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Abstract (English)

In this thesis, the exploration of new ways to help people with Type 1 Diabetes
better control their condition is described. In this research, our primary focus
was on the feasibility and benefits of utilizing the intraperitoneal (IP) route for
insulin and glucagon injections in Type 1 Diabetes Mellitus (T1DM), chosen
due to its significantly faster absorption and more rapid effects on glucose
levels compared to the subcutaneous (SC) route. The core contribution of this
research lies in the development of a fully automated dual hormone AP system
and testing in various animal experiments.

In the first major part of this work, a new model is introduced, designed
with a minimal number of parameters and states, exclusively intended for con-
trol applications within dual-hormone AP systems. Demonstrating remarkable
prediction accuracy in over 30 animal experiments, this model represents a
significant advancement that has the potential to facilitate future advancements
in diabetes management.

Subsequently, an estimator based on the Moving Horizon Estimation
(MHE) method is designed, incorporating embedded prior knowledge to ef-
fectively estimate non-measurable states of the model, as well as meals and
exercises. The experimental evaluation showcases the high accuracy of the
estimator, further validating its potential as a valuable tool in diabetes care
future.

The work proceeds with the development of an MPC-based controller,
adeptly incorporating practical considerations. Extensively tested in both in
vivo and in silico experiments, the controller demonstrates high performance,
surpassing existing Hybrid Closed-Loop AP systems in the market. Impor-
tantly, the proposed controller does not necessitate the meals and exercise
announcements, enhancing its user-friendliness and autonomy compared to
the commercial devices which all require meal announcements.

Beyond the primary research target, this study delves into various other ar-
eas within diabetes management. The investigation includes testing a two-layer
PID controller scheme, developing a method to compensate for CGM sensor
time lag, exploring sensor fusion techniques to enhance glucose measurements,
and studying experimental design strategies to increase model parameter iden-
tification accuracy.

The findings of this research contribute to the advancement of diabetes
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research, which in turn may result in advances in diabetes care. The proposed
model, estimator, and controller collectively offer a comprehensive and efficient
solution for achieving reliable glycemic control in T1DM patients with IP
injections. Ultimately, this work represents a vital step forward in personalized
care and opens new avenues for future research and technological innovations.



Abstract (Norwegian)

[ dette studiet har metoder for regulering av blodsukker i pasienter med diabetes
type 1 blitt utforsket. Vart primare fokus var & studere gjennomferbarheten
og fordelene ved 4 bruke den intraperitoneale (IP) ruten for insulin- og gluk-
agoninjeksjoner ved type 1 diabetes mellitus (T1DM). Hovedbidraget til dette
forskningsfeltet var i utviklingen av et helautomatisert bihormonelt AP-system
og testing i forskjellige dyreforsok.

Den forste delen av arbeidet bestod av & introdusere en ny modell, designet
med et minimalt antall parametere og tilstander, samt eksklusivt beregnet for
reguleringsanvendelser innen bihormonelle AP-systemer. Denne modellen
viser en bemerkelsesverdig prediksjonsneyaktighet i mer enn 30 dyreforsek,
og representerer et betydelig fremskritt innen diabetesbehandling.

Etterfulgt av dette ble en estimator designet basert pd¢ Moving Horizon Esti-
mation (MHE)-metoden. Den inkluderer innebygd forkunnskap for effektivt &
estimere ikke-malbare tilstander i modellen, samt maltider og trening/aktivitet.
Eksperimentell evaluering viste at estimatoren har hey neyaktighet, og validerte
ytterligere dens potensiale som et verdifullt verktoy i diabetesbehandling.

Studiet fortsatte med utviklingen av en modellbasert regulering, inklusivt
med innarbeiding av praktiske hensyn. Under omfattende testing, bade i in
vivo og in silico-eksperimenter, viser regulatoren hoy ytelse, og overgar ek-
sisterende Hybrid Closed-Loop AP-systemer pa markedet. Regulatoren som
presenteres her krever ikke kunngjeringer av méltider og trening, noe som
oker brukervennligheten og autonomien.

Utover det primere forskningsmalet, gikk dette arbeidet ogsé inn i andre
elementer innen diabetesbehandling. Dette inkluderer testing av en tolags
PID-regulator, utvikling av en metode for 4 kompensere for CGM-sensorens
tidsforsinkelse, utforsking av sensorfusjonsteknikker for & forbedre maélinger,
og studier av eksperimentelle designstrategier for a oke noyaktigheten av mod-
ellparameteridentifikasjon.

Resultatene fra dette studiet er et bidrag til diabetesforskning, som i fremti-
den kan bli brukt til & forbedre diabetesbehandlingen. Den foreslatte modellen,
estimatoren og regulatoren tilbyr samlet en omfattende og effektiv losning for
oppna stabil glykemisk regulering hos T1DM-pasienter med IP-injeksjoner. Til
syvende og sist representerer dette arbeidet et viktig skritt fremover innen per-
sontilpasset medisin og dpner nye veier for fremtidig forskning og teknologiske
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innovasjoner.
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The upper right photo was taken on May 6th, 2021, during a hiking trip we took
with Anders, Sébastien, @yvind, and Hasti after the 24-hour animal trials.

Anders and | were biking around Bymark on June 30th, 2021, when we took the
lower right photo.

Lastly, the lower left photo was taken on March 30th, 2023, at the University
of Geneva when we were subject managers for an excursion trip for the NTNU
students.

During certain stages of my PhD research, I collaborated closely with
the students whom I co-supervised. Notably, Petter Skau-Nilsen, Martha
Halvorsen, Eirik Jakobsen Daltveit, Christian Lillestrand, Mai Ve Bugge, and
Jana Langholz played a significant role in the work closely related to the material
presented in this thesis.

Furthermore, I would like to express my gratitude to Norway, where I had
the privilege of studying and conducting research. Trondheim, in particular,
stole my heart with its stunning nature, rich culture, and kind-hearted people.

Finally, I would like to dedicate this thesis to my family who have always
been my biggest supporters, my source of love and strength, and my home away
from home.

This journey wasn’t without its challenges, especially during the COVID
pandemic, but we adapted, persevered, and even managed to have some fun
along the way. Attached to this preface, you'll find a picture of my professors
and me hiking, biking, and a selfie with my colleagues during a long experiment
that lasted for 24 hours. Yes, we were all sleep-deprived, but we were motivated
and happy even in the middle of the night.

Trondheim, April 2023,
Karim Davari Benam



Contents

ABSTRACT III
ABSTRACT(NORWEGIAN) V
PREFACE VII

LIST OF FIGURES XIII

LIST OF TABLES XV
NOMENCLATURE XVII

CHAPTER 1 SCOPE AND CONTRIBUTIONS 1
1.1 Thesis Outline 1
1.2 Scope of the Thesis 2
1.3 List of Publications 3
1.4 List of Contributions 5

1.5 The Author’s Individual Contributions in Co-authorships
10

1.6 Research Map 10
1.7 References 13

PARTI INTRODUCTION, BACKGROUND, AND DISCUSSIONS
15

CHAPTER 2 INTRODUCTION 17
2.1 Background and Motivation 17
2.1.1 Diabetes Mellitus 17

ix



X

» CONTENTS

CHAPTER 3

2.1.2  Glucose Metabolism 19
2.1.3 Possible Treatments for Type 1 Diabetes 20
2.1.4 Artificial Pancreas 21
2.1.5 Insulin Injection Routes 21
2.2 Development of the Artificial Pancreas System 23

2.3 Research Groups and Their Designed Control Systems
27

2.3.1 Subcutaneous Artificial Pancreas systems 27

2.3.2 Interaperitoneal Artificial Pancreas systems 28
2.4 Story of the Presented Research 31

2.4.1 Stepl; Choosing the Control Strategy 31

2.4.2  Step2; Streamlining MPC Implementation: Bridg-
ing Complexity for Developers, Delivering Sim-
plicity for Clinicians and Patients 33

2.4.3 Step 3; Developing an Accurate Model with
Simple or No Parameter Identification 34

2.4.4 Step 4; Designing an Estimator 35

2.4.5 Step 5; Design a Model Predictive Controller
and Perform Experiments 35

2.5 References 36

DEVELOPMENT AND TESTING IN ANIMAL TRIALS 41
3.1 Use of Animals in the Experiments 41
3.2 Hormone Injection and Glucose Measurement 42
3.3 Overview of the Designed Artificial Pancreas 43
3.3.1 Continuous Glucose Monitoring System 43
3.3.2 Sensor Fusion 44
3.3.3 Mathematical Model 45
3.3.4 Estimator 46
3.3.5 Control Design 47

3.3.6 Software Framework 50



3.4

CONTENTS

References 51

CHAPTER 4 DISCUSSION 53

4.1

4.2

4.3

4.4

4.5
4.6

Discussions on the Developed Dual-Hormone Intraperi-
toneal Model 53

Discussions on the Developed Dual-Hormone Intraperi-
toneal Moving Horizon Estimator 54

Discussions on the Developed Dual-Hormone Predic-
tive Controller 55

Discussions on using Single Hormone or Dual Hor-
mone Artificial Pancreas 57

Discussions on Using Intraperitoneal Route 58

References 60

CHAPTER 5 CONCLUDING REMARKS 61

5.1
5.2

53

Conclusions 61

Future Work 62

5.2.1 From Research to Real-World Impact 64
5.2.2 Impact of This Research on Patients’ Lives 64
5.2.3 Risk Assessment 65

References 65

PART II ORIGINAL PUBLICATIONS 67

CHAPTER 6 ORIGINAL PUBLICATIONS 69

6.1
6.2
6.3
6.4
6.5
6.6

Paper1 70
Paper2 79
Paper3 99
Paper 4 108
Paper 5 123
Paper 6 132

<

xi



xii » CONTENTS

6.7 Paper7 143
6.8 Paper8 151
6.9 References 180



List of Figures

1 Artificial Pancreas Trondheim (APT) viii

CHAPTER 1

1.1 Research Map 11

1.2 Scope of the papers 12

CHAPTER 2

2.1 Global incidence of type 1 diabetes 18

2.2 Glucose regulation system 19

2.3 Artificial pancreas 21

2.4 Insulin infusion routes 22

2.5 Peritoneal cavity = 23

2.6 Advancements of artificial pancreas 25

2.7 Literature map 26

2.8 Categories of the artificial pancreas systems 27
2.9 Implantable pumps 29

2.10  Refilling of implantable pumps 30

CHAPTER 3

3.1 Establishing of intraperitoneal route 43

3.2 Placement of sensor on pigs 44

3.3 Block diagram of the proposed artificial pancreas

3.4 Cost function of the designed controller 49

3.5 Designed Software and framework 50

45

xiii



xiv  » LIST OF FIGURES

CHAPTER 4

CHAPTER 5

5.1 Microglucagon mechanism

CHAPTER 6

63



List of Tables

1.1 Contributions to Papers 1-8. 10

2.1 Important research groups and companies

2.2 MPCvsPID 33

CHAPTER 3

CHAPTER 4

CHAPTER 5

CHAPTER 6

28

XV






Nomenclature

ACRONYMS

AP Artificial Pancreas MHE

BG Blood Glucose

BGL Blood Glucose Level MPC

CF Correction Factor

CGM Continuous  Glucose PI
Monitor PISA

CHO Carbohydrate

CSII Continuous  Subcuta- PK/PD
neous Insulin Infusion SA

DIP Dual-hormone In- SC
traperitoneal SI

DM Diabetes Mellitus SMBG

EGP Endogeneous Glucose
Production SVD

EKF Extended Kalman Filter

HCL Hybrid Closed Loop T1DM

HOB Glucagon on Board T2DM

HWITL  Hardware in the Loop Ul

IG Interstitial Glucose UKF

I0B Insulin on Board

P Intraperitoneal

KF Kalman Filter

MARD Mean Absolute Relative VP
Difference

Moving Horizon Estima-
tion

Model Predictive Con-
trol

Practical identifiability

Pressure Induced Sensor
Attenuation

Pharmacokinetic/Pharmacodynamic

Sensitivity Analysis
Subcutaneous
Structural identifiability

Self Monitoring of
Blood Glucose

Singular Value Decom-
position

Type 1 Diabetes Mellitus
Type 2 Diabetes Mellitus
User interface

Unscented Kalman Fil-
ter

UVa-Padova University of Virginia

and Padova

Virtual Patient

xvii






CHAPTER 1

Scope and Contributions

1.1 THESIS OUTLINE

The work is a paper collection-based thesis and is organized as follows:

Chapter 1 (Scope and Contributions): Outlines the extent of the thesis and ex-
plains the publications and contributions made in this current research
endeavor.

Chapter 2 (Introduction): Introduces the reader to type 1 diabetes and the artificial
pancreas. It describes the state of the art in control of blood glucose level
and presents the challenges in the assessment and use of the currently
available systems.

Chapter 3 (Development and Testing in Animal Experiments): In this chapter,
we explore the concept of "Animal Experiments." Furthermore, we delve
into the methods employed in the project, analyze the challenges faced,
and highlight the strategies employed to overcome them.

Chapter 4 (Discussion): Puts the contributions and publications into context and
discusses the strengths and weaknesses of the present work.

Chapter 5 (Concluding Remarks): Summarizes the work, defines relevant topics
for future work, and concludes the thesis.

Chapter 6 (Original Publications): Contains seven published papers in facsimile,
as well as one submitted journal paper manuscript.
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1.2 ScCOPE OF THE THESIS

This thesis aims to evaluate the feasibility and advantages of using the intraperi-
toneal (IP) route for insulin and glucagon injections in Type 1 Diabetes Mellitus
(T1DM) patients. Additionally, it presents a fully automated dual-hormone
artificial pancreas solution for T1DM patients, eliminating the need for meal
or exercise announcements. In this thesis we:

+ Analyse:
1. The interactions of Blood Glucose Level (BGL) with intraperi-
toneal (IP) insulin and glucagon,

2. The feasibility of having a fully closed-loop (FCL) artificial
pancreas (AP) using the IP route,

3. The pharmacokinetics (PK) and pharmacodynamics (PD) of
intraperitoneal (IP) insulin and glucagon injections.
* Review:
1. Existing mathematical models and simulators in the litera-
ture for IP AP systems,

2. Existing estimation methods for estimating the mnon-
measurable states in the body,

3. Existing control methods for regulating the BGL.
+ Design:

1. A model for dual-hormone APs for control purposes,

2. An estimator for consumed meals and the non-measurable
states,

3. A dual-hormone predictive controller to regulate the BGL.

4. Experiments to evaluate the proposed methods.
s Evaluate the proposed methods, through:

1. Insilico tests in 100 virtual subjects (simulated pigs),
2. Invivo test in six anesthetized pigs.

3. In vivo test in an awake pig.




1.3 LIST OF PUBLICATIONS

1.3 LIST OF PUBLICATIONS

The research that forms the basis of this thesis has resulted in the following
publications, listed and numbered in chronological order, and grouped by
publication type:

Paper 2

Paper 4

Paper 8

Paper 3

Journal Papers:

K. D. Benam, H. Khoshamadi, M. K. Am, @. Stavdahl, S. Gros, and A.
L. Fougner, “Identifiable prediction animal model for the bi-hormonal
intraperitoneal artificial pancreas,” Journal of Process Control, vol. 121,
pp- 13-29, 2023.

DOI: 10.1016/j.jprocont.2022.11.008.

K. D. Benam, S. Gros, and A. L. Fougner, “Estimation and prediction
of glucose appearance rate for use in a fully closed-loop dual-hormone

intraperitoneal artificial pancreas,” IEEE Transactions on Biomedical
Engineering, pp. 1-12, 2023, in press.

DOI: 10.1109/TBME.2023.3301730.

K. D. Benam, M. K. Am, P. C. Bésch, H. Khoshamadi, S. Chr. Christiansen,
D. R. Hjelme, @. Stavdahl, S. M. Carlsen, S. Gros, and A. L. Fougner, “A
Dual Hormone Predictive Controller for a Fully Automated Intraperi-
toneal Artificial Pancreas in Pigs”, Submitted to Automatica on 15 Sep
2023.

Conference Papers:

K. D. Benam, H. Khoshamadji, L. Lema-Pérez, S. Gros and A. L. Fougner,
‘A Nonlinear State Observer for the Bi-Hormonal Intraperitoneal Artifi-
cial Pancreas,' 2022 44th Annual International Conference of the IEEE
Engineering in Medicine & Biology Society (EMBC), Glasgow, Scotland,
United Kingdom, 2022, pp. 171-176.

DOI: 10.1109/EMBC48229.2022.9871264.

M. Halvorsen, K. D. Benam, H. Khoshamadi and A. L. Fougner, "Blood
Glucose Level Prediction Using Subcutaneous Sensors for in Vivo Study:
Compensation for Measurement Method Slow Dynamics Using Kalman
Filter Approach,” 2022 IEEE 61st Conference on Decision and Control
(CDC), Cancun, Mexico, 2022, pp. 6034-6039.
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Paper 5

DOI: 10.1109/CDC51059.2022.9992638.

M. A. Ahdab, K. D. Benam, H. Khoshamadj, S. Gros, and A. L. Fougner,
“Sensor Fusion for Glucose Monitoring Systems," [IFAC World Congress,
Yokohama, Japan, July 2023. In press.

Paper 6 ]. Langholz, K. D. Benam, B. Sharan, S. Gros, and A. L. Fougner, "Fully

Paper 7

OP1

O.P2

Automated Bi- hormonal Intraperitoneal Artificial Pancreas Using a
Two-Layer PID Control Scheme," ECC, Bucharest, Romania, June 2023.

DOI: 10.23919/ECC57647.2023.10178295

S.E. Engell, H. Bengtsson, K. D. Benam, A. L. Fougner, and J. B. Jorgensen,
"Optimal Experimental Design to Estimate Insulin Response in Type 2
Diabetes," CCTA, Bridgetown, Barbados, August 2023. In press.

Other Publications:

B. Aminian, K. D. Benam and D. Varagnolo, "ASAN: An Extendable
Approach for Automatic Step-sizes Adjustment for Newton-Raphson
Consensus Optimization Algorithms," 2022 IEEE International Confer-
ence on Systems, Man, and Cybernetics (SMC), Prague, Czech Republic,
2022, pp. 3026-3032,

DOI: 10.1109/SMC53654.2022.9945400.

K. D. Benam, H. Khoshamadj, S. Gros, and A. L. Fougner, A. (2022, April)
[Poster]. The bihormonal intraperitoneal artificial pancreas achieve fully
closed loop control in anesthetized animals. In Diabetes Technology &
Therapeutics (Vol. 24, pp. A97-A97). 140 Huguenot Street, 3rd Fl, New
Rochelle, NY 10801 USA: Mary Ann Liebert, Inc.
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Paper 1

Paper 2

Paper 3

Title: A Nonlinear State Observer for the Bi-Hormonal Intraperitoneal
Artificial Pancreas”

This paper proposes a high-gain observer (HGO) for a modified model
presented in [1] to estimate the amounts of insulin and glucagon in
different compartments, as well as the glucagon sensitivity. In this paper,
we assumed that the meals are announced, and the diffusion rates of
insulin and glucagon from the peritoneal to the Portal Vein are high, with
negligible absorption delay, similar to [2]. Hence, there is no need for
estimating the amount of insulin and glucagon in the peritoneal cavity.
Later in the research, we designed a different estimator (Paper 4) that
does not require meal announcements and is based on a more accurate
model (Paper 2). Consequently, the designed HGO was not utilized in
the closed-loop experiments.

Title: “Identifiable prediction animal model for the bi-hormonal in-
traperitoneal artificial pancreas”

This paper is one of the main contributions of this thesis which explores
the pharmacokinetics and pharmacodynamics of the intraperitoneal (IP)
route for a dual-hormone Artificial Pancreas (AP) system. We presented
a model for Model Predictive Control (MPC)-based dual-hormone IP
APs and trained and tested it using data from 26 recorded experiments
in anesthetized pigs.

We develop a technique that utilizes rich experimental data from prior
experiments in other subjects to increase the identifiability of the model.
Many parameters are modeled as functions of body weight or are com-
mon across animals, simplifying the identification process for each new
subject while preserving essential details that enhance prediction capa-
bility.

The resulting model, named "meta-model," only requires the identifi-
cation of five parameters for each new subject (pig). These parameters
include the brain glucose consumption rate, the sensitivity of the liver
and other organs to insulin, the sensitivity of the liver to glucagon, and
the initial glycogen storage level. The meta-model is utilized in several
subsequent papers (Papers 4, for developing a state estimator; Paper 6,
develop a simulator to generate virtual subjects; and Paper 8, to develop
a dual-hormone predictive controller).

Title: Blood Glucose Level Prediction Using Subcutaneous Sensors for

4 5
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Paper 4

in Vivo Study: Compensation for Measurement Method Slow Dynamics
Using Kalman Filter Approach

In our open-loop experiments, we were using a blood gas analyzer (BGA)
to measure the BGL. In closed-loop experiments, we had to use a con-
tinuous glucose monitoring (CGM) system using the SC sensors since it
was not feasible to take blood samples frequently. However, it measures
glucose in interstitial fluid in subcutaneous tissue rather than directly in
plasma. Measuring BGL in this method introduces a time lag in captur-
ing the blood glucose level. This can reduce the quality of blood glucose
regulation and result in hypo- or hyperglycemia.

The paper presents the development of a simple and practical linear
Kalman filter to predict blood glucose concentration using CGM data
and compensate for slow dynamics. A physiology-based, input-less
model is used to describe glucose diffusion from plasma to interstitial
fluid, with parameters obtained from the literature. The performance is
evaluated using data from two animal experiments conducted on anes-
thetized pigs, which includes CGM measurements every 1.2 seconds
and sporadic blood sample analysis during experiments. The results
demonstrate that the proposed approach effectively compensates for the
slow dynamics of CGM measurements when compared to blood glucose
samples, as measured by statistical accuracy scores. This compensation
can enhance the decision-making of control algorithms for glucose reg-
ulation during rapid changes in glucose concentration, such as during
meals and exercise.

As a future practice, we will integrate this method with the method
proposed in Paper 5 to infuse the multiple sensor data and compensate
for the time lag of the CGM systems from different brands.

Title: ‘Estimation and Prediction of Glucose Appearance Rate for Use in
a Fully Closed-Loop Dual-Hormone Intraperitoneal Artificial Pancreas”

Another main contribution of this thesis is the proposed DIP-MHE. This
study presents an estimator for glucose appearance rate (GAR) based
on moving horizon estimation (MHE). The underlying cost function
incorporates information about the lifestyle and diet of the subjects to
improve estimation accuracy without the need for meal announcements.

