created with materials and methods that mimic the ones used in the
original painting (Stoveland, Stols-Witlox, et al. 2021). To avoid any risk of damage to
the original painting, mockups are often used instead of real paintings. Conservators,
scientists, and researchers have more flexibility to try different materials, methods,
and approaches on the mockup, which can help to identify the most effective approach
before moving on to the actual painting (Stoveland, Frøysaker, et al. 2021). As an
illustration, Figure 2.1 shows one of the pigment mockups used in this research work.

Figure 2.1: Pigment mockup B; mockup was prepared using pigment tubes com-
posed of high-stability pigments and oil, purchased from Zecchi (ZECCHI 2023).
The pigments were selected based on three main factors: their prominence in CH
research articles, their specific spectral characteristics, and consultation with experts
in the CH field. Veridian(P1), Cerulean Blue(P2), Green Earth(P3), Yellow Ochre
Light(P4), Burnt Umber(P5), Ultramarine Blue Deep(P6), Lead White Hue (P7),
Genuine Vermilion(P8), Cobalt Blue Deep(P9), and Ivory Black(P10) are pigments
used in the mockup. The linen canvas was primed using three layers of white gesso
before applying these pigments.

Pigment Classification

Pigment classification refers to the categorization and identification of pigments
based on their spectral characteristics. Essentially, the objective is to take an HSI
image (datacube) and turn it into a meaningful map, where each pixel in the map is
part of some class (distribution of the pigments within the works of art). Each class
has a unique spectral signature that represents different pigment types. The user can
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define these classes or automatically be defined based on spectrally similar pixels
(for example, in terms of spectral reflectance). Figure 2.2 illustrates an example of
pixel-based classification.
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Figure 2.2: An illustration of the classification for a 6-band datacube, where each
pixel is characterized by six spectral bands corresponding to its reflectance values.
Using these distinct values, classes are assigned to the pixels, which are then mapped
onto a raster image.

In paintings, we commonly come across both pure and mixed pigments. Analyzing
pure pigments involves a direct comparison of their reflectance spectrum with a
known spectral signature library. However, when mixed pigments are used, the
measured reflectance spectrum does not simply result from the addition of the
reflectance of two distinct materials based on their concentrations. Instead, it follows
a nonlinear relationship due to scattering effects, necessitating various linear and
nonlinear spectral unmixing models (Chen et al. 2019; Lyu et al. 2020; Rohani et al.
2018). To effectively apply these models, a considerable amount of prior knowledge is
needed about mixtures, such as information about particle size, mass, and molecular
structure (Gueli et al. 2017). In this thesis work, only pure pigments are used in the
mockup to simplify the analysis.

Classification can be divided into two groups based on how classes are defined:
supervised and unsupervised classification. In supervised classification, the user
provides reference or training data for each class and runs algorithms to perform the
classification. In contrast, unsupervised classification automatically identifies classes
solely based on the spectral properties of the pixels without any provided reference or
training data. For this thesis, only supervised classification was used. For a supervised
pigment classification, the first step involves defining classes based on the number of
pigments present. Subsequently, collect the spectra for each class to create reference
spectra, also known as endmembers or spectral libraries. These endmembers are
typically derived from the known molecular structure of pigments (Goetze et al.
2022) or by capturing point reflectance over a set of wavelengths within a region
of interest from various paintings. For this research, end members were directly
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extracted from a specific region of interest within a mockup. Once the end members
are obtained, algorithms assign each pixel of the acquired datacube to its respective
predefined class.

Classification Algorithms

Spectral similarity plays a crucial role in various domains, including remote sens-
ing, spectroscopy, and image analysis, particularly in the context of classification
algorithms. Its purpose is to quantify the degree of similarity between the spectral
responses of different samples or pixels within a spectral dataset. For classification,
several algorithms or metrics (Jagalingam et al. 2015; Shrestha, Pillay, et al. 2014)
have been developed to compute spectral similarity. These algorithms differ in their
capacity to account for shape and magnitude variations between the two spectra
being compared. The approaches used for matching spectra can be classified as
deterministic, i.e., based on geometrical and physical aspects, or stochastic, based on
distributions (Vishnu et al. 2013). Among the algorithms that are most frequently
used are the Spectral Angle Mapper (SAM) (Kruse et al. 1993), Spectral Correlation
Mapper (SCM) (De Carvalho et al. 2000), and the Spectral Information Divergence
(SID) (Chein-I Chang 2000), among others. Due to the significant achievement of
artificial intelligence models in classification tasks, machine learning, and neural
network-based approaches have recently been applied to the classification task in
works of art (L. Liu et al. 2023). Support Vector Machine (SVM) (L. Wang 2005), Neu-
ral Network (NN) (L. Liu et al. 2023), and Convolutional Neural Network (CNN) (Hu
et al. 2015; Yu et al. 2017) are a few of the common techniques used.

2.1.2 Microfiche

Microform refers to a broad range of formats that contain microreproductions of
documents and images. These formats can be made of different materials, includ-
ing plastic film (such as microfilm and microfiche), paper (such as microcard and
microprint), or a combination of both (such as an aperture card or a microfilm
cell embedded in a punchcard) (Auger 1991; Spigai 1973). Microfiche is a type of
microform consisting of a flat film sheet that is typically 4 x 6 inches in size (which
is according to the American National Standard (IT9.2 1988)); however, in Europe,
the size may vary from 3 x 5 inches (which is very common) up to 8 x 6 inches.
The sheet contains numerous microimages arranged in a grid pattern, which can be
photographs, drawings, or documents that have been scaled down in size, often by a
factor of 24×, but up to 48× as well, to enable the storage of a significant amount of
information in a small space (British Library 1992; De Haas 1958). As an illustration,
Figure 2.3 shows one of the microfiche used in this research work.

Microfiche has been in existence for a long time, with its earliest form being invented
around the late 18th century. Nevertheless, it was not made commercially available
until the mid-1930s, and it was not until the 1950s that it started to be commonly
utilized. The microfiche (or microfilm) comprises different layers, with the base layer
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Figure 2.3: An example of a positive microfiche, composed of microimages of all
pages of the handbook (Hawken 1975b);measuring 105mm × 148mm in physical
size and featuring a reduction ratio of 24X.

and the emulsion layer being the most important. The base layer is the thickest and
provides stability for the film, while also serving as a foundation for the other layers.
These layers are typically made of acetate (used from the 1930s to the 1980s) or
polyester (used from the 1960s to the present). The emulsion layer, on the other
hand, is responsible for holding the actual image and is chemically fixed to the base
layer during the development process. Although most microfiche uses silver-gelatin
emulsions, there are other types, such as diazo microfiche, which uses dye-based and
light-sensitive materials, and vesicular microfiche, which are thermally processed
and heat-sensitive (Archives 2013; Selle 2003). Microfiche remains available today;
however, there has been a consistent decrease in the production of microforms overall
since the 1990s due to the advent of digital technology. Before then, microforms were
the primary means of archiving and preserving large documents, such as newspapers.
The CH domain quickly adopted it to capture its collections for preservation, ease of
access, and wider distribution. As a result, many historical collections can now only
be accessed in microfiche (Garcia-Spitz 2017).

Microfiche Reader

A microfiche reader is necessary to read the content or pages of a microfiche be-
cause of its significant reduction ratio. The reduction ratio is a measure of the linear
relationship between the original document size, and its reduced format or microim-
age (Hawken 1975b). Typically, microfiche readers consist of a light source, optics,
and a projection mechanism that projects the image onto a viewing screen. To view
the text and images on the microfiche, the user can adjust the focus and magni-
fication of optics; at the same time, this can be a time-consuming process. Some
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microfiche readers have the capability to print or save images for further analysis
or reference. The Zeutschel delta plus microform reader (Zeutschel 2023a), which
was used in this work and is available through the local library in Gjøvik, Norway is
shown in Figure 2.4. This device is marketed for digitizing all formats of microfilms
and photographic materials, with the microfiche listed as a compatible input type. It
can support a reduction ratio of 7× to 105×.

Figure 2.4: The delta+ Advanced model of the film scanning system designed for
various microforms. The delta+ Advanced model is an upgraded version of the
delta plus. The study, however, utilized the delta plus model of the system. Image
Source (Zeutschel 2023b)

2.2 Imaging

Imaging techniques are used to digitize or document CH artifacts. The imaging process
involves the interaction of electromagnetic radiation with the object or scene being
examined. This interaction causes the object to reflect, absorb, transmit and emit
incident radiation in varying proportions, depending on the radiation’s characteristics
and the object’s properties (Gauglitz et al. 2006). A digital imaging sensor captures
a portion of the incoming radiation and converts it into an electrical signal, which
is then digitized. In the context of preserving CH, various forms of electromagnetic
radiation and imaging techniques can be utilized to create a digital representation
of an object’s external appearance and internal structure (Verhoeven 2016). This
further helps to gain a deeper understanding of the composition and structure of CH
materials, as well as other objects.
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2.2.1 Electromagnetic Radiation

Electromagnetic radiation refers to the form of energy composed of oscillating electric
and magnetic fields that travels through space in the form of waves or particles at
the speed of light(c). James Clerk Maxwell, a Scottish physicist who formulated
the theory of electromagnetism in the 19th century, explains a significant charac-
teristic of these waves, stating that the electric field’s direction is perpendicular to
the magnetic field that generates it and vice versa. Furthermore, the direction of
propagation of electromagnetic waves is perpendicular to electric and magnetic fields
(forming a transverse wave), and they oscillate in phase (Fitzpatrick 2008). A visual
representation of an electromagnetic wave is shown in Figure 2.5.
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Figure 2.5: Electromagnetic radiation consists of changing electric and magnetic
fields; the oscillating electric fields (blue) and magnetic fields(green) are orthogonal
and propagate as an electromagnetic wave in the direction indicated by the arrow,
travelling at the speed of light.

Electromagnetic waves can be characterized by either the wavelength (λ) or the
frequency ( f ) of their oscillations to form the electromagnetic spectrum, ranging
from very long wavelengths, such as radio waves, to very short wavelengths, such as
gamma rays. f and λ are related to each other through the universal wave equation
(applies to all waves) and is given by Equation (2.1). Here υ is the velocity (speed of
a wave); however, for an electromagnetic wave, we use c (speed of light) to represent
the speed instead of υ.

υ= λ× f (2.1)

Figure 2.6 illustrates the electromagnetic spectrum, categorized according to their re-
spective wavelengths or frequencies; this includes radio waves, microwaves, infrared,
visible light, ultraviolet, X-rays and gamma rays. Each segment of the electromagnetic
spectrum has distinct properties and interactions with matter, leading to various ap-
plications in diverse fields such as telecommunications and imaging. The boundaries
between these adjacent segments of the electromagnetic spectrum are not precisely
defined or universally agreed upon, so the ranges tend to overlap.
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Figure 2.6: The electromagnetic spectrum showing segments of the spectrum with
associated wavelengths and frequencies. Each segment represents a specific portion
of the spectrum, including radio waves, microwaves, infrared, visible light, ultraviolet,
X-rays, and gamma rays. Spectrum highlighting the VNIR (Visible and Near-Infrared)
and SWIR (Short-Wave Infrared) regions holds significance in studying and preserving
cultural heritage using hyperspectral imaging. Image adapted from (DiGiuseppe 2011)

Figure 2.7 illustrates the various extents of penetration of the electromagnetic spec-
trum into a layered structure of an easel painting (Schreiner, Frühmann, et al. 2004).
The layers depicted in the figure encompass a comprehensive range of potential
layers that can exist within a painting’s structure, serving further as a representative
model of the overall structure of a painting. An adhesive layer, usually composed
of glue, is applied to the uppermost portion of the canvas, serving two primary
purposes: to line the painting or to establish the ground layer. The application of a
ground layer serves various functions, such as safeguarding the underlying support
materials from oil diffusion in oil painting. Following this, a sequence of sketches,
called underdrawings, is created on top of the ground layer. These sketches are
commonly made using carbon-rich materials such as charcoal or graphite. An initial
translucent glaze called Imprimitura is applied to prepare the painting for subsequent
layers, which acts as a primer agent. Paint layers typically consist of a mixture of
powdered pigment and a binder, selected according to the specific painting medium
used, whether acrylic, oil, or watercolor. Artists opt for binders that best suit their
chosen medium, including oils, synthetic binders, or gum arabic. Finally, a layer of
varnish is added to the painting, serving multiple purposes, such as protecting the
paint layers from dirt and dust accumulation and acting as a protective shield for
the artwork (Baias 2020; Gilroy et al. 2017). For a comprehensive exploration of
the application of different ranges of electromagnetic spectrum utilized by different
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imaging techniques in the analysis of paintings, please refer to (MacBeth 2012).
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Figure 2.7: Structure of an easel painting depicting different layers and its penetration
of electromagnetic radiation at different wave lengths. UV radiation is commonly
utilized for rapid diagnostics of varnish layers; radiation within the visible region,
known as light, enables the perception of colors and spatial details. IR radiation
exhibits an ability to penetrate deeper into the layers of the painting, facilitating
examination of the underlying structure, composition, and hidden layers. X-radiation
has higher penetrating capabilities, allowing for diagnostics of diverse artworks,
such as supports, statues, monuments, and more. Image adapted from (Schreiner,
Frühmann, et al. 2004; Schreiner, Wiesinger, et al. 2017)

2.2.2 Imaging Techniques

In the context of CH imaging, the goal is often to generate a digital record of an object
that faithfully captures its visual features, including color, texture, and hidden features
such as material identification, pigment analysis, underdrawings, and more, without
damaging or altering the object being imaged. The selection of imaging techniques
in CH depends on the specific goals of the user and how well these techniques align
with the unique properties of the object being documented. Spectrophotometers are
widely used in CH to measure the absorption and transmission of light by an object
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across a range of wavelengths. They offer several nanometer resolutions and a wide
range of wavelengths from ultraviolet (UV) to infrared (Boust et al. 2023). Although
UV, infrared, and RGB imaging can be valuable tools for studying paintings and
artwork, HSI in the VNIR (Visible and Near-Infrared) or SWIR (Shortwave Infrared)
regions offers several distinct advantages (Hayem-Ghez et al. 2015). For example,
different pigments and materials can exhibit similar behavior in UV, infrared, or
RGB images, making them difficult to distinguish using these techniques. Similarly,
some pigments may have overlapping absorption bands, which can create challenges
in distinguishing them using lower-spectral-resolution data. Compared to imaging
systems that capture data in a few discrete wavelength bands, HSI provides higher
spectral resolution, which means that data are collected in numerous narrow and
closely spaced bands across the spectrum. This increased spectral resolution allows
for finer differentiation between spectral features, making it easier to distinguish
between closely related pigments with subtle differences in their spectral signatures.
In the following section, a brief description of RGB and spectral imaging is provided.

Conventional RGB Imaging

The conventional imaging technique used in CH, also called RGB imaging or visible-
light photography, relies on the electromagnetic spectrum within the visible re-
gion. This region encompasses wavelengths approximately ranging from 380 to 700
nanometers (nm). During the process, an image sensor or digital camera captures
light and divides it into its red (at around 670nm), green (at around 550nm), and
blue (at around 448nm) wavelength components. This separation is accomplished
by using either a filter array or three distinct image sensors, where each sensor is
dedicated to capturing one specific color channel. Subsequently, the intensities of
these three components are combined to produce a color image. For a detailed ex-
ploration of the concepts and applications of RGB imaging, please refer to (Reinhard
et al. 2008).

Although conventional RGB imaging plays a crucial role in capturing, analyzing,
and presenting color information in various CH artifacts, however, due to its limited
spectral range, which is composed of only three channels, it can become impractical
in certain cases (Linhares et al. 2020; Yamaguchi et al. 2008). For example, this
limitation becomes evident in cases where distinguishing between pigments of a
similar hue becomes necessary. Similarly, metamerism poses another challenge, as
it causes identical colors to appear different under different lighting conditions.
Furthermore, when users require more comprehensive information beyond color,
such as material identifications, underdrawings, etc., this imaging may not be suitable.
Spectral imaging systems such as multispectral and hsi can be used to overcome
these limitations.
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Spectral Imaging

Spectral imaging systems extend the spectral range (i.e., it is not limited to the
visual spectrum, and can also be used in near infrared, infrared and ultraviolet
spectrum of electromagnetic radiation) and enable a more comprehensive analysis
and interpretation of CH artifacts. Multispectral imaging can be achieved through
different approaches (Hardeberg et al. 2002; Shrestha and Hardeberg 2013). One
method involves using traditional optical filters in a filter wheel or using a tunable
filter (Hardeberg 2001; Hardeberg et al. 2002), which is placed in front of a high-
resolution digital camera or a stereo camera (Hardeberg et al. 2002; Shrestha,
Mansouri, et al. 2011). Another promising technique utilizes multiplexed light-
emitting diode (LED) illumination (J.-I. Park et al. 2007). In this method, a series
of LEDs at distinct wavelengths are sequentially illuminated, while a monochrome
camera captures images under each illuminated LED. This process results in the
generation of a multispectral image with n number of bands.

In order to achieve a high level of color fidelity in artworks, specifically paintings,
the Visual Arts System for Archiving and Retrieval of Images (VASARI), project
funded by the European Union (1989-1992), has developed a multispectral system
utilizing a monochrome digital camera paired with seven filters across the visible
range (Martinez, Cupitt, et al. 2002). Likewise, another EU-funded project called
Conservation Restoration Innovation System for imaging capture and digital Archiving
to enhance Training Education and lifelong Learning (CRISATEL),(2001-2005), has
developed a multispectral setup featuring a monochrome digital camera equipped
with 13 interference filters (Liang et al. 2004).

Hyperspectral Imaging

Hyperspectral imaging (HSI), also referred to as imaging spectroscopy, is a non-
invasive imaging technique that combines the features of imaging and spectroscopy
to acquire spatial and spectral information from an object and generates a spatial map
over continuous and narrow spectral bands, producing a three-dimensional datacube
or hypercube, that is, X (x , y, λ), x and y represent spatial information as rows
and columns (or vice versa), while λ represents the spectral dimension (Qin 2010b).
The wavelength range of a hyperspectral device is determined by the specific sensor
it uses and the intended spectral range to which it is designed to capture. Certain
hyperspectral devices are specifically designed for Visible and Near-Infrared (VNIR)
imaging, which typically spans approximately 400 to 1000 nanometers (nm) (vnir
2023). Alternatively, other device may be tailored for shortwave infrared (SWIR)
imaging, covering a broader range from around 1000 to 2500 nm (swir 2023). Fur-
thermore, there are hyperspectral devices available that can capture imagery in the
mid-wave infrared (MWIR)(SPECIM 2023a) and long-wave infrared (LWIR) (SPECIM
2023b) ranges, extending beyond 2500 nm and reaching several micrometers.
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Figure 2.8: Four distinct methods for obtaining a HSI datacube; the spatial dimensions
are denoted by x and y, while the λ denotes the spectral direction, representing the
wavelength. Image adapted from (Qin 2010b)

As illustrated in Figure 2.8, the HSI datacube can be acquired in four different ways,
i.e., point scanning (whiskbroom), line scanning (pushbroom), area scanning (band
sequential), and single shot methods. Point scanning involves obtaining a spectrum of
a single point in an object; the process is repeated for each point in an object, and the
object is moved in the x and y directions point-by-point using a computer-controlled
stage. Line scanning involves acquiring spectral measurements from a single line of
an object at a time that are simultaneously recorded by an array detector, and either
object or a device is moved line-by-line. In area scanning, an image of the entire object
is captured using a two-dimensional detector array for each band, without having
to move the object. The process is repeated for several spectral bands, resulting
in a series of two-dimensional images combined to form a hyperspectral datacube.
The single-shot method is a rapid acquisition technique that captures a HSI in a
single exposure. It utilizes a two-dimensional array detector that simultaneously
captures the entire object in multiple spectral bands (Qin 2010b). Each method offers
distinct advantages and trade-offs with respect to speed, spatial resolution, spectral
resolution, and cost.

Multispectral and hyperspectral imaging can be distinguished in terms of the number
of bands captured and the spectral resolution. Multispectral imaging captures a
limited number of broad spectral bands (usually more than three and up to 20),
while hyperspectral imaging captures a larger number of narrower and contiguous
spectral bands (up to a few hundred), providing much higher spectral resolution.
Figure 2.9 illustrates the comparison between RGB, multispectral, and hyperspectral
imaging, emphasizing the differences in terms of the number of bands used and the
continuity of the spectral waveform captured by each method.

2.2.3 Hyperspectral Data Preprocessing

Before hyperspectral data can be utilized for subsequent data analysis, they need to
undergo preprocessing. This process comprises several steps in which the obtained
datacubes with digital number (DN) are transformed into normalized reflectance val-
ues. Figure 2.10 illustrates the general processing steps that have been adopted in the
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Figure 2.9: Comparison of conventional RGB, multispectral and hyperspectral imag-
ing. RGB imaging captures visible light using three color channels (red, green, and
blue), while multispectral imaging utilizes multiple discrete spectral bands, including
those beyond the visible spectrum. HSI achieves higher spectral resolution by captur-
ing images in numerous narrow and contiguous bands, enabling detailed spectral
analysis. Image adapted from (Q. Li et al. 2013)

course of this thesis work. This preprocessing is essential to ensure the suitability of
the hyperspectral data for further analysis and to facilitate accurate and reliable infor-
mation extraction. In this section, we consider the data preprocessing primarily linked
to the pushbroom mode of data acquisition. Periodically, device-level calibrations are
performed, often by manufacturers, to ensure accurate performance of hyperspectral
sensors. One such important calibration is the spectral calibration, which addresses
any distortions in the sensor’s output that depend on the wavelength (Qin 2010a).
This calibration procedure involves the use of reference calibration sources or ma-
terials with known spectral signatures that are compared to the measured spectra
obtained from the sensor. Various setups can be employed for spectral calibration,
such as directing narrowband sources like Hg gas discharge lamps or lasers with
well-defined spectral lines into an integrating sphere. Through this process, adjust-
ments can be made to correct spectral distortions such as spectral shift, band-to-band
misalignment, or spectral smile (Baumgartner et al. 2012).

The dark current, caused by the spontaneous generation of electrons within the
detector chip as a result of the thermal effect, leads to an electrical signal within
the sensor even in the absence of light. This phenomenon increases with longer
integration times and higher operating temperatures of the device (Widenhorn et
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Figure 2.10: Hyperspectral data preprocessing steps for the retrieval of normalized
reflectance.

al. 2010). To account for this, the dark current needs to be subtracted from each
pixel in subsequent scan data. In the case of the VNIR1800 (vnir 2023) device used
in this research, the acquisition software has a built-in feature for automating and
simplifying this step. It involves closing an automatic shutter and capturing an average
of 200 frames without any light illuminating the sensor, which is then saved to a file.
Reflectance factor, also known as relative reflectance, is a measure of the proportion
of reflected light intensity from a surface compared to the reflected light intensity
from a calibration reference at different wavelengths. It quantifies the amount of
incident light that is reflected, irrespective of factors such as illumination conditions,
sensor sensitivity, or target distance. To normalize the acquired data to the reflectance
factor, a known reference, such as calibrated reflectance standards, must be utilized.
Calibration targets commonly employed, such as Spectralon®(Spectralonl 2023)
or Zenith Polymer®(SphereOptics 2023) reflectance standards, consist of matte
Lambertian reflecting surfaces. These materials ensure that the reflected light has
nearly equal intensity in all directions.

Hyperspectral data obtained from airborne or satellite platforms can be affected by
atmospheric scattering and absorption, and to mitigate these atmospheric effects,
atmospheric correction algorithms (Kale et al. 2017) are used. However, for close-
range applications, such as acquisition of paintings, the influence of the atmosphere
is not as significant, and therefore atmospheric corrections are not necessary. On
the other hand, geometric calibration (Špiclin et al. 2010) is essential to ensure
accurate spatial alignment of the hyperspectral data. It involves correcting distortions
caused by sensor motion and platform orientation. Some hyperspectral camera
manufacturers provide acquisition software that automatically calculates the scan
speed, which is also the case with the device we used. However, not all manufacturers
offer this feature, which requires users to manually input the scan speed. Furthermore,
incorporating a geometric calibration target within the scene during the scanning
process can aid in correcting any potential geometric errors during the subsequent
postprocessing stage. For more detailed information on the calibration workflow
specifically for artwork acquisition using hyperspectral imaging, please refer to (Pillay,
Hardeberg, et al. 2019).
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2.3 Understanding Quality

The term quality is frequently used in various aspects of our daily lives, but it is
often not clearly defined. In a study (R. W. Hoyer et al. 2001), the authors examine
the viewpoints of several prominent contributors to the advancement of quality in
the twentieth century. The study proposes two broad definitions of quality. Firstly,
quality can be understood as the production of products or the delivery of services
with measurable characteristics that comply with a predetermined set of specifi-
cations, often expressed numerically. Second, quality can be defined as meeting
customer expectations about using or consuming a product or service. Regardless
of the specific field, the commonly accepted definition of quality is "conformance
to requirements" (R. W. Hoyer et al. 2001). It is important that the requirements
are explicitly stated to avoid any misunderstanding. We can effectively assess and
measure quality by specifying requirements in terms of numerical specifications.

2.3.1 Image Quality

In broad terms, image quality can be defined in terms of visibility of distortions, or
artifacts, such as color shifts, blurriness, nosiness, blockiness, and geometry, etc., in-
troduced in an image when it is captured, processed, stored, compressed, transmitted,
displayed, and printed. Valuable insights and a diverse contribution from scholars
and experts in different fields have led to numerous interpretations and definitions
of image quality within the literature (Keelan 2002; Pedersen 2011; Phillips et al.
2018). Depending upon the particular use case and the context in which it is applied,
the most appropriate definition of image quality can be formulated and/or adopted.

(Janssen 2001) described image quality in the context of the visual-cognitive system,
where visual information of an image received through the visual system is processed
by our brain in terms of two attributes, i.e., usefulness and naturalness. The usefulness
of an image corresponds to the precision of the internal representation of the image,
and the naturalness of an image is the degree of correspondence between the internal
representation of the image and knowledge of reality as stored in memory. Image
quality, as defined by (Keelan 2002) and adopted by the ISO 20462 (ISO20462 2005)
photography standard, is an overall impression of the merit or excellence of an image.
It is based on the perception of an observer who is not directly associated with the
process of capturing the image (photography) or closely involved with the subject
matter depicted in the image. Involving an independent observer helps to eliminate
any potential biases or familiarity that could influence the judgment.

Image quality in the context of CH refers to the degree of fidelity and effectiveness
in the digital representation of cultural artifacts such as paintings, manuscripts,
photographs, or other significant historical objects. Here, degree of fidelity refers to
how well they reproduce the original records in terms of accuracy for attributes such
as tones, color, details, etc. Effectiveness, on the other hand, signifies the importance
of these attributes with respect to specific use cases. For instance, when digitizing
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paintings created with watercolors, achieving a high degree of accuracy in capturing
color information is typically crucial. However, this level of importance may not be
equally applicable when digitizing newspapers or documents, where the legibility of
the captured text is of greater significance.

2.3.2 Spectral Image Quality

As mentioned in Section 2.3.1, quality criteria for conventional RGB imaging often
rely on subjective measures reflecting human visual perception, which may not apply
directly to the spectral domain. For spectral imaging, the meaning of quality varies
depending on the specific application, indicating the need for distinct considerations
when assessing image quality for different purposes. This challenge becomes particu-
larly evident in the case of hyperspectral imaging, which captures data beyond the
visible range and finds applications in various fields.

For instance, a researcher aiming to identify signs of a widespread disease in crops
may prioritize the spectral resolution and spectral band of the imagery rather than
its spatial resolution, as it is crucial for detecting the impending stress (Mishra et al.
2017). Conversely, a military analyst searching for small objects may place greater
emphasis on spatial resolution rather than spectral content (Yan et al. 2021). Thus, an
image with numerous bands but moderate spatial resolution might be considered as a
high quality for one analyzing spectral content. However, an image with limited bands
but high spatial resolution could be considered as even higher quality for an analyst
examining spatial information (Kerekes et al. 2004). Consequently, establishing a
universally applicable definition of spectral image quality becomes a complex task.

According to (Fryskowska et al. 2018), quality is defined as the extent to which a
specific dataset is suitable for a particular purpose. This definition can be applied to
spectral imaging, highlighting the importance of image or data utility for task-oriented
objectives. For example, when performing pigment classification in an artwork using
hyperspectral imaging, spectral data are considered of high quality if they yield a
high classification accuracy.

2.4 Image Quality Assessment

Image Quality Assessment (IQM) has been an active area of research for several
decades, showing substantial progress and ongoing development. Quality assessment
is crucial to validate technological advances over system accuracy. Image quality
can be evaluated subjectively and objectively, with further assessment in either the
spatial or spectral domains. The human visual system (HVS) (Wandell 1995) is
the ultimate receiver of visual signals in most visual communication systems, and
therefore the most basic method of assessing the quality of an image is to present it
to an expert human observer. However, human perception can vary among and to
address this issue, one can overcome subjectivity by gathering multiple perspectives
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from different individuals and statistically analyzing the outcomes. This approach is
known as a subjective image quality assessment. It involves presenting the image to
a group of individuals with/without expertise in image evaluation, who then provide
their subjective opinions or ratings regarding the image quality. To ensure accuracy
and consistency in the assessment, statistical analysis techniques are applied to the
collected data.

Several methods exist in the literature to measure image quality (Keelan 2002;
Mantiuk et al. 2012; Pedersen 2011; Pinson et al. 2003), such as paired comparison,
rank ordering, categorical sort, and magnitude estimation. In this thesis work, we
used a force-choice paired comparison (David 1988) method without ties. This
method involves displaying two images side by side to the participants and asking
them to compare the images and select the one they perceive as having high quality
or being more visually appealing. If the participants encounter ties or instances where
they find both stimuli equally preferable, they are instructed to choose between them
randomly. This method is mainly preferred because of its relative simplicity compared
to other methods and because it is better at finding differences between images. The
task typically indicates the preferred option from each pair of stimuli rather than
assigning a quality score to each stimulus.

The results can be presented as a winning frequency matrix that illustrates the relative
frequencies with which each stimulus is preferred over the others. The Binomial Sign
test can be computed using the frequency matrix to show the statistical significance
of the result obtained. To account for the possibility of type I errors resulting from
multiple conditions, a Bonferroni correction (Bland et al. 1995) is applied. Addi-
tionally, the Z-score (Engeldrum 2001) is computed based on Thurstone’s law of
comparative judgment (Thurstone 2017). It is a statistical measure that indicates
how far a particular observation is from the mean in terms of standard deviation
and allows one to draw statistical inferences about the differences between the two
items being compared. To compute the z-score, the frequency matrix obtained is
transformed into a percentage matrix by dividing the frequency values by the total
number of observations. Subsequently, a Logistic Function Matrix (LFM) is generated
using an Equation (2.2) (Engeldrum 2001).

LF M = ln
( f + c)

(N − f + c)
(2.2)

Where, f represents the value from the frequency matrix, N represents the total
number of observations, and c is an arbitrary additive constant. Typically, the value
of c is set to 0.5, which is the most commonly used value.

The computation of LFM is a method used to model the decision-making process in a
pair comparison experiment. By analyzing the observed frequencies of preference,
LFM helps identify the relative strengths of preference for each stimulus and their
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influence on decision-making. Additionally, the LFM can predict the probability that
a given stimulus will be preferred over another in future trials. The LFM can be
converted to z-scores by applying a scaling coefficient. This coefficient is determined
by analyzing the relationship between the inverse of the standard normal cumulative
distribution for the percentage matrix and the values in the LFM. This analysis is
carried out through linear regression and the scaling coefficient is obtained from
the slope of the regression line. Finally, a z-score matrix is obtained by multiplying
the LFM matrix with the scaling coefficient, and it is shown with a 95% confidence
interval.

There are standards (BT.500-14 2020; P.910 2022) that provide guidelines and
methodologies for conducting and evaluating subjective quality assessment. However,
the implementation of subjective assessments can incur high costs, require consider-
able time and effort, and pose challenges when attempting to scale them up for large
datasets. Objective quality assessment methods, commonly formulated or trained
using data from subjective assessments, can help mitigate some of the limitations of
subjective assessment by automatically estimating visual quality using mathematical
models that can predict the quality evaluation of an average human observer. There
are three primary approaches to achieving an objective image quality assessment.
The first approach involves using full reference metrics, where a reference image
(an undistorted version of the same image) is compared with the distorted image
to calculate quality scores. These metrics consider various factors such as structural
similarity, pixel-level differences, or perceptual features. The detailed survey on
the full reference-based metrics can be found in (Pedersen and Hardeberg 2012).
The second approach is based on reduced reference metrics, which utilize a subset
of information from the reference image to estimate the quality of the distorted
image. This approach reduces computational complexity while maintaining reason-
able accuracy. Some of the reduced reference base metrics are found in (Gao et al.
2009; Tao et al. 2009). The third approach is called no-reference metrics, where
the quality assessment is conducted without any reference to the original image. In
this approach, the quality of an image is assessed solely on its characteristics, such
as local features, global features, perceptual features, or statistical properties. For
a comprehensive understanding of the methods developed for no-reference-based
image quality assessment, please refer to (Kamble et al. 2015). Each approach has
its strengths and limitations, and the choice depends on the specific requirements of
the application and the available resources.

2.4.1 Quality Assessment in the Cultural Heritage Context

Digitalization of CH requires substantial investment in time, effort, and resources.
By adhering to minimum quality standards, the resulting digital surrogates gain
enhanced long-term value, ensuring their enduring significance and practicality for
future generations. Within the CH field, limited standardized tools and guidelines
are available to analyze image quality. These tools employ various test charts (also
referred to as targets) and analysis algorithms designed to measure image quality

29



Chapter 2. Background

characteristics such as resolution, sharpness, color accuracy, noise, distortion, and
artifacts, contributing to the establishment of sustainable digitization practices that
facilitate the long-term preservation of digital materials.

