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ABSTRACT Combining and comparing microbiome data from distinct infant cohorts 
has been challenging because such data are inherently multidimensional and com
plex. Here, we used an ensemble of machine-learning (ML) models and studied 16S 
rRNA amplicon sequencing data from 4,099 gut microbiome samples representing 12 
prospectively collected infant cohorts. We chose the childbirth delivery mode as a 
starting point for such analysis because it has previously been associated with alterations 
in the gut microbiome in infants. In cross-study ensemble models, Bacteroides was 
the most important feature in all machine-learning models. The predictive capacity by 
taxonomy varied with age. At the age of 1–2 months, gut microbiome data were able 
to predict delivery mode with an area under the curve of 0.72 to 0.83. In contrast, ML 
models trained on taxa were not able to differentiate between the modes of delivery, in 
any of the cohorts, when the infants were between 3 and 12 months of age. Moreover, 
no ML model, alternately trained on the functional pathways of the infant gut micro
biome, could consistently predict mode of delivery at any infant age. This study shows 
that infant gut microbiome data sets can be effectively combined with the application of 
ML analysis across different study populations.

IMPORTANCE There are challenges in merging microbiome data from diverse research 
groups due to the intricate and multifaceted nature of such data. To address this, we 
utilized a combination of machine-learning (ML) models to analyze 16S sequencing 
data from a substantial set of gut microbiome samples, sourced from 12 distinct infant 
cohorts that were gathered prospectively. Our initial focus was on the mode of delivery 
due to its prior association with changes in infant gut microbiomes. Through ML analysis, 
we demonstrated the effective merging and comparison of various gut microbiome data 
sets, facilitating the identification of robust microbiome biomarkers applicable across 
varied study populations.

KEYWORDS machine learning, bioinformatics, human microbiome, gut microbiome, 
random forest, infant, children, cross-study, ensemble

I t has been suggested that childbirth delivery mode, Caesarean delivery, is associated 
with varying degrees of greater risk of non-communicable diseases later in life, notably 

asthma (1, 2), food allergies (3, 4), obesity (5), and diabetes (6) among offspring even 
though studies with high-quality designs have not given consistent results regarding 
these associations (7). In most studies, but not all, Caesarean delivery has been associ
ated with an altered gut microbiome composition for neonates or infants (8) principally 
relatively lower abundances of Escherichia-Shigella (9) and Parabacteroides (10) and 
delayed colonization with Bacteroides (9–14) and Bifidobacterium (10, 14, 15) with a 
contrasting relative enrichment in Clostridium (10, 11)
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Most gut microbiome studies have used sequencing data of the bacterial 16S 
rRNA gene or less often whole-genome bacterial sequencing. As microbiome data are 
multidimensional and noisy, it is difficult to combine data from two or more populations 
for traditional statistical testing of a hypothesis (16). It has been suggested that machine 
learning (ML) models may help to overcome this limitation (17–19) because the model 
can train on specific data set and then be used on further data set, and its efficiency 
validated. To date, there have been a limited number of studies combining or comparing 
gut microbiome data from several available prospective cohort studies in neonates, 
infants, or children using the ML approach, such as random forest (17–20), support vector 
machine (17, 18), elastic net (17, 18), and gradient-boosted machine algorithms (18).

Here, we use an ensemble of ML models, including random forest (21) (RF), extremely 
randomized trees (22) (EXTRA), light gradient-boosting machine (23) (LGBM), and 
multilayer perceptron (MLP) predictive models across 12 prospective pediatric cohorts 
with gut microbiome data originating from 6 different countries. To evaluate the 
usefulness of ML algorithms in combining and comparing microbiome data across 
different cohort studies, we compared the association of delivery mode with gut 
microbiome composition in the cohorts.

MATERIALS AND METHODS

Literature search and data set recruitment

A systematic literature review was conducted in the Web of Science, Scopus, PubMed, 
and Google Scholar databases up to January 2020. Additionally, the clinicaltrials.gov 
website was searched for suitable studies (Fig. 1). We used the following terms to search 
through the titles, abstracts, and keywords of the literature in our set of materials: (infant 
AND cohort AND microbiome AND 16S) AND (fecal OR stool OR gut). Our inclusion 
criteria for data sets were that the studies should have more than 50 infant fecal 
samples with 16S microbiome data available from the first 12 months of life, with defined 
sampling times. Birth cohorts containing only preterm infants were excluded. The data 
set correspondents were invited to participate in this multicohort collaboration.

All the institutions’ original data sets and protocols were approved by their institu
tional review boards and ethical committees, and all families of the infants provided 
their written informed consent. Only 16S rRNA amplicon sequence data and data on the 
delivery mode and breastfeeding were used here, and no individual personal data were 
transferred or used.

FIG 1 Flowchart of the literature search.

