
1

Biases from spectral leakage in remote sensing of
near-surface currents

Stefan Weichert, Benjamin K. Smeltzer, Simen Å. Ellingsen

Abstract—Remotely measuring subsurface water currents
from imagery of the wave field has become a much-used tech-
nique. We study the biases and errors in such measurements due
to spectral leakage, and suggest mitigating procedures. Deviations
between peak values in the three-dimensional wave spectrum and
the known dispersion relation in quiescent water are extracted
and interpreted as current-induced Doppler shifts, from which
the sub-surface current is inferred. The use of discrete Fourier
transforms, however, introduces spectral leakage between nearby
frequency bins. Analysing synthetically generated wave data
adhering to realistic input spectra we show that although no
current is in fact present, spurious currents can be “measured”
which can amount to a significant fraction of the phase speed
at the spectral peak. We analyse the effects of data tapering,
method of Doppler shift extraction, limited wavenumber and
frequency resolution, peakedness and angular width of the input
spectrum, and average misalignment between waves and Doppler
shift velocity direction. The narrower the input wave spectrum
in frequency and/or direction, the greater the biases become. The
use of a window function reduces the severity in nearly all cases,
yet mitigates the effects of limited resolution more effectively
in space than in time. When a current is present the absolute
biases remain essentially unchanged, when waves and currents
are roughly aligned, whereas in the case of a cross-current, biases
remain significant even for tapered data.

I. INTRODUCTION

The prospect of measuring currents near the sea surface
remotely from above is a highly attractive one. Measuring
depth-varying currents in situ by penetrating the surface re-
quires the use of e.g. buoys, ships, gliders or fixed instruments,
all relatively expensive and able to measure a single point or
trajectory at a time, and often struggle to capture currents in
the top few metres. In comparison, remote measurement from
above can be performed with inexpensive equipment mounted
on airborne platforms able to cover larger areas in a short time
(see, e.g., [1]).

By far the most common source of wave data has been
measurements using HF or X-band radar [2]–[16], primarily
mounted on ships. Only observation of the wave phase vari-
ation in time and space is required, however, meaning other
methods are equally applicable; the use of infrared [17] and
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polarimetric [18], [19] imaging has been demonstrated, as has
regular optical measurements (video) with cameras mounted
on quadcopter drones [20], and aircraft [21]–[24].

A current varying with depth will affect the wave phase ve-
locity differently for different wavelengths, resulting in a mea-
surable effective Doppler shift which depends on wavenumber
[2] and appears as a shift in the waves’ spectral dispersion
curve from that observed in quiescent water. Ever more
advanced methods have been developed in recent years for in-
ferring the depth profile of the sub-surface currents from such
measured Doppler shifts [12], [25], [26], yet the task of obtain-
ing these shifts from an observation of the spatiotemporal wave
field, by reconstructing the current-modified dispersion surface
in the frequency-wavenumber spectrum, is itself a nontrivial
task. Typically, the spectrum is divided into wavenumber
magnitude bins, whereby the Doppler shifts are found for
each bin separately. Perhaps the most frequently employed
are least-squares-based methods (e.g. [4], [8], [27]), whereas
the alternative Normalized Scalar Product (NSP) method is
also in regular use (e.g. [10], [13], [28]). We compare these
methods herein finding NSP to be unequivocally favourable.
A further method which we shall not consider here is the so-
called Polar Current Shell method (e.g. [13]), recently adapted
for this purpose [26], which has similar performance as NSP,
but favourable in some circumstances.

One should note that the same questions we seek to answer
here, also apply to bathymetry retrieval from the measured
wave spectra (see e.g. [29] and references therein). The
extraction of the water depth from the measured spectrum
requires spectral intensity at low wavenumbers, which can
be strongly influenced by spectral leakage, as we will show.
Since a finite water depth enters the dispersion relation in
a direction-independent and multiplicative way in contrast to
the additive and anisotropic term due to a current, it is not
obvious how the issues discussed herein affect the bathymetry
retrieval quantitatively, a question of potential importance
which requires further investigation.

A. Outline
In this work we consider the effects of a strong spectral

energy peak and the corresponding effect it has on the extrac-
tion of Doppler shifts for wavenumbers in the vicinity of the
peak. The energy peak results in spectral leakage to adjacent
wavevectors in the wave spectrum and may cause errors in the
extracted Doppler shifts — as perhaps the clearest example we
show that in realistic seastates, spectral leakage can cause a
significant spurious current to be “measured” when none is in
fact present.
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The phenomenon of spectral leakage is briefly reviewed in
section II-B, and we discuss how it can be mitigated by data
windowing. We then go on to describe a numerical experi-
ment where mock wave data is generated and analysed with
the methods in standard use for remote-sensing of currents
from wave dispersion, in section III. Results are reported
studying how the spurious current “measurements” depend on
the method of Doppler shift extraction (section III-C), the
angular width and peakedness of a directional (JONSWAP
[30]) wave spectrum (sections VI-B and VI-C), the spatial and
temporal resolution (sections VI-D and VI-D), as well as how
the situation changes when a uniform background current is
present, in section VI-E. We finally summarize and give a brief
overview of ways whereby the detrimental effect of spectral
leakage can be reduced in practical applications, in section
VII.

II. BACKGROUND

When remote sensing of sub-surface currents from wave
dispersion is performed, the input spectrum is an observation
of the motion of the water surface resolved in time and
space. The method is based on linear wave theory, so only
the phase of the waves is required, not the amplitude. The
data is typically a monotonic function of the sea surface
elevation or its derivative, as a function of position (x, y)
and time t. A three dimensional Fourier transform is then
applied in space and time to obtain a spectral signal as a
function of wave numbers k = (kx, ky) and frequency ω. We
assume the spatial area and duration of the observation are
L × L and T , respectively, so that the resolution in wave-
number and frequency are, respectively, δk = 2π/L and
δω = 2π/T ; we will refer to these as a pixel or bin in
wavenumber and frequency, respectively. (Note that after we
introduce nondimensional units in section III-A δk and δω
take the forms 1/L and 1/T , respectively.) We will assume
infinitely deep water for simplicity herein.