Numerous CH organizations and vendors in the CH community worldwide have
widely accepted three global standards, namely the Federal Agencies Digitization
Guidelines Initiative (FADGI) (FADGI 2010), Metamorfoze (Dormolen 2012), and ISO
19264-1 (ISO19264 2021), as the key directives for incorporating objective image
quality assessment into the process of digitizing two-dimensional CH artifacts. FADGI
is a collaborative effort among various federal agencies to establish guidelines and
best practices for digitizing CH materials. It introduces a categorization framework
that comprises four levels that are used to assess the quality of the imaging. These
levels are represented by star ratings, ranging from 1 to 4. A higher number of stars
signifies an increased level of consistency in the captured images. Metamorfoze is a
European preservation guideline developed by the National Library of the Nether-
lands specifically for safeguarding paper-based heritage. The Metamorfoze system
establishes three quality levels: Metamorfoze, Metamorfoze Light, and Metamorfoze
Extra Light, with Metamorfoze representing the highest level of quality. The main
distinctions between these levels revolve primarily around the acceptable tolerance
for color accuracy.

Although the FADGI and Metamorfoze guidelines share conceptual similarities and
use similar image quality attributes, they differ in terms of test charts used, tolerance,
and evaluation algorithms. Consequently, direct interchangeability between these
guidelines is not possible. To address this problem and mitigate possible confusion,
extensive efforts were made to harmonize the two guidelines, culminating in the
development of the ISO standard ISO 19264-1:2021. This standard establishes three
distinct quality levels (A, B, and C) for imaging, with Level A denoting higher image
quality. These three levels align conceptually with both the FADGI star system (4, 3,
and 2 stars) and the Metamorfoze three-tier system. Comparison of these guidelines
in terms of their quality ratings is presented in Table 2.1.

Table 2.1: Comparison of FADGI, ISO 19264-1 and Metamorfoze quality rating
systems for digitizing CH artificats (imageaccess 2023).

Description FADGI Metamorfoze ISO 19264-1
High Quality 4 stars Metamorfoze Level A

Medium Quality 3 stars Metamorfoze light Level B
Low Quality 2 stars Metamorfoze extra light Level C

Very Low Quality 1 stars No equivalent No equivalent

In the field of HSI, instrument manufacturers often employ different calibration
methods and provide specifications in varying formats. Moreover, discrepancies arise
in the definitions of terms used in different hyperspectral instrument manufactures.
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As a result, there is a pressing need for a unified standard that can establish common
guidelines and definitions. To date, there are no published standards for assessing
spectral imaging. However, certain organizations have initiated efforts, focusing
particularly on establishing standards for HSI (Eckstein et al. 2021). The National
Institute of Standards and Technology (NIST) is currently developing a standard
titled ’Hyperspectral Imaging Standards’ (NIST 2015) that focuses on various as-
pects of HSI. This ongoing standard aims to encompass performance specifications,
calibration standards, data formats, terminology, and best practices for HSI. Like-
wise, the Institute of Electrical and Electronics Engineers (IEEE) Geoscience and
Remote Sensing Society (GRSS) launched an initiative in 2018 known as ’Project 4001
(P4001)’ (P4001 2018). This endeavor involves the establishment of a hyperspectral
Working Group under the IEEE’s Standards Association. The primary focus of this
working group is to address key aspects such as terminology, data structures, and
characterization and testing methods within the field of HSI.
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Chapter 3

Summary of the Articles

This chapter summarizes the articles incorporated in this thesis, comprising five
research articles. Each article is accompanied by a concise summary of its motivation,
methodology, and results, highlighting the main aspects of the conducted research.
For more detailed information, refer to the respective manuscripts, which can be
found in the second part of this thesis.

3.1 Article A: Influence of Acquisition Parameters on
Pigment Classification using Hyperspectral Imag-
ing

D. J. Mandal, S. George, M. Pedersen, and C. Boust (2021). “Influence
of Acquisition Parameters on Pigment Classification using Hyperspectral
Imaging.” In: Journal of Imaging Science and Technology 65.5, 050406-
1–050406–13

3.1.1 Objective

In ch, the classification of pigments in artworks, such as paintings, is essential. This
is of significant importance to curators and conservators, as it enables them to gain
deeper insights into an object and to know its historical values (Mayer 1966; Stuart
2007). For several years, hyperspectral imaging technology has been employed for
pigment classification, offering significant potential in its scientific analysis (Bai et al.
2017; George et al. 2019). However, the acquisition of hyperspectral images presents
several challenges. Various parameters, including focus, signal-to-noise ratio, and
illumination geometry, can impact the quality of acquired hyperspectral data (Foster
et al. 2019; Pillay, Hardeberg, et al. 2019). To better understand the impact of these
acquisition parameters on pigment classification application, we investigated their
effects in a mockup using HSI in the VNIR region in this study.
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3.1.2 Methodology

We collected hyperspectral data in a region of 400 to 1000 nm with 186 spectral
bands, having a spectral sampling of 3.26 nm. The VNIR camera was used with a
30 cm cylindrical lens to capture 1800 spatial pixels across a line, which covers an
approximate field of view of 86 mm. The pigment mockup was placed on a translation
stage setup (Figure 3.1), with optical fiber-based illumination having a geometry
of 45◦- 0◦- 45◦, where 0◦ indicated the camera angle with normal. We adjusted the
camera-to-mockup distance in 2 cm increments from the reference focus point to
analyze the effect of varying focus. Due to the arrangement of the setup, it was
convenient to move the camera in an upward direction, as shown in Figure 3.1.
For the signal-to-noise ratio (SNR), each line in the mockup was scanned ‘N’ times
(ranging from 1 to 8) and averaged before proceeding to the following line. Data were
acquired with varying integration times by keeping the saturation of the acquired
pixels within the limit of 10 - 85%. We also analyzed data acquired at illuminant
angles of 30 and 60 degrees. A supervised-based approach using the Spectral Angle
Mapper (SAM) algorithm was applied for classification because it is one of the most
commonly applied classification algorithms for spectral matching.

Hyperspectral

Camera
VNIR

1800

Spectralon ®

IlluminantIlluminant

Pigment Mockup

Motor

Moving Platform ColorChecker®
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Figure 3.1: Layout of the HSI system used in the experiment. The object was illumi-
nated using a 150 W halogen-based SmartLite 3900e by Illumination Technologies,
Inc., with light guided through an optical fiber. The camera was moved upward from
0 to 16 cm with a step size of 2 cm; 0 indicates the optimal focus distance point (i.e.,
22 cm from an object to the lens).
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3.1.3 Results

The study found that when the mockup is placed away from the optimal focus
point, the resulting image becomes blurry, functioning as a low-pass filter, and
consequently increasing classification accuracy. However, beyond a certain distance,
the classification accuracy starts to decrease. The influence of SNR and integration
time on classification accuracy was relatively minimal compared to the impact of
focus distance, likely due to lower noise levels in controlled laboratory environments.
The mockup used in the experiment had an uneven surface of pigment patches,
resulting in significant variations in the acquired spectrum within the same patch.
Furthermore, alterations in the illumination angle also affected the accuracy of the
classification. Implementing an equalization filter effectively mitigated the noise in
the obtained spectrum, particularly at both ends of the wavelength range within the
VNIR region.

3.2 Article B: An Experiment–based Comparative Anal-
ysis of Pigment Classification Algorithms using
Hyperspectral Imaging

D. J. Mandal, M. Pedersen, S. George, H. Deborah, and C. Boust (2023).
“An Experiment–based Comparative Analysis of Pigment Classification
Algorithms using Hyperspectral Imaging.” In: Journal of Imaging Sci-
ence and Technology 67.3, pp. 030403-1–030403-18. DOI: 10.2352/J.
ImagingSci.Technol.2023.67.3.030403

3.2.1 Objective

In the existing literature, numerous supervised algorithms for HSI have been devel-
oped, primarily for remote sensing purposes, such as mineral identification (Melgani
et al. 2004). However, only a limited number of these algorithms have been imple-
mented in the CH domain, specifically for pigment classification tasks in artworks
such as paintings (Mandal, George, et al. 2021). The shape of each pigment spectrum
is distinctive because every material has a different chemical composition and an
inherent physical structure (Shaw et al. 2002). These distinct features make spectral
matching approaches widely utilized for pigment classification, where the similarity
between two spectra at a specific pixel in an image is evaluated. The pigments can
be accurately classified on the closest match by comparing the spectra with a set
of reference spectra. In the CH context, HSI acquisition is commonly carried out
under controlled laboratory conditions, where the camera is positioned relatively
close to the object and the illumination is carefully regulated. On the other hand,
remote sensing data collection occurs under natural illumination conditions, from
a greater distance, which introduces atmospheric effects and temporal variations
in illumination. As a result, the inherent differences between remote sensing and
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CH applications mean that classification algorithms specifically designed for remote
sensing may not be equally applicable or well-suited for CH purposes.

Machine Learing (ML)-based classification methods have been popular and widely
used in many applications in recent years. Support Vector Machine (SVM) and
Convolutional Neural Networks (CNN) are a few of the ML approaches used for
classification tasks that learn spectral features more effectively using deeper layers
and can give us higher classification accuracy than traditional algorithms (Melit
Devassy et al. 2020; Pouyet et al. 2021). The difference between various classification
algorithms lies in their ability to account for differences in the shapes and magnitudes
of the two spectra being compared. In this study, we evaluated the performance of
eight supervised-based algorithms, namely SAM, Spectral Correlation Mapper (SCM),
Spectral Information Divergence (SID), Spectral Similarity Scale (SSS), and the
hybrid combinations of SID–SAM and SID–SCM. We also used the Jeffries–Matusita
(JM) distance function combined with SAM (JM-SAM). Likewise, three ML models,
SVM, Fully Connected Neural Network (FC-NN), and 1Dimentional-CNN (1D-CNN)
for pigment classification of a mockup using HSI.

P11 P2 P3 P4 P6P5 P7 P8 P9 P10

Figure 3.2: A flat section of a pigment mockup illustrating various pigments:
P1:Veridian, P2:Cerulean blue, P3:Green earth, P4:Yellow ochre light, P5:Burnt um-
ber, P6:Ultramarine blue deep, P7:Lead white hue, P8:Genuine vermilion, P9:Cobalt
blue deep and P10:Ivory black. Colors are approximated as RGB rendering using
spectral python for bands 75, 46, and 19 of the datacube.

3.2.2 Methodology

As shown in Figure 3.2, a pigment mockup was prepared and used in a laboratory
environment; device specification, acquisition setup, and data preprocessing steps
were similar to the study mentioned in Section 3.1 (Article A). The selection of
pigments for this mockup was based on extensive research articles in the field of
CH, spectrum characteristics, and expert consultation. Selecting the appropriate
threshold value for classification algorithms is critical as it may vary depending
upon the application (H. Li et al. 2014). We used an empirical approach similar
to (Carvalho Júnior et al. 2011) for computing the optimal threshold for each of
these supervised algorithms and evaluated their accuracy using a confusion matrix.

36



3.3 Article C

3.2.3 Results

The experimental findings indicate that the ML algorithms performed better than
the supervised-based algorithms utilized in this study. Supervised-based algorithms
exhibit limitations in scenarios where pigments have nearly identical spectra (e.g.,
P6 and P9 in Figure 3.3) or when the magnitude of the spectrum is very low (e.g.,
in Figure 3.3, P10 with reflectance factor below 0.05). In situations involving nearly
identical spectra, the SCM proves to be a more suitable measure than the SAM;
additionally, the classification accuracy of certain pigments is influenced by the
threshold value chosen. Algorithms based on spectral distance, such as ED, SSS, and
JMSAM, had the lowest classification accuracy.
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Figure 3.3: Normalized reflectance spectrum for pigments; P6:Ultramarine blue deep,
P9:Cobalt blue deep and P10:Ivory black.

Although more effective, ML-based algorithms require substantial amounts of training
data and hyperparameter tuning, resulting in increased computational costs and
complexity. On the other hand, supervised-based algorithms offer simplicity and
ease of computation. Therefore, supervised-based algorithms, such as SCM and SAM,
might be a good fit for the classification task for pigments with less complex spectra.

3.3 Article C: A Comparison of Pigment Classification
Algorithms on Non–Flat Surfaces using Hyperspec-
tral Imaging

D. J. Mandal, M. Pedersen, S. George, and C. Boust (2023). “Compar-
ison of Pigment Classification Algorithms on Non–Flat Surfaces using
Hyperspectral Imaging.” In: Manuscript under revision in Journal
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3.3.1 Objective

Artwork such as paintings is not confined to two-dimensional canvases or boards,
which means that they are not always flat. The addition of relief, which introduces
2.5D or 3D to the artwork, is also an important consideration (Rubens n.d.; Townsend
1995). Several factors can contribute to this third dimension (Barrett et al. 1995;
Baxter et al. 2004); for example, the morphological textures of brushstrokes on the
painted surface (Fu et al. 2018), a thick layer of pigments applied by many renowned
artists to their artwork to create depth (impasto technique) (Elkhuizen et al. 2019;
Gonzalez et al. 2019; Plisson et al. 2014). The geometry of a relief raised from a brush
painting, impasto techniques, or any other factors may affect how light interacts with
the surface, affecting the spectral signature captured by the hyperspectral sensor for a
given pixel. To our knowledge, no previous research has been conducted on pigment
classification using HSI concerning an elevated surface. Therefore, in this study,
we compare different spectral classification techniques that employ deterministic
and stochastic methods, their hybrid combinations, and machine learning models
for an elevated mockup to determine whether such topographical variation affects
classification accuracy. As demonstrated in Section 3.2 (Article B), ML models have
improved accuracy for pigment classification. However, these models require large
datasets to train effectively. This poses a significant challenge in the CH domain
because the data for ML applications are often inadequate. This challenge can be
addressed by generating synthetic data using data augmentation. In this regard, the
impact of data augmentation techniques on the effectiveness of ML models for CH
applications was also analyzed in this study.

P1
P2

Elevation 
10 mm 

Elevation 
5 mm 

Elevation 
2.5 mm 

Elevation 
10 mm Oval 

P3
P4
P5
P6
P7
P8
P9
P10

Figure 3.4: Pigment mockup used in the study, consists of ten pigments labeled P1 to
P10. The mockup includes a flat region and three different elevation levels (2.5mm,
5mm, and 10mm). For better visualization of the elevation, the left part of the image
is presented in grayscale, captured at 998 nm in the NIR region, while the right side
displays a color image generated using bands at 640, 551, and 458 nm.

3.3.2 Methodology

In the laboratory, a pigment mockup, as illustrated in Figure 3.4, was created using a
3D printed base; It consisted of different elevated levels, including a flat surface and
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regions raised to levels of 2.5mm, 5mm, and 10mm from the base. Similar to our
previous study (Section 3.1 and Section 3.2), hyperspectral data were acquired in
a laboratory using HySpex VNIR-1800 and a translation stage setup. In this setup,
having different elevated levels within the mockup, we aligned the height of the Spec-
tralon® (Spectralonl 2023) tiles with the flat surface level of the mockup. We used
and assessed the identical sets of algorithms used in our previous study Section 3.2
(Article B) for the classification of pigments. For data augmentation, we introduce
four attributes to the spectrum: offset, multiplication, Gaussian noise (Davenport
et al. 1958), and speckle noise (Boyat et al. 2015). An example of the implemen-
tation of these attributes is shown in Figure 3.5. The offset was varied ±(0.0001
to 0.1 with a step size of 0.001) times the standard deviation of the training set.
The multiplication was done with 1±(0.0001 to 0.1 with a step size of 0.001) times
the standard deviation of the training set, and the two different noises, Gaussian
distributed additive noise and speckle, which is a multiplicative noise, were added
ten times with a variation of 0.00001 and 0.000001 respectively.
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Figure 3.5: Data augmentation of a spectral signal; produced with an addition of
offset and multiplication to data by a factor of 0.2; Gaussian noise and speckle noise
are added to the data with variations of 0.00002 and 0.0002, respectively.

3.3.3 Results

From our experimentation, we observed that elevation itself does not significantly
affect the algorithm for classification accuracy, but the formation of shadows caused
by elevation can have a significant impact. ML models 1D-CNN and SVM perform
better than the eight supervised algorithms, the least accurate being the ED algorithm.
Among the eight supervised algorithms, SAM and SCM performed better, while the
algorithms employing hybrid approaches did not perform well overall. Although there
are variations in accuracy across different algorithms, we can discern a pattern in the
classification results: the classification accuracy decreases as the elevation increases.
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We also observed that irrespective of the algorithms used, classification accuracy
also depends on the type of pigments; for example, regarding misclassification,
some pigments are affected more than others. In addition, we also noticed that
the choice of reference spectrum used for building the spectral library and training
ML models plays a crucial role in classification accuracy. Using average reference
spectra, classification accuracy was improved for almost all flat and elevated regions
compared to the accuracy obtained when individual reference spectra were obtained
from four different elevation surfaces.

Additionally, the results demonstrated that data augmentation played a crucial role in
improving classification accuracy, particularly when multiple spectra were augmented
or when an average spectrum was employed for augmentation. Figure 3.6 illustrates
the classified images obtained using an SVM model under various data augmentation
conditions.

(a) (b)

(c) (d)

Figure 3.6: Classification results for SVM using different data augmentation condi-
tions: (a) Without data augmentation, (b) With data augmentation, (c) With data
augmentation using a single spectrum from the flat region, and (d) With data aug-
mentation using a single spectrum from the averaged region.

3.4 Article D: Evaluation of Text Legibility in Alterna-
tive Imaging Approaches to Microfiche Digitiza-
tion

H. Deborah and D. J. Mandal (2021). “Evaluation of Text Legibility in
Alternative Imaging Approaches to Microfiche Digitization.” In: Proc. IS&T
Archiving, pp. 96–101. DOI: 10.2352/issn.2168-3204.2021.1.0.22
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3.4 Article D

3.4.1 Objective

Before the advancement of digital technologies, microforms, such as microfilms
and microfiche, were the only method available to archive and conserve extensive
documents. The CH sector quickly adopted this technique to capture its collections for
preservation, accessibility, and distribution. Today, many historical collections are only
available in microfiche (Garcia-Spitz 2017), making their preservation an important
task. Microfiche cannot be read directly by the human eye and requires a special
device for enlarging, printing, and scanning the microforms into readable formats.
Microfiche readers may not be as available as before, since digital technologies
have mainly replaced them; additionally, such readers are made for reading and not
for digitization or data collection. As digital technologies continue to be adopted,
digitizing microfiche presents numerous benefits (Hirtle 2002). Digitization makes it
easier to store and manage microfiche collections, and creating digital copies can
also protect against loss or damage. However, it is crucial to ensure the quality of the
digitized images to meet user objectives. In this study, we evaluated the performance
of two imaging devices as alternatives to traditional microfiche readers.

3.4.2 Methodology

We employed a microform reader, a flatbed scanner, and an in-house film scanner
equipped with a monochrome camera and a macro lens to scan the microfiche. The
resulting digital images were post-processed using a median filter. The microfiche
used in this study mainly comprises textual content; consequently, the digitized
version of this content should be easily readable. Thus, we considered legibility as
the evaluation criterion and optical character recognition (OCR) to read the text. To
evaluate quality, we used the Levenshtein edit distance (Levenshtein 1966) metric
to measure the text similarity between the obtained text and the ground truth. In
Figure 3.7, a flow diagram is presented, illustrating the assessment of text legibility
in the context of microfiche digitization.

3.4.3 Results

The study found that an alternative imaging device performs better than traditional
microform readers in terms of text legibility. Additionally, the use of a median filter
for noise removal and smoothing improved legibility. Among the imaging devices
tested, the flatbed scanner with 4800 dpi was the most suitable for providing the
highest quality computer legible texts. We observed that the images acquired from
the microform reader exhibited a noisy and granular background, whereas those
from the flatbed scanner displayed a smoother background. However, the flatbed
scanner images suffer from lower contrast and are less sharp. We applied a median
filter to the microform reader images to address this. The results showed a notable
improvement in legibility after applying the filter.

We comprehensively compared by carefully evaluating the suitability of applying
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Figure 3.7: Experimental flow diagram illustrating the evaluation of text legibility
using optical character recognition (OCR); three imaging devices are compared: a
microform reader, a flatbed scanner, and an in-house film scanner.

median filters with different kernel sizes to images acquired from three imaging
devices. Our findings indicated that the flatbed scanner operating at 4800 dpi still
provided the best overall performance. However, by applying a median filter on the
microform reader images, the result was significantly improved, bringing them closer
to the quality of the flatbed scanner images captured at 4800 dpi. The result showing
the cumulative Levenshtein edit distance for images obtained from three different
imaging devices, before and after applying the median filter, is shown in Figure 3.8.

3.5 Article E: Subjective Quality Evaluation of Alter-
native Imaging Techniques for Microfiche Digiti-
zation

D. J. Mandal, H. Deborah, and M. Pedersen (2023). “Subjective Quality
Evaluation of Alternative Imaging Techniques for Microfiche Digitization.”
In: Journal of Cultural Heritage. Accepted for publication
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Figure 3.8: Comparison of Levenshtein edit distance for images acquired using three
imaging devices, shown in a cumulative manner along the x-axis; (a) without median
filters: The result shows that the flatbed scanner at 4800 dpi has the best performance,
and (b) Both microform reader and film scanner images are combined with median
filters as post-processing steps.

3.5.1 Objective

Microfiche materials extend beyond written texts, as they encompass a variety of
records, not limited solely to textual documents. There is a need to explore the quality
assessment of digitized microfiche containing various types of content, such as pho-
tographs and handwritten text. For microfiche digitization, subjective experiments
can help to assess the perceived quality of the digitized images by human observers.
This is important because humans are the ultimate consumers of digitalized material.
Image enhancement is a frequently used method to improve the visual quality of
images by adjusting their attributes (Singh et al. 2014). Among the quality attributes
of an image, contrast is considered crucial (Pedersen, Bonnier, et al. 2010), and its
enhancement is believed to improve the visual quality of most natural images (Gu
et al. 2013). In this study we incorporated three different microfiche materials con-
taining typewritten text, photographs of natural scenes, and photographs of ancient
handwritten fragments. We applied contrast stretching as a postprocessing method
to evaluate its effectiveness in improving the quality of microfiche materials using
subjective quality assessment. Our results showed that the reproduction of alterna-
tive devices was preferred over that of a traditional microfiche reader. Furthermore,
our results demonstrate that image enhancement techniques significantly improved
image quality. This study suggests that alternative imaging devices may be a viable
option for digitizing microfiche and improving access to historical collections.

3.5.2 Methodology

In this study, we used microfiche materials from three distinct sources. These sources
include microfiches provided by a handbook for evaluating microfiche readers (Hawken
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1975a), the Allegro Qumran Collection on Microfiche (Brooke et al. 1999), and the
Dead Sea Scrolls on Microfiche (Tov et al. 1995). Figure 3.9 shows an example of
the image obtained from each microfiche. The imaging device and preprocessing
steps used in the experiment were identical to the one mentioned in Section 3.4.2,
and we designed a subjective experiment as a force-choice pair comparison (David
1988), with no tie option, using a web-based tool called QuickEval (Ngo et al. 2015)
and in a controlled environment. There were a total of 21 observers, including one
expert. The expert observer had experience with imaging, old/historical manuscripts,
and microfiche, all of which were used in the experiment. The results were analyzed
using two statistical methods: z-score analysis and the sign test. These analyses were
conducted using an open-source Python platform.

(a) (b) (c)

Figure 3.9: Examples of microfiche material images used in the experiment acquired
through a in-house film scanner. (a) Text, (b) Natural Scene, and (c) Fragments.

3.5.3 Results

The results showed that alternative imaging devices were preferred over traditional
microform readers, indicating that they could be a viable option to digitize microfiche
and improve access to historical collections. The result of applying image enhance-
ment techniques also significantly improved the image quality for all three categories
of microfiche. We performed a separate analysis distinguishing between the ex-
pert and the naive users. The results revealed that the naive observers’ preferences
strongly aligned with the expert’s. Furthermore, we analyzed the general preferences
of observers regarding enhanced and non-enhanced images across different devices,
regardless of the microfiche type. As illustrated in Figure 3.10, the results indicate
that most observers consistently preferred enhanced images over non-enhanced
images across all imaging devices.

In addition, a notable observation from the results found was that the observers’ ability
to differentiate between devices is becoming less distinct as we compare microfiche
with text and natural scene; this distinction is even less for microfiche with fragments.
A notable observation from the results was that the ability to differentiate between
devices is becoming less distinct as we compare microfiche with text and natural
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Figure 3.10: Mean z-scores with 95% confidence intervals for non-enhanced (NE)
versus contrast-stretched (CE) images across three imaging devices; microform reader
(FSL), flatbed scanner (FBS), and in-house film scanning (IFS); higher z-score value
is better.

scene; this distinction is even less for microfiche with fragments. In future research,
it would be beneficial to conduct objective image quality assessments to evaluate
different microfiche quality attributes, such as contrast and sharpness. This could
involve exploring existing image quality metrics to determine their relevance for
time-efficient evaluations of microfiche image quality.
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Chapter 4

Discussion

In this chapter, we look from a broad perspective at the research presented in this
thesis, examining its impact and contributions. It is divided into two parts: The first
part addresses the significance of the research findings of each article summarized in
Chapter 3, their alignment with the research objectives described in Section 1.2, and
their limitations. The second part highlights the specific contributions made by this
research to the realm of CH imaging and discusses its potential applications in other
domains, specifically in the context of quality assessment.

4.1 Quality Assessment for Spectral Imaging

Article A, B and C contribute to the quality assessment of digitizing CH artifacts, such
as paintings using HSI in the Visible and Near-Infrared (VNIR) spectrum. Spectral
quality here is defined in terms of the accuracy with which the system can identify
pigments for the classification task. Different spectral metrics are used to measure
the quality, which computes the similarity between the obtained spectrum and its
corresponding ground-truth spectrum, relying on empirically computed threshold
values. These articles specifically address the first three research questions, RQ1,
RQ2 and RQ3, which are discussed below.

4.1.1 RQ1: How do acquisition parameters impact the accuracy
of pigment classification in digitizing artworks using HSI ?

Despite significant utilization of HSI in CH, there are still important challenges in
delivering high-quality spectral data related to acquisition. In CH, the acquisition
is usually carried out in a close range, and the quality of the data obtained can be
influenced by several acquisition parameters of the HSI system. Article A, provides
analysis on how some of these parameters can influence the quality of the hyper-
spectral data obtained, particularly for the task of pigment classification using a
pigment mockup. For artwork such as paintings, pigments used have heterogeneous
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structures; in addition, many artworks have been varnished, which can significantly
affect gloss level; thus, obtained data can be influenced due to illumination geometry.
The surfaces of paintings are often uneven, and acquiring data within a focus can be
difficult. CH objects are susceptible to temperature, artifacts exposed under illumi-
nation for a long time can cause damage by changing their material property, and
when the integration time is increased, the sensor collects more of both the signal
and the noise, resulting in a higher overall noise level. Therefore, in Article A, we
selected these four key acquisition parameters: focus distance, signal-to-noise ratio
(SNR), integration time, and illumination geometry. The results were analyzed in
terms of classification accuracy using the Spectral Angle Mapper (SAM) as a metric.

When the focus distance is changed, which involves moving the camera away from an
object, it leads to variations in the magnitude of the spectrum, while the shape of the
spectrum remains relatively constant. The variations in magnitude are particularly
noticeable in the wavelength range of 600-1000nm for most of the pigments used. Fur-
thermore, for a given acquisition setup, the spectrum of a pigment varies significantly
across different spatial locations within the same pigment patch. This variability is
influenced by both the mixed pigment concentration and the non-uniformity of the
pigment patch. Some pigments show higher variability in their spectra compared to
others. As a result, certain patches are classified more accurately than others. The
accuracy of the pigment classification initially improves when the camera is moved
away from an object. However, as the camera continues to move further, the accuracy
starts to decline. When the camera is initially moved away by a small distance, the
pixels become blurred, and adjacent pixels are more likely to be averaged. This leads
to an increase in the classification accuracy. However, as the camera moves further
away, it goes out of focus due to its limited depth of field. Consequently, photons
from the pigment patch area no longer hit the same pixels and start to hit other
pixels far around its neighborhood. As a result, the classification accuracy decreases.

The increase in SNR had minimal impact on the spectrum, and consequently, the
classification accuracy remained relatively constant. Typically, the spectrum obtained
from a Complementary Metal-Oxide Semiconductor (CMOS) detector exhibits noise
at the lower and upper wavelengths because of the lower quantum energy sensitivity
of the detector at these ends. Increasing the SNR value helped to reduce this noise.
One might question the purpose of increasing the SNR if it does not significantly affect
accuracy. However, it is important to consider the experimental conditions under
which this study was conducted. The experiment was carried out at a distance of 30
cm between the device and the object. It is reasonable to assume that if this distance
is further increased, for instance, by using a 1 meter lens or longer to scan a larger
painting, the observed variation in the spectrum may play a more significant role.
Therefore, increasing the SNR in such scenarios could prove beneficial in reducing
noise and maintaining accuracy.
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In the given HSI device setup, increasing the SNR requires scanning the same line of
pixels multiple times and averaging the spectrum obtained. However, this approach
has a drawback as it prolongs the object’s exposure to illumination, which can be
destructive to light-sensitive artifacts. To address this problem, a potential solution is
to use an equalizer filter. Through our experiment, we observed that the equalizer
filter effectively suppresses noise at both ends of the spectrum. This enables improved
noise reduction without the need for multiple scans or prolonged exposure times, thus
minimizing the potential damage to light-sensitive artifacts. A similar observation
was made when the integration time in terms of its impact on the spectrum variation
and classification accuracy. However, the same trend did not hold for changes in the
illumination angle. The highest classification accuracy was achieved at the standard
45-degree angle, while the accuracy varied with different angles. The least variation
in accuracy was observed at a 30-degree angle, while a more significant variation was
observed at a 60-degree angle. Additionally, it was noted that the non-homogeneity
in the surface of pigment patches influenced this variation.

Limitations

Although Article A offers an extensive examination of the acquisition parameters
for HSI in pigment classification, it limits itself to the pigment mockup used in this
study. Pigment patches are separated from each other, which does not reflect the
typical arrangement of elements in real paintings, where they are usually in close
proximity. Consequently, when there is a variation in focus distance, adjacent pixels
containing different pigments may be erroneously classified due to changes in spatial
resolution. A further detailed study is needed to analyze the nonhomogeneity of
pigment surfaces resulting from factors such as brushstrokes, variations in layer
thickness, and pigment compositions.

In addition, it is important to acknowledge that using an unvarnished mockup in
the study may restrict the applicability of findings to real-world scenarios, where
paintings are usually varnished, and specular reflection may arise due to varying
illumination geometries. The classification algorithm used in the study is one of the
most widely applied algorithms for spectral matching. However, it is crucial to explore
additional supervised algorithms as they may offer improved performance in the
previously discussed scenarios. Evaluating the performance of different algorithms
across various pigment types can contribute to a more robust and effective approach
to classifying pigments.

4.1.2 RQ2: What is the effectiveness of existing classification
algorithms for pigment classification in artwork, and how
can they be optimized ?

Pigment classification with HSI commonly employs supervised classification algo-
rithms. These algorithms compare the spectrum of a region of interest with a spectral
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library by applying predetermined threshold values. In remote sensing applications,
numerous classification algorithms are prevalent for hyperspectral data. Some of
these algorithms are also being applied directly or with slight modifications in other
domains like medicine, food, agriculture, and many more. It is important to note
that the effectiveness of each algorithm varies depending on the specific application
domain in which it is applied. The CH domain differs from remote sensing in terms of
both the acquisition setup and the interpretation of algorithmic results for end-user
tasks. In CH applications, HSI acquisition is usually performed under controlled
laboratory conditions with a relatively small distance between the camera and the ob-
ject, allowing control over illumination and its geometry. This contrasts with remote
sensing, where such controlled conditions are not feasible.

Furthermore, certain algorithms used in remote sensing are insensitive to variations
in the intensity (magnitude) of spectra, which is advantageous for mitigating the
effects of temporal illumination changes in the data. However, these algorithms may
be less effective in CH applications, where magnitude measures are crucial. Therefore,
it becomes necessary to investigate the effectiveness of these algorithms, specifically
in the CH domain. Addressing this necessity, Article B compares eight supervised-
based algorithms, namely Spectral Angle Mapper (SAM), Spectral Correlation Mapper
(SCM), Spectral Information Divergence (SID), Spectral Similarity Scale (SSS), hybrid
combinations of SID–SAM and SID-SCM, and the Jeffries–Matusita (JM) distance
function combined with SAM (JM-SAM), including traditional machine learning
(ML) models, Support Vector Machine (SVM), and two deep learning models, Fully
Connected Neural Network (FC-NN) and 1Dimentional-CNN (1D-CNN), for pigment
classification of a mockup using HSI.

The performance of different supervised algorithms varied when classifying pigments.
The effectiveness of these algorithms depended on the properties of the spectra of the
pigments. Specifically, most supervised-based algorithms exhibited poor performance
when dealing with similar spectra that only differed slightly in magnitude. Similarly,
pigment spectra with low magnitudes across the entire range of wavelengths also
resulted in inadequate performance. Distance-based algorithms, namely ED, SSS and
JM-SAM, showed weakest performance overall. It was observed that, particularly for
a similar spectrum, the accuracy was below 50%. The SID algorithms use a divergence
measure to match the similarity between the spectra, and the smaller the divergence
value, the more likely the pixels are similar. It was observed that SID and its hybrid
combination did not perform well for a few of the pigments, and the reason was due
to the threshold value. The empirically selected threshold was sufficient to classify
the eight out of ten pigments, while for the rest of two pigments, this was above the
required threshold value for most of the pixels. One can change this value to get
most of the pixels classified, but this will result in higher misclassification. When
comparing the supervised algorithms, SCM and SAM performed better on average.
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In contrast, all ML-based models performed better for pigment classification compared
to supervised-based approaches. Such models often require large datasets to capture
nonlinear interactions between features, making them more versatile for diverse and
challenging classification problems. However, it is worth noting that ML models often
require a number of parameters to be tuned (hyperparameters) and optimization
(selecting suitable architectures) to learn such intricate features within the data
and achieve optimal performance, which increases computational complexity and
computing time. On the other hand, supervised-based algorithms do not require such
a large training set and are, therefore, simple and easy to compute. Depending on
the complexity of the spectrum and the available time and resource, algorithms such
as SCM and SAM might still be a good fit for the classification task.