Research Article mSystems

Month XXXX  Volume 0  Issue 0 10.1128/msystems.00364-23 2

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

sy
st

em
s 

on
 2

9 
N

ov
em

be
r 

20
23

 b
y 

84
.2

10
.2

08
.9

1.

https://doi.org/10.1128/msystems.00364-23


After contacting 24 research groups, 12 of these groups participated and provided 
access to 16S rRNA amplicon sequence data sets of fecal samples, along with data on 
the mode of delivery (Table 1). Microbiome development causes large shifts over time 
in the gut microbiome of infants in the first year of life (24, 25). As such, we analyzed 
data sets in three age groups: 1–2 months, 3–6 months, and 9–12 months. Seven infant 
cohorts had fecal samples available 1–2 months after birth, four cohorts had samples 3–6 
months after birth, and eight had samples 9–12 months after birth. Altogether, we had 
16S rRNA amplicon sequencing data available for 4,099 fecal samples, or 3,595 samples, 
after pre-processing and quality filtering. There were 1,457 samples collected at 1–2 
months of age, of which 440 were from infants delivered by Caesarean and 1,017 were 
from infants delivered vaginally (Table 1). At 3–6 months of age, we had 473 samples, 
comprising 201 from infants delivered by Caesarean and 272 samples from vaginally 
delivered infants. At 9–12 months of age, we had 1,665 samples, of which 363 were from 
infants delivered by Caesarean and 1,302 were from infants delivered vaginally.

Sequence pre-processing

Before the data were analyzed using ML methods, each data set was prepared, quality 
filtered using similar methods, transformed into relative abundance information for 
each bacterial taxon or metabolic pathway in each sample, and presented in feature 
tables. The pre-processing pipeline is shown in Fig. 2. The sequences were downloaded 
from their repositories or acquired directly from the corresponding researchers (Table 1) 
before being imported into the Qiime2 (37) (version 2021.11) microbiome bioinformatics 
platform using the q2-tools module. The primer sequences were removed from each 
data set using the q2-cutadapt tool, and the open-source software package DADA2 
(38) was used to de-noise the sequences into amplicon sequence variants (ASVs) using 
the q2-dada2 module, where the trunc-len parameter was set to zero. ASVs, found in 
fewer than 2 samples and in a total frequency of 10, were removed. Taxonomy was 
assigned using the SILVA (39) (version 138) database with a Naïve Bayes classifier. ASVs 

TABLE 1 Study cohort characteristics

Country of 
origin

Initial number of 
fecal samples

Available samples after 
pre-processing

Infants born via 
Caesarean delivery

Infants born via 
vaginal delivery

Mean age of infants 
(months)

Sampled at 1–2 months
  COPSAC (26) Denmark 505 303 72 231 1
  HOUSTONa(27) USA 52 48 11 37 1.5
  INFANTMET (28) Ireland 167 137 65 72 1
  JORVI (29) Finland 68 51 8 43 1
  NHBCS (30) USA 321 319 92 227 1.5
  NOMIC (31) Norway 485 485 159 326 1
  WHEALS (32) USA 130 114 33 81 1.2
Sampled at 3–6 months
  INFANTMET (28) Ireland 152 152 86 66 5.5
  JORVI (29) Finland 68 62 10 52 6
  MARC-43 (33) USA 115 115 43 72 3.4
  WHEALS (32) USA 167 144 62 82 6.6
Sampled at 9–12 months
  ABIS (34) Sweden 403 399 47 352 12
  COPSAC (26) Denmark 623 424 90 334 12
  JORVI (29) Finland 62 62 10 52 12
  NHBCS (30) USA 135 135 38 97 12
  NOMIC (31) Norway 340 340 103 237 12
  OULU (35) Finland 84 84 23 61 12
  SKOT1 (36) Denmark 115 115 16 99 9
  SKOT2 (36) Denmark 107 106 36 70 9
aPregnant women prospectively enrolled in the early third trimester.
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classified as mitochondria or chloroplasts were removed. The ASVs were collapsed to the 
taxonomic level of genera and transformed into relative abundances for downstream 
analyses. A predicted metabolic pathway composition was produced from the filtered 
ASV feature table using PICRUSt2 software (40). Additionally, a second set of data sets 
was generated with Greengenes (41) instead of SILVA for alternative ML model-building 
attempts. Each data set was pre-processed in the same way, except for the data from 
NOMIC, which were only available as a pre-processed ASV table with the taxonomic 
classification assigned with only Greengenes (41) database. A representative sequence 
file was prepared, and the data for pre-processing were input into the pre-processing 

FIG 2 Step-by-step flowchart of the pre-processing pipeline.
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pipeline as a taxonomic assignment step (Fig. 2), after which the protocol continued as 
for the other data sets.

Alpha and beta diversity of the microbiome between cohorts

Diversity indices were calculated from rarefied genera-collapsed feature tables to 
visualize cohort differences with the q2 diversity plugin. For each sampling interval, the 
rarefying depth was chosen with the following rules: (i) depth of 1,000 is the minimum 
and (ii) choose the next highest value without losing samples in the rarefying process. 
For the 1–2 months time period, the chosen depth was 1,027; for 3–6 months, it was 
1,116; and for 9–12 months, it was 1,009. Cohort and sample diversity were analyzed 
with Shannon diversity index and Bray–Curtis dissimilarity index for the alpha and beta 
diversity, respectively. The Bray–Curtis dissimilarity index was further analyzed with 
PCoA. The results were plotted with Matplotlib (42), and Kruskal–Wallis H-tests were 
conducted to examine the statistical differences between infants born via Caesarean 
delivery and those born via vaginal delivery. P-values were adjusted for multiple testing 
using the Benjamini–Hochberg procedure.