The effectiveness and reliability of the estimations were tested by using
data obtained from three 24-hour experiments on anesthetized animals.
The estimator achieved an average 21.8% mean absolute percentage
error (MAPE) in estimating GAR without meal announcements across
six different scenarios. More importantly, it also achieved a promising



Paper 5

Paper 6

1.4  LiST OF CONTRIBUTIONS

10.0% MAPE in four-hour blood glucose level (BGL) predictions when
assuming future GAR was known. In addition, if future GAR is unknown,
a predictor scheme is proposed to predict future GAR and BGL. For the
predictions made over 120 minutes, the predictor achieved an average
MAPE of 18.0% and 28.4% for GAR and BGL predictions, respectively.

As there is no comparable estimator available in the existing literature,
the scores achieved cannot be directly compared with previous research.
However, our findings demonstrate the effectiveness and reliability of the
proposed estimator, especially in near-real-life scenarios. This estimator
is well-suited for applications in closed-loop systems, particularly in the
context of MPC methods.

Title: “Sensor Fusion for Glucose Monitoring Systems”

For a fully automated AP to function effectively, accurate BGL readings
are crucial. However, the accuracy of commercially available sensors can
be affected by various factors, such as sensor artifacts, connection loss,
and poor calibration. Incorrect insulin/glucagon bolus administration
may result from inaccurate sensor data when the patient is not super-
vising the system. In animal experiments, the situation may be further
complicated as the pigs tend to play with the sensor and apply pressure.

To address this challenge, multiple sensors were mounted on the subjects
(pigs) in the experiments to ensure correct measurements. A sensor
fusion method then needed to be developed to automate the merging of
data from multiple sensors and detect faults.

In this paper, we introduce and derive a Multi-Model Kalman Filter
with Forgetting Factor (MMKFF) for fusing information from redun-
dant subcutaneous glucose sensors. To evaluate its performance, we
compared the MMKEFF against other Kalman Filter (KF) strategies using
experimental data from two different animals. The results demonstrate
that the developed MMKEFF provides a reliable fused glucose reading.
Moreover, compared to the other KF approaches, the MMKEFF exhibits
superior adaptability to changes in the accuracy of the glucose sensors.

Title: “Fully Automated Bi-Hormonal Intraperitoneal Artificial Pan-
creas Using a Two-Layer PID Control Scheme”

In the literature, MPC methods are widely utilized for AP systems, e.g.,
Control IQ. These methods are associated with computational challenges,
the need for precise models, and estimators. As we are exploring the use
of dual-hormone injections via the IP route, we tested the performance of
PID controllers and assessed if they can deliver comparable results to the

< 7
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Paper 7

MPC methods. For our study, we employed the meta-model presented
in Paper 2 as a simulator.

In this work, a bi-hormonal AP with IP infusions is designed to increase
the time within the range of 3.9-10.0 mmol/l and alleviate the burden
of meal announcements. A two-layer controller is designed to provide
safe and effective insulin and glucagon delivery. The primary layer is
based on classical PID controllers for insulin and glucagon, and the
supervisory layer includes four parts: (A) Zone-based control settings,
(B) Extrapolation of sensor data to compensate for sensor delay in SC
tissue, (C) Auto-tuning of the PID parameters in the primary layer, and
(D) Safety barriers. The controller is designed to prevent hypoglycemia
after meals and during physical activity, as well as prevent postprandial
hyperglycemia.

The results indicated that the designed PID controller effectively main-
tained the blood glucose levels within the acceptable range without the
need for meal announcements. Moreover, the proposed method demon-
strated significantly lower computational requirements compared to
MPC methods.

Title: “Optimal Experimental Design to Estimate Insulin Response in
Type 2 Diabetes”

The quality of glycemic control is directly linked to the accuracy of the
model and parameter identification. To ensure practical parameter iden-
tification, the collected data must be sufficiently rich and capable of
exciting the necessary dynamics during the identification period. More-
over, the identification period should be carefully planned to maintain
safe blood glucose levels for the patient.

This paper proposes an optimal experimental design for selecting the
size of three meals and the hourly fast-acting insulin infusion rate over
24 hours. The designed experiment maximizes the sensitivity of blood
glucose levels to the parameters of the Type 2 diabetes (T2D) model in [3],
while also ensuring safety considerations. The results indicate that this
optimal experimental design has the potential to enhance model-based
algorithms and can serve as a qualitative tool when planning clinical
experiments.

The collaboration between NTNU and the Technical University of Den-
mark (DTU) resulted in this paper. Sarah Ellinor Engell, who specializes
in Type 2 diabetes (T2D) and optimal experimental design, visited us
between January and March 2023. We are continuing our collaboration
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with DTU to apply the same method to the meta-model presented in
Paper 2 and to patients with Type 1 diabetes.

Title: A Dual-hormone Predictive Controller Framework for Fully
Automated Intraperitoneal Artificial Pancreas”

The main contribution of this thesis is presented in this paper, where a
dual-hormone predictive control (DHPC) framework is proposed for
a fully automated artificial pancreas. The DHPC utilizes the proposed
meta-model in Paper2 and the DIP-MHE designed in Paper4 to control
the BGL without the need for meal announcements and with IP insulin
and glucagon infusions.

A predictive control approach was designed and tested in animal experi-
ments, involving six anesthetized pigs for 12-24 hours and an awake pig
for five days. The proposed method achieved 73.1-94.2% time-in-range
(TIR), surpassing the reported average TIR of commercially available SC
hybrid closed-loop systems such as Medtronic MiniMed 670G (70%),
Tandem t slim X2 with Control-IQ (72%), Omnipod 5 with Horizon
(70%), and Diabeloop G7 (74% TIR).

The findings demonstrate the promise of the dual-hormone AP utilizing
I[P hormone delivery in terms of feasibility, safety, and superior fully au-
tomated BGL control. However, the paper also addresses the challenges
and complexities associated with implementing the dual-hormone IP ar-
tificial pancreas system from the ground up. These challenges encompass
BGL measurement, estimation, prediction, and surgical considerations
in practical applications.
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1.5 THE AUTHOR’S INDIVIDUAL CONTRIBUTIONS IN CO-AUTHORSHIPS

TABLE 1.1. Contributions to Papers 1-8.

Scale:

Has essentially done all the work independently  (90-100%)

Has done most of the work (70-90%)

Has contributed considerably (40-60%)

Has contributed to the collaboration (10-30%)

No or little contribution (0-10%)
Contribution to Paper: 1 2 3 4 5 6 7 8

Identification of the scientific problem and
Proposing the Topic

Planning of experiments, data collection or
literature review

Design, development and implementation of
methodology

Preparation of the scenarios in the experi-
ments/in the simulations

Interpretation of results and preparation of
the Figures

preparation and writing of the first draft of
the manuscript

Finalization of the manuscript and submis-
sion

1.6 RESEARCH MAP

In summary, the targets, approaches, and the initially available resources of
this research are illustrated in Figure 1.1. The main targets of the project
were to analyze the feasibility of using the IP route to achieve a fully closed-
loop artificial pancreas, design an AP, and test it in animal experiments. The
available resources were rich data from the open-loop animal experiments, and
the developed low-order model [1] in our research group.

To achieve the defined targets, we enriched our data set by conducting four



1.6 RESEARCH Mar <« 11

FIGURE 1.1. Summary and the Research Map of this work; AP, artificial pancreas; IP, intraperi-
toneal; IV, intravenous; FCL, fully closed loop; MPC, model predictive control.

Our Methods and main contributions

Enriching Our Dataset: conducting 4

open-loop experiments with IV insulin Targets of This Ph.D.
and glucagon.

Where we started
(Available Resources)

Designed a Meta-Model: For control
23 Data sets from animal purposes with easy parameter
Experiments identification

Test and analyse Feasibility
of using IP route for control

Designed dual-hormone

Available intraperitoneal Moving horizon Design & Implement FCL AP
Low-order Model Estimator and Predictor system
(DIP-MHE)
Minimum Hardware to Designed dual-hormone Model .
perform closed-loop Predictive Control Deslgg & :_l:plementAlVll)PC for
Experiments (DHPC) ual-hormone

Designed dual-hormone Artificial
Pancreas Framework and upgrade the
Hardware

new experiments involving intravenous insulin and glucagon infusions. These
experiments were designed to study the pharmacokinetics of the hormones
in pigs with different body weights, aiming to understand the effect of body
weight on the parameters of the model. Moreover, a wide range of IP insulin
and glucagon boluses were given to capture the impact of the hepatic first-pass
effect.

Based on the findings from the new data set, we developed the model pre-
sented in Paper2, which facilitated easy parameter identification. Subsequently,
in Paper4, an estimator was designed to estimate the glucose appearance rate in
blood and the states of the proposed model. Utilizing the model and estimator,
we then created a dual-hormone predictive controller (Paper 8) to regulate
blood glucose levels in animal experiments.

Finally, we designed and implemented a dual-hormone artificial pancreas
framework in Matlab to conduct the animal experiments. The block diagram
of the implemented dual-hormone artificial pancreas, along with a summary
of the scope of the papers, is illustrated in Figure 1.2.
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FIGURE 1.2. A schematic representation of the proposed scheme for the dual-hormone in-
traperitoneal artificial pancreas, tested in animal experiments. The published
papers and their respective scopes are visually depicted in blue boxes at the
bottom.
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2.1

2.1.1

CHAPTER 2

Introduction

The aim of this chapter is to provide an introduction to TIDM and AP systems, as
well as present the current state of knowledge regarding the control of BGL through
exogenous insulin and glucagon. In addition, this chapter presents the "story" of the
presented research in this thesis.

BACKGROUND AND MOTIVATION

Diabetes Mellitus

The term “Diabetes Mellitus” has its origins in the Greek word diabetes, which
translates to “siphon” or “to pass through,” and the Latin word mellitus, which
means “sweet.” The civilizations of Ancient Greece, India, and Egypt recognized
the sweetness of urine in individuals with similar symptoms, which led to the
development of the term diabetes mellitus [1].

Diabetes mellitus is a type of disease that disrupts the metabolic balance
controlled by insulin, leading to uncontrolled BGL. Type 1 diabetes mellitus
(T1DM), also known as juvenile-onset diabetes mellitus or insulin-dependent
diabetes mellitus, is caused by a complete lack of insulin due to the loss of
insulin-producing beta cells in the pancreas [2]. The occurrence and frequency

of type 1 diabetes vary considerably across the world (as shown in Figure 2.1).

Finland has the highest incidence rates of type 1 diabetes, with over 60 cases
per 100,000 people each year [3].

Type 1 diabetes has been on the rise worldwide for many decades, with
reported annual increases in Finland, Germany, and Norway of 2.4%, 2.6%,
and 3.3%, respectively. The incidence rates of type 1 diabetes have fluctuated
in various countries, although Sweden has observed a plateau in recent years
(3, 4]. The Nordic countries and North America exhibit a greater prevalence of
T1DM cases, potentially attributed to the more advanced healthcare systems
and enhanced accessibility to diagnoses in these regions.

Administering external insulin is the primary approach to control type 1
diabetes. The utilization of recombinant insulin analogs, insulin pumps, and

17
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advanced monitoring devices has significantly enhanced glucose regulation in
patients with this condition. Despite these advancements, existing therapies
do not emulate the precise feedback control of insulin secretion observed in
healthy individuals, which can result in sustained hyperglycemia in nearly all
diabetes patients. Consequently, this can lead to severe long-term complications
such as cardiovascular disease, neuropathy, retinopathy, and renal failure [2].

On the opposite end of the glucose spectrum, when BGL falls below 3.9
mmol/], hypoglycemia may lead to convulsions, coma, or even death. Some
patients are consistently anxious about hyperglycemia or the possibility of
sudden hypoglycemia. These concerns, in addition to other disease-related
burdens, result in three times the rate of depression among individuals with
type 1 diabetes. In addition, T1DM issues can cause people to drop out of
employment and thus also have an increased risk of financial and psychological
problems.

The economic impact of diabetes in society is significant, with the cost of
treating a diabetic individual being twice that of a non-diabetic individual. In
Western countries, the cost is 560 billion euros per year or 2,600 € per patient
annually [5, 6]. Hence, any automated system designed to manage BGL, thereby
minimizing the need for patient intervention, is beneficial for both individuals
and society.

The following section explores glucose metabolism and potential treatment
options.

[J01-94
[ 95-18:6
3187314
I 31.5-43-1
Il 43-2-57-6
[ No data

FIGURE 2.1. The estimated global incidence of type 1 diabetes, by region [3] (Copyright order
number: 1357000 on marketplace.copyright.com).
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2.1.2 Glucose Metabolism

Glucose serves as a vital energy source for the body, particularly for certain
cell types such as nervous tissue and red blood cells [7]. In healthy individuals
who are fasting, BGL typically remains within the range of 3.5 to 5.5 mmol/L
(8], while after a meal, it seldom increases beyond 7.8 mmol/L and returns
to its pre-meal level within 2-3 hours [7]. The liver plays a significant role in
glucose regulation, as it can switch between storing glucose and producing and
releasing glucose depending on the glucose demands of the body [9].

GI Tract Systematic Circulation Major Glucose Metabolism

Glycogen
Storage

Liver

Glycogen
Storage

Gludose

Fructose

Galattose
=

. 4 Pancreas
Insulin

Blood g @ .
Glucose |« = | Peripheral
Glucose — @ P

Tissue

' Concentration

FIGURE 2.2. Simplified overview of glucose regulation system in healthy individuals; Gl, gas-
trointestinal.

As shown in Figure 2.2, eating carbohydrates causes an increase in BGL.
Glucose can be detected by sensors in the taste buds on the tongue. Signals are
sent to the central nervous system when glucose is absorbed from the intestines,
and incretin hormones are released by enteroendocrine cells in response to
glucose uptake [7]. Insulin is then released from the pancreatic 3-cells due to
direct stimulation by high BGL.

Postprandial insulin is secreted in a pulsive pattern, and insulin is trans-
ported into the hepatocytes to be converted into glycogen for storage. Insulin
also activates the uptake of glucose by adipose tissue and muscle cells. In healthy
individuals, both insulin and BGL return to their pre-meal level within 2-3
hours [7, 10, 11].

Insulin is the primary hormone that lowers BGL directly by allowing the or-
gans to store or utilize the glucose. It also indirectly regulates BGL by inhibiting
glucagon secretion, suppressing hepatic gluconeogenesis, and slowing the rate
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2.1.3

of gastric emptying through the secretion of amylin in the 3-cells [7, 12, 13].

Maintaining normal BGL is crucial for the proper function of many cells,
particularly in the central nervous system (CNS). The CNS consumes a sig-
nificant amount of glucose, and glucose uptake by CNS cells is primarily fa-
cilitated by insulin-independent glucose transporters [7]. When BGL drop,
the brainstem and hypothalamus activate several physiological responses, in-
cluding the sympathetic and parasympathetic nervous systems and the release
of epinephrine from the adrenal glands. These pathways stimulate glucagon
release by pancreatic a-cells and glucose production by the liver to prevent
hypoglycemia [14, 15].

Glucagon is a hormone that is released by the a-cells into the pancreatic vein
and transported directly to the liver, where glucagon receptors are primarily
located. Glucagon triggers the production of glucose in the liver through
the processes of glycogenolysis and gluconeogenesis. The liver produces the
majority of the endogenous glucose in the fasting state by breaking down the
stored glycogen, while the kidneys contribute a smaller amount [7]. Glucagon
is primarily eliminated by the kidneys [16].

Possible Treatments for Type 1 Diabetes

As mentioned, the pancreas in T1DM patients produces no or little insulin.
With the current progress in technology and science, two feasible treatments
are pancreas transplant and external insulin therapy.

For certain patients, particularly those experiencing end-stage diabetic
kidney disease, a pancreas transplant can be a viable treatment. The reason is
that when they need a kidney transplant, a donor, and immunosuppressants,
they can transplant the pancreas at the same time without much extra burden
or risk.

This procedure can alleviate diabetic symptoms, however, the human pan-
creas is scarce, and immunosuppressive drugs can cause severe side effects.
Norway has conducted around 25 pancreas transplants per year since 2011,
with a total of 91 treated patients between 2001 and 2017. This treatment is
still considered an experimental method in the United States [7].

In external insulin therapy, patients must administer insulin based on their
needs. This involves measuring their BGL and infusing external insulin ac-
cordingly to regulate the BGL. With the currently developed technology, this
procedure is relatively automated by using BGL sensors and insulin pumps.
The automated system is called the artificial pancreas (AP).
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2.1.4 Artificial Pancreas

2.1.5

As shown in Figure 2.3, the AP system utilizes a BGL sensor, an insulin pump,
and a control algorithm to automatically regulate the BGL by injecting insulin.
A dual-hormonal AP can deliver glucagon in addition to insulin to reduce
the risk of hypoglycemia. At present, APs are developed to deliver insulin
into subcutaneous (SC) tissues and use SC BGL sensors to measure BGL. The
disadvantage of this method is the slow insulin absorption and its slow dynam-
ics, which makes it challenging to achieve precise BGL control, particularly
with unanticipated meals [17]. Therefore, in the commercially available single-
hormone AP systems, the meals are announced to the controller before/during
meal consumption.

Blood Glucose
Sensor Insulin action time lag:
Time constant: Up to

Insulin absorption time lag 25 min in liver

(time constant 5-30 min

Artificial
Pancreas

Meal announcement
(meal feedforward)

Adjust insulin level Sensor Time lag:
based on Blood ] Time constant:
glucose level 5-15 min

* Compensation for delays
« Safety considerations
* Dynamics of the subject

Medtronic™

FIGURE 2.3. Basic concept of a hybrid closed-loop (HCL) system for type 1 diabetes ther-
apy - artificial pancreas (AP). In HCL systems, an estimated size of the meals
is announced to the controller before eating. The picture on the left is from [3]
(Copyright order number: 1357000 on marketplace.copyright.com)

Insulin Injection Routes

Three main routes can be used to infuse insulin continuously into the body;
The intravenous (IV) route, subcutaneous (SC) route, and intraperitoneal (IP)
route.

When insulin is delivered via the IV route, as shown in Figure 2.4, it is
distributed throughout the body by blood circulation. Despite the quickness
and reliability of the IV route, blood clots and catheter-related problems make

21
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it unsuitable for continuous insulin infusions. The SC route is safer and less
invasive than the IV route [18]. Therefore, continuous subcutaneous insulin
infusion (CSII) has become a widely used solution since the 1990s.
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FIGURE 2.4. Comparison of the time delays and pharmacokinetics block diagram of the SC,
IB, and IV insulin administration (the figure is from Paper 2 - reuse of the figure is
unrestricted).

Due to the intrinsic delay in the SC route and the slow dynamics of insulin
absorption, no matter how advanced the control algorithms are, there is al-
ways a trade-off between the performance of the controllers and the risk of
hypoglycemia episodes. The slow dynamics and delay can cause oscillations,
especially if the control algorithm is aggressive (high gain). It requires precise
control tuning to achieve a fully automated AP without meal announcements.
Therefore, in commercially available single-hormonal APs, the carbohydrate
content of each meal must be estimated and announced to the AP ahead of
time [19]. However, it is challenging for some patients to remember meal
announcements during the day or estimate the size of their meals.

In addition, a CSII delivers insulin to the entire body in equal concentra-
tions, whereas the primary target organ of insulin is the liver. Under normal
conditions, insulin is secreted from the pancreas and transported directly to the
liver via the portal vein (PV). The insulin concentration is consequently much
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higher in the liver than in the rest of the body. However, the non-physiological
nature of CSII leads to a high concentration of insulin in peripheral tissues,
which impacts the BGL control quality.

An alternative and feasible approach for delivering drugs to the liver is to
deposit the drug into the peritoneal cavity [20-22]. As shown in Figure 2.5, the
peritoneal cavity is a space within the abdomen enclosed by the peritoneal lining.
It is lubricated by a small volume of peritoneal fluid that facilitates movements
of the abdominal organs [23]. Although the peritoneal cavity is small in volume,
it has a large surface area with many surrounding blood vessels within the
lining. These vessels together with the blood vessels from the intestines, drain
into the liver via the portal vein (PV). Therefore, the drugs in the peritoneal
cavity will reach to the liver by diffusing into the PV. Drug injections via this
route are called IP injections.

INTRAPERITONEAL RETROPERITONEAL
COMPLETELY COVERED with PARTIALLY COVERED with
VISCERAL PERITONEUM PERITONEUM
A\ * KIDNEYS /
* URETERS
Q/} * SUPRARENAL
GLANDS
# STOMACH REGT
* 1+ PART DUODENUM
# TESUNUM
* ILEUM

* TRANSVERSE COLON
* SIGMOID COLON

* LIVER

* SPLEEN

FIGURE 2.5. Human peritoneal cavity and the organs included in that area. The figure is taken
directly from [24].

In addition to mimicking normal pancreatic function with IP injections,
this route has significant control benefits, such as faster insulin appearance in
the blood due to a higher absorption rate and also faster insulin disappearance
rate due to the hepatic first-pass (HFP) effect [25]. The current challenges and
solutions of using the IP route are discussed in [19].

DEVELOPMENT OF THE ARTIFICIAL PANCREAS SYSTEM

To design a practical AP system, it is necessary to have at least three compo-
nents/modules:
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+ A real-time blood glucose monitoring (CGM) device,
+ One insulin pump (two pumps for dual-hormone APs),

+ A control algorithm to estimate the required amount of insulin (and
glucagon for dual-hormone APs).

Although the idea of developing an AP system was conceived after the
invention of insulin in the 1920s, it required significant advancements in CGM
systems before it could be tested in real-life situations. The key inventions and
events in the development of AP components are visually represented in Figure
2.6 and the timeline of the important studies is presented in Figure 2.7.

The first closed-loop system using the CGM devices was tested in the
early 2000s [26], where the control algorithms were running on computers
[27-29]. The next development was implementing the controllers in the pumps
themselves or in the smartphones.

The development and improvement of various types of AP systems have
been ongoing since the mid-2010s. Figure 2.8 depicts the different categories
of the AP systems. The initial step towards automating BGL control involved
the use of sensor-augmented pumps (SAP), which were limited to providing
only basal insulin with a binary on/off function. The SAP systems could halt
insulin delivery when the BGL reached a low threshold. In subsequent devel-
opments, the SAP systems could anticipate hypoglycemia and suspend basal
insulin administration in advance [30-32].