Limitations

As demonstrated in Article B, the application of ML models for pigment classification
yields impressive results. Like any ML problem, Article B involves a complex model
and requires substantial training data. However, in the field of CH, acquiring such
a dataset poses a challenge. Typically, the available database offers only a single
spectrum for each type of pigment. Another limitation of Article B lies in the mockup
used for the experiment. Although the pigments were carefully selected on the basis
of their historical usage, spectrum characteristics, and expert consultation, they may
not fully represent the full range of pigment characteristics. Therefore, expanding
the study to include a broader range of pigments would be beneficial. The study
highlighted the weak performance of supervised algorithms when used to classify
pigments with similar spectra. An analysis of the classification results could have been
included to make the research more comprehensive by employing various orders
of derivatives as a preprocessing step. Furthermore, in Article B, algorithms are
tested and evaluated for the mockup consisting of only pure pigments; however, in
realistic painting scenarios, pigments are in mixed form. Thus, adding mixed and
aged pigments to the evaluation process can be beneficial.

4.1.3 RQ3: How does elevation affect the accuracy of pigment
classification in artworks ?

CH objects like paintings may not always have a flat surface. Several factors, such as
the impasto techniques employed, that is, applying a thick layer of pigments to create
depth, the structure of the canvas or board used, the morphology of brush strokes, and
several other factors, can contribute to adding relief to these objects, resulting in a
2.5D or 3D appearance. The geometry of such relief of a painting plays a crucial role in
how light interacts with their surfaces, which, in turn, impacts the spectrum captured
by hyperspectral sensors for each pixel. Since precise identification and classification
of artworks are crucial, it is essential to thoroughly investigate the influence of these
factors. Therefore, in Article C, we explore the impact of topographic variations on the
accuracy of pigment classification. We used a similar set of classification algorithms
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as used in Article B, and this includes different deterministic and stochastic methods,
their hybrid combinations, and ML models. One of the limitations highlighted in
Article B was the inadequate availability of training data for ML models. To address
this limitation, one possible approach is to utilize data augmentation. This technique
expands the dataset by generating synthetic data that closely resembles the original
using various transformations while ensuring that the semantic interpretation of the
data remains unchanged. Therefore, in Article C, we also analyzed the influence
of data augmentation techniques on the effectiveness of ML models for artwork
applications.

The mockup used in the study comprised three distinct elevation levels: 2.5mm, 5mm,
and 10mm, along with a flat surface. In general, as elevation levels increased, the
classification accuracy showed a decreasing trend. We found that elevation alone did
not significantly impact classification accuracy. Instead, it appeared that the formation
of shadows caused by elevation was more likely to be the contributing factor. The
1D-CNN deep learning model exhibited the highest performance, followed by the
traditional ML model SVM. These two models performed better than the other eight
supervised algorithms in terms of overall accuracy. After the ML models, SCM and
SAM showed better performance compared to the other algorithms, the least accurate
being the ED algorithm. It was interesting to note that SCM and SAM performed
better than SVM, especially in regions with high elevation, where SVM exhibited
lower accuracy, mainly due to shadow effects. The SAM algorithm, which determines
the angle between two vectors regardless of their length, is less affected by changes in
spectrum magnitude. Similarly, SCM eliminates negative correlation while preserving
the characteristics of SAM. Hence, these two algorithms perform better in shadow
areas.

Similarly to the observation in Article B, the algorithm SID and its hybrid combination
with SAM and SCM did not perform well. The effectiveness of these algorithms
varied between different pigments and decreased with increasing elevation. The SID
algorithm relies on the probability distribution of the spectra, and any alteration in
the data distribution can impact the overall entropy value. Additionally, changes in
the dataset can have varying effects on the entropy value for normal and skewed
distributions. Specifically, if both distributions are shifted equally, the symmetric
distribution will experience less entropy change compared to the skewed distribution.
This is due to the higher predictability and lower uncertainty of the symmetric
distribution in contrast to the skewed distribution.

We computed statistical measures for all ten pigments, such as mean, median, stan-
dard deviation, and spectral flatness. In cases where a pigment exhibited a noticeable
difference between its mean and median values, it indicated a skewed distribution.
Moreover, if the standard deviation of such a distribution exceeds its mean, it implies
that the data points are more widely dispersed. Consequently, datasets with a greater
spread are more affected by the same amount of shift compared to datasets that are
tightly clustered around the mean. This leads to a larger relative entropy between
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the two datasets. Therefore, certain pigments are more susceptible to these effects
than others. This also supports why we need to set different threshold values dur-
ing classification for different pigments. We also observed that for pigments having
nearly flat spectrum (identical reflectance values across different wavelengths), it
makes it difficult for algorithms to differentiate between these classes, resulting in
misclassification, which in general lowers the classification accuracy. Additionally, we
noted that the selection of reference spectra greatly influences the performance of
these algorithms for pigment classification. For example, suppose that the reference
spectrum is obtained from a particular region with a given elevation level. In that
case, it tends to exhibit minimal variation when applied to test datasets obtained
from a region with a similar elevation level. This leads to a higher proportion of
pixels being correctly classified. In contrast, using reference spectra from regions with
different elevation levels results in a lower number of pixels to be classified correctly.
Taking an average reference spectrum from different elevated regions yields better
classification results.

In our study in Article C, we augmented the datasets by incorporating four attributes
into the spectrum. These attributes included offset, multiplication, Gaussian noise,
and speckle noise. We created three different training datasets and used the SVM
model for analysis. For the first dataset (dataset 1), we used a single spectrum
from the flat region of a spectral library and then generated the training data. We
considered a single spectrum again for the second dataset (dataset 2), but this time
it was an average of various elevated regions. Lastly, for the third training dataset
(dataset 3), we individually augmented each spectrum with the associated training
datasets. Compared to the other three conditions (without data augmentation, with
dataset 1 and dataset 2), the classification accuracy of an augmented dataset (dataset
3) was higher. The performance was lower when using augmented datasets created
from a single spectrum (dataset1). However, it still performed better than SCM (as
previously noted, SCM performed better after ML models), indicating that even with
a single spectrum available, better classification accuracy can be achieved using ML
models than supervised-based algorithms. The results emphasize the effectiveness of
data augmentation in improving classification accuracy, particularly when multiple
spectra are augmented or when an average spectrum is considered for augmentation.

Limitations

Although Article C provides valuable information for analyzing artwork in the CH
domain, there are a few limitations that should be considered. The study suggests
that the use of an average spectrum from different elevations improves classification
accuracy. However, obtaining such a spectrum in a real scenario can be challenging.
The variation in elevation within the mockup may not adequately represent all types
of 2.5D or 3D paintings; employing a 3D mockup that can provide a more realistic
representation of the painting would have added greater value to the results. Similarly
to Article B, this study used the same mockup, introducing some shared limitations.
ML models were trained and tested on only ten pigments, but expanding the scope
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to include a broader range would have been beneficial.

Furthermore, the incorporation of a mockup with mixed pigments and a varnish layer
would have generalized the results of the study. The results of the study emphasized
the role of shadows in limiting the performance of the algorithms used for pigment
classification. Applying shadow removal techniques before performing the classifica-
tion task and analyzing the results would have been advantageous. Doing so could
have further supported the claim that shadow removal can improve classification
accuracy.

4.2 Quality Assessment for Conventional RGB Imaging

Article D and E contribute to quality assessment for conventional RGB imaging
for digitizing microforms in the context of CH. These articles focus specifically on
addressing research question RQ4.

4.2.1 RQ4: What are the available imaging technologies for mi-
crofiche digitization and how can they be enhanced to im-
prove the quality of the resulting images ?

Microfiche, a type of microform, refers to thin film sheets made of plastic that are
used for storing information, such as a document or image, in a much reduced
format compared to the original. Before the advancement of digital technologies,
microforms were the only available way to archive and preserve large documents.
The CH sector quickly adopted it to capture its collections for preservation, access,
and distribution. Today, many historical collections and documents can only be found
in microfiche format, making them valuable cultural heritage artifacts. On the other
hand, microfiche cannot be directly read by the human eye and requires a specialized
device to enlarge, print, and scan the microform in a readable format. Only a limited
number of specialized archives or libraries still maintain microfiche readers to enable
access to their microform collections. Furthermore, these devices can encounter
various issues over time, such as yellow screens, impacting their usability. Given the
importance of preserving and accessing microfiche materials, exploring alternative
options that can enhance the reading experience and facilitate the efficient utilization
of microfiche becomes crucial.

Microfiche materials, despite their longer life span, are prone to physical degradation
caused by various factors such as exposure to light, fluctuating temperature and
humidity, improper handling, and many more. Adopting digital technologies to
digitize microfiche can overcome some of these limitations. Digitizing microfiche,
which requires magnification, is likely to introduce attributes that can affect the final
quality of the reproduction, e.g., noise, distortion, and artifacts. Quality assessment
should be included as an essential part of the digitization process to ensure that
the digitized object maintains completeness, fidelity, and legibility compared to
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the original. Microfiche materials can suffer from poor legibility and clarity due to
their reduced size, potential degradation over time, or even due to scanning device
limitations. Though, the use of image enhancement techniques might help to enhance
visual quality and increase readability and accessibility.

Addressing these necessity, in Article D, we evaluated the performance of two imaging
devices, a flatbed scanner (professional grade scanner aimed for scanning films),
and an in-house film scanner (LED based multispectral film scanner), and compared
them with the traditional microform reader (commercial device for digitizing all
formats of microforms). We used microfiche with text for this experiment; therefore,
legibility was considered an evaluation criterion. To measure the readability of the
text, we employed OCR and evaluated it using the Levenshtein edit distance metric.
As highlighted in Section 2.4.1, the importance of using standards and guidelines in
the context of CH. The digitization workflow carried out in Article D and Article E was
aligned with the high quality rating of the Federal Agencies Digitization Guidelines
Initiative (FADGI). We paid particular attention to key parameters, such as target
resolution, bit depth, and file format. However, since the microfiche images were
grayscale, color management was not a relevant consideration in this context.

The result of Article D showed that the flatbed scanner at 4800 dpi performed better
than all other devices. The in-house film scanner performed better than the microform
reader, and the flatbed scanner at 2400 dpi exhibited the lowest performance among
the devices tested. We observed that images from a flatbed scanner had reduced
contrast and sharpness compared to images from a microform reader; the distance
obtained showed inverse relation. The discrepancy in distance values was notably
higher for images obtained from the microform reader than for images from the
flatbed scanner and in-house film scanner. Despite having sharper text, images from
the microform reader exhibited noticeable noise and granularity in the background.
We postulated that background content might be a contributing factor that limits text
legibility for OCR. To test this hypothesis, we reanalyzed the results in Article D by
applying smoothing techniques utilizing median filters with varying kernel sizes. The
results validated our hypothesis, confirming that the background content affected
the text’s legibility for OCR.

To further explore the results obtained, we applied median filters to the images cap-
tured by the microform reader and the in-house film scanner, comparing them with
the results from the flatbed scanner. We found that a flatbed scanner at 4800 dpi was
still the best choice. However, a noteworthy observation was made: the performance
of the microform reader improved considerably after applying a median filter. It
surpassed the in-house film scanner and approached the quality level of the flatbed
scanner at 4800 dpi. Thus, results from Article D emphasize that the two alternative
devices analyzed could serve as viable alternatives, and existing microform readers
can yield better image quality in terms of text legibility through the application of
smoothing filters.
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In Article D, the result and analysis are based on microfiche with typewritten text.
Therefore, the result obtained cannot be generalized for microfiche in general, as
microfiche materials may also contain handwritten texts, photographs, etc. To address
this limitation, in Article E, we incorporated microfiche with photographs of natural
scenes and ancient handwritten fragments, including typewritten, and performed
a subjective quality assessment. As influenced by Article D, how applying filters
improved the result, we planned to test the attribute contrast, which is widely
recognized as a significant quality attribute used for image enhancement. Thus, we
applied contrast stretching as a post-processing to find if it enhances the quality
of microfiche material. The flatbed scanner at 2400 dpi did not perform well, as
seen in Article D; thus, for this study, we limited ourselves to the flatbed scanner at
4800 dpi (FBS), an in-house film scanner (IFS), and a microform reader (FSL). We
conducted the psychovisual experiment using a force choice pair comparison method.
This method was selected because of its exceptional ability to identify variations
between images. In addition, it offers the advantage of relative simplicity in design
and implementation. A total of 21 observers were recruited, including an expert.
Due to the difficulty in finding experts with expertise with the microfiche used in the
study and the logistical constraints of physical participation, we included only one
expert.

In our observation, we found that images from IFS were preferred over FSL and FBS,
regardless of whether they were enhanced or non-enhanced versions. In fact, the
non-enhanced version of images captured by the IFS device performed better than
the enhanced version from two other devices, demonstrating its choice for digitizing
microfiche. However, this analysis showed a contrasting result in user preference
for microfiche with text only when compared to the result obtained using objective
metrics in Article D. Despite the FBS images exhibiting lower sharpness and contrast,
Article D reported a high similarity score, indicating FBS as the preferred choice.
However, the results in Article E were completely different, with FBS ranked as the
least preferred device. These findings emphasize the need for subjective experiments
or additional objective metrics based on subjective results to evaluate microfiche
digitization. Furthermore, this discrepancy further emphasizes the importance of
contrast and sharpness as important attributes in microfiche digitization.

Upon analyzing the data separately for the expert and the rest of the observers, we
found that the results were consistent with those obtained from the combined obser-
vations. Furthermore, we also noted that enhanced versions of images were always
preferred over non-enhanced versions for all three devices and for all three categories
of microfiche used, highlighting the significance of using image enhancement tech-
niques. Another interesting observation made was that, depending on the content of
the microfiche, observers’ ability to distinguish between the devices was moreover
affected. i.e., the ability of observers to distinguish between the devices becomes less
pronounced for natural scenes compared to microfiche with text. This distinction
further diminishes for microfiche with fragments. In terms of decision-making time,
observers took less time on average to judge microfiche with text compared to natural
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scenes and fragments.

In Article E, a survey was conducted at the end of the experiment to assess the
observers’ preferences regarding different predefined image quality attributes that
they considered for each type of microfiche. The result suggests that, when eval-
uating quality, legibility is an important attribute, particularly for microfiche with
text. Sharpness is another key attribute that observers prioritize when evaluating
microfiche with text and fragments, whereas, for microfiche with natural scenes,
contrast was the most preferred attribute.

Limitations

Some of the limitations highlighted in Article D were addressed in Article E; however,
we could have analyzed the effect of other image enhancement attributes in Article D
and E. Furthermore, since the subjective experiment is always time-consuming, fur-
ther analyzing some of the existing objective metrics to find if there is any correlation
with the subjective score obtained would have been an important consideration. In
addition, by involving more experts in Article E, the experiment would have con-
tributed to the generalizability of the results. Furthermore, to digitize microfiche
with technical drawings, it is essential to ensure that the digitized versions accurately
capture the intricate details and precision of the original drawings. Therefore, con-
sidering geometric quality attributes such as distortion, scale accuracy, resolution,
and more would have provided a more comprehensive understanding and broader
applicability to the field.

4.3 Limitations and Shortcomings of the Study

The results and analysis obtained in this Ph.D. thesis have made a significant contri-
bution to the relevant field; consequently, in this section, we aim to highlight certain
limitations and shortcomings of this research work from a broad perspective.

Our study used HSI in the VNIR region to assess quality in the invisible spectrum.
Although this approach offered several advantages, expanding our analysis to the
Short-wave infrared (SWIR) region would have been beneficial. Several studies (Cucci
et al. 2016; Delaney et al. 2016; Wu et al. 2017) have demonstrated that pigments,
which may not exhibit noticeable changes in the VNIR range, can reveal distinct
features and material properties in higher wavelengths, which could potentially
provide valuable insights into the differentiation of pigments and a comprehensive
analysis for the task of pigment classification. Moreover, the impact of acquisition
parameters on the SWIR region may demonstrate distinct behavioral characteristics
compared to those observed in VNIR imaging. This disparity can be attributed to
the distinct characteristics of SWIR devices, such as device sensor specifications, the
number of spectral bands, resolutions, and other relevant factors. Although Article A
focuses primarily on the influence of acquisition parameters in the VNIR range, it
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would have been advantageous to broaden the study’s scope to encompass SWIR.
This would provide additional insights into how acquisition parameters impact the
obtained data for a given task, further enhancing the overall understanding of the
quality aspects in HSI across both VNIR and SWIR regions.

Similarly, when considering quality within the visible spectrum, we limited our anal-
ysis to grayscale images to accommodate the specific properties of the microfiche.
However, it is worth noting that this analysis could have been extended to include
other microforms, such as films and negatives, that contain color content. By in-
corporating colorimetric aspects, we could have expanded the scope of our study.
furthermore, due to unforeseen circumstances surrounding the pandemic, we could
not get access to the real painting. By not being able to validate the findings on an
actual painting, the research’s potential benefits and its capacity to address real-world
challenges in the CH domain remained unexplored.

The study involved data processing and the application of various classification mod-
els, including supervised algorithms and different machine learning and deep learning
models, using Python as an open-source platform. However, the lack of programming
expertise, specifically among conservators and curators in the CH domain, could
reduce the potential application of the results. To address this limitation, developing
an open-source user interface software that allows users to perform these tasks with
minimal programming skills, following a user-friendly manual or even without any
programming background would have been advantageous. This approach would
have significantly increased the accessibility and usability of the research findings,
allowing a wider range of professionals in the CH domain to take advantage of the
results of the thesis.

4.4 Contribution to Cultural Heritage Field

Acquiring high-quality hyperspectral data is crucial to obtain accurate and repro-
ducible spectral data for analysis and documentation of artwork. Understanding
how the acquisition parameters impact the data obtained, as discussed in Article A,
valuable information can be gleaned to optimize the acquisition process when using
HSI for artwork examination. This optimization is essential for ensuring the fidelity of
the acquired data and enhancing the overall analysis and documentation procedures.
The accurate classification of pigments in artwork materials is of great significance
for conservators in determining the composition and finding their historical value.
“Article B” and “Article C” explore the application of various supervised algorithms
and ML models for this purpose. These articles aim to evaluate and compare different
algorithms and models to identify the most suitable ones based on the specific char-
acteristics of the materials being analyzed. This selection process is crucial to achieve
an accurate and reliable pigment classification, thereby assisting conservators in their
precise analysis and preservation efforts.

Moreover, “Article C” introduces the analysis of relief, which not only aids in the
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investigation of artworks, but also extends its applicability to the analysis of three-
dimensional objects such as sculptures, and more. This expanded scope of analysis
allows for a comprehensive understanding of artistic creation, enabling deeper in-
sights into the techniques and materials used. Many valuable CH artifacts, such as
historical collections and documents, exist exclusively in microfiche format. Preserv-
ing and ensuring access to these materials has become increasingly crucial, increasing
their popularity. In response to this emerging trend, the research conducted in Arti-
cle D and Article E explores alternative digitization technologies and the investigation
of image processing techniques to improve the quality of digitized microfiche. This
research work has immense potential to propel the digitization process for microfiche
materials, thus making a substantial contribution to CH.

4.5 Contribution to Other Application Domains

Although the primary focus of this research lies within the domain of CH imaging,
the results and analyses obtained from this study have broader implications that
can be extended to various other domains, allowing new perspectives and relevance
across various applications.

The analysis presented in Article A focuses on the acquisition parameters for the
close-range HSI within a laboratory setup for the CH application. The results of
this article can be extended to other close-range applications, including forensic
investigations (Edelman et al. 2012), medical imaging (Zhi et al. 2007), and food
analysis (Melit Devassy et al. 2020), among others. For example, similar to CH arti-
facts, the duration of exposure to the sample is equally crucial in microbiology. When
acquiring HSI data for live microbial samples or food analysis, prolonged exposure
can cause alterations or damage to the sample (Gowen et al. 2015), necessitating
careful consideration of the acquisition parameters. The detection and identification
of forensic traces play a important role in crime scene investigations. HSI, in close
range, has emerged as a valuable technique for the detection and visualization of
latent traces using the spectral differences between the trace and its background
data (Edelman et al. 2012). In addition to the significance of achieving an optimal
acquisition setup, the findings and analyses presented in Article B and Article C, focus-
ing on a range of supervised algorithms and ML models, might provide considerable
potential to enhance forensic applications. Another example of an application where
the results of these articles can be significant is within the field of geological imaging
with HSI. In this application, valuable surface composition information is obtained
by statistical comparison of the known field (that is, library spectra) with unknown
image spectra (Van der Meer 2006) Likewise, it can be equally important for other
applications where the effectiveness of spectral similarity measures is crucial.

The results and analysis of Article C can be useful in scenarios where HSI is employed
to assess the composition and properties of materials exhibiting relief or non-flat
surfaces within a close range. An illustrative example of this is the application of
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HSI in the pharmaceutical industry, where it is used to identify active compounds or
ingredients present in tablets or drugs (SPECIM 2020). Article D and E focus on the
CH domain, particularly for microfiche digitization and enhancement. However, the
findings and analysis presented in these articles are equally important for numerous
other applications that involve digital imaging and magnification techniques. One
such example is digital pathology (Pinco et al. 2009), where digital imaging with some
image enhancement techniques allows pathologists to visualize and analyze tissue
samples at a higher level of detail. Similarly, within the field of medical applications
such as dermatology (Hibler et al. 2016; Pradhan et al. 2020), dermatologists use
magnification, or dermoscopy (10x - 40x magnification), to improve diagnostics
when assessing the skin under visible light that the naked eye cannot detect. These
are just a few examples, and potential applications could extend to many other fields
where detailed examination and analysis of visual data is essential.
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Chapter 5

Conclusion and Future Directions

In this chapter, we provide a conclusive summary of the thesis and give perspective
for future work on the discussed topic.

5.1 Conclusion

Digitization of CH artifacts is essential for improved accessibility, conservation, and
research. It enables wider public access and safeguards against physical deterioration
and potential loss caused by natural disasters or human actions. With the growing
adoption of non-invasive imaging techniques, such as multispectral and hyperspectral
imaging, in CH, digitization has increased exponentially and extended its applications.
Pigment classification in CH plays a crucial role in understanding the historical
context, authenticity, and conservation of artworks. HSI has become an invaluable
tool in this regard, enabling detailed analysis and accurate pigment identification
by capturing a wide range of spectral information. However, it also poses various
challenges in terms of data quality. Likewise, microfiche, a form of microform, was
extensively used for archiving and preserving historical documents prior to the
emergence of digital formats; the presence of numerous historical collections and
documents solely in microfiche format transforms them into invaluable CH artifacts.
However, despite their long lifespan, microfiche is vulnerable to damage and requires
digitization for preservation and broader accessibility. Although microfiche relies
on specialized readers for direct human eye reading, available in select archives or
libraries, these devices can face various challenges that affect their usability over
time. Therefore, finding solutions to enhance the reading experience and facilitate
the efficient utilization of microfiche resources becomes crucial in preserving and
accessing these valuable materials.

This Ph.D. work has investigated and identified crucial parameters for characterizing
and evaluating the behavior and content of digitized artifacts in CH. Research in this
dissertation covers both conventional RGB and HSI techniques, with a specific focus on
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two important CH artifacts: paintings and microfiche. This research has significantly
contributed to our understanding of the importance of HSI in pigment classification.
In conclusion, this research provides valuable insights into the importance of HSI
for pigment classification. The study extensively investigated various aspects of HSI,
including the impact of acquisition parameters on the datacube, a detailed analysis
of classification algorithms using supervised and machine learning techniques for
pigment identification, and the significance of data augmentations.

In addition, the research delved into the relevance of relief in artwork and its implica-
tions for pigment analysis. Furthermore, this work sheds light on the crucial aspects
of microfiche digitization, emphasizing the need for advanced imaging technologies
to ensure its successful implementation. The objective and subjective evaluation
carried out in this study provided valuable information on the effectiveness of these
technologies in preserving and improving the quality of microfiche content. This
research contributes to the preservation and accessibility of CH by addressing the
challenges associated with integrating quality assessment into the digitization pro-
cess, particularly concerning technology adaptation. Furthermore, the knowledge
and methodologies developed in this research have broader applications beyond the
domain of cultural heritage. These findings can be applied to various other applica-
tion domains, expanding the scope and making valuable contributions to the field of
applied computer vision and image processing.

5.2 Future Perspective

Throughout this Ph.D. research, significant findings and insights have been obtained,
leading to the identification of various research challenges and limitations, many of
which have been highlighted in Chapter 4. This section will outline and discuss some
of the research questions that exhibit considerable potential. By conducting research
endeavors that address these research questions, further advancements can be made
in the field.

Real Object: As highlighted in Section 4.3, one of the common limitations observed
in Article A, B and C was the inaccessibility of a real painting to validate our re-
sults. Access to actual paintings would have significantly strengthened our research
work, allowing for a more comprehensive analysis that accurately reflects real-world
scenarios. In the future, incorporating real artworks with relief, a diverse range of
pigments from different periods, and a varnished surface would not only facilitate
exploration of the research potential but also allow one to tackle some new practical
challenges; for instance, one might have specular reflection due to varnish surfaces,
and the effectiveness of different illumination geometries could be explored as a po-
tential solution. Furthermore, the thickness of the pigment layers affects their ability
to absorb and reflect light. Thicker pigments can absorb more light, while thinner
layers may transmit more light or scatter it differently. As pigment thickness can be a
characteristic feature used for the identification and classification, understanding
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how pigment thickness influences the spectral features would be significant.

Preprocessing Datacube: As emphasized in Article B (Section 4.1.2), a hypothesis
is that the inclusion of computing spectrum derivatives as a preprocessing step could
potentially enhance the performance of classification results. This approach is not
new; derivative analysis is a well-established method in spectroscopy (BUTLER et al.
1970). Numerous studies (Demetriades-Shah et al. 1990; Holden et al. 1998; Tsai et al.
2002), mostly in remote sensing, have demonstrated the effectiveness of identifying
derivative features that effectively distinguish between target classes. While applying
the derivative of the spectrum can offer advantages, there are also limitations to be
considered, such as the derivative can amplify noise in the signal (Tsai et al. 2002),
selection of methods for computing derivative, etc. In addition, the effectiveness of the
derivative of the spectrum may vary depending on the specific classification task and
the characteristics of the data(Kalluri et al. 2010). Additionally, the computational
complexity and additional processing time required for computing derivatives should
be considered, as it may impact the practicality and real-time applicability of this
approach. Therefore, further investigation is needed to determine the extent to which
the addition of derivative features improves classification accuracy and whether it is
applicable to a wide range of datasets and classification tasks.

As mentioned in Article C, the influence of shadows on the performance of pigment
classification accuracy. Applying shadow removal techniques prior to classification and
analyzing the resulting improvements would be a valuable area of investigation. Many
shadow identification and removal techniques exist in remote sensing applications (X.
Liu, H. Wang, et al. 2019; Omruuzun et al. 2015). However, shadow identification
can be a challenging task in paintings; unlike in remote-sensing images, where
shadows may have more apparent outlines and shapes(X. Liu, Hou, et al. 2017), in
paintings, artistic interpretation can make it challenging to identify and interpret the
shadows accurately. Therefore, future research can focus on developing techniques
and methodologies capable of identifying and correcting shadows within the context
of paintings.

Multi-Device Analysis: Although the results and analysis presented in this thesis
are derived from data obtained from a specific device, it is essential to recognize
that generalizing these findings requires the consideration of other HSI systems. A
more comprehensive understanding of the phenomena under investigation can be
achieved by including a wider range of devices, such as those employing different
optics, imaging modes (e.g., whiskbroom, snapshot), and sensor technologies. (Pillay,
Picollo, et al. 2020) conducted a round-robin test using data obtained from various
HSI systems following routine acquisition workflow to gain valuable insights into the
accuracy, reproducibility, and precision of the obtained data. The results underscore
the necessity of standardized workflows in HSI. Therefore, establishing standard
protocols and benchmarks for data collection, processing, and analysis would ensure
reproducibility and facilitate further advances in the field.
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Objective Image Quality Metrics: As highlighted in Article E, subjective assessment
typically requires a significant amount of time, effort, and resources to conduct
experiments involving human observers. This can be challenging, especially when
dealing with large datasets. On the contrary, objective assessment methods can be au-
tomated, providing faster and more efficient evaluations. Considering the availability
of numerous objective image quality metrics, some specifically designed for particular
applications (Pedersen, Bonnier, et al. 2011) and others for general image quality
(Hore et al. 2010), it is worth examining their relevance in microfiche digitization.
Exploring the potential benefits involves investigating whether these metrics can
be directly utilized or modified to better align with the unique characteristics of
microfiche digitization.
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Abstract. Pigment classification of paintings is considered an
important task in the field of cultural heritage. It helps to analyze
the object and to know its historical value. This information is
also essential for curators and conservators. Hyperspectral
imaging technology has been used for pigment characterization
for many years and has potential in its scientific analysis. Despite its
advantages, there are several challenges linked with hyperspectral
image acquisition. The quality of such acquired hyperspectral
data can be influenced by different parameters such as focus,
signal-to-noise ratio, illumination geometry, etc. Among several, we
investigated the effect of four key parameters, namely focus distance,
signal-to-noise ratio, integration time, and illumination geometry on
pigment classification accuracy for a mockup using hyperspectral
imaging in visible and near-infrared regions. The results obtained
exemplify that the classification accuracy is influenced by the
variation in these parameters. Focus distance and illumination angle
have a significant effect on the classification accuracy compared
to signal-to-noise ratio and integration time. c© 2021 Society for
Imaging Science and Technology.
[DOI: 10.2352/J.ImagingSci.Technol.2021.65.5.050406]

1. INTRODUCTION
Hyperspectral Imaging (HSI), also called imaging spec-
troscopy, is a non-invasive imaging technique that generates
a spatial map over continuous spectral bands, producing a
three-dimensional datacube i.e., two spatial and one spectral
dimension. On the basics of data acquisition methods, a
spectral data can be created using three general approaches
namely, whiskbroom (point scanning), pushbroom (line
scanning), and snapshot (single-shot). The line scanning
approach is widely adopted because of its higher Signal-
to-Noise Ratio (SNR) and flexibility [1]. In this approach,
the object is scanned line by line at a time, it uses an array
of detectors to scan over a two-dimensional surface using
a detector perpendicular to the surface of an object being
scanned [2, 3]. HSI technology which was initially developed
and used for remote sensing applications [4] has later been
used in different application domains such as agriculture
[5], medical [6], forensic [7], biomedical engineering [8],

IS&T Member.
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online Oct. 14, 2021. Associate Editor: Markku Hauta-Kasari.
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Cultural Heritage (CH) [9], etc. Materials with distinct
spectra as each element emits a distinctive set of discrete
wavelengths according to its atomic andmolecular electronic
structure [10].

With the development of sophisticated hardware and
software, this imaging technology is being used more
frequently for the analysis of work of art [11, 12]. Pigment
classification of artwork materials such as paintings is of
importance for conservators to do a precise analysis of an
object andunderstand its historical value [13, 14].Despite the
significant utilization of HSI in this field [15–18], there are
still important challenges in terms of delivering high-quality
spectral data. Defining image quality is a complex subject.
For three-channel (RGB) imaging, quality criteria are often
subjective as it reflects the visual perception of a human
observer [19, 20]. However, for HSI it is not only limited
to perceptual quality, as it captures data beyond the visible
range and is used for a wide range of applications, therefore
it is difficult to generalize the definition of quality. Several
definitions of spectral quality can be found in the literature
and most of them depend upon the application. Fryskowska
et al. [21] define quality as the suitability of a specific dataset
for a specific purpose. This is more appropriate for spectral
imaging in general and thus for pigment classification, the
obtained spectral data will be considered to have high
quality if the classification accuracy is high. From the
perspective of image quality in spectral imaging, most of
the research work has been focused on the remote sensing
application [22], where the acquisition ismade from satellites
and aircrafts with significant ground sample distance. The
sun is a primary source of illumination; the scattering and
absorption of sunlight by different layers of the atmosphere
can result in intensity modifications and spectral variations,
resulting in degradation of obtained data quality. To deal with
such degradation, many algorithms have been developed,
for example, correction of atmospheric interference [23].
However, for CH applications, the acquisition is carried out
in a close range and the quality of obtained data depends
upon parameters of the HSI system such as illumination
geometry, the focus of optics, sensor integration time,
and SNR [18, 24]. Although instrument calibration is an
essential step to obtain valuable and relevant results from
HSI, however, more of these parameters are quantified by
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device manufacturers and, therefore, are not considered in
this paper.

In an artwork, the pigments used are usually mixed, i.e.,
one or more pigments are mixed with a binder such as oil,
egg tempera, gum, etc., and therefore have heterogeneous
structures that can have a significant effect on gloss levels.
For example, mixture of some pigments, or paintings with
varnish layers can cause specular reflection, especially due
to the angle of illuminations [25], which will further
affect the spectral accuracy and result in incorrect pigment
classification. The illumination used is an important factor
in imaging. A study done by Toque et al. [26] showed that
the spectral reflectance obtained usingmultispectral imaging
of a painting was influenced by the lighting conditions.
Intensity, type of illumination, and angle of incidence were
key elements that influence the resulting data. In a painting,
surfaces are often uneven, therefore acquiring images at
an optimal focus distance can be a difficult task. Hence,
it is important to explore how this influences the obtained
spectral data and classification accuracy.