Machine-learning analyses

Before training an ML model, a set of settings, i.e., “hyperparameters,” needs to be 
defined, followed by a search for the optimal combination. These settings define the 
structure and behavior of the models, such as the depth of the decision trees or the 
number of layers in a neural network. A common way of tuning the hyperparameters 
is to use a nested cross-validation method, in which the hyperparameters are selected 
using the training fold with an additional cross-validation loop (43). Here, the ML models 
were trained, tested, and validated by means of a nested cross-validation scheme with 
40 repetitions. Each data set was first split in an outer cross-validation loop, where each 
fold, in turn, was used as the validation fold and the rest of the data were used in an 
inner cross-validation loop. The model building and parameter tuning took place only in 
the inner cross-validation loop. The performance of the final model was validated using 
the outer cross-validation folds and then averaged and recorded. Previous microbiome 
studies have chosen different k values for k-fold cross validation, such as 5 (44) or 10 (17, 
18) folds. Ten folds have been recommended for biomedical data with high dimensions 
(45). As such, to maximize number of samples used in model training, the number of 
folds was set to as close to 10 as possible. In both k-fold cross-validation loops, the 
number of folds was set at 10, except in the JORVI cohort (8 outer folds and 7 inner folds) 
and the HOUSTON cohort (10 outer folds and 9 inner folds) for fecal samples obtained at 
1–2 months of age and the JORVI cohort (10 outer folds and 9 inner folds) for samples 
obtained at 3–6 and 9–12 months of age, as there must be at least one of each class 
(Caesarean delivery and vaginal delivery) in the testing and validation folds to calculate 
the receiver operating characteristic (ROC) curve.

The feature importance of the models was estimated using the scikit-learn (46) 
function termed permutation importance. The scikit function takes in a trained model 
and testing data set where each feature is shuffled among all the samples in the testing 
data. Feature importance is defined by how much the prediction performance of the 
model is lowered following the shuffling as compared with a situation in which the 
feature is included in the model. In brief, a higher feature importance value indicates a 
greater importance of the feature to the model.

The ML classifier performances were estimated using the area under the curve 
(AUC) for the ROC and precision-recall (PR) curves. The model performance and feature 
importance values were averaged over 40 nested cross-validation loop repetitions.

Feeding mode analyses

To better understand our findings, we ran additional analyses on feeding mode in the 
cohorts for which we had feeding mode data available at the 1–2 months time point. 
With these post hoc analyses, we attempted to control for the confounding effect of 

Research Article mSystems

Month XXXX  Volume 0  Issue 0 10.1128/msystems.00364-23 5

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/m

sy
st

em
s 

on
 2

9 
N

ov
em

be
r 

20
23

 b
y 

84
.2

10
.2

08
.9

1.

https://doi.org/10.1128/msystems.00364-23


breastfeeding when predicting delivery mode. We produced additional analyses using 
the 1–2 months data sets from COPSAC, HOUSTON, INFANTMET, and JORVI, where 
infants fed only formula were removed.

We also employed the Fisher’s exact test to examine if Caesarean delivery or vaginally 
delivered groups had statistically more exclusively breastfed, partially breastfed, or 
formula-fed only infants in each cohort where breastfeeding data were available.

Machine-learning hyperparameter tuning

Since decision tree-based algorithms have performed well in previous microbiome 
studies (17, 18, 20, 47, 48) and because neural networks (47, 49) show great promise 
for the analysis of several microbiome-related problems, we chose three decision tree 
algorithms and one deep learning algorithm for use here: RF (21), EXTRA (22), MLP, and 
the LGBM (23). The hyperparameters were tuned in the inner cross-validation loop using 
the scikit-learn RandomizedSearchCV function in which the n_iter parameter was set 
at 40 iterations. RandomizedSearchCV was used to tune the hyperparameter efficiently 
without having to go through all possible hyperparameter iterations (50).

The hyperparameters tuned for the random forest and extremely randomized trees 
algorithms were max_depth, max_features, class_weight, and bootstrap, the last-men
tioned for random forest only. The hyperparameters searched for LGBM models were 
num_leaves, max_depth, n_estimators, reg_alpha, and learning_rate. The MLP models 
were trained using the “adam” solver in scikit-learn, the hyperparameters that were 
tuned being max_iter, alpha, learning_rate_init, and momentum. In the hyperparameter 
“hidden_layer_sizes,” the number of layers ranged from 1 to 3, with 10, 30, 50, or 100 
neurons in the first layer, while in the models with multiple layers, each subsequent 
layer had half the number of neurons than the previous layer. The MLP hyperparameters 
for parameter tuning were chosen based on previously published work (49). The exact 
hyperparameter values used for parameter tuning are shown in Table S1.