The initial automated closed-loop system was called the overnight closed-
loop (OCL) system, as it regulated BGL during the fasting period while the
user slept at night. The controller designed for OCL systems was relatively
straightforward [26]. The subsequent generation of AP systems was the hybrid
closed-loop (HCL) systems, in which the user would initiate the meal-insulin
bolus before eating, and the controller would only regulate the basal insulin
infusion. Subsequently, advanced hybrid closed-loop (AHCL) systems were
developed that could automatically administer insulin correction boluses after
the user initiated the insulin meal-boluses [29, 33-38].

Hybrid closed-loop (HCL) systems have been commercially available since
the late 2010s. Meanwhile, dual-hormone closed-loop (DHCL) AP systems
have also been tested in short-term studies since the mid-2010s [39-41].

Although the studies demonstrated the better safety margin of the DHCL
over single-hormone APs, they have not been extensively investigated in prac-
tical settings due to the complexities of the DHCL controllers, technical lim-
itations, and associated costs [18, 26]. In 2020, Inreda® Diabetic (Goor, the
Netherlands) received the CE mark for their DHPC AP system which admin-
istrates insulin and glucagon into SC tissue. Their AP system is claimed to
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FIGURE 2.7. Timeline of recent important studies of the artificial pancreas system (inspired by
[26)).
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2.3 RESEARCH GROUPS AND THEIR DESIGNED CONTROL SYSTEMS

Current Research
Direction
Sensor Overnight Hybrid closed- Advanced Fully closed-
augmented closed-loop loop (HCL) hybrid closed- loop (FCL)
pump (SAP) (ocr) loop (AHCL)
« Display BGL  Automatic * Controlling « Similar features « Control BGL
values. insulin Basa_l 1_“5“1“_1 as the HCL without meal
o Administrate administration administration. « Allowing larger and exercise
basal insulin. during the * Feed-forward of correction announcements.
« Suspend night and meals (grams of ks & o LES TEEr
insulin fasting. carbs) and adjusting the interventions.
delivery when exercise (temp glucose target
BGL reaches target mode). (within defined
low BGL limits)
threshold.

Improvement in TIR, TBR, and reduction of patient interventions in BGL control

FIGURE 2.8. Different categories of the developed APs since today and their key features
[26, 29, 33-38]; TIR, time in range; TBR, time below range.

achieve 86% time in range (TIR) of [3.9, 10] mmol/l with a fully closed-loop
(FCL) controller.

The desired generation of APs under development is the FCL systems,
which decrease user interventions and increase the time spent in auto-mode.
To this end, new studies are being done to overcome the limitations of SC-
insulin-based APs. For example, Peptide hormones, such as amylin analogs
and agonists of the glucagon-like peptide 1 (GLP-1) receptor (GLP-1R), have
been studied as well as the development of intraperitoneal (IP) insulin delivery
systems [42-44].

RESEARCH GROUPS AND THEIR DESIGNED CONTROL SYSTEMS

Subcutaneous Artificial Pancreas systems

As previously stated, the current research direction is to create an FCL system,
and multiple groups have devised different techniques to achieve this goal. The
present advancements in this direction involve utilizing dual-hormone APs
or employing more sophisticated control algorithms. Numerous groups are
working on developing AP systems. However, a few of them develop success-
ful products and test them in realistic situations. Table 2.1 categorizes the
major companies in the field. Among them are companies such as CamDiab
(Cambridge, UK), DreaMed (Petah Tikva, Israel), Medtronic (Minneapolis, MN,
USA), TypeZero Technology (Charlottesville, VA, USA), Diabeloop in France,
and the Insulet Group (USA), which are developing single hormonal APs/pumps
with SC insulin injections [26, 33, 36, 45-49].

< 27
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TABLE 2.1. Important research groups and companies developing artificial pancreas systems.
MPC, model predictive control; PID, proportional integral derivative control; DBLHU,
Diabeloop for highly unstable diabetes; IRCM, Institut de Recherches Cliniques
de Montreal; PD, proportional derivative control; IRCM, Institut de Recherches
Cliniques de Montreal; ALPHA, adaptive learning postprandial hypoglycemia
prevention algorithm; AP, artificial pancreas; APT, artificial pancreas Trondheim;
FMPD, fading memory proportional derivative control [26].

Subcutaneous Single Hormone Closed-Loop Systems

Group/Company  Controller Product name

CamDiab MPC CamAPS EFX

DreamMed MDlogic: PID with Fuzzy Logic GlucoSetter, AdvisorPro
Medtronic MDlogic with basal insulin, with correction boluses Minimed 670G, and 780G
Dexcom/TypeZero MPC (Contro IQ) Dexcom, Tandem t:slim pump
Diabeloop MPC DBLHU

Insulet MPC Omnipod 5

Beta Bionics PID Single-hormonal iLet

Subcutaneous Dual-Hormone Closed-Loop Systems

Group/Company  Controller (Insulin + Glucagon) Product name

Beta Bionics MPC + PD Bihormonal iLet
Inreda® PID-like controllers Inreda® Diabetic AP
IRCM MPC + Logic-based None
Oregon FMPD + ALPHA None
Intraperitoneal Single Hormone Closed-Loop Systems
Group Controller Detail
Montpellier (2009)  PID 8 Adults (Implantable Pump)
Doyle (2017) MPC 10 Adults
Doyle (2019) PID 3 Open-loop mongrel dogs
Padova (2021) MPC Simulator
Intraperitoneal Dual-Hormone Closed-Loop Systems
Group Controller (Insulin + Glucagon) Detail

APT (This Study) Dual-hormone MPC (DHPC) Tested in Pigs

Some groups enabled their AP systems to administrate glucagon in addition
to insulin to prevent hypoglycemia. The increased safety of dual-hormone AP
systems compared to single-hormone APs allows for more aggressive control
and an increase in TIR, even without meal announcements. Beta Bionics (Irvine,
CA, USA), Inreda® Diabetic (Goor, the Netherlands), Institut de Recherches
Cliniques de Montreal (Montreal, QC, Canada), and Oregon Health and Science
University (Portland, OR, USA) are at the forefront of developing and testing
dual-hormone APs [50-53].

2.3.2 Interaperitoneal Artificial Pancreas systems

Several groups are trying to exploit the benefits of the IP pathway for AP
systems. Two approaches are:
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+ Implantable Pumps.

+ External pump with an established port to the peritoneal cavity.
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The commercialized MiniMed implantable pump (MIP 2007D) from Medtronic

(Northridge, USA) and the DiaPort system by Roche (Second Generation, Roche
Diagnostics, Mannheim, Germany) are examples of the systems or equipment
used in the intraperitoneal insulin infusions. The mechanism of the two ap-
proaches is illustrated in Figure 2.9.

a) b) <)

Membrane

<

Port body

Polyester Felt

FIGURE 2.9. Panels a, b, and c illustrate the concept, mechanism, and implanted Diaport sys-
tem, respectively. In this mechanism, the insulin is administrated via an external
pump to the peritoneal cavity. The pictures are from [54, 55] (copyright IEEE
© 2018). Panels d and e show where MMT2007D is located and implanted in
the body. Panel f illustrates the implanted MMT2007D in patients. The panels
d, e, and f are adapted from [56] (Copyright order number: 1357019 on market-
place.copyright.com).

Invasiveness, infections, occlusions, and the complexity of refilling the

reservoir in implantable pumps have hindered their development and testing.

As illustrated in Figure 2.10, lacovacci et al. [57] have devised a mechanism for
refilling the reservoirs in implantable APs. However, the product has not been
launched yet. With the current technologies and developments and without
having to implant a pump, more studies are being done using the Diaport or
other custom ports and catheters.

Dassau et al. [44] from Doyle group, used IP insulin administration to
achieve FCL performance in 10 adults. The results suggested that with IP
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FIGURE 2.10. The sequence of the introduced mechanism to refill the insulin reservoir of the
implantable artificial pancreas in [57]: (a) the device is implanted in a suitable
location. (b) The patient ingests the insulin pill. (c) Once the capsule reaches a cer-
tain distance from the implant site, the device becomes detectable. The docking
system transitions from its resting configuration (d) to its activated configuration
(e) to enable capsule docking. (f) The capsule is attracted and securely docked.
(9) A linearly actuated needle pierces the capsule. (h) The insulin inside the pill is
extracted and transferred to a dedicated reservoir. (i) The capsule is undocked
and naturally eliminated. The figures are reused from [57] copyright IEEE © 2015.
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insulin there is no need for meal announcement compared to SC infusions. In
addition, Chakrabarty et al. [17] performed open-loop IP insulin experiments
on adult mongrel dogs to collect data and construct a model and controller for
the IP insulin route. This model and controller were subsequently tested on a
modified version of the UVA/Padova simulator [19].

2.4 STORY OF THE PRESENTED RESEARCH

The primary objective of the research team, known as Artificial Pancreas Trond-
heim (APT), revolves around reducing patient interventions required for con-
trolling BGL while also eliminating the necessity of manually informing the
AP systems about meal consumption. To achieve these goals, our approach
commenced with the use of the IP route to enhance insulin absorption rates.
Additionally, we included glucagon to increase safety margins and minimize
the risk of hypoglycemia.

As depicted in Figure 1.1, our work began in January 2020, and at that point,
we possessed data from animal experiments. These experiments involved the
administration of insulin and glucagon via the IP route, alongside the measure-
ment of glucose, insulin, and glucagon levels in the bloodstream. Furthermore,
a model had been previously developed by one of our former Postdoctoral
researchers, as outlined in [58].

It's worth emphasizing that during this initial phase, our access to hardware
was quite limited, and the available equipment had originally been designed
for open-loop experiments. Moreover, the pumps in use were solely capable
of manual operation. In order to integrate them into a closed-loop system, an
equipment upgrade was imperative.

Our first step was to choose a control structure based on the available
source.

2.4.1 Stepl; Choosing the Control Strategy

When it comes to control systems, selecting the right controller is paramount to
achieving desired performance, stability, and efficiency. While PID controllers
have been the traditional go-to choice for many industrial applications, MPC
has emerged as a powerful alternative in AP systems. For the following reasons
we chose to use an MPC-based controller:
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Predictive Capability

As the name suggests, MPC is predictive in nature. It doesn’t just react to
current system conditions; it anticipates future states and optimizes control
actions accordingly. This predictive capability allows MPC to better handle AP
systems with significant delays, disturbances, or varying dynamics, where PID
controllers may struggle to adapt quickly

Complexity of the AP Systems

One of the most significant advantages of MPC is its ability to handle complex,
nonlinear systems. MPC can work with intricate mathematical models of a
system, making it suitable for our dual-hormone AP system.

Optimization is required

MPC controllers solve an optimization problem at each control step. This
means MPC can find the best control input while satisfying constraints and
objectives, such as minimizing hormone consumption or maintaining the de-
sired BGL range. In contrast, PID controllers rely on predefined parameters,
making them less adaptable to changing conditions.

Multivariable System

A dual-hormone AP is a multivariable system. MPC handles multivariable
systems with ease, as it considers the interactions between variables, optimiz-
ing control actions across the entire system. PID controllers, when used in
multivariable applications, can result in complex tuning.

Robustness

The model-based controllers require an estimator to estimate the states and
disturbances (e.g. glycogen storage level, meals, physical activities, insulin con-
centration of the blood, ...) that are not measurable. This extra information
embeds more information to the controller than just feedback from BGL sen-
sors. Therefore, an MPC with a reasonably tuned model is inherently robust to
disturbances and uncertainties.

MPC continually recalculates control actions based on updated measure-
ments, estimates, and predictions, ensuring the BGL stays on track even in
challenging conditions. PID controllers may require additional tuning or the
addition of advanced control strategies (such as complex feed-forward and
structure design) to achieve similar robustness.
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TABLE 2.2. Comparing features of advanced structures for PID with MPC methods in AP

systems.
Feature Advanced PID MPC
structures
Model-based No Yes
Predictive No Yes
Optimization No Yes
Handling constraints Limited Good
Adaptability to model changes Limited Good
Multivariable systems Limited Good
Robustness to disturbances Limited Good
Computational complexity Low High
. . Extremely
Complexity of Implementation complex Complex
Range of operation (due to nonlinearities) | Limited Range Wide Range
!)OSSlb-lllty of using clinicians' knowledge Low High
in tuning the controller
P-OSSlbll.lty (_)f using the tuned controller in Low High
simulation in the real system
Complexity of fine-tuning while in the
experiments for the control designer Very Complex Complex
Complexity to understand and fine-tuning
. . Extremely
for non-technical people (e.g., patients Complex
.. Complex
and clinicians)

Step 2; Streamlining MPC Implementation: Bridging Complexity for De-
velopers, Delivering Simplicity for Clinicians and Patients

In Table 2.2, a comprehensive feature comparison between PID and MPC

structures is presented. When it comes to controller implementation, PID

structures stand out as the preferred choice due to their simplicity in terms of

model development and calculations. Nevertheless, it’s crucial to emphasize

that every controller requires tuning.

One noteworthy advantage of MPC methods lies in the meaningful nature

of their tuning parameters, particularly the cost function. These parameters

are designed to be intuitive and comprehensible, even for non-technical op-

erators such as patients and clinicians. In stark contrast, the PID parameters

can be considerably more challenging to grasp, lacking the straightforward

interpretability found in MPC.

Patients and clinicians possess extensive experience in managing the BGL

as an integral part of their daily routines. Conversely, many developers may

not have the same level of firsthand insight. Therefore, MPC will unleash great

potential for exploiting the clinicians’ knowledge and:
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2.4.3

+ Improve performance of the AP systems.
» Reduce the number of animal experiments.

+ Maximize the duration of the closed-loop part of each animal ex-
periment — Minimize the duration of the open-loop part.

+ Pre-tune the controller on the simulator and then bring it to the
real animal experiments.

+ Fine-tune the controller “on the fly”

The challenges associated with calculations and optimization become rela-
tively manageable when we take into account the 5-minute sampling rate of
the CGMs and the computing capabilities of the system we used in our animal
experiments. When embedding this in an insulin pump, the computing capabil-
ities and energy consumption will be a larger challenge, but we believe it will
still be manageable. The primary hurdle in adopting MPC lies in designing a
reliable model and addressing the complexities of parameter identification.

By addressing the complexity mentioned above and offering a reliable
model that requires straightforward parameter identification, we can harness
the advantages of MPC while ensuring ease of implementation.

Step 3; Developing an Accurate Model with Simple or No Parameter
Identification

To expand the operating range of the low-order model [58], we integrate the
observed effect of the hepatic first-pass effect into this model and improve
some of the equations.

The availability of rich experimental data from 26 animal trials motivated
the design of a technique (in Paper 2) to exploit this prior information to ensure
the identifiability of our model. Through this technique, most parameters were
either modeled as body weight functions or common among animals. The cor-
relation between parameter values and body weight is discovered utilizing prior
data from various animal experiments, such as blood glucose, plasma insulin,
and glucagon levels, in which hormones were administered intraperitoneally
or intravenously.

Through the application of this technique, the process of system identifi-
cation is simplified for each new subject, all while retaining the crucial model
intricacies that enhance predictive capabilities when compared to similar mod-
els.
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2.4.4 Step 4; Designing an Estimator

A fully automated artificial pancreas requires a meal estimator and predictions
of blood glucose levels (BGL) to handle disturbances during meal times, all
without relying on manual meal announcements and user interventions.

We designed a technique for estimating the glucose appearance rate (GAR)
and predicting BGL using the developed model (in Paper 4). The estimator is
designed based on the moving horizon estimation (MHE) approach, where the
underlying cost function incorporates prior statistical information on the GAR
in subjects over the course of a day. The animal experiments demonstrate the
effectiveness and reliability of the proposed estimator and its potential for use
in a fully automated artificial pancreas system.

2.4.5 Step 5; Design a Model Predictive Controller and Perform Experiments

Once we completed the design of the model and estimator, the next step was
to create a controller that could compute the necessary dosage of insulin or
glucagon at each sampling interval. The formulation of the ultimate cost func-
tion for the dual-hormone predictive controller (DHPC) was achieved in Pa-
per 8. This cost function was informed by practical insights gained from
experiments and the collective experience of our team.

In our research group, we tested the performance of the designed AP using
external pumps delivering insulin and glucagon to the peritoneal cavity through
2 Diaports (one for each hormone). The system performance was evaluated
through a series of six experiments in anesthetized pigs and one experiment in
an awake pig.
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CHAPTER 3

Development and Testing in Animal Trials

The title of the thesis is "Design and Implementation of the Dual-Hormone Artificial
Pancreas in Animal Studies, A Model Predictive Control Approach with Intraperi-
toneal Injections." Chapter 2 provided an introduction to the concepts of dual-hormone
artificial pancreas, equipment, and intraperitoneal injections. In this chapter, we
discuss the term “Animal Experiments”. In addition, it delves into the techniques em-
ployed in the project and examines the obstacles encountered, as well as the strategies
used to overcome them.

USE OF ANIMALS IN THE EXPERIMENTS

The utilization of animals for research is a topic that sparks controversy. Ac-
cording to a UK survey, the majority of the general public supports animal use
under certain conditions where there are no alternatives available. However,
26% of the survey respondents advocate for a complete prohibition of animal
use in research [1].

In Norway, the use of animals in research is regulated by national law,
"Forskrift om bruk av dyr i forsek," as well as the "Directive 2010/63/EU on the
protection of animals used for scientific purposes.’ These legal regulations es-
tablish a baseline standard for animal use in research and stipulate that animals
must be utilized in experiments aimed at addressing specific scientific ques-
tions while defining the treatments that the animals can receive. Any project
involving animal use must seek and receive authorization from the appropriate
authorities.

The guiding principle in animal research is "The three Rs," as stated in
[1, 2], originally defined by Russel and Burch in 1959, which still stands as the
core principle in animal experimentation. The three Rs represent Replacement,
Reduction, and Refinement. Whenever possible, animal experimentation should
be replaced, and data should be acquired through non-animal methods. If an-
imal use is necessary, the number of animals utilized should be reduced to a
minimum to obtain dependable and high-quality data. Refinement of animal
experimentation is essential to achieve the best possible data while reducing
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the burden on the animals involved.

The fundamental data of this thesis were obtained exclusively through
animal experiments due to the scarcity of information and simulators available
on BGL interactions with IP insulin and IP glucagon infusions. Investigating
complex anatomical and physiological processes necessitated the use of animal
experiments. All experiments were authorized by the Norwegian Food Safety
Authority. We ensured that the number of animals used was kept to a minimum
and that animals received appropriate treatments to minimize stress and pain.
When possible, procedures were refined or animal experiments were replaced
by the simulator.

We chose non-diabetic farm pigs (Sus scrofa domesticus) and suppressed
their endogenous insulin and glucagon secretion using the methods presented
in papers 2, 4, and 8. The reason for choosing the pig model was because
of the physical, anatomical, and physiological similarities between humans
and pigs [1, 3]. Although pigs and humans are similar in many ways, some
differences might affect the results obtained in this study. For example, one
obvious difference is that pigs lack the greater omentum in the peritoneal cavity

[1].

HORMONE INJECTION AND GLUCOSE MEASUREMENT

Our research group, Artificial Pancreas Trondheim (APT), is focused on finding
ways to expedite insulin absorption to achieve an FCL AP without user inter-
vention. To accomplish this goal, we administered insulin and glucagon via the
IP route, while using external pumps to infuse hormones into the peritoneal
cavity. Before conducting human trials, we conducted tests on anesthetized
pigs. During the initial phases, we made an incision in the abdominal region to
insert both insulin and glucagon catheters, as illustrated in Figure 3.1.

In the subsequent awake pig experiment, we placed two Diaports (Roche
Medical) on the left side of the abdominal wall. Both ports were established on
both sides of the incision, and the internal tubes from the ports were inserted
into the abdominal cavity through the same intraperitoneal incision. We fol-
lowed the guidelines of the manufacturer for the insertions, except for using
two ports instead of one. The detailed procedures are described in Paper 8.

APT group has explored the use of IP fluid for measuring blood glucose
levels as a way to overcome the time delay of current CGM devices [4]. Nonethe-
less, for closed-loop systems in this study, we opted for SC sensors due to their
ease of use. Figure 3.2 displays two examples of sensor placements on pigs. For
the experiments in the anesthetized pigs, we attached the commercial sensors
to the abdominal area to minimize the distance between the sensors and their
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3.3.1

3.3 OVERVIEW OF THE DESIGNED ARTIFICIAL PANCREAS

Insulin
Catheters

FIGURE 3.1. Picture (a) depicts the insertion of an insulin catheter into the peritoneal cavity
through a 2-3 cm incision in the abdominal skin in an anesthetized pig experi-
ment. A glucagon catheter was inserted through the same incision. Picture (b)
demonstrates the placement of two Diaports in the abdominal region in the awake
pig experiment.

receivers. However, in the awake animal experiment, the sensors were attached
to the neck area as shown in the Figure 3.2.

OVERVIEW OF THE DESIGNED ARTIFICIAL PANCREAS

In Paper 8, we introduce a simplified block diagram that encapsulates the core
functionalities of the DIP-AP. You can find this illustrative diagram in Figure
3.3. This visual representation offers a concise overview of the fundamental
components that constitute the DIP-AP system. Each part of the diagram is
important for how the system works. To help you understand it better, we
briefly explained the CGMs, Sensor Fusion, Estimator, and Controller blocks
in the following sections. The rest of the blocks and hardware are explained in
Paper 8.

Continuous Glucose Monitoring System

A fully automated AP relies heavily on precise BGL measurements. Neverthe-
less, the accuracy of commercially accessible sensors can be compromised by
various factors. These factors encompass sensor distortions caused by pressure
on adjacent tissues, connectivity issues, and inadequate calibrations. When pa-
tients are not actively monitoring the system, the AP might deliver an incorrect
bolus based on faulty sensor data. This situation can be exacerbated in animal

< 43



44 » CHAP. 3 DEVELOPMENT AND TESTING IN ANIMAL TRIALS

3.3.2

| Leftside of
head

FIGURE 3.2. Pictures (a) and (b) show glucose monitoring sensors being attached to anes-
thetized pigs and awake pigs during experiments, respectively. To minimize sensor
disconnections from the receivers during awake animal tests, the glucose mon-
itoring sensors are attached to the neck, while the sensors are attached to the
stomach area in the anesthetized pig experiments. This is because anesthetized
pigs are kept sleeping on their backs, whereas awake pigs typically sleep on their
stomachs.

experiments, where animals often exhibit curiosity and may tamper with the
sensor or apply pressure to it.

