
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Vebjørn Johansen Nilsen

Autonomous Vehicles: 3D Object
Detection Using Dual Sensor Input of
LiDAR Point Clouds and 3-channel
LiDAR Images

Master’s thesis in Informatics - Artificial Intelligence
Supervisor: Frank Lindseth
Co-supervisor: Gabriel Kiss and Durga Bavirisetti
June 2023

Vebjørn Johansen Nilsen

Autonomous Vehicles: 3D Object
Detection Using Dual Sensor Input of
LiDAR Point Clouds and 3-channel
LiDAR Images

Master’s thesis in Informatics - Artificial Intelligence
Supervisor: Frank Lindseth
Co-supervisor: Gabriel Kiss and Durga Bavirisetti
June 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Abstract

The idea of autonomous vehicles has been a futuristic vision people have dreamed
about for decades. In recent years huge steps towards autonomy has been made
with the introduction of CNNs and transformers in combination with exponential-
like improvement in compute power. This rapid expansion within computer vision
has sparked interest for many researchers, and is the inspiration for this thesis.

The work in this thesis revolves around autonomous vehicles, and more spe-
cifically 3D object detection using images and LiDAR data. The model Frustum-
PointPillars was chosen based on performance, real time inference and dual sensor
input. The goal of the project was to reproduce the stated state of the art results
and create a real-time inference pipeline adjusted for Ouster LiDAR sensors. In
the first chapter, an introduction to the topic and the research goals is thoroughly
explained. Then the necessary knowledge for background is described in detail
and related work within state of the art 3D object detection is explored with a
deep-dive into different fundamental methods.

The results of this thesis show that the reproducibility of the model through
training a new model from scratch is possible using a single RTX 8000 GPU. The
model works well on the KITTI data used for training, but it struggles somewhat on
unseen data. The results on cars and cyclists exceed the authors results with 37.5%
less training epochs. The inference time of the model is more than 2 times faster
than average human reaction time, making it viable for deployment in autonom-
ous vehicles.

The conclusion as to why the model performs subpar on Ouster data is lack of
annotated data. The process of annotating 2D and 3D data of the same scene is
time consuming when there is limited access to free annotation tools. The results
would probably be better with fine-tuning on similar data.

iii

Sammendrag

Autonome kjøretøy har vært en futuristisk visjon som folk har drømt om i flere tiår.
De siste årene har det blitt gjort enorme fremskritt mot autonomi med introduks-
jonen av konvolusjonsnettverk og transformere i kombinasjon med eksponentiell
forbedring av beregningskraft i maskiner. Den raske utviklingen innen datasyn har
vekket interesse hos mange forskere, og er inspirasjonen bak denne oppgaven.

Arbeidet i denne oppgaven dreier seg om autonome kjøretøy, og da mer spesi-
fikt 3D-objektdeteksjon ved hjelp av bilder og LiDAR-data. Modellen Frustum-
PointPillars ble valgt basert på ytelse, sanntidsinferens og mulighet for dobbel
sensordatainput. Målet med prosjektet var å gjenskape state-of-the-art resultatene
til skaperne av modellen og skape en modell som kan operere i sanntid, samt er
tilpasset Ouster LiDAR-sensorer. I det første kapittelet blir temaet og forsknings-
målene grundig forklart. Deretter blir den nødvendige bakgrunnskunnskapen be-
skrevet i detalj, og relatert arbeid innen state-of-the-art 3D-objektdeteksjon blir
utforsket med en grundig gjennomgang av ulike grunnleggende metoder.

Resultatene av denne avhandlingen viser at reproduksjonen av modellen ved
å trene opp en ny modell fra bunnen av er mulig ved hjelp av en enkelt RTX 8000
GPU. Modellen fungerer bra på KITTI-dataene som ble brukt til trening, men den
sliter noe med data den ikke har blitt trent på. Resultatene for biler og syklister
overgår forfatterens resultater med 37,5% færre treningsrunder. Inferenstiden til
modellen er mer enn to ganger raskere enn gjennomsnittlig menneskelig reaks-
jonstid, noe som gjør den egnet for implementering i autonome kjøretøy.

Konklusjonen om hvorfor modellen ikke presterer optimalt på Ouster-data er
mangel på annoterte data. Prosessen med å annotere 2D- og 3D-data fra samme
scene er tidkrevende når det er begrenset tilgang til gratis annoteringsverktøy.
Resultatene ville trolig vært bedre med finjustering på mer lignende data.

v

Preface

I am delighted to show my final work at the Department of Computer Science at
NTNU in Trondheim through this masters thesis. The beginning of the semester
felt overwhelming because of the amount of work needed to be done, but after 5
months of hard work, I can proudly say that I am finished and feel grateful for the
experience.

I would like to thank my supervisor Frank Lindseth and co-supervisors Gabriel
Kiss and Durga Bavirisetti for guiding me through this project. I also want to thank
friends, family and fellow students for taking interest in my work and exchanging
ideas.

vii

Contents

Abstract . iii
Sammendrag . v
Preface . vii
Contents . ix
Figures . xi
Tables . xv
Acronyms . xvii
1 Introduction . 1

1.1 Motivation . 1
1.2 Goal and Research Questions . 2
1.3 Research method . 2
1.4 Contributions . 3

2 Background and Related Work . 5
2.1 LiDAR . 5
2.2 Deep learning . 5

2.2.1 Perceptron . 6
2.2.2 Neural network . 6
2.2.3 Forward Pass, Backpropagation and Activation Functions . . 6

2.3 Computer Vision . 7
2.3.1 Object detection . 7
2.3.2 Evaluation metrics . 8

2.4 Transformers . 9
2.4.1 Architecture . 9
2.4.2 Attention . 11
2.4.3 Vision Transformers . 13

2.5 Recent advances in 3D Object Detection 15
2.5.1 Different approaches to 3D object detection 15
2.5.2 Data representation and extraction of point clouds 17

3 Method . 21
3.1 Hardware . 21
3.2 Datasets . 21

3.2.1 KITTI-360 . 21
3.2.2 Ouster data . 24
3.2.3 Setup . 26

ix

x VJN: LiDAR point cloud 3D-detection

3.2.4 Calibration . 26
3.3 Frustum-PointPillar . 27

3.3.1 Tuning . 27
3.3.2 Pipeline . 28

3.4 KITTI visualization . 29
4 Experiments and Results . 33

4.1 Frustum-PointPillar results . 33
4.1.1 Precision and recall vs validation 33
4.1.2 Train loss vs validation accuracy 35
4.1.3 3D, BEV and AOS moderate validation 37
4.1.4 Precision and recall @ 10, 50, 95 37

4.2 Author results vs my results . 38
4.3 Visualisation of predictions . 39

4.3.1 Car visualisation . 39
4.3.2 Pedestrian and cyclist visualisation 40
4.3.3 Prediction on Ouster data . 41

5 Discussion . 49
5.1 Model performance . 49

5.1.1 Metric performance on KITTI data 49
5.1.2 Visual results . 50

5.2 Thesis research questions . 51
5.2.1 Research question 0: Reproducibility 51
5.2.2 Research question 1: Performance on Ouster data 52
5.2.3 Conclusion . 52
5.2.4 Research question 2: Feasibility of multi stage model 53

5.3 Sources of error . 54
5.3.1 Model and pipeline errors . 54
5.3.2 Sensor errors . 54
5.3.3 Other errors . 55

6 Conclusion and Future Work . 57
6.1 Conclusion . 57
6.2 Future work . 58

Bibliography . 59

Figures

2.1 Architecture of the original transformer model Vaswani et al. [2] . . 10
2.2 Scaled dot product flow diagram Vaswani et al. [2] 13
2.3 Multi-head self-attention Vaswani et al. [2] 14
2.4 Illustration of the vanilla vision transformer architecture. Image

from [3] . 15
2.5 Illustration of the hierarchical feature extraction from single points.

Image from [17] . 18
2.6 Illustration of the voxelization of points for feature extraction. Im-

age from [19] . 18
2.7 Visualisation of the frustum-based search pruning for feature ex-

traction. Image from [20] . 19
2.8 Visualisation of the 2D detection to frustum-based 3D detection for

feature extraction. Image from [20] . 19
2.9 Illustration of the pillar-based pipeline for feature extraction in

PointPillars. Image from [21] . 20

3.1 Number of object instances in KITTI dataset. Source [23] 22
3.2 Distribution of number of object-instances per image for car and

pedestrian in KITTI dataset. Source [23] 23
3.3 Distribution of height, width and length for cars and pedestrians in

the KITTI dataset. Source [23] . 23
3.4 Distribution of orientations for objects in KITTI dataset. Source

[23] . 24
3.5 Table showing the format of the label file with corresponding values 26
3.6 Visualization of manual labeling pipeline. 27
3.7 Visualisation of calibration to get matrix X from rotation/transla-

tion matrix P0 with shape 3X4 and translation from velodyne point
cloud matrix with shape 4x3 to get X of shape 3x3 28

3.8 Visualisation of calibration matrix X from figure 3.7 and the x-y-z-
coordinate in the point cloud to get image coordinate in reference
coordinate system . 28

3.9 The different coordinate systems between RGB-cameras and LiDAR
sensor and objects within both. Image source 29

xi

https://medium.com/test-ttile/kitti-3d-object-detection-dataset-d78a762b5a4

xii VJN: LiDAR point cloud 3D-detection

3.10 KITTI file structure for training and testing with images, point clouds,
calibration and labels . 30

3.11 Frustum-PointPillars model inference pipeline 31
3.12 KITTI visualisation file structure with images, point clouds, calib-

ration and labels with symbolic link to the predictions made by the
model . 31

4.1 Precision and recall @ 70 vs validation mAP@70 easy, moderate
and hard for pedestrian and cyclist . 33

4.2 Precision and recall @ 70 vs validation mAP@70 easy, moderate
and hard for car . 34

4.3 Precision and recall @ 50 vs validation mAP@50 easy, moderate
and hard for pedestrian and cyclist . 34

4.4 Precision and recall @ 50 vs validation mAP@50 easy, moderate
and hard for car . 35

4.5 Train location and classification loss vs moderate 3D validation
mAP@50 and mAP@70 for car . 35

4.6 Train location and classification loss vs moderate 3D validation
mAP@50 and mAP@70 for pedestrian 36

4.7 Train location and classification loss vs moderate 3D validation
mAP@50 and mAP@70 for cyclist . 36

4.8 mAP@70 3D, BEV and AOS validation at moderate difficulty for
pedestrian and cyclist . 37

4.9 mAP@70 3D, BEV and AOS validation at moderate difficulty for car 37
4.10 mAP@50 3D, BEV and AOS validation at moderate difficulty for

pedestrian and cyclist . 38
4.11 mAP@50 3D, BEV and AOS validation at moderate difficulty for car 38
4.12 Precision at IoU 10, 50, 95 for car . 39
4.13 Precision at IoU 10, 50, 95 for pedestrian and cyclist 39
4.14 Recall at IoU 10, 50, 95 for car . 40
4.15 Recall at IoU 10, 50, 95 for pedestrian and cyclist 40
4.16 RGB-visualization of the image to be predicted where green boxes

indicate ground truth . 40
4.17 Velodyne-visualization of point cloud with green boxes as ground

truth and red boxes as the model predictions. Red lines indicate
orientation . 41

4.18 BEV-visualization of point cloud with green boxes as ground truth
and red boxes as the model predictions. Red lines indicate orientation 42

4.19 RGB-visualization of the image to be predicted where blue boxes
indicate ground truth for pedestrian and yellow boxes for cyclists . 42

4.20 Far velodyne-visualization of point cloud with blue and yellow boxes
as ground truth and red boxes as the model predictions. Red lines
indicate orientation . 43

Figures xiii

4.21 Close velodyne-visualization of point cloud with blue and yellow
boxes as ground truth and red boxes as the model predictions. Red
lines indicate orientation . 43

4.22 BEV-visualization of point cloud with blue and yellow boxes as
ground truth and red boxes as the model predictions. Red lines
indicate orientation . 44

4.23 BEV-visualization of point cloud with blue and yellow boxes as
ground truth and red boxes as the model predictions. Red lines
indicate orientation . 45

4.24 SCENE 1: 3 channel LiDAR-image consisting of Near-infrared, sig-
nal and reflection with green ground truth boxes for cars 45