Cross-study machine learning using gut microbiome data

We then used a cross-study approach in which we aimed to test whether an ML model 
developed using certain given data sets is generalizable to other data sets with regard 
to the mode of delivery as an explanatory variable for gut microbiome composition. 
In addition, the mode of delivery was predicted in a cross-study manner so that each 
cohort’s outer cross-validation samples were predicted using best-performing models 
for all the other cohorts. These models were collected into an ensemble classifier in 
which the delivery mode of a given validation sample was predicted based on the 
averaged prediction of the best models for all the other cohorts. In this way, the same 
testing samples can be used for both the within-study and cross-study methods, and the 
performances are more readily comparable.

PipelineSearch and control augmenting methods

There are countless combinations and ways in which to build ML models, and these 
can produce different results. Similarly, there are several options for each preprocessing 
step when handling 16S sequencing samples that affect downstream analyses, such as 
which software, taxonomic database, or collapsing level to choose (51, 52). Therefore, 
we developed “PipelineSearch” as a novel method to automate those choices. Instead of 
the researcher choosing which taxonomic database to use, such as SILVA or Greengenes, 
PipelineSearch they are chosen at the same time as hyperparameters in ML parame
ter tuning. During hyperparameter tuning, the models could select which taxonomic 
database was used in preprocessing, Greengenes or SILVA. Similarly, PipelineSearch 
could select between feature table types, predicted metabolic pathways or genera 
collapsed data.

We also used an approach referred to as control augmenting (20), in which additional 
control samples from outside data sets were added to the training data for the models. 
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Wirbel et al. (20) increased the number of control samples fivefold in each training fold. 
To achieve similar numbers, we considered COPSAC and INFANTMET the augmenting 
cohort, as they had the most control samples at their respective time points. We did 
not consider the NOMIC data set, as we had no control over its early pre-processing 
steps, and thus, in this approach, the additional control samples came from COPSAC (1–2 
months group), INFANTMET (3–6 months group), and COPSAC (6–9 months group) for 
their respective sampling time points. The COPSAC and INFANTMET cohorts were not 
used for model building or cross-study validation at the sampling times, where they were 
used to augment all the other cohorts, as this would leak information between validation 
folds.

Reproducibility and code availability

The code used in the present ML analyses is available in the GitHub repository (https://
github.com/pvanni/PipelineSearch). We reported our finding according to the Strength
ening The Organization and Reporting of Microbiome Studies guidelines (53) and the 
checklist can be found in the GitHub repository. Installed Python packages are listed in 
(Table S2).

Random number generators were seeded to guarantee identical outer cross-valida
tion splits for each algorithm choice in addition to rendering the results reproducible. 
In this way, each model was validated using the same validation samples, making direct 
comparison of their AUC values reliable in both within-study and cross-study predictions.

Full sequencing data for all cohorts used can be found from public data reposito
ries, and their corresponding accession numbers can be found in (Table S3). Relative 
abundance feature tables from all cohorts used in genera and predicted pathway 
ML-analyses can be found in the supplemental material (Data S1 through S4) with 
delivery mode metadata linked to each sample as the last column.

RESULTS

Characteristics of the cohorts

The general characteristics of the populations and the 16S rRNA amplicon sequence data 
sets are presented in Table 1 and (Table S3). The microbiome data sets were further 
characterized by plotting alpha and beta diversity indices for each infant cohort (Fig. 3) 
and for each time point (Fig. S1). Shannon’s diversity index was, on average, lower in the 
1–2 months cohorts (mean = 1.8, SD = 0.26) than in the 3–6 months (mean = 2.16, SD 
= 0.37) or 9–12 months (mean = 2.46, SD = 0.58) cohorts. Alpha diversity did not differ 
significantly according to mode of delivery in any of the cohorts (Fig. 3). The Fisher’s 
exact test showed no significant enrichment of breast- or formula-fed samples in either 
Caesarean delivery or vaginally delivered groups in any cohort (Tables S4 and S5).

The machine-learning models accurately predicted the delivery mode from 
the fecal microbiome taxonomic data at 1–2 months of age

Machine learning can be used to train models to predict target variables, such as the 
mode of delivery in the present case, from unknown samples using input variables 
such as the relative abundances of bacteria. In the initial training of the ML models, we 
used four algorithms (RF, EXTRA, LGBM, and MLP) to differentiate between children born 
by vaginal delivery and Caesarean delivery, using the gut microbiome data from fecal 
samples obtained for each cohort at each of the time points (Fig. 4).