In CH applications, objects are sensitive to temperature.
Any object exposed to an illuminant for a longer time
during acquisition can result in a change in the material
property due to the heat generated by the illuminant,
causing significant damage to the object. One possible way
to minimize this effect is by increasing the speed of the
acquisition. Higher integration time also increases the noise
level in the data. It is very common to use silicon-based
detectors, such as a charge-coupled device (CCD) in VNIR
HSI systems. Such sensors have lower sensitivity at the two
ends of wavelength in the VNIR region, i.e. near 400 and
1000 nanometers (nm), resulting in a noisy spectrum in
this region. Thus, it is important to investigate how the
reconstructed spectrum of artwork materials differs from
their original when there is variation in imaging parameters.
Therefore, the objective of this research work is to investigate
the effect of imaging parameters such as focus, integration
time, SNR, and illumination geometry on the classification
accuracy of pigments. The rest of this paper is structured
as follows, Section 2 describes the state of the art for
image acquisition parameters, and it summaries how these
parameters can affect the overall quality when used with the
HSI systems for CH applications. Object details, imaging
technology, and the experimental framework used are stated
in Section 3. Section 4 covers the result with discussions.
Finally, Section 5 presents conclusions followed by future
work.

2. STATE OF THE ART
In a digital imaging system, the acquisition stage can be
considered as an essential component. For acquisition of
high-quality digital data, several acquisition parameters need
to be addressed and controlled. Digital image capture is a
function of the light source, reflective surface, distance, the
angle between the device, the surface, and the illuminant.
The optical resolution, noise, depth of field, integration time,
illumination, etc. are some of the important acquisition

parameters [27, 28]. These parameters are linked to quality
attributes such as sharpness, color, tonality, and resolution,
and can influence the overall quality of the captured data. In
an imaging device with a low depth of field, the objects at
different depths from the camera may appear out of focus if
they are away from the focus plane [29, 30]. When capturing
CH objects, it should be a sharp focus across the entire
object being captured, but depending upon the depth of
field and object irregularities, it can result in variation in
image sharpness resulting in a blurry image and consequently
degrading the quality [31].

Illumination is an important factor that often influences
image quality attributes such as color reproduction and
texture. During an acquisition, if the object is overexposed,
the image will be brighter, and the details of the highlights
in the scene will be lost, while on the other hand if
the exposure is insufficient, the details in the shadows of
the scene will be difficult to distinguish. Loss of image
details can reduce the usefulness of the acquired images
in CH documentation. Accurate color reproduction is
an essential requirement for documentation and study of
artworks [32–34] e.g., monitoring the fading phenomena and
studying color change due to removal of the varnish layer
[35, 36]. Image acquisition parameters mentioned above can
be more or less important depending upon the application
and objective of imaging. Different imaging technologies can
be used for image acquisition, allowing more or less similar
acquisition parameters. These imaging technologies can be
grouped in multi-band, multispectral, and hyperspectral
depending on the number of bands selected over a given
spectral interval and on their bandwidths.

Numerous studies have shown the successful use of HSI
in the study and analysis of CH artefacts [9, 25, 37, 38].
However, the image acquisition of artworks using HSI has
several issues for acquiring high-quality data [39–41] and it
involves a number of calibrations and corrections steps to
obtain an accurate spectral data [24, 42, 43]. Kubic et al. [25]
discussed some problems of HSI acquisition of a painting.
Depth of field is also crucial for close-range HSI, particularly
for artwork such as paintings that are often warped or
have uneven surfaces. Thus, acquiring spectral data at the
optimum focus can be challenging. Qureshi et al. [41]
discussed few challenges involved in the acquisition and
processing of HSI for documents. SNR, integration time, and
illumination are the most highlighted imaging parameters
that influence the quality of HSI data. Pillay et al. [24]
have addressed similar parameters and the usefulness of
filters, such as equalization and polarizing filters, in the HSI
acquisition workflow that can affect the overall data quality.

To gain a better understanding of spectral imaging
devices and analyze how they influence data reliability for
different artworks, working group 1 of the EU COST-Action
TD1201, Color and Space in Cultural Heritage (COSCH)
(website: http://www.cosch.info/) initiated a round-robin
test that was carried out by nineteen institutions across
Europe for five different types of objects using both
multispectral andHSI [17]. It addresses various issues related
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to instrumentation, data collection, and post-processing over
the accuracy and reliability of data. The resulting data was
affected (error in spectral alignment, noise, spatial distortion,
etc.) by various aspects, such as device configuration,
acquisition environment, and methods of data processing,
and this could further have an important effect on pigment
classification. MacDonald et al. [44] performed a quality
assessment of Russian icon digitization, it was one among five
different objects used in theCOSCHproject. They found that
the obtained data was degraded due to specular reflections
from both glossy painted and metallic gold areas of the
icon’s surface indicating the control over the illumination ge-
ometry. The imaging system used and workflows employed
by the participating institutions varied widely, including
camera specifications, illumination, imaging geometry, and
file formats. It also highlighted that there is a strong need of
guidelines for the spectral imaging workflow.

Generally, halogen lamps are used as an illumination
source due to their continuous spectrum of light, from ul-
traviolet to mid-infrared region, i.e., 350–3400 nm. Halogen
lamps emit significant levels of electromagnetic radiation,
a lot of energy is converted into heat. Organic materials
are more sensitive to heat, moderate heat can change the
properties of varnish affecting the glossiness of an object.
Artwork exposed under excessive heat for a longer time
can have a destructive impact, for instance, melting of the
varnish or even the paint layer [45]. This can be minimized
by following the guidelines, which suggest the use of a
proper illumination level (150–200 lux for oil paintings and
50 lux for manuscripts and other paper-based artworks) and
other environmental factors for sensitive CH objects [46, 47].
An illumination source that raises the surface temperature
of an object more than four degrees Fahrenheit (257.6 K)
in the total acquisition process, is not recommended [48].
Fundamentally light-induced damage is determined by the
accumulated total energy incident on material i.e. lux hour
rather than the intensity of the incident light. Illumination
used in an imaging device setup for an art object can be used
either with low-intensity light for a longer time or with high-
intensity light for a short time; in both conditions, we may
achieve similar SNR. Nevertheless, this reciprocity principle
might not always hold for every work of art, for example,
some pigments in a painting, and can be independent of time
period [49]. However, due to the total energy incident on an
object, higher intensity light is preferred [38].

Whetton et al. [50] evaluated the effect of camera height,
angle, integration time, and distance between the illuminant
and the object on the SNR for wheat plant canopy captured
with an HSI system and found these parameters to have
a high influence on the spectral quality. A noisy spectrum
was obtained when imaged with low integration time and a
larger distance between an illuminant and the object. Due to
the acquisition setup similarity (i.e., close range), we assume
these parameters might also influence the acquisition of CH
applications. Likewise, Wang et al. [51] also mentioned focus
and integration time as factors influencing spectral image
quality. For acquisition of images of fruits using HSI, it was

difficult to preserve the focus due to nonuniform fruit size
(parameters comparable to CH objects), resulting in either
too bright or too dark areas within the fruits making feature
extraction a difficult task. To solve this issue, the author
recommended a few steps such as changing the orientation
of scanning, adding additional lamps, and using a multi-step
reflectance target.

Researchers often prepare mockups using specific pig-
ments mixed using binders [52, 53]. These are modern pig-
ments having similar properties to historical pigments from
different periods. Generally, shiny materials were used in
traditional Asian arts and imaging such objects often causes
serious challenges as the intensity of the specular reflection
component is usually much higher than that of the diffuse
reflection, producing a saturated image. Light scattering is
dependent upon the surface properties such as roughness,
reflective binders, varnishes, etc., and canmodify the spectral
reflectance behavior [54, 55], it can also cause specular
reflection especially on varnished or glossy paintings. Even
in controlled laboratory conditions, non-homogeneously
illuminated paintings result in highlights and shadowy areas
and degrade the overall quality below a useful level.

In artwork analysis, one of the important tasks is pig-
ment identification [26, 38, 56, 57]. For pigment classification
using HSI, the two common approaches are supervised and
unsupervised methods. Researchers mostly use supervised
classification [58, 59], where they compare the obtained
spectrum with a reference spectrum that is mostly created
within a Region Of Interest (ROI) and stored as a spectral
library, whereas, in an unsupervised method, it looks for
spectral clustering of pixels [59, 60]. One of the most
commonly applied classification algorithms using data from
HSI is the Spectral Angle Mapper (SAM) [61, 62]. This
method considers the angle formed between the spectrum
of the reference and the test image at each pixel, where
smaller angles represent a closer match of the spectrum.
Each spectrum is treated as a vector in an N -dimensional
space where N is equal to the number of spectral bands.
Few other algorithms used for supervised classification are
spectral correlation mapper [62], maximum likelihood [63],
spectral information divergence [64], and spectral gradient
mapper [65]. It is essential to assure that the spectral
data acquired from the artwork is accurate to achieve the
precise classification of thematerials/pigments present in the
artwork. The HSI acquisition parameters can influence the
quality of the spectral data, and the objective of the presented
research is to study the link between them.

3. MATERIALS ANDMETHODS
In this section, we describe the test object and the hyperspec-
tral image acquisition laboratory setup, followed by details on
the acquisition parameters. The classificationmodel and data
post-processing steps are also explained.

3.1 Test Object
Apigmentmockup [53] was used as a test object in this work.
The reason to choose this mockup as an object was because
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Figure 1. Pigment mockup used as test object. Labels for patches have been added here for description and are not part of the mockup.

Figure 2. The layout of HSI system used for the experiment. Illumination used was a 150 W halogen-based SmartLite 3900e produced by Illumination
Technologies, Inc., guided on the object via optical fiber. Illumination geometry is 45◦ - 0◦ - 45◦, here 0◦ implies camera angle with normal.

of its material and physical characteristics considering its
usefulness in CH. Powder pigments that are known to have
been used in the historic period (14th–18th century) were
mixed using linseed oil as a binder and applied over a
stretched canvas that were pre-primed using gesso. Patches
were made using different concentrations of seven pigments,
each weighed on a precision scale. The pigments were
Vermilion (V), Ultramarine Blue (B), Viridian Green (G),
Naples Yellow (Y), Gold Ochre (O), Kremer White (W),
and Novoperm Carmine Red (C). In the remaining part
of this paper, we will denote these pigments with their
abbreviations. Abbreviations in the capital and small letter
will be used to denote the concentration of mixtures. For
example, the letter VB denotes that the ratio of mass is 1:1 for
pigments B and V. Similarly, Bv is 2:1 and Bvy means 2:1:1. A
picture of the pigment mockup is shown in Figure 1.

3.2 Experimental Setup
Hyperspectral images were obtained in a laboratory environ-
ment using the line scanner HySpex VNIR-1800 developed
byNorsk ElectroOptikk [66], consisting of an actively cooled
and stabilized complementary metal-oxide-semiconductor
detector. The spectral data obtained covers a spectral range
from 400 to 1000 nm with 186 spectral bands having
a spectral sampling of 3.26 nm. The scanning speed is
automatically synchronized with the integration time which
is manually set on the device using the camera interface
software HySpex GROUND. In this experiment, a 30 cm
cylindrical lens was used that captures 1800 spatial pixels
across a line with a field of view of approximately 86 mm.

As shown in Figure 2 the experiment was conducted in
a laboratory environment and a translation stage setup was
used where the pigment mockup was placed on the moving
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platform. The Spectralon R© multi-step reference target [67]
consisting of four adjacent panels with reflectance values
99, 50, 25, and 12% and a ColorChecker [68] was also kept
along with the test target at the same horizontal level in every
scan as shown in Figure 3 and were perpendicular to the
focal axis of the camera [69]. The reference target is used
for computing the normalized reflectance at the pixel level.
The objective of using a ColorChecker was to validate the
obtained spectral data.

3.3 Methodology
Setup as shown in Fig. 2, the optimal focus is obtained at
a distance of 22 cm from the camera as claimed by the
HSI device manufacturer. We will consider this distance
as a reference focus point (Gnd_T) throughout this paper.
For focus, we choose to change the distance away from the
camera with a step size of 2 cm from Gnd_T. Due to the
arrangement of the setup, it was convenient to move the
camera in the direction as shown in Fig. 2. The Number
of scans (N ) was changed for pushbroom HSI, which is
scanning every single line multiple times and taking an
average before moving to the following line. This procedure
improves the SNR ratio by a factor of N . For a work of art
reducing the measurement time as much as possible reduces
the exposure to the radiation during acquisition of HSI
data which further helps in safeguarding the analyzed work.
Therefore, for SNR, acquisition with a value of N equal to 1,
2, 4, 6, and 8 was carried out and it was done by giving input
directly to the software provided by device manufacture.
Orientation including other acquisition parameters was kept
as specified in Fig. 2.

Integration time is another important attribute of image
acquisition. Acquiring an image at a lower integration time
will make the acquisition process faster and lower the
exposure of an object to the illumination. There is a trade-off
between light intensity and integration time, as it is important
to keep the art object less exposed to high light intensities.
Therefore, for this part of the experiment, we changed
the integration time from the minimum (allowed by the
device software i.e., 2150 µs) to a certain higher value (i.e.,
12,500 µs) so that its pixels have saturation values between
85% and 10%. The scanning was conducted with SNR equal
to 2. In the last part of the experiment, we studied the
influence of illumination angle on the acquired spectral data
for classification accuracy. The standard configuration for
scanning is at 0◦, 45◦ for the camera and illuminant, respec-
tively.We changed the angle of the illuminant to 30◦ and 60◦.

Detectors have low sensitivity at low and high extremes
of the spectral range and the illumination intensities near
these regions are weak as well, thus resulting in the adding
of noise in the spectral data. One possible way is to use an
equalization filter. This helps to improve the SNR mainly
towards the extremes of wavelength at the same time it also
limits the power efficiency of the light source in the central
region of the detector and might need a longer integration
time. We used an equalization filter on the device and the
acquisition of the pigment mockup was carried out at an

Figure 3. Acquisition arrangement of pigment mockup with the
Spectralon R© multi-step reference target to the left and ColorChecker on
the right. Numbering for ColorChecker is added manually here in this
figure for reference.

illumination angle of 45◦ to observe its effect on the obtained
spectral data.

3.4 Data Processing
The obtained raw hyperspectral data require post-processing
to acquire calibrated normalized reflectance data. Radiomet-
ric calibration was carried out where the raw digital number
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data from the camera was corrected for non-uniformity
and dark offset and then converted to sensor level absolute
radiance value using the standalone post-processing software
HySpex RAD. Finally, the reflectance factor for the pigment
mockup was calculated using the known reflectance value
of the reference target. Calculation is shown in Eq. (1),
where, RObj(λ) is the reflectance of an object, RRef_t (λ) is the
reflectance of reference target, rObj(λ) and rRef_t are sensor
absolute radiance values for the object and reference target,
respectively. The reference target surface might have some
variation in pixel value, so we averaged the values from
100 pixels for each line scan and calculated the reference
target radiance value. Due to the small distance between the
sensor and the object, we assumed that the path radiance
effect to be negligible. The obtained spectral data was then
cropped to exclude the ColorChecker and the reference
target. The modification was made using the open-source
software Spectralpython [70].

RObj(λ)= RRef_t (λ)
rObj(λ)

rRef_t (λ)
(1)

α = cos−1

nb∑
i=1

tiri√√√√ nb∑
i=1

ti2
√√√√ nb∑

i=1
ri2
. (2)

For classification, a supervised approach using the SAM
algorithm was applied with a default threshold angle of
0.1 radians. The spectral angle between an image pixel and
reference spectrum is given by Eq. (2), where α is the
spectral angle in radians, ti is the image spectrum, ri is the
reference spectrum and nb is the total number of bands.
We defined the training region for each of the pigment
patches, i.e. an ROI of approximate size equal to that of
the patches (25× 25 mm) was considered, and the regional
mean spectrum from these patches were stored and used
as the reference spectrum. The classification accuracy was
calculated with the statistical parameters, i.e., confusion
matrix [71, 72] using the commercial remote sensing
software Environment for Visualizing Images (ENVI). The
overall methodology is illustrated using a block diagram in
Figure 4 and Table I shows the summary of the acquisition
parameters.

Figure 4. Hyperspectral data processing workflow diagram.

Figure 5(a) shows the pigment patches and Fig. 5(b)
illustrates its corresponding image after classification. Differ-
ent colors in Fig. 5(a) indicate pixels for the particular patch.
Accuracy is evaluated as the ratio of classified pixels to the
total pixels in a given ROI polygon. As an example, the result
of the classification of four patches under optimal acquisition
conditions is shown in Table II.

4. RESULTS ANDDISCUSSION
In this section, we will look in detail at the spectrum
and classification accuracy obtained for the mockup and
ColorChecker by varying the quality attributes, i.e. focus,
SNR, integration time, and illumination angle.

4.1 Focus
Figure 6 shows the spectrum of three different patches for
varying focus distance from 0 cm (Gnd_T) to 16 cm away
from the initial position of the camera. For the patch O
(Fig. 6a) there are slight changes in the magnitude of the
spectrum mainly in the range between 600 and 1000 nm.
Whereas for the patchOB (Fig. 6b) and patch voB (Fig. 6c)we
can see a spectral variation in both visible and near-infrared
regions. The spectrum is plotted for a small region within
the given patch, i.e., averaging 10× 10 pixels, each patch is

Table I. Acquisition parameters. Variable indicates the different values at which acquisition was done and fixed parameters imply the condition that was constant for each set of
experiments; I is illumination measured.

Acquisition parameters Variables Fixed parameters

Focus distance (F) {Gnd_T, 2, 4, 6, 8, 10, 12, 14, 16} cm SNR= 2, IT= 12,500 µs, A= 45◦, and I= 3200 lux
SNR {N = 1, 2, 4, 6, 8} F= Gnd_T, IT= 12,500 µs, A= 45◦, and I= 3200 lux
Integration Time (IT) {2150, 2500, 5000, 7500, 10,000, 12,500} µs F= Gnd_T, SNR= 2, A= 45◦, and I= 3200 lux
Illumination Angle (A) 30◦, 45◦ and 60◦, and I= 2375, 3200 and 4700 lux F= Gnd_T, SNR= 2, and IT= 12,500 µs
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Figure 5. (a) Pigment patches, single pigment O; Vb patch is a mixture of two with concentration 2:1; voB mixture of three with concentration 1:1:2; OB
contains two pigments with equal concentration. (b) Classified image, where color indicates the class that each pixel has been classified to.

Table II. Classification accuracy: total number of pixels classified correctly for each patch within the selected ROI.

Patch O Patch Vb Patch voB Patch OB
Red Green Blue Yellow

Patch O (Red) 80,850 (99.98%) 0 0 0
Patch Vb (Green) 0 73,223 (99.90%) 0 0
Patch voB (Blue) 01 0 68,337 (93.40%) 30,739 (33.50%)
Patch OB (yellow) 0 0 2159 (2.95%) 45,812 (49.93%)
Unclassified 14 (0.02%) 74 (0.10%) 2668 (3.65%) 15,209 (16.57%)

Total No. of Pixels 80,864 73,297 73,164 91,760

approximately 500× 500 pixels. In general, we can observe
that there is a change in the magnitude of the spectrum, and
the shape of the spectrum is moreover constant.

It was also seen that variation in magnitude of spectrum
change with the number of pixels chosen to average, in fact,
data plotted from sub-areas in different places within the
same patch showed high variations as shown in Figure 7(a).
This is mainly because of variation in pigments mixture
concentration and nonuniformity in the applied layers. The
effect of this variation and nonuniformity is also seen in
classification, as shown in Fig. 5(b), not all patches are equally
classified and thus have different classification accuracy.
More pixels are classified in patches with a single pigment
and or homogeneous texture compared to that of having a
rough texture. Liang [38] also mentioned that the ratio of
pigment concentration to bindingmediumaffects the peak of
the spectrum. This argument can be supported by observing
the spectra of ColorChecker patches as shown in Fig. 7(b),
we can observe that there is a slight variation in magnitude

towards the higher wavelength but still the overall shape of
the spectrum is similar.

The result for the pigment classification overall accuracy
for the givenmockup is shown in Figure 8. It is observed that
the classification accuracy initially increases as an object gets
further away from the camera starting from the optimal focus
point and after some points, it starts to decrease. It is because
as it moves away from an object, pixels become slightly out of
focus and therefore blurred (smoothed), and more adjacent
pixels are averaged. As the camera moves further away from
the pigment mockup, the camera is outside the optimal focus
distance and depth of field, thus photons from the pigment
patch area are no longer hitting the same pixels and start to
hit adjacent pixels and affect the obtained spectrum.

4.2 SNR
Spectrum for various SNR levels (frame averaging) for three
different patches are shown in Figure 9. The three patches
shown are a patch with a single pigment (Fig. 9a), a mixture
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Figure 6. Spectrum for different pigment patch at different focus distance; (a) Patch O, (b) Patch OB, and (c) Patch Vow.

Figure 7. (a) Spectrum for pigment patches obtained at multi-point; for patch O (in black) and patch Vow (in blue), variation is mainly from 550–1000 nm
whereas, for patch OB (in red), variation is over the entire wavelength range with slightly higher towards 1000 nm; (b) Spectrum for ColorChecker blue
patch (number 23) at the different focus distance.

of two (Fig. 9b), and a mixture of 3 pigments (Fig. 9c). To get
a smoother spectral curve, we used a window size of 10× 10
pixels i.e., averaging the spectrum over 10 adjacent pixels. It
is observed that the change in the spectrum for different SNR
levels was lower for all patches over the entire wavelength
range. There is no recommendation or standard practice for
considering an exact number of pixels to plot the average
spectrum. However, experts recommend focusing on a small
section of paintings by using between 6 and 18 pixels. When

the size of this window was changed to 1× 1 pixel, we notice
a variation in spectrum i.e., noisier which decreased with a
higher value ofN , a result for a patch O is shown in Fig. 9(d).
Spectrum is plotted with an offset in normalized reflectance
for better visualization.

It can be observed that there is a variation in the
spectrum mostly in the regions of 400–500 nm and 850–
1000 nm and as SNR increases the spectrum become
smoother (less variation). The variation seen is for the reason
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Figure 8. Overall classification accuracy for pigment mockup at the
different focus distances.

that exposure in this region requires a longer time compared
to mid-region wavelength to overcome the effect of lower
quantum energy (sensitivity) of a detector. One possible
way to improve this is by using an equalization filter, as
it attenuates the light in the mid-region and improves the
relative SNR at both ends region of the wavelength range.
Figure 10 illustrates the spectrum obtained after using an
equalization filter for three patches and the ColorChecker
(white patch #24). The spectrum obtained with and without
a filter is shown by a solid and dotted line, respectively. It
can be seen that, towards both ends of the wavelength range,
the spectral variation decreases when the equalization filter
is used. The experiment was performed at a distance of 30 cm
from the camera to the mockup and this close distance could
be one reason for obtaining less noisy data. Classification
accuracy for pigment mockup for the different SNRs did
not differ much, and the results are shown in Figure 11,
there is only a change in obtained value after the second
decimal.We also computed the classification accuracy for the
ColorChecker, and it was above 99% for all 24 patches, this
is because the standard ColorChecker patches have smooth
spectral curve characteristics.

4.3 Integration Time
For different integration times, as shown in Figure 12, the
magnitude of the spectrum for all three patches did not
show any significant changes. A slight shift can be noticed
for patches OB (Fig. 12b) and Vow (Fig. 12c) in the range
of 800–1000 nm. It implies similar accuracy in HSI data
can be obtained with reduced measurement time, i.e., less
exposure of an object to radiation. As shown in Fig. 12(d),
the spectrum obtained from the ColorChecker for different
integration times were also identical. During the acquisition,
the illumination intensity varied such that pixels in the field
of view have saturation values between 85% and 10%, and the
spectrum was plotted by taking an average of 10× 10 pixels.
However, for the non-homogeneous paintings, neighboring
pixels could have different characteristics. Thus, obtaining
an average over a bigger window size would not be possible,

so that the result might be affected. The classification
accuracy is shown in Figure 13, which illustrates that for
the variation in integration time, the classification accuracy
is moreover the same. It can also be observed that for
variation in either of parameters SNR or integration time,
similar classification accuracy can be obtainedwith sufficient
illumination level.

4.4 Illumination
To analyze the effect of illumination angle on the spectral
data, the acquisition was done with focused illuminants
at three different angles. The result obtained is shown in
Figure 14. It illustrates that there is a shift in the spectrum
in the range of 600–1000 nm for patch O and Vow, but this is
not the case for Vb and OB. The reason for this is assumed to
be the non-homogeneity in the surface of pigment patches.
It can also be noticed that at an angle of 30◦ and 45◦ there is
very little variation in the spectrum for all four cases whereas,
for O and Vow, there is a slightly high shift in magnitude at
60◦. Classification accuracy, as shown in Figure 15, is higher
at 45◦ and changes at a different angle of illumination.

4.5 General Observation
Patches in a pigment mockup are separated from each other,
which is not common in real paintings, as elements in
the paintings are normally close to each other. Adjacent
pixels of different pigments can be misclassified as the
spatial resolution changes with focus distance and can
change the classification result. A shift in the spectrum
does not have any significant effect on the classification
accuracy for the attributes SNR and integration time, but
this could be important for other applications such as fading
or applications that have different concentrations of the
same pigment. The influence of SNR and integration time
can be more visible if the distance between the camera
and object is increased, which could be the case when
scanning larger paintings. For larger objects, a rotational
stage is used which introduces geometrical errors. An
experiment can be conducted in the future to see how
this geometrical distortion affects the classification accuracy.
Despite having optimal instrumental setup and calibration
workflow, pigments surface non-homogeneity in artwork
arising from the brushstroke, various thickness layers,
compositions in pigments, etc., can affect the obtained
data, resulting inmisclassification and identification. Further
experiments need to be conducted to analyze various
factors constituting non-homogeneity on pigment surfaces
in works of art, for example, thicknesses, textures, etc. and
correlating them with classification accuracy. The mockup
in our experiment was unvarnished, usually, paintings are
varnished in a real scenario and illumination geometry can
cause specular reflection on painting [73]. Berns et al. [74]
explained in detail about optics behind varnished paintings,
which states that the physical parameters of a varnish affect
its optical properties when applied to paintings. Experiments
with a new mockup addressing these limitations can be
conducted in the future to get a comprehensive result for
classification accuracy.
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Figure 9. A spectrum of different pigments patch for different SNR; (a) Patch O, (b) Patch OB, (c) Patch Vow, and (d) Spectrum for patch O with offset in
the normalized reflectance.

Figure 10. Spectrum for different pigment patches and the ColorChecker:
with and without an equalization filter. The letters O, Vow, and Bw
represent spectrum for pigment without equalization filter and letter with
underscore suffix EQ represents spectrum obtained using the equalization
filter.

5. CONCLUSION
Hyperspectral imaging is being used more frequently in
the cultural heritage field to study materials and their
distribution. The quality of the acquired hyperspectral
data is important to produce accurate and reproducible
spectral data for the analysis and documentation of a

Figure 11. Classification accuracy at different SNR values.

work of art. It can be influenced by different acquisition
parameters and is also dependent upon the attributes linked
to specific applications. In CH, pigment classification of
artwork materials, such as paintings, is of importance
for conservators for precise analysis of objects and their
historic value. Therefore, to understand how the acquisition
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Figure 12. Spectrum for different pigment patches and ColorChecker for different integration time; (a) Patch O, (b) Patch OB, (c) Patch Vow and
(d) ColorChecker blue patch (number 23).

Figure 13. Classification accuracy at different integration time.

parameters affect the quality of the obtained spectral data,
we investigated the influence of four key parameters, namely,
focus distance, signal-to-noise ratio, integration time, and
illumination geometry on pigment classification accuracy
for a mockup using hyperspectral imaging in visible and
near-infrared regions.

We observed that pigment classification accuracy is
influenced by a change in focus distance. Moving an object

Figure 14. Spectrum for different pigments patches and the ColorChecker
at three different illumination angles. The number in the legend represents
the angle of illumination.

away from the focus plane, pixels appear out of focus
resulting in a blurred image. Blurring acts as a low pass
filter and smooths edges and consequently increases the
classification accuracy, however, after a certain distance,
the classification accuracy starts to decrease. SNR and
integration time have less effect over classification compared
to focus. One possible reason for this might be due to less
noise in a close-range laboratory setup. The pigment patches
in the mockup have an uneven surface, which results in
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Figure 15. Classification accuracy at a different angle of illumination.

significant variation in the spectrum obtained at different
pixels within the same patch. Changing the illumination
angle changes the magnitude of the obtained spectrum to
some extent and also varies the classification accuracy. An
equalization filter can help to reduce the noise in the obtained
spectrum especially at two ends of the wavelength range in
the VNIR region.
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Abstract. Hyperspectral imaging techniques are widely used in
cultural heritage for documentation and material analysis. Pigment
classification of an artwork is an essential task. Several algorithms
have been used for hyperspectral data classification, and the
effectiveness of each algorithm depends on the application domain.
However, very few have been applied for pigment classification
tasks in the cultural heritage domain. Most of these algorithms work
effectively for spectral shape differences and might not perform
well for spectra with differences in magnitude or for spectra that
are nearly similar in shape but might belong to two different
pigments. In this work, we evaluate the performance of different
supervised-based algorithms and few machine learning models for
the pigment classification of a mockup using hyperspectral imaging.
The result obtained shows the importance of choosing appropriate
algorithms for pigment classification. c© 2023 Society for Imaging
Science and Technology.
[DOI: 10.2352/J.ImagingSci.Technol.2023.67.3.030403]

1. INTRODUCTION
Hyperspectral Imaging (HSI) technology, initially developed
and used for remote sensing applications, is also being used
more frequently in the Cultural Heritage (CH) domain for
analyzing artwork and has provided great potential in its
scientific analysis. In CH, proper pigment classification of
artworkmaterials such as paintings is of essential importance
for conservators to precisely analyze an object and its
historical value. Generally, reflection, transmission, and
absorption of electromagnetic energy by a given material
produce a unique spectrum at a given wavelength. The
shape of the spectrum is distinctive because every material
has a different chemical composition and an inherent
physical structure [1]. For pigment classification using HSI,
supervised classification algorithms are mainly used; they
compare the spectrum within a region of interest with
spectral library spectra with a specific tolerance [2, 3].

Many supervised-based classification algorithms ex-
ist for HSI, mostly in remote sensing applications, for
example, mineral identification [4, 5]. However, few of
these algorithms are being adopted directly or with some
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modification in other application domains such as medical
imaging [6, 7], food and agriculture [8–10], forensics [11].
Moreover, to the best of our knowledge, only a few have
been implemented in the CH domain, especially for pigment
classification of artwork such as paintings. HSI acquisition
for CH are usually performed under controlled laboratory
conditions, where the distance between the camera and
the object is relatively small and one has control over
illumination types and geometry. In contrast, for remote
sensing, HSI data are collected using natural illumination
with a more considerable distance between the camera
and target, causing temporal illumination variations and
atmospheric effects. Due to these differences between
two application domains, various classification algorithms
adopted in remote sensing cannot be directly adapted or
might not work effectively for CH applications. For example,
an algorithm insensitive to intensity variation can perform
well in remote sensing. However, it might not perform
with the same accuracy for CH objects because magnitude
measures are essential in CH. Faded or aged pigments [12],
pure pigments mixed with different binding mediums [13],
mixed pigments (e.g., pigments mixed in different weight
percentages of lead white [14]), etc. can have variations
in magnitude, which is essential to determine for both
diagnostic and conservative purposes. Very few of these
algorithms have been used for pigment identification of
artwork using HSI, and therefore it is necessary to explore
and evaluate them. Furthermore, many materials associated
with CH lack pure end members, particularly when they
undergo weathering [15], aging [16–18], or restoration
processes over time [19]. Therefore, accurately determining
the composition of a specific material or differentiating it
from other materials within an image can pose challenges,
making the task of identifying andmapping materials in HSI
more challenging.

Deep learning has recently provided new possibilities by
solving more complex questions in many applications [20,
21]. In CH, spectra of the pigments get affected with
different types ofmediumused as binders; spectramight look
identical, i.e. might have a small shift in peak or small change
in magnitude [13], and under such conditions, most of the
supervised algorithms do not perform well for classification.
However, distinguishing such conditionsmight be important
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for art historians and conservators to select the proper
conservation methods. Also, in the case of fading, there
might only be a minor change in the magnitude of a
spectrum. In medical imaging, Zhi et al. [22] used a Support
Vector Machine (SVM) for tongue diagnosis using HSI,
where spectra obtained from the surface of the tongue under
different conditions have changed mainly in magnitude.
Devassy et al. [9] used a One-dimensional Convolutional
Neural Network (1D-CNN) to classify strawberries and
found that the result was better than supervised algorithms.
To the best of our knowledge, using deep learning-based
models for pigment classification of artwork is not a common
practice and, therefore, it will be worthwhile to explore their
potential.

This paper presents the comparative experimental
analysis of various supervised algorithms and machine
learning models for pigment classification on a mockup
using HSI in the Visible Near-Infrared (VNIR) region. The
algorithms used are the Spectral Angle Mapper (SAM),
Spectral Correlation Mapper (SCM), Spectral Information
Divergence (SID), Spectral Similarity Scale (SSS), and the
hybrid combinations of SID–SAM and SID–SCM. We also
used the Jeffries-Matusita (JM) distance function combined
with SAM (JM-SAM). Likewise, few of the machine learning
models used are SVM, Fully Connected Neural Network
(FC-NN), and 1D-CNN. The rest of this paper is structured
as follows. Section 2 provides an overview of data processing
techniques and algorithms, followed by details about the
algorithms used in Section 3. Object details, imaging
technology, and the experimental framework used are given
in Section 4. Section 5 covers the results with a discussion.
Finally, Section 6 presents our conclusions, followed by future
work.

2. OVERVIEWOF ALGORITHMS AND PROCESSING
TECHNIQUES

Generally, a spectral matching technique is employed for
pigment classification, i.e., finding a spectral similarity
between two spectra at any given pixel in an image. The
best fit indicates the most significant possibility of being
reference material for a given pixel. The distinction between
different algorithms used for classification is their ability
to consider shapes and magnitude differences between two
spectra. This section provides an overview of the classifi-
cation algorithms employed in various application domains
with HSI.