4.25 SCENE 1: Velodyne-visualization of point cloud with green boxes
as ground truth and red boxes as the model predictions. Red lines
indicate orientation . 46

4.26 SCENE 1: BEV-visualization of point cloud with green boxes as
ground truth and red boxes as the model predictions. Red lines
indicate orientation . 46

4.27 SCENE 2: BEV-visualization of point cloud with green boxes as
ground truth and red boxes as the model predictions. Red lines
indicate orientation . 47

4.28 SCENE 2: BEV-visualization of point cloud with green boxes as
ground truth and red boxes as the model predictions. Red lines
indicate orientation . 47

4.29 SCENE 3: BEV-visualization of point cloud with green boxes as
ground truth and red boxes as the model predictions. Red lines
indicate orientation . 48

4.30 SCENE 3: BEV-visualization of point cloud with green boxes as
ground truth and red boxes as the model predictions. Red lines
indicate orientation . 48

Tables

3.1 Memory usage for different data types 22
3.2 Table showing the items in the pickle file with the respective de-

scriptions. 25

4.1 Comparison between author results and my own results on car, cyc-
list and pedestrian for easy, moderate and hard validation 39

xv

Acronyms

AOS average orientation similarity. 37

AV Autonomous Vehicle. 1, 5, 16

BEV Birds-eye view. xii, xiii, 16, 37, 39, 40, 42, 44–48, 51

CNN Convolutional neural network. 13, 16

FoV field of view. 39, 51, 52, 54

IoU intersection of union. xii, 8, 9, 27, 33–41, 49–51

mAP mean average precision. 9, 16, 19, 33–38, 49, 50

NLP natrual language processing. 9

ViT Vision transformer. 13, 14

xvii

Chapter 1

Introduction

1.1 Motivation

The evolution of Autonomous Vehicle (AV) technology is developing at a stag-
gering pace, and is moving closer and closer to becoming a reality for every day
that goes by. There are multiple sub-problems that are required to be solved in
order to achieve autonomous behaviour. Firstly, the car must have the ability to
perceive the environment in a correct manner to operate safely and not crash
into objects. Secondly, the car must have appropriate planning-logic to properly
plan its path around other agents in the environment. Lastly, there is the control-
logic that needs to execute the planning appropriately in order to avoid collisions.
There are also companies that are pursuing an end-to-end approach, where the
system works like a black box, taking environmental signals through sensors and
outputting control commands.

The implications of solving the problem of autonomous vehicles are tremend-
ous both socially and economically. If vehicles are able to drive people to their
destination with no human driver involved, it significantly reduces the cost of
transportation and will revolutionize the taxi industry. No human driver implies
lower expense per mile travelled, meaning that the competitive cost per mile will
be reduced significantly. This will have an extraordinary effect on demand for the
taxi services today as it is simply too expensive for most people. In addition, people
with disabilities will have easier access to more convenient and affordable altern-
atives to public transport. Lastly, most of the accidents on roads today happen as
a result of human error Treat et al. [1], and thus by replacing human drivers with
computers that exhibit superhuman attention ability, less people will hopefully be
involved in accidents.

There are many companies pursuing solving this problem, and it hard to de-
termine who is leading the AV race as there are fundamentally different approaches
to solving the problem of perception. GM’s Cruise project1 has successfully de-
ployed autonomous vehicles in geo-fenced areas in San Francisco, however they

1https://getcruise.com

1

https://getcruise.com

2 VJN: LiDAR point cloud 3D-detection

are scaling very slowly as the sensors and chips inside each self-driving car are
expensive and the usable areas are thoroughly tested. Cruise is relying on LiDAR
HD-maps to pinpoint the position of the vehicle, which also makes the roll-out
slower. Other companies like Tesla and MobileEye has taken another approach
where they rely solely on cameras to perceive the environment. Even though this
method is more scalable in theory because it requires less hardware, it is yet to
be proven reliable enough to be able to cut out the driver and achieve complete
autonomous status. There are still many hurdles to overcome for both approaches
in order to achieve scalability with appropriate safety levels.

In 2017 a paper called “Attention is all you need” was released by Vaswani
et al. [2] which took the nlp community by storm. It was a new neural network
architecture that was scalable and more precise than previous methods. In 2020
Dosovitskiy et al. [3] released a paper where they had successfully adapted the
original transformer architecture to work with images. This new architecture in
combination with CNNs is the fundamental cornerstone of 3D object detection as
of early 2023.

1.2 Goal and Research Questions

In this research project, the main goal is to train a state of the art 3D object detec-
tion model to identify objects and locate their position in 3D space using LiDAR
data and images. Ideally, the model should have low enough inference time to
be used in an autonomous driving setting. The project should result in a pipeline
that is able to detect a set of objects and reconstruct their position in 3D space in
real-time. This pipeline is also going to be adapted to Ouster 360 degree data.

Research question 0: Are state of the art frustum 3D detection methods re-
producible?

Research question 1: How well does a dual input 3D object detection model
perform with 3-channel LiDAR images containing signal, reflectivity and near-IR
combined with LiDAR point cloud data?

Research question 2: Is it feasible to use a multi-stage model with dual 2D
and 3D input in an autonomous setting?

1.3 Research method

This project mainly revolves around experimenting with LiDAR data combined
with object detection algorithms to get a working prototype that performs 2D
to 3D reconstruction and object localization. The main method of evaluating the
results is qualitative and will be based on visualizations of 2D and 3D spaces.

Chapter 1: Introduction 3

1.4 Contributions

The main contribution of this project is research on object detection models on
point clouds to 3D space with different types of data. Different methods of detect-
ing and localizing objects in 3D space will be examined and evaluated in terms
of efficiency, accuracy and visual inspection. A new method for 3D object detec-
tion is proposed by combining multiple LiDAR sensor signals into a multi-channel
image. The method will be tested and results will be documented. The objects in
focus are mainly relevant for autonomous vehicle applications, but can also be of
value for other tasks. Another contribution from this thesis is the research on re-
producing and modifying state of the art 3D detection models to fit other sensory
input methods.

Chapter 2

Background and Related Work

In this chapter, necessary background material and related work will be presented
to give a clear understanding of the existing work in the field, and which areas
need more research. We will give a short intro to LiDAR and a recap of deep
learning, computer vision, transformers and current state of the art 3D object
detection methods using LiDAR data.

2.1 LiDAR

LiDAR is a sensor that utilizes optical measurements to determine the distance to
objects. It operates by emitting light and measuring the time delay and frequency
shift of the light that returns after striking an object. The measurements obtained
from the LiDAR provide information about range, intensity, reflectivity, and am-
bient near-infrared. The spherical projection of the LiDAR data is represented by
assigning the value of each measurement as a pixel value in a two-dimensional im-
age. The different channels of the LiDAR image capture various information, such
as the range image that represents the distance to the objects, the signal image
that measures the number of photons detected upon hitting an object, the near-
infrared image that measures ambient light, and the reflectivity image that adjusts
the photon measurement according to the range to produce consistent reflectiv-
ity measurements. The LiDAR sensor fits well in AV technology as it is versatile
and can capture detailed distance measurements in a 3D-grid. In this thesis we
will explore different state of the art 3D detection methods using the LiDAR range
measurement data fused with other channel information.

2.2 Deep learning

Deep learning is a type of machine learning that involves using neural networks
to learn from data. It is called "deep" because the neural networks that are used
have many layers, allowing them to learn complex patterns in the data. In deep
learning, the neural network is trained on a large dataset, which it uses to learn

5

6 VJN: LiDAR point cloud 3D-detection

the underlying patterns and structures in the data. This is done by adjusting the
weights and biases of the network’s individual neurons in order to minimize the er-
ror between the predicted output and the actual output. Once the neural network
has been trained, it can be used to make predictions on new data. For example, a
deep learning model trained on images of animals could be used to classify new
images as belonging to one of several different animal classes.

One of the key advantages of deep learning is that it can automatically learn
features from the data, rather than having them handcrafted by the user. This
makes it well-suited to complex problems where the relationships between differ-
ent variables may be difficult to define. This makes deep learning is a powerful
tool for making sense of complex data and making predictions based on that data.
It has been applied to a wide range of problems, including image recognition, nat-
ural language processing, decision making and much more.

2.2.1 Perceptron

A perceptron is a type of artificial neuron that is often used in the building blocks of
neural networks. A perceptron takes in multiple inputs, performs a linear combin-
ation of those inputs using weights, and then gives some output. In other words, a
perceptron can be thought of as a simple linear classifier. It takes in a set of inputs,
multiplies each input by a corresponding weight, and then outputs a value based
on the weighted sum, as expressed in the formula below.

z =
n
∑

i=1

wi x i + b (2.1)

Where z is the output, wi is the weight, x i is the input and b is the bias

2.2.2 Neural network

Neural networks are connected layers consisting of perceptrons. It takes some
input, then performs operations sequentially through hidden layers and finally
get a output through the output layer. Both inputs and outputs can have many
different sizes and shapes, which makes the neural network architecture adapt-
able for many problems. The strength of the connections between the perceptrons
are called weights, and determines how the inputs are transformed as they move
through the network. During the training process, the weights of the connections
between the perceptrons are adjusted in order to minimize the error between the
predicted output and the actual target. This allows the neural network to learn
from the data and improve its predictions over time.

2.2.3 Forward Pass, Backpropagation and Activation Functions

The forward pass is the process of using a neural network to make predictions
on a set of inputs. It involves passing the inputs through the various layers of the

Chapter 2: Background and Related Work 7

network, using the weights of the connections between the neurons to transform
the inputs as they move through the network. This results in an output prediction
from the network.

Backpropagation is the process of adjusting the weights of the connections in a
neural network in order to minimize the error between the predicted output and
the actual output. This process is performed after the forward pass. It involves
calculating the error at the output layer and then propagating that error by its
gradients back through the network, then adjusting the weights in each layer in a
way that reduces the overall error.

Activation functions are used to transform aggregated and dotted weights,
inputs and biases between layers of a neural network. They are typically non-
linear functions that take in the weighted sum of the layer output, then output
a value within a certain range based on the activation used. Some of the most
known activation functions are Sigmoid, the rectified linear unit (ReLU) and the
Softmax.

Sigmoid(x) =
1

1+ e−θ T x
(2.2)

Relu(x) = max(0, x) (2.3)

So f tmax(x i) =
ex i

∑K
j=1 ex j

(2.4)

In general, the forward pass, backpropagation, and activation functions are
all important components of a neural network that combined creates a robust
learning algorithm.

2.3 Computer Vision

The study of computer vision aims to enable computers to comprehend and in-
terpret visual information from their environment. It is achieved by designing al-
gorithms and systems that can automatically analyze and comprehend images and
videos to extract relevant information. There are many sub-fields within computer
vision, called tasks. These tasks include object detection, semantic segmentation,
image classification, image generation and many more. The task relevant for this
project is object detection in 2D and 3D spaces.

2.3.1 Object detection

Object detection is the task of identifying objects in images or videos and localizing
them with a bounding box. This bounding box is typically rectangular in 2D-object
detection, and cubical in 3D-object detection. Usually the bounding box is repres-
ented as coordinates of for example top-left corner and bottom-right corner of a
rectangle.

8 VJN: LiDAR point cloud 3D-detection

2.3.2 Evaluation metrics

When evaluating the performance of an object detection method, evaluation met-
rics are needed. In image classification, each image has its own label or labels,
however when dealing with objects, there can be multiple within a single image
and the location needs to be specified. This makes evaluation a little bit harder,
because we need to know where each object is localized and what type of object
it is. The main evaluation metrics of object detection will be explained in detail in
this section.

TP, FP, TN, FN When a model makes a prediction, we assign a true or false label
to the prediction based on what the actual label of the class is. For example, if
the model predicts a positive sample and the ground truth for the same sample is
positive, then we say the model predicted a true positive. However if the model
predicted negative on that very same sample, we would call the prediction a false
negative. The table below shows the naming scheme in more detail.

Predicted Positive Predicted Negative

Actual Positive True Positive (TP) False Negative (FN)
Actual Negative False Positive (FP) True Negative (TN)

intersection of union (IoU) The IoU is a metric commonly used to evaluate the
performance of object detection algorithms. It measures the overlap between the
predicted bounding box and the ground-truth bounding box for an object, and is
calculated as the ratio of the area of overlap to the area of union.