The ML models were, indeed, effective in predicting the mode of delivery on this basis 
at 1–2 months of age. The ML models achieved high AUC values ranging from 0.73 to 
0.82 in all cohorts, depending on the ML model selected (Fig. 4), while the RF models 
were the best in the COPSAC (AUC = 0.73), NHBCS (AUC = 0.79), NOMIC (AUC = 0.82), 
and WHEALS (AUC = 0.79) cohorts. The EXTRA models performed well in the INFANTMET 
(AUC = 0.80) and JORVI (AUC = 0.74) cohorts, but the LGBM model achieved the highest 
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FIG 3 Alpha and beta diversity indices for each cohort. Within-sample diversity was analyzed using Shannon’s diversity indices for gut microbiomes sampled 

at (A) 1–2 months, (C) 3–6 months, and (E) 9–12 months, and the results were visualized with boxplots, where Caesarean delivery samples (pink) and vaginal 

delivery samples (light blue) were plotted separately for each cohort. Outliers detected by the plotting software were drawn as circles. Between-sample diversity 

was analyzed using Bray-Curtis dissimilarity at (B) 1–2 months, (D) 3–6 months, and (F) 6–9 months sampling time points using principal coordinate analysis 

(PCoA). The samples from each cohort were drawn in a different color within the sampling time points, and the confidence ellipse was drawn using the Pearson 

correlation coefficient for each cohort.
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AUC only in the HOUSTON cohort (AUC = 0.75). The MLP models achieved lower AUC 
values overall than the other models (Fig. 4B). PR curves can be found for all models in 
Fig. S2.

To control for the potentially confounding effect of breastfeeding, the same analyses 
were run separately in children receiving breastfeeding (Fig. S3). In COPSAC (AUC = 
0.73) and INFANTMET (AUC = 0.75), the prediction performance remained the same or 
slightly lowered, while in HOUSTON (AUC = 0.62) and JORVI (0.63) cohorts, the predic
tion performance was much lower. There were only 29 children who were exclusively 
formula-fed at 1–2 months of age (Table S4), which did not allow separate ML analyses in 
this subgroup.

FIG 4 Machine-learning models can differentiate between the delivery modes of infants based on gut microbiome data at 1–2 months of age. The delivery 

modes were either vaginal delivery or Caesarean delivery, and the ML models used the gut microbiomes of the infants as assessed from fecal samples obtained 

approximately 1–2 months after birth in seven infant cohorts. (A) Best performances of the MLP, LGBM, RF, and EXTRA models, trained independently to 

differentiate between vaginal delivery and Caesarean delivery samples using the relative abundances of gut bacteria at 1–2 months after birth, shown separately 

for each cohort. (B) ROC curves for the best-performing models. The AUC values for these ROC curves indicate model performances that range between 0.5 and 

1.0. Predictions from a model with a performance close to 0.5 are equivalent to a random choice, whereas a model with an AUC of 1.0 would hypothetically be 

a perfect model and classify all children correctly. (C) Permutation importance values for the best-performing models. The x-axis of each graph represents the 

reduction in AUC when the feature was randomized in the testing samples. Positive error bars indicate the standard deviation of the averaged importance values. 

Each feature is shown in the same color in all bar graphs.
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Bacteroides was the most important genus for the performance of machine-
learning models trained on taxa at 1–2 months of age

Next, we determined which features of the gut microbiome data were most important 
for the performance of the ML models—i.e., in differentiating between the modes of 
delivery at 1–2 months of age. We identified the most important features of the ML 
models using the permutation importance method.

The relative abundance of Bacteroides in the gut microbiome had the greatest impact 
on the prediction performance at 1–2 months of age (Fig. 4C). This may be assessed by 
evaluating the decrease in the AUC when the Bacteroides feature is removed from the 
model. This reduced the model performance in multiple cohorts: 0.06 AUC in COPSAC, 
0.21 in HOUSTON, 0.16 in INFANTMET, 0.10 in JORVI, 0.18 in NHBCS, 0.1 in NOMIC, 
and 0.25 in WHEALS (Fig. 4C). Other important features for differentiating between the 
delivery modes based on the gut microbiome data were Bifidobacterium, Enterococcus, 
the Escherichia-Shigella complex, Streptococcus, Veillonella, and Parabacteroides (Fig. 4C).

ML models were poor at accurately predicting the mode of delivery from 
microbiome taxonomic data recorded at 3–6 months or 9–12 months

When using gut microbiome taxonomic data from fecal samples taken at 3–6 months 
and 9–12 months of age, the ML models were not able to differentiate accurately 
between the modes of delivery of the children in any of the cohorts (Fig. 5; Fig. S4 
and S5). The AUC of the best models ranged from 0.61 to 0.62 in four cohorts with 
gut microbiome data available at 3–6 months of age (Fig. 5A and C). Similarly, models 
trained using fecal samples collected 9–12 months after birth were unable to differenti
ate reliably between children born vaginally or via a Caesarean delivery (Fig. 5B and D).