A. Theory

In a wave spectrum, the spectral signal is concentrated near
the dispersion relation ω = ωDR(k). The methods for sensing
the sub-surface current now extract a measured function ω(k).
If a current with moderately strong depth-dependence U(z) =
(U(z), V (z)) is present, the dispersion relation for a wave with
wave vector k is well approximated as ω = ωDR(k; c̃) with
the dispersion function

ωDR(k; c̃) = ω0(k) + k · c̃ (1)

where k = |k|, c̃ is the Doppler shift velocity (DSV) due to the
presence of a sub-surface current and the dispersion relation
in deep, quiescent water is

ω0(k) =
√

gk. (2)

Inversion methods to infer depth-dependent velocity profiles
from the measured spectrum are based on the approximation
[2], [31]

c̃ = 2k

∫ 0

−∞
U(z)e2kzdz. (3)

If a current is present which is uniform in depth, the resulting
Doppler shift will be independent of k, while conversely, a
Doppler shift which varies with k implies the presence of a
current which varies as a function of z. We shall see that
biases in the measured Doppler shift c̃ due to spectral leakage
typically vary significantly with k, and hence the spurious
currents which are “measured” will have a nontrivial depth
dependence. We do not pursue this question in detail.

The presence of the current thus introduces an observable
Doppler shift corresponding to the addition of a phase speed
c̃(k) to the phase velocity. Remote sensing of the depth-
varying current U(z) is then possible by measuring c̃ and
inverting equation (3) using one of several methods available
as reviewed in [1]. Methods for extracting c̃ from a measured
spectrum are reviewed and compared in section III-C.

Following Smeltzer et al. [26] we define the instructive
quantities δcδω and δcδk as

δcδω =
δω

k
; δcδk =

∂ω

∂k

δk

k
, (4)

which estimate the change in the predicted phase velocity
c due to moving the dispersion surface (1) by δk along
the wavenumber axis in the spectrum, or by δω along the
frequency axis. These are thus approximate measures of the
uncertainty in velocity measurement introduced by limited
wavenumber and frequency resolution, respectively. Further
discussion may be found in section 4.2.1 of [26].

B. Spectral leakage and windowing

Assume a continuous signal (in space or time) P̃0(t), the
“true” signal, is measured during a finite period of duration T .
A sharp cut-off at the beginning and end of the measurement
is equivalent to multiplying P̃0 by a discontinuous top-hat
function wbox(t) which is 1 within a time interval of length
T and zero outside this “window”. Multiplication with such
a window is equivalent to a convolution of the spectrum
P0 = F{P̃0} with a sinc function in frequency space (e.g.
[32]),

Pmeasured(f) = P0(f) ∗ T sinc(fT ), (5)

where sinc(a) = sin(πa)/πa, which is the Fourier transform
of the top hat function. The result is a blurring of the spectrum:
“true” spectral components will appear as spectral intensity not
only in the frequency bins closest to the actual frequency of
said component, but also on neighbouring ones that are more
than one bin away, with an intensity decreasing with distance.
One can alleviate this by replacing the “box” window with
a window of choice, simply by multiplying the acquired data
P̃ (t) = P̃0wbox(t) with said window function w(t). If the
chosen w(t) also vanishes outside the measurement interval,
the window replaces the top-hat. The choice of the optimal
window function much depends on the situation and data at
hand.

The Fourier transforms F{w}(f) of some common window
functions are shown in figure 1 (See e.g. [33] for a more
comprehensive comparison). When taking a discrete Fourier
transform (DFT) of w(t) every real frequency component f
will generate spectral intensity in frequency bins of width
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Fig. 1. Fourier transform F{w}(f) of a selection of common window
functions w(t). A frequency pixel is δω = 2π/T , normalized so that
F{w}(0) = 1. This illustrates how long-range spectral leakage can be
mitigated by tapering the measured signal. The drawback of increased short-
range leakage (1-2 pixels) is often negligible.

δf centered at nδf , n ∈ Z, with intensity F{w}(nδf − f).
For example, for the Blackman window shown in figure 1, a
frequency coinciding with a DFT frequency, i.e. f = mδf , one
obtains non-zero spectral intensity only for n − m = 0, 1, 2,
leading to no long-range leakage whatsoever. Only the central
lobe is sampled in frequency space. For any real spectrum most
frequencies will not coincide with a DFT frequency, and so
the side-lobes give rise to long-range leakage. Now, the central
lobe of the No Window (or top hat) case is only one pixel wide,
but the leakage is very long-range, i.e. spectral intensity decays
slowly and stays well above 1% for more than 20 pixels. In
contrast to this, the Blackman window decays rapidly to 10−3,
at the cost of increasing spectral leakage into the two nearest
bins, 1 and 2. The best choice of the windowing function is
usually a compromise between suppressing long-range leakage
and blurring the spectrum (short-range leakage). In this work,
a Hann window, defined as

wH(t) = 0.5− 0.5 cos (2π t/T ) , (6)

is used, as it suppresses the long-range spectral leakage to less
than 1% and leaks significantly into frequencies less than two
pixels away. In appendix A an example of extracted DSVs
with different windowing functions is given to illustrate how
the choice affects the results.

The data in this work is surface elevation ζ(x, y, t) mea-
sured in three dimensions x, y and time t, which we pre-
multiply by a 3D Hann window constructed as w(x, y, t) =
wH(x)wH(y)wH(t) prior to subjecting it to a discrete 3-
dimensional fast-Fourier transform (3DFFT). The new signal
ζ(x, y, t)w(x, y, t) goes smoothly to zero at the edges of the
domain of observation, in our case the square area with sides
L and time duration T .

III. METHODS

We proceed by producing synthetic surface elevation data
ζ(x, y, t) by superposing random linear plane waves of wave
number k and direction θ from chosen spectra with varying
properties, as detailed in section III-B. Each wave is given a
uniformly distributed random initial phase, the frequency ω is
found from equation (1), whereupon the waves are propagated
in time.

These wave “observations” are of course idealized, since
different methods for obtaining the actual surface elevation
ζ(x, y, t) or true spectrum from field data each come with
their individual challenges and limitations, an ongoing field
of research in its own right. Taking such practical challenges
into account is beyond the scope of this work, and we use the
ideal data to isolate the effects of spectra leakage in the data
analysis.