The IoU is typically used in object detection as a threshold for deciding whether
a predicted bounding box is a true positive or a false positive. A predicted bound-
ing box is considered a true positive if its IoU with the ground-truth bounding
box is above a certain threshold, typically around 0.5. If the IoU is below this
threshold, the predicted bounding box is considered a false positive.

In addition to being used as a threshold for true and false positives, the IoU
can also be used as a measure of the overall performance of an object detection
algorithm. In this case, the average IoU across all predicted bounding boxes is
computed, and higher values indicate better performance. It is worth noting that it
does not measure the classes within each image, but rather how well the bounding
boxes fit the objects.

Precision and Recall Precision and recall are two commonly used metrics for
evaluating the performance of a classification model that is predicting discrete
classes. The model can have advantages and disadvantages based on which met-
ric it is optimized for, and thus having multiple metrics that measure different
performance result in a more robust overview of the predictive strengths and
weaknesses of the model.

Precision refers to the proportion of true positive predictions out of all positive
predictions made by the model, meaning true positives divided by true and false

Chapter 2: Background and Related Work 9

positives. Precision gives us a ratio that describes how well the model performs
on all positive samples.

Recall, also known as sensitivity or true positive rate, refers to the proportion
of true positive predictions out of all actual positive instances. This is found by
taking true positives and divide by true positives and false negatives, meaning we
find how many positive samples were found out of all positive samples.

Precision= TruePosi t ives
TruePosi t ives+FalsePosi t ives

Recal l = TruePosi t ives
TruePosi t ives+FalseNegatives

mean average precision (mAP) mAP is a metric used to evaluate the perform-
ance of object detection algorithms. It is a measure of the overall precision of
the algorithm, and is calculated as the average of the precision at different IoU
thresholds. Higher values of mAP indicate better performance

To calculate mAP, the object detection algorithm is first run on a set of images,
and the predicted bounding boxes are compared to the ground-truth bounding
boxes for the objects in the images. For each predicted bounding box, the IoU
with the ground-truth bounding box is computed.

Next, the mAP is calculated by computing the precision at a range of IoU
thresholds, from 0 to 1. The precision at each threshold is defined as the num-
ber of true positives divided by the total number of predicted bounding boxes at
that threshold. The mAP is then calculated as the average of the precision at all
of the different IoU thresholds.

2.4 Transformers

A transformer is a type of neural network architecture that mainly has been used
in natural language processing tasks up until recently. It was introduced in a pa-
per by researchers at Google in 2017 Vaswani et al. [2] and has since become one
of the most widely used models in the field. One of the most well known trans-
formers is the GPT-3 Brown et al. [4] model by Open AI which has around 175
billion parameters, which is absolutely massive and requires huge GPU clusters
in order to train within reasonable time-frames. These large models are capable
of performing well on a range of NLP tasks. One of the most controversial trans-
former models as of recent is GitHubs Copilot Chen et al. [5], which is designed to
assist software engineers in writing code, but has gotten some backlash because
of licenses and ethical concerns.

2.4.1 Architecture

At a high level, the transformer architecture consists of an encoder and a decoder,
where the encoder takes an input and creates an embedding, then sends it to
the decoder which decodes the embedding and outputs the transformed input.
The input and output can be altered based on which specific task the network
is being trained for, by changing the shape of the layers. Both the encoder and

10 VJN: LiDAR point cloud 3D-detection

decoder consists of multi-head attention blocks, feed-forward layers and batch
normalization layers.

Figure 2.1: Architecture of the original transformer model Vaswani et al. [2]

Tokenization and Positional Encoding

The input requires tokenization before being passed to the encoder or decoder, as
the transformer model cannot interpret words represented as letters in sequences.
Tokenization is the process of converting words to transformer-readable tokens in
the form of integers. After creating token representations for the words, positional
embeddings are created to store the position of the words in the text in order to
preserve contextual information. This step is crucial to make the model under-
stand language, because permutations of word positions of the same sentence
can result in different meanings. The positional encoding is added as a sinusoidal

Chapter 2: Background and Related Work 11

vector to the input token with equal dimensionality to make sure that the length of
the positional encoding does not exceed the length of the tokenized input vector

Encoder

In the transformer, the encoder is responsible for converting the input words into a
set of learned representations, called embeddings. This is done by passing the pre-
processed input tokens through a series of blocks containing multi-head attention
and feed-forward layers. The encoder is crucial for transforming text into dense
vector embeddings with different sets of meanings in a concise and separable
representation.

Decoder

The decoder is used to generate the output sequence of words. It does so by using
the learned embeddings from the encoder as inputs, and passing them through a
series of layers that use self-attention to consider the relationships between the
words in the output sequence. By passing the information of the relationships
to a feed-forward layer with a Softmax activation, probability distributions are
generated and can be used for text generation or classification tasks.

2.4.2 Attention

In the context of transformers, attention refers to the mechanism that allows the
model to directly consider the relationships between all tokens of words in a sen-
tence, rather than just considering each token in isolation. This allows the model
to capture long-range dependencies in the data and make more accurate predic-
tions.

The attention mechanism in the transformer architecture works by calculat-
ing the "attention scores" between all pairs of tokens in the input and output se-
quences. These scores reflect the degree to which each output token should be
influenced by each input token.

The attention scores are then used to compute a weighted sum of the input
tokens, with each input token receiving a weight proportional to its attention
score. This weighted sum is then used as input to the next layer of the network,
allowing the model to consider the relationships between the tokens in the input
sequence when making predictions. attention is an important component of the
transformer architecture and is a key factor in its ability to capture long-range
dependencies in natural language data.

It turns out this attention mechanism can be implemented in parallel, which
then allows us to create "multi-head attention" that looks at multiple relationships
between tokens at once, and thus can extract more information.

12 VJN: LiDAR point cloud 3D-detection

Scaled dot product

As mentioned, attention works by calculating the "attention scores" between all
pairs of tokens in the input and output sequences. This operation is called the
scaled dot product

It is performed by doing a dot product between the embeddings of each pair
of input and output tokens. The dot product can be viewed as a measure of the
similarity between the two vectors, as it is the sum of the element-wise product
of the vectors.

However, the dot product can sometimes have very large values, which can
lead to numerical instability in the model. To prevent this, the transformer scales
the dot product by dividing it by the square root of the dimensionality of the
embedding vectors. This has the effect of limiting the range of the attention scores
and making the model more stable.

Once the attention scores have been calculated, they are used to compute a
weighted sum of the input words, known as the "context vector". This is done
by first splitting the input sequence into three separate vectors: the "keys", the
"values", and the "queries". The keys and values are both fixed and are determined
by the encoder, while the queries are determined by the decoder. The queries can
be viewed as the translation part, where a query can be mapped to a specific key-
value pair based on the task to be solved.

The attention scores are then calculated by taking the dot product of the quer-
ies and the keys, and then passing the result through a softmax function to nor-
malize the scores. The context vector is then computed by taking the element-wise
product of the values and the normalized scores, and then summing the resulting
vectors. The scaled dot product is expressed as

Attention(Q, K , V) = Softmax

�

QK T

p

dk

�

V (2.5)

where Q is the matrix of query vectors, K is the matrix of key vectors, V is the
matrix of value vectors, and dk is the dimensionality of the key vectors.

Multi-head attention

As mentioned multi-head attention is a mechanism that allows the model to attend
to different parts of the input simultaneously and in parallel. This allows the model
to learn multiple different relationships between the input tokens, which can help
improve its performance.

To calculate multi-head attention, the transformer first splits the input se-
quence into three separate vectors: the "keys", the "values", and the "queries", just
like explained in the previous paragraph.

Next, the transformer computes multiple dot products between the queries
and the keys, one for each of the different attention "heads". This results in a set of
attention scores for each head, where each score reflects the degree to which each

Chapter 2: Background and Related Work 13

Figure 2.2: Scaled dot product flow diagram Vaswani et al. [2]

output token should be influenced by each input token. The scores are then scaled
and softmaxed the same way as mentioned in the "Scaled dot product paragraph".

Finally, the transformer computes a weighted sum of the values, using the nor-
malized attention scores from each head as the weights. This results in a set of
context vectors, one for each attention head. These context vectors are then used
as inputs to the next layer of the network, allowing the model to consider mul-
tiple of the relationships between the tokens in the input sequence when making
predictions.

2.4.3 Vision Transformers

A Vision Transformer is a type of deep learning architecture that uses the trans-
former architecture to process visual data such as images. It combines the advant-
ages of CNNs for image processing and the transformer architecture for handling
sequential data. Consequently, vision transformers are highly effective at tasks
such as image classification, object detection, and semantic segmentation.

Vanilla transformer vs ViT

ViTs and regular transformers are similar in that they both use the transformer
architecture as showed in section 2.1. In spite of that, there are several differences
in implementation details of the architecture between the two that are crucial to
what task is being solved.

14 VJN: LiDAR point cloud 3D-detection

Figure 2.3: Multi-head self-attention Vaswani et al. [2]

Input Representation Vanilla transformers are typically used for processing se-
quential data such as text, whereas ViTs are designed to process visual data. Thus,
the input representation for ViTs is often large as the spatial resolution of images
is sizeable compared to text. As seen in figure 2.4, the input image is divided into
patches, flattened and vector encoded with positional embeddings before being
fed into the transformer encoder block.

Feature Extraction Vanilla Transformers typically operate on a vector repres-
entation of the input data, whereas ViTs can use convolutional layers or other
methods to extract image features before feeding them into the transformer. Text
input on the other hand can have other forms of pre-processing like stemming,
lemmatization, rephrasing or lower-casing to mention a few.

Architecture While both vanilla transformers and ViTs use the core components
of the transformer architecture such as the attention mechanism and the feed-
forward network, the exact architecture of the two types of models can differ. For
example, ViTs may use a more complex encoder to extract image features, and a
more complex output layer to handle the specific task (e.g. image classification,
object detection, semantic segmentation).

Training Data Vanilla Transformers are typically trained on large amounts of
text data, whereas Vision Transformers are trained on image data. This can have

Chapter 2: Background and Related Work 15

an impact on the choice of loss function and the type of data augmentation used
during training.

Figure 2.4: Illustration of the vanilla vision transformer architecture. Image from
[3]

2.5 Recent advances in 3D Object Detection

3D object detection is a crucial task in a variety of applications operating in the
real world, such as robotics, augmented reality, and autonomous vehicles. In re-
cent years, significant progress has been made in this field thanks to the develop-
ment of powerful deep learning algorithms and the availability of large-scale 3D
datasets. In this section, we provide an overview of different data representation
methodologies and state-of-the-art methods for 3D object detection.

2.5.1 Different approaches to 3D object detection

One of the main differentiating factors when it comes to methods for 3D object
detection is what kind of sensor is used. Fernandes et al. [6] did a survey where
they reviewed the different approaches in state of the art 3D object detection and
found that the most commonly used sensors are LiDAR and cameras as a result of
their compelling information gathering properties. In this section we will review
different methods within camera-based, LiDAR-based and fusion between the two.

16 VJN: LiDAR point cloud 3D-detection

3D object detection from 2D images

One of the most novel methods and maybe the holy grail of AV is 3D object de-
tection through cameras only. As cameras are relatively cheap compared to other
sensors like LiDAR, a bigger opportunity for mass marked adoption is possible
because of economic efficiencies. In 2017 Mousavian et al. [7] used RGB images
to estimate 2D bounding boxes by using a CNN architecture, then by adding geo-
metric constraints on the given 2D prediction, they were able to predict the 3D
bounding box of given objects. This method served as a proof of concept and led
to further research on how to improve upon the results. Later Li et al. [8] showed
that single image 3D detection can be more reliable by using the 2D-detection
for search pruning, then further analyze surfaces within each given 2D bounding
box with CNNs. By pruning the search, more compute can be used for analyz-
ing surfaces, and thus more information about angles, direction and size can be
incorporated into the 3D bounding box prediction.

Mottaghi et al. [9] and Zhu et al. [10] tried using 3D models with clustering
of similar 3D models in order to predict the 3D bounding box with corresponding
direction and size of objects. This method relies heavily on using shape and geo-
metric cues for comparison with the given object. A drawback of this method is
the lack of 3D models compared to the rich complexity of real-world data.