Machine-learning models failed to recognize the delivery mode using 
predicted metabolic pathway features at any infant age

Next, we used 16S rRNA gene sequences to infer the metabolic pathway composition of 
each sample with PICRUSt2, which can be used to generate an estimation of meta
bolic pathway composition based on the 16S rRNA amplicon sequencing data and a 
reference database. The performance of the ML models trained with predicted metabolic 
pathways in differentiating Caesarean delivery samples from vaginal delivery samples 
was comparable to that observed for the genera collapsed models in some cohorts, 
while in others, the performance values were much lower (Fig. S6). The ML models that 
used predicted metabolic pathways could not accurately predict the mode of delivery 
from gut microbiome samples collected 3–6 months or 9–12 months after birth, except 
in the Oulu (AUC = 0.72, SD = 0.03) and Jorvi (AUC = 0.75, SD = 0.07) cohorts at 9–12 
months group (Fig. S7).

The ML models showed several metabolic pathways in the gut microbiome that 
were important for the performance of the models, such as carbohydrate degradation, 
nucleotide degradation, and fermentation of the pyruvate metabolic pathways. At 1–2 
months of age, the ML models achieved an AUC of 0.7–0.8 for the COPSAC, NHBCS, and 
NOMIC cohorts, with the carbohydrate degradation pathway (PWY-7456) emerging as 
the most important performance feature (Fig. S6C).

The ML models for the INFANTMET cohort achieved moderate AUC scores, but unlike 
the other ML models in the three previously mentioned cohorts, they had pathways 
related to pyruvate fermentation and amino acid degradation as the top performance 
features. The best ML models in the HOUSTON, JORVI, and WHEALS cohorts, which all 
achieved low AUC scores (0.61–0.66), had a variety of pathways as their most important 
features (Fig. S6C).

The mean relative abundances and standard deviations of metabolic pathways can be 
found in the Supplementary Table (Table S6).
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Cross-study machine-learning models trained on taxonomy, but not on 
function, performed well when identifying the delivery mode at 1–2 months 
of infant age

The ML models trained with all the other cohorts and then tested on the remaining 
cohort performed well with all cohorts at 1–2 months after birth (Fig. 6), and the test 
samples from HOUSTON (AUC 0.83, SD 0.05), JORVI (AUC 0.79, SD 0.04), and WHEALS 
(AUC 0.81, SD 0.02) were predicted more accurately by the cross-study ML models 
than were those originally trained on the cohort’s own training samples (Fig. 6B). The 
cross-study ML models achieved fairly high accuracy when applied to the COPSAC (AUC 
0.72, SD 0.01), INFANTMET (AUC 0.75, SD 0.02), NHBCS (AUC 0.78, SD 0.01), and NOMIC 
(AUC 0.77, SD 0.01) cohorts (Fig. 6B).

Bacteroides was the most important feature when studying samples from 
other cohorts at 1–2 months after birth

Next, every feature was removed from the cross-study testing data one at a time by 
the permutation importance method; meanwhile, the average reduction of prediction 
performance was recorded for each feature. The most important feature when predicting 
the mode of delivery using gut microbiome data at 1–2 months of age was Bacteroides 

FIG 5 Performance of the ML model when predicting the mode of delivery from samples taken at 3–6 months or 9–12 months after birth. The MLP, LGBM, RF, 

and EXTRA models were trained independently to differentiate between vaginal delivery and Caesarean delivery samples using the relative abundances of gut 

bacteria at (A) 3–6 months and (B) 9–12 months after birth. ROC curves for the best-performing models were drawn for (C) 3–6 months and (D) 9–12 months after 

birth. The AUC values range between 0.5 and 1.0, where predictions from a model with a performance close to 0.5 would be equivalent to a random guess, and 

those from a model with a performance of 1.0 would always be correct.
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(Fig. 6A), while Escherichia-Shigella, Parabacteroides, Bifidobacterium, and Enterococcus 
had a lesser impact on the performance of the ML model. Removing Bacteroides from the 
testing data reduced the prediction capability of the model by more than half in every 
cohort.

Bacteroides is relatively enriched in vaginally delivered infants at 1–2 months 
of age

To investigate why Bacteroides was shown as the most important feature in the ML 
models, we calculated the mean relative abundance of Bacteroides in each cohort in both 
the Caesarean delivery and vaginal delivery groups and plotted them side by side (Fig. 
7). Bacteroides had a higher mean relative abundance in children born via Caesarean 
delivery in all cohorts at 1–2 months of age (Fig. 7A; Table S6), and similarly in all samples 
collected at roughly 3–6 months (Fig. 7B), while only a few cohorts had a higher mean 
relative abundance in vaginally delivered infants at 9–12 months after birth (Fig. 7C). 
The standard deviation for the relative abundance of Bacteroides was nevertheless very 
high at all three time points, indicating that the proportion of this genus differed greatly 
from one infant to another. The mean relative abundances and standard deviations of all 
genera shown as important by ML analyses can be found in Supplementary Table (Table 
S6).