We mostly consider the case of quiescent water, i.e., there
is no background current and any Doppler shifts “measured”
from the spectrum are spurious and purely a consequence of
spectral leakage. We also consider the case where a constant
background current U0 is present, in section VI-E. Biases now
manifest as deviations of the observed DSVs from the correct
value.

A. Dimensional basis
Dimensional quantities will be denoted by a superscript

asterisk, all other quantities are non-dimensionalized. The
reference length-scale and time-scale are defined based on
a characteristic wavenumber k∗0 and its corresponding angu-
lar frequency in quiescent water ω∗

0 =
√
gk∗0 . Thus, e.g.

T = T ∗ω∗
0/2π, L = L∗k∗0/2π, k = k∗/k∗0 , ω = ω∗/ω∗

0 ,
U = U∗

√
k∗0/g. Unless specified otherwise, ω∗

0(k
∗
0) is taken

to be the location of the peak of the energy spectrum, hence
the peak in wavenumber space is close to to k = 1.

B. Wave spectrum
We generate wave fields from commonly used realistic

model spectra with varying directional broadness, assuming
the form

Ŝ(ω, θ) = S(ω)f(θ) (7)

where θ is the angle between k and the x axis, cos θ = k·ex/k.
We use the JONSWAP spectrum [30]

S(ω) = Ñω−5 exp

[
−5

4
ω−4

]
γr(ω) (8)

with

r(ω) = exp

[
−1

2

(
ω − 1

σ

)2
]
. (9)

For our purposes the value of Ñ is not of importance, we set
Ñ = 1. The parameter σ is

σ =

{
0.07, if ω ≤ ωp,

0.09, if ω > ωp

(10)

and the peakedness parameter γ is varied (see section VI-C).
The energy spectrum for a selection of peakedness values γ
is depicted in figure 2. The angular distribution is taken as a
cosine-square with a full width (distance of first roots) of ∆θ,
i.e.

f(θ) =

{
cos2

(
π θ−θ0

∆θ

)
, |θ − θ0| ≤ ∆θ/2

0 else
(11)

We use this spectrum to prescribe the amplitudes a(k) of
the superposed wave components in accordance with [34] as

a(k) =

√
2 k−3/2 Ŝ(ω(k), θ)δk (12)
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Fig. 2. Top: Energy spectrum S(ω) (equation 8) for a few values of the
peakedness parameter γ. The ω axis is scaled quadratically to match the
range of the bottom graph, as k = ω2. Bottom: amplitudes a(k, θ = θ0)
(equation 12) of superposed wave components. The spectra are normalized
with respect to their peak value.

on an evenly spaced grid in kx-ky , with spacing δkx = δky =
δk. Additionally, we set a(k)=0 for k/kp > 3.5.

C. Normalized scalar product
Two methods are in common use for extracting Doppler

shifts from the measured wave spectrum; least-squares (LS)
methods (e.g. [4], [8], [27]) and the Normalized Scalar Product
(NSP) method (e.g. [10], [13], [28]). While there exists a wide
range of extensions and sophistications to LS methods, we
focus our attention on the NSP method. However, since two of
the most famous works on spectrum based current extraction
( [4], [8]) use a simple form of the LS method we also give
a brief comparison of their performance in appendix C.

We employ the DSV extraction method as implemented by
Smeltzer et al. [26]; see [10], [13], [28] for details on the NSP
method more generally.

The starting point in either method is a measured, spatio-
temporally resolved free-surface η(x, y, t) and its power spec-
trum obtained via a discrete Fourier transform, P (k, ω) =
|FFT [η(x, y, t)]|2. For each wavenumber ki in a list, the
spectral intensity on a cylindrical surface with radius ki
centered around the ω-axis is defined

Fi(k, ω) =
√
P (ki cos θ, ki sin θ, ω). (13)

where θ is the azimuth angle in the kx-ky-plane. The imple-
mentation of the algorithms used are formulated in Cartesian
coordinates; however, it is illustrative to use cylindrical co-
ordinates for the following conceptual considerations. More
details of the implementation are given in appendix B.

To find the effective DSV c̃i = c̃(ki), first, a characteristic
function G is defined that contains the components of c̃i as
free parameters:

Gi(θ, ω; c̃i) = G+
i (θ, ω; c̃i) +G−

i (θ, ω; c̃i) (14)

where

G±
i (θ, ω; c̃i) = exp

[
−2

(
ω ± ωDR(θ; ki, c̃i)

a

)2
]
. (15)

The normalized scalar product Ni of the vectors Fi and Gi

is now maximized for each value of i by varying the two
components of c̃i; it is calculated as

Ni(c̃) =
⟨GiFi⟩
⟨Gi⟩ ⟨Fi⟩

(16)

where ⟨...⟩ refers to an integral over all θ and ω. In other
words, Gi can be thought of as a cosine in θ (see figure 4)
with offset ω0(ki) amplitude kic̃ and phase shift defined by
the direction of c̃; its overlap with the measured intensity on
the cylinder surface is maximized to find the best DSV c̃(ki).
This optimization step is performed using the Nelder-Mead
simplex method [35].

IV. THE NORMALIZED SCALAR PRODUCT METHOD AND
SPECTRAL LEAKAGE

For multidimensional data, spectral leakage is most promi-
nent in the directions parallel to the coordinate axes. Consider
for example a 2D signal η(x, y) on a rectangular domain and
its Fourier transform η̃(kx, ky) = F{η}. Since both x and t are
within a finite range, the effective window w(x, y) is a product
of top-hat windows in the x and y directions, respectively,
i.e. w = w1(x)w2(y). The Fourier transform of such a
product is the product of their respective Fourier transforms
w̃(kx, ky) = F{w1(x)}F{w2(y)} = w̃1(kx)w̃2(ky). Now,
since the leakage for a top-hat window falls off as 1/k, the
product w̃(kx, ky) is smallest for a given k when |kx| = |ky|
and largest when kx = 0 or ky = 0. An illustration of this can
be seen in figure 3. The extension to 3 or more dimensions is
straightforward.