Shivakumar et al. [23] compared the performance of
SAM and SCM for classifying nine different classes in
remote sensing applications using HSI. There was spectral
overlapping between the datasets for some of the classes, and
they identified that SCM was more efficient compared to
SAM for the classes with a highly similar spectrum. Similarly,
SCM was compared with SAM for mineral analysis [24]
and it was found that SCM algorithm delivered better
results due to its wide variation of data from −1 to 1. Qin
et al. [25] used SID methods to identify lesions in citrus
using HSI. Devassy et al. [26] explored the performance of

five different algorithms, namely SAM, SCM, ED, SID, and
Binary Encoding (BE), for the task of ink classification using
HSI. The overall accuracy (average of all inks used) for the
SAM algorithm was high compared to all other methods
used. None of the methods worked effectively to classify
between inks that had nearly similar spectral signatures with
only change in magnitude.

For a given two vectors (spectra), Change Vector
Analysis (CVA) computes the change in spectral vectors
and compares their magnitude with the specified threshold
value [27]. It was originally designed for only two spectral
dimensions (2 spectral bands), however, using the directional
cosine approach, it can be extended to a N -dimensional
space [28] and is computed using Eq. (1).

αi = cos−1

 ti− ri√∑nb
i=1(ti− ri)2

 , (1)

where ti and ri are the tests and reference image, and nb
is the total number of bands with i = 1, 2, . . . , nb. In this
method, we will obtain the number of angles αi equal to the
number of bands, which makes the computation complex,
details on this explanation and its drawbacks are explained
in Ref. [29]. Osmar et al. [29] in their study of change
detection methods in a tropical environment using HSI,
proposed a new approach to calculate the spectral direction
of change using the SAM and the SCM method, and for
magnitude, they computed theMahalanobis distance and the
Euclidean distance. The best result was obtained using SAM
for similarity and ED for magnitude.

Many hybrid approaches to compute the classification of
HSI data have shown improved results in many applications.
Using a hybrid approach of SAM and SID was found to
produce better results than using them alone [30]. Naresh
et al. [31] computed the hybrid of SCM and SID (SID-SCM)
for the classification of vigna species and compared their
result with the hybrid method of SAM and SID. They
performed an experiment for various spectral regions and
found that for region 400–700 nm, results are better.
Zhang et al. [32] used the hybrid approach by combining
Minimum Noise Fraction (MNF) and SAM methods to
identify defective tomatoes.

Li et al. [33] proposed a new method called Extended
Spectral Angle Mapper (ESAM) for detecting disease in
citrus plants for multi- and hyperspectral datasets. The
result was compared with supervised methods, Mahalanobis
distance, and unsupervised method; k-means and ESAM
were found to have better accuracy (86%) than the other
two methods (around 64%). Jeffries-Matusita (JM) [34] are
mainly used for the separability criterion and optimal band
selection, so only the most distinct bands are selected for the
data classification task [35, 36]. The JMmethod is a pairwise
distance measure that can be applied mostly to two class
cases. Authors have proposed many extensions of JM [37]
for use in multiclass classification. The most common is
to take the average JM distance computed for all pairs of
classes. Deborah et al. [38] evaluated the performance of four
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different distance functions named Root Mean Square Error
(RMSE), Goodness-of-Fit Coefficient (GFC) [39], Jeffrey
divergence, and Levenshtein distance on both synthetic and
real hyperspectral datasets to find a suitable distancemeasure
for spectral image processing. They found that for the
magnitude change, only RMSE followed by Jeffrey divergence
performed in the desired way.

Deborah et al. [40] compared different distance func-
tions for pigment classification tasks on HSI datasets with
the presence of spectral noise and variations. Intending to
identify the appropriate methods based on suitable selection
criteria, they found the Euclidean distance of a Cumulative
Spectrum (ECS) to be the most suitable distance function
for spectral data. However, in their study, evaluation of
these distance functions on artificially simulated spectra and
some real spectra from pigment patches from the Kremer
pigment chart [41], these charts are screen printed and
usually the pigments are in a water-based binder, which
might not be the exact representation of the real spectra
obtained from an artwork. Bhattacharyya Distance (BD)
measures the separability between two classes and has been
used in remote sensing applications frequently [42, 43].
BD was used to select the number of bands required for
efficient classification, and then SAM and SVM were used
for identification of stress symptoms in plants [44].

In recent years, machine learning-based classification
methods have been popular and extensively used in many
different applications. SVM is one of the machine learning
approaches used for classification tasks and has shown
efficient results, especially when the training data size is
relatively small [5, 45]. Deep learning-based CNN models
can learn spectral features more effectively using deeper
layers and in many cases, such methods can give us higher
classification accuracy than traditional algorithms. Pouyet
et al. [46] used the Deep Neural Network (DNN) and
compared the result with SAM for pigment identification
and mapping using HSI in the SWIR region and found
that the DNN model produced better results than SAM.
Devassy et al. [9], in their study of strawberry classification
based on sugar content, found that algorithms SID and
SAM, which rely on the spectrum’s geometry, did not
perform well, as the two reference spectrum were nearly
identical in shape and a small difference in the magnitude
of the NIR region of the spectrum. They also showed that
1D-CNN based classification gives better accuracy (96%)
compared to SAM (60%) and SID (58%). Table I summarizes
the list of algorithms used for HSI data processing, their
area of study, and details of the classification/network
parameters.

3. CLASSIFICATION ALGORITHMS
In this section, we describe the algorithms used in our
experiment.

3.1 Euclidean Distance (ED)
Classification can be computed by calculating the minimum
distance between the spectrum to be classified and the

reference spectrum of the class. For a given n-dimensional
image spectrum ti and a reference spectrum ri, the ED
between them is defined using Eq. (2), where nb is the
number of spectral bands. ED is proportional to the
magnitude of the squared subtractive difference vector, but
not its shape [47].

ED=

√√√√ nb∑
i=1
(ti− ri)2 (2)

3.2 Spectral Angle Mapper (SAM)
SAM is one of the most popular spectral classification
methods used in CH applications due to its easy and rapid
approach to mapping spectral similarity. SAM, developed
by Boardman [48], measures the spectral similarity between
any two spectra (test and reference). Arccosine angles
between the two spectra are calculated by treating them as
N -dimensional vectors in space, where N is equal to the
number of spectral bands. The angle between two spectra
is calculated using Eq. (3), where α is the spectral angle in
radians, ti is the image spectrum, ri is the reference spectrum,
and nb is the total number of bands. A smaller angle indicates
a more decisive match between the spectra. Kruse et al. [48]
describe a simplified representation of the spectral angle
mapper algorithm using a two-dimensional scatter plot for
two band image data. Since the SAM algorithm measures an
angle between two vectors and the angle does not change
with the length of the vectors, i.e., insensitive to the gain.
Therefore, this algorithm does not consider magnitude shifts
in the spectrum (see Osmar et al. [24]).

α = cos−1

 ∑nb
i=1 tiri√∑nb

i=1 ti2
√∑nb

i=1 ri2

 (3)

3.3 Spectral Correlation Mapper (SCM)
SCM calculates the Pearson correlation coefficient between
two spectra. It standardizes the data, centralizing itself in
the mean of the test and reference spectra. By applying
arccosine, it can be expressed in angles. This algorithm
excludes negative correlation and retains shading effect
minimization characteristics similar to SAM, resulting in
better classification results [24, 29]. SCM can be computed
using Eq. (4), where α is the arccosine of the spectral
correlation measure in radians, ti and t̄i are the image
spectrum and its sample mean, similarly ri and r̄i are the
reference spectrum and its sample mean, and nb is the total
number of bands.

α = cos−1

 ∑nb
i=1(ti− t̄i)(ri− r̄i)√∑nb

i=1(ti− t̄i)2
∑nb

i=1(ri− r̄i)2

 . (4)

3.4 Spectral Information Divergence (SID)
SID measures spectral similarity between the spectrum of
test and reference data for each pixel based on the concept of
divergence, i.e. measuring probabilistic discrepancy between
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Table I. Summary of algorithms used for HSI datasets with its applications and model parameters; Th: threshold value, BS: batch size, LR: learning rate, DR: dropout rate, ReLu: rectified
linear unit, HL: hidden layer, CL: convolutional layer, FCL: fully connected layer, KS: kernel size.

Algorithms Application Wavelength Parameters

ED Ink classification [26] 400–1000 nm —

SAM Pigment classification [49] 400–1000 nm Th:0.1
Mineral classification [50] 380–2500 nm —
Ink classification [26] 400–1000 nm —
Minerals and land classification [51] — —

SCM Ink classification [26] 400–1000 nm —
Pigment identification [3] 370–1100 nm —
Pigment mapping [52] 400–2500 nm Th:0.1

SID Mineral classification [50] 380–2500 nm —
Ink classification [26] 400–1000 nm —
Minerals and land classification [51] — —
Crops classification [53] 200–2400 nm —

SSS Crops classification [54] — —

SIDSAM Crop classification [30] 400–2500 nm —
Mineral classification [50] 380–2500 nm —
Dye and pigment based Inkjet prints [55] 400–1000 nm —

SIDSCM Plant classification [31] 350–2500 nm —
Mineral classification [50] 380–2500 nm —

JMSAM Landcover classification [56] — —
Mineral classification [50] 380–2500 nm —
Ink classification [26] 400–1000 nm —
Dye and pigment based Inkjet prints [55] 400–2500 nm —

SVM Tongue diagnosis [22] 400–1000 nm —
Crops classification [57] — Polynomial Kernel

FC-NN Aerial images classification [58] —
BS:500, LR: 0.05,
DR:0.25, ReLU

Pigment classification [46] 1000–2500 nm
HL: 4, LR : 0.001,

Adam, ReLU/Sigmoid

1D-CNN Soil texture classification [59] 400–1000 nm
CL:4, FCL:2,
Softmax

Classification of strawberry [9] 380–2500 nm
Filters: 8, HL: 2,
BS:32, KS: 3

them. The probability distribution of the test and reference
spectra is expressed as Eq. (5) and Eq. (6), respectively [60].

pi =
ti∑nb
i=1 ti

(5)

qi =
ri∑nb
i=1 ri

, (6)

where, ti is the image spectrum, ri is the reference spectrum,
and nb is the total number of bands. Using these two

probability distributions, SID can be calculated with Eq. (7).

SID=
nb∑
i=1

pi log
(
pi
qi

)
+

nb∑
i=1

qi log
(
qi
pi

)
(7)

3.5 Spectral Similarity Scale (SSS)
SSS evaluates the shape and magnitude difference between
two spectra. Granahan et al. [54, 61] used SSS to ana-
lyze hyperspectral atmospheric correction techniques. This
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algorithm uses the Euclidean distance metric for magnitude,
and correlation for comparing the shape of the spectra.
This method combines the calculations of both, giving each
an equal weighting [62]. SSS has a scale ranging from a
minimum of zero and maximum of the square root of two;
smaller the value, the higher the similarity between the
spectrum i.e. if two spectrum are collinear then its SSS value
will be equal to zero. SSS can be computed using Eq. (8).

SSS=
√
(de)2+ (r̂)2 (8)

Here, de is the Euclidean distance between two spectra
and is computed using Eq. (9) and its value ranges from 0 to
1 due to the factor 1/nb.

de =

√√√√ 1
nb

nb∑
i=1
(ti− ri)2 (9)

Equation (10) computes the value for r̂ , where r is
the correlation coefficient between the two spectra and is
computed using Eq. (11).

r̂ = (1− r2) (10)

r2 =

 ∑nb
i=1(ti− t̄i)(ri− r̄i)√∑nb

i=1(ti− t̄i)2
∑nb

i=1(ri− r̄i)2

2

(11)

3.6 SID-SAM
As the name suggests, SIDSAM is computed by multiplying
SID by taking the tangent of SAMorwith the sine function of
SAM, i.e., by computing the perpendicular distance between
two vectors (test and reference). Both of these measures
produce similar results [30]. This hybrid computationmakes
two similar spectra evenmore comparable and twodissimilar
spectra more distinctive, thus significantly improving the
spectral discriminability. SIDSAM can be computed as either
of the Eqs. (12) or (13), where SID and SAMcan be computed
using Eqs. (7) and (3) respectively.

SID− SAM= SID ∗ tan(SAM) (12)
SID− SAM= SID ∗ sin(SAM) (13)

3.7 SID-SCM
Similar to SID-SAM, we also tested the hybrid combination
of SIDSCM, computed by multiplying SID by either taking
a tangent of SCM or with the sine function of SCM [31].
SID-SCM can be computed as either of Eqs. (14) or (15),
where SID and SCM can be computed using Eqs. (7) and (4)
respectively.

SID− SCM= SID ∗ tan(SCM) (14)
SID− SCM= SID ∗ sin(SCM) (15)

3.8 Jeffries-Matusita Spectral Angle Mapper (JM-SAM)
Similarly to SID-SAM, JM-SAM is also a hybrid similarity
measure algorithm in which the spectral capabilities of both
algorithms are orthogonally projected by using either a

tangent or a sine function [56]. A smaller JM-SAM value
indicates a strong match between the reference and test
spectra. It can be computed using either Eqs. (16) or (17).

JM− SAM= JMD ∗ tan(SAM) (16)
JM− SAM= JMD ∗ sin(SAM) (17)

Here, Jeffries-Matusita distance (JMD) is one of the spectral
separability measures commonly used in remote sensing
applications and can be computed using Eq. (18), where B
is the Bhattacharyya distance and is computed using Eq. (19)
and SAM is computed using Eq. (3).

JMD= 2(1− e−B) (18)

B=
1
8
(µt −µr )

T
[
σt + σr

2

]−1
(µt −µr )

+
1
2
ln

[
|
σt+σr

2 |
√
|σt ||σr |

]
(19)

Here, µt and µr are the mean of the test and reference
spectra, respectively; σt and σr are the covariance of the test
and reference spectra, respectively.

3.9 Support Vector Machine (SVM)
SVM is a supervised classification algorithmused inmachine
learning and has been used successfully for HSI classification
tasks [63–65]. These are usually used to separate two ormore
data classes using a hyperplane. Objects to be classified are
represented as a vector in ann-dimensional space. Then SVM
method draws a hyperplane so that all points of one class are
on one side of this hyperplane and points of the other class
are on the other side. Of course, there could be multiple such
hyperplanes. SVM tries to find the one that best separates
these classes by computing the maximum distance between
the data points of these classes closest to the hyperplane, also
called support vectors. This method is similar to the Neural
Network, but instead of computing the weight and bases of
each point, SVM adjusts these parameters by computing it
only on the support vectors and determining the decision
boundaries for classification.

3.10 Fully Connected Neural Network (FC-NN)
In the FC-NN architecture, all the nodes in one layer are
connected to the nodes in the next layer. The data are
inputted into the first layer of the neural network, where
individual neurons pass the data to a second layer. The
second layer of neurons does its task, and so on, until
the final layer. Each neuron assigns a weight to its input.
Once all the input weights flow out of the neuron, they are
summed, and biases are added, which help offset the output.
These parameters are tuned by optimization during training,
that is, compute the error of classification, also called loss,
and then tune the weights and biases over many iterations
to minimize this loss. The goal of neural networks is to
adjust their weights and biases so that they can produce
the desired output when applied to new unseen data. One
of the common problems when training the network is
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Figure 1. The architecture of a typical CNN consisting of a convolutional
layer, a max pooling layer, and a fully connected layer.

overfitting (also called generalization error) of the dataset,
i.e., Instead of learning, itmemorizes the data. To avoid it, one
needs to use regularization, i.e., early stopping with dropout
layers and changing the network structure and parameters
(weight constraint) [66]. A dropout function added to the
network helps to disable the neurons randomly. This forces
the network to learn how to make accurate predictions with
only randomly left neurons, helping the network to prevent
overfitting. For further details, see [67, 68].

3.11 One-dimensional Convolutional Neural Network
(1D-CNN)
CNN is one of the most popular neural networks used for
various computer vision and machine learning tasks [69–
71]. CNN architecture is built using three main layers:
convolutional layer, pooling layer, and fully connected layer.
As the name suggests, the convolutional layer performs
the linear operation between matrices, that is, convolution

between the input neurons and kernel, generating an output
activation map. For 1D-CNN, only 1D convolution is
performed, that is, scalar multiplications and additions. In
this layer, the number of weights is equal to the size of
the kernel and does not depend on the input neuron, as
in FC-NN. The feature map generated from this layer is
passed through pooling a layer which helps to reduce the
dimension of the feature map while maintaining the most
important information. This helps to introduce translation
invariance and reduces overfitting. A fully connected layer
takes the output of the pooling layers, flattens them, and
turns them into one long vector that can be an input for
the next stage, where it applies weights to predict the correct
label, and finally outputs the probabilities for each class using
the activation function. Figure 1 shows the architecture of a
general CNN [72].

4. MATERIALS ANDMETHODS
In this section, we describe the mockup and the HSI
acquisition laboratory setup, details on the data post-
processing steps, and classification algorithms.

4.1 Test Object
As shown in Figure 2, a pigment mockup was prepared
and used in a laboratory environment. We used pigment
tubes composed of high-stability pigments and oil, purchased
from Zecchi [73]. The pigments were selected on the basis
of the popularity in CH research articles, their spectrum
characteristics, and in consultation with experts. Veridian
(V), Cerulean Blue (CB), Green Earth (GE), Yellow Ochre
Light (YOL), Burnt Umber (BU), Ultramarine Blue Deep
(UBD), Lead White Hue (LWH), Genuine Vermilion (GV),
Cobalt Blue Deep (CBD), and Ivory Black (IB) are the
pigments that are being used in themockup. The linen canvas
used was primed using three layers of white gesso.

4.2 Experimental Setup
Hyperspectral data were obtained in a laboratory environ-
ment using the HySpex line scanner VNIR-1800 from Norsk
Electro Optikk [74]. The datacube obtained covers a spectral

Figure 2. Pigment mockup; P1: Veridian, P2: Cerulean Blue, P3: Green Earth, P4: Yellow Ochre Light, P5: Burnt Umber, P6: Ultramarine Blue Deep, P7:
Lead White Hue, P8: Genuine Vermilion, P9: Cobalt Blue Deep and P10: Ivory Black.
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Figure 3. Workflow diagram for data processing.

range from 400 to 1000 nm with 186 spectral bands having
a spectral resolution of 3.26 nm. In this experiment, a
close-range 30 cm lens was used; it captures 1800 spatial
pixels across a linear field of view of approximately 86 mm.
A translation stage setup was used where the pigment
mockup was kept lying on a horizontal surface. The standard
multistep reference target from Spectralon [75] consisting of
four shades of 99, 50, 25, and 12% reflectance values was kept
along with the mockup during acquisition. This reference
target with a known reflectance factors is used for computing
the normalized reflectance at the pixel level.

4.3 Data Processing
The obtained raw hyperspectral data was post-processed for
radiometric calibration using the HySpex RAD software,
which removes electronics noise, i.e., dark current, and
converts the raw images to the sensor absolute radiance
values. Illumination correction, i.e., spatial variability in
illumination, was performed with the help of the standard
reference target. Further data processing steps are different
for supervised andML-based classification and are explained
in the following sections.

4.3.1 Data Processing for Supervised Classification
To build a spectral library, a region of interest of approximate
size equal to that of the patches (10 × 10 mm) was
considered, and the mean spectra from these regions
were saved in the library. To evaluate the performance
of classification, a confusion matrix was computed. The
overall methodology is illustrated using a block diagram in
Figure 3. All data processing steps were computed using the
open-source software Spectralpython [76].

Selecting the appropriate threshold value for classifica-
tion algorithms is critical as it may vary depending upon
the application. For example, Li et al. [33] pointed that
the region for selecting the threshold value for SAM to be
0.1 for citrus disease detection analysis because, during the
preliminary testing, they found that at a value of 0.15, many
false positives result. A similar empirical approach has been
followed by Júnior et al. [29], and Fung et al. [77]. Thus
we also computed the optimal threshold for each of these
algorithms through empirical observation. First, we selected
a small segment of the HSI dataset of a mockup, as shown in
Figure 4. Next, the reference spectrum was extracted from a
mockup’s flat region by taking an average of 11 × 11 pixels.
Finally, we computed the classification task for all algorithms
with different threshold values and evaluated their accuracy
using the confusion matrix.

In CH applications such as pigment classification for a
painting, misclassification, i.e., the pigment being classified
as the wrong pigment, is even more crucial than a pigment
being unclassified. Hence, there should be the minimum
error for any given classification algorithm. Therefore, we
considered the classification accuracy for pigment classified
as correct pigment (P_P), misclassification (MC_), pigment
classified as unknown (P_UN_), unknown classified as a
pigment (UN_P_), and unknown classified as unknown
(UN_UN_). Figure 5 shows the graph for these parameters
over accuracy for the SID algorithm, and we can observe
that for threshold values between 0.01 and 0.03, the accuracy
for pigment classified as pigment and unknown classified
as unknown is high. Also, for misclassification value in the
range of 0.1–0.3, pigments that are classified as unknown is
minimum, and unknown classified as unknown is relatively
high and constant. A similar conclusion can be drawn by
visualizing the classification result shown in Figure 6. An
optimal threshold value used for different algorithms in our
experiment is mentioned in Table II and graph for each of the
algorithms is attached in Appendix B.

4.3.2 Data Processing for ML Classification
The obtained normalized reflectance HSI data needs to
process before it is fed to the model; data was labeled for
different classes using the label encoder. For our dataset, we
used one hot encoder, meaning for each class, one value is
hot (i.e., the value of 1), and the rest are cold (i.e., the value of
0). We divided the dataset into training and testing. With an
80-20 split, data was further normalized. We then build and
implement the model; first training dataset is used to train
the model, neural network weights and biases of neurons are
updated with each epoch till we got considerably minimum
MSE and higher accuracy. Finally, the test dataset is used to

Figure 4. A snippet of a mockup with ten pigments and substrate; Colors are approximated as RGB rendering using spectral python for bands 75, 46,
and 19 of HSI datasets.
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Figure 5. Graph for accuracy of five parameters used to determine the
optimal threshold value for the SID algorithm.

Table II. The selected threshold value for eight different classification algorithms.

Algorithms Threshold value

ED 0.9
SAM 0.1
SCM 0.8
SID 0.03
SSS 1.1
SID-SAM 0.003
SID-SCM 0.005
JM- SAM 0.09

validate the model. A block diagram in Figure 7 illustrates
an overall workflow. Training spectra of 10 pigments and a
substrate, plotted over a spatial region of approx. 100 × 100
pixels with 186 spectral bands is attached in Appendix A.

SVM model was implemented in Python using the
Sklearn library. Among the differences, we tuned our
model for three key hyperparameters, namely kernel types,
regularization, and gamma, using the Python library called
GridSearchCV. This function cross-validates the model to
avoid overfitting using k-fold cross-validation and then
computes a grid to evaluate the performance of each
combination of given hyperparameters. Table III shows the
details of hyperparameters.

For FC-NN, we build a sequential model with three
dense layers, the first layer with 32 nodes and hyper-
bolic tangent (tanh) as activation function followed by
batch normalization. The second layer has 16 nodes tanh
activation function followed by batch normalization and
dropout, and the third layer has 11 nodes and a softmax
activation function. The activation function introduces the
non-linearity into the networks so that the networks can
learn the relationship between the input and output. Tangent
hyperbolic is a non-linear function with an s-shaped graph

Table III. SVM key hyperparameters, the range used for tuning, and the optimum value
selected for classification; RBF: Gaussian Kernel Radial Basis Function.

Hyperparameter Range used Optimum value selected

Kernel ‘‘Polynomial’’, ‘‘RBF’’, ‘‘Sigmoid’’, ‘‘Linear’’ RBF
Regularization 0.1, 1, 10, 100, 1000 100
Gamma 1, 0.1, 0.01, 0.001 1
k -fold 5 5

with output ranges from −1 to 1. One reason for using
the tanh function is that it is zero-centred, which makes
the optimization icon process much more manageable. The
softmax activation function converts a value vector to a
probability distribution and is used in the output layer
of multiclass classification. For details on the activation
function, please refer [78]. For multiclass classification,
the categorical cross-entropy loss function is usually used,
and optimization algorithms, which are used to update
weights and biases; we used adaptive moment estimation
(Adam), as it is the best among the adaptive optimizers
in most of the cases [79, 80]. The network architecture
used for our experiment is shown in Figure 8. The model
was implemented in Python using Keras, a neural network
application programming interface.

The proposed 1D-CNN model was tuned for hyperpa-
rameters using KerasTuner [81]. We tuned the model for
the number of convolutional layers, their filter size, dropout,
dense layer filer size, learning rate and epoch. Figure 9
illustrates the block diagram of the tuned model with its
hyperparameter used. We used Adam as an optimizer with
a learning rate of 0.001 and categorical cross-entropy as the
loss function.

5. RESULT ANDDISCUSSION
This section will look in detail at the classified image, the
accuracy obtained for each pigment, and the overall accuracy
of the algorithms used. Figure 10 shows the classification
accuracy of each pigment for the different algorithms. The
classification result for each of these algorithms is attached
in Appendix D. We can observe that the average accuracy
(average of 10 pigments) is high for all three machine
learning algorithms. Of these three, FC-NN has the highest
accuracy, followed by 1D-CNN and SVM. For the eight
supervised algorithms used, SCM and SAM have high
accuracy, followed by SID, SID-SAM, SID-SCM, and SSS. ED
and JM-SAM have the lowest classification accuracy.

Apart from machine learning algorithms, the other
eight algorithms used have difficulty classifying pigment
6 (P6) and pigment 9 (P9). We can see in Figure 11
that spectra for both these pigments are similar and have
little difference in magnitude. This is a common issue
with supervision-based classification algorithms [9, 23].
In distance-based algorithms, ED, SSS, and JM-SAM, the
classification accuracy for similar spectra (P6 & P9) are the
lowest. We also observed that the classification accuracy
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Figure 6. Classification result for ten pigments patches obtained using SID algorithm for a different set of threshold values.

Figure 7. Workflow diagram for ML data processing.

is low for these distance-based algorithms, particularly for
pigment 7 (White Hue), which has a spectrum similar to the
substrate (S), since it is misclassified as substrate, as shown
in the confusion matrix in Figure 12. Pigment 10, as shown
in Fig. 11, has a reflectance value below 0.05 for almost the
entire wavelength region (450–1000 nm), and it seems that
the lowmagnitude value has an influence on the classification
accuracy for supervised-based algorithms. Spectra for all
pigments and substrates used are provided in Appendix C.

Classification accuracy for algorithm SID and its hybrid
combinations (SID-SAM and SID-SCM) are lower for
pigments P1 and P3. Figure 13 shows the classification
result for pigments P1, P2, and P3 for SID, SID-SAM, and
SID-SCM. Black color represents the unclassified pixels,

and we can observe that all three algorithms have similar
areas that have not been classified for P1 and P3. From the
confusion matrix shown in Figure 14, we can see that for
P1 and P3, the unclassified (UC) percentage is the second
highest value in all three algorithms.

Figure 15 shows the spectra for reference, classified
pixels, and unclassified pixels for pigments P1, P2, and P3.
It can be observed that there is a difference in spectra in
the range of 800–1000 nm. The solid red line represents the
reference spectrum, whereas red dash lines are spectra for
classified pixels, and solid green lines are for unclassified
pixels for P1. Similarly, the solid blue line is a reference
spectrum for P3, and solid orange and solid black lines are
spectra for classified and unclassified pixels, respectively. We
also plotted the range for P2, which is mostly classified.
Dashed blue line is a reference spectrum for P2, and solid
grey lines are spectra for classified pixels.

The SID algorithm uses a divergence measure to match
the reference and target pixels; the smaller the divergence
value, the more likely the pixels are similar. We have used
a threshold of 0.03, meaning that pixels with a value less
than 0.03 will only be classified, and a value greater than the
threshold will not be classified. We computed the divergence
value for a spectrum of classified and unclassified pixels with
a reference spectrum for P1, P2, and P3. The spectra used
in the calculation are shown in Figure 16. The computed
divergence is shown in Table IV.We can see that spectra that
are not classified in the case of P1 and P3 have divergence
values greater than a threshold. We can change this value
to get more pixels classified, but this will result in higher
misclassification and increase the unknown classified as a
pigment, as shown in Fig. 5.

J. Imaging Sci. Technol. 030403-9 May-June 2023

111 Article B



Mandal et al.: An experiment-based comparative analysis of pigment classification algorithms using hyperspectral imaging

Figure 8. The architecture of the FC-NN classifier used in our experiment.

Figure 9. The architecture of tuned 1D-CNN model.

6. GENERAL DISCUSSION
Experimental results show that ML algorithms outperform
the supervision-based algorithms used. The limitation of
supervision-based algorithms used is that they cannot
perform well if pigments have nearly identical spectra (P6
and P9) and also if the magnitude of the spectrum is very
low (P10, reflectance factor below 0.05). We found for nearly

Table IV. SID value computed between a spectrum of reference pixels with that
of classified and unclassified pixels for P1, P2, and P3. Remark indicates that either
obtained SID value is smaller or greater than a used threshold value of 0.03.

Spectra SID value Remark

P1 Ref. & P1 C 0.005 <0.03
P1 Ref. & P1 UC 0.052 >0.03
P2 Ref. & P2 C 0.003 <0.03
P3 Ref. & P3 C 0.014 <0.03
P3 Ref. & P3 UC 0.034 >0.03

identical spectrum, SCM is a better measure than the SAM,
and this could be because SCM considers value from −1
to 1 whereas the cosine of SAM only varies from 0 to 1.
Apart from pigments P1 and P3, we found that the SID’s
hybrid approach with SAM and SCM has almost similar
results for our dataset. Due to the threshold value selected
for classification, the accuracy for P1 and P3 is lower than
for other pigments, i.e., in SID for P1 and P3 threshold
value should be greater than 0.3 as mentioned in Table IV.
The classification accuracy of algorithms based on spectral
distance, such as ED, SSS, and JM-SAM was the lowest. This
could be because these algorithms misclassified in-between
white pigment (P7) and substrate (S), which is not the case
for other supervised algorithms.

ML-based algorithms need to be trained for which we
need a large amount of data. Classification result depends
upon how well the model is trained, i.e., how large the
training datasets are so that model can learn enough distinct
features. ForML-based algorithms to performwell and avoid
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Figure 10. Classification accuracy for each pigment for all 11 algorithms used; average represents the accuracy for an average of 10 pigments for a
given algorithm.

Figure 11. Normalized reflectance spectra for pigment, used as a
reference for supervised classification; P6, P7, P9, P10, and S represent
pigments 6, 7, 9, 10, and substrate, respectively.

overfitting of amodel, it needs to be tuned for the appropriate
value of different hyperparameters, which will take a long
computing time. This adds to the cost of computational time
and complexity forML-based algorithms. On the other hand,
supervision-based algorithms do not require such a training
set and are simple and easy to compute. Therefore, for the
pigments with less complex spectra (i.e., having less identical

spectrum), supervision-based algorithms such as SCM and
SAMmight be a good fit for the classification task.

7. CONCLUSION
HSI is a non-invasive imaging technique used for the
documentation and analysis of artwork for various tasks,
such as pigment classification. It is essential as it assists
conservators and curators in precisely analyzing an object
and its historical value. In this paper, we evaluated the
spectral processing algorithms for pigment classification of a
mockup using HSI. We analyzed eight spectral image classi-
fication algorithms, i.e., ED, SAM, SCM, SID, SSS, SID-SAM,
SID-SCM, JM-SAM, and three machine learning-based
algorithms, SVM, FC-NN, 1D-CNN for its classification
accuracy. In general, machine learning algorithms out-
performed the others. Supervision-based algorithms work
well for the pigments if their spectra are very distinct in
shape from each other. Still, these algorithms have poor
performance for pigments having a similar spectrum (nearly
identical) or spectrum with just a change in magnitude.
However, machine learning-based algorithms can overcome
this limitation by extracting the features from each training
sample and thus perform better for pigment classification.
During our experiment, we trained the network for ten
pigments. However, extending the model’s scope to include
a more extensive range of pigments would be beneficial.
Additionally, exploring diverse scenarios, such as mixed
and aged pigments, would be beneficial; therefore, one can
conductmore comprehensive research in the future. By doing
so, we can refine the supervised algorithms and machine
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Figure 12. Confusion matrix of (a) ED, (b) SSS, and (c) JM-SAM.

Figure 13. Classification results for pigment P1 (in red), P2 (in green), and P3 (in blue). (a), (b), and (c) are obtained using algorithms SID, SID-SAM, and
SID-SCM, respectively.

learning models mentioned earlier to be more applicable to
real-world cases in cultural heritage.

ACKNOWLEDGMENT
This work is carried out at the Norwegian Colour and
Visual Computing Laboratory (Colourlab), within the

Department of Computer Science (IDI), as part of the
CHANGE (Cultural Heritage Analysis for New Generations)
project. And has received funding from the European
Union’s Horizon 2020 research and innovation program
under the Marie Skłodowska-Curie grant agreement
No. 813789.

J. Imaging Sci. Technol. 030403-12 May-June 2023

Article B 114



Mandal et al.: An experiment-based comparative analysis of pigment classification algorithms using hyperspectral imaging

Figure 14. Confusion matrix; (a): SID, (b): SID-SAM, and (c): SID-SCM.

Figure 15. Spectra for pigment P1 and P3; solid red line (P1 Ref.) and
solid blue line (P3 Ref.) are reference spectra for P1 and P3, respectively;
red dashed line (P1 C) and solid green line (P1 UC) are spectra for
classified and unclassified pixels of pigment P1; solid orange line (P3
C) and solid black line (P3 UC) are spectra for classified and unclassified
pixels of pigment P3; dashed blue (P2 Ref.) and solid grey (P2 C) are
spectra for reference and classified pixels of pigment 2.

Figure 16. Spectrum of P1, P2, and P3; Ref., C and UC represent
reference, classified and unclassified, respectively.
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APPENDIX A. REFLECTANCE SPECTRA OF 10 PIGMENTS AND SUBSTRATE USED TO TRAIN SVM, FC-NN AND
1D-CNN

Figure A.1. Training spectra of 10 pigments and a substrate, plotted over spatial region of approximately 100×100 pixels with 186 spectral bands;
Viridian (V), Cerulean Blue (CB), Green Earth (GE), Yellow Ochre Light (YOL), Burnt Umber (BU), Ultramarine Blue Deep (UBD), Lead White Hue (LWH),
Genuine Vermilion (GV), Cobalt Blue Deep (CBD), Ivory Black (IB), and Substrate (S).
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APPENDIX B. GRAPH USED FOR DETERMINING THE OPTIMAL THRESHOLD VALUE FOR DIFFERENT
ALGORITHMS

Figure B.1. Classification accuracy graph of different algorithms at varying threshold values. The graph shows the accuracy of each algorithm in terms of
pigment classified as a pigment (P_P_), unknown region classified as unknown (UN_UN_), pigment classified as unknown (P_UN_), unknown classified
as a pigment (UN_P_) and pigment classifying as another pigment, i.e., misclassification (MC_).