Alternative model building approaches did not improve the cross-study 
model performance at 1–2 months of age

Since there is no gold standard for building ML models or pre-processing microbiome 
data, we tested how a few different methods affected the cross-study predictions at 1–2 
months. Alternative methods used were PipelineSearch and control augmenting. Using 
the genera-collapsed feature table to train the models and then combining all the other 
models into an ensemble voting classifier to predict the samples in one cohort was the 
strategy that performed best in all the cohorts except INFANTMET (Fig. S8). The Control 
augmenting (AUC = 0.80, SD = 0.045) and Pathway ensemble (AUC = 0.76, SD = 0.022) 
methods both achieved a higher AUC than the genera ensemble method (AUC = 0.75, SD 

FIG 6 ML models were used to predict the mode of delivery when testing samples from other cohorts in a cross-study manner 1–2 months after birth. The mode 

of delivery was predicted for the test samples in each cohort by combining the best ML models from each of the other cohorts to form an ensemble classifier. 

The ML models had no previous knowledge of the other cohorts. (A) The permutation importance of the ensemble classifiers are visualized, with the x-axis of 

the graphs representing the reduction in the AUC when the feature is randomized in the test samples. Positive error bars were plotted to represent the standard 

deviation of the averaged importance values. Each feature is shown in the same color in all bar graphs. (B) ROC curves were drawn for the ensemble classifiers. 

The AUC values ranged between 0.5 and 1.0. Predictions from a model with a performance close to 0.5 are equivalent to a random guess, while a model with 1.0 

is always correct.
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= 0.018) when predicting delivery in the case of the INFANTMET samples. PipelineSearch 
did not have the highest AUC when predicting delivery mode in a cross-study way.

FIG 7 Combined mean relative abundances of sequences classified into the genus Bacteroides in each 

cohort. Mean relative abundance and standard deviation of Bacteroides in cohorts sampled approxi

mately (A) 1–2 months, (B) 3–6 months, and (C) 9–12 months after birth, partitioned by mode of delivery. 

Light blue bars denote vaginally delivered infants, and pink bars denote those born by Caesarean 

delivery. The black lines are positive error bars (standard deviation).
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DISCUSSION

We experimented with several ML model-building strategies to identify the best 
approach to combine and compare gut microbiome composition from 12 pediatric 
cohort studies. We chose mode of delivery as the exposure factor since it is well known 
that C-section delivery has an effect on infant gut microbiome. We showed that ML 
models, including MLP, LGBM, RF, and EXTRA models, were able to identify the mode of 
delivery of infants based on their gut microbiome taxonomic data at 1–2 months of age. 
Bacteroides, enriched in the gut microbiome of infants born by the vaginal route, was the 
most important feature in the ML models for identifying the mode of delivery. When the 
infants were older, all ML models performed poorly. Similarly, all ML models performed 
poorly when trained on predicted microbiome function at all ages.

In the present study, we used ML analysis of gut microbiome composition retrieved 
from high-quality prospective cohorts from Europe and USA in predicting the mode 
of delivery. Previously, Le Goallec et al. aggregated 1,570 samples from 300 infants 
included in 4 European studies to form a single data set from the first 3 years of life 
(18). Their models were used to predict host characteristics, such as age, sex, country of 
origin, antibiotic usage, delivery mode, and breastfeeding status. In their study, adding 
microbiome data to the model increased the prediction performance from an AUC of 
0.59 to 0.76 as compared to demographic factors alone in predicting delivery mode (18). 
Here, we show that based on microbiome taxonomic data alone, cross-study ML models 
were able to predict delivery mode accurately in infants under 3 months of age with AUC 
ranging from 0.72 to 0.83 depending on the cohort and the algorithm used. However, 
when using gut microbiome data from fecal samples taken at 3–6 months and 9–12 
months of age, or alternately training on the predicted functional metabolic pathways at 
any age, the ML models were not able to differentiate accurately between the modes of 
delivery of the children in any of the cohorts.

There are only a few other earlier studies of cross-study ML in gut microbiome 
research (17, 20, 54). In a study investigating the role of the gut microbiome in patients 
with type 2 diabetes, random forest models trained on cross-study data were able 
to predict type 2 diabetes status (17). In another study examining gut microbiome 
composition in adult obesity with a cross-study design using 10 data sets, the median 
accuracy of the ML analyses in distinguishing obesity based on the gut microbiome data 
was close to that of a random chance classifier (54). In a large study using a cross-disease 
design, ML models trained to predict one disease lost their accuracy when naively 
transferred to predict samples from other disease data sets (20). The authors of the study, 
however, suggested a method called “control augmenting,” in which control samples 
from outside cohorts are added to the training data to increase portability between data 
sets by the data augmenting method.