10
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0

Fig. 3. An illustration of spectral leakage in two dimensions. Left: Logarith-
mic 2D FFT spectrum of a superposition of four sine-waves, with frequencies
denoted by triangles. The circles denote the DFT frequencies, i.e. frequencies
natural to the domain. From left to right, the leftmost spectral peak coincides
with a DFT frequency, while the rightmost peak lies in the middle of DFT
frequencies. Right: same as left, bit with a 2D Hann window applied before
doing the FFT. Note how the Hann window removes the background and
increases consistency between spectral peak, while broadening by roughly
one bin in all directions.

This (mostly) axes-parallel leakage is helpful in understand-
ing how leakage affects the DSV extraction using NSP.

A fundamental step in the NSP method is to pick out mea-
sured spectral intensity on a cylinder surface with radius ki.
One can think of the effect on the NSP as the spectral intensity
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projecting itself in the principal directions onto the cylinder,
with decreasing intensity the further the surface is from
the originating spectral intensity. Now, as the NSP method
essentially fits a function of the form ω0(ki)+Af cos(θ−θf ),
with free parameters Af and θf , to the spectral intensity on
the cylinder surface defined by ki, as illustrated in figure 4,
spurious intensity at ω ̸= ω0(ki) leads to non-zero values for
Af = k ·c̃, implying a background current even in the absence
of one. In this work we consider spectra with a single peak at
a given wave vector k = (kx, ky).

0 50 100 150 200 250 300 350

(c)

Fig. 4. Illustration of the dispersion relation ω = ωDR(k; c̃) in connection
within the Nonlinear Scalar Product method. The top graphs show the
dispersion relation in absence of a current, c̃ = 0 (a) and with a current,
c̃ = U0 (b). The intersections with a cylinder with radius ki is highlighted.
In graph (c) the spectral intensity is indicated in greyscale, visible near the
dispersion curve on the cylinder surface after unrolling it, together with the
lines of intersection from the top figures: blue, dashed corresponds to quiescent
water; red, solid is the best fit from the NSP method resulting in a non-
vanishing Doppler shift velocity.

We now consider the effect of spectral leakage for two
distinct cases, one (1) with the mean propagation direction
θ0 being parallel to the ky-axis, and one (2) with θ0 between
0° and 90°.

A. Leakage for θ0 = 90°

Consider the extraction of the DSV for a wavenumber
k < 1, i.e. below the peak of the spectrum. The spectral
leakage for the cylinder with radius k will be dominated
by short-range spectral leakage of wavenumbers close to k
and long-range leakage from the spectral peak. the short-
range spectral leakage for the most part will just blur the
spectral intensity on the cylinder, while the long-range leakage
from the spectral peak leads to a new, possibly dominating,
spectral intensity spot on the cylinder, at the same angle, but a
higher frequency. In other words right above the real spectral

intensity. Depending on the ratio of intensities, distance, and
width of the characteristic function G, the NSP algorithm may
find the correct frequency, the frequency of the projected peak
or a value in between these two to give the best fit. Therefore
the returned DSV will be parallel to the spectrum propagation
direction θ0. Similarly, if k > 1 is considered, the projection
from the spectral peak will be below the real spectral intensity,
giving DSV antiparallel to the spectrum propagation direction
θ0.

B. Leakage for 0 < θ0 < 90°

For k < 1, it is now possible for spectral leakage from
the peak to have no axes-parallel projection onto the cylin-
der surface, thus not affecting the extracted DSV for this
wavenumber. Short-range spectral leakage and leakage from
lower wavenumbers now dominate, making the prediction of
DSV direction difficult. For k > 1, one can still get an intuition
for the effect of leakage. As the peak of the spectrum lies in
the first quadrant of the kx−ky-plane, the shortest distance to
a cylinder with radius k is to the quarter of the cylinder also
lying in the first quadrant, and we can focus our consideration
on that. The leakage is now being projected onto the cylinder
at an angle relative to the mean propagation direction θ0.
Therefore, as the real spectral intensity now dominates for
θ = θ0, the frequency for wavenumbers along θ0 is found
correctly. The perpendicular component of the DSV, however
is determined mostly by the position and relative magnitude of
the spurious intensity appearing at angles θ ̸= θ0. in quiescent
water, for example, one would obtain DSVs with directions
θ ± 90°.

Note that these considerations hold true for very narrow
spectra, but are to be understood as tendencies for spectra
with considerable spectral width ∆θ, because, for any angle
θ, real spectral intensity will mostly dominate over spectral
leakage, if present.

V. PARAMETER CHOICE AND OVERVIEW

For an overview and easier referencing table I contains
the list of test cases presented in this paper. Apart from the
parameters stated therein, the resolution of the input spectrum
δink and spatial resolution δx = δy as well as temporal
resolution δt had to be set. The spatial resolution was chosen
such that waves of the highest wavenumbers, kmax = 4, would
be well resolved, δx = 1/28. Similarly, time resolution was
set to δt = 1/14. The resolution of the input spectrum was set
to δink ≈ 0.341/L, with L being the domain size. This was
deemed small enough to mimic a continuous spectrum.

The domain size and video duration were chosen to be close
to typical parameters found in airborne measurements [36].
The resulting videos in their work typically have a field of
view of L∗ = 128 − 512m, durations of T ∗ = 20 − 40 s
and wavenumbers with usable spectral intensity from 0.2 to
2 radm−1 (see figure 1 in [36]). Taking a reference wavenum-
ber of k∗0 = 0.4 radm−1, this gives a parameter range of
T ≈ 5− 10, L ≈ 8− 32.

Equation 14 contains one free parameter, a, that determines
the width of the characteristic function. We set a = 4 δω, with
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θ0 ∆θ γ L T U figure section
case-NSP-LS 75° 60° 3.3 10 20 0 11 C
case-θ0-∆θ 60°, 90° 15°...60° 3.3 10 20 0 5 VI-A,VI-B
case-γ 60° 15°...60° 1...7 10 20 0 6 VI-C
case-L-T 90° 60° 3.3 5, 10, 20 10, 20, 80 0 7 VI-D
case-U 90° 60° 3.3 10 20 0...0.15 8, 9 VI-E

TABLE I
OVERVIEW OF PARAMETER COMBINATIONS. θ0 : MEAN PROPAGATION DIRECTION OF INPUT WAVENUMBER SPECTRUM, ∆θ: ANGULAR SPREAD OF INPUT

WAVENUMBER SPECTRUM (SEE EQUATION 11), γ : PEAKEDNESS PARAMETER (SEE EQUATION 8), L: DOMAIN SPATIAL DOMAIN SIZE, T : VIDEO
DURATION, U : BACKGROUND CURRENT. ALL PARAMETERS ARE NON-DIMENSIONAL, SEE SECTION III-A

δω = 1/T being the frequency resolution (see appendix B for
details).