As mentioned in Section 3.2, we used different sensors in the experiments
to increase the reliability. For example in the awake animal experiment, due to
the difficulty of obtaining frequent blood samples in awake animal experiments,
we utilized two Dexcom G6 CGM systems (San Diego, CA) that are factory
calibrated and two Medtronic Guardian sensors 3 (Northridge, Canada) with
custom made transmitters provided by Inreda® Diabetic (Goor, the Nether-
lands).

These sensors are designed and made for humans. Therefore, some perfor-
mance losses were expected. However, the sensors and the CGM devices were
performed satisfactorily on the pigs. The performance of the sensors on pigs is
compared with the blood gas analyzer in Paper 3.

Sensor Fusion

Since we used multiple sensors to measure the BGL, a sensor fusion unit was
required in the control loop to merge sensor data from multiple CGMs and
reduce noises and artifacts. In the experiments and to determine accurate read-
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3.3 OVERVIEW OF THE DESIGNED ARTIFICIAL PANCREAS

DIP-AP system Glucose (Meals)
,|  Emergency l
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= Controller
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FIGURE 3.3. Schematic of the proposed dual-hormone intraperitoneal artificial pancreas; MPC,
model predictive control; SC, subcutaneous; DIP AP, dual-hormone intraperitoneal
artificial pancreas; CGM, continuous glucose monitoring; BGL, blood glucose level.

ings, we calculated the weighted average of the sensor data and assigned a trust
value between O to 1 to each sensor based on its performance, as determined by
an operator. Further work on sensor fusion and a proposed automated solution
is proposed in Paper 5 but was not used in the experiments.

Mathematical Model

Taking full advantage of the IP pathways in the AP systems necessitates having a
mathematical model. The model used in this thesis is the meta-model presented
in Paper 2. Meta model (3.1) describes the interactions of BGL with IP insulin,
IP glucagon, and IV glucose infusions.

X1 _(ﬂl +ﬁ2 'X2+ﬁ3 'X3) * X1 + HGP }/7G(t)
X) Bs (=x2 + (B7 - y1 - Xa — Fsar)) 0
X3 ,38 (_X3 + Fsat) 0
% X4 | = Y1 - X4 + }/31(1')
X5 Bo (x5 + P10%e) 0
X6 —Y2 " X6 yoH ()
X7 )/3'X3'X1—}/4'HGP 0
(3.1)

In this model, {x1, X», X3, X4} are the states of the insulin sub-model includ-
ing blood glucose level [mmol/1], effective insulin rate in the organs other than
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the liver [U/min), effective insulin rate in the liver [U/min], and concentra-
tion of insulin in the IP fluid [U/ml], respectively. In this sub-model, I(t) is
the IP insulin infusion rate [U/min], and G(t) is the IV glucose infusion rate
[mmol/min]. In awake animals, we assume that G(t) is the GAR representing
the meal digestion rate of the intestines.

The term Fj,; is the saturation of the Hepatic first pass (HFP) effect, which
is defined as follows:

P13ysxa

_— 3.2
B2+ Pi3fryixa (.2

Fsat(X4) = ﬂé

The states {xs, x4, X7 } are the states of the glucagon sub-model that includes
effective glucagon rate in the liver [mg/min), glucagon concentration in the IP
fluid [mg/ml], and glycogen storage level [%]. H(t) is the IP glucagon infusion
rate [mg/min], and HGP is the hepatic glucose production rate modeled as
follows.

HGP = B4xs5v/x7 - exp (=1 - X3) (3.3)

In (3.1), the parameter set {f, ..., B4} and the initial value of the glycogen
storage level are needed to be identified individually. However, the parameters
Bs, ..., P13 are shown to be fixed among the different pigs, and they are identified
using the prior information of the other subjects. The parameters yy, ..., yo are
body-weight dependant parameters that are known functions (See equations
(16) and (17) in Paper 2).

Estimator

To develop a well-performing FCL artificial pancreas, independent of meal
information, we must estimate the meal size to compensate them with the
right insulin boluses. Furthermore, predicting BGL requires estimating non-
measurable states of (3.1).

Paper 4 presents an estimator for GAR based on the MHE method. The
underlying cost function incorporates information about the lifestyle and diet
of the subjects to improve estimation accuracy without the need for meal
announcements. Besides estimating the GAR, the designed MHE estimates
the non-measurable states of the meta-model which are essential for BGL
predictions. Furthermore, it is shown that the proposed estimator is effective
and reliable in near-real-life conditions and suitable for use in closed-loop
systems.
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3.3.5 Control Design

The control algorithm (often referred to as the controller) is a crucial component
of the AP systems, responsible for determining the strategy to steer the BGL
to a specific point or region. Typically, there are three strategies used in MPC
methods: a) tracking a fixed point, b) tracking a trajectory, and c) reaching a
desired zone. However, due to factors such as model mismatches, unannounced
meals, and disturbances, trajectory-tracking approaches are not commonly
used in AP systems. Within the context of AP systems, the strategy of tracking a
fixed point is referred to as the "treat-to-target (T2T)" approach and the strategy
of reaching a desired zone is called the "treat-to-range (T2R)" approach.

The T2T approach is designed to keep the BGL on a specific value. However,
unforeseen meals, measurement errors, and discrepancies between the model
and reality can result in BGL fluctuations and overuse of insulin and glucagon.
The T2R approach, also known as "zone MPC" or "ZMPC" (as referenced in
literature such as [5]), utilizes a set of set-point values (target range) that are
considered equally acceptable by the objective function. T2R MPC methods are
more conservative in sensor noise and disturbances compared to T2T methods.
When the BGL (and predictions) fall within the target range, the ZMPC stops
any control inputs, and only the basal insulin value is administered. The T2R
method is more reliable and preferred in AP systems. For example, the T2R
method explained in [6] is used in the commercial product Control IQ. The
successful use of their algorithm in long-term real-world conditions is reported
in [7].

The main idea behind the developed dual-hormone predictive control
(DHPCQ) in this thesis is that the underlying penalty for BGL combines both the
T2R and T2T methods to gain the advantages of both methods. To this end, we
first defined the following zones:

+ Hypoglycemia: BGL < 3.5 mmol/],

+ Severe Low: BGL € [3.5 3.9) mmol/],

+ Acceptable Low: BGL € [3.9 4.5) mmol/I,
+ Desired point: BGL = 4.5 mmol/I,

« Acceptable High: BGL € (4.5 7] mmol/],
« Severe High: BGL € (7 10] mmol/],

« Hyperglycemia zone: BGL >10 mmol/l.
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Then, we designed a zone-based penalty function as follows.

(au-E*+Pu gk <35
(asi - E)*+ Py 3.5<gr <39

(aq - E)? 39< gk <45
¥y (gk) =40 g=4.5 (3.4)
(aqn - E)%, 45< g <7

(ash - E)* +Bsh 7 < gk <10
(anh - E)* + Ppn 10 < gg,

Where gy is the BGL at time k, E := |gy — 4.5] is the distance from the desired
point, {1, Bsi» Psh» Prn} are constant parameters that must be chosen to ensure
the continuity of ¥,(gx), and {ay, a1, aai, an, ash, app} are positive tuning
parameters. An example of the BGL penalty for a;; = 5, ag = 4, ag =
3, agn = 0.3, agp, = 0.4, and app, = 0.5 is shown in Figure 3.4.

Incorporating the BGL velocity into the BGL penalty function in MPC
improves the performance of single-hormone AP systems and allows for better
handling of moderate unannounced meals [5, 8]. To take this into account in
the cost function, we defined “BGL velocity penalty” as follows

Wsg(gr: Sgx) = V1-9¢ 09, %9y > 0 (35)
I oIk ¢2 : (Gmax - gk) : 5gi 5gk <0 ‘
where
89y = gk — k-1 (3.6)

is the rate of BGL change [mmol/5min], {1, 1/, } are tune parameters, and Gpax
is the highest acceptable BGL in the closed-loop system before an alarm is
triggered for the patient. For negative slopes of BGL (§g; < 0), the penalty in-
creases as BGL decreases, encouraging the controller to prevent hypoglycemia.
Conversely, if g; > 0 (positive slopes) and BGL is sufficiently high, the con-
troller will be penalized to prevent a large hyperglycemia. An example of the
velocity cost with ; = 1, 3 = 2, and Gy = 15 is shown in the lower-left
panel of Figure 3.4.
In summary, the BGL penalty function is defined as follows.

¥ (gx. 89;) = Yg(gx) + ¥sq(9x, 59;) (3.7)

An illustration of the BGL penalty function is shown in Figure 3.4.

The suggested BGL penalty function provides enhanced user-friendliness
for both patients and healthcare providers. This BGL penalty function can be
readily comprehended and customized by modifying the zone ranges, target
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Zone-Based Penalty (¥,(gr))

N Hypoglycemia
[ Severe Low

6 Acceptable Low
Y  Desired Point

B Acceptable High
Severe High

Penalty

[ Hyperglycemia
0 — Uy(gw)

6 8 10 12 14
¢_k [mmol/L]

]13GL Velocity Penalty (¥s,(gk,dg;)) BGL Penalty Function (¥(gx,dg;))

8g;, [mmol/1/5min]

0

4 6 8 0 12 14 g_k [mmol/1] 15 -1 p [mmol/1/5min]
g_k [mmol/1]

FiGURE 3.4. An example of the designed BGL penalty (¥,(-)), BGL velocity penalty (¥5,(-)),
and the modified BGL penalty (¥(-)). The set point is at 4.5 [mmol/I] and x =0
[mmol/I/5min].

values, and the slope of the BGL penalty within each zone. This capability
offers increased flexibility and adaptability to cater to the distinct requirements
of individual patients, making it easy for patients or clinicians to fine-tune as
needed.

Paper 8 employed a model predictive control strategy with the designed
cost function to determine the necessary insulin or glucagon. This cost function
takes into consideration model mismatches, emergency scenarios, hardware
malfunctions, sensor calibration points, and the avoidance of chattering caused
by insulin and glucagon administration. Furthermore, the cost function ad-
dressed practical obstacles encountered during animal experiments.
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3.3.6 Software Framework

The software framework developed for this thesis is a key component of the
overall system. The framework was built on Matlab 2020 and later upgraded to
Matlab 2022. As shown in Figure 3.5, the framework is responsible for fetching
data from the sensors. The sensors have different sampling rates and start times,
making it necessary to resample the data and synchronize the timing between
the data streams. For example, the Dexcom G6 has a 5-minute sampling rate
while the custom-made CGM from Inreda has a sampling rate of 1.2 seconds.

Insulin

Controller : Pump _
Algorithm CSV file Subjec
= Glucago

Meta-model PK & PD Model Tunings n Pump

AP Platform

Estimator

(Time, DAQ, GUI Manager)

: Dexcom]
Sensor SAEORIE
Fusion Time, Inreda 1
BG, TXT
Synic
Fetch
Sqlite

Parameter

Identification Inreda 2

Pump Data-

Alarms
base

SQL

FiGure 3.5. Different layers and components of the proposed artificial pancreas which is used
in animal experiments; CSV, comma-separated values; BTL, Bluetooth; AP, Artificial
Pancreas; DAQ, Data Acquisition; GUI, Graphic User Interface; BLE, Bluetooth Low
Energy; ANT, Adaptive Network Topology. SQL, Structured Query Language; TXT,
Text; BG, Blood Glucose; PK, Pharmacokinetics, PD, Pharmacodynamics.

After resampling and synchronization, the sensor fusion algorithm begins,
where the data from different sensors are merged. In animal experiments, a
simple sensor fusion algorithm was used, where the operator gave a trust value
between 0 and 1 based on the performance, noise level, and calibration time of
the sensors. The operator had access to a panel that allowed them to monitor
the CGM measurements separately in the last 5 hours.

To inform the operator of critical situations, a flag, and sound alarm are
implemented to alert them if the blood glucose level falls below 3.9 mmol/l or
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rises above 15 mmol/l.

Once the sensor measurements have been merged, the framework initiates
the estimator algorithm. After the estimations are completed, the framework
begins the controller to estimate the required amount of insulin and glucagon.
The framework then prepares the required file format and sends it via Bluetooth
to the pumps for execution.

The explained procedure is repeated every 5 minutes. Overall, the software
framework plays a crucial role in the successful operation of the system, ensur-
ing that the sensor data are properly merged, the estimations are accurate, and
the control loop responds effectively to maintain safe blood glucose levels.
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CHAPTER 4

Discussions

In the previous chapters, we have defined the problem and proposed solutions. This
chapter summarizes the advantages and disadvantages of the proposed methods in this
work. In addition, this chapter takes a broader perspective; Its main goal is to place
our work in context and outline how our contributions can be applied in real-world
scenarios to benefit patients, medical professionals, device manufacturers, and the
broader research community within Artificial Pancreas.

DISCUSSIONS ON THE DEVELOPED DUAL-HORMONE INTRAPERITONEAL MODEL

In Paper 2, a meta-model is presented that takes into account the physiology
of the body. This model considers how insulin is transported directly to the
liver through the portal vein. It is shown that the HFP effect has a significant
impact on how the body responds to different insulin doses, leading to the
development of a nonlinear model that incorporates this effect.

To identify the parameters of the proposed model, a significant number
of experiments are required to stimulate all the system dynamics. However,
invasive tests and measurements are not always applicable or safe for animals
and humans or we cannot perform all the tests on each subject.

As an alternative, the meta-model concept is designed, which allows the
tests to be distributed among different subjects. The results show that only five
parameters need to be individually identified for each new subject to simulate
blood glucose dynamics accurately. The remaining parameters are either con-
stant across animals or can be calculated using body weight. The key advantages
of the proposed meta-model are summarized as follows:

« Itis a dual-hormone model.

» Fewer individual parameters need to be identified compared to the
existing models in the literature.

+ Accurate predictions for a wide range of insulin and glucagon bo-
luses.
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+ Itis designed for control purposes which means it is fast and easy
to identify its parameters.

+ Itis identified and tested with the data gathered from over 30 pigs
in various scenarios including the anesthetized and awake experi-
ments in pigs.

+ Due to its accurate performance in fitting the data from animal
experiments, it can be used as a simulator to reduce the number of
animals used for future experiments.

Due to limitations in anesthetized animals for open-loop experiments in
Paper 2, the length of the experiments was shorter than 12 hours. Therefore, we
assumed that the parameters remained constant throughout the experiments.
One might need to consider intra-subject variation in extended experiments or
human experiments. In addition, one may need more training data for longer
experiments.

The ultimate goal of animal experiments is to develop the same methods for
humans. We used IP and IV insulin and glucagon administrations with a wide
range of bolus sizes in the anesthetized animal experiments. In addition, we
took blood samples frequently to analyze. However, doing the same procedures
might not be feasible in humans and the model might need to be simplified to
reduce the complexity of the experiments.

During the experiments in anesthetized animals, [V glucose infusion was
utilized instead of meals. However, when conducting experiments in awake
animals and humans, meals will replace this input. Thus, future work may
involve implementing an intestine model into the meta-model. Doing so will
present additional challenges in identifying and ensuring the identifiability of
the parameters.

DISCUSSIONS ON THE DEVELOPED DUAL-HORMONE INTRAPERITONEAL MOV-
ING HORIZON ESTIMATOR

To achieve a fully automated artificial pancreas system, a meal estimator and
BGL predictor are necessary to handle disturbances during meal times, all
without requiring manual meal announcements or user interventions. The
designed DIP-MHE in Paper 4 estimates the states of the meta-model as well
as the GAR.

We evaluated the performance of the proposed DIP-MHE in three 24-hour
anesthetized animal experiments, under near-real-life conditions. Our results
demonstrate that the DIP-MHE method is a reliable and efficient approach for
estimating GAR and states of the meta-model. Moreover, the accuracy of the
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estimator in estimating GAR from the intestines suggests that it can be used to
develop and identify an accurate model for the digestive system. The successful
implementation in animal trials indicates that it has the potential to be adapted
for use in human trials. The key advantages of the proposed DIP-MHE are
summarized as follows:

« It provides accurate estimations in animal experiments.

+ Due to embedded prior knowledge in the cost function, it provides
reliable and stable performance in estimates.

« It does not need meal announcements.

One drawback of MHE-based estimators lies in their computational de-
mands, necessitating powerful computing units. Nevertheless, given the 5-
minute sampling interval, the ongoing progress in embedded systems, and
the battery capacities available, we can envision extending the application of
our designed DIP-MHE to the existing single-hormone SC artificial pancreas
systems. To achieve this, an equivalently accurate SC model is required to
complement the IP meta-model.

During the experiments, CGM devices were utilized. It is important to note
that these devices measure glucose concentration in interstitial fluid rather
than blood. The diffusion of glucose from the blood to the interstitial tissue is
a slow process which can result in a time lag and delay in the measurements.
For the sake of simplicity, we have neglected measurement delays. However, a
Kalman filter, as proposed in Paper 3, can be employed to compensate for the
time lag in future studies.

The scenario in animal experiments is intended to last 24 hours due to the
restrictions on the duration of the trials. One should create weekly or monthly
routines to achieve more accurate probability distributions of the GAR and
its derivative. Moreover, the exercise events must be studied more in detail in
awake animal experiments or human studies. However, it was not feasible to
perform the exercise in an anesthetized animal.

DISCUSSIONS ON THE DEVELOPED DUAL-HORMONE PREDICTIVE CONTROLLER

In the last two decades, numerous control algorithms have been developed for
AP systems, clinically validated, commercialized, and used in actual practice
for TIDM patients. A brief review of the AP systems is presented in Paper 8
and [1].

In Paper 8, we developed an MPC method to control the BGL using IP
insulin and glucagon administrations. This controller is called a Dual-hormone
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predictive controller (DHPC). The meta-model (from Paper 2) and the DIP-
MHE (from Paper 4) used in this work are developed specifically for control
and predictions. Therefore, the controller offers several advantages, including
a short identification time, precise predictions, and the ability to estimate meals
or exercise. The designed control unit is a single-input and multi-output block
specifically designed for dual-hormone artificial pancreas systems, incorporat-
ing safety considerations learned from practical experience. The key features
of the DHPC can be summarized as follows:

« It does not need meal or exercise announcements.

« Itis designed based on the practical, physiological, and safety con-
siderations of the system.

+ It has optimal insulin and glucagon administration management
to prevent overdosing and undesired oscillations.

+ Itis highly automated with embedded different emergency modes
in the cost function. This minimizes the need for operator inter-
ventions.

« It achieved acceptable performance both in vive and in silico exper-
iments.

Using glucagon as an active control input with insulin introduces certain
complexities, such as the potential for oscillations. The cost function of the
DHPC is designed to encompass safety considerations and emergency mode
management. However, integrating all practical considerations into the cost
function and control algorithm increases the number of parameters and compu-
tational challenges. The controller parameters are tuned using a trial-and-error
approach on the simulator before being tested in animal experiments. However,
we expect that employing an improved tuning method will yield enhanced
performance and greater reliability from the DHPC.

The designed method is implemented in MATLAB and performed on a
powerful experimental computer. The designed AP system is a prototype
product and the ultimate goal is to implement this method in embedded systems
with less computational capabilities. Therefore, the cost function and the
controller must be optimized for use in embedded systems.

Simplifying the proposed DHPC can be achieved by implementing a logic-
based emergency glucagon infusion rather than precisely calculating the re-
quired glucagon dosage. For instance, when the system detects a rapid drop in
blood glucose levels and predicts an impending hypoglycemia event, the AP
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system can administer a predetermined bolus of glucagon while suspending
any insulin infusion until the hypoglycemia is resolved.

Implementing such methods and strategies can significantly alleviate the
computational complexity associated with DHPC, DIP-MHE, and the parame-
ter identification of the meta-model. By removing the glucagon sub-model and
solely focusing on the insulin sub-model, we simply process and enhance the
computational difficulties.

DISCUSSIONS ON USING SINGLE HORMONE OR DUAL HORMONE ARTIFICIAL
PANCREAS

A single hormone artificial pancreas (SH-AP) has been shown to improve glu-
cose control in people with type 1 diabetes. They can help to reduce the risk of
both hypoglycemia and hyperglycemia and can improve quality of life. How-
ever, SH-APs do have some limitations. They can be less effective at controlling
blood sugar levels during exercise or other times of high insulin demand. They
also require the patient to be aware of their blood sugar levels and to be able to
intervene if the SH-AP is not working properly.

Dual hormone artificial pancreas (DHAP) has the potential to provide even
better glucose control than SH-APs and improve their safety margin. They
can help to prevent hypoglycemia, which is a major risk for people with type
1 diabetes. However, DHAPs are still in development and are not yet widely
available. They are also more expensive than SH-APs.

The decision of whether to use a single hormone or dual hormone artificial
pancreas should be made between the patient and their healthcare provider.
The best choice will depend on several factors, including individual needs and
preferences, as well as the availability and cost of the different systems. Here
are some of the factors to consider when making the decision:

+ Age and health status: Younger patients and those with more severe
diabetes may be more likely to benefit from a DHAP as they are more
prone to hypoglycemia.

+ Activity level: Patients who are active may be more likely to benefit
from a DHAP, as they need more glucagon during the exercises.

+ Cost: DHAPs are in the research phase and they will be more expensive
than SH-APs.

The design of a single-hormone artificial pancreas is relatively straightfor-
ward. The system consists of a CGM, an insulin pump, and an algorithm that
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automatically adjusts the insulin delivery. The algorithm is typically based on a
mathematical model of glucose metabolism.

The design of a dual-hormone artificial pancreas is more complex than
that of a single-hormone artificial pancreas. The system must not only monitor
blood sugar levels and deliver insulin but also deliver glucagon. The glucagon
pump is activated when blood sugar levels fall too low. The algorithm for a
dual-hormone artificial pancreas is also more complex than the algorithm for
a single-hormone artificial pancreas. It must take into account the effects of
both insulin and glucagon on blood sugar levels.

In general, dual-hormone artificial pancreases are more complex to design
and manufacture than single-hormone artificial pancreases. However, they
provided better safety margins. Here are some of the disadvantages of DHAPs:

+ Complexity: DHAPs are more complex to design, manufacture, and
use than single hormone artificial pancreas. This can make them more
difficult to troubleshoot and use.