More recently, Li et al. [11] and Wang et al. [12] have improved image only
3D object detection by using stereo imagery. Wang et al. [12] trained a CNN to
reproduce LiDAR signals, effectively creating a pseudo LiDAR that improved upon
state of the art 3D object detection results by 22% on the KITTI benchmark within
ranges of 30 meters. There is currently an explosion in the amount of papers
researching this subtopic and additional improvements to the capabilities of 3D
bounding box detection by only using 2D images from cameras will probably hap-
pen in rapid succession.

3D object detection from point clouds

LiDAR sensors are expensive, but with the rapid technological development in
light detection and ranging sensors in recent years, the cost is clearly trending
down. As a result, research conducted regarding point cloud 3D detection is sur-
ging and thus the advancements in the state of the art escalate.

One of the earliest methods for 3D detection using point cloud data is trans-
forming the scene to BEV and using a 2D CNN detection backbone. Chen et al.
[13], Ku et al. [14], Yang et al. [15] and Yin et al. [16] used 2D BEV for 3D detec-
tion and orientation refinement. It is worth noting that transforming point clouds
to BEV and using 2D detection alone is not enough to compete with state of the art
methods in mAP. However, computational load is significantly decreased by redu-
cing dimensional complexity in the point cloud from 3D to 2D. Therefore adding
BEV to the bounding box detection and orientation refinement pipeline seems like
a good trade-off when comparing inference and training time to output in mAP.

Qi et al. [17] introduced PointNet in 2016, which takes raw point cloud data

Chapter 2: Background and Related Work 17

as input and gives 3D bounding box predictions as output. It was one of the first
methods that did operations on point cloud data and was able to discard some pre-
processing techniques earlier introduced. One of the advantages with processing
3D point cloud data directly is that more information about the 3D structures can
be extracted and thus the model becomes more accurate. Even though PointNet
achieved state of the art results at the time, it had some flaws regarding capturing
local structures. Qi et al. [18] later improved upon the PointNet architecture with
hierarchical feature learning in PointNet++.

One downside to operating on each point in the point cloud individually is
that it creates large computational complexity and makes real-time application
harder to accomplish. Zhou and Tuzel [19] proposed a voxel-based method that
divides the point cloud into a 3D-grid of voxels, where each point belongs to a
voxel potentially containing multiple points instead of existing individually. This
allows the feature extraction backbone to work on grouped data and consequently
reduces computational complexity while achieving state of the art results at the
time.

2.5.2 Data representation and extraction of point clouds

One of the key challenges in 3D object detection is the efficient representation of
3D point clouds. Early works in this field typically used hand-crafted features such
as depth and geometric shapes to represent 3D objects. However, these methods
were not able to capture the rich and complex structure of 3D objects and limited
their performance.

Point-based

As discussed in 2.5.1, point-based methods are using raw point clouds as input to
the feature learning backbone. They then produce a sparse representation of the
scene that can be parsed by a neural network. The points are usually represented
by a vector containing its local neighbor points. As seen in figure 2.5, the global
information flow happens after multiple of these points are pooled in multiple
layers, creating a larger receptive field.

Voxel-based

A voxel is a three-dimensional grid element that represents a specific value in
a 3D space. Voxel-based methods divide the point clouds into regularly spaced
voxels in the Cartesian coordinate system. This division enables the application
of feature learning to extract features from groups of points within each voxel,
resulting in dimensionality reduction and memory savings. As seen in figure 2.6,
Zhou and Tuzel [19] uses random sampling after dividing points into voxels in
order to generate a more compact representation of the points while maintaining
decent accuracy.

18 VJN: LiDAR point cloud 3D-detection

Figure 2.5: Illustration of the hierarchical feature extraction from single points.
Image from [17]

Figure 2.6: Illustration of the voxelization of points for feature extraction. Image
from [19]

Frustum-based

Frustums are parts of a cone or pyramidical structure that is cut off by a plane
parallel to its bottom plane. The core idea of frustum-based representation and
feature extraction is to limit object proposal detection to two dimensions in order
to save memory and compute. After a object is detected in 2D space, a frustum is
generated in the point cloud based on the coordinates of the 2D bounding box, as
seen in figure 2.7. This frustum is then used to separate the relevant and irrelevant
points regarding the specific 3D object by instance segmentation. A 3D feature
extraction backbone does further unravelling of the 3D structure of points in order
to encode important geometric cues for the detection module to learn. Figure 2.8
shows the explained 2D proposal to 3D instance segmentation pipeline in more
detail.

Chapter 2: Background and Related Work 19

Figure 2.7: Visualisation of the frustum-based search pruning for feature extrac-
tion. Image from [20]

Figure 2.8: Visualisation of the 2D detection to frustum-based 3D detection for
feature extraction. Image from [20]

Pillar-based

The pillar-based method is similar to the voxel-based method as both designates
points to voxels in 3D-space. The key differentiating factor is that pillar-based
methods disregard the limitation on the z-axis of each voxel, resulting in long
vertical pillars with fixed length x-y plane. Lang et al. [21] proposed PointPillars
in 2019, which matched or exceeded state of the art mAP on different objects
like cars, pedestrians and cyclists while simultaneously achieving 40Hz faster
run-time. Stanisz et al. [22] further optimized PointPillars to run on a smaller
FPGA device, decreasing mAP 5-9% while reducing the model size almost 16-fold,
making real-world application possible.

In figure 2.9 we can see an illustration of pillar generation, concatenation and
2D-pseudo image creation in the feature extraction process.

20 VJN: LiDAR point cloud 3D-detection

Figure 2.9: Illustration of the pillar-based pipeline for feature extraction in Point-
Pillars. Image from [21]

Chapter 3

Method

3.1 Hardware

The hardware used in this project were a Macbook Pro 2018 with Intel processor
and a Ubuntu virtual machine with 6 CPUs, 32GB RAM and RTX8000 with 8GB
VRAM. The VM was running Ubuntu version 20.04 and was virtually connected
through VMware Horizon Client. Access to NTNUs IDUN-cluster was also avail-
able, however, the model did not support multi-GPU training or inference, so it
was not utilized.

3.2 Datasets

3.2.1 KITTI-360

The KITTI-360 dataset for 3D object detection contains 7481 training images and
7518 test images and their corresponding velodyne point clouds. This makes a
total of 80 256 labeled objects. The dataset is commonly referenced in state of
the art papers regarding 3D object detection benchmarks since it was released in
2017.

Download and Preparation

The KITTI-360 dataset was downloaded from the official KITTI Vision Benchmark
Suite1 under the 3D objects tag. RGB images with their respective velodyne point
clouds, labels and calibration matrices were downloaded. The size of the files can
be seen in table 3.1. For preparation, the calibration file was used in order to
match the RGB scene with the point clouds. The calibration file contains matrices
that describe the needed translation, cut-off, yaw and rotation of each scene in
order to synchronize the images with the point clouds.

1https://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d

21

https://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=3d

22 VJN: LiDAR point cloud 3D-detection

Table 3.1: Memory usage for different data types

File name File size
RGB 12GB
RGB preceding frames 36GB
Velodyne point clouds 29GB
Camera calibration matrices 15MB
Training labels 5MB
TOTAL ∼78GB

Objects

There are 8 different types of objects within the KITTI-360 dataset for 3D object
detection, which includes car, van, truck, standing pedestrian, sitting pedestrian,
cyclist, tram and miscellaneous. In figure 3.1 we can see that there is a major
skew towards car instances within the dataset which is to be expected as the data
is captured on roads. We also notice that ∼ 38% of the cars in the dataset are
occluded and ∼ 10% are truncated.

Figure 3.1: Number of object instances in KITTI dataset. Source [23]

In figure 3.2 we can see that there is most commonly 1 object per class in each
individual image. For pedestrians there are rarely more than 1 instance within an
image. That is predominantly the case for car instances as well, though to a lesser
degree as the 2+ cars within an image cumulatively make up more than 50% of
the total amount of images containing cars.

Size and orientation

Information about the height, width and length of objects is important for anchor
selection in neural networks and our model which we will get back to in section
3.3. The KITTI dataset contains what resembles normal distributions as seen in

Chapter 3: Method 23

Figure 3.2: Distribution of number of object-instances per image for car and ped-
estrian in KITTI dataset. Source [23]

figure 3.3 which shows the distribution for height, width and length for cars and
pedestrians.

Figure 3.3: Distribution of height, width and length for cars and pedestrians in
the KITTI dataset. Source [23]

As for the orientation degree of different objects, the distribution skews more
towards 0◦ and 180◦ which can be seen in figure 3.4 where we can see the ori-
entation distribution of cars and pedestrians. This is to be expected as the data
is captured from a driving vehicle where the road system is designed for parallel
traffic flow for vehicles and pedestrians.

24 VJN: LiDAR point cloud 3D-detection

Figure 3.4: Distribution of orientations for objects in KITTI dataset. Source [23]

3.2.2 Ouster data

Ouster data was used to see if the model has learned general point cloud fea-
tures for cars, cyclists and pedestrians. Ouster has some sample data on their SDK
tutorial page that was downloaded 2. Since the Ouster sensor does not capture
RGB images, a synthetic 3-channel LiDAR image containing reflection, signal and
near-infrared was created as substitution.

Preparation

As the Ouster data is using PCAP format, we had to unpack the point cloud and
reflection data and convert it into binary format. Each file has a corresponding
info-file that contains labels, bounding boxes, truncation, occlusion, location etc
as seen in figure 3.5. Since the objects in the Ouster data was not labeled in either
2D or 3D, we had to manually label each object. This was conducted through
changing the height, length and width of each object and its coordinate location
with x, y and z in the label text file and visually inspecting the changes with the
KITTI-VIS tool.

After creating the label-file, a corresponding pickle info-file which contains
metadata, calibration data and object data needs to be created. All items in the
pickle file is described in table ??. The file is created as a dictionary

The entire labeling pipeline is shown in figure 3.6.

Prediction

In order to predict the prepared Ouster data, some modifications on the model
pipeline needed to be made. Since the Ouster data is captured with 1:1 pixel cor-
respondence between LiDAR and other measurement types, no direct calibration

2https://static.ouster.dev/sensor-docs/#sample-data

https://static.ouster.dev/sensor-docs/##sample-data

Chapter 3: Method 25

Table 3.2: Table showing the items in the pickle file with the respective descrip-
tions.

Key Description
image_idx Index of image
pointcloud_num_features Number of features in point cloud
velodyne_path The path to the binary file containing the point cloud
img_path The path to the image file
img_shape The shape of the 2D image
calib/P0 Calibration matrix for camera 0 (reference cam)
calib/P1 Calibration matrix for camera 1 (not used)
calib/P2 Calibration matrix for camera 2 (not used)
calib/P3 Calibration matrix for camera 3 (not used)
calib/R0_rect Rectification matrix for transforming P1-3 into the same image plane
calib/Tr_velo_to_cam Matrix for transforming points to reference image coordinates
calib/Tr_imu_to_velo Matrix for height angle adjustments
annos Annotation description
name Name of objects (array)
truncated Truncation of objects (array)
occluded Occlusion of objects (array)
alpha Observation angle of objects (array)
bbox 2D bounding box of objects: x-min, y-min, x-max, y-max (2D array)
dimensions Height, width and length of objects (2D array)
location X, y and z coordinates of objects (2D array)
rotation_y Objects rotation about y-axis (array)
score Confidence of prediction (array)
index Index of objects in current image (array)
group_ids Group index of objects (array)
difficulty Easy, moderate or hard difficulty of object (array)
num_points_in_gt Number of points inside ground truth bounding box (array)

26 VJN: LiDAR point cloud 3D-detection

Figure 3.5: Table showing the format of the label file with corresponding values

was necessary. Thus, frustums and were made through masking the ground truth
2D bounding boxes directly and applied to filter irrelevant points. Gaussian prob-
ability features were made by using the pixel image coordinates of the Ouster scan.
After modifying the pipeline, the LiDAR and reflection measurements needed to
be destaggered. For default staggered representations, each column represent a
single timestamp. We use the Ouster SDK to destagger the representation, mean-
ing now each column corresponds to a single azimuth angle, compensating for
the azimuth offset of each beam which is captured by the sensor.

3.2.3 Setup

The model was cloned from the Frustum-PointPillar repository on GitHub 3. The
code was tested on Ubuntu 18.04 and only supports Python version 3.6, PyTorch
1.4+ and CUDA 11+. As a result, there were lots of bugs that needed to be sorted
out, and lots of testing on different builds with different combinations of versions.