APPENDIX C. NORMALIZED REFLECTANCE SPECTRUMOF 10 PIGMENTS AND SUBSTRATE

Figure C.1. Normalized reflectance spectrum for ten pigments and a substrate; P1: Veridian, P2: Cerulean Blue, P3: Green Earth, P4: Yellow Ochre Light,
P5: Burnt Umber, P6: Ultramarine Blue Deep, P7: Lead White Hue, P8: Genuine Vermilion, P9: Cobalt Blue Deep, P10: Ivory Black, and S: Substrate.
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APPENDIX D. CLASSIFICATION RESULT FOR ALL USED ALGORITHMS

Figure D.1. Classification results obtained using various supervised and machine-learning algorithms; Euclidean Distance (ED), Spectral Angle Mapper
(SAM), Spectral Correlation Mapper (SCM), Spectral Information Divergence (SID), Spectral Similarity Scale (SSS), Jeffries Matusita-Spectral Angle Mapper
(JMSAM), Support Vector Machine (SVM), Fully Connected Neural Network (FC-NN) and One-dimensional Convolutional Neural Network (1D-CNN).
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Abstract

Cultural heritage objects, such as paintings, provide valuable insights into
the history and culture of human societies. Preserving these objects is of ut-
most importance, and developing new technologies for their analysis and con-
servation is crucial. Hyperspectral imaging is a technology with a wide range of
applications in cultural heritage, including pigment classification. Pigment clas-
sification is crucial for conservators and curators in preserving works of art and
acquiring valuable insights into the historical and cultural contexts associated
with their origin. Various supervised algorithms, including machine learning,
are used to classify pigments based on their spectral signatures. Since many
artists employ impasto techniques in their artworks that produce a relief on the
surface, i.e., transforming it from a flat object to a 2.5D or 3D, this further
makes the classification task difficult. To our knowledge, no previous research
has been conducted on pigment classification using hyperspectral imaging con-
cerning an elevated surface. Therefore, this paper compares different spectral
matching techniques that employ deterministic and stochastic methods, their
hybrid combinations, and machine learning models for an elevated mockup to
determine whether such topographical variation affects classification accuracy.
In cultural heritage, the lack of adequate data is also a significant challenge for
using machine learning, particularly in domains where data collection is expen-
sive, time-consuming, or impractical. Data augmentation can help mitigate this
challenge by generating new samples similar to the original. We also analyzed
the impact of data augmentation techniques on the effectiveness of machine
learning models for cultural heritage applications.

Keywords – Pigment Classification, Impasto, Supervised Classification, Ma-
chine Learning, Hyperspectral Imaging
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1 Introduction
In Cultural Heritage (CH), paintings are an essential tangible component that pro-
vides valuable insights into our history, social norms, and beliefs. Therefore, the
preservation and restoration of paintings are crucial and poses numerous challenges,
including the removal of dirt and old varnish without damaging the paint layer [1] and
the selection of appropriate materials for retouching [2]. To address these problems,
it is essential to accurately identify the pigment used by the artist in an artwork.
Scientific analysis sometimes required the physical samples, however, due to the na-
ture of CH objects, it is not recommended to take samples from the object which
in fact destroy the object even at a microscale and so very often, it is not permit-
ted. Consequently, non-invasive or non-contact imaging techniques [3, 4, 5, 6] are
necessary.

Hyperspectral Imaging (HSI) is a technology that has gained increasing attention in
recent years due to its wide range of applications in various fields, including remote
sensing [7], agriculture [8], medical sciences [9], forensics [10], biomedical engineer-
ing [11], and CH [12]. An important aspect of CH is pigment classification [13],
and HSI can facilitate it by using spectral information about pigments and differ-
ent classification algorithms. Artwork is not confined to two-dimensional canvases
or boards, which means they are not always flat. The addition of relief, which in-
troduces 2.5D or 3D to artwork, is also an important consideration [14, 15]. Several
factors can contribute to this third dimension [16, 17, 18]; For example, morpholog-
ical textures of brushstrokes on the painted surface [19], a thick layer of pigments
applied by many renowned artists to their artwork for creating depth(impasto tech-
nique) [20, 21, 22, 23]. The geometry of a relief raised from a brush painting, impasto
techniques, or any other factors may affect how light interacts with the surface, af-
fecting the spectral signature captured by the hyperspectral sensor for a given pixel.
Considering the importance of pigment identification or classification of an artwork,
the influence of such factors must be explored.

Most of the research conducted so far has explored the effectiveness of various tradi-
tional supervised algorithms and machine learning models for pigment classification
using HSI [24, 25]. However, those studies have primarily focused on flat surfaces
and, to date, no research has investigated the same for artwork with an elevation.
This paper aims to investigate how surface elevation in artworks affects the accuracy
of pigment classification using HSI, with the underlying hypothesis that surface el-
evation impacts this accuracy. In CH, the lack of sufficient training datasets is also
a considerable challenge for using machine learning, particularly in domains where
collecting data is expensive, time-consuming, or impractical [26, 27]. Data augmen-
tation is a technique that can help mitigate this challenge by generating new samples
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similar to the original data. Therefore, in this paper, we have also compared and
analyzed the impact of data augmentation techniques on the effectiveness of machine
learning algorithms for pigment classification. This study is primarily concerned with
answering the following research questions:

• To what extent does elevation of a surface in artworks affect the accuracy of
pigment classification using hyperspectral imaging?

• What is the influence of data augmentation techniques on the efficacy of machine
learning models for cultural heritage applications?

The rest of the paper is organized as follows. Section 2 briefly reviews the classification
algorithms used in the CH field, focusing on pigment classification. Section 3 provides
a brief overview of the classification algorithms used in this study. Section 4 describes
the materials and methods used in the present study. Section 5 presents the results
of the experiments and discusses the findings in detail. Finally, Section 6 concludes
the paper and highlights directions for future research.

2 Background

Over the last few years, HSI, a non-invasive technique, has been widely employed for
pigment classification in artwork [28, 5, 24]. It has resulted in significant advances in
the study of spectral signatures and matching, broadening the scope of HSI technol-
ogy in the CH domain. Molecules in the materials have unique vibration frequencies,
which can be detected by analyzing how they absorb or reflect light at specific wave-
lengths. These characteristics of materials are known as spectral signatures and help
to identify and distinguish pigment based on how it interacts with electromagnetic
radiation. Many spectral matching algorithms have evolved in hyperspectral image
processing, ranging from traditional clustering techniques to more recent automated
matching models. The approaches used for matching spectra can be classified as
deterministic, i.e., based on geometrical and physical aspects, or stochastic, which
is based on the distributions [29]. These algorithms are essential for accurate and
efficient pigment identification and analysis, making them a critical component of
any HSI workflow. This section will briefly overview the classification algorithms
employed in CH, specifically for pigment classification.

The Euclidean Distance (ED) metric is widely used to measure spectral similarity in
HSI, and it works well when a data set has distinct or isolated clusters [30, 31, 32].
Mandal et al. [25] implemented ED and other supervised classification techniques to
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classify pigments on a flat surface and observed that classification accuracy declines
for some pigments with similar spectral characteristics.

Deborah et al. [5] explored the application of HSI in mapping the pigments of Edvard
Munch’s painting The Scream. They used two methods for spectral image classi-
fication, namely Spectral Angle Mapper (SAM) and Spectral Correlation Mapper
(SCM). They observed that SCM performed better than SAM as it accounted for
both positive and negative correlations between the spectra. Adjusting the threshold
value for SAM reduced false detection, but it also decreased the accuracy of pigment
classification, which varied depending on the type of pigment. They further suggested
that different classes of pigments would require the use of distinct threshold values. In
[33], the authors used the SAM technique to classify traditional Chinese pigments and
recommended a similar suggestion of using different thresholds. The SAM algorithm
measures the angle between two vectors, independent of the vector length, and there-
fore, insensitive to gain. As a result, this algorithm does not account for magnitude
shifts in the spectrum. Please refer to Osmar et al. [34] for more information.

George and Hardeberg [35] demonstrate the usefulness of HSI to separate inks us-
ing SAM and SID as classification algorithms. They found that the SID algorithm
perform better than SAM in cases where two distinct inks were overlaid. However,
they also mentioned misclassification might arise from noise and non-uniformity in
spectral signatures resulting from ink-paper blends. Mishra et al [36] utilized HSI
to evaluate hybrid spectral similarity measures to classify paper samples used in
forensic investigations. The findings indicate that the hybrid similarity measures of
SIDSCM demonstrate better classification accuracy than conventional spectral simi-
larity measures. Furthermore, the classification accuracies of SIDSCM and SIDSAM
are comparable.

The authors in [37] discuss using SAM and Machine Learning (ML) models to clas-
sify and identify mineral pigments used in ancient Chinese paintings using HSI. The
results show that, for similar colors and spectra, SAM is unable to classify; however,
combining it with a decision tree can effectively improve the accuracy. The authors
of [38] discuss the effectiveness of HSI technology in archaeological research for iden-
tifying and classifying materials in ancient tombs. They found that combining HSI
data with Principal Component Analysis (PCA) transformation and SVM classifi-
cation was an effective method for accurately classifying and identifying materials.
The SVM classification based on feature bands improved classification accuracy and
reduced data processing time. Kleynhans et al. [39] discuss using reflectance HSI
and Neural Networks (NNs) to create labeled pigment maps of paintings. The au-
thors report that a one-dimensional convolutional neural network (1D-CNN) model
could accurately label the pigments in most of the paints studied. However, this find-
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ing highlights the importance of having comprehensive training data for the model
to perform well, the need for further studies to expand the training dataset, and the
possibility of augmenting existing training datasets to develop a more robust solution.

Lie et al. [40] explore the potential of using NNs to analyze HSI data in the CH field.
They present a thorough overview of the different applications and constraints of
NNs models. The findings indicate that NNs offer a promising alternative to conven-
tional statistical and multivariate analysis techniques for pigment identification and
classification. The authors in [41] present a method for identifying pure pigments
in CH using a combination of CNNs and SCM. The HSI data, collected within the
range of 400nm to 720nm and at a resolution of 10nm, was pre-processed by smooth-
ing and computing the first derivative before being fed to the network. The study
emphasizes the significance of employing deep learning NNs for this application and
the requirement for a comprehensive training dataset. A recent study by Mandal
et al. [25] investigated the performance of various traditional supervised algorithms,
their hybrid combinations, and ML models for pigment classification on flat surfaces.
A research gap exists as the efficacy of these algorithms on non-flat objects has not
been explored by any of the authors. Thus, further investigation is necessary for this
area.

3 Classification Algorithms

This section presents the fundamental theory and mathematical expressions for the
classification algorithms utilized in the study.

3.1 Euclidean Distance
Euclidean Distance (ED) is a distance metric that measures the distance between
two points in an n-dimensional space [42]. It is calculated as the square root of
the sum of the squared differences between the corresponding elements of the two
points. In spectral analysis, the ED can compare the similarity between two spectra by
measuring the difference between their respective pixel or spectral values. The formula
for Euclidean distance between the image spectrum ti and a reference spectrum ri,
each with n elements, is defined using Equation (1).

ED =

√√√√
nb∑

i=1

(ti − ri)
2 (1)

where, nb is the number of spectral bands.
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3.2 Spectral Angle Mapper
Spectral Angle Mapper (SAM), introduced by Boardman in 1992 [43], is a method
for measuring the spectral similarity between two spectra, i.e., test and reference.
This technique treats the spectra as N -dimensional vectors in space, where N is
the number of spectral bands and calculates the arccosine angles between them. The
spectral angle, α, between the two spectra is computed using Equation (2). A smaller
angle indicates a better match between the spectra.

α = cos−1




nb∑

i=1

tiri

√√√√
nb∑

i=1

ti
2

√√√√
nb∑

i=1

ri
2




(2)

where ti represents the image spectrum, ri denotes the reference spectrum, and nb is

the total number of bands.

3.3 Spectral Correlation Mapper
Spectral Correlation Mapper (SCM) is one of several algorithms used in spectral
similarity analysis for classification and feature extraction. It measures the Pearson
correlation coefficient between two spectra by standardizing the data and centring
them around the mean of the test and reference spectra. The result is then expressed
as an angle using the arccosine function. This algorithm excludes negative correlation
and retains the shading effect minimization characteristics similar to SAM, resulting
in better classification results [34, 44]. SCM is computed using Equation (3).

α = cos−1




nb∑

i=1

(ti − t̄i) (ri − r̄i)

√√√√
nb∑

i=1

(ti − t̄i)
2

nb∑

i=1

(ri − r̄i)
2




(3)

where α is the arccosine of the spectral correlation measure in radians, ti and t̄i
are the image spectrum and its sample mean, similarly ri and r̄i are the reference
spectrum and its sample mean; and nb is the total number of bands.
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3.4 Spectral Information Divergence
In terms of spectral similarity, Spectral Information Divergence (SID) measures the
dissimilarity between two spectra by comparing their spectral information content. It
is based on the concept of Kullback-Leibler (KL) divergence, a measure of the differ-
ence between two probability distributions. In SID, the spectral information content
of each pixel is modeled as a probability distribution, and the divergence between
the two distributions is calculated. If two pixels have similar spectral information,
their probability distributions will be similar, and the SID value will be low, and vice
versa. The probability distribution of the test and reference spectra is expressed as
Equation (4) and Equation (5), respectively [45].

pi =
ti∑nb
i=1 ti

(4)

qi =
ri∑nb
i=1 ri

(5)

where, ti is the image spectrum, ri is the reference spectrum, and nb is the total
number of bands. Using these two probability distributions, SID can be calculated
with Equation (6).

SID =
nb∑

i=1

pi log

(
pi
qi

)
+

nb∑

i=1

qi log

(
qi
pi

)
(6)

3.5 Spectral Similarity Scale
The Spectral Similarity Scale (SSS) provides a quantitative measure of the similarity
between two spectra. This algorithm uses the Euclidean distance metric for magni-
tude and correlation to compare the shape of the spectra. This method combines
both calculations, giving each equal weighting [46]. An SSS value of 0 indicates that
the two spectra are identical, while a value of 1 indicates that the two spectra are
entirely dissimilar. SSS is computed using Equation (7).

SSS =
√

(de)2 + (r̂)2 (7)

where, de is the Euclidean distance between two spectra and is computed using
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Equation (8) and its value ranges from 0 to 1 due to the factor 1/nb.

de =

√√√√ 1

nb

nb∑

i=1

(ti − ri)
2 (8)

Equation (9) computes the value for r̂, where r is the correlation coefficient be-
tween the two spectra and is computed using Equation (10).

r̂ = (1− r2) (9)

r2 =




nb∑

i=1

(ti − t̄i) (ri − r̄i)

√√√√
nb∑

i=1

(ti − t̄i)
2

nb∑

i=1

(ri − r̄i)
2




2

(10)

3.6 Spectral information divergence-spectral angle mapper
The Spectral Information Divergence Spectral Angle Mapper (SIDSAM) is a hybrid
approach that incorporates quantitative and qualitative matching measures. It uti-
lizes the SID algorithm to assess the dissimilarity between two spectra and the SAM
algorithm to evaluate their geometric similarity. This hybrid computation enhances
the comparability of similar spectra and makes dissimilar spectra more distinctive,
thus improving spectral discriminability. SIDSAM is computed by multiplying the
SID by the tangent or sine function of the SAM, which calculates the perpendic-
ular distance between the test and reference vectors. Both measures yield similar
results, as reported in previous studies [47]. This hybrid computation SIDSAM can
be calculated using either Equation (11) or (12).

SIDSAM = SID ∗ tan(SAM) (11)

SIDSAM = SID ∗ sin(SAM) (12)

where, SID and SAM are calculated using Equations (6) and (2), respectively.
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3.7 Spectral information divergence-spectral correlation map-
per

The Spectral Information Divergence Spectral Correlation Mapper (SIDSCM) is an-
other hybrid approach that combines qualitative and quantitative metrics to increase
spectral discriminability. It combines SID and SCM algorithms, similar to SIDSAM,
where SID measures the difference between two spectra and SCM determines the Pear-
son correlation coefficient. To integrate the two measures, the product of SID and
either the tangent or sine function of the correlation coefficient between two spectra is
utilized [48]. The resultant method may be calculated using either Equations (13)
or (14).

SIDSCM = SID ∗ tan(SCM) (13)

SIDSCM = SID ∗ sin(SCM) (14)

where SID and SCM can be computed using Equations (6) and (3) respectively.

3.8 Jeffries Matusita-Spectral Angle Mapper
The Jeffries Matusita (JM) distance is a statistical metric considering the covariance
of two spectral vectors. The SAM method computes the angle between two spectral
vectors to determine their spectral similarity. Jeffries Matusita-Spectral Angle Map-
per (JMSAM) is calculated by first calculating the JM distance and then converting
it to an angle with the inverse cosine method. The angle obtained is then compared
to a threshold value to assess whether the two spectra belong to the same class. It
can increase spectral classification accuracy by considering the spectral similarity and
statistical distance [49]. It can be computed using either Equation (15) or (16).

JMSAM = JMD ∗ tan(SAM) (15)

JMSAM = JMD ∗ sin(SAM) (16)

where, JMD is JM distance and is computed using Equation (17)

JMD = 2
(
1− e−B

)
(17)

Here B is the Bhattacharyya distance and is computed using Equation (18).
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B =
1

8
(µt − µr)

T

[
σt + σr

2

]−1

(µt − µr) +
1

2
ln

[
|σt+σr

2
|√

|σt||σr|

]
(18)

Where, µt and µr are the mean of the test and reference spectra, respectively; σt

and σr are the covariance of the test and reference spectra, respectively.

3.9 Support Vector Machine
Support Vector Machine (SVM) is a machine-learning algorithm used for classifica-
tion and regression analysis [50]. SVM classification aims to find a hyperplane that
separates the data into two classes with maximum margin. It can handle non-linearly
separable data using a kernel trick that maps it into a higher-dimensional space. This
algorithm involves data preprocessing, such as normalization, to ensure that the fea-
tures are on the same scale. It selects the most relevant features for the classification
task. After that, it trains the model by finding the optimal hyperplane that maxi-
mizes the margin using a cost function. The cost function penalizes misclassified data
points and encourages the SVM to find the hyperplane that separates the data with
the largest margin. Finally, the model is tested on a validation set or test data set to
evaluate its performance [51, 52].

3.10 1D-CNN
A Neural Network (NN) is a machine learning algorithm inspired by the structure
and function of the human brain. The basic building block of a neural network is
the artificial neuron, which takes inputs and applies a transformation to produce an
output [53]. The architecture of a NN can vary widely depending on the task and
the data being used. A 1D CNN is a type of NN commonly used for processing
one-dimensional data such as time series, audio signals, and text data [54, 55, 56].
It consists of one or more convolutional layers, a pooling layer, and fully connected
layers. The convolutional layer applies convolution operations to the input sequence
using a set of learnable filters or kernels. This generates a set of feature maps repre-
senting the convolutional layer’s output. The pooling layer is typically used to reduce
the dimensionality of feature maps while maintaining the most important informa-
tion. It applies an aggregation function such as max or average pooling to extract
the most relevant features from each feature map. This helps reduce the number of
parameters in the model and prevent overfitting. The fully connected layer takes the
output of the pooling layer, flattens it into a one-dimensional vector, and passes it
through a set of fully connected neurons. The output of the fully connected layer
is often fed into a softmax function to generate class probabilities [57]. Overall, the
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1D-CNN architecture is designed to extract and learn discriminative features from
one-dimensional data sequences, making it suitable for various applications. Figure 1
illustrates the general architecture of a 1D CNN for use with HSI data.
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Input Signal

1 x 186

Pooling

1D 

Convolution
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Data Cube

Figure 1: The architecture of 1D-CNN; typically comprises three fundamental layers:
convolutional, pooling, and fully connected layer. Input from the HSI datacube (pixel
value across wavelength) is fed to the convolutional layers, which apply a sliding
window over given input data to perform feature extraction. The pooling layers
reduce the size of the extracted features, and the fully connected layers classify the
input based on the features obtained from the previous layers.

4 Materials and Methods
This section describes the mockup utilized in the study and the HSI acquisition
laboratory setup. Additionally, we will describe the steps used to process the HSI
data for the classification task.

4.1 Mockup
As shown in Figure 2, a pigment mockup was used and prepared in a laboratory
environment. The mockup’s base was constructed using 3D printing. It consisted of
different elevation levels, including a flat surface and surfaces raised 2.5mm, 5mm,
and 10mm from the base. A linen fabric was glued to the surface of the base. Three
layers of white gesso were applied evenly across the entire surface of the canvas. The
surface was carefully sanded between each layer using sandpaper to create a smooth
and even coat.
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P1
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10 mm 
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5 mm 

Elevation 
2.5 mm 
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Figure 2: The pigment mockup used in the study comprised ten pigments labelled P1
to P10. These pigments were applied to a surface that included a flat region and three
different elevation levels, namely 2.5mm, 5mm, and 10mm. For better visualization
of the elevation, the left part of the image is shown in grayscale, captured at 998 nm
in the IR region, while the right side is a colour image produced using bands at 640
nm, 551 nm, and 458 nm.

The selection of pigments for the research work was a critical step to ensure that the
mockup accurately reflected the properties of pigments commonly used in historical
artworks. The pigments were carefully chosen on the basis of their spectral charac-
teristics and common appearance in CH research articles. The selection process also
involved consultations with experts. Furthermore, web-based research was conducted
on 164 known paintings from different centuries to determine the final selection of pig-
ments. We selected the pigments that were used most frequently in those paintings.
This approach ensured that the pigments used in the mockup represented those used
in real paintings, making the research findings more applicable to real-world scenar-
ios. The final selection of pigments included Veridian (V), Cerulean Blue (CB), Green
Earth (GE), Yellow Ochre Light (YOL), Blue Cobalt (BC), Ultramarine Blue Deep
(UBD), Lead White Hue (LWH), Genuine Vermilion (GV), Burnt Umber (BU), and
Ivory Black (IB). Each pigment was applied to the mockup surface with a width of
6mm, with a 3mm gap between each pigment. The tubes were purchased from Zecchi,
a reputable supplier of art materials [58]. Safflower oil was used for the whites, while
linseed oil was used for all other pigment tubes.

4.2 HSI Acquisition Setup
Hyperspectral images were acquired in a laboratory using HySpex VNIR-1800, a
line scanner camera developed by Norsk Electro Optikk [59], and a translation stage
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setup, the schematic illustration of HIS is illustrated in Figure 3. The detector of the
HySpex device consists of an actively cooled and stabilized complementary metal-
oxide-semiconductor. It has a spectral range of 400 to 1000 nm with 186 spectral
bands having a spectral resolution of 3.26 nm. A computer equipped with HySpex
GROUND software provided by the manufacturing company controlled the hyper-
spectral acquisition system. This software automatically synchronizes the scanning
speed for the defined integration time by the user. We used a close-range 30cm cylin-
drical lens for the acquisition. It captures 1800 spatial pixels across a line with a field
of view of approximately 86mm.

During the experiment, we positioned the Spectralon® [60], a ColorChecker [61], and
a pigment mockup on a movable part of the translation stage, as shown in Figure
3. These were placed at the same horizontal level and perpendicular to the camera’s
focal axis [62]. The Spectralon® used was a multi-step reference target with four
adjacent panels with reflectance values of 99%, 50%, 25%, and 12%. It was used to
calculate the normalized reflectance at the pixel level. To verify the obtained spectral
data, we used a ColorChecker.

Hyperspectral

Camera

V
N

IR
-1

8
0
0

Spectralon® Tile

Illuminant

(Halogen)
Illuminant

(Halogen)

Pigment Mockup

Translator Stage Motor

Moving Platform ColorChecker

Computer

Figure 3: Schematic illustration of the HSI system utilized in the experiment. A
500 Watt halogen-based floodlight was used for illumination, and the illumination
geometry was set to 45◦-0◦-45◦, where 0◦ is the camera angle to normal.
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4.3 Data Processing
The raw hyperspectral data are preprocessed for dark current factor, sensor correction,
and radiometric calibration using HySpex RAD software provided by the camera
manufacturer. The preprocessed data (converted to sensor-level absolute radiance
value) are then converted to normalized reflectance using the known reflectance value
of the reference target used in the experiment. The reference target surface might
have some variation in the pixel value, so we averaged the values from 100 pixels for
each line scan and calculated the reference target radiance value. Due to the small
distance between the sensor and the object, we assumed that the path radiance effect
was negligible. The spectral data were then cropped to exclude the ColorChecker and
the reference target. The data processing steps were computed using the open-source
software Python 3.9 [63]. Equation 19 provides the mathematical formulation used for
conversion. Further data processing steps for supervised and ML-based classifications
are discussed in the following sections.

RObj(λ) = RRef_t(λ)
rObj(λ)

rRef_t(λ)
(19)

where RObj(λ) is the reflectance of an object, RRef_t(λ) is the reflectance of refer-
ence target, rObj(λ) and rRef_t are the absolute sensor radiance values for the object
and the reference target, respectively.

4.3.1 Data Processing Steps for Supervised Classification Algorithms

To conduct supervised classification, reference or ground truth spectra are required
to compare similarity. For this purpose, we selected a flat region with dimensions
of around 10 × 10 pixels to establish a spectral library. We then saved the mean
spectra for each pigment based on these regions, ensuring that the number of pixels
was consistent. The plot for the spectrum of ten pigments and a substrate is included
in the Appendix E. Our approach to constructing this library involved considering
three different elevations for each pigment, as well as calculating an average spectrum
that accounted for both elevated and flat surfaces. Data processing steps are shown
with a block diagram in Figure 4.
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Figure 4: Workflow diagram illustrating the data processing Steps for supervised
classification algorithms used in the study.

Selecting a threshold value is an important step in spectral matching [5, 64, 33],
which involves identifying specific spectral ranges as belonging to one of several given
classes. To achieve optimal classification results, the threshold value must balance
minimizing misclassification rates and maximizing the number of correctly classified
pigments. Mandal et al. [25] employed an empirical approach to determine an optimal
threshold value, where the authors chose a small section of the HSI dataset from a
mockup and extracted the reference spectrum by averaging 11 × 11 pixels from a flat
region. They tested a range of values, computed the classification accuracy for various
algorithms, and evaluated their accuracy using the confusion matrix. The threshold
value used in our study was directly taken from this research and is mentioned in
Table 1

4.3.2 Data Processing Steps for ML-based Classification Algorithms

Before feeding the normalized reflectance HSI data to the ML model, the data were
labeled for distinct classes using a label encoder. We utilized one hot encoder for
our dataset, where each class has one hot value (1), and the rest are cold (0). The
data was then split into training and testing sets using an 80-20 split and was further
standardized. Subsequently, the model was built and implemented. The training
dataset was used to train the model by updating the weights and biases of neurons
with each epoch until a considerably low Mean Square Error (MSE) and high accuracy
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Table 1: The selected threshold value for eight different classification algorithms [25].

Algorithms Threshold Value
ED 0.9
SAM 0.1
SCM 0.8
SID 0.03
SSS 1.1

SIDSAM 0.003
SIDSCM 0.005
JMSAM 0.09

were achieved. Once the model was trained, the test dataset was used to validate its
performance. The overall workflow is illustrated in a block diagram in Figure 5.

Hyperparameter tuning is crucial in building robust and better generalized SVMmod-
els [65]. We tuned our SVM model for three key hyperparameters: kernel function,
regularization (C), and gamma [51]. The kernel function transforms the input space
into a higher-dimensional feature space, allowing the SVM to find a hyperplane (de-
cision boundary) that can separate the classes. Several kernel functions are available,
including linear, polynomial, and radial basis functions (RBF). The C parameter in
SVM introduces a penalty for each misclassified data point. A smaller value of C
results in a low penalty for misclassifications, leading to a decision boundary with a
larger margin but more misclassifications. On the other hand, a larger value of C
results in a higher penalty for misclassifications, leading to a decision boundary with
a smaller margin and fewer misclassifications. The gamma parameter of RBF controls
the distance of influence of a single training point. Low gamma values indicate a large
similarity radius, resulting in more points being grouped together. For high gamma
values, the points must be very close to each other to be considered in the same class.
Therefore, models with very large gamma values tend to overfit. If the gamma is
large, the effect of C becomes negligible. GridSearch cross-validation was used to
optimize the hyperparameters of the SVM model [66]. This involved generating and
testing the model for every possible combination of algorithm parameters specified in
a grid. Table 2 shows the details of the hyperparameters.
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Figure 5: Workflow diagram illustrating the data processing steps for ML.

Table 2: SVM hyperparameters, tuning range, and the optimal value selected for
classification.

Hyperparameter Range Used Optimum Value Selected
Kernel ’Polynomial’, ’RBF’, ’Sigmoid’, ’Linear’ RBF

C 0.1, 1, 10, 100, 1000 100
Gamma 1, 0.1, 0.01, 0.001,0.0001 1
k-fold 5 5

To optimize the hyperparameters of the 1D-CNNmodel, we utilized KerasTuner [?].The
tuning process involved adjusting the number of convolutional layers, filter size,
dropout rate, dense layer filter size, learning rate, and epoch. The resulting opti-
mized model is illustrated in Figure 6, along with the specific hyperparameters used.
The Adam optimizer with a learning rate of 0.001 and categorical cross-entropy loss
function was used in the training process.
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Figure 6: The architecture of a tuned 1D CNN model with optimized
hyperparameters.

4.4 Data Augmentation
In ML, data augmentation is a method employed to expand the size of the training
dataset by implementing various transformations on the available training data sam-
ples. The fundamental idea behind data augmentation is that alterations made to
the labeled data should not modify the semantic interpretation of the labels [67, 68].
McFee et al. [69] suggested using deformation techniques that preserve the semantics
of audio signals, improving the model’s accuracy for the music classification task.
Bjerrum et al. [70] used data augmentation techniques on spectral data to employ
deep learning algorithms to predict drug composition in tablets using near-infrared
regions. The results showed that data augmentation improves overall performance.

The data augmentation technique should be chosen based on the specific characteris-
tics of the analyzed signal. Some techniques might be more appropriate than others,
depending on the context. In our study, we augmented the datasets by introduc-
ing four attributes to the spectrum: offset, multiplication, Gaussian noise [71], and
speckle noise [72]. An example of the implementation of these attributes is shown
in Figure 7. Offset was varied ±(0.0001 to 0.1 with a step size of 0.001) times the
standard deviation of the training set. Multiplication was done with 1±(0.0001 to 0.1
with a step size of 0.001) times the standard deviation of the training set, and the two
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different noises, Gaussian distributed additive noise and speckle which is a multiplica-
tive noise, were added ten times with variation of 0.00001 and .000001 respectively.
Using augmentation techniques, we produced two different training datasets. The
first training dataset was generated by considering only a single spectrum from the
spectral library, whereas for the second training dataset, we augmented each spectrum
within the training dataset.

4.5 Accuracy Assessment
Accuracy assessment is an important step in evaluating the performance of classifi-
cation algorithms. The most common and widely accepted method to express clas-
sification accuracy is confusion matrices. It helps to visualize the cross-tabulation of
classified pigments; the matrix’s main diagonal represents the correctly classified val-
ues, while the other elements indicate how many pixels in one category are incorrectly
classified into other categories. For additional information on the confusion matrix,
we refer to the work of Congalton [73]. For each algorithm, we calculate the accuracy
for the predefined region illustrated in Figure 8.

5 Results and Discussion
This section presents the classification results obtained, along with an evaluation
of the overall accuracy of the algorithms used, considering various reference spec-
tra (ground truth). Furthermore, the outcomes of the SVM model employing data
augmentation will also be elaborated.
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Figure 7: An example of data augmentation; is created with an addition of offset
and multiplication to data by a factor of 0.2; Gaussian noise and speckle noise are

added to the data with variations of 0.00002 and 0.0002, respectively.
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Figure 8: The ground truth image of the mockup showing regions of interest (ROIs)
used for accuracy assessment corresponds to different elevation labels. R7 represents
the flat region, while S represents the region for a substrate.
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The Figure 9 illustrates the classification accuracy of ten different algorithms, in-
cluding two machine learning models, for each pigment on both elevated surfaces
and a flat surface. Algorithms 1D-CNN and SVM, outperformed all eight supervised
algorithms, with the least accurate being algorithm ED. SAM and SCM performed
better than the other algorithms after the machine learning models. On the other
hand algorithms with hybrid approaches did not performed well overall.The images
showing the classification results for each algorithm are attached in Appendix A.

Although there are variations in accuracy among the different algorithms, we can
discern a pattern in the obtained classification results; the classification accuracy
decreases with increasing elevation. An interesting observation is that SVM has
lower accuracy for a region with an elevation of 10mm than most other algorithms for
that same region. Figure 10a also presents the confusion matrix for SVM, revealing
that the accuracy is particularly low for regions R3, R13, and R10, all located on one
particular side of the elevation in the mockup (Figure 8). This side of the mockup
has a shadow(Figure 2), which could be a significant factor in misclassifying these
regions. Appendix B contains the confusion matrix for regions three and thirteen,
illustrating the misclassification of pigments for SVM. The SAM algorithm determines
the angle between two vectors, irrespective of their length, and thus its classification
accuracy is less affected by any changes in the spectrum’s magnitude. On the other
hand, the SCM algorithm eliminates negative correlations while preserving the SAM
characteristics. Therefore, these algorithms provide greater accuracy in the shadow
area, as evidenced by the confusion matrix depicted in Figure 10b and Figure 10c for
SAM and SCM, respectively.