The results shown in figures 5-9 display statistics of the
extracted DSVs in terms of the average ⟨|c̃|⟩ and the cor-
responding standard deviation σc̃ (times two for illustrative
purposes), calculated from 100 realizations. These quantities
are useful as they represent a mean bias and fluctuation that
one has to expect from a single measurement. Additionally,
where possible, the implied velocity resolutions δcδω and δcδk
defined in equation (4) are shown for reference.

VI. RESULTS

In this section we consider the effects of wave-spectral prop-
erties, resolution and data tapering on the spurious Doppler
shifts “measured” when no current is present, as well as the
effect of a uniform current being present. An overview of the
parameter combinations used to obtain the following results is
given in section V.

A. Illustration of the effect of windowing (Hann window)

To see the influence of the angular spread ∆θ of the
wavenumber spectrum, simulations with variation both in ∆θ
and the mean propagation direction θ0 were performed (see
table I, case-θ0-∆θ, for all parameters). A selection of the
results are shown in figure 5 (upper row). A more detailed
discussion of the influence of ∆θ and θ0 is given in section
VI-A below.

The propagation direction θ0 shows a strong influence on
both the mean bias and its variation. This behaviour is likely
due to spectral leakage, because spectral leakage appears as
“streaks” in the spectrum along the spectral axes kx, ky and
ω (See illustration in figure 3). The second column in figure
5 shows the extracted DSVs of tapered surface elevation data.
The mean and random bias is strongly suppressed in all cases
and the dependency on θ0 is significantly reduced, compared
to the analysis without a Hann window. Note that ∆θ = 15°
represents a rare, very narrow spectrum, but the described
effects are visible for all spectral widths, decreasing with
increasing ∆θ.

We observe that for smaller wavenumbers (k < 1), using a
Hann window does not mitigate the effects of spectral leakage
as strongly as for k > 1. This is because the Hann window
suppresses long-range spectral leakage (more than one-two
pixels), while increasing the short-range spectra leakage (The
central lobe of the Hann window has a width of 2 bins instead
of 1 for no-window). The “steepness” ∂ω/∂k grows with
decreasing k, meaning that spectral intensity that leaks in the

k-direction appears as a strong broadening in the ω-direction
at neighbouring k-values. In our simulations the spectrum has
a peak at ω = 1 (thus close to k = 1) and quickly decreases
towards k ≈ 0.5. Therefore, the combined effects of a steep
slope in the energy spectrum and the dispersion relation cause
the short-range spectral leakage to be most prominent for
k < 1.

The effect of a steep spectral slope — discussed further
in section VI-C — can be illustrated by considering that at,
say, k = 0.6 the spectrum shows intensity at ω0(0.6), but also
intensity leaked from ω0(0.6+δk) and ω0(0.6−δk), the latter
of which is much less than the former. The algorithm therefore
finds a frequency between ω0(0.6) and ω0(0.6 + δk), which
gives a non-zero DSV (see also section IV).

B. Influence of the mean propagation direction and angular
spread

To study the influence of the angular width on the mean and
random bias in the extracted DSVs, simulations were run with
three propagation directions θ0 ∈ {90°, 75°, 60°} and a range
of spectral widths ∆θ, of which two representative examples,
(15°, 60°), are shown in figure 5 (see table I, case-θ0-∆θ, for
all parameters).

All cases show that an increase in spectral width ∆θ
significantly decreases both mean and random biases across
all wavenumbers. Results for ∆θ > 60° are not shown here,
as no notable further improvements were observed.

The reduction in angular spread ∆θ leads to an increase in
spurious DSVs c̃, because the wave components of a narrow
spectrum are mostly influenced by the current component
parallel to the mean propagation direction θ0. The narrower a
spectrum is, the smaller an observable change in frequency
due to the perpendicular current component c̃⊥ becomes.
Therefore, the influence of false spectral intensity from any
source (e.g. noise, aliasing, higher harmonics, spectral leakage)
outside the real spectrum can lead to strong perpendicular DSV
components when the spectrum is very narrow. For a more
detailed explanation, see section 5. Here we see the combined
influence of a noisy spectrum and spectral leakage.

Note, that all cases exhibit negligible spurious DSVs around
k ≈ 1. This is simply a consequence of the spectral peak lying
near this value.

The dependency of results on the mean propagation di-
rection θ0 was also investigated in a second manner: The
videos were rotated numerically by angles θrot up to 45° before
repeating the DSV extraction. This is equivalent to rotating the
camera in an experiment. Pairwise comparison of results with
same values of θ0 + θrot show no significant difference.
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Fig. 5. Doppler shift velocities (DSV) c̃ for the parameter set case-θ0-∆θ (see table I) extracted using the NSP method. The DSVs were extracted for 100
realizations with (right) and without (left) applying a Hann window beforehand. The top and bottom graphs show the biases in DSVs in terms of the average
(top) and standard deviation (bottom) of the absolute value c̃ = |c̃|. The solid and dashed line correspond to the velocity resolutions implied by frequency
and wavenumber resolution, respectively.

Two conclusions can be drawn: First, since the only refer-
ence direction is provided by the coordinate system in absence
of a background current, θ0-dependencies can be traced back
to spectral leakage, which mainly occurs parallel to the axes,
thus breaking rotational symmetry. Second, rotating the cam-
era or data provides a useful check for spectral leakage.

The use of a Hann window prior to DSV extraction greatly
mitigates the effects of spectral leakage, as discussed be-
fore, pushing even the narrow spectrum cases down to sub-
resolution (with respect to implied velocity resolutions δcδω
and δcδk).

C. Influence of peakedness γ

Depending on how developed a sea is, the best fit for
the frequency spectrum uses a peak enhancement factor γ
between 1 and 7, where 3.3 is a commonly used value for
most applications [37]. Recently, Mazzaretto et al. found that
a global mean of γ ≈ 2.4 is better suited [38].