+ Cost: DHAPs are more expensive than single hormone artificial pancreas.
This may make them out of reach for some people or their insurance
companies.

+ Crystallization: The infusion set for glucagon is more likely to get
clogged since glucagon is an unstable solution. This necessitates chang-
ing the infusion set more often which is not desirable.

+ Infection risk: More infusion sets installed in the body and changing
them more often increase the risk of infection.

+ Acceptance: Not all patients, companies, and stakeholders may readily
embrace the concept of fully automated blood sugar control by machines.
Many still prefer the familiarity and widespread use of traditional single-
hormone artificial pancreas systems.

However, the dual-hormone artificial pancreas has many advantages and
requires more research and experiments.

D1SCUSSIONS ON USING INTRAPERITONEAL ROUTE

This section will delve into the advantages and disadvantages of employing the
[P route and compare it with the more traditional SC route. Advantages of the
Intraperitoneal route [2]:
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+ Rapid Absorption: One of the most significant advantages of the IP
route is the rapid absorption of substances into the bloodstream. Insulin
and glucagon delivered via the IP route can act more swiftly, mimicking
the physiological response of the pancreas more closely.

+ Reduced Delay: Compared to SC injections, where there might be a
delay in the onset of action, the IP route offers reduced delay, which is
particularly advantageous when addressing fluctuations in blood glucose
levels.

+ Consistency: The IP route tends to provide more consistent absorption
rates, reducing the variability in insulin and glucagon action commonly
observed with SC injections. This can result in improved glycemic con-
trol.

+ Lower Insulin Doses: Studies have suggested that lower doses of in-
sulin are required when administered through the IP route, potentially
minimizing the risk of hypoglycemia.

The IP route can be very suitable for those who have hypertrophy or other
issues with SC delivery (such as antibodies that destroy the insulin before
it arrives in the bloodstream. However, the use of IP route comes with the
following list of disadvantages:

+ Invasive: The [P route involves a surgical procedure to place a catheter
into the peritoneal cavity. This invasiveness can deter some patients and
may pose infection risks.

+ Technical Challenges: Managing the IP route requires specialized
equipment and expertise, which might not be readily available in all
clinical settings.

+ Risk of Catheter Dislodgment: There is a risk of catheter dislodgment,
which can disrupt insulin and glucagon delivery and necessitate surgical
repositioning.

+ Individual Variability: While the IP route offers consistent absorption,
individual patient responses may still vary, requiring careful monitoring
and adjustment.

When it comes to choosing the insulin and glucagon infusion route, we
should consider the following list as well as the advantages and disadvantages
lists.
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+ Patient Preference: As mentioned, some patients may still prefer the
SC route due to its non-invasive nature and familiarity.

+ Accessibility: The SC route is more widely accessible and doesn’t re-
quire specialized surgical procedures for catheter placement.

 Versatility: The SC route is well-established and versatile, accommo-
dating various insulin and glucagon delivery pumps.

In conclusion, the use of the intraperitoneal route in AP systems offers
advantages in terms of rapid and consistent absorption, potentially reducing
insulin doses. However, it comes with the trade-off of invasiveness and technical
challenges. The choice between IP and SC routes should be carefully considered,
taking into account individual patient preferences, the clinical setting, and the
desired glycemic control outcomes. Further research is warranted to explore
the long-term efficacy and safety of the IP route in diverse patient populations.

4.6 REFERENCES

[1] S.]J. Moon, L Jung, and C.-Y. Park, “Current advances of artificial pancreas systems: a
comprehensive review of the clinical evidence,” Diabetes €2 Metabolism Journal, vol. 45, no. 6,
pp- 813-839,2021. Cited on page/s 55.

[2] L Dirnena-Fusini, M. K. Am, A. L. Fougner, S. M. Carlsen, and S. C. Christiansen, “Phys-
iological effects of intraperitoneal versus subcutaneous insulin infusion in patients with
diabetes mellitus type 1: A systematic review and meta-analysis,” Plos one, vol. 16, no. 4, p.
€0249611, 2021. Cited on page/s 58.



5.1

CHAPTER 5

Concluding Remarks

This chapter summarizes the work, defines relevant topics for future work, and
concludes the thesis.

CONCLUSIONS

This study aimed to evaluate the feasibility of utilizing the IP route in the AP
system and achieving full automation without meal announcements. To achieve
this objective, we designed a meta-model (in Paper 2), DIP-MHE (in Paper 4),
and the DHPC approach (in Paper 8) for controlling BGL through IP insulin
and glucagon administrations. We performed various experiments to evaluate
the performance of the developed system in multiple scenarios, including:

+ In Silico 5-day tests in 100 virtual subjects.
+ In Vivo tests in two anesthetized pigs for 12 hours.
+ In Vivo tests in three anesthetized pigs for 24 hours.

+ In Vivo tests in an awake pig for five days.

The results and comparisons with the literature suggest that:

+ IP Insulin and glucagon are absorbed fast enough to achieve FCL AP
without meal announcements.

+ Using glucagon in the AP system and with the proposed method provides
reliable AP which can survive in unannounced challenges like exercise
events.

+ The controller must minimize dependency on glucagon usage due to the
high probability of infusion set blockage.

The utilization of IP glucagon in practice was found to be challenging for
long-term experiments, particularly in terms of replacing the glucagon infusion
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set in the event of the infusion set blockage. However, it was observed that SC
glucagon infusion proved to be equally effective in delivering glucagon while it
has the advantage of easier infusion set replacement.

On the first day of the awake animal experiment, a single hormone IP AP
system was implemented, which showed that the inclusion of glucagon as an
input was not essential for achieving full automation. While the dual-hormone
AP systems present several advantages, they also introduce the potential risk of
glucagon infusion set blockage and place an increased burden on patients who
need to change their infusion sets more frequently. In summary, we learned
from the experiments that:

+ The glucagon infusion set must be changed every 24 hours to prevent
infusion set blockage, It is because the current formulation of glucagon
is unstable and it is prone to cause such issues.

+ With current developments, establishing and reestablishing the IP route
is invasive and costly.

+ Subcutaneously infused glucagon absorbed almost as fast as [P adminis-
trations in animal experiments.

In conclusion, the process of designing and implementing a fully closed-
loop dual-hormone artificial pancreas system from the ground up is a complex
and interdisciplinary target. It necessitates the integration of various fields and
relies heavily on collaboration between engineering and medical disciplines.
Despite facing technical and practical challenges during the awake animal
experiment, the designed structure achieved significant results in the field.
The simulations showed an average Time in Range (TTR) of 95.5% within the
range of 3.5-10 mmol/l. In the anesthetized animal experiments, the average
TIR was 94.0%. During the awake animal experiment on days 1, 4, and 5,
with SC glucagon (no glucagon infusions on day 1), the TIR reached 77.3%.
These findings indicate that the designed artificial pancreas system performs
comparably in both simulation and real-world settings. This is achieved due to
the high performance of the designed meta-model, DIP-MHE, and DHPC.

FUTURE WORK

In Papers 1-8 and Chapter 4, the future directions for enhancing each method
and tool developed in this thesis are outlined individually. In this section, we
will focus on discussing the potential future direction of the designed dual-
hormone intraperitoneal artificial pancreas and explore potential strategies to
overcome the limitations associated with the IP route.
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The designed system is tested on a short-term and limited number of
pigs. However, we believe more tests, especially on awake pigs, will reveal the
important potentials and possible disadvantageous of the method that are not
found during the short-term experiments. Further studies must address safety
issues such as infections in using IP insulin for long periods. In addition, a
survey must be done to study how to implement the developed methods on
humans with a minimum number of human trials.

Our future direction is replacing the IP insulin route with SC and acceler-
ating insulin absorption by exploiting the vasodilative properties of glucagon.
We found that SC micro-dose injections of glucagon can cause a significant
increase in local blood flow in the surrounding tissue [1, 2]. In addition, the
increased blood flow positively affected the absorption rate of insulin from the
SC tissue of anesthetized pigs [3].

Therefore, in our future research, we will replace the IP infusion of in-
sulin with the mechanisms illustrated in Figure 5.1. This mechanism is called
"microglucagon” and injects a micro dosage of glucagon in the vicinity of the
SC insulin infusion location (same «branch» of capillaries). This method is
patented under International Application No. PCT/EP2022/067148 by our
research group.

A) B)
p -

Infusion line
, from insulin pump

Insulin infusion set
w/microglucagon
patch pump

Insulin Insulin
100 U/mL 100 U/mL
+ pglucagon

Dermis

Glucose|
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Subcutaneous
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FIGURE 5.1. Infusion of mixed insulin and micro glucagon dose (A), and a mechanism to in-
ject glucagon into the neighboring capillaries (B). The infusion of micro-doses
of glucagon into the capillaries within subcutaneous tissue can induce vasodi-
lation. This technique can be leveraged to enhance the absorption rate of sub-
cutaneous (SC) insulin when glucagon is strategically injected into the same
capillary branches through which SC insulin will diffuse. The invented method
is called microglucagon and is patented under International Application No. PC-
T/EP2022/067148 by our research group.
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5.2.1

5.2.2

From Research to Real-World Impact

While our research has primarily focused on the technical aspects, it’s essential
to consider how these advancements could translate into tangible benefits for
diabetes patients and the broader healthcare landscape.

Impact of This Research on Patients’ Lives

One of the core questions revolves around the potential impact of the methods
developed in this research on patients.

The meta-model (discussed in Paper2), DIP-MHE (highlighted in Paper4),
and the DHPC approach (covered in Paper 8) were designed using data from
pig models. However, the adaptability of a similar approach for human subjects
holds promise for the development of precise models and estimators.

This adaptability extends beyond intraperitoneal insulin and glucagon
delivery. It can also be applied to subcutaneous insulin infusions, facilitating
the creation of high-performance models and estimators. Implementing such
models and estimators could significantly enhance the performance of Hybrid
Closed-Loop AP systems. They could play a pivotal role in validating patient
inputs and improving correction boluses by predicting glucose appearance
rates accurately.

For this research to become a part of patients’ lives, it would require collab-
oration with medical device manufacturers. Companies specializing in diabetes
management systems, such as Inreda® Diabetic and Beta Bionics, could be
potential partners. They would need to adapt and integrate our methodolo-
gies into their existing dual-hormone AP products or develop new ones to
incorporate these innovations.

Companies and patients can benefit from using microglucagon strategy to
accelerate insulin absorption rate. However, this also needs to be tested and
explored in experiments.

Bringing it to Market

Bringing our research to market involves several steps, including clinical trials,
regulatory approvals, and product development. Companies interested in
our work would need to invest in extensive testing to ensure the safety and
efficacy of IP-based insulin and glucagon administration. They would also
need to navigate the complex landscape of medical device regulations and work
closely with healthcare professionals and regulatory bodies to obtain necessary
approvals.
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5.2.3 Risk Assessment

Like any transformative medical innovation, there are inherent risks and chal-
lenges. Our research paves the way, but there may be unforeseen obstacles in
the path to commercialization, ranging from technical hurdles to market ac-
ceptance. Robust risk assessment and mitigation strategies are vital to address
these challenges.

Beyond IP Delivery

Finally, while our research has a specific focus on intraperitoneal delivery, the
methodologies developed, including the controller, estimator, and model, have
broader applicability. These tools may find utility in other aspects of diabetes
management, such as optimizing subcutaneous insulin delivery or aiding in the
development of personalized treatment plans.
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Abstract— Currently, continuous glucose monitoring sensors
are used in the artificial pancreas to monitor blood glucose
levels. However, insulin and glucagon concentrations in different
parts of the body cannot be measured in real-time, and
determining body glucagon sensitivity is not feasible. Estimating
these states provides more information about the current system
status, facilitating improved decision-making by the model-
based controller. In this regard, the aim of this paper is
to design a nonlinear high-gain observer for a bi-hormonal
artificial pancreas in the presence of measurement noises, model
uncertainties, and disturbances. The model used in the observer
is based on an existing intraperitoneal nonlinear animal model
in the literature. This model is modified by assuming that
insulin can directly transfer from the peritoneal cavity to
the bloodstream. Based on a set of realistic assumptions, one
model is considered after each hormone infusion, and two
observers are separately designed. The model is divided into
the insulin-phase and glucagon-phase models based on a set of
realistic assumptions. Thereafter, two high-gain observers are
designed separately for these phases contributing to estimating
the non-measurable states. The observer error is proven to be
locally uniformly ultimately bounded, and it is verified that
any asymptotically stable control laws remain stable in the
presence of the observer. The performance of the observers with
different gains is evaluated for a scenario with multiple insulin
and glucagon infusions. The proposed observer converges to a
finite error, according to the results.

Clinical relevance— In Type 1 diabetic patients, the devel-
oped observer can be employed in a closed-loop artificial pan-
creas to improve the performance of model-based controllers.
It estimates the key states, which are necessary for forecasting
the body’s response to insulin and glucagon boluses.

I. INTRODUCTION

Glucose homeostasis is a mechanism of critical importance
for sustaining life in humans through the use of glucose as
a source of energy. One of the main organs involved in this
mechanism is the pancreas. The pancreas regulates glucose
in the body autonomously and continuously. The glycemic
control is primarily achieved through the pancreas’ endocrine
hormones balanced through a negative feedback loop. Insulin
and glucagon are the essential pancreatic hormones that
affect the blood glucose level (BGL). Insulin (produced by
beta cells in the pancreas) decreases BGL by either storing
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excess glucose mainly in the liver and muscles or allowing
body cells to utilize glucose as fuel. Glucagon (produced by
pancreatic alpha cells) raises BGL by releasing glucose that
has been stored as glycogen in the body.

Type 1 diabetes (T1D), or insulin-dependent diabetes, is
a chronic disease where the pancreas produces no or little
insulin. T1D has an unknown etiology. In most cases, T1D
is caused by a reaction of the immune system destroying
the beta cells of the pancreas. Other possible explanations
include genetics, viral exposure, and other environmental
variables. Impaired glucagon production and release are
also common as a consequence of beta cells destruction.
Therefore, the body becomes incapable of maintaining a
normal BGL [1], [2].

An artificial pancreas (AP) that consists of subcutaneous
BGL sensor(s), insulin/ and glucagon pump(s), and a control
algorithm is the current treatment for T1D disease. It mimics
the natural endocrine pancreas function by automatically
delivering external insulin and glucagon in response to the
changes in BGL. Different versions of single-hormone APs
that infuse only insulin are currently available on the market
[3]. However, since these systems lack glucagon, there is
a substantial risk of low BGL if unannounced physical
activities are performed. Dual-hormone APs are under de-
velopment and the prior clinical trials show their advantages
in reducing the number of hypoglycemia episodes [4].

It is possible to deliver hormones intravenously (IV),
subcutaneously (SC), and intraperitoneally (IP). Although
the IV route is fast, it is not a practical continuous solution
due to the possible health complications. SC infusion is the
most common approach in delivering insulin in current APs.
However, due to the SC route’s absorption delay, the existing
APs, even with the most advanced control algorithms, are
ineffective in dealing with unannounced meals [5].

The IP drug delivery pathway has been shown to have
faster pharmacokinetics than the SC pathway [3]. Further-
more, in IP insulin infusion, the majority of the insulin
absorbs into the portal vein (PV) and is then delivered to
the liver. While in SC infusion, insulin first absorbs into the
blood circulation system before reaching the liver. As a re-
sult, the IP insulin infusion seems to be physiologically more
similar to pancreatic functionality. Moreover, Toffanin ef al.
tested their AP with IP infusion on the modified UVA/Padova
simulator [6] and showed that the meal announcement is not
needed [5].

Model-based controllers, such as model predictive control
(MPC), are the most commonly used control approaches in
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APs due to the constraints and the delays [7]. However, BGL
is the only real-time measurable output of the system, while
the other states essential for prediction must be estimated.
In this paper, a high-gain observer is developed to estimate
non-measurable states based on a modified version of the
nonlinear bi-hormonal-glucose model proposed in [8]. High-
gain observer is chosen due to its implementation simplicity
and its robustness against large perturbations and model
uncertainties. In spite of measurement noise, model mis-
matches, and disturbances, the proposed observer is proven
to converge to a bounded error under some assumptions.
Furthermore, the Lyapunov theorem is used to demonstrate
that any asymptotically stable control approach will remain
stable when the designed observer is used in the control loop.

The paper is organized as follows: In Section II, the
modified version of the nonlinear bi-hormonal-glucose model
is introduced and practical assumptions for designing the
observer are made. Section III presents the high-gain ob-
servers designed for the insulin and glucagon phases and the
convergence analysis. Results are discussed in Section IV.
Finally, conclusions are exposed in Section VI.

II. MATHEMATICAL MODEL AND ASSUMPTIONS

The nonlinear bi-hormonal-glucose model developed by
Zazueta et al. [8] describes the interaction of BGL with IP
insulin and glucagon, making it appropriate for bi-hormonal
APs. In order to ensure structural identifiability, the effect of
the insulin in the intermediate compartment is ignored and
the order of the model is reduced in their final model.

] Blood
I =y + Bplp — kpl

Yel€

Intermediate Compartment

Balp Ie=alp — (e + VI
alp
L Peritoneal Cavity
Ip = =(Ba+ Bs + Dlp + Ry
U
Fig. 1. Block diagram of the insulin compartment.

A modified version of this model is used to construct the
observer in this paper. This modified version is as follows
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G=—lka+ kil + ki L) G+ kg HF() + R (D

I =~.IP 4 Bpl, — k,I ®))
I =al, = (ve + )I? 3)
I, = —(Ba+ B +a)l, + Rrus(t) @)
H = —nH +nyhy ©)
by = —nihy + Rgug(t) (6)

E=a1[(krl + kr 1) Gl —xa[Hf(§)] — 23 (D)
where f(§) = &% for 0 < a < 1 (where @ = 1 in the
original model). As it is shown in Fig. 1, the pathway of
direct insulin transportation from the peritoneal cavity to
the blood is considered in this model as described in [9].
In addition, —z3¢ is added in (7) to model the glucagon
sensitivity decrease due to the basal endogenous glucagon
production. The states, inputs, and parameters of the model
are described in Table 1.

TABLE I
STATES, PARAMETERS, AND INPUTS OF THE MODEL.

Symbol Description Unit
States

G Blood glucose concentration. mmol/L

I Blood insulin concentration. mU/L
Insulin concentration in the intermediate

I mU/L
compartment.

I, Insulin concentration in peritoneal cavity. mU/L

H Blood glucagon concentration. pmol/L

h1 Glucagon concentration in peritoneal cavity.  pmol/L
Glucagon sensitivity. dimensionless

Inputs

R IV exogenous glucose infusion. mmol/L/h

ur IP insulin bolus. U

U IP glucagon bolus. g

Parameters

ky Insulin-independent removal rate of glu- h
cose.

kr. kr, Insulin-dependent removal rates of glucose. ~ L/mU/h

kg Glucose response to glucagon rate. 1/h

kp, o, Consumption and degradation rates. 1/h

Ba,n

Yes O,

BB, n1, Transport rates. 1/h

n2

a,p,q Powers. dimensionless

Ry Conversion parameter. 1/L/h

Ry Conversion parameter. pmol/pg/L/h

x1 Conversion parameter. L/mmol

T2 Conversion parameter. L/pmol/h

o3 Decrease rate of glucagon sensitivity due to h

endogenous glucagon production.

As mentioned in the introduction, a state observer is
needed to estimate the non-measurable states for a model-
based controller, such as an MPC, to make better control
decisions. To design a high-gain observer, the following
assumptions are considered:

1) The amounts of insulin and glucagon in the peritoneal
cavity are represented by I, and hy. The inputs and
parameters used in (4) and (6) are assumed to be known.
Therefore these states can be calculated, and there is no
need for the observer to estimate them.
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2) Insulin and glucagon are hormones with reverse effects
on BGL. It is not typical to design controllers in
AP to use these hormones simultaneously or close to
each other. Therefore, an observer during each of these
hormone infusions can be designed separately.
3) For simplicity, it is assumed that p =1 and ¢ = 1.
Two different models are considered, one during the
insulin phase and the other during the glucagon phase, in
order to design the observers:
o Insulin-phase Model

Gr=—[k1 + kel +k)Gr +kuHf(E)+R (8)

I =9I+ Bpl, — kyl )
jc = O‘Ip - PYCIC - 'YIC (10)
Ym =Gr+v (11)

where G is blood glucose concentration during the
insulin phase, v is the measurement noise, and y,,, is the
measured BGL. Moreover, H and é are the estimated
states from the glucagon phase.

Glucagon-phase Model

G =— [kl Tkt k;cfc} Gy +kyHf(E)+ R

(12)
é= a1 [(kil + ki, 1) G] = 2alHF()) — waf (5()

(13)
H = —nH +nohy (14)
Ym =G +v (15)

where G is blood glucose concentration during the
glucagon phase. I and I, are estimations from the
insulin phase.
It is worth mentioning that each of these models is observ-
able. In the next section, a high-gain observer is designed,
and its convergence and error bounds are analyzed.

III. HIGH-GAIN OBSERVER AND CONVERGENCE
ANALYSIS

The high-gain observer is one of the most commonly used
nonlinear observers that considers both measurement noises
and model uncertainties [10]. In this section, two high-gain
observers are proposed for insulin phase and glucagon phase
models.

A. Nominal Form of Models

To simplify the stability analysis and take advantage of the
high-gain observer, each model must be transformed into a
nominal form [11]. For this purpose, the new states for the
insulin-phase and glucagon-phase models are defined as

def

(16)

Sh [191 q T ]T

def

S & p g o ]” a7

where [p1,q1,71]7 and [pa, go, 727 are defined in (18) and
(19), respectively. In these two equations, e; = krky, es £
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—kiye = ke (Ve + ), €3 & kea + kiBp. es = (ky + kil +
kICI<:)> and €5 = k‘Hf(g)

The state-space models are transformed into the following
equations for i=1,2:

Ym =CS;+v 21)

where ¢; (S;, ui, R) Ly 2 Ip, ug £,

010 0
A=|o0o o0 1|, B=]o
000 1

,and C=[1 0 0 ].Furthermore, ||v|| < p for positive
values of p as the maximum amplitude of measurement
noise.