The subsequent health of children after Caesarean delivery has been reported in 
several previous epidemiological observational studies, associating with asthma (1, 2), 
food allergies (3, 4), obesity (5), and diabetes (6). Furthermore, Caesarean delivery has 
been associated with alterations in the gut microbiome composition in infants, with 
the relative abundance of Bacteroides (9–14), Escherichia-Shigella (9), and Parabacteroides 
(10) being lower than in vaginal deliveries. Similarly, we found that Bacteroides was the 
most important taxonomic feature when predicting the mode of delivery of infants 
based on the gut microbiome at 1–2 months in all cohorts studied here. In addition, 
we found that the mean relative abundance of Bacteroides was lower at 1–2 months of 
age in the Caesarean delivery infants than in those born by vaginal delivery. When using 
the predicted metabolic pathways of the gut microbiome, the carbohydrate degrada
tion pathways were of greater relative importance in classifying by mode of delivery. 
However, no pathway could consistently predict mode of delivery at any gestational age 
which is similar to the results previously reported by Chu et al. (27). Caesarean deliver
ies, performed for multiple underlying maternal and fetal indications, are associated 
with varying rates of success at exclusive breastfeeding (55). In the present study, we 
planned to perform a sensitivity analysis stratified on feeding mode. However, due to low 
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number of infants who received exclusive formula feeding, among those in whom we 
had information on mode of feeding, we were not able to perform this analysis.

Previous microbiome studies have used various algorithms, such as random forest 
(17, 18, 20), support vector machine (17, 18), elastic net (17, 18), and gradient boosted 
machine (18, 56). Decision tree-based algorithms such as random forest and LGBM 
have consistently been among the top performers in studies employing multiple data 
sets (17, 18, 20). Additionally, deep learning approaches have shown promise (49), and 
consequently, we selected three decision tree-based algorithms and one neural network 
for our analyses. Our results suggest that even relatively similar decision tree algorithms 
perform differently in each data set, so each algorithm needs to be validated on a data 
set-by-data set basis. Interestingly, multilayer perceptron performed poorly relative to 
the decision tree-based algorithms in our study.

Pre-processing choices made before training the ML models affected the down
stream analyses. The choice of a taxonomic database, the quality filtering parameters, 
and collapsing to a specific taxonomic level are all likely to affect the downstream 
ML analyses. We, therefore, tested four model-building approaches using the same 
cross-validation folds for each method. As a baseline, we built models on the genera 
(SILVA [39] database) collapsed feature tables. Second, we built models based on 
predicted metabolic pathway feature tables, and the third alternative method was to 
use independent control samples to augment each cohort, as presented in a previous 
study (20). Lastly, we used a novel method called “PipelineSearch,” in which each 
model could select data from various pre-processing routes—e.g., Greengenes instead 
of SILVA as a taxonomic database and predicted metabolic pathway features instead of 
genera-collapsed features. Interestingly, the PipelineSearch method could not achieve 
the same prediction performance as the baseline genera-collapsed models even though 
the models could select the same data to be used. This could be explained by the 
volatility of the microbiome data and the relatively low number of available samples in 
each cohort. Nevertheless, PipelineSearch is useful in cases where researchers lack the 
necessary domain knowledge to make optimal pre-processing choices; instead, they can 
supply the PipelineSearch model with a variety of methods even though some of those 
pre-processing choices may be suboptimal.

The present study has several strengths. The use of ML in gut microbiome analysis 
in a cross-study way, although it has been employed in previous studies (17, 20, 54), is 
still a novel approach. We had gut microbiome data from 4,099 samples representing 
12 infant cohorts in their first year of life, and by using ML models, we were able to 
show predictable differences on the composition of the gut microbiome appears to 
have certain universal characteristics in cohorts of 1- to 2-month-old infants born by 
Caesarean delivery across populations. However, this was limited to relative abundance 
differences in a single taxa, Bacteroides, and was not accompanied by changes in the 
predicted functional metagenome. Furthermore, the use of active data sharing and 
collaboration enabled the analysis of a varied collection of data sets spanning Europe 
and the United States. Finally, we have successfully combined two research fields: clinical 
medicine and computational biology.

Nevertheless, there are some limitations to our study. To assign taxonomy, we used 
the SILVA database (version 138). Bacteroides has been reclassified as Phocaeicola (57); 
consequently, the genera names shown here may change in the future release of 
SILVA database. ML analyses do not allow for direct controlling for various factors. We 
did, however, perform ML analyses separately in subgroups depending on breastfeed
ing status. We used the PICRUSt2 bioinformatic tool to predict microbial metabolic 
pathway composition data, which might not correspond to the actual metagenomic data 
produced by whole-genome sequencing. Furthermore, the study results are generaliza
ble to term infants because we excluded cohorts with mainly preterm infants. Finally, 
the cohorts recruited for this study were not created solely to study the effects of the 
mode of delivery. As such, the cohort structures and designs varied from one cohort to 
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another. Furthermore, we were not able to investigate emergency C-section and elective 
C-section groups separately due to low sample sizes and lack of required data.

Our study provides a new perspective on microbiome research, as it shows that 
ML enables data analyses in gut microbiome research by comparing and combining 
data sets from multiple cohorts collected in different countries across diverse patient 
populations. Furthermore, there is a crucial need to shift the research paradigm 
from merely retrospective predictions to a more proactive approach, where extensive 
investigation is directed toward anticipating the health outcomes of infants and children 
through the analysis of the gut microbiome. This proactive stance could provide a 
deeper understanding of how the gut microbiome influences the well-being of infants 
and children and potentially lead to more effective strategies for promoting their optimal 
health and development.
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