Since the choice of γ only affects the spectrum in a small
range around the peak, it also offers itself as a tool to examine
the influence of steep gradients in the spectrum. We therefore
compare the DSVs for γ ∈ {1...7}. (see table I, case-γ, for
all parameters)

The results presented in figure 6 show that for spectra with
small angular spread, a more strongly peaked spectrum (higher
value for γ) causes increased biases (mean and random) across
all wavenumbers except for a small range around the spectral
peak at k ≈ 1, where the relative increase in spectral intensity
reduces the influence of spectral leakage from wavenumbers
k ̸= 1. A wider angular spread of the spectrum, on the other
hand, mitigates this to a large degree, especially towards higher
wavenumbers, where the influence of spectral leakage from
the peak is nearly eliminated and sub-resolution biases are
achieved. For angular spreads larger than ∆θ > 45°, the DSVs
become independent of ∆θ, though this also changes with
spectral resolution.

Towards lower wavenumbers (k < 1), without a Hann
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Fig. 6. Same as figure 5 but with parameter set case-γ (see table I).

window, any extracted DSV is unreliable, as spectral leakage
dominates the result due to the exponential decrease of ”real”
spectral intensity towards k = 0.5 and the steepness of the
dispersion relation (see previous discussion in section VI-A).

As for results before, the use of a Hann window improves
the results so far that random and mean biases are sub-
resolution even for strongly peaked (γ = 7), narrow (∆θ =
15°) spectra, effectively eliminating the dependence on ∆θ,
and to a degree, resolutions (see section VI-D).

D. Influence of resolutions δk, δω

The range of spectral leakage is constant in terms of pixels
or bins, and thus the range in k (and ω) is determined by the
resolution δk (and δω).

We therefore vary the spatial size L and temporal duration T
of the videos to change the frequency resolution δω = 1/T and
wavenumber resolution δk = 1/L to observe their influence on
the DSV extraction (see table I, case-L-T , for all parameters).

For a spectrum with an angular spread of ∆θ = 60° and
a mean propagation direction of θ0 = 90° simulations were
performed with a range of video lengths T = 5 − 80 and

domain sizes L = 5 − 20. The resulting DSVs are shown in
figure 7. (Note that the results for T < 10 are not shown as
they did not show relevant differences compared with results
for T = 10)

Clearly, for untapered data, both improving δk or δω
reduces the biases in DSVs, albeit improving the wavenumber
resolution δk has a stronger influence.

Note how the maximum in biases moves to higher k
with decreasing T . This is due to the characteristic function
G having a width a proportional to frequency resolution,
a = 4δω. When this width is reduced, the intensity that leaks
from the spectral peak onto the cylinder at k > 1 can fall
outside the reach of the characteristic function, thus reducing
or removing its influence.

When the data is tapered using a Hann window, this effect is
mostly eliminated, as the long-range spectral leakage is heavily
suppressed. Moreover, the influence of frequency resolution
δω is strongly reduced (graphs of same color group together).

An exception to rule of thumb that longer videos are always
better can be seen for the longest videos T = 80 on the
smallest domain L = 5. Here, the biases are actually greater
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Fig. 7. Same as figure 5 but with parameter set case-L-T (see table I). As in figure 5 The solid and dashed lines correspond to the implied velocity
resolutions from frequency and wavenumber resolution, respectively. From top to bottom the resolution increases, i.e. δw or δk become smaller.

than for the shorter cases with T ≤ 40. This is due to
the characteristic function becoming narrow enough to not
encompass the width of spectral intensity in the ω-direction.
In one dimension this would be proportional to δω, but in
2D or 3D can be dominated by leakage in k, as this effective
broadening in ω scales with O(∂ω/∂k δk) = O(δk/

√
k).

Note, however, that the results presented here all show
biases well below the implied velocity resolutions, when the
data is tapered using a Hann window. If one has to choose
between increasing the domain size or the video duration, it
is clear that an increase in domain size will give the most
benefit.

E. Influence of a background current U0

The cases shown above are without a background current.
The presence of a uniform current U ̸= 0 breaks the rotational
symmetry of the dispersion relation, because of the additional,
angular dependent term k ·U .

To see the effect of a current on the biases in the extracted
DSVs, we assume a (vertically and horizontally) constant

current U with directions θU = 90°, 0°,−90° and current
strengths in the range |U | = 0.025− 0.15. (see table I , case-
U , for all parameters) The input wavenumber spectrum has an
angular spread of ∆θ = 60°, and a peakedness of γ = 3.3,
representing a realistic scenario. The mean propagation direc-
tion is held at θ0 = 90°, resulting in following, crossing and
opposing current, respectively.

The extracted DSVs are shown in figure 8. For k > 1, we
see a bias toward wave-opposing DSVs, while for k < 1, we
see a bias toward wave-following DSVs. This can be seen from
over-/underestimations for U antiparallel/parallel to the wave
propagation direction, respectively. The absolute magnitude of
errors is similar to the case of quiescent water (see section
VI-D). In the case of a pure cross-current, however, this also
results in a turning of the DSVs toward θc̃ = ±90° for
wavenumbers around the spectral peak k ≲ 1.5, as can be
seen in the third row of graphs in figure 8. Particularly, where
the spectral intensity falls off to zero rapidly (k ≈ 0.5), leakage
from the peak of the spectrum can dominate the signal, biasing
the direction of DSVs towards the propagation direction, i.e.
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90°.
Tapering the data using a Hann window mitigates these

biases in amplitude and direction as in the case of quiescent
water. For a cross-current, however, the mean bias remains
significant, i.e. on the order of 10% of the phase velocity at
the spectral peak and unusually also in the vicinity of the
spectral peak.

The error in the direction θc̃ of DSVs for wavenumbers
below the peak is also reduced significantly for following and
opposing currents. In the case of a cross-current these errors
remain significant, (10°-45°) if the current is relatively weak
or the wavenumber goes toward k = 0.5.

As mentioned in section VI-B, turning the camera in an
aerial measurement can reveal the influence of spectral leakage
(one could also rotate the resulting images, bearing in mind
that this is not in general a lossless operation and might also
reduce the field of view). Figure 9 shows the extracted DSVs
for a case with the same parameters as in figure 8, but with
current and spectrum rotated by 30° (Similar results were
obtained for 15-45°).