B. High-Gain Observer

A high-gain observer is designed based on the formulation
proposed in [11], [12] as follows

S, = AS; + Bo,, <Su R) n ElH (ym - cs) 22)

where S; for i = {1,2} is the estimation of S;, ¢; is the
inverse of observer gain, and ¢,, is the nominal form of ¢;.
It is notable that ; is locally Lipschitz function of S; and
w;. In addition, for arbitrary positive values of {a;1, a2, aiz},
H; is defined as follows

(23)

Moreover, the weighted observer error for €; € (0,1) is
defined as

N = D (€i)3y5 (Si - Sz) 24)
with
1 0 0
D (El) £ 0 E; 0 (25)
0 0 ¢2

i

In the rest of the paper, since both models are in the
nominal form, the index 7 is removed to increase readability.
Using (20) and (24), the dynamics of the system and the

weighted observer error can be augmented as below.
S:fs (S7S_D(E)71777R) (26)
ey = A +e>Bg (S,S — D(e)"'n, R) + Bav 27

where f is the right-hand side of the (20) with assuming
that u; is function of observed states. Moreover,

—ai1 1 0 —Qi1
Ag=| —a2 0 1 |, By=| —an
—ai3 0 0 —ai3
, and g(.,.,.) = ¢(,.,.) — @ol.,.,.). In addition,

{a;1,a:2,a;3} should be selected in a way that eigenvalues
of Ag lay at left-half plane.
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p1 def Gr
@ = — (kv + kil +kele) G (18)
r — (k1 + krtI + ko 1.)* Gr — (ea] + eal. + esl,)
p2 Gu
» |« - (kl . k,jc) Gy + ki Hf(€) (19)
. a—1
T2 —esGy +aey® H (21e4Gp — (x2H + z3) e5) + e5 (nH — nghy) + esG
Based on the Lemma 1 in [11], the observer error (27) o _Blood Glucose Concentration and IV Ghicose Infusion o
converges to a bounded set for
llg (S, D(e)~'n, R)|| < k. (28) 710
=
= =
proof: Since Ay is a Hurwitz matrix by design, a positive E ] IOOE
symmetric matrix £ can be found such that EAg+ Ag"E = = g

—1I. Considering W(n) = nTEn as a Lyapunov candidate
function, its time derivation is

. 1 2
W< —linll* +2¢lnll| EBliky + ZInll | EB2 ]| p. (29)
It can be shown that

= = {Wn) < Bl (4IEB|k,e* + 4| EB|| 1)}
(30)
is an invariant since W (n(t)) < —2/¢||E|| for W(n) ¢ .

While || < €2 + cop for W(n) € %,
where ¢; £ 4||EB|lkgv/|El/v/Amin(E) and ¢z £

4| EBs|| VI Ell/\/Amin(E). Therefore, the designed ob-

server converges to a bounded error which can be found
by

IS(t) = St)l| < e+ c2§ 2F(en) (D

C. Stability of Closed-loop System in Presence of the De-
signed Observer

In this section, the stability of the closed-loop system in
presence of the designed observer is analyzed as in [12].

We assumed that the closed-loop system is asymptotically
stable for S € Q2 when 7 = 0. Therefore, there is a Lyapunov
function V(s) > 0 (and V(S) = 0 for S = 0) in which
V(s) < —U(S). Where U(S) is positive function for S € Q.
Since f (5,5 — D()~'n) is bounded function and locally
satisfies the Lipchitz conditions, one can write

£ (S. D) ') = £(S,0)|| < Ly |D(e) 'nl|  (32)

where L, is positive constant. In addition, one can assume
|dV/dS|| < Lg for a positive value of Lo. Using this
inequalities, for n # 0, one can write

V(S) < =U(S) + LiL2F (e, 1) (33)

As it proven in [12], for bounded values of p there is set of
positive values for e in which F,.(e, ) < U(S)/L1Lo. That
means the closed-loop system remains stable and (S(t), n(t))
will remain in {Q x X}.
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Fig. 2. The scenario used for evaluating the observer performance.

IV. RESULTS

In the development of an AP, there are non-measurable
states that must be estimated so that the controller can make
better decisions in the control of BGL regarding the treatment
of people with T1D. The high-gain observer was designed
based on the modified nonlinear bi-hormonal-glucose model,
and its convergence to a bounded error was evaluated.

To test the effectiveness of the observer, the scenario
shown in Fig. 2 was considered where the sampling rate was
set to 5 minutes, and four insulin boluses {10, 20, 10,20}U,
four glucagon boluses {75,150,150,75}ug, and R(t) as
IV glucose infusion were given. Furthermore, the measured
BGL (y,,(t)) was created by adding a measurement noise
with the maximum amplitude of 2 mmol/L and a sinusoidal
disturbance with amplitude 20% of the BGL and a frequency
of 0.4 rad/h in order to evaluate the observer’s robustness.
Notably, 15% parameter identification error was considered
to simulate the model uncertainties.

In order to analyze the error bound and time response of
the observer, two cases are considered. In each case, there
are two observers with the gain of €; and €5, respectively, for
the insulin and glucagon phases. In the first case, relatively
high values (near to one) were chosen both for €1 and &9
while these values were relatively low in the second case.
The initial values were chosen randomly but the same for all
observers in both cases.

In Fig. 3 and Fig. 4, the estimation results of the case 1 and
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Fig. 3. Case 1: Performance of the designed observer with 1 = 0.9 and
g2 = 0.9. The constant blue lines in this figure show the values of the states
derived from the model, while the red dots are the outputs of the observers.

2 are shown, respectively. As can be seen, the estimations of
the states using the designed observers converged to actual
values values with a bounded error. It can be noted that the
performance of the designed observers with the lower gains
(case 2) were faster while error boundaries increased.

As can be deduced from Fig. 3 and Fig. 4, there is a
trade-off in selecting the observer gain, . The switching-
gain observer concept described in [11] was used to address
this issue. Based on this concept, it is better to initially have a
small observer gain since it allows the observer to converge
faster. Then, the observer gain can take a larger value T
min after ||y, — Um|| enters the switching zone to reduce
the observer error. Notably, 7 should be selected in a way
to prevent repetitive switching. The conditions for choosing
the switching zone and the switching time are defined in
[11].

The estimation results of the designed observers based on
switching-gain concept is presented in Fig. 5. The initial gain
set, £ = 0.32 and e5 = 0.45, was switched to e; = 0.9 and
g2 = 0.9, T; = 45 min after entering the switching zone. As
expected, the observers convergence rates were shorter than
Case 1 while their errors are less than Case 2. Therefore, in
general, the performance of the observer was improved.

V. DISCUSSION

The model used in designing the observer is a modification
of the animal model presented in [8] which, according to
the best knowledge of the authors, is the only available bi-
hormonal IP model for control purposes. The performance of
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Fig. 4. Case 2: Performance of the designed observer with £; = 0.32
and g2 = 0.45. The constant blue lines in this figure show the values of
the states derived from the model, while the red dots are the outputs of the
observers.
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Fig. 5. Performance of the switching gain observer with e; = 0.32 and
e2 = 0.45 which switches to £7 = 0.90 and £2 = 0.90 at Ts = 140 min.
The constant blue lines in this figure show the values of the states derived
from the model, while the red dots are the outputs of the observers.
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the original model was tested on pigs. Due to the similarity
between pigs and human physiology, the model can be used
as an alternative for humans. However, the model’s perfor-
mance on T1D patients and consequently the performance
of the designed observer can also be evaluated using human
trials with realistic inputs.

In evaluating the performance of the observers, noise
and the disturbances in measurements, as well as the 15%
parameter identification error, were taken into account. The
glucose appearance rate, on the other hand, was assumed to
be known. However, as shown in (31) and (28), disturbance
in R which can be due to an unannounced meal, is calculated
in the observer error bound. Therefore, the observer will
remain stable for adequately limited disturbances due to
unannounced food intake.

VI. CONCLUSIONS

Estimating non-measurable states in the bi-hormonal-
glucose model provides a better understanding of the system
status and improves the decision-making of a controller in
AP. In this regard, two nonlinear high-gain observers were
designed separately for the insulin and glucagon phases.
It was mathematically shown that the observers are ro-
bust against measurement noises, model uncertainties, and
disturbances and the closed-loop stability was proven for
any asymptotically stable control approaches. Moreover, the
simulation results, also confirmed the convergence of the
observer to a bounded error. In addition, the performance
of the observer was improved by utilizing the switching-
gain approach. As a result, the intended observers can be
employed in APs to help model-based controllers make better
decisions. For example, whenever glucagon sensitivity is
estimated to be low, the controller should be extra cautious
about the dosage of insulin in order to prevent hypoglycemia.
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6.2 PAPER 2

Title: “Identifiable prediction animal model for the bi-hormonal in-
traperitoneal artificial pancreas”

Published in Journal of Process Control, Volume 121, January 2023 [2].

Errata:
In equation (14b): the extra x5 in the 7th state must be removed since it is
already included in HFP,,,¢;4. The equation must be as follows.

X1 —(Bi+ B x2+ B3 x3) - x1 + HGPrreta y7(@)Ry(t)
X2 Bs (=x2+ (B7 - y1(@) - x4 = Fsar)) 0
d X3 ﬁS (—X3 + Fsat) 0
| = —y1(w) - x4 + ys(w)I(2)
X5 Po (—=x5 + Proxs) 0
X6 —y2(w) - x6 Yo(w)H(t)
X7 )/3(0)) * X3 X1 _)/4(0)) 'HFPmeta/,B4 0 6.1
6.1

In the paragraph before Equation (17): The unit for y4 is [V%/ ug].

y7 (instead of ys) is a coefficient directly related to the concentration of IV
glucose infusion and inverse to the body weight. In addition, ys(w)~! and
Yo(@)~! (instead of ys(w) ™! and y7(w)~!) are the volumes of peritoneal fluid
in which insulin and glucagon are dissolved.

Table 1: The unit for f7 is [mL] (not 1/mL).
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To achieve a fully automatic artificial pancreas (AP), i.e., an AP without the need for meal announce-
ments, the intraperitoneal (IP) route is explored. This route has faster dynamics than the typical
subcutaneous (SC) route. Model predictive control (MPC) is the most promising control algorithm,
but it requires a predictive and identifiable model. This paper presents the design of such a model for
MPC-based dual hormone IP APs. This model is trained and tested on recorded data from anesthetized
pigs. Animal experiments show that the saturation of the hepatic first-pass effect is essential in how
IP insulin and IP glucagon affect glucose levels. These physiological phenomena must be modeled to
estimate the system behavior for various conditions. This, in turn, increases the number of parameters
and complicates system identification. The availability of rich experimental data from 26 animal trials
motivated the design of a technique to exploit this prior information to ensure the identifiability of
our model. Through this technique, most parameters were either modeled as body weight functions
or common among animals. The correlation between parameter values and body weight is discovered
utilizing prior data from various animal experiments, such as blood glucose, plasma insulin, and
glucagon levels, in which hormones were administered intraperitoneally or intravenously. This method
simplifies the system identification for every new subject while keeping the model’s essential details
that improve the prediction capability relative to comparable models. The model can be exploited in
MPC or any other model-based controller of a bi-hormonal IP AP. It can also be used as a simulator

to develop control approaches for single and bi-hormonal IP APs.
© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CCBY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction amount of insulin based on their body weight, activity level, and
lifestyle. Once the insulin bolus is calculated, they infuse insulin
subcutaneously (SC). In an intensive care unit, it can be infused
intravenously (IV), but the SC route is the standard in T1DM
patients.

Nowadays, the calculations of the required insulin can be
made by a device called the artificial pancreas (AP). An AP consists
of an insulin pump, BGL sensors, and a control algorithm that cal-
culates the amount of required insulin based on the patient’s BGL
profile and physical characteristics. The commercially available
APs are discussed by Moon et al. [3] and Cobelli et al. [4].

When insulin is delivered via the IV route, as shown in Fig. 1,
it is distributed throughout the body by blood circulation. De-
spite the quickness and reliability of the IV route, blood clots

Type 1 diabetes mellitus (T1DM) is potentially a life-threaten-
ing illness in which the pancreas produces little or no insulin [1].
Frequently even glucagon production is impaired [2]. Insulin is
the essential hormone to reduce blood glucose levels (BGL) by
enabling cellular glucose uptake. The cells either use glucose as
an energy source or store it as glycogen, e.g., the liver and skeletal
muscle cells. In contrast, glucagon triggers glycogenolysis, a pro-
cess that involves converting stored glycogen to glucose, releasing
it into the bloodstream, and thus raising the BGL.

External insulin therapy is the current solution to control the
BGL in T1DM patients. Generally, patients estimate the required

* Corresponding author.

E-mail addresses: karim.d.benam@ntnu.no (K.D. Benam),
hasti.khoshamadi@ntnu.no (H. Khoshamadi), marte.kam@ntnu.no (M.K. Am),
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anders.fougner@ntnu.no (A.L. Fougner).
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and catheter-related problems make it unsuitable for continuous
insulin infusions. The SC route is safer and less invasive than the
IV route [4]. Therefore, continuous subcutaneous insulin infusion
(CSII) has become a widely used solution since the 1990s, and

0959-1524/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. Comparison of the time delays and pharmacokinetics block diagram of
the SC, IP, and IV insulin administration. Notice that the HFP is saturated at
greater insulin concentrations, and insulin enters the blood circulation system
again by bypassing the liver.

advances in the safety and accuracy of the SC pumps and BGL
sensors have improved the diabetes management.

Due to the intrinsic delay in the SC route and the slow dy-
namics of insulin absorption, no matter how advanced the control
algorithms are, there is always a trade-off between the perfor-
mance of the controllers and the risk of hypoglycemia episodes.
The slow dynamics and delay can cause oscillations, especially
if the control algorithm is aggressive (high gain). It requires
precise control tuning to achieve a fully automated AP without
meal announcement. Therefore, in commercially available single-
hormonal APs, the carbohydrate content of each meal must be
estimated and announced to the AP ahead of time [5].

In addition, CSII delivers insulin to the entire body in equal
concentrations, whereas the primary target organ of insulin is the
liver. Under normal conditions, insulin is secreted from the pan-
creas and transported directly to the liver via the portal vein (PV).
The insulin concentration is consequently much higher in the
liver than in the rest of the body. However, the non-physiological
nature of CSII leads to a high concentration of insulin in periph-
eral tissues, which impacts the BGL control quality.

An alternative and feasible approach for delivering drugs to
the liver is to deposit the drug into the peritoneal cavity [6-8].
The peritoneal cavity is a space within the abdomen enclosed
by the peritoneal lining. It is lubricated by a small volume of
peritoneal fluid that facilitates movements of the abdominal or-
gans [9]. Although the peritoneal cavity is small in volume, it
has a large surface area and the blood vessels within the lining,
together with the blood vessels from the intestines, drain into
the liver via the PV. Drug injections via this route are called
intraperitoneal (IP) injections.

In addition to mimicking normal pancreatic function with
IP injections, this route has significant control benefits, such as
faster insulin appearance in the blood due to a higher absorption
rate and also faster insulin disappearance rate due to the hepatic
first-pass (HFP) effect [10]. The current challenges and solutions
of using the IP route are discussed in [5].

Our recent animal studies revealed nonlinear insulin phar-
macokinetics and pharmacodynamics behavior of IP route [11].
These results showed that insulin boluses of less than 0.125 U/kg
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rapidly affect BGL without causing a significant change in plasma
insulin levels (PIL). However, despite a slight extra reduction
in BGL, a substantial increase in PIL is found for greater IP in-
sulin boluses. Unlike the IP injections, a dose-dependent relation
between insulin dosage and the PIL is observed following SC
administration.

These findings are consistent with saturation of the HFP effect,
which holds that when insulin concentration in the PV exceeds
a certain level, insulin clearance in the liver becomes saturated.
As a result, more insulin enters the general blood circulation.
Additionally, the insulin effect in the liver is not proportional to
the size of the insulin boluses; following a large insulin bolus,
the liver’s capacity to absorb glucose is saturated. Therefore, the
saturation of the HFP effect must be modeled to predict the body’s
behavior for different insulin bolus sizes.

Taking full advantage of the IP pathways in the AP systems
necessitates having a mathematical model. This paper proposes
a model to describe IP insulin and glucagon interaction with the
BGL. The model aims to be used in APs with model-based control
techniques like model predictive control (MPC). Therefore, the
model should track the measured data and have a high perfor-
mance in predicting future BGL. In addition, the parameters must
be identifiable, and the system identification procedure must be
feasible and noninvasive. It is helpful to have a short identifica-
tion phase since then; one can rapidly start automated glucose
management and reduce the patient involvement in glycemic
control. It may be even more critical to have a short identification
phase in animal experiments since it is desirable to decrease the
duration of these experiments. Therefore, the model is designed
with a minimum number of parameters and states necessary for
mimicking the real-life behavior of the body’s response to IP
insulin and glucagon.

In summary, the main aim of this paper is to design a model
for blood glucose prediction with IP insulin and IP glucagon with
a few parameters to use in model-based control.

The proposed model extends our previous model [12] by in-
cluding the HFP effect and improvement of the glucagon sensitiv-
ity sub-model. The modifications improve the model to predict
the response to a wide range of insulin and glucagon boluses.
In addition, to overcome the identifiability issues and ease the
identification procedure, a novel method based on physiological
and practical assumptions is proposed. In this method, called
“meta-model identification”, one could split the model’s param-
eters into the population and individual parameters. Population
parameters are a set of parameters that are functions of body
weight or common among individuals/animals, and individual
parameters are the parameters that vary from subject to subject.
The proposed method enables us to split the invasive sets of
excitation and measurements among several animal experiments
instead of performing them on each animal. Notably, the popula-
tion parameters are found using prior information. For every new
subject, there is only a need to identify five individual parameters
without an invasive excitation.

Using data from several animal experiments, we showed that
the proposed model could satisfactorily reproduce the behavior
of glucose metabolism in response to a wide range of insulin and
glucagon boluses. Furthermore, the new model outperforms other
comparable models in prediction performance, which is a crucial
feature for the closed-loop performance of MPC-based methods.

The paper is structured as follows. Animal care and surgical
procedures are described in Section 2, while pharmacokinetics
and pharmacodynamics of insulin and glucagon are modeled in
Section 3. We provide identification method and meta-model
designation in Section 4. The utilized data sets and evaluation
tools are described in Section 5, and the destined model is trained
in Section 6. Using the test data, the performance of the pro-
posed model in fitting to the measurements and prediction is
compared with other models in Sections 7 and 8, respectively.
The conclusions and discussions are provided in Section 9.



K.D. Benam, H. Khoshamadi, M.K. Am et al.

2. Methods

This section provides an overview of animal experiments and
clinical procedures. The procedures are described in more detail
in[11,13].

2.1. Ethical approval

The Norwegian Food Safety Authority (FOTS number 12948)
approved the animal experiments, which were carried out in ac-
cordance with “The Norwegian Regulation on Animal Experimen-
tation” and “Directive 2010/63/EU on the protection of animals
used for scientific purposes”.

2.2. Animals and animal handling

The tests were carried out on 29 non-diabetic farm pigs (Sus
scrofa domesticus) that weighed 30-63 kg. Before the experi-
ments, the animals were given a week to get used to the staff
and their new surroundings. The animals were kept together in
groups whenever possible. They were fed commercial growth
feed twice a day and given unlimited water access.

2.3. Anaesthesia

The anesthesia procedure, the drugs used in this procedure,
and the environmental factors are described in [11,13] in detail.

2.4. Surgical procedure

A venous line for fluid infusion was established in the left
internal jugular vein, and the left carotid artery was cannu-
lated for blood sampling and monitoring of physiological param-
eters. The same cut-down was used to insert both catheters. The
catheters from the insulin and glucagon pumps were connected
at the end and inserted 10-15 cm into the upper left part of
the abdomen through a 2-3 cm long craniocaudal incision in the
abdominal wall, 2-3 cm caudally to the umbilicus. The pigs were
euthanized with an IV overdose of pentobarbital (minimum 100
mg/kg)(pentobarbital NAF, Apotek, Larenskog, Norway) at the end
of the experiments while fully anesthetized.

2.5. Suppression of endogenous insulin and glucagon secretion

Twenty pigs were given IV boluses of 0.4 mg octreotide (San-
dostatin 200 g/ml, Novartis Europharm Limited, United Kingdom)
every hour and SC injections of 0.3 mg pasireotide (Signifor
0.3 mg/ml, Novartis Europharm Limited, United Kingdom) every
three hours to inhibit endogenous insulin and glucagon secretion.
The remaining pigs received octreotide as a 5 g/kg/h infusion and
no pasireotide injections.

2.6. Measurements

PHL was analyzed with Glucagon ELISA (10-1281-01 Mercodia,
Uppsala, Sweden), and PIL was analyzed with Porcine Insulin
ELISA (10-1200-01, Mercodia, Uppsala, Sweden). The assay ranges
for the glucagon and porcine insulin ELISA kits were 2-172 pmol/l
and 2.3-173 mU/l, respectively. Blood glucose was analyzed on a
Radiometer ABL 725 blood gas analyzer (Radiometer Medical ApS,
Brenshgj, Denmark).
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Fig. 2. Block diagram of the proposed IP drug pharmacokinetics. The IP and IV
drug administration rates are denoted by Uj, and Uj,, respectively. Cy, and Cyp
are the drug concentrations in the peritoneal cavity and plasma, respectively.
The portal vein (PV) and extra portal veins (EPVs) transport the drug (at a rate
of D,) from the peritoneal cavity to the liver and heart. In the liver, the drug
undergoes the hepatic first-pass (HFP) effect, and a portion of it (at a rate of
Dy) is removed from the blood. The remaining drug (at a rate of D;) enters the
heart and is cleared from the plasma at a rate equal to D..

3. Background and model development

From the pharmacokinetics point of view, drugs deposited in
the IP cavity are absorbed by the surrounding capillaries and
transported to other organs via blood circulation [14]. The cap-
illaries in the vicinity of the peritoneum can be divided into two
groups, (a) capillaries emptying compounds into the PV and (b)
capillaries draining into the extra-portal veins (EPVs). The PV
carries blood from the stomach, intestines, spleen, and pancreas
to the liver and is essential in transferring insulin and glucagon
from the pancreas to the liver in the body. The EPVs go directly to
the heart. Notably, drugs absorbed into the PV and transported to
the liver are subject to the HFP effect, and a significant portion is
cleared from the blood before reaching the systemic circulation.

From the pharmacodynamics point of view, the liver can store
glucose as glycogen in quantities of up to 6% of its weight,
which equates to 100-120g glycogen for a 70kg male. Other
organs, such as skeletal muscles, kidneys, and lungs, may not
substantially influence the BGL, but their cumulative impact is
comparable to that of the liver. For example, skeletal muscle
glycogen storage can amount to 2% of their weight, allowing for a
total of 400 g of glycogen storage in the muscles of the body as a
whole [15,16]. Therefore, the liver and other organs’ cumulative
pharmacodynamics must be modeled separately to describe the
effect of insulin.