The accuracy of all supervised algorithms is lower for Pigment P6 and P9 in flat
regions, but this is only due to the exact location chosen for accuracy assessment
(R7), which includes most of the unclassified areas. This trend is not necessarily
representative of all flat regions on average; also, elevated surfaces do not exhibit the
same level of lower accuracy as flat regions. The classification results are presented in
the Appendix A. However, the ED, JMSAM, and SSS algorithms have lower accuracy
for Pigments P6 and P9 due to their similar spectra, which are also discussed by
authors in [25]. This similarity is evident in Figure 11a, where the Pearson correlation
coefficient between these two pigments is almost 1. similarly, Figure 11b also indicates
a very low dissimilarity measure between these two pigments.
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Figure 10: Classification accuracy for each pigment across all Regions of Interest
(ROIs); For algorithms, (a): SVM, (b): SAM, and (c): SCM.

23

145 Article C



P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 S
Pigments

P1
P2

P3
P4

P5
P6

P7
P8

P9
P1

0
S

Pi
gm

en
ts

1

0.8 1

0.6 0.7 1

0.06 -0.09 0.6 1

0.08 -0.02 0.2 0.3 1

0.7 0.9 0.7 0.07 0.2 1

-0.2 -0.2 0.03 0.4 -0.7 -0.3 1

0.3 0.2 0.7 0.9 0.4 0.3 0.2 1

0.7 0.9 0.7 0.02 0.2 1 -0.3 0.3 1

0.1 0.2 -0.2 -0.5 0.6 0.3 -0.9 -0.3 0.3 1

0.09 -0.003 0.5 0.8 -0.3 -0.02 0.8 0.6 -0.04 -0.9 1
−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

(a)

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 S
Pigments

P1
P2

P3
P4

P5
P6

P7
P8

P9
P1

0
S

Pi
gm

en
ts

0

0.3 0

0.8 0.4 0

1 0.8 0.1 0

1 0.6 0.1 0.2 0

0.7 0.1 0.3 0.7 0.5 0

1 0.6 0.1 0.2 0.03 0.6 0

1 0.9 0.2 0.1 0.4 0.7 0.5 0

0.6 0.1 0.3 0.7 0.5 0.009 0.6 0.8 0

1 0.5 0.2 0.2 0.01 0.5 0.03 0.6 0.5 0

1 0.5 0.1 0.1 0.02 0.6 0.0006 0.5 0.6 0.03 0
0.0

0.2

0.4

0.6

0.8

1.0

(b)

Figure 11: The matrices display the correlation and dissimilarity between the pig-
ments; (a) Pearson’s correlation coefficient [74], a coefficient of 1 indicates a high
correlation, while a value of zero represents no correlation; (b) SID calculated for dis-
similarity, where a value of 0 implies a high degree of similarity between the spectra,
while 1 indicates maximum dissimilarity.

The accuracy of the algorithms SID and its hybrid combination with SAM and SCM
for pigment P1 has decreased as shown in Figure 9, and this decrease was further
observed with an increase in elevation. It is important to note that not all pigments
are affected in the same way. In the case of P1, the pixels were either classified
as P1 or remained unclassified, as indicated by the confusion matrix for SID in the
Appendix C. Mandal et al. [25] suggested that changing the threshold value could
improve classification accuracy, but this approach could lead to misclassification of
other pigments, which is generally undesirable in CH. The stochastic algorithm, SID,
depends on the probability distributions of spectra, and alterations in data distribu-
tion can influence the overall entropy value. Moreover, the changes in the dataset can
produce a varying impact on the entropy value for normal distribution and skewed
distribution. In other words, if both distributions are shifted equally, the symmetric
distribution would experience less change in entropy than the skewed distribution,
owing to its higher predictability and lower uncertainty compared to the skewed dis-
tribution.

As illustrated in Figure 12, pigment P1 exhibits a notable difference between its mean
and median values, resulting in a skewed distribution. Additionally, the standard
deviation of this distribution is greater than its mean, indicating that the data points
are more widely dispersed. Given the same amount of shift in datasets (identical in
absolute terms), this shift may have a more significant impact on the dataset with a

24

Article C 146



Figure 12: Statistical measures of mean, median, standard deviation (SD), and Spec-
tral flatness measure (SFM), computed for all ten pigments.

larger spread than the one with data points being more tightly clustered around the
mean, leading to a larger relative entropy between the two datasets. This is likely
why some pigments are affected more than others. This also explains why we need
to set different threshold values for different pigments.

The accuracy of Pigment P10 is higher for all the algorithms used on a flat surface,
but it decreases significantly for supervised algorithms with elevation changes. On
the other hand, ML models, SVM, and 1D-CNN show consistent classification accu-
racy for P10, regardless of elevation. When the reference spectrum is obtained from
a flat region, it is likely to have minimal variation with test data sets within the same
region, resulting in a higher number of correctly classified pixels. However, if the
reference spectrum is taken from an elevated region, changes in reflectance values at
higher elevations could cause higher variation and lead to more unclassified pixels.
Based on this, one can hypothesize that using a reference spectrum taken from an
elevated region is more likely to result in correct pixel classification on the same ele-
vated surface region.

Low spectral intensity makes distinguishing between different land cover classes or
features in an image difficult, leading to misclassification, especially for classes with
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similar low reflectance values [75]. We observed that, in most cases, the P10 and
P5 pigments were misclassified as each other or as the substrate, or they remained
unclassified in most of the algorithms used. The Spectral Flatness Measure (SFM),
also known as Wiener Entropy, is a metric that can be used to quantify the degree
of flatness or peakiness of a spectrum by computing the geometric mean ratio to the
arithmetic mean of the power spectrum [76]. We computed the SFM for the pigments,
as shown in Figure 12. The SFM values for P7, P10, and P5 were higher, indicating
a flat spectrum with nearly identical reflectance values across different wavelengths.
This can make it difficult for a classifier algorithm to differentiate between different
classes, resulting in lower classification accuracy.

Using a reference target with a surface height equivalent to the flat surface of the
mockup, the normalized reflectance value was calculated for the HSI datacube. Ide-
ally, the reflectance value of an elevated surface should be higher than that of a flat
surface. However, shadows caused by the surface elevation lead to a decrease in the
obtained reflectance value as the surface height increases. Generally, the substrate
spectrum has a lower value than the P7 reference spectrum (the reference spectrum
for ten pigments used and the substrate is provided in the Appendix E). With an
increase in surface elevation, the distance between the P7 and its reference spec-
trum increases, while the distance between the P7 and substrate reference spectrum
decreases. As a result, most regions for P7 are misclassified as substrate.

In Figure 13, we can see the overall classification accuracy obtained by averaging all
pigments for four different surface elevations: flat, 2.5mm, 5mm, and 10mm, using
all ten algorithms in the study. The reference spectrum used for building the spectral
library and training the ML models was taken from the flat surface. For almost all
algorithms, the classification accuracy for an elevated surface is lower compared to
the flat region. Surfaces with a 2.5mm elevation have accuracy similar to or less than
the flat surface, followed by 5mm and 10mm, respectively. This pattern is consistent
for ED, SSS, SVM, and 1D-CNN algorithms. However, for the other six algorithms,
we see that the accuracy at an elevation of 10mm is slightly greater than that of the
surface with a 5mm elevation. The increase in overall classification accuracy can be
attributed to the higher accuracy obtained for pigments P5 and P10. This higher
accuracy for P5 and P10 might be due to the shadow effect; decreased reflectance
value in the shadow region might have reduced the distance between the reference
and measured pixels.

Earlier in this paper, we hypothesized that using a reference spectrum from an ele-
vated surface would result in more accurate pixel classification for that same elevated
surface region. To test this hypothesis, we built spectral libraries and training datasets
using the reference spectrum from each elevated surface, i.e., 2.5mm, 5mm, and 10mm
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Figure 13: Overall classification accuracy for four different surface elevations (flat,
2.5mm, 5mm, and 10mm) using reference spectra from the flat surface.

and then computed the classification accuracy. In addition, we built spectral libraries
and training datasets that represent an average spectrum of flat and varying elevation
surfaces. To obtain these spectra, we averaged the pixel values over a spatial region
taken as in a straight line (for example, in Figure 8, it is a pixels values of a line from
right to left) for each band. The result from classifaction accuracy is summarized in
Figure 14.
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Figure 14: Classifaction accuracy obtained using ten different algorithms for flat
(F), 2.5 mm elevation (E1), 5 mm elevation(E2), and 10mm eleavation (E3), each
computed for different spectral library and training datasets, built using reference
spectrum from the flat region, three different elevated region and an average of all
these.

Figure 14 shows that classification accuracy for the flat region (F) is higher when using
reference spectra from the flat surface than at different elevations. Similarly, when
using reference spectra from a 2.5mm elevated region, the classification accuracy is
higher for regions with 2.5mm elevation (E1) for all algorithms. However, for regions
with 5mm elevation (E2), the classification accuracy is almost identical to E1 and
very close to other regions. In contrast, for regions with 10mm elevation (E3), the
classification accuracy is greater than other surfaces, mainly for stochastic algorithms
(SID, SIDSAM, SIDSCM), SVM, and 1D-CNN. However, it is the lowest for ED and
SSS. The accuracy of SAM, SCM, and JMSAM is similar to E1 and E2 elevations but
lower than the flat surface. Using average reference spectra improved accuracy for
almost all flat and elevated regions compared to the accuracy obtained when using four
different conditions of reference spectra. A detailed result displaying the classification
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accuracy for individual pigments at each elevation and for different reference spectra
conditions can be found in the Appendix F.

Result for average classification accuracy using ten algorithms and five reference spec-
tra conditions (i.e., from the regions F, E1, E2, E3, and the average of these regions)
is shown in Figure 15. When the reference spectrum was taken from the flat region,
the classification accuracy was lower, or comparable (in the case of E1), for all al-
gorithms compared to the accuracy obtained when the reference spectra were taken
from regions E2, E3, or the average spectrum. The classification accuracy for most
algorithms was almost the same when considering reference spectra from E2 or E3.
Notably, using an average reference spectrum improved classification accuracy for
almost all algorithms. The 1D-CNN algorithm had the highest classification accu-
racy among all the algorithms used, with slightly lower accuracy when the reference
spectrum was taken from the flat region and almost similar results for all other ref-
erence spectra conditions.The classified images produced by the SVM and 1D-CNN
algorithms using an average reference spectrum are provided in the Appendix D.

Data augmentation was performed to create additional training datasets for SVM, as
shown in the flow diagram illustrated in Figure 16. Before computing classification
accuracy, Hyperparameter tuning was performed using these augmented datasets. Fi-
nally, the SVMmodel was executed with the optimal hyperparameters of a polynomial
kernel function and a regularization value of 0.1. Figure 17 shows the classification
accuracy obtained for each pigment across all regions using the augmented training
dataset where training data set from a flat region was selected. We observed that
overall classification accuracy was higher than the SVM without data augmentation
(Figure 10a). we also augmented the data from a single spectrum taken from the flat
region first and then from the average spectrum; results for classification accuracy
are included in Appendix G. Figure 18 shows the overall classification accuracy for
each condition for flat and three different elevations.
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Figure 15: Overall classification accuracy for four surface elevations (flat, 2.5mm,
5mm, and 10mm) obtained by using reference spectra taken from an elevated region
of 2.5 mm.
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Figure 16: A workflow diagram illustrating the generation of training datasets using
data augmentation for SVM; classification results from a, b, c and d are illustrated
in Figure 19.
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Figure 17: Classification accuracy for each pigment across all Regions of Interest
(ROIs) for SVM using augmented dataset.

Classification accuracy for an augmented data set is higher when compared with
all other three conditions, i.e., without data augmentation, data augmentation con-
sidering a single spectrum from a flat region and considering data augmentation
considering a single average spectrum. However, using a single spectrum for aug-
mentation yielded lower performance, except for an elevated region of 10 mm, where
the accuracy was significantly improved compared to the non-augmented condition.
Comparable accuracy was achieved using data augmentation with a flat region and
augmenting a single averaged spectrum. As illustrated in Figure 9, SAM and SCM
are the algorithms which performed better after ML models. Figure 18 shows that
data augmentation using a single spectrum from a flat region is still better than SCM,
highlighting that even with the single spectrum available, one can obtain better clas-
sification accuracy than supervised-based algorithms. The results suggest that data
augmentation can improve classification accuracy, particularly when multiple spectra
are augmented or when an average spectrum is used for augmentation. The classified
images for each of these conditions are presented in Figure 19.
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Figure 18: Overall classification accuracy for SVM at four different surface elevations
(flat, 2.5 mm, 5 mm, and 10 mm) using different conditions of data augmentation, in
comparison with SCM, employing reference spectra obtained from the flat region.

(a) (b)

(c) (d)

Figure 19: The classification results for SVM; (a): without data augmentation, (b):
with data augmentation, (c): with data augmentation using single spectrum from flat
region, and (d):with data augmentation using single spectrum from averaged region.32
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6 Conclusion
This study investigated the performance of different supervised algorithms and ma-
chine learning models for pigment classification using HSI on an elevated mockup.
We have observed that the elevation itself does not significantly impact the classifica-
tion accuracy; however, the elevation can result in the formation of shadows, which
can have a significant effect on the classification accuracy of the algorithms used and
varies for different algorithms. It was also observed that the choice of reference spectra
plays a significant role in the accuracy of pigment classification. An average reference
spectrum from different elevated regions yields better results than individual spec-
tra. Among the ten algorithms tested, the 1D-CNN algorithm showed the highest
classification accuracy, followed by SVM, SAM and SCM. Furthermore, results also
indicated that data augmentation could significantly improve classification accuracy,
particularly when multiple spectra are augmented or when an average spectrum is
used for augmentation. This study provides valuable insights for analysing paintings
in the CH domain. It could be beneficial in selecting appropriate classification al-
gorithms when artworks have elevation or data that have shadows. In future work,
removing shadows using image-processing techniques could be explored as a possible
direction to further improve the accuracy of pigment classification.
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Appendix
A Classification results.

(a) ED (b) SAM

(c) SCM (d) SID

(e) SIDSAM (f) SIDSCM

(g) JMSAM (h) SSS

(i) SVM (j) 1D-CNN

Figure A.1: The classification results from ten algorithms using the reference spec-
trum from the flat region. 41
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B Confusion matrix for regions R3 and R13, illus-
trating the misclassification of pigments for SVM.
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Figure B.1: Confusion matrix for SVM; (a): ROI : 3 , (b): ROI : 13.
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C Confusion matrix illustrating classification accu-
racy obtained on a flat surface using SID Algo-
rithm.
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Figure C.1: Confusion matrix obtained by utilizing the SID Algorithm on a flat
surface for ten pigments and substrate.

D Classification results for SVM and 1D-CNN.

(a) SVM (b) 1D-CNN

Figure D.1: The classification results for SVM and 1D-CNN using the averaged ref-
erence spectrum.
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E Normalized reflectance spectrum of 10 pigments
and substrate

S

Figure E.1: Spectrum for ten pigments (P1 to P10) and substrate (S) measured at
the flat surface by taking an average of 10 × 10 pixels.
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Figure F.5: Overall classification accuracy for four surface elevations (flat, 2.5mm,
5mm, and 10mm) obtained by using reference spectra taken from an elevated region
of 2.5 mm.
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Figure F.6: Overall classification accuracy for four surface elevations (flat, 2.5mm,
5mm, and 10mm) obtained by using reference spectra taken from an elevated region
of 5 mm.
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Figure F.7: Overall classification accuracy for four surface elevations (flat, 2.5mm,
5mm, and 10mm) obtained by using reference spectra taken from an elevated region
of 10 mm.

ED SA
M

SC
M SI

D

SI
DS
AM

SI
DS
CM

JM
SA
M SS

S
SV
M

1D
CN

N
0

50

100

Algorithms

C
la
ss
ifi
ca

ti
on

A
cc
u
ra

cy

Flat 2.5mm 5mm 10mm

Figure F.8: Overall classification accuracy for four surface elevations (flat, 2.5mm,
5mm, and 10mm) obtained using average reference spectra; the averages were com-
puted by considering a pixels values of a line drawn from right to left of the mockup
for each pigment.
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G Classification Accuracy for SVM using Data Aug-
mentation
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Figure G.1: Classification accuracy for each pigment across all Regions of Interest
(ROIs) for SVM, (a): With data augmentation using single spectrum from flat region,
and (b): With data augmentation using averaged single spectrum.
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Evaluation of Text Legibility in Alternative Imaging Approaches 

to Microfiche Digitization 

Hilda Deborah, Dipendra J. Mandal; Norwegian Colour and Visual Computing Laboratory, Department of Computer Science, NTNU–

Norwegian University of Science and Technology; Gjøvik, Norway 

 

Abstract 
Microfiche was a common format used in microforms 

reproductions of documents, extensively used for archival storage 

before the move to digital formats. While contemporary documents 

are still available for digitization, others from older historical 

periods are no longer physically accessible for various reasons. In 

some cases, their microfiche copies are available, making 

microfiche digitization a must. However, a microfiche reader is not 

always available and, even then, it is a machine made for the 

purpose of reading and not for data collection. In this work, the 

performance two imaging devices are evaluated as alternatives to 

the traditional microfiche reader, by means of optical character 

recognition (OCR). Results show that this alternative surpasses the 

performance of a microfiche reader in terms of text legibility. 

Introduction 
In the recent decades, we have seen an increase in the 

digitization of historical manuscripts using not only high-end color 

cameras and scanners, but also using multispectral [1], [2] and 

hyperspectral [3] imaging. There are significant advantages in doing 

so, not only for more accurate documentation purposes, but also for 

more advanced tasks, e.g., recovering hidden information [4]–[6]. 

Despite the need and advantages of such a digitization, especially 

for historical documents, there are cases where a rescanning of an 

object is no longer possible. Access to many historical documents in 

library collections across the globe can be difficult due to the fragile 

condition of the object. There are even cases where manuscripts or 

fragments have been lost [7]. Fortunately, when the documents have 

been kept in collections or institutions, often their records or analog 

copies are available in microforms. In this work, we focus on a 

specific format of microforms, i.e., microfiche. 

Prior to the advance of digital technologies, microforms were 

the only available way to archive and preserve large documents. It 

was quickly adopted by the cultural heritage sector to capture their 

collection for preservation, access, and distribution. Microfiche is 

plasticky flat film sheets commonly used for reproducing historical 

printed documents, e.g., books and newspapers, in an optically 

reduced size or microforms [8]. These are of various types, e.g., 

silver-halide, diazo, and vesicular, and are available with different 

reduction ratios and life expectancy up to 500 years. The microfiche 

may be negative, i.e., clear lettering on a dark background, or its 

opposite, i.e., positive microfiche.  

An example of a microfiche is provided in Figure 1 and, taking 

note of its physical dimension, we can see that a single microfiche 

contains multiple photos or pages. Due to its significant reduction 

ratio, a microfiche reader [9], [10] is required to be able to observe 

and read its content or pages. Today’s commonly available 

consumer or phone cameras would rarely have the resolution 

required to read a microfiche. This poses two challenges. The first 

is that a microfiche reader might not be as available as it was before 

since the technology has largely been replaced by digital 

technologies. A microfiche reader is also an analog machine made 

for the purpose of reading and not for digitization or data collection 

purposes. Thus, despite providing a high resolution, the use of a 

microfiche reader for digitizing microfiches is very time consuming. 

A single page in a microfiche equals a single image capture, 

requiring manual adjustments or placements of the lens such that it 

points to the right page. For one microfiche alone, use Figure 1 as 

an example, 60 image captures are needed. And when talking about 

a digitization effort, we have hundreds if not thousands of 

microfiches, making the use of a microfiche reader impractical and 

highly costly.  Additionally, it is also important to ensure the quality 

of the digitized images to meet user objectives. 

The aim of this work is to find alternative imaging technologies 

for the digitization of microfiches. Trading off resolution with 

accessibility and time constraints, we are comparing two different 

imaging setups for the task of microfiche digitization. Information 

obtained from a microfiche must be readable. Thus, we define 

legibility as the evaluation criteria, and it is to be assessed by means 

of Optical Character Recognition (OCR) [11]–[13]. By using OCR, 

we limit the legibility assessment to system performance and, 

therefore, excluding assessment by human observers. 

 

 
Figure 1. An example of a positive microfiche, of physical dimension 105mm × 

148mm and a reduction ratio of 24X or 24 times, which will be used in the 

assessment of text legibility experiment. This material comes from Ref. [14]. 

https://doi.org/10.2352/issn.2168-3204.2021.1.0.22
This work is licensed under the Creative Commons
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Imaging Approaches 
Access to a microfiche reader or any microform reader machine 

for that matter, is scarce even though the technology used to have a 

central role in archiving. The challenge of reading a microfiche is 

mainly related to its very reduced size. However, considering 

advances in optical devices in the past decade alone, it is highly 

likely that an alternative imaging solution is available. The first one 

to consider is a flatbed scanner, which nowadays are available with 

a resolution up to 6400 dpi. Then, if we also consider the availability 

of macro lenses coupled with a high-resolution camera, it might be 

sufficient to resolve the reduction ratio of a microfiche. Based on 

these considerations, we select a professional grade flatbed scanner 

and an in-house film scanning system that couples a monochrome 

camera and a macro lens as alternatives to a microform reader.  

Microform reader 

A microform reader Zeutschel delta plus was available to us 

through the local library in Gjøvik, Norway. This device was 

marketed for public or professional use in digitizing all formats of 

microfilm and photographic materials. Microfiche is also listed as a 

compatible input type. This device is said to support a reduction 

ratio of 7X-105X. Reduction ratio expresses the linear relationship 

between the size of a document and its photographically reduced 

format or microimage [14]. For example, if a 10 cm object has been 

reduced 10X, it means the microimage is of size 1 cm. Other 

specifications of the reader machine that is relevant for this study 

can be seen in Table 1. Despite the high reduction ratio support, we 

consider the operation ease of using this device for digitization 

purposes to be low. This is mainly due to the need to manually 

position the lens for every single page within the microfiche, see 

maximum fiche per scan factor in the table, i.e., 1/𝑛 with 𝑛 = 98. 

Flatbed scanner 

A flatbed scanner used in this study is a professional grade 

scanner aimed for scanning films, i.e., Epson Perfection 4870 Photo. 

This scanner has up to 4800 dpi and provide an option to scan in 

transmissive or transparency mode, thus suitable for the purpose of 

microfiche scanning. The immediate advantage of its use is in time 

saving. Even though its throughput in Table 1 is given in terms of 

seconds per line instead of per image, it still more efficient than a 

microfiche reader since it can scan two whole microfiches in one 

capture. This makes the operational ease high because of a 

significant reduce in time and efforts that are needed for the manual 

adjustments of apparatus and materials before each image capture. 

In-house film scanner 

An in-house LED-based multispectral film scanner with the 

main purpose of capturing various kinds of film colors in 

transmission mode [15]. This scanner couples a monochrome 

camera with a macro lens, see details in Table 1, and therefore 

suitable for microfiche scanning. Since microfiche materials in this 

study is black and white, we only take grayscale images with one 

light source instead of multispectral images with the full range of 

the LED lights. The light source used was 415.5 nanometer, chosen 

arbitrarily but kept constant throughout the acquisition of all images. 

The maximum scan area of this scanner is not only due to the field 

of view of the scanner, but also due to how the apparatus is built for 

capturing images in transmissive mode. It has a square hole of 

roughly the size of a 35 mm film and only objects smaller than that 

size can be captured. For the specific test microfiche used in this 

study, the apparatus allows capturing six pages within a single 

microfiche. Nevertheless, both the throughput speed and operational 

ease can still be considered as high. 

Table 1. Comparison of the specifications and characteristics of the three imaging setups evaluated in this study. Note that this summary is formulated within the 

specific context of reading 105 mm x 148 mm microfiches in a monochrome setup. The test microfiche has 24X reduction ratio and maximum 𝑛 = 98 pages. 

Factors Microform reader Flatbed scanner In-house film scanner 

Model Zeutschel delta plus Epson Perfection 4870 Photo QHY600 16BIT BSI, atx-i 

100mm F2.8 FF MACRO 

Compatible input 

types  

Microfiche, microcards, 16/35 

mm roll microfilm, photographic 

slides, negatives, 35 mm perfo-

rated films 

A4 size document, transparen-

cies, photos, 35 mm films, neg-

atives, 4”x5” formats  

35 mm photographs and moti-

on picture films, small objects 

of different kinds 

Max. scan area 35 x 47 mm 216 x 297 mm 35 x 40 mm 

Max. fiche/ scan 1/𝑛 2𝑛 6/𝑛 

Effective pixels 10 MP 40,800 x 56,160 at 4800 dpi 9,576 x 6,388 (±60 MP) 

Illumination Custom-calibrated LED array Cold cathode fluorescent lamp Calibrated LEDs 

Throughput speed Medium (±0.3 sec/ image) High (±0.027 sec/ line) High (±0.4 sec/ image) * 

Operation ease Low High High 

*The speed is calculated from specification of the camera given which was given as 2.5 fps for 16-bit output. 

 

Experimental Setup 
The flowchart of assessing text legibility of the three imaging 

setups for the context of microfiche digitization in this study can be 

seen in Figure 2. Microfiche materials will be captured using the 

different devices, resulting in grayscale digital images. Note that 

despite the ability of these devices to capture color or multispectral 

images, it is unnecessary for the purpose of this experiment. 
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Depending on the experiment, a post-processing of the digital image 

might be carried out to remove noise and smooth an image by means 

of a median filter. Then, the images will be passed on to an optical 

character recognition (OCR) engine, which in this case is the open-

source Tesseract-OCR. An OCR engine takes an image as input and 

return texts it can read from the input image. By comparing this 

recovered text with its corresponding ground truth, a text similarity 

measure using Levenshtein edit distance [16] will be calculated. 

  

 
Figure 2. Experiment flowchart of the assessment of text legibility by means of 

Optical Character Recognition (OCR). Three imaging devices are compared, 

i.e., a microform reader, a flatbed scanner, and an in-house film scanner. 

Microfiche materials and their processing 

The test microfiche used in this experiment is one of the 

microfiches provided by a handbook for evaluating microfiche 

readers [14]. It is the positive microfiche with 24X size reduction 

and, therefore, allowing a single microfiche to contain a maximum 

of 98 images. The microfiche itself contains of only 60 images, see 

Figure 1, composed of the microimages of all pages in the 

handbook. Considering their relevance for text legibility assessment 

using OCR, only 16 pages are used. Fourteen pages used in the 

experiment are written in two-columns page. This poses a necessity 

to split the image of a page into its individual column to avoid 

confusion in the order of reading by OCR. Consequently, the ground 

truth text is also made following such order. A subset of a column 

and its corresponding ground truth text can be seen in Figure 3.  

 

 
4. The printed test patterns, charts, and test 

pages were then filmed by qualified techni-

cians using high-quality equipment and film to 

produce the master microfiche from which the 

test microfiche contained in this copy of the 

handbook were made.  

Figure 3. A subset image of a microfiche-column and its ground truth text. 

Tesseract-OCR 

An optical character recognition (OCR) engine allows the 

conversion of digital images of typed, handwritten, or printed text 

into machine-encoded text, by recognizing a character at a time. It 

is particularly useful for automatizing a data entry process from 

printed records. In addition to working with images of documents, 

it can also be used to recognize text in a photograph of a scene. 

Tesseract-OCR is an open-source OCR engine that has been trained 

not only to detect single characters, but also optimized to recognize 

the shapes of letters for better recognition in case of blurred images. 

Furthermore, it also uses dictionary to improve text accuracy at the 

character segmentation step [17]. Our use of Tesseract-OCR is done 

through the Python wrapper pytesseract, and it returns the 

extracted text which will then be compared to the ground truth text.  

Levenshtein edit distance 

We have seen an example of an image input for the OCR and 

its corresponding ground truth text in Figure 3. The accuracy of the 

text returned by the OCR, however, will vary depending on the 

quality of the input image. This further means that the accuracy 

depends on the quality of the imaging device. Using the last two 

lines from the image in Figure 3 as an example, below are the texts 

returned by OCR for the exact image: 

 
test microfiche contained in this oaPy of the 

handbook were made. : 

 

Comparing the above text to its ground truth in Figure 3, two 

mistakes can be spotted. The word copy is recognized as oaPy and 

there is also an extra colon (:). In computational linguistics, edit 

distance is used to quantify the difference between two texts by 

calculating the minimum number of operations required to 

transform one string to another. Different edit distances consider 

different operations in its calculation, e.g., deletion or substitution. 

Levenshtein edit distance (ED) [16] is chosen since it considers 

deletion, insertion, and substitution. This enables comparing two 

strings of different lengths unlike, e.g., Hamming distance [18]. 

Calculating the difference of the above text and its ground truth 

using ED, we obtain the score of 5. Since ED is a distance function, 

smaller value means higher text similarity, therefore indicating a 

better imaging setup for the task at hand. In addition to the standard 

ED, we will also use cumulative or aggregate ED to allow better 

comprehension of the overall performance of an imaging device. 

Results and Discussion 
The results of legibility assessment of the three imaging setups 

for the use of microfiche digitization can be observed in Figure 4. 

In this graph, four entries are provided since two different dpi are 

evaluated for the flatbed scanner, i.e., at 4800 (Flatbed 4k) and 2400 

(Flatbed 2k) dpi. By a quick observation, we can see that for certain 

microfiches, the use of a flatbed scanner with a 2400 dpi is 

insufficient to resolve the text from the microimage. Interestingly, it 

can also be seen that at 4800 dpi, the flatbed scanner almost always 

outperforms the microform reader. To have another point of view of 
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the performance, see Figure 5, where ED is plotted in a cumulative 

manner along the x-axis. A cumulative ED at any point of the x-axis 

is a sum of all EDs from the previous points. Here, it becomes 

clearer that the flatbed scanner at 4800 dpi outperforms the others 

and the in-house film scanner in general performs better than the 

microform reader. 

 

 
Figure 4. Levenshtein edit distance (ED) of the compared imaging setups, 

computed against each document's ground truth text. Two different dpi are 

evaluated for the flatbed scanner, i.e., Flatbed 4k and 2k. 

 
Figure 5. ED of the compared imaging setups, shown in a cumulative manner 

along the x-axis. It shows that the flatbed scanner at 4800 dpi is the best 

performing one at providing legible texts as evaluated by an OCR and that, 

interestingly, the microform reader is not clearly superior from the rest. 

To obtain a more thorough understanding of why and when a 

certain device is a better choice, an observation of the images is 

needed. Microfiche-column 3/5-1 is the one resulting in the first 

peak in the microform reader plot in Figure 4, as pointed by the red 

arrow. A subset area of that image can be observed in Figure 6. 

Upon a visual observation, both the contrast and sharpness of the 

flatbed scanner images in Figure 6(b)-(c) are significantly reduced 

compared to the one in Figure 6(a). The legibility score as measured 

by ED is, however, conversely related. Despite seemingly having a 

lower image quality, the flatbed scanner image at 4800 dpi has a 

lower ED of 11 compared to that of the microform reader with ED 

of 61. Even the image at 2400 dpi provides a better ED of only 12. 

The visual similarity of the flatbed scanner and film scanner images, 

those that provide low EDs, are the smoothness of the background. 

On the other, despite sharp letters, the microform reader image is 

noisy and granular in its background content. With the hypothesis 

that the background content tampers with the text recognition of the 

OCR, a smoothing filter can be used to improve the general 

performance of the microform reader and the film scanner. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 6. A subset area of microfiche-column 3/5-1 obtained from the 

compared (a) microfiche reader, (b) flatbed scanner at 4800 dpi and (c) 2400 

dpi, and (d) in-house film scanner. The obtained ED scores for the 

microfiche-column for the respective devices are 61, 11, 12, and 9. 

After applying median filters of varying kernel size, the 

performance of the in-house film scanner is measured and plotted in 

Figure 7. We can see that the use of kernel size 3 improves the 

performance, albeit insignificantly. However, with kernel size 5, 

OCR struggles at recognizing the text in the images. The impact of 

smoothing on the images can also be observed through examples in 

Figure 8. Here, it becomes clear that smoothing with kernel size 5 

blurs the individual letters unlike in size 3 where they are still sharp. 

Smoothing is also applied to the images from the microform reader 

and the performance can be observed in Figure 9. Note that here we 

choose to visualize it in terms of cumulative ED for ease of reading 

and clarity purposes. In the figure, it can be observed that smoothing 

increases the legibility of the text, although only up to kernel size 

11. When reaching size 13, the legibility performance starts to 

decrease again as shown by MF-13 in the plot. The impact of median 

filters at these cutoff sizes to the images are shown in an example in 

Figure 10. Compared to the original image in Figure 6(a), both 

median filtered images show less granular artefacts in the 
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background, allowing improvements in the legibility aspect. 

Nevertheless, the improvement is only possible when the text itself 

is not blurred, which is the difference that can be observed between 

the two images in Figure 10. 

 

 
Figure 7. ED obtained by the in-house film scanner, at varying level of 

smoothing using median filters. MF-𝑥 in the figure legend means a median filter 

of kernel size 𝑥 has been applied to the microfiche-column images. 

 
(a) 

 
(b) 

Figure 8. Subset area of microfiche-column 3/5-1 obtained from the in-

house film scanner, and after applying a median filter of kernel size (a) 3 

and (b) 5. The former gives the highest legibility, while the latter the lowest. 

Finally, taking the best combination of with or without 

smoothing, the performance of each imaging device in terms of text 

legibility can be observed through Figure 11. The flatbed scanner 

at 4800 dpi is still the best performing one. If we recall the initial 

result without smoothing as a post-processing step shown in Figure 

4 and Figure 5, we can now see that the performance of the 

microform reader has significantly improved when combined with 

a median filter of kernel size 11. Its result approximates the flatbed 

scanner at 4800 dpi. The improvement made by applying a median 

filter of size 3 to the in-house film scanner images, however, is 

insignificant. This makes its performance comes at the third place, 

after the flatbed scanner at 4800 dpi and the microform reader. 

Nevertheless, it is still a better choice for when the available flatbed 

scanner only provides a resolution of up to 2400 dpi. 

 
Figure 9. Cumulative ED obtained by the microform reader, after applying a 

median filter of kernel size 𝑥. The best performance is provided by applying a 

median filter of size 11, as shown by MF-11. 