For the untapered data, we find even stronger mean biases
after rotation, especially for a cross-current. Here the DSVs
around the spectral peak at k ≈ 1 drop below 50% of the
background current, usually an unacceptable level of error.
However, the use of a Hann window again mitigates this, to
the point where the results of different rotation angles become
virtually indistinguishable.

VII. CONCLUSIONS

We have investigated biases from spectral leakage in remote
sensing of currents from analysis of wave spectra. Apparent,
spurious Doppler shifts in the phase velocity are observed even
in the absence of a current, and we analyse how these depend
on wave spectrum and the properties of the signal processing
procedure. Synthetically generated surface elevation data were
used to simulate a random sea state adhering to a JONSWAP
wave spectrum [30] with a cos2 directional distribution, re-
sulting in cubes of data (videos). These were subsequently
analysed with different methods in common use to extract
the Doppler-shift velocities (DSV). Following reference [26],
an appropriate measure of random errors and biases are the
“Doppler shift resolutions” corresponding to the change in
inferred velocity due to a shift of one pixel in wavenumber or
frequency.

A comparison of the normalized scalar product approach
(e.g. [26]) and a least-squares method for extracting DSV
showed that the former is preferable in all cases, and was
therefore used for all subsequent analysis herein.

Assuming the simplest case of quiescent water (i.e. no
current), a complex interplay is found between wave-spectrum
width and peakedness, and the wave-vector and frequency
resolution, together affecting the nature and extent of spurious
Doppler-shift “measurements”. Spectral leakage causes greater
problems when the wave spectrum is strongly peaked and
highly directional so that areas of the observed frequency-wave
vector spectrum which are important to Doppler-shift extrac-
tion have very low signal. Conversely, when the angular spread

is wide, ∆θ > 60° (∆θ: full width of angular distribution
), spurious DSVs are small, i.e., sub-resolution. For strongly
directional spectra ∆θ < 60°, severe biases emerge, with
amplitudes on the order of the group velocity, depending on the
JONSWAP peakedness parameter γ. The biases are sensitive to
resolution in frequency and wave-number space, and especially
in the absence of tapering (see below) poorer resolution rapidly
leads to unusable data for narrow and strongly directional wave
fields. Biases are most severe at low wavenumbers compared
to the spectral peak.

Tapering the video cubes with a 3D Hann window (e.g.
[33]) lowers the biases to the velocity resolution level implied
by the wavevector and frequency resolutions — δcδk and δcδω
as defined in equation (4) — or even below. Indeed, the effect
of ω-resolution is mostly removed for tapered data (note that
although biases are now sub-resolution, the resolution itself
will eventually be too poor for purpose). This implies that in
data acquisition one should prioritize large areas rather than
longer time series if spectral leakage is a problem.

The effect of spectral leakage is most pronounced in the
kx and ky directions in the spectrum, and hence depends on
the angle of propagation relative to these. The biases increase
towards an angle of θ0 = 45° for all wavenumbers outside a
small range around the spectral peak k = kp. This dependence
on θ0 is also mostly removed by tapering the data. Clearly the
observed current velocity cannot depend on which way the
camera is held, meaning that comparison with results when
the video is rotated 45° could give a simple indication of the
severity of spectral leakage problems.

For the case of a constant background current U with
strengths up to 0.15 c0(kp) a strong dependence on the angle
between the current and the waves is observed. While the
magnitudes of the spurious DSVs are mostly beneath the
implied velocity resolutions, we find a significant bias in
the direction of the DSVs around k = kp when the waves
propagate perpendicular to the current. This is also mitigated
by tapering the data, but not removed in the case of a cross
current.

A. Recommendations for mitigation

Summarising the outcome of our analysis from a practical
viewpoint we offer the following considerations to mitigate
the errors and biases related to spectral leakage in remote
sensing of currents from observed wave spectra. In the ex-
traction of Doppler shift velocities from the spectrum, the
commonly used least-squares method is not recommended
except if calculation cost is a severe restriction; a normalized
scalar product procedure gives universally better results (other
methods are also in use, but were not tested). Tapering
the spatio-temporal data with a 3D Hann window greatly
reduces the mean and random biases and greatly reduces the
dependence these have on spectral shape, spectral resolution,
and camera orientation. When errors due to spectral leakage
are suspected, rotating the camera (either the actual camera
or the resulting images) by a small angle before analysis (we
used 30°) and comparing results could reveal whether long
range spectral leakage is causing spurious results, because
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leakage mainly occurs along the axes of the images. We find
that the wavenumber resolution plays a more important role
in the DSV biases than frequency resolution. The influence
of the latter can be nearly eliminated by tapering the data.
Increasing the spatial domain size to improve wavenumber
resolution yields the largest improvement and should therefore
be prioritized over longer time series if spectral leakage is a
concern. The Doppler shift resolutions δcδω and δcδk defined
in equation (4) are useful as conservative measures of errors
and biases due to limited resolution and spectral leakage.
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APPENDIX

A. Comparison of window functions

There exists a wide variety of window functions employed
in all manners of fields, as discussed in e.g. [33]. The suppres-
sion of the long range spectral leakage is the most important
beneficial effect of using a window function, but stronger
suppression comes at the cost of increasing the short range
leakage. For example, the Blackman window has a central
lobe that is about 20% wider than that of the Hann window,
as can be seen in figure 1. To examine its detrimental effect,
the extraction of DSVs has been repeated with a selection
of commonly used window functions. As the results are very
similar we only show the results for the Hann window

w(t) = 0.5− 0.5 cos (2π t/T ) , (17)

the approximate Blackman window,

w(t) = 0.42− 0.5 cos (2π t/T ) + 0.08 cos (4π t/T ) , (18)

and the Kaiser-Bessel window

w(t) =
1

T
I0

(
b
√

1− (2π t/T )2
)
, (19)

with I0 being the zeroth order modified Bessel function of
the first kind and b a free parameter controlling the width
of the central lobe. In figure 10 the extraced DSVs in terms
of their main and random bias are shown. The differences in
the results are insignificant, except for the Blackman window
showing systematically higher biases due to its wider central
lobe.

B. Details of numerical implementation

Here follow further details on the implementation of the
NSP method in section III-C.