In the following sections, the mathematical models of the
pharmacokinetics and pharmacodynamics of insulin and glucagon
are described.

3.1. IP insulin and glucagon pharmacokinetics

To simulate the pharmacokinetics of insulin and glucagon in
the body, one should model the concentration dynamics of these
drugs in peritoneal fluid, the quantity of the drugs entering the
liver and the heart, and the concentration of the drug in plasma.
The equations are given in the following sections, and the block
diagram of the proposed IP pharmacokinetics is presented in
Fig. 2.

3.1.1. Concentration of the drugs in peritoneal fluid

The IP cavity fluid is where the drugs are administrated, and
drug dissemination relies on its dynamics. Similarly to Canal
et al. [17] and Zazueta et al. [12], we modeled the concentration
of the drugs (i.e., insulin or glucagon) in the peritoneal cavity as
a linear system as follows:

U (1)

Caip = —kq, - Caip + v
d,ip
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where Cgj, [mass/ml] is the concentration of drugs in the peri-
toneal fluid, U;, [mass/min] is the mass rate of drug injection, Vg j,
[ml] is the volume of the peritoneal fluid, and kg, [min~!] is the
diffusion rate of the drug from the peritoneal cavity to capillaries.
From (1) one can conclude that

Dp £ kdlvd,ipcd,ip (2)

is the rate at which the mass of a drug escapes from the peritoneal
cavity and gets absorbed into the capillaries that surround the
peritoneal cavity.

3.1.2. Mass rate of drug entering to liver

A sizeable portion of D, eventually drains into the PV, and
the rest goes to the heart via EPVs [14]. As shown in Fig. 2, the
PV supplies blood from the abdominal organs to the liver, where
the main metabolism of glucose takes place. The drug mass rate
entering the PV can be defined as 84D, where 0 < 84 < 1 is the
ratio of drug drained into the PV to the total amount of drug that
is absorbed from the peritoneal cavity.

Notably, the HFP effect becomes saturated for a high IP insulin
bolus, and the liver cannot remove the drug from the blood in the
PV. We used the model suggested in [18] to model the hepatic
drug clearance rate and its saturation as follows.

BaD,
Dy = kg, ————
ka, + BaDy
where Dy is the liver clearance rate, kg, [mass/min] is the maxi-
mum drug clearance rate of the liver, and kq, [mass/min] is the
half-saturation constant in the liver response function [19].

(3)

3.1.3. Mass rate of drugs entering to heart

The drug bypassing the HFP effect or absorbed into the EPVs
will ultimately reach the heart and spread throughout the body.
Therefore, the drug mass rate entering the heart, D, can be found
as follows.

Dy =D, — Dy (4)
3.1.4. Concentration of drugs in plasma

The quantity of drugs available to the different tissues in the
body is dissolved in blood plasma. In addition, the concentration
of the drug in the blood is a measurable quantity modeled as
follows in this paper.

Cap = —kaaCap + (Ui, + Dp)/Vay (5)

where Cy is the concentration of drugs in plasma [mass/l], Uj,
is IV drug infusion rate [mass/min], and kg4 is the clearance rate
of the drug from plasma [min~'], and Vg, is the volume of the
plasma that the drug is solved in [l]. Notably, D, £ Vq ,k4sCqp is
the drug mass clearance rate from plasma [mass/min].

Please note that peritoneal fluid in people ranges from 50 to
75 ml [20], whereas a 70 kg man’s blood volume is 5.81 1 [21].
In order to avoid showing low values for V; j,, or large values for
blood volume, we choose to measure Vg, in milliliters and the
blood volumes in liters.

3.1.5. Summary of the proposed pharmacokinetics model

In summary, a general model for the pharmacokinetics of IP
and IV administrations is developed. For insulin and glucagon in-
jections, one needs to replace d with {i: insulin, and h: glucagon}
in the notations. The unit [mass] must also change with [U]
and [ug] for insulin and glucagon, respectively. Notably, mg is
the most common unit for glucagon. However, in our animal
experiments, due to the size of the pigs, glucagon injection doses
were mainly in the range of 0 to 150 g. Therefore, g is chosen
as the mass unit for the glucagon in this paper.

The block diagram and the equations are summarized in Figs. 2
and 3. In the next section, the effects of both insulin and glucagon
on BGL are modeled using the proposed pharmacokinetics model.
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3.2. IP insulin and glucagon pharmacodynamics

The purpose of this section is to model the reaction of the
organs receiving insulin and glucagon.

3.2.1. Effective insulin in liver

In this study, it is assumed that the rate of glucose absorption
in the liver is proportional to the quantity of insulin taken up by
the liver cells. The liver will then take up glucose based on the
insulin sensitivity of the cells and the amount of glucose in the
blood. For the sake of simplicity, the amount of insulin taken up
by the liver cells is called effective insulin.

To develop a mathematical model for the effective insulin rate
in the liver, we assume it is a linear system that responds to the
rate at which the liver absorbs insulin from the PV. Since there
is a saturation in the insulin uptake from the PV, the effective
insulin in the liver will also be saturated for higher amounts of
insulin. Therefore, using (1) and the HFP saturation (see Eq. (3)),
the concentrations of insulin in the IP cavity and the effective
insulin in the liver are modeled as follows:

. 1 BiViipki, Ciip )
Eiy

—E: + ki ——— 1 ~F
7 ( M ki, + BiViipki, Ci.ip
. 1
Giip = —ki, Ciip + 7.

i,ip

(6)

(7

where E;; is the effective insulin rate in the liver [U/min], G,
is the concentration of insulin in the peritoneal fluid [U/ml]. 7; is
the liver response time to insulin [min], and [ is the rate of insulin
infusion into the peritoneal cavity [U/min]. In addition, k;,, k;, and
ki, are diffusion rates of the drug from the peritoneal cavity to
capillaries [min~'], maximum insulin clearance rate of the liver
from blood [U/min], and half-saturation of the insulin HFP effect
[U/min], respectively.

3.2.2. Effective insulin in the extra hepatic organs

The amount of insulin that reaches the heart is distributed
throughout the systemic circulation and to the other organs. For
a model developed for control purposes, describing the insulin
action in each of these organs is not advisable since it introduces
more parameters to the model. Therefore, this paper modeled the
cumulative effective insulin in body organs (other than the liver),
where effective insulin in body organs is the amount of insulin
absorbed by the insulin receptors.

_ BiViipki, )C _ ]
2 kiy + BiViipki, Ciip ) "
where E;} is the effective insulin rate in the body organs other

than the liver [U/min] and 7, is the body response time to insulin
[min].

. 1
Eip = = |:_Ei.b + <Vi.ipki1 —k (8)

b

3.2.3. Effective glucagon

Similar to the insulin sub-model, the effective glucagon in the
liver is defined as the number of cells allowed by glucagon to
break down glycogen. Notably, the amount of released glucose
depends not only on the number of cells receiving glucagon but
also on the amount of glycogen stored mainly in the liver or
possibly other organs. The cumulative effective glucagon is only
considered in the liver to simplify the model and reduce the
number of parameters. Additionally, to account for unmodeled
glycogenolysis in other organs, we assume that the liver is a linear
system that responds proportionally to the amount of glucagon
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Fig. 3. Diagram and equations summary of the proposed model. In this model, inputs are IP insulin (I), IP glucagon (H), IV insulin (I;,), and IV glucagon (H;,). Outputs
of the model are blood glucose level (G), the concentration of insulin in plasma (G;;), and the concentration of glucagon in plasma (G, ). In addition, Eq; are the
effective drug (d € {i : insulin, h : glucagon}) in the compartments j € {/ : liver, b : body organs}. Moreover, & is the glycogen storage level. The rest of the variables

are the constant parameters defined in Section 3.

absorbed from the peritoneal cavity without taking the HFP effect
into account. The effective glucagon rate is modeled as follows:

. 1
Eni = — (—En1 + kns Chip)
Th

9)

. H
Ch.ip = —kn, Cnip + Vin
where H is the rate of IP glucagon infusion [ug/min], Cpp is
the concentration of glucagon in the peritoneal fluid [pg/ml], Ey;
is the effective glucagon rate in the liver [pug/min]. Parameters
kp, and 7, are, respectively, the glucagon diffusion rate from the
peritoneal cavity to the capillaries [min~'] and the response time
of the body to glucagon [min]. Furthermore, ki, is a constant
parameter [ml/min].

(10)

3.2.4. Mathematical model for hepatic glucose production rate

Glycogenolysis is the liver's process of producing glucose in
response to effective glucagon. The experiments showed that the
amount of glucose produced depends on the effective glucagon,
insulin, and glycogen stored in the liver.

According to the literature, glycogen is predominantly stored
in the cytoplasm of hepatocytes. Zazueta et al. [12] described
glycogenolysis sensitivity to glycogen storage level as a linear
function. Notably, a high glycogen storage level does not neces-
sarily result in increased glucose production because the glucagon
may not diffuse to all liver cells simultaneously, and the liver’s
glycogenolysis rate can be subjected to saturation. In addition,
one can assume that having insulin in the liver decreases glycoge-
nolysis. To account for these assumptions, we define the hepatic
glucose production rate as follows.

HGP £ kg, - Ent - /& - exp (—ke, - i) an

where HPG [mmol/l/min] is the hepatic glucose production rate,
& € [0 — 100]% is liver glycogen storage level modeled as
described in (12). The term /& refers to the saturation of the
liver in terms of glucose production, ks, [min/U] is a constant
parameter describing the negative influence of effective insulin
rate in the liver on glucose production rate, and kg, is a coefficient

describing the sensitivity of liver cells to effective glucagon in

the liver, glycogen storage level, and effective insulin in the liver
[ mmol

V%ng

3.2.5. Glycogen storage level

We assume that glucose absorbed by the liver is stored as
glycogen and thus increases glycogen storage level, whereas hep-
atic glucose production decreases glycogen storage level. With
these assumptions and using (13), one can model the dynamics of
the liver glycogen storage level for &(to) € [0, 100]% as follows.

ke EiG— %HGP £ € [0, 100]%
0

£ 4 (12)
otherwise

where kg, [%- 1/mmol/U] and k, [v/%/ig] are constant values
representing the charging and discharging rates of the glycogen
storage. One can assume that these parameters are proportional
to the weight of the liver. In addition, G is BGL defined in (13).
Notably, the term ke, E; G is proportional to the rate of glucose
that liver uptakes.

3.3. Blood glucose dynamics

Using the proposed sub-models for insulin and glucagon in
the body, it is now possible to model the aggregated effect of
insulin and glucagon on the BGL. To achieve this, we employed
the following equation.

G = — (kgy + kg, - Eiy + kg, - Eip) - G-+ HGP + Rg(£)/Vy (13)

where G is the blood glucose level [mmol/l]. Rg(t) is the glucose
appearance rate due to meal digestion [mmol/min], and V, [1]
is the volume of the blood circulating in the body. kg, is the
insulin-independent glucose uptake rate [min~'] (e.g., brain glu-
cose uptake rate). ky,, and kg, are the sensitivity rates of the
subjects to effective insulin in liver [U™"], and in the organs other
than liver [U™!], respectively.
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3.4. Summary of model development

An overview of the proposed mathematical model of the
pharmacokinetics and pharmacodynamics for both IP insulin and
glucagon infusions is shown in Fig. 3. The challenges of the
parameter identification for the proposed model are explored in
the next section.

4. Practical techniques to ensure identifiability and reduce the
time needed to identify the parameters

In order to use the model for control purposes, we must ensure
that the parameters of the model are identifiable in two ways:

1. Structural identifiability: The necessary condition for hav-
ing structurally identifiable parameters is to have no re-
dundant parameters in the model. Otherwise, there will
be a set of parameters that may vary without changing
the output. Therefore, the parameters are not uniquely
identified [22].

2. Practical identifiability: The data used to estimate the
parameters provides sufficient information, making it prac-
tically possible to identify them. The amount of data re-
quired for a reliable estimation of the parameters typically
increases with the number of parameters. In addition to the
amount of data, we must ensure that the inputs are rich
enough to excite the system dynamics [22]. For example,
different insulin bolus sizes must be injected to capture the
dynamics of the HFP and the insulin pharmacodynamics.

It is worth highlighting that, from a control perspective, the
short identification tests and the procedures are desirable be-
cause one can start the closed-loop system shortly. However, To
excite all the system dynamics in a short time window, one needs
extreme inputs, which can be dangerous and invasive.

One solution to increase the identifiability and shorten the
identification phase is to embed prior physiological knowledge
in the parameter identification process. For example, the model
is based on body physiology and drug concentrations in compart-
ments; some parameters strongly correlate to the compartment
volume and the body weight. Therefore, we can use past data
from different animals to estimate these relationships and embed
them in the system identification procedure.

In addition, an easy step in addressing the structural non-
identifiability issue is to model additional physical quantities that
can be measured. PIL and PHL are two physical quantities that
can be measured by taking blood samples and analyzing them in
laboratories. However, these measurements are not real-time.

One can use the PIL and PHL measurements to find the param-
eters correlated to body weight or constant across the subjects
in a post-processing manner. For simplicity, one can assume that
the observed correlation between body weight and the selected
parameters applies generally, and one can extrapolate from these
data to all subjects.

Additionally, by combining the PIL and PHL measures with the
IV injections, it may be possible to increase identifiability. This is
achievable because adding the IV injections to the identification
procedure results in a new map from a new input to states
while maintaining the original mapping of states to outputs.
Consequently, it can increase structural identifiability [22].

Another way to improve identifiability is to use the litera-
ture to find the values for the parameters based on the body’s
physiology. For example, V}, can be estimated using body weight,
and gender [23,24]. These assumptions and information can help
improve the model’s practical and structural identifiability.

In summary, the following ideas are used in this study to solve
the identifiability issues of the proposed model:
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1. Perform specific experiments with frequent PIL and PHL
measurements to improve the structural identifiability.

2. Perform specific experiments with IV insulin and glucagon
boluses to excite dynamics in an efficient way.

3. Find the parameters that are dependent on body weight or
are almost constant among subjects.

4. If available, look up the values of the physiology-based
parameters in the literature.

In order to find the parameters that have the same values
among the subjects or are correlated with body weight, a general
model is needed to simulate several subjects together. To put
the above concepts into action and analyze the information of
different animals, we introduced the “meta-model”. It is a generic
model that allows us to examine a group of animals (subjects)
linked by constant and weight-dependent parameters. Adding
other features, such as gender, can also improve the model, but
we did not include other features in this study. The meta-model
is introduced in the next section.

4.1. Meta-model development

This section aims to expand the suggested model (summa-
rized in Fig. 3) to simulate subjects in a population who share
parameters related to body weight or that are constant across
the population in order to apply the concepts discussed in the
previous section. To this end, we categorize the parameters of the
proposed model into four groups:

1. Independent parameter: A set of parameters that must
be identified for each animal (subjects) separately. In this
paper, we assumed that the initial values of the states
{X1,....X7,21,22} in Eqgs. (14b) and (14a) belong to this
set, and they are denoted by A £ {a1, a3, ..., ag}. Notably,
among parameters, «7 has an essential role in the model
since it is the initial glycogen storage level.

2. Analogous parameters: A set of parameters which con-
sist of values similar across individuals. However, they
must be identified individually, e.g., see the parameters in
Egs. (14a)-(14e) that are noted by B 2 {81, B2, ... B1o}.

3. Weight-dependent parameters: A set of parameters that
depends on body weight. This parameter set is defined as
T 2 {y1,¥, ..., ¥} in the Egs. (16) and (17).

4. Constant parameters: A set of parameters that have the
same value for all animals in normal situations, e.g., see
the parameters denoted by A 2 {81,8,,...,8;5}) in the
Egs. (16), (17), (14d), and (14e).

Using categories for the parameter sets described above, and
the proposed model summarized in Fig. 3, a meta-model is
introduced in (14a) and (14b) where the detailed comparison
with the individual model is given in Table 1. Notably, X £
[G, Aip, Ail, Giips An,i> Chip, £]" is a vector including the necessary
states for model base controllers. The state vector Z £ [G;p, C;,,p]T
contains the model of insulin and glucagon pharmacokinetics in
the plasma. The model (14b) does not rely on the states of (14a)
while it provides necessary information for controllers. Therefore,
one may not consider (14a) in the controller (depending on how
the complexity of the controller). However, using it in the iden-
tification can increase the identifiability of the (14b) because the
two models share parameters and (14a) add two new measurable
variables.

d(zi\ _( —Buzi+ B3 (ys(®) - Xa — Fear)
dt \ 22 ) 7\ —Buz2+ Bis (v6(®) - X6 — Foar)
1 ([ Bis-Tu(t)
e ( Brg - Hin(1) ) (143)
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Table 1
Description of the states, inputs and parameters of the proposed meta-model
14b).
: Si‘,ates Units Description
1 mmol/L Blood Glucose Level (G)
o U/min Effective Insulin in Body (E; ;)
T3 U/min Effective Insulin in Liver (E; ;)
Ty U/mL Insulin in IP fluid (Cj ;)
5 pg/min Effective Glucagon in Body ( Ep )
6 ng/mL Glucagon in IP Fluid (C; i)
T7 % Glycogen storage Level (§)
2 U/L Insulin in Plasma (Cj ;)
B ng/L Glucagon in Plasma (Cj,p)
Inputs
R, mmol/min IV Glucose Infusion rate
( ) U/min IP Insulin rate®™)
Iin(t) U/min TV Tnsulin rate®)
H(t) pg/min TP Glucagon rate(*)
Hiy(t) jg/min IV Glucagon rate*)
Parameters Equivalent to:
w, W kg body weight, See Eq. (16)
B min~! kgq
B2, B3 U kg ko
By mmol/L/pg kg,
Bs, Bs, Bo min~? L R
Bs, 013 U/min ki, ki,
Bz, Bio 1/mL, mL/min VZ o kh
B Dimensionless kg,
B2, B, min~?! kiys kn,
B3, P15 Lt See Eq. (1 )
Bi6, P17 pg/min, 1/mL kg, V;”],
frs/w, Pro/w L7! Vip L Vip ™
01, 04, 07 (%) See Eq. (17)
02,3,5,6,8-11 —() See Eq. (16)
012, 014 Dimensionless  f;, O
013,15 U/mL, p/mL kigs ny
ar [0 —100)% £(0)

() For simplicity, we assumed the insulin and glucagon boluses
were given over 5 minute regardless of bolus size.
() According to the given equations.

X1 —(B1+ B2 X2+ B3 - x3) - X1 + HGPpera
X2 Bs (=X2 + (B7 - V1(®) - Xa — Fsar))
d X3 ﬁs (7)(3 + Fsat)
wl ™= —71(®) - X4
X5 Bo (—x5 + B1oxs)
X6 —72(w) - Xg
X7 y3(@) - X3 - X1 — ya(®) - X5 - HFPmeta/ Ba
y7(w)Rg(t)
0
0
+ | vs(@(t) (14b)
0
yo(w)H(t)
0
HGPetq £ BaXs+/X7 - €XP (—B11 - X3) , (14¢)
S12y5(w)X4
Foar(xa) & Bo— 14d
e(a) = P 313 + S12B711(@)Xa (14d)
Fuae(xs) 2 P16 st Xs (14e)

315 + d14Br7v2(w)xs

In summary, the measurable outputs of the introduced meta-
model are:

Y1 2 x;, blood glucose level (BGL)
Y2 2 z;, plasma insulin level (PIL) (15)
y3 £ z, plasma glucagon level (PHL)
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Here y; is measured from all animal experiments, while y, and
y3 are available from some experiments. Furthermore, (14d) and
(14e) are insulin and glucagon HFP effect saturation functions.
Notably, we assume that the weight-dependent parameters are
as follows:

yi(w) £ 82 - (1483 - fo(w))

Ya(w) £ 85 - (1+ 86 - fu())

y3(w) £ 8 - (1+ 89 - fu())

Y4(0) 2 810+ (14 811 - fuf)) (16)
ys(@) £ B7 -85 - (1483 - fu(®))

Vo(@) £ P17 - 85 - (1+ 86 - fu(w))

where f,(w) £ (w/wo — 1) is the function describing the effect
of body weight on the parameters, » is body weight, and wy is
the maximum body weight among the subjects, e.g., we chose
wo = 52 kg, which is the body weight of the Pig#6 since it was
the heaviest pig in our IP experiments.

In Eq. (16), y; [min~'] and y, [min~'] are the diffusion rates
of insulin and glucagon from the peritoneal cavity to the sur-
rounding capillaries (equivalent to k;; and kj, introduced in Sec-
tion 3.1.1), respectively. Since the size of the IP cavity varies
with body weight, y; and y, are considered functions of w.
Moreover, y; [% 1/mmol/U] and y,4 [% |/mmol/ung] are the charging
and discharging rate of glycogen storage level (equivalent to kg,
and kg, introduced in Section 3.2.5), respectively. Since the liver
size is related to body weight, we assumed that y; and y, are
weight-related parameters.

IV glucose infusion was used in the experiments to simulate
meal absorption in the anesthetized pigs. The glucose solution
had a concentration of 200 mg/ml. Therefore, y5(w) is a coefficient
directly related to the concentration of IV glucose infusion and
inverse to the body weight (blood volume). In addition, ys(w)~",
and yy(w)~! are the volumes of peritoneal fluid in which insulin
and glucagon are dissolved. These parameters are defined as
follows:

IMMé%,MMé%
7

w

(17)

1>
o

4.2. Parameter identification

In the animal trials, we assume that the endogenous insulin
and glucagon are negligible, and we know there were no IP
insulin or glucagon boluses before the experiments. Therefore,
the initial values of the states x,, X3, ..., Xg are zero (i.e., the val-
ues of a, ..., ag are zero). Moreover, a1, ag, and «g are chosen
equal to BGL, PIL, and PHL measurements at t = 0. The initial
glycogen storage is a function of different factors, and therefore
o7 needs to be identified individually. In addition, the weight-
dependent parameters (1) are designed as body weight functions
and constant pararneters across the animals. Therefore, we only
need to identify ® 2 {B4, Ba, ..., B19, @7} which are individual
parameters and A £ {81, §;..., 815} that are constant parameters
across the animals. As previously stated, we expect the individual
parameters (except the initial values) of different pigs to be in the
same range with a slight variation due to their similar properties.