After fixing bugs and setting up the model, the KITTI dataset could be prepared
for training the model. The dataset was setup in a file-structure as shown in figure
3.10. KITTI info files, a ground truth database and reduced point clouds were
created for training. The reduced point clouds were created by filtering out all
LiDAR points that are located outside the field of view of the 4 RGB-cameras.

3.2.4 Calibration

The KITTI data was captured by a couple separate sensors, namely 4 RGB cam-
eras and a velodyne LiDAR sensor. Thus, there are multiple coordinate systems
that need to be synchronized, as shown in figure 3.9. Camera 0, P0, was used as

3https://github.com/anshulpaigwar/Frustum-Pointpillars

Chapter 3: Method 27

Figure 3.6: Visualization of manual labeling pipeline.

reference coordinate system. In order to locate the X-Y position in the reference
coordinate system for each point in the velodyne point cloud; rectification, rota-
tion and translation had to be performed. Each of the cameras were first rectified
with a 3x4 rectification matrix, then rotated and translated with matrix P1-P3
with shape 3x4.

3.3 Frustum-PointPillar

3.3.1 Tuning

After configuring the file structure and pre-processing the KITTI data, tuning of the
configuration files for the model was performed. The main parameters that were
tuned were epochs, learning rate, learning rate decay, steps, batch size and anchor
points. These parameters were tuned for 3 objects; car, pedestrian and cyclist. In
order to track the training process, WandB was used to receive live updates for
important metrics like precision and recall at IoU 10, 50, 95. Other metrics like
total loss, bounding box loss and angle of orientation loss were also tracked and
stored.

28 VJN: LiDAR point cloud 3D-detection

Figure 3.7: Visualisation of calibration to get matrix X from rotation/translation
matrix P0 with shape 3X4 and translation from velodyne point cloud matrix with
shape 4x3 to get X of shape 3x3

Figure 3.8: Visualisation of calibration matrix X from figure 3.7 and the x-y-z-
coordinate in the point cloud to get image coordinate in reference coordinate
system

3.3.2 Pipeline

The model pipeline is shown in figure 3.11. First, the point cloud is masked based
on the field of view of the image. Secondly, 2D object detection is performed on
a three-channel image to get bounding boxes of objects in the scene. Then the
points located outside the frustums created by the bounding boxes are masked
and removed. The reduced point cloud is then voxelized and 3D-point detection is
conducted to get object label, location in x-y-z coordinates and height, width and
depth with corresponding angle of orientation around the y-axis of the velodyne
coordinate space.

Chapter 3: Method 29

Figure 3.9: The different coordinate systems between RGB-cameras and LiDAR
sensor and objects within both. Image source

3.4 KITTI visualization

The visualisation tool was cloned from the KITTI-object-visualisation repository
on GitHub 4. The repository only supports Python version 3.7 and was tested
on Ubuntu version 18.04. My VM uses Ubuntu 20.04 and thus, implementation
was not as smooth as hoped for. Some bugfixes were sorted out with the Mayavi
visualisation tool, one of which required an older version for Ubuntu 20.04, while
some smaller visual bugs are still not fixed. The tool shuts down sometimes and
the reason why is unknown even after contacting the maintainer of the repository.
Despite visual bugs, we managed to get some visualisations working in order to
show the models performance more explicitly.

In order to visualize the results, the visualization tool needed a specific KITTI
file structure with a symbolic link to the predictions made by the model, as shown
in figure 3.12

4https://github.com/kuixu/kittio b jec tv is

https://medium.com/test-ttile/kitti-3d-object-detection-dataset-d78a762b5a4

30 VJN: LiDAR point cloud 3D-detection

Figure 3.10: KITTI file structure for training and testing with images, point
clouds, calibration and labels

Chapter 3: Method 31

Figure 3.11: Frustum-PointPillars model inference pipeline

Figure 3.12: KITTI visualisation file structure with images, point clouds, calibra-
tion and labels with symbolic link to the predictions made by the model

Chapter 4

Experiments and Results

4.1 Frustum-PointPillar results

4.1.1 Precision and recall vs validation

In figure 4.1 we can see that the model achieves around 0.9, 0.75 and 0.7 on
easy, moderate and hard respectively on the official KITTI validation dataset for
cyclist mAP at IoU70. For pedestrians, it performs worse at 0.4, 0.35 and 0.3. We
also see that precision at IoU70 is rapidly increasing while recall IoU70 is slowly
increasing for both cyclist and pedestrian.

Figure 4.1: Precision and recall @ 70 vs validation mAP@70 easy, moderate and
hard for pedestrian and cyclist

For the car object, the model achieves a higher validation mAP at IoU70 than
both cyclist and pedestrian at 0.9, 0.8 and 0.8 for easy, moderate and hard, as seen
in figure 4.2. In the figure, we can also see that precision is increasing faster for car
than for cyclist and pedestrian. On the other hand, recall is climbing slower and
stabilizes at below 0.6, while both pedestrian and cyclist recall at IoU70 stabilizes
above 0.6.

In figure 4.3 we can see that the model achieves around 0.9, 0.8 and 0.8 on
easy, moderate and hard respectively on the official KITTI validation dataset for
cyclist mAP at IoU50. For pedestrians, it performs slightly worse at 0.85, 0.8 and
0.8 accordingly. Like the results at IoU70, we also see that precision at IoU50 is
also increasing rapidly while recall IoU70 is increasing slower for both cyclist and

33

34 VJN: LiDAR point cloud 3D-detection

Figure 4.2: Precision and recall @ 70 vs validation mAP@70 easy, moderate and
hard for car

pedestrian.

The results for cyclist did not improve for the easy validation dataset when de-
creasing IoU threshold from 50 to 70. However, for moderate and hard validation
there was a slight improvement of around 0.05 and 0.1 in accuracy.

Decreasing IoU threshold from 70 to 50 significantly improved the validation
results for pedestrians in all difficulties. Easy and moderate increased accuracy by
0.45, which is a very big change. For hard, the change in accuracy was 0.5.

These results indicate that lower IoU threshold is most beneficiary for pedes-
trian object detection, as it drastically improves the mAP.

Figure 4.3: Precision and recall @ 50 vs validation mAP@50 easy, moderate and
hard for pedestrian and cyclist

For car at IoU50, the model achieves a higher validation mAP than both cyclist
and pedestrian at above 0.9 for all validation difficulties, as seen in figure 4.4. In
contrast to recall at IoU70, recall at IoU50 is increasing faster and stabilizes above
0.7, which is higher than for both pedestrian and cyclist which stabilizes slightly
below 0.7.

Chapter 4: Experiments and Results 35

Figure 4.4: Precision and recall @ 50 vs validation mAP@50 easy, moderate and
hard for car

4.1.2 Train loss vs validation accuracy

In figure 4.5 we can see that location loss for car, which measures error in distance
of bounding box predictions is decreasing rapidly, then flattening after around
500 steps. Classification loss has the same trend, just stabilizing around 0.2 below
location loss. Moderate validation at both IoU50 and IoU70 seems to stabilize
around 500 steps as well.

Figure 4.5: Train location and classification loss vs moderate 3D validation
mAP@50 and mAP@70 for car

Figure 4.6 shows location and classification loss compared to moderate mAP
validation at IoU50 and IoU70. For pedestrian, the location loss does not stabilize
before 1500 to 2000 steps, while classification loss stabilizes around 500 steps.
We can also see that validation mAP is slowly increasing even after 2000 steps for

36 VJN: LiDAR point cloud 3D-detection

IoU50, while IoU70 seems to have peaked around 1000 steps.

Figure 4.6: Train location and classification loss vs moderate 3D validation
mAP@50 and mAP@70 for pedestrian

Figure 4.7 shows location and classification loss compared to moderate valid-
ation mAP at IoU50 and IoU70 for cyclist. Location and classification loss has the
same trend as with pedestrian, where location loss is slowly decreasing even after
2000 steps while classification loss stabilizes around 500 steps. Both moderate
mAP validation metrics are rapidly increasing the first few steps, then stabilizing
before 500 steps.

Figure 4.7: Train location and classification loss vs moderate 3D validation
mAP@50 and mAP@70 for cyclist

Chapter 4: Experiments and Results 37

4.1.3 3D, BEV and AOS moderate validation

Figure 4.9 and 4.8 shows BEV, 3D mAP and AOS at IoU70. AOS measures the
error of the angle between ground truth and predictions for car, pedestrian and
cyclist. For car and cyclist, all three metrics stabilize around 0.7 to 0.9 before 500
steps, while still slowly increasing for pedestrian after 2000 steps or 100 epochs.

Figure 4.8: mAP@70 3D, BEV and AOS validation at moderate difficulty for ped-
estrian and cyclist

Figure 4.9: mAP@70 3D, BEV and AOS validation at moderate difficulty for car

Figure 4.11 and 4.10 shows BEV, 3D mAP and AOS at IoU50. The trend seems
to be similar to IoU70, however car stabilizes at 0.9 and cyclist at 0.8 for all met-
rics. For pedestrian we see that the metrics are still in an increasing trend after
2000 steps or 100 epochs, indicating that further training could improve results.

4.1.4 Precision and recall @ 10, 50, 95

Precision at IoU 10, 50 and 95 is shown for car in figure 4.12 and pedestrian/cyc-
list in figure 4.13. We can see that IoU10 has lower precision while IoU95 has the
highest precision for all objects. We can also see that IoU95 takes more steps to
start increasing as the curve is horizontal for around 150 steps while it increases
significantly in the first couple of steps for IoU 10 and 50.

38 VJN: LiDAR point cloud 3D-detection

Figure 4.10: mAP@50 3D, BEV and AOS validation at moderate difficulty for
pedestrian and cyclist

Figure 4.11: mAP@50 3D, BEV and AOS validation at moderate difficulty for car

Figure 4.14 shows recall at IoU 10, 50 and 95 for car, while figure 4.15 shows
recall curves for cyclist and pedestrian. The IoU thresholds achieve results in op-
posite order as with precision, as IoU 10 achieves highest recall, 50 second best
and 95 lowest. IoU10 seems to have stabilized somewhat, while 50 and 95 are
still in an increasing trend.

4.2 Author results vs my results

In table 4.1 we can see the results of the author of the Frustum-PointPillars model
compared to my results with some small modifications. For car, the original (au-
thor) model performs slightly better for easy and moderate difficulty. However for
hard, my model scores 55 basis points better. Overall between the 3 difficulties for
car, my model achieves on average 43 basis points better mAP score. For pedes-
trian, my model performs significantly worse on all three difficulties with around
10-15% worse mAP score. My model achieves better results for cyclist on all dif-
ficulties, beating the original model by around 2-4%.

Chapter 4: Experiments and Results 39

Figure 4.12: Precision at IoU 10, 50, 95 for car

Figure 4.13: Precision at IoU 10, 50, 95 for pedestrian and cyclist

4.3 Visualisation of predictions

In this section the visual results of car-, pedestrian- and cyclist predictions will be
presented

4.3.1 Car visualisation

Figure 4.16 shows the 2D image of a scene with cars where the cars are labeled
with green bounding boxes as ground truth. The equivalent scene is shown in
3D-space as a point cloud in figure 4.17 where the green bounding boxes are the
ground truths and the red bounding boxes represent the model predictions. We
can see that the predictions are pretty good in this example as the red bounding
boxes are mostly overlapping with the green bounding boxes.

Figure 4.18 shows the same point cloud scene from BEV. The red lines rep-
resent the predicted directional angle for the cars. We can see that the predicted
angles of the cars match the direction shown in figure 4.16 for all cars. It is worth
noting that the bounding box prediction with the highest error is the one for the
car that is truncated in the FoV of the RGB image, where the predicted bounding

Table 4.1: Comparison between author results and my own results on car, cyclist
and pedestrian for easy, moderate and hard validation

Car Pedestrian Cyclist
Difficulty Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

Author model 88.90 79.28 78.07 66.11 61.89 56.91 87.54 72.78 66.07
My model 88.84 79.22 78.62 48.53 44.57 40.16 89.09 74.90 70.52

40 VJN: LiDAR point cloud 3D-detection

Figure 4.14: Recall at IoU 10, 50, 95 for car

Figure 4.15: Recall at IoU 10, 50, 95 for pedestrian and cyclist

box stretches further than the ground truth bounding box.