1) NSP, LS and discretized data: Because of discretization,
obtaining the spectral intensity Pi (equation 13) on a cylinder
surface needs to be replaced with the spectral intensity in a
volume around it, i.e. a cylinder shell, containing a wavenum-
ber bin around ki:

Fi(k, ω) =

{√
P (k, ω), if |k − ki| ≤ ∆̃k

0, otherwise
. (20)

This also renders the characteristic function Gi (equation (14))
a function of k. The integrals ⟨...⟩ in equation 16 then imply
an additional integration over k within the bin ki ± ∆̃k.

The concept of the NSP method stays the same, with two
details added: First, since the optimization parameter pair c̃ is
assumed constant within a wavenumber bin, the extracted DSV
is a weighted average within that bin, effectively smoothing
the function c̃(k). This also holds for the LS method, but does
not change equation (21), as it only increases the number
of triplets (kx,j , ky,j , ωj). Second, a new free parameter is
introduced with the bin width 2∆̃k that needs to be chosen
carefully. In this work, we use ∆̃k = 2δk, with δk = 1/L the
wavenumber resolution, which is a compromise between in-
creased smoothing (too large ∆̃k) and strong noise, occurring
when too few pixels of the spectrum lie within a bin. (One
could employ an interpolation scheme to circumvent this; the
algorithm used herein simply masks the data, see equation 20)

Since the data is effectively averaged over k with a running
average of width 2∆̃k, the DSVs were extracted such that two
consecutive shells have an overlap of 3/4, i.e. ki+1−ki = δk.

2) Width of the characteristic function: As mentioned in
section V the characteristic function G (equation 14) used
when premultiplying with a Hann window, contains one free
parameter that determines its width. The choice of this pa-
rameter is somewhat delicate, as too small a value causes
single intensity pixels (often outliers) or small high intensity
regions to dominate the determination of the best fit. This
is especially problematic for small (k < 1) wavenumbers,
when the spectral leakage from a noise-enhanced pixel near
the spectral peak at k ≈ 1 causes a small high-intensity region
on the cylinder shell, whereas the “real” spectral intensity, not
originating from spectral leakage, is strongly broadened, thus
having a larger total intensity but a smaller maximum intensity.
In this case, the algorithm effectively ignores the real spectral
intensity and leads to huge biases. On the other hand, too large
a value for a also leads to an increased influence of spectral
leakage, as a too wide Gaussian is insensitive to shifts in its
position. A shift with no, or only small penalty to the overlap
with the real spectral intensity, that increases the overlap with
intensity from leakage, is therefore more likely, also leading
to biases.

To decide on a good compromise we fit the characteristic
function to the Fourier transform of a Hann window, with a
as a free parameter. The result is a ≈ 1.62 δω. To ensure
the width is not too small this value is roughly doubled to
a = 4 δω. (Values for a/δω between 2 and 6 were tried as
well, but the results were most stable between 3 and 5.)

Note, that if spectral leakage occurred only in the ω direc-
tion, a = δω would be the ideal choice. However, as this is
not the case, broadening in the ω direction originates not only
from leakage in the ω direction, but also from leakage in the
k-direction. The steeper the dispersion relation ωDR, the more
this effective ω-leakage from k-leakage increases. A possible
improvement of the used NSP algorithm would therefore be to
use an adaptive a, that increases with |∂ω/∂k|. In the interest
of limiting the parameter space, it was deemed necessary to
stick to a single value for a.
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C. Comparison NSP and a basic LS algorithm

Simple least squares based methods have by now been dis-
carded in most applications. However, their low computational
cost and ease of implementation are benefits to consider. We
therefore repeated the DSV extraction using LS and compare
the results and performance. The least squares method used,
like the NSP method described in section III-C, first singles
out the spectral intensity on a cylinder surface with radius
k. We discard data points with an intensity P < 0.2 (after
normalization) and obtain a list of (kx,j , ky,j , ωj). On these,
the cost function

C(c̃) =
∑
j

(ωDR(kj ; c̃)− ωj)
2 (21)

is minimized to obtain the DSV c̃. Repeating this for a list of
wavenumbers k yields the desired value of c̃ for each value of
k. As in the NSP method and, the minimization/optimization
step is performed using the Nelder-Mead simplex method [35].

We find that the LS method runs significantly faster (up to
a factor of 3); clearly the difference in cost will depend on
the hardware used as well as the implementation. In terms of
accuracy and precision, we find that the LS method performed
consistently worse, and never better, than the NSP method.
Figure 11 shows an example result for a test case in quiescent
water (see table I, case-NSP-LS, for all parameters). As can
be seen, the DSVs obtained via the LS method can show
both a mean and random bias that exceed the implied velocity
resolutions δcδk and δcδω for most wavenumbers, while the
NSP method delivers sub-resolution DSVs for all k > 1. It
is worth pointing out, that for wavenumbers k < 1 the NSP
performs worse than the LS method. However, the random bias
in that range is so large as to make both methods unusable.
Note that a more advanced LS method may perform with
similar accuracy and precision, as is indicated in e.g. [10].
This would, presumably, lead to a computational cost similar
to that of the NSP method, eliminating the advantage. An
iterative LS method has been compared with NSP by Huang
et al. (2012). For waves on currents without vertical shear the
methods performed similarly.

DATA AVAILABILITY

The data that support the findings of this study are available
from the authors upon reasonable request.
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Fig. 8. Same as figure 5 but with parameter set case-U (see table I). The dashed horizontal lines represent the three background velocity values. Deviations
from these are spurious. The third row shows the direction θc̃ of the average Doppler shift velocity.
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Fig. 9. Same as figure 8 but with a 30° rotated video. Note, how the case of cross currents (blue right facing triangles) result in unusable DSVs c̃ especially
around the spectral peak, when the data is untapered. (top left)
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Fig. 10. Doppler shift velocities (DSV) for a normal parameter combination
(θ0 = 90°, ∆θ = 60°, γ = 3.3, L = 10, T = 20, U = 0) obtained using the
NSP method after tapering the data with different window functions. The top
and bottom graph show the DSVs c̃ in terms of the mean (top) and standard
deviation (bottom), respectively.
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(top) and standard deviation (bottom). The solid and dashed line correspond
to the velocity resolutions implied by frequency and wavenumber resolution,
respectively.
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