 
(a) 

 
(b) 

Figure 10. Subset area of microfiche-column 3/5-1 obtained from the 

microform reader, and after applying a median filter of kernel size (a) 11 and 

(b) 13. The former gives the highest legibility, while with the latter the 

legibility performance starts to decrease. 

 
Figure 11. ED of the compared imaging setups, shown in a cumulative manner. 

Both microform reader and film scanner are combined with smoothing by means 

of median filters as a post-processing step. 
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Conclusion 
In this study we have proposed a criterion for evaluating the 

quality of imaging devices for the task of microfiche digitization, 

i.e., text legibility. As an evaluation protocol, we have also proposed 

the use of OCR for an automatic recognition of the text in the images 

and Levenshtein edit distance as the metric. Three imaging devices 

have been compared, i.e., a microform reader, a flatbed scanner, and 

an in-house film scanner coupling a monochrome camera and a 

macro lens. As a conclusion, the flatbed scanner with 4800 dpi has 

been found to be the most suitable imaging device providing the 

highest quality of computer-legible texts. 

This work has been motivated by our own research activities in 

the cultural heritage domain where, often, we do not have access to 

the physical objects for their rescanning using advanced imaging 

technologies. While in this study we have only assessed the 

legibility criteria, microfiche materials in our research are not only 

composed of written texts. There are also photographs and 

handwritten texts that will be unrecognizable by an off-the-shelf 

OCR. As a future work, we will develop more complete assessment 

protocols, considering other objective quality aspects as well as 

incorporating subjective evaluations by human observers. 
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Abstract

Before the advent of digital formats, microfiche, a type of microform, was
widely utilized for archiving and preserving historical documents. As a result,
numerous historical collections and documents can only be found in microfiche
format, transforming them into valuable artifacts and indispensable aspects
of our cultural heritage. Although microfiche can last a long time, it is still
susceptible to damage and requires digitization for preservation and broader
accessibility. In addition, traditional microfiche readers are not always available
and are primarily designed for reading rather than digitization. In this study,
we evaluated the performance of two alternative imaging devices compared to a
traditional microfiche reader and the impact of enhancement on image quality
using subjective image quality assessment. The experiments were carried out in
a controlled environment with twenty-one participants, including an expert. Our
results showed that the reproduction of alternative devices was preferred over
that of a traditional microfiche reader. Furthermore, our results demonstrate
that image enhancement techniques significantly improved image quality. This
study suggests that alternative imaging devices may be a viable option for
digitizing microfiche and improving access to historical collections.

Keywords – Microfiche, Image Quality Assessment, Subjective experiment,
Dead Sea Scrolls

1 Introduction
Microform refers to a method of storing information, such as a document or image,
in a much smaller form than the original. Information can be stored on a microfilm,
microfiche, or other types of microforms. This storage method is useful because it
saves space and makes it easier to store large amounts of information in a compact
and manageable form. Additionally, the microform can be easily reproduced, allowing
for the creation of multiple copies that multiple users can access. Microfiche is a
type of microform that consists of a sheet of film containing multiple microimages in
a reduced form (commonly referred to as the reduction ratio) and is arranged in a
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grid-like format [1]. The reduction ratio refers to the extent to which a document
is visually scaled down (miniaturized) through photography. It is represented as a
ratio between the original linear size and the linear size of the microform image. For
instance, if an item is filmed at a reduction ratio of 20 to 1 (20:1), it means it has
been reduced in size by a factor of twenty. Reduction ratios are often denoted as 20x,
40x, and so forth. Before the advent of advanced digital technologies, microforms
were the exclusive method for archiving and conserving extensive documents, such as
newspapers. The cultural heritage domain quickly adopted this technique to capture
its collections to ensure preservation, ease of access, and greater distribution. Today,
many historical collections can be found only on microforms. For example, Papua
New Guinea’s colonial-era history is only available in the form of microfiche [2].

Microforms contain an emulsion layer (a thin coating of light-sensitive material)
embedded in a base: cellulose (typically nitrate, acetate, or triacetate) or polyester
(plastic). Because of its flammability and rapid deterioration, cellulose nitrate was
replaced by safer alternatives such as cellulose acetate and cellulose triacetate. The
acetate film is prone to rapid deterioration due to fluctuations in temperature and
humidity, causing distortion and warping of the emulsion. This deterioration produces
acetic acid, resulting in the vinegar syndrome [3]. With better stability, durability,
and tear resistance, polyester film became the preferred choice for modern microform
production in the 1980s [4, 5]. Three main types of emulsion layers used in microforms
are silver halide, diazo, and vesicular [4]. Silver halide films are highly light-sensitive,
capturing extensive detail and offering a wide tonal range. When properly prepared
and stored, they can last up to 500 years [6]. However, diazo films are prone to image
fading and loss, with a useful life of approximately 100 years, and are not considered
archival quality [7]. Vesicular films offer scratch resistance but can distort under
intense use or high heat, lasting between 10 to 100 years when stored appropriately [8].

Microfiche materials, despite their longer life span, are prone to physical degradation
caused by various factors [9]. Exposure to light, fluctuating temperatures and humidity
levels, improper handling, and poor storage conditions can lead to the deterioration
of the microfiche. This degradation often manifests as brittleness in the film base,
resulting in compromised image quality or even complete disintegration. Furthermore,
microfiche collections are vulnerable to environmental hazards such as water damage,
mold growth, pests, and fire. These hazards can lead to the loss of information and
render microfiche unusable. Thus, digitizing microfiche can be a valuable solution
for addressing such preservation challenges. Nevertheless, preserving the original
microfiche could still be necessary for specific purposes. Therefore, a combined
approach to digitization and proper storage measures is essential.
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Gaining access to numerous historical documents stored in libraries worldwide can
prove challenging due to the fragile state of the objects. In some instances, manuscripts
or fragments have even been lost [10]. This means that their microfiche copies might
be the last surviving records of the objects or the only accessible option for the wider
public. However, microfiche cannot be read directly by the human eye and requires a
special device for enlarging, printing, and scanning the microforms into a readable
format. Only a few specialized archives or libraries still possess microfiche readers to
facilitate access to their microform collections.

With the adoption of digital technologies, the digitization of microfiche can offer
numerous benefits [11]. With digital formats, they can be accessed and viewed on
computers and other digital devices, making it easier to share microfiche collections
with a wider audience, regardless of their location. Digitization also makes storing and
managing microfiche collections easier, since they no longer require a physical storage
space. Additionally, digitization can help to preserve the information in microfiche
documents by reducing wear and tear on the physical copies and by making backup
copies to guard against loss or damage. Digitization often results in reproductions
that differ from the original in various ways. Digitizing microfiche, which requires
magnification (the usual reduction factors are from 24, 42 or 48, 96 to 1 [12]), is
likely to introduce attributes that can affect the final quality of the reproduction,
e.g., noise, distortion, and artifacts. Figure S1, included as a supplementary file,
provides a visual illustration of such artifacts showing an original document image
and a magnified image obtained from the microfiche. Quality assessment should be
included as an essential part of the digitization process to ensure that the digitized
object maintains completeness, fidelity, and legibility compared to the original. Both
objective and subjective methods [13, 14] can be used to assess image quality.

So far, to our knowledge, very few studies have been conducted in the quality
assessment of microfiche digitization. Some of the work we found on microfiche
quality assessment have concentrated on comparing the quality of the original paper
document with its microfiche version. One such study, conducted by Lee et al. [15],
used various quantitative measures to evaluate the fidelity of the original paper
document and its 35 mm microfilm copies. The study results indicated that the copy
was not fully faithful to the original document. In another study by Duff et al. [16]
on the early Canadiana material collection, a comparison was made between the
original materials and their microfiche counterparts. The findings showed a significant
difference between the two formats, with most of the participants preferring the
paper format over the digital version. As of today, the original of these are not easily
accessible and, in some cases, may not even be available.
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Numerous initiatives to convert microfiche into digital format are underway worldwide,
utilizing established and innovative digitization methods and technologies. Scanning
documents as images and then utilizing Optical Character Recognition (OCR) algo-
rithms to convert the images into text is a widely employed approach for digitizing
historical text collections [17, 18]. Recently, in the year 2020, the National Security
Research Center (NSRC) conducted a trial of an artificial intelligence/ machine
learning system aimed at digitizing certain microfilm and microfiche document col-
lection [19]. Deborah and Mandal [20] used objective quality assessment to evaluate
the performance of two imaging devices as alternatives to the traditional microfiche
reader. They assessed the legibility of the images obtained by these devices when
inputted to an optical character recognition (OCR) and used Levenshtein distance [21]
as the text similarity measure. The results showed the superiority of a flatbed scanner
at 4k dpi resolution to a traditional microform reader. It is also worth mentioning
that to achieve those results, the images obtained by the microform reader had to
undergo a post-processing step, meanwhile no enhancement was applied to those from
the flatbed scanner. Since the study utilized an OCR, the focus was on microfiche
containing typewritten text. However, microfiche materials may also contain hand-
written texts that off-the-shelf OCR systems cannot recognize and also photographs
where the legibility evaluation may be less relevant. To address this limitation, our
study incorporated microfiche materials containing typewritten text, photographs
of natural scenes, and photographs of ancient handwritten fragments. Moreover, we
conduct a subjective quality assessment with human observers to evaluate the quality
of the scanned images.

Enhancing images through image processing is a widely used practice that aims to
improve their visual quality. By adjusting image attributes, enhancement can produce
a more aesthetically pleasing result for a given scenario [22]. The contrast of an image
is widely recognized as a significant quality attribute [23]. Improving contrast is
commonly believed to enhance the perceived quality of most natural images [24, 25, 26].
Contrast Stretching (CS) is a technique commonly used to enhance low-contrast
images, which involves using a piecewise linear curve to expand the dynamic range of
gray levels [27]. In our experiment, we applied CS as a post-processing to find out if
it enhances the quality of microfiche materials.

2 Research Aim
Many historical collections and documents can only be found in microfiche format,
making them valuable artifacts of cultural heritage. Microfiche requires microfiche
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readers, an imaging device that can enlarge the content of microfiche, allowing it to
be read directly by the human eye. Such devices are primarily designed for reading
rather than digitization, and only a limited number of specialized archives or libraries
may still have them available. In addition, over time, these devices can suffer from
various problems that affect their usability. Some common issues include yellow
screens (due to aging and prolonged exposure to light), defective reels, degraded
image quality, and mechanical failures. These problems can significantly impact the
ability to access and read microfiche materials effectively. For instance, a discolored
screen can negatively impact the contrast and readability of the microfiche images.
Given the importance of preserving and accessing microfiche materials, exploring
alternative options that can enhance the reading experience and facilitate the efficient
utilization of microfiche becomes crucial. Therefore, this research aims to identify
alternative imaging devices compared with traditional microfiche readers as a viable
option for digitizing microfiche and improving access to historical collections. To
incorporate a wider variability in the types of records, we used microfiche that
contains typewritten text, photographs of natural scenes, and photographs of ancient
handwritten fragments.

3 Materials and Methods
3.1 Imaging Approaches

Access to microfiche readers or other similar microform reader machines is limited
today, although they were once a central aspect of archiving. The main challenge
with reading microfiche is its significantly reduced size. However, with advances
in optical technology in recent years, it is highly probable that alternative imaging
solutions are available. The first option to consider is a flatbed scanner, which now
offers resolutions up to 6400 dpi. Additionally, by using macro lenses alongside a
high-resolution camera, it may be possible to resolve the reduction ratio of microfiche.
Based on these considerations, we have opted to utilize a professional grade flatbed
scanner at 4800 dpi (FBS) and an in-house film scanning (IFS) system, which includes
a monochrome camera and a macro lens, as viable alternatives to a microform reader
(FSL). Table 1 summarizes the specifications and characteristics of the imaging devices
used in the experiment. For further details, we refer the reader to Deborah and
Mandal [20].
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Table 1: Specification and characteristics comparison of three imaging setups. Note
that this summary is formulated within the specific context of reading 105 mm ×
148 mm microfiches in a monochrome setup.

Factors Microform
reader

Flatbed
scanner

In-house
film scanner [28]

Model Zeutschel delta plus Epson Perfection
4870 Photo

QHY600 16BIT BSI,
atx-i 100mm F2.8
FF MACRO

Compatible
input
types (non-
exhaustive)

Microfiche, mi-
crocards, 16/35
mm roll microfilm,
photographic slides,
negatives, 35 mm
perforated films

A4 size document,
transparencies, pho-
tos, 35 mm films,
negatives, 4”×5” for-
mats

35 mm photographs
and motion picture
films, small objects
of different kinds

Max. scan
area

35×47 mm 216×297 mm 35×40 mm

Max. fiche
per scan

1/n 2n 6/n

Effective
pixels

10 MP 40,800×56,160 at
4800 dpi

9,576×6,388 (±60
MP)

Illumination Custom calibrated
LED array

Cold cathode fluores-
cent lamp

Calibrated LEDs

Throughput
speed

Medium (±0.3 sec/
image)

High (±0.027 sec/
line)

High (±0.4 sec/ im-
age) *

Operation
ease

Low High High

*The speed was determined based on the camera’s provided specification of 2.5 frames per second
(fps) for 16-bit output.
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3.2 Microfiche Materials

The experiment used microfiche materials from three different sources. They were
microfiches provided by 1) a handbook for evaluating microfiche readers [29], 2)
the Allegro Qumran Collection on Microfiche [30], and 3) the Dead Sea Scrolls on
Microfiche [31]. The microfiche from the first source primarily contained textual
content, including typewritten text with various fonts and font sizes. On the other
hand, the other two microfiche sources consisted of scroll fragments containing
biblical and non-biblical writings. Additionally, the microfiche included photographs
of Qumran caves and natural scenes that capture images of natural landscapes and
outdoor environments. Figure 1 illustrates an example of the figure obtained from
the IFS device for three distinct microfiches used in an experiment. A summary of
the technical specifications for the microfiche is presented in Table 2. It is important
to note that the performance of the devices could be impacted by settings.

(a) (b) (c)

Figure 1: Illustration of microfiches obtained using the IFS device. (a) Text from a
Handbook for Evaluating Microfiche Readers, (b) a natural scene from the Allegro
Qumran Collection, and (c) fragments from the Dead Sea Scrolls.

3.3 Image Acquisition

Each of the three microfiches (containing text, natural scenes, and fragments) was
scanned and captured using all three devices. We used a microform reader (Zeutschel
Delta Plus), made available through the local library of Gjøvik, Norway. This device
required manual lens adjustment for each page within the microfiche. The resulting
images were saved in TIF format. We used a professional-grade flatbed scanner
manufactured by Epson, which allowed us to scan two complete microfiches in a
single capture. This significantly improved operational efficiency by eliminating the
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Table 2: Summary of microfiche specification used in this experiment. The assumption
is that the accompanying microfiche corresponds to the same time period based on
its publication date.

Microfiche Type Reduction
Ratio

Sheet
per Fiche

Time
Period

Handbook for Evaluating
Microfiche Readers positive microfiche 1:20 60 1975

Allegro Qumarn Collec-
tion

positive silver halide
microfiche 1:19 50 1996

Dead Sea Scrolls positive silver halide
microfiche 1:13 50 1992

need for manual adjustments of equipment and materials prior to each image capture.
After scanning, each page of the microfiche was cropped and saved as a TIF file.
The in-house multispectral film scanner used for this study is equipped with an
LED-based system and a monochrome camera with a macro lens. Grayscale images
were captured using a single light source at a wavelength of 415.5 nanometers. The
maximum scanning area is determined by its field of view, and the design is optimized
to capture images in a transmissive mode. It allowed capturing up to six pages within
a single microfiche per scan. Refer to Figure S2, added as a supplementary file, for a
detailed setup schematic.

3.4 Psychovisual experiment

A subjective experiment was designed to evaluate the overall image quality of the
digitized microfiche using three different imaging devices (FSL, FBS, and IFS). Several
psychometric methods exist in the literature for measuring image quality [32, 33,
34, 35], such as paired comparison, rank ordering, categorical sort, and magnitude
estimation. In this study, a force-choice pair comparison [36] experiment was designed
without ties, i.e., observers were forced to choose one of the two preferences randomly
if they found a tie between the stimuli. This method was chosen because of its relative
simplicity compared to other methods and because it is better at finding differences
between images. In a pair comparison experiment, the task is typically to indicate
the preferred option from each pair of stimuli rather than assigning a quality score
to each stimulus. A web-based tool called QuickEval [37] was utilized to carry out
the experiment. This tool is specifically designed to carry out psychometric scaling
experiments related to image quality.
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3.4.1 Observers

In this study, there were a total of 21 observers, including one expert. The expert
observer had experience with imaging, old/historical manuscripts, and microfiche,
all of which were used in the experiment. Among the remaining observers, five had
experience with old or historical manuscripts, and one had worked with microfiche.
Moreover, most of these observers had experience in imaging. For the study, all
observers, except one expert, were combined into a single standard observer group.
The selection criteria for the observers followed the guidelines specified in ITU-R
BT.500-14 [38], which ensured that none of the observers had any personal involvement
in the design of the experiment. A Snellen chart test was also used to ensure that all
observers had a normal or corrected-to-normal vision during the selection process.

3.4.2 Treatments

For our study, we selected a set of 20 images, consisting of four text-based images and
eight each from fragments and natural scenes. We scanned these images using three
devices and utilized CS for image enhancement. For CS, we adjust the minimum
and maximum intensity values to encompass the full range of possible values. In the
context of an 8-bit grayscale image, this means that the lowest intensity value in the
image is expanded to the minimum possible intensity value of 0, while the highest
intensity value is extended to reach the maximum value of 255. This stretching process
is used to increase the dynamic range of the gray levels in the image. Equation (1)
represents the general equation for contrast stretching. Data preprocessing and result
analysis were performed using the open-source Python programming language.

OutputP ixel =

(
InputP ixel −MinInput

MaxInput−MinInput

)
× 255 (1)

Here, OutputPixel represents the resulting pixel value after contrast stretching,
InputPixel is the original pixel value, MinInput and MaxInput are the minimum and
maximum intensity values in the image, respectively. Next, we divided the images
into 20 sets, each containing six images, three scanned images from each of the three
devices and three enhanced versions of these images. Consequently, each set of images
produced 15 pairs, resulting in 300 pairs shown to each observer in a randomized
order. Typically, psychophysical experiments should not take more than one hour of
total time for the observers. In our experiment, observers were not given a specific
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time limit, but on average, we found that for 300 pairs, the median time taken by
each observer was 30 minutes.

3.4.3 Instructions

At the beginning of the experiment, observers received instructions on the experiment.
They were asked to compare two images displayed side by side and choose the one
with better image quality. Observers were informed that the subjective test was
being conducted to evaluate the performance of an alternative imaging approach
for microfiche. Although observers were not provided with a specific definition of
"quality" at the beginning of the experiment, we conducted a survey at the end
to gather their feedback. This survey aimed to assess the observer’s preferences
concerning various predefined image quality attributes that they considered while
rating each type of microfiche.

3.4.4 Viewing Condition

The experiment followed the guidelines outlined in ITU-R BT.500-14 [38] regarding
viewing conditions on displays (ISO 3664). To ensure consistency, the monitor was
calibrated using an Eye-one device prior to the experiment. The chromaticity of
the white displayed on the color monitor was set to CIE standard illuminant D65,
and the white’s luminance level was set to 80 cd/m2. The observers were seated
approximately 80 cm away from the monitor, and the lighting in the room was
dimmed to approximately 17 lux.

3.4.5 Subjective Data Processing

In a pair comparison experiment, the results can be presented as a winning frequency
matrix that illustrates the relative frequencies with which each stimulus is preferred
over the others. For example, in this study, comparing reproductions of three different
devices (FSL, FBS, and IFS), participants are presented with all possible combinations
of devices and asked to select their preferred option. The resulting data is recorded
in a 3×3 raw data matrix. By aggregating the responses of all participants, a 3×3
raw frequency matrix is generated, providing a summary of the overall preferences
for each device. This matrix visually represents the test outcomes, making it easier
to interpret and draw some initial conclusions from the experiment data.

Using the frequency matrix, we computed the Binomial Sign test to show the statistical
significance of the result obtained. To account for the possibility of type I errors
resulting from multiple condition testing, we applied the Bonferroni correction [39].
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Additionally, we computed the Z-score [40] based on Thurstone’s law of comparative
judgment [41]. It is a statistical measure that indicates how far a particular observation
is from the mean in terms of standard deviation and allows us to draw statistical
inferences about the differences between the two items being compared.

The most common approach to compute the 95% confidence intervals (CI) for Z-scores
involves using the standard deviation (σ) and the number of observations (N) in the
analysis and is carried out using Equation (2). When the 95% confidence intervals
of the Z-scores do not overlap, we can conclude with 95% confidence that there is a
significant difference.

CI = 1.96
σ√
N

(2)

4 Results and Discussion
The results of this study involving both expert and rest of the observers for all images
are shown in Figure 2. The Z-scores were calculated by comparing non-enhanced
and enhanced images (using contrast stretching) from all three devices against each
other. From analysis of Figure 2, it becomes apparent that the observers preferred
IFS (both NE and CS) over FSL (NE and CS) and FBS (NE and CS), of which FSL
and FBS had comparable responses for NE and CS respectively. In terms of observers’
preference for enhanced versus non-enhanced images, the enhanced IFS images are
most preferred over the non-enhanced IFS images. Non-enhanced images from IFS
are preferred over the enhanced versions from the other two devices, making IFS
the preferred device. However, images from FSL and FBS devices have comparable
preference levels after enhancement, as shown by overlapping confidence intervals.
Non-enhanced FSL images are preferred over non-enhanced FBS. It is important to
note that this is for the current settings, devices, and images used for the experiment.

We also performed a separate analysis for the expert and the rest of the observers.
The results of the experts were similar to those obtained from all combined observers.
When analyzing the results for an expert, we found that IFS remained the preferred
option. The Z-scores computed separately for the expert and all other observers are
provided as a supplementary file (see Figure S3). Table 3 illustrates the result of
hypothesis testing using a sign test for all images between the devices, indicating
significant differences between the three devices. We also performed a sign test on
the data from the expert, which produced similar results, except for the comparison
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Figure 2: Comparison of Z-Score for all non-enhanced (NE) and contrast-stretched
(CS) enhanced images, evaluated by all observers (including experts and rest of the
observers), on all three imaging devices: flatbed scanner (FBS), in-house film scanning
(IFS), and microform reader (FSL).

between FSL and FBS. The formulated null hypothesis that claimed that both devices
produce similar results was true. Table S1 in the supplementary file contains a matrix
that compares the significant test results for the expert.

In this experiment, three types of microfiche were used: text, natural scenes, and
fragments. We also analyze user preferences for each microfiche category by comparing
non-enhanced and enhanced versions of images from the enhanced and non-enhanced
images from the three devices against each other. Both non-enhanced and enhanced
versions from IFS are preferred for microfiche containing text (Figure 3a) and natural
scenes (Figure 3b). However, for microfiche with fragments (Figure 3c), the enhanced
versions from FSL and FBS have similar preferences to the non-enhanced version from
IFS. However, the enhanced version from IFS remains the most preferred compared
to all others. A non-enhanced version of the device IFS is always preferred against
the other two devices in both enhanced and non-enhanced cases, indicating that the
IFS device exhibits a higher capability for digitizing microfiche than the other two
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Table 3: P-value for each pair of stimuli being compared; here each cell of a lower
triangular matrix represents a pair of stimuli being compared; green cells indicate
that the corresponding stimulus pair has a statistically significant difference.

FSL FBS IFS
FSL
FBS 2.78E-04
IFS 1.36E-126 1.40E-119

devices. When comparing the performance between the FSL and FBS devices, it
becomes difficult to determine which one exhibits better performance. For text-based
microfiche, the non-enhanced image from the FSL device is equally preferred as
the enhanced version from the FBS device, indicating that the FSL device may be
considered better in this aspect. However, the enhanced version of the FBS device is
preferred when evaluating natural scenes. Similarly, for microfiche with fragments,
the non-enhanced images from the FBS device are less preferred, but both devices
demonstrate similar preferences when considering the enhanced versions.

In addition, non-enhanced images from FBS remain the least preferred one for
microfiche with text and fragments whereas for natural scene, FBS have similar
preference as FSL. When comparing non-enhanced and enhanced versions, there
is little or no difference in the case of microfiche with text, as indicated by the
overlapping confidence intervals. The same applies to natural scenes, especially for
IFS. However, there is a noticeable difference between the non-enhanced and enhanced
versions in all other cases. A notable observation from the results is that the observers’
ability to differentiate between the devices is becoming less distinct as we compare
microfiche with text and natural scene; this distinction is even less for microfiche
with the fragment. This can be seen in the range of Z-score values in Figure 3.
Compared to natural scenes and fragments, observers took less time on average to
make a decision regarding microfiche with text. It is possible that the devices used in
this study were better able to distinguish their performance for simpler and more
structured information, while their performance was less distinct for more complex
and less structured data.

Table 4 displays the outcomes of hypothesis testing conducted on microfiche with text
using various imaging devices, with and without enhancement. It indicates that IFS
differs significantly from FSL and FBS, while there is no significant difference between
FSL and FBS. It is also evident that when comparing enhanced and non-enhanced
versions from the same imaging devices, the results indicate no statistically significant
difference in the images for all three microfiche categories. Similar observations were
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(c)

Figure 3: Z-scores at 95% confidence intervals for each microfiche category (i.e., with
(a) Text, (b) Natural Scene, and (c) Fragment ) obtained by comparing non-enhanced
(NE) and enhanced versions(CS) of images from all three devices, i.e., flatbed scanner
(FBS), in-house film scanning (IFS), and microform reader (FSL), against each other.

made for the other two microfiche categories, namely natural scene and fragment,
and the results of these categories are included in the supplementary file (Tables S2
and S3).

This study also examined observers’ general preferences for enhanced versus non-
enhanced images for each device, regardless of the type of microfiche being used. The
results shown in Figure 4 demonstrate that observers consistently preferred enhanced
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Table 4: The p-value for each pair of stimuli compared for microfiche with text
is shown in a lower triangular matrix where each cell represents a pair of stimuli
being compared. Green cells indicate a statistically significant difference between
the corresponding stimulus pairs, while red cells indicate no statistically significant
difference.

FSL FBS IFS
NE CS NE CS NE CS

FSL NE
CS 0.59151

FBS NE 0.00056 0.00443
CS 0.0058 0.03209 0.54429

IFS NE 3.2E-09 8.4E-11 1.9E-19 3.1E-17
CS 2.3E-09 5.9E-11 1.2E-19 2E-17 1

images over non-enhanced images on all imaging devices. This indicates that the
application of enhancement techniques improves the overall visual quality of the
images, regardless of the specific type of microfiche or the imaging device used.

�
 ��
��

����

����

���

���

���

��
���

��
��

�
 ��
���

�
 ��
���

������������������� �
�������������� ��� �� �� �����

��������	�!����

Figure 4: Z-scores, at 95% confidence intervals, between non-enhanced and contrast-
stretched images across three imaging devices.
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Table 5 displays the results of hypothesis testing conducted for enhanced versus non-
enhanced images for all three imaging devices. Most of the cells are green, indicating
a significant difference between the stimuli. However, results were not significantly
different when enhanced versus enhanced compared in-between FSL, FBS, and IFS.
This is not the case for non-enhanced images except for comparing IFS and FSL. To
facilitate visualization, we have included the images in the supplementary file (Figure
S5) that contain enhanced and non-enhanced images, one from each device.

Table 5: The p-value for each pair of stimuli compared for enhanced versus non-
enhanced across three imaging devices; in a lower triangular matrix, green cells
indicate a statistically significant difference between the corresponding stimulus pairs,
while red cells indicate no statistically significant difference.

FSL FBS IFS
NE CS NE CS NE CS

FSL NE
CS 7.19E-17

FBS NE 0.000497 1.49E-30
CS 2.11E-24 0.053128 6.43E-40

IFS NE 0.181417 2.04E-12 1.28E-06 4.8E-19
CS 1.1E-13 0.356378 2.18E-26 0.0038 1.1E-09

The observers were presented with one image from each type of microfiche, namely
text, natural scenes, and fragments, and were provided with five options, including an
option for user input. They were then asked to select which attributes they considered
when rating the quality from these options. Figure 5 illustrates the result of the survey.
The result infers that, when assessing the quality of microfiche, legibility is a crucial
factor that all observers consider, particularly when examining text. Additionally,
sharpness is another key attribute that observers prioritize when evaluating text and
fragments on the microfiche. For natural scenes on the microfiche, contrast is the
most significant attribute that observers consider when assessing quality. However,
the lack of artifacts, such as noise, is regarded as a less important attribute across all
three categories of microfiche. This means that the presence of minor imperfections,
such as graininess or distortion in the images, would not significantly affect the overall
quality assessment of the microfiche.
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Figure 5: Results of a survey showing observer’s preferences concerning various
predefined image quality attributes, i.e., legibility, contrast, sharpness, and lack of
artifacts that they considered most significant while rating each type of microfiche,
namely text, natural scenes, and fragments.

5 Conclusion
Microfiche has been widely used to preserve historical documents, leading to the
formation of valuable artifacts and essential elements of our cultural heritage. De-
spite its durability, microfiche can still suffer damage and require digitization for
preservation and accessibility. However, traditional microfiche readers are not always
available and are primarily designed for reading rather than digitization. This means
that a digitization effort using a microfiche reader would also be significantly slower
and time-consuming, consult Max. scan area and Max. fiche per scan in Table 1.

In this study, we evaluate the performance of alternative imaging devices compared
to a traditional microfiche reader and the impact of image enhancement on image
quality using subjective image quality assessment. The experiment was carried out
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in a controlled environment with twenty-one participants, including an expert. The
results of this study show that the reproduction of alternative devices was preferred
over a traditional microfiche reader, indicating that alternative imaging devices
can be a viable option for digitizing microfiche and improving access to historical
collections. Additionally, results also demonstrate that the image enhancement
techniques significantly improved image quality for all three categories of microfiche.
Therefore, the adoption of alternative imaging devices along with image enhancement
techniques could be a feasible approach to digitizing microfiche and facilitate better
access to historical collections. This initiative could help conserve precious cultural
heritage artifacts that exist only in microfiche format and enable more people to
access them.

In future research, it would be beneficial to conduct objective image quality assess-
ments for different quality attributes of microfiche, including contrast, sharpness, etc.
This could involve exploring various existing image quality metrics and determining
their relevance for assessing microfiche quality. Based on the results, new objective
quality metrics could be developed or linked to provide more comprehensive and
time-efficient evaluations of microfiche image quality. In addition, when digitizing mi-
crofiche technical drawings, it is crucial to ensure that the digitized versions faithfully
capture the precise details and accuracy of the original drawings. Thus, further com-
prehensive studies can be conducted to investigate the geometric quality attributes,
such as distortion, scale accuracy, resolution, etc., for microfiche digitization.
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Supplementary Materials

S I. Original document image and its magnified image from the
microfiche.

(a)

(b)

Figure S1: Image showing the original document image (a) and its magnified image from
the microfiche(b). We can observe various artifacts within the microfiche image (b), al-
though distinguishing between artifacts originating from dust, dirt, or the microfiche itself
can be challenging. Due to the magnification process, these artifacts become prominently
visible in the images.
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S II. Microfiche readers used in this study.

Integrating 

Sphere

LEDs

Condensing 

Lens

Diffusing 

Slab

Microfiche / Film

Monochrome 

Camera

Focusing 

Stage

Imaging 

Lens

QHY600

(a)

(b)

(c)

Figure S2: Microfiche readers (a) schematic of the in-house film scanner, image adapted
from [28], (b) microform reader, image Source [42], and (c) flatbed scanner, image
Source [43].

S III. Z-Score for comparing enhanced and non-enhanced images.
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Figure S3: Comparison between the Z-Score from all observers and an expert, with 95%
confidence intervals, for non-enhanced and contrast stretching across all three imaging
devices.
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S IV. Result of the sign test showing the expert preference be-
tween devices.

Table S1: P-value for each pair of stimuli being compared; here each cell of a lower
triangular matrix represents a pair of stimuli being compared; Green cells indicate a
statistically significant difference between the corresponding stimulus pairs, while red cells
indicate no statistically significant difference.

FSL FBS IFS
FSL
FBS 0.91098
IFS 1.3E-05 1.48E-07

S V. Result of the sign test comparing enhanced and non-enhanced
images of all three devices for microfiche with a natural scene.

Table S2: The p-value for each pair of stimuli compared for microfiche with natural scene
is shown in a lower triangular matrix where each cell represents a pair of stimuli being com-
pared. Green cells indicate a statistically significant difference between the corresponding
stimulus pairs, while red cells indicate no statistically significant difference.

FSL FBS IFS
NE CS NE CS NE CS

FSL
NE
CS 0.72629

FBS
NE 0.891 0.57818
CS 0.14951 0.06311 0.21616

IFS
NE 1.5E-20 4E-22 8.1E-20 2.5E-15
CS 2.2E-18 7E-20 1.1E-17 1.9E-13 0.58543
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S VI. Result of the sign test comparing enhanced and non-enhanced
images of all three devices for microfiche with a fragment.

Table S3: The p-value for each pair of stimuli compared for microfiche with a fragment is
shown in a lower triangular matrix where each cell represents a pair of stimuli being com-
pared. Green cells indicate a statistically significant difference between the corresponding
stimulus pairs, while red cells indicate no statistically significant difference.

FSL FBS IFS
NE CS NE CS NE CS

FSL
NE
CS 0.90822

FBS
NE 0.05191 0.07648
CS 0.34494 0.44047 0.34661

IFS
NE 4.6E-05 2.2E-05 1.7E-09 4.3E-07
CS 0.00051 0.00027 5.6E-08 8.3E-06 0.57288

S VII. Images of the microfiche with fragments showing before and
after enhancement.
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(a) FBS NE (b) FBS CS

(c) FSL NE (d) FSL CS

(e) IFS NE (f) IFS CS

Figure S4: Microfiche images with fragments showing images with enhancement ( CS) and
without enhancement ( NE). Image from flatbed scanner (FBS), microform reader (FSL),
and in-house film scanner (IFS).
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