Figure 4.16: RGB-visualization of the image to be predicted where green boxes
indicate ground truth

4.3.2 Pedestrian and cyclist visualisation

Figure 4.19 shows the 2D image of a scene with pedestrians and a cyclist where the
pedestrians are labeled with blue bounding boxes and the cyclists with yellow. The
equivalent scene is shown in 3D-space as a point cloud in figure 4.20 and 4.21
where the blue and yellow bounding boxes are the ground truths and the red
bounding boxes represent the model predictions. We can see that the predictions
are decent in this example, but the bounding box predictions are not as good as
with the car predictions in the previous example. We can also see that one of the
pedestrians were not detected at all in this example.

Figure 4.22 and 4.23 shows the same point cloud scene from BEV. The red
lines represent the predicted directional angle for the pedestrians and cyclists. We

Chapter 4: Experiments and Results 41

Figure 4.17: Velodyne-visualization of point cloud with green boxes as ground
truth and red boxes as the model predictions. Red lines indicate orientation

can see that the predicted angles of the pedestrians mostly match the direction
shown in figure 4.19, however there are some that are pointing in completely
wrong direction or a direction that is not properly aligned with the suspects. For
cyclist, the bounding box angle is pretty accurate, and the bounding box size is
matching the ground truth well.

4.3.3 Prediction on Ouster data

Scene 1

In the first scene in figure 4.25 the predicted bounding boxes lay on a line on the
y-axis. Only one of the predictions is close to a ground truth, which is better illus-
trated in figure 4.26. None of the predicted bounding boxes have overlapping IoU.
Some of the predictions with low confidence were removed to make illustration
clearer.

Scene 2

Figure 4.27 and 4.28 shows predictions and ground truths for scene 2, where we
can see that the prediction closest to the middle actually has a slight overlap with
the ground truth, however the IoU is small.

Scene 3

In scene 3, which is shown in figure 4.29 and 4.30, we can see that the prediction
matches orientation, but is too small and too far along the y-axis. Also, some of
the predictions with low confidence were removed to make illustration clearer

42 VJN: LiDAR point cloud 3D-detection

Figure 4.18: BEV-visualization of point cloud with green boxes as ground truth
and red boxes as the model predictions. Red lines indicate orientation

Figure 4.19: RGB-visualization of the image to be predicted where blue boxes
indicate ground truth for pedestrian and yellow boxes for cyclists

Chapter 4: Experiments and Results 43

Figure 4.20: Far velodyne-visualization of point cloud with blue and yellow boxes
as ground truth and red boxes as the model predictions. Red lines indicate ori-
entation

Figure 4.21: Close velodyne-visualization of point cloud with blue and yellow
boxes as ground truth and red boxes as the model predictions. Red lines indicate
orientation

44 VJN: LiDAR point cloud 3D-detection

Figure 4.22: BEV-visualization of point cloud with blue and yellow boxes as
ground truth and red boxes as the model predictions. Red lines indicate orienta-
tion

Chapter 4: Experiments and Results 45

Figure 4.23: BEV-visualization of point cloud with blue and yellow boxes as
ground truth and red boxes as the model predictions. Red lines indicate orienta-
tion

Figure 4.24: SCENE 1: 3 channel LiDAR-image consisting of Near-infrared, signal
and reflection with green ground truth boxes for cars

46 VJN: LiDAR point cloud 3D-detection

Figure 4.25: SCENE 1: Velodyne-visualization of point cloud with green boxes as
ground truth and red boxes as the model predictions. Red lines indicate orienta-
tion

Figure 4.26: SCENE 1: BEV-visualization of point cloud with green boxes as
ground truth and red boxes as the model predictions. Red lines indicate orienta-
tion

Chapter 4: Experiments and Results 47

Figure 4.27: SCENE 2: BEV-visualization of point cloud with green boxes as
ground truth and red boxes as the model predictions. Red lines indicate orienta-
tion

Figure 4.28: SCENE 2: BEV-visualization of point cloud with green boxes as
ground truth and red boxes as the model predictions. Red lines indicate orienta-
tion

48 VJN: LiDAR point cloud 3D-detection

Figure 4.29: SCENE 3: BEV-visualization of point cloud with green boxes as
ground truth and red boxes as the model predictions. Red lines indicate orienta-
tion

Figure 4.30: SCENE 3: BEV-visualization of point cloud with green boxes as
ground truth and red boxes as the model predictions. Red lines indicate orienta-
tion

Chapter 5

Discussion

5.1 Model performance

This section discusses the performance of the Frustum-PointPillars model on KITTI
data, where two main parts are examined; Metric results and visual inspection.

5.1.1 Metric performance on KITTI data

My results on the KITTI data were in line with the authors results in the paper
listed in the GitHub repository1 as mentioned in section 4.2. Overall, my model
performs slightly better for the objects car and cyclist, while significantly under-
performing for pedestrian. The authors model achieves a higher score for 5/9
difficulty and object metrics.

It is interesting that my model scores higher for both car and cyclist even
though the amount of training epochs used to train the model was reduced to
37.5% less than the author model. Because most of the hyperparameters were
unchanged, one could assume that it is a possibility that the author model was
slightly overfitted for these objects. One theory as to why their model overfitted
for car and cyclist could be that there is a huge skew towards car objects in the
KITTI dataset as mentioned in section 3.2.1. As bicycles share some of the charac-
teristics of car, there is a higher possibility that the same learned features can be
applied for both objects. Since there is significantly less pedestrians in the dataset
and the similarity to car for the object is smaller, more epochs could be needed to
get the model to learn appropriate representations in feature space. Furthermore,
by looking at figure 4.6 and 4.8 we can see that the validation score for pedes-
trian has not stabilized yet and location/classification loss is still declining, which
indicates that more training epochs probably could further improve the results for
pedestrian and thus match or exceed the author results.

In figure 4.3 and 4.1 we can see that the pedestrian validation mAP increased
significantly when decreasing IoU from 70 to 50. We know that the pedestrian
object on average is pretty small from figure 3.3, where the average width and

1https://github.com/anshulpaigwar/Frustum-Pointpillars

49

https://github.com/anshulpaigwar/Frustum-Pointpillars

50 VJN: LiDAR point cloud 3D-detection

length is around 0.5 meters and height at around 1.8 meters. This shape prop-
erty makes it hard for the velodyne sensor to be accurate as the 360 scan has low
angular resolution, meaning that the depth measurements are not very precise
at centimeter resolution perpendicular to capturing angle at range. Thus, by re-
ducing the IoU requirement significantly increases the models ability to correctly
detect pedestrians.

In figure 4.2 and 4.4 we can see that decreasing IoU from 70 to 50 boosts
recall and validation ?? for car slightly, while for pedestrian and cyclist the im-
provements are significant as seen in figure 4.1 4.3. Again, part of the reason why
decreasing IoU requirement from 70 to 50 works better for smaller objects like
pedestrians and cyclists is because of the angular resolution of the LiDAR sensor.
This indicates that in order to rely on point cloud data in autonomous settings,
higher resolution LiDAR sensors are preferred to make sure smaller objects are
identified correctly with high confidence.

For the precision and recall curves at the different confidence values 10, 50
and 95 in figure 4.12 and 4.14, we can see that the precision increases with higher
confidence levels, while recall decreases with higher confidence levels. This is to be
expected as the model is more precise at higher confidence levels, while creating
lots of lower quality guesses at lower confidence. Finding the correct confidence
level depends on the application context. In our case, if the model were to be
deployed in a real autonomous setting, we would rather like the model to be
overly cautious to prevent accidents, and thus setting a lower confidence level
would make the model recall more of the surrounding objects. On the other side,
we do not want the model to be too cautious either, because then the car would
simply brake unnecessarily all the time, also referred to as ghost braking. The
model is not actually deployed in this project, thus this problem of confidence
level tuning was not investigated further and remains as a future work task.

5.1.2 Visual results

The model predictions on the KITTI data are best for the car object when perform-
ing a visual inspection. Figure 4.17 and 4.21 shows some of the model predictions,
and we can see that the bounding boxes for pedestrian and cyclist have less IoU
overlap than for car. This is not the case for all the predictions, but after inspec-
tion of more than 100 examples it seems to be the trend. This is expected after
looking at the precision, recall and validation mAP in the previous section. One
could assume that part of the reason why cyclists and pedestrians are harder to
predict good bounding boxes for, is because there are more degrees of freedom.
Cars are mostly static shapes where the wheels are the only part that can rotate
in a different direction to the chassis. For humans and cyclists there are arms,
legs and heads that have large range of motion in different directions, making it
difficult to encapsulate the bounding box edges and the orientation of the object.
The other explanation and perhaps the larger reason why cars perform so much
better is because of the large skew in number of objects as mentioned in section

Chapter 5: Discussion 51

5.1.1. One interesting detail in figure 4.18, which shows the BEV view of the car
scene, is that the car that had the largest IoU miss is the one car furthest to the
left, where part of the car is cut of by the RGB image FoV. We can see that the
model misses on truncation, making the car prediction bounding box extend fur-
ther than the ground truth. This is an indication that 2D frustum masking might
have a flaw, as some parts of the objects get cut out of the frustum if the object
elongates out of frame. This flaw is mostly occurring in the KITTI dataset because
the RGB image does not stretch a full 360 degrees like the LiDAR sensor does.
This is an advantage with the Ouster sensor, which will be discussed later.

5.2 Thesis research questions

This section discusses the main findings related to the research questions of this
thesis.

5.2.1 Research question 0: Reproducibility

Setup and equipment

The authors used Ubuntu version 18.04 with Python version 3.6, PyTorch version
1.4 and unspecified CUDA version. The documentation of working versions is very
inadequate and led to lots of time used for debugging and version controlling. As
the visualisation tool in the repository did not work, KITTI-VIS was downloaded
and used to visualize point clouds with objects. This visualisation tool was also
poorly documented and contained some bugs, however it worked at last. Better
documentation and testing would make the reproducibility significantly easier
even though it was manageable to make it work nonetheless.

Results and visualisation

After finally getting the model to train properly, Weights and Biases was used to
track the training parameters of the model to ensure that everything was running
smooth. By implementing Weights and Biases, live tracking of model training runs
was possible in a structured way. After successfully training a model, the KITTI-
VIS tool was crucial for visualizing the point cloud with the predictions and the
corresponding ground truth labels.

Conclusion

As discussed in section 5.1.1, my results are matching or exceeding the results
stated by the authors of the Frustum-PointPillars model, and thus the reproducib-
ility of the results are approved. The model is also correctly predicting the bound-
ing boxes for multiple object classes as seen in the visual inspection performed
in section 5.1.2 utilizing the "KITTI-VIS" tool. Overall, even though the reposit-
ory contained some bugs and needed implementation of tools like WandB and

52 VJN: LiDAR point cloud 3D-detection

KITTI-VIS to inspect the results, the reproducibility is acceptable if one navigates
through bugs and has a compatible setup.

5.2.2 Research question 1: Performance on Ouster data

Modification

The modification of the pipeline is running without any errors and produces out-
put in the correct format. The modification allows the model to do predictions
on Ouster data with 360 degree view of the surrounding scene. The advantage
of using this Ouster sensor data is that the entire scene is mapped with one to
one correspondence between range signals and other signals, meaning that a pre-
processing step is removed from the pipeline, probably allowing for faster run-
time. The pre-processing time savings is unfortunately neglected by the increased
number of points to be predicted, as a 360 degree FoV contains more objects and
thus more data to compute. The end result is computation of a larger scene with
slightly slower inference time. If the scene were to be adjusted to the same FoV
as the KITTI data, the pre-processing time would decrease and thus speed up the
overall pipeline.

Performance

The model does correctly predict the height (z-axis) of the objects in the Ouster
example, as seen in figure 4.25. It misses on x, y and orientation of the objects,
which is shown in figure 4.26. The model has not been trained on Ouster sensor
data, which probably is the reason why it performs subpar in this example. The
confidence of the predictions are 15% and below, indicating that the model is
uncertain of the structure in the different objects point clusters. Another factor as
to why the model has low confidence might be because the reflection intensity of
the points in the point clouds are not matching properly to the KITTI point clouds.
This is because different sensors have different settings and hardware, resulting
in variance in reflectance between point clouds of the same scene. Also, different
angular resolution could be a factor as the clustering of points will be different.

5.2.3 Conclusion

The modified pipeline for predicting Ouster sensor data is working, and the model
does correctly predict the height of the objects in the scene. However, due to differ-
ence in sensor hardware, the model needs fine-tuning on annotated Ouster data
in order to correctly predict x, y and orientation of the objects in the scene

Chapter 5: Discussion 53

5.2.4 Research question 2: Feasibility of multi stage model

Real-time compute

The pipeline was described in detail in section 3.3.2. Because the pipeline takes
both 2D and 3D input, it creates a lot of potential processing bottlenecks. The au-
thors of the Frustum-PointPillars model claimed a total of 14.6Hz or 70ms in com-
putation time per example. Those 70ms consists of around 10ms pre-processing,
18ms masking with frustums, 12.5ms forward pass and 29ms post-processing
time. My model does not achieve quite the same run-time performance as the
authors claim, with around 100ms or 10Hz total compute time. It can be many
reasons as to why my model runs a little bit slower, including different CPU, GPU,
package versions, OS version etc. 100ms is still considered real-time, and seems
even faster taking into account that human reaction time to visual input is around
250ms. It is also worth noting that if such a model were to be deployed, further op-
timizations for compute time could be implemented. For example by performing
pre-processing and masking on GPU instead of CPU, the run-time could be further
improved. Also, increasing compute power by upgrading the components or even
creating a dedicated setup would drastically improve the pipeline efficiency.

Part of a larger architecture

Even though the results are decent and the computational time is sufficient for
real-time deployment, it would require a lot of work to deploy such a model into
a car to make it safe enough for autonomous driving. Many of the largest auto-
makers in the world, including Volkswagen Group, Tesla, BYD, Nissan and BMW,
are working on such solution as the total addressable market is enormous. The
fact that none of these car manufacturers have made a working solution that is
ready for real world deployment without supervision indicates that the task of
achieving autonomous driving is rather large. Object detection is just a small part
of a larger architecture that is needed to sense, interpret and act in a real world
environment with human agents.

Conclusion

Assuming that the supportive components mentioned in the previous section are
working, a multi-stage frustum based network has the potential of being feas-
ible for autonomous driving in the future. Frustum PointPillars offers the crucial
real-time object detection capability that autonomous technology relies upon, and
by further refurbishing the deployment pipeline as discussed, such a system can
exceed human ability when it comes to driving.

54 VJN: LiDAR point cloud 3D-detection

5.3 Sources of error

In this section, sources of error related to the model, the pipeline and other cat-
egories will be discussed, and suggestions for improvement will be mentioned.

5.3.1 Model and pipeline errors

In section 5.1.1 we discussed that pedestrian results did not match the authors
pedestrian results, and would probably improve by increasing the number of epochs
during training. To combat this issue, learning rate could possibly be increased
while doing the same number of epochs to reduce training time and maybe in-
crease model performance. However, it is not given that increasing learning rate
will give better results, as larger gradients can often make the training process
unstable and produce errors that are hard to predict.

One underlying issue is that the model does not predict all object classes at
the same time, meaning that separate models need to be trained for each group
of object classes, which obviously is not computationally efficient for both train-
ing, storage and inference. This is because when multiple models are trained, it
takes more compute given that the neural net architecture remains the same, and
duplicate neural net architectures are stored, taking up more storage space. This
also effects pipeline decisions, as the models need to concatenate the predictions
for each scene. The model performs poorly when trained for predicting more than
two objects at the same time, more specifically, when the object classes are dis-
similar in size distributions. For example, when the model is trained for cars and
pedestrians, it performs worse than when trained for pedestrians and cyclists. The
point at issue is the way the model does anchoring to reduce the bounding box
search space. The anchoring size range for cars is larger than the anchoring size
range for pedestrians, meaning that the total anchoring range when combining
the two objects are increased. This may make the model struggle to find good
bounding box predictions early on in the training phase, which makes the process
take longer time. It may also decrease the total performance on each object as a
result. If the anchoring ranges were made dynamically based on the size of the
object to be predicted, this problem might be solved or at least reduced.

5.3.2 Sensor errors

One of the main drawbacks of the KITTI dataset is that the FoV of the velodyne
LiDAR sensor and the camera sensor does not overlap in the majority of the cap-
tured scenes. This leads to problems like truncation and unseen objects based on
frustum masking. By implementing the Ouster LiDAR sensor into the pipeline, a
360 degree common FoV is available, and thus the entire scene around the car is
captured and predicted. The problem is that for this project, a lack of annotated
Ouster data causes the model to do bad predictions. If there was more time and
higher quality annotation tools available, this task would be more reasonable to
complete for a project of this size.

Chapter 5: Discussion 55

Another inherent flaw with the sensors is the discretization of continuous real-
world data, which leads to simplifications and reduction in information captured.
For the camera sensor, the resolution is below 1 megapixel. This causes objects
at distance to be significantly noisy with low pixel resolution. By feeding the
model higher resolution images from a higher resolution camera, object detec-
tion at farther ranges would be possible. For the LiDAR sensor, the resolution is
mainly held back by the angle between each LiDAR beam, which significantly
degrades the granularity at range. By using a LiDAR sensor which has a smaller
angle between capture beams, the angular resolution would improve and perhaps
better performance could be achieved. It is also worth discussing that improving
resolution of sensors does have its drawbacks also. Higher resolution means more
data and thus more computation needed to extract relevant information. This is a
balancing problem where one needs to find the sufficient resolution for the given
task to optimize for compute efficiency and data quality.

5.3.3 Other errors

The sources of error mentioned in the subsections above talks about known prob-
lems. In such a technical project with a large code-base it is possible to have
undetected bugs which cause poorer performance without explicitly deteriorat-
ing the results. Especially with the Ouster data, there can be bugs that cause the
model to do poor prediction. This is one of the problems with neural networks, as
the debugging process can be laborious because of the black box properties of AI.

Another possible weakness of the project is the usage of road data captured
from the road and not from different perspectives. By not including data from
multiple perspectives, some bias towards the view of the car can be introduced in
the model. For example using data captured from security cameras would create a
higher diversity of angles and object rotations. Another possibility to combat uni-
form data would be to create augmentations of the dataset by stretching, flipping,
cropping and copy-pasting objects and scenes. Simulations could also improve
upon this.

As the dataset was created externally, we do not have the capacity to valid-
ate the labeling process and inspect all ground truth bounding boxes. There is a
possibility that there are errors in the ground truths or small variance in labeling
technique. For example, some of the people labeling the data are not labeling ob-
jects at certain distances, while others do. Some bounding boxes might be larger,
and others might be smaller. This causes a element of uncertainty which is hard
to account for with limited time resources.

Chapter 6

Conclusion and Future Work

6.1 Conclusion

In this thesis research has been conducted on object detection in 3D space using 3-
channel images and LiDAR data. There were 3 main goals of the work; reproduce
a state of the art 3D detection model, make it run in real-time and adapt the model
for 3-channel LiDAR images using Ouster LiDAR sensor data. A literature review
was conducted early in the project in order to understand the current state of the
art. The decision of selecting a model was tough as there are hundreds of different
models with their own advantages and disadvantages, but in the end Frustum-
PointPillars was chosen because of the combination of good performance, fast
run-time and dual sensor input option. The model was modified to fit a 360 degree
Ouster LiDAR scanner which captures one to one image pixel coordinates between
the 3-channel LiDAR images and LiDAR point cloud images.

The model was trained using the KITTI dataset for 3D object detection with
a RTX 8000 GPU. With the aim of validating the reproducibility and performance
of the model and adapting it for Ouster data, different tools were adjusted and
used. Weights and Biases was used to visualize the benchmarks of the training ses-
sions real-time. The Ouster Python SDK was used to extract and pre-process the
Ouster point clouds and the corresponding signal, reflectance and near-infrared
data. Then the KITTI-VIS tool was adapted to show the point clouds with the cor-
responding model predictions for both KITTI data and Ouster data. No free tools
for labeling 2D and 3D data was found, so the Ouster testing data was manually
annotated through editing text file metadata and visualizing in KITTI-VIS.

Overall, the results in this thesis matched the results stated by the authors of
the Frustum-PointPillars model. My model performed better on car and cyclist,
but worse on pedestrians. For the Ouster data, the results were poor due to lack
of annotated data for fine-tuning. The learning outcome of the thesis is invalu-
able, greatly enhancing knowledge in conducting state of the art research, 3D
object detection, LiDAR data processing and a deeper understanding of the state
of autonomous vehicles.

57

58 VJN: LiDAR point cloud 3D-detection

6.2 Future work

As mentioned in chapter 3, there is a significant skew in amount of objects in
the dataset. To make the model perform more equally on all objects, a possible
solution would be to increase the amount of pedestrian and cyclist objects in the
dataset. However, since it is hard to capture and annotate 3D data at large scale,
the feasibility of this proposal is low. Not to mention that when capturing road data
while driving, it is reasonable to assume that most of the objects encountered will
be cars. Creating such a large dataset could improve the model performance, but
the feasibility is not great.

The model does not perform well on Ouster data as a result of no available
labeled training data of this sort. In order to make the model perform better on
the Ouster data, a dataset needs to be annotated and the training pipeline needs
to be adjusted for the sensor calibration from the Ouster LiDAR sensor. This data-
set should contain 3-channel LiDAR images with channels consisting of signal,
reflectivity and near-infrared, combined with a corresponding LiDAR point cloud.

The current implementation of the model does not support prediction of more
than 2 object classes at the same time, like discussed in section 5.3. This is because
of the inherent difference in size of the objects. By creating a dynamic way of
anchoring and specifying object size, more object classes could be predicted with
the same model and thus reduce compute.

The confidence level of the model was set to 0.8 after some visual inspec-
tion, however this confidence threshold should be further analyzed in order to
find an optimal threshold for an autonomous setting. A more optimal confidence
threshold could be found by analyzing precision and recall curves at a continuous
confidence spectrum, and consequently improve the results in light of autonom-
ous driving in a real world setting.

Bibliography

[1] J. R. Treat, N. S. Tumbas, S. T. McDonald, D. Shinar, R. D. Hume, R. E.
Mayer, R. L. Stansifer and N. J. Castellan, ‘Tri-level study of the causes of
traffic accidents: Final report. Executive summary.,’ English, Indiana Uni-
versity, Bloomington, Institute for Research in Public Safety, Technical Re-
port, May 1979, Accepted: 2010-02-10T14:14:22Z. [Online]. Available:
http://deepblue.lib.umich.edu/handle/2027.42/64993 (visited on
16/01/2023).

[2] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser and I. Polosukhin, Attention Is All You Need, arXiv:1706.03762
[cs], Dec. 2017. DOI: 10.48550/arXiv.1706.03762. [Online]. Available:
http://arxiv.org/abs/1706.03762 (visited on 02/12/2022).

[3] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Un-
terthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly, J. Uszkoreit and
N. Houlsby, An Image is Worth 16x16 Words: Transformers for Image Re-
cognition at Scale, arXiv:2010.11929 [cs], Jun. 2021. [Online]. Available:
http://arxiv.org/abs/2010.11929 (visited on 30/01/2023).

[4] T. B. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal, A.
Neelakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss,
G. Krueger, T. Henighan, R. Child, A. Ramesh, D. M. Ziegler, J. Wu, C.
Winter, C. Hesse, M. Chen, E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark,
C. Berner, S. McCandlish, A. Radford, I. Sutskever and D. Amodei, Lan-
guage Models are Few-Shot Learners, arXiv:2005.14165 [cs], Jul. 2020. DOI:
10.48550/arXiv.2005.14165. [Online]. Available: http://arxiv.org/
abs/2005.14165 (visited on 03/12/2022).

[5] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. d. O. Pinto, J. Kaplan, H. Ed-
wards, Y. Burda, N. Joseph, G. Brockman, A. Ray, R. Puri, G. Krueger, M.
Petrov, H. Khlaaf, G. Sastry, P. Mishkin, B. Chan, S. Gray, N. Ryder, M.
Pavlov, A. Power, L. Kaiser, M. Bavarian, C. Winter, P. Tillet, F. P. Such, D.
Cummings, M. Plappert, F. Chantzis, E. Barnes, A. Herbert-Voss, W. H. Guss,
A. Nichol, A. Paino, N. Tezak, J. Tang, I. Babuschkin, S. Balaji, S. Jain, W.
Saunders, C. Hesse, A. N. Carr, J. Leike, J. Achiam, V. Misra, E. Morikawa,
A. Radford, M. Knight, M. Brundage, M. Murati, K. Mayer, P. Welinder, B.
McGrew, D. Amodei, S. McCandlish, I. Sutskever and W. Zaremba, Evalu-

59

http://deepblue.lib.umich.edu/handle/2027.42/64993
https://doi.org/10.48550/arXiv.1706.03762
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/2010.11929
https://doi.org/10.48550/arXiv.2005.14165
http://arxiv.org/abs/2005.14165
http://arxiv.org/abs/2005.14165

60 VJN: LiDAR point cloud 3D-detection

ating Large Language Models Trained on Code, arXiv:2107.03374 [cs], Jul.
2021. DOI: 10.48550/arXiv.2107.03374. [Online]. Available: http://
arxiv.org/abs/2107.03374 (visited on 03/12/2022).

[6] D. Fernandes, A. Silva, R. Nevoa, C. Simoes, D. Gonzalez, M. Guevara,
P. Novais, J. L. Monteiro and P. Melo-Pinto, ‘Point-cloud based 3D object
detection and classification methods for self-driving applications: A sur-
vey and taxonomy,’ eng, Apr. 2021, Accepted: 2022-05-30T11:29:06Z Pub-
lisher: Elsevier, ISSN: 1566-2535. DOI: 10.1016/j.inffus.2020.11.002.
[Online]. Available: http://repositorium.sdum.uminho.pt/ (visited on
24/01/2023).

[7] A. Mousavian, D. Anguelov, J. Flynn and J. Kosecka, 3D Bounding Box Es-
timation Using Deep Learning and Geometry, arXiv:1612.00496 [cs], Apr.
2017. DOI: 10.48550/arXiv.1612.00496. [Online]. Available: http://
arxiv.org/abs/1612.00496 (visited on 23/01/2023).

[8] B. Li, W. Ouyang, L. Sheng, X. Zeng and X. Wang, GS3D: An Efficient 3D Ob-
ject Detection Framework for Autonomous Driving, arXiv:1903.10955 [cs],
Mar. 2019. DOI: 10.48550/arXiv.1903.10955. [Online]. Available: http:
//arxiv.org/abs/1903.10955 (visited on 23/01/2023).

[9] R. Mottaghi, Y. Xiang and S. Savarese, A Coarse-to-Fine Model for 3D Pose
Estimation and Sub-category Recognition, arXiv:1504.02764 [cs], Apr. 2015.
DOI: 10.48550/arXiv.1504.02764. [Online]. Available: http://arxiv.
org/abs/1504.02764 (visited on 23/01/2023).

[10] M. Zhu, K. G. Derpanis, Y. Yang, S. Brahmbhatt, M. Zhang, C. Phillips, M.
Lecce and K. Daniilidis, ‘Single image 3D object detection and pose es-
timation for grasping,’ in 2014 IEEE International Conference on Robotics
and Automation (ICRA), ISSN: 1050-4729, May 2014, pp. 3936–3943. DOI:
10.1109/ICRA.2014.6907430.

[11] P. Li, X. Chen and S. Shen, Stereo R-CNN based 3D Object Detection for
Autonomous Driving, arXiv:1902.09738 [cs], Apr. 2019. DOI: 10.48550/
arXiv.1902.09738. [Online]. Available: http://arxiv.org/abs/1902.
09738 (visited on 23/01/2023).

[12] Y. Wang, W.-L. Chao, D. Garg, B. Hariharan, M. Campbell and K. Q. Wein-
berger, Pseudo-LiDAR from Visual Depth Estimation: Bridging the Gap in 3D
Object Detection for Autonomous Driving, arXiv:1812.07179 [cs], Feb. 2020.
DOI: 10.48550/arXiv.1812.07179. [Online]. Available: http://arxiv.
org/abs/1812.07179 (visited on 23/01/2023).

[13] X. Chen, H. Ma, J. Wan, B. Li and T. Xia, Multi-View 3D Object Detection
Network for Autonomous Driving, arXiv:1611.07759 [cs], Jun. 2017. DOI:
10.48550/arXiv.1611.07759. [Online]. Available: http://arxiv.org/
abs/1611.07759 (visited on 27/01/2023).

https://doi.org/10.48550/arXiv.2107.03374
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
https://doi.org/10.1016/j.inffus.2020.11.002
http://repositorium.sdum.uminho.pt/
https://doi.org/10.48550/arXiv.1612.00496
http://arxiv.org/abs/1612.00496
http://arxiv.org/abs/1612.00496
https://doi.org/10.48550/arXiv.1903.10955
http://arxiv.org/abs/1903.10955
http://arxiv.org/abs/1903.10955
https://doi.org/10.48550/arXiv.1504.02764
http://arxiv.org/abs/1504.02764
http://arxiv.org/abs/1504.02764
https://doi.org/10.1109/ICRA.2014.6907430
https://doi.org/10.48550/arXiv.1902.09738
https://doi.org/10.48550/arXiv.1902.09738
http://arxiv.org/abs/1902.09738
http://arxiv.org/abs/1902.09738
https://doi.org/10.48550/arXiv.1812.07179
http://arxiv.org/abs/1812.07179
http://arxiv.org/abs/1812.07179
https://doi.org/10.48550/arXiv.1611.07759
http://arxiv.org/abs/1611.07759
http://arxiv.org/abs/1611.07759

Bibliography 61

[14] J. Ku, M. Mozifian, J. Lee, A. Harakeh and S. Waslander, Joint 3D Proposal
Generation and Object Detection from View Aggregation, arXiv:1712.02294
[cs], Jul. 2018. DOI: 10.48550/arXiv.1712.02294. [Online]. Available:
http://arxiv.org/abs/1712.02294 (visited on 27/01/2023).

[15] B. Yang, M. Liang and R. Urtasun, HDNET: Exploiting HD Maps for 3D Object
Detection, arXiv:2012.11704 [cs], Dec. 2020. DOI: 10.48550/arXiv.2012.
11704. [Online]. Available: http://arxiv.org/abs/2012.11704 (visited
on 27/01/2023).

[16] T. Yin, X. Zhou and P. Krähenbühl, Center-based 3D Object Detection and
Tracking, arXiv:2006.11275 [cs], Jan. 2021. DOI: 10.48550/arXiv.2006.
11275. [Online]. Available: http://arxiv.org/abs/2006.11275 (visited
on 19/01/2023).

[17] C. R. Qi, H. Su, K. Mo and L. J. Guibas, PointNet: Deep Learning on Point Sets
for 3D Classification and Segmentation, arXiv:1612.00593 [cs], Apr. 2017.
DOI: 10.48550/arXiv.1612.00593. [Online]. Available: http://arxiv.
org/abs/1612.00593 (visited on 27/01/2023).

[18] C. R. Qi, L. Yi, H. Su and L. J. Guibas, PointNet++: Deep Hierarchical Feature
Learning on Point Sets in a Metric Space, arXiv:1706.02413 [cs], Jun. 2017.
DOI: 10.48550/arXiv.1706.02413. [Online]. Available: http://arxiv.
org/abs/1706.02413 (visited on 27/01/2023).

[19] Y. Zhou and O. Tuzel, VoxelNet: End-to-End Learning for Point Cloud Based
3D Object Detection, arXiv:1711.06396 [cs], Nov. 2017. DOI: 10.48550/
arXiv.1711.06396. [Online]. Available: http://arxiv.org/abs/1711.
06396 (visited on 06/12/2022).

[20] C. R. Qi, W. Liu, C. Wu, H. Su and L. J. Guibas, Frustum PointNets for 3D
Object Detection from RGB-D Data, arXiv:1711.08488 [cs], Apr. 2018. DOI:
10.48550/arXiv.1711.08488. [Online]. Available: http://arxiv.org/
abs/1711.08488 (visited on 30/01/2023).

[21] A. H. Lang, S. Vora, H. Caesar, L. Zhou, J. Yang and O. Beijbom, PointPillars:
Fast Encoders for Object Detection from Point Clouds, arXiv:1812.05784 [cs,
stat], May 2019. [Online]. Available: http://arxiv.org/abs/1812.05784
(visited on 30/01/2023).

[22] J. Stanisz, K. Lis, T. Kryjak and M. Gorgon, ‘Optimisation of the PointPil-
lars network for 3D object detection in point clouds,’ in 2020 Signal Pro-
cessing: Algorithms, Architectures, Arrangements, and Applications (SPA),
arXiv:2007.00493 [cs, eess], Sep. 2020, pp. 122–127. DOI: 10 . 23919 /
SPA50552.2020.9241265. [Online]. Available: http://arxiv.org/abs/
2007.00493 (visited on 30/01/2023).

https://doi.org/10.48550/arXiv.1712.02294
http://arxiv.org/abs/1712.02294
https://doi.org/10.48550/arXiv.2012.11704
https://doi.org/10.48550/arXiv.2012.11704
http://arxiv.org/abs/2012.11704
https://doi.org/10.48550/arXiv.2006.11275
https://doi.org/10.48550/arXiv.2006.11275
http://arxiv.org/abs/2006.11275
https://doi.org/10.48550/arXiv.1612.00593
http://arxiv.org/abs/1612.00593
http://arxiv.org/abs/1612.00593
https://doi.org/10.48550/arXiv.1706.02413
http://arxiv.org/abs/1706.02413
http://arxiv.org/abs/1706.02413
https://doi.org/10.48550/arXiv.1711.06396
https://doi.org/10.48550/arXiv.1711.06396
http://arxiv.org/abs/1711.06396
http://arxiv.org/abs/1711.06396
https://doi.org/10.48550/arXiv.1711.08488
http://arxiv.org/abs/1711.08488
http://arxiv.org/abs/1711.08488
http://arxiv.org/abs/1812.05784
https://doi.org/10.23919/SPA50552.2020.9241265
https://doi.org/10.23919/SPA50552.2020.9241265
http://arxiv.org/abs/2007.00493
http://arxiv.org/abs/2007.00493

62 VJN: LiDAR point cloud 3D-detection

[23] A. Geiger, P. Lenz and R. Urtasun, ‘Are we ready for autonomous driv-
ing? The KITTI vision benchmark suite,’ en, in 2012 IEEE Conference on
Computer Vision and Pattern Recognition, Providence, RI: IEEE, Jun. 2012,
pp. 3354–3361, ISBN: 978-1-4673-1228-8 978-1-4673-1226-4 978-1-4673-
1227-1. DOI: 10.1109/CVPR.2012.6248074. [Online]. Available: http:
//ieeexplore.ieee.org/document/6248074/ (visited on 14/03/2023).

https://doi.org/10.1109/CVPR.2012.6248074
http://ieeexplore.ieee.org/document/6248074/
http://ieeexplore.ieee.org/document/6248074/

	Abstract
	Sammendrag
	Preface
	Contents
	Figures
	Tables
	Acronyms
	Introduction
	Motivation
	Goal and Research Questions
	Research method
	Contributions

	Background and Related Work
	LiDAR
	Deep learning
	Perceptron
	Neural network
	Forward Pass, Backpropagation and Activation Functions

	Computer Vision
	Object detection
	Evaluation metrics

	Transformers
	Architecture
	Attention
	Vision Transformers

	Recent advances in 3D Object Detection
	Different approaches to 3D object detection
	Data representation and extraction of point clouds

	Method
	Hardware
	Datasets
	KITTI-360
	Ouster data
	Setup
	Calibration

	Frustum-PointPillar
	Tuning
	Pipeline

	KITTI visualization

	Experiments and Results
	Frustum-PointPillar results
	Precision and recall vs validation
	Train loss vs validation accuracy
	3D, BEV and AOS moderate validation
	Precision and recall @ 10, 50, 95

	Author results vs my results
	Visualisation of predictions
	Car visualisation
	Pedestrian and cyclist visualisation
	Prediction on Ouster data

	Discussion
	Model performance
	Metric performance on KITTI data
	Visual results

	Thesis research questions
	Research question 0: Reproducibility
	Research question 1: Performance on Ouster data
	Conclusion
	Research question 2: Feasibility of multi stage model

	Sources of error
	Model and pipeline errors
	Sensor errors
	Other errors

	Conclusion and Future Work
	Conclusion
	Future work

	Bibliography