Objective function (18) is designed for trajectory-fitting and
parameter identification. Using the proposed objective function,
the modeled BGL, PIL, and PHL tried to fit the measurements in
N animals. Each pig is allowed to have individual parameters, but
the objective function contains a penalty on the variation of these
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parameters across animals. The designed objective function is as
follows.

J(©1,0,,...,6n, 4)

N
Z (EC;(@i» AY - Qg - E (64, A)
i=1
+E,(0;, A - Q, - E, (64, A)
+Ey, (05, A) - Qu, - En (64, A)

+HO -0 Q- (6 — @)) (18)

where:

® Eg,(0;, I'), E;(©;, ") and Ey(©;, I') are the fitting error
vectors of the model in tracking the BGL, PIL and PHL mea-
surements, respectively. They are defined as the following:

BGLi(to) — y1(@, A, to)
BGLi(t1) — y1(@1, A, t1)

Eq (0, A) 2 _ , (19)
BGLi(tn,) _yl((’)i, Av tn,)
PILi(to) — y2(©)i, A, to)
.| PLilt) = y2(64 A, 1)
E (64, A) 2 : , (20)
P”—i(tm) _yZ((’)i, Av tm)
and
PHLi(to) — y3(©:, 4, to)
PHL(t1) — y3(6i, 4, t1)
En(6;, A) 2 . (21)

PHLi(tni) _y3((")is A, tni)

@ is the vector of the average individual parameters identi-
fied for the test data:

O =(01+6;+ -+ 6y)/N. (22)

Qg;, Q;, and Qy; are positive definite matrices that should be
chosen according to the variance of the measurement noise
and the scale of the measurements. Matrix Qg is also positive
definite and should be chosen according to the expected
variability of each parameter. For the animals or the samples
that the PIL and PHL are not available, both E(®;, I") and
Ey,(®;, I') are zero.

4.3. Summary of the proposed identification method

In order to address the practical identifiability issues, we pro-
pose a meta-model that can characterize some parameters as
either function of body weight or as constant among all animals.

To address the structural non-identifiability, we added PIL and
PHL measurements as new outputs and IV drug injections as new
inputs to the meta-model. However, measuring the BGL, PIL, and
PHL necessitates at least 1-1.5 ml of blood to be extracted at
each sampling time, which can interfere with the normal glucose
metabolism of the animals. Therefore, due to animal safety, we
cannot measure the PIL and PHL in all animals.

Notably, some analogous parameters can have a negligible
variation among animals and, therefore, can be considered a con-
stant parameter. In order to find these parameters, the following
steps are done in the following sections:

1. Choose training data and test data.
2. Identify the parameters belonging to the sets A and © for
training data.
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3. Analyze the analogous parameters to find more parameters
that can be considered fixed among the animals using the
sensitivity and inter-subject coefficient of variability.

4, Re-identify the remaining parameters and evaluate the
model by assuming the fixed parameters are known.

5. Compare the meta-model with other models for test and
training data sets.

5. Training data, test data, and evaluation methods

Data collected in 26 animal experiments are used to evalu-
ate the performance of the proposed model and identification
method. Experiments are numbered Pig #1-29. Pigs #19-21 re-
ceived SC insulin injections, which are outside the scope of this
paper and were excluded from this analysis. Pigs #1-10 are
bi-hormonal IP experiments, Pigs #11-14 are bi-hormonal IP
experiments with additional IV boluses, and the rest contain only
IP insulin injections. The durations of the experiments are 420-
725 min, except Pig #15, which lasted only 250 minutes. BGL
was measured every five minutes. In other words, the number of
samples for the experiments are 84-145 samples, and 50 samples
in Pig #15.

A set of 13 experiments is selected as training data to esti-
mate the parameters of the proposed meta-model and verify its
performance, while the remaining 13 experiments are considered
test data. Each group of experiments chosen for training has a
specific purpose in the identification, to ensure that all dynamics
are excited. Table 2 describes experiment IDs, characteristics, and
key features of the selected experiments. Group 1 helps to ex-
cite the dynamics of insulin, glucagon sub-models, and glycogen
storage level. Group 2 helps in the identification of parameters
related to body weight and the excitation of insulin and glucagon
pharmacokinetics. Group 3 helps to excite the dynamics of the
HFP effect since they include a wide range of insulin boluses.

Among the selected experiments, we used BGL measurements
of {Pigs #2, 4, 5, 6, 10, 15, 22, 23}, PIL measurements of {Pigs #4,
5, 6, 11, 12, 13, 22, 23}, and PHL measurements of {Pigs #4-7,
11-14} for identifying the parameters of the BGL, PIL and PHL
sub-models, respectively.

Notably, to estimate the parameters of (14b), one needs to
ensure that the dynamics of all compartments are excited. To
this end, we performed four specific experiments, which are
Pigs #11-14. In these experiments, we excited the glycogen stor-
age dynamics by injecting insulin and glucagon in different com-
binations. In addition, IV insulin and glucagon were also infused.
The body weight of the pigs used in these experiments was
chosen in the range of 30-63 kg to increase the identifiability of
the body weight-related parameters.

5.1. Parameter coefficient of variability

After the identification using the training data set, the esti-
mated analogous parameters will be analyzed to find the inter-
subject parameter variability. This will be used to find the pa-
rameters that can be considered as constant across the animals.
To this end, the coefficient of variability (CV,) for parameters
and sensitivity of the outputs to a parameter (Sﬁ’) are defined as
follows:

v, = 2= P100% 23)
b

Wi p
ap  yilp=p*

where p* is the estimated value of the parameter p, p is the
average value of that parameter identified for the training ex-
periments, and y; for i = {1, 2, 3} is the output defined in (15).
Notably, the derivatives in this paper are calculated numerically.

S = =1 vi={1,2,3} (24)
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Description of the three groups of animal experiments chosen as training data sets, their

characteristics, and their key features. I and H refer to insulin and glucagon, respectively.
Exp . IDs | Weights [kg] | Bolus Types | Injections | Key Features
#02 36 P T&H 1. Different combinations of I and I
#04 37 P TCH boluses to excite the
Group 1 #05 10 P TCH of Glycogen storage level.
#06 52 3 T&H 2. Different bolus sizes and body
#10 13 P T&H weights.
#15 50 P T
#07 13 P T&H 1. Wide range of body weight.
#11 30 IV & IP TCH 2. IV and IP injections.
Group 2 #12 63 vV T&H 3. Wide range of I & H bolus sizes.
#13 10 vV &IP T&H 4. Regular PIL and PHL measurement
14 I V&P T&H
#22 36 P T 1. Wide range of I bolus sizes.
Group 3 #23 36 P T 2. Constant Glucose infusion.

5.2. Bayesian information criterion

After estimating the parameters and analyzing the inter-
subject parameter variability, the rest of the experiments are used
to evaluate the performance of the proposed model. The Bayesian
information criterion (BIC) is employed to compare the proposed
model with the other available models in the literature. The BIC
is defined as follows:

BIC = ny - log (o®) + p - log(ny) (25)

where n; is the number of samples, o2 is the mean square error
(MSE) of the model, and py is the number of the parameters. As
the number of samples is equal for all models, The lower MSE of
the model with the minimum number of parameters will result
in lower BIC values. Therefore, the lower the BIC value, the better
the model performance.

6. Meta-model parameter identification using the training set

Since the model is developed for control purposes, some sim-
plifying assumptions can be made before identifying the pa-
rameters. For example, the precise concentration of insulin or
glucagon in the peritoneal fluid is not a critical factor in the
control algorithms; rather, the amount (mass) of insulin and
glucagon in the peritoneal fluid is required. As a result, there is
no need to determine the volume of peritoneal fluid; instead, a
value proportional to body weight can be assumed. Therefore,
we assumed that 84 and §; are 1 ml/kg. Furthermore, §; can be
found based on the concentration of the IV glucose solution used
in the experiment and the approximation of the blood volume
in the body based on the body weight [23]. For example, in our
animal trials, we utilized glucose with a 200 mg/ml concentration
to simulate the meals. Furthermore, based on our observations
and as mentioned in [14], we assumed that 100% of the drugs
administered into the peritoneal cavity absorbs to the PV; as a
result, 81 = 100% and J14 100%. After selecting the data
set and having made the assumptions above, we identified the
parameters of the meta-model described in the next section.

6.1. Performance of the trained meta-model

Table 3 presents the mean error (ME), standard deviation (SD),
and mean absolute error (MAE) of the meta-model in estimating
the BGL, PIL, and PHL of the selected training data. As an example,
the performance of the proposed model for Pigs #4, #5, and #6
in tracking the BGL, PIL, and PHL measurements are plotted in
Fig. 4. Notice that the meta-model could fit all BGL, PIL, and PHL
measurements of the training data with an average MAE of 0.3
mmol/l, 2.9 mU/], and 23 pmol/], respectively.

The PIL and PHL measurements often contain more noise and
disturbances compared to BGL due to the measurement method
and endogenous secretions.

21

6.2. Identifiability of the model

The models (14b) and (14a) are considered locally structurally
identifiable using the assumptions and the available data sets. The
identifiability tests are presented in Appendix A.

6.3. Inter-subject parameter variability

The inter-subject parameter variability is investigated in this
Section in order to find the individual parameters that can be
classified as constant across the animals for IP injections. In the
proposed meta-model, there are seventeen analogous parameters
(B1, ..., B17) and one individual parameter («7) for IP insulin
and IP glucagon injections. Using the definitions of coefficient
variability and sensitivity of the outputs to parameters given in
(23) and (24), the |CV, ~5§"| for the analogous parameters and
for i = {1, 2, 3} are shown in Fig. 5. Notably, the violin plots in
panel (d) of Fig. 5 shows the %CV of the parameters related to
body weight where v, £ w/8;). Using Fig. 5, the variability of the
parameters is discussed in three sections as follows (where they
are divided based on categories shown in Fig. 5).

6.3.1. Individual parameters related to blood glucose level

To every new animal experiments, the parameter set {fi,
Ba, ..., P11, a7} is required to be identified. As shown in Fig. 5,
the values of |CV ~Sf,"| for 7 out of 12 parameters are negligible
compared to the others. Therefore, they can be assumed as fixed
parameters among the animals. The other five parameters are
B1, B2, B3, Ba, and a7, which refer to insulin-independent glucose
uptake rate, e.g., brain glucose uptake, the sensitivity of the liver
to insulin, sensitivity of extra-hepatic organs to insulin, sensitivity
of the body to glucagon, and the initial state of glycogen storage
level. As a result, instead of identifying all 12 parameters, one
needs to identify these five for each new individual. To examine
this, we will re-identify only these five parameters while treating
the other seven as fixed parameters for all the training and test
data. It is worth mentioning that the parameters Sz and B; are
the parameters of the HFP effect on insulin, and they are present
both in the BGL sub-model and PIL sub-models (both panels of
(a) and (b) of Fig. 5).

6.3.2. Individual parameters of the PIL and PHL sub-models

Among the remaining eight parameters describing the con-
centration of insulin and glucagon in plasma after IP injections,
{B15, B1s, P17} are found to be constant across the animals since
they have small [CV - Sﬁ’\ for i = {2, 3} compared to the other
parameters. Notably, 8¢ and B; are shared parameters between
PIL and BGL sub-models, which are already discussed in the
previous section and considered as constant parameters.

Recall that the main aim of this paper was to design the BGL
model with fewer parameters, and the BGL sub-model does not
include {B12, B13, ..., B17} in its parameters. Therefore, for every
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Mean error (ME), error standard deviation (SD), and mean absolute error (MAE) of the proposed
meta-model in tracking the BGL, PIL, and PHL measurements of the training data set. Example
graphs for Pigs #4-6 are shown in Fig. 4.

Exp. ID Pig#2 Pig#4 Pig#5 Pig#6 Pig #10 Pig #15 Pig #22 Pig #23
BGL
Sub-Model ME+SD 00+05 00+05 00+£05 00+08 00+03 00=04 02+04 00=0.1
(mmol/l)  MAE 04 0. 0.4 06 02 0.2 03 0.1
W [ke] 36 37 40 52 13 50 36 36
Exp. ID Pig #4 Pig#5 Pig #6 Pig#11 Pig #12 Pig #13 Pig #22 Pig #23
PIL
Sub-Model ME+SD -08+29 00+24 00+45 -L6+46 -1.6+104 -05=35 08 +40 02+12
(mU/1) MAE 2.0 1.7 3.2 4.0 6.8 2.5 2.5 0.7
W [kg] 37 40 52 30 63 40 36 36
omp, P ID Pig#4 Pig#5 Pig#6 Pig#7 Pig#11 Pig#12 Pig#13 Pig #14
Sub-Model ME + SD 312 39 -4+ 17 4+9 <20 £ 31 -21 + 82 -15 + 52 -8 £+ 40
(pmol/l)  MAE 8 7 11 6 27 57 38 26
W [kg] 37 40 52 48 30 63 40 41
Pig #4 Pig #5 Pig #6
g 200 g 200 £ 200
=
Sl
=]
100 &
. =
g =1
- : 9]
: : 0
0 100 200 300 400 500 0 100 200 300 400
Pig #4 Pig #5 Pig #6
40 £ 20 40 £ 20 40 £ 20
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Fig. 4. As an example, the figures demonstrate how the proposed meta-model tracked blood glucose levels (BGL), plasma insulin levels (PIL), and plasma glucagon
levels (PHL) in three experiments. The three trials shown here are part of the training data utilized to identify the parameters. The performance of the model on
the other training data is presented in Table 3. The dashed line in the first row is the Intravenous glucose infusion rate, simulating the meal absolution rate in the

intestines.

new pig, one needs to identify only five parameters {81, 8, 3,
Ba, a7}. The other parameters are either constant across animals
or are body weight-related parameters that can be identified
using the previous experiments. Moreover, if one needs to model
the PIL and PHL, then {12, 813, B14} must be identified.

6.3.3. Weight-dependent parameters

Violin plots show the values of the CV% for the weight-
dependent parameters in Fig. 5. w is the body weight of the pigs,
and vy, is proportional to blood volume, which directly relates to
weight.

y1 and y, are insulin and glucagon diffusion rates from the
peritoneal cavity to surrounding capillaries. As expected, these
parameters are identified to be inversely correlated to weight. The
physical explanation may include anatomical features related to
size and age, such as thicker peritoneal lining and a lower density
of capillaries in the peritoneal lining in heavier animals. Notice
that y; € [0.54, 1.73] and y;, € [2.00, 3.62] which indicates that
glucagon diffuses faster than insulin.

y3 and y4 are glycogen storage charging and discharging rates,
respectively. In the training data, y5 is close to zero, indicating

that the glycogen storage is being charged very slowly. Notably, it
is also observed in the experiments that the pigs were responding
poorly to glucagon after receiving multiple injections and at the
end of experiments. This could be due to a low glucose infusion
rate in our 8-hour experiments or the effect of the anesthesia, all
of which cause glycogen storage to discharge faster than charging.
Since one may experience a faster glycogen refill in humans or
awake animal experiments, y3 was not omitted even if it was
close to zero in these experiments.

The value of y, has been shown to be inversely related to body
weight in the identification, implying that heavier subjects have
bigger glycogen storage and can release more glucose than lighter
animals.

7. Performance of the training and testing of the meta-model

In the previous section, the parameters of the meta-model are
identified using the training data set, and it is discovered that for
every new experiment, one needs to identify only five individ-
ual parameters (B, ..., Ba, &7). The other individual parameters

22
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Fig. 5. The box-plot (a) shows the CV -Sf," for the individual parameters that are included in the subsystem of the BGL. Panels (b) and (c) show CV - Sf;l and CV - S;Z
of the parameters that have an influence on the PIL and PHL outputs, respectively. The violin plot (d) shows the CV% of the weight-related parameters, and their

variation depends on the body weight.

(Bs, - - ., B11) are shown to have negligible variation from subject
to subject.

In this section, parameter set {fs,..., 811} are considered
constant among animals and set to the mean value of identified
values for the training data in the previous section. Then, the
performance of the meta-model is compared with the models in
the literature using the training and test data.

There are two important models in the literature; the bi-
hormonal low-order model by Zazueta et al. [12] and the single-
hormonal linear model by Chakrabarty et al. [25]. Therefore, we
split our analysis into bi-hormonal and single-hormonal exper-
iments when comparing the models. In addition, the classical
least square method in parameter identification of all three mod-
els is used to have a fair comparison. In these identifications,
the parameters of the models are identified separately for each
experiment using their BGL measurements. in more detail; the
following cost function is used for parameter identification of the
models:

N
Jis(¥) = ) " Pis(BGL; — Mi( )Y
i=1

Where Pis is a constant positive number, BGL; is the BGL
at the sample i, and M; is the model (Meta-model, low-order,
or Linear model) output for the corresponding sampling time.
N denotes the number of samples in the experiment. In this
cost function, the decision variables are each model’s parameter
set (¥y). Notably, the low-order model has ten parameters (six
without the glucagon sub-model), and the linear model has five
parameters to identify.

The number of parameters for the meta-model is five. How-
ever, frequent blood samples from the jugular vein are taken
during the bi-hormonal experiments in bi-hormonal experiments
for PIL and PHL measurements. As a result, blood volume is no
longer solely dependent on body weight and may be influenced
by the number of samples taken. Two meta-models are consid-
ered to make up for it: meta-model 1 and meta-model 2, with §;
being treated as a fixed and individual parameter, respectively.

The performance of meta-model 1 and meta-model 2 are
compared to the other models in Table 4. Meta-model 1 and

(26)

23

meta-model 2 have similar performance in training and test data.
One can conclude that the parameters of the model are identified
correctly using the training data set. By looking at the Average
values of the errors from different models, one can conclude that
all the models have acceptable performance for control purposes,
and no significant differences can be found between the models.
However, the proposed meta-model 1 and meta-model 2 require
fewer parameters to be identified than the other models in the
literature.

The BGL, PIL, and PHL measurements from Pigs #01, 09, and 16
versus the meta-model 2 (for Pig#01, and 09) and meta-model 1
(for Pig #15) responses are shown in Fig. 6. Among the test data,
Pig #1 and #9 have the inputs with the most excitation inputs,
e.g., a wide range of insulin, glucagon, and glucose infusions.
Therefore, one can conclude that the proposed meta-model can
simulate the behavior of glucose metabolism of various body
weights in both complex and simple scenarios.

7.1. Summary of training and testing the meta-model

In the previous sections, the parameters of the meta-model
are identified using the selected training data. The primary goal
of this approach is to identify parameters that are not identifiable
when the BGL is the only available data. This is accomplished by
utilizing prior data from other animals for whom the PIL and PHL
are measured.

The variability of the individual parameters among the differ-
ent animals is discussed. It is demonstrated that one must identify
only {B1, ..., Ba, a7} for every new experiment. The rest of the
parameters are fixed parameters or weight-related parameters
obtained from prior information.

Moreover, It is shown that the proposed meta-model can fit
the BGL measured from pigs and provide similar performance
with fewer parameters compared to the available models in the
literature. One can conclude that the identification procedure
of the trained meta-model is easier and faster than the other
models.

In the following sections, the predicting performance of the
meta-model is evaluated and compared with the other models in
two different practical scenarios.
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The mean error (ME), standard deviation (SD), mean absolute error (MAE) [mmol/l], and the Bayesian information criterion (BIC)
for different models and experiments. In the case of bi-hormonal experiments, two versions of the meta-model were analyzed,
meta-model 1, and meta-model 2, when considering v as an individual parameter (to compensate for the volume of the blood
taken for BGL, PIL, and PHL analysis). For the single-hormonal experiments, only meta-model 1 is used since there were fewer
blood samples taken from them. Notably, the parameters of the BGL sub-model for single-hormonal experiments are not taken into
account. Notably, results for Pigs #12-#14 are not presented since they contain IV insulin and glucagon infusions from the beginning
of the experiment. However, for Pig #11, the IV infusions were given at the end of the experiment, and the performances of the

different models are presented for the IP infusion parts.

Model: Meta-Modell Low-Order Model [14] Meta-Model2
Number Of Parameter: 5 10 6
Exp. ID ME + SD MAE BIC ME + SD MAE BIC ME + SD MAE BIC
Pig #01 0.00 + 037 030 -187 002 + 028 023 -228 002 £+ 029 024 -242
Pig #0201 0.00 £+ 050 0.40 -110 001 £ 074 055 -14 000 £ 050 037 -112
Pig #03 0.04 + 0.55  0.40 -86 0.00 £ 024 0.19 -219 005 £+ 045 038 -120
Pig #0412 0.01 + 050 030 -123 0.01 £ 041 032 -130 005 £ 047 035 -123
Insulin & Glucagon Pig #0523 005 + 043 0.30 -148 0.07 £ 048 043 -101 005 £+ 043 031 -179
Injections (IP) Pig #0623 0.04 + 0.71  0.54 -36 009 £ 077 059 1 005 4+ 071 054 =37
Pig #0701:23) 0.00 + 1.48 097 103 0.09 £+ 073 051 -18 0.05 + 146 095 100
Pig #08 007 £ 080 0.65 -18 005 £+ 049 037 -92 0.05 £ 080 0.64 -19
Pig #09 004 £ 074 054 -31 0.04 £ 054 040 -64 0.05 £ 063 049 -59
Pig #1001 0.01 + 027 023 -191 0.00 + 027 022 -175 005 £+ 028 023 -192
Pig #1123 002 £+ 050 041 =77 012 + 111 085 57 005 £+ 047 039 -87
Training Data 0.02 + 0.63 0.47 -81 - + - - - 0.04 =+ 0.54 0.44 -110
Average Test Data 004 £ 062 0.45 -83 - + - - - 0.04 £ 0.62 0.45 -90
All Data 0.03 + 0.62 0.46 -82 0.05 + 0.55 0.42 -89 0.04 + 0.59 0.44 -97
Model: Meta-Modell Low-Order Model Linear Model [28]
Number Of Parameter: 3 6 5
Exp. ID ME + SD MAE BIC ME + SD MAE BIC ME + SD MAE BIC
Pig #1511 006 £ 041 0.26 -7 006 £+ 038 023 -7l 0.00 £ 1.00 0.69 19
Pig #16 004 £ 023 017 -210 0.04 £ 039 030 -118 000 £+ 026 020 -182
Pig #17 007 £ 069 0.50 -55 002 + 038 026 -143 002 £+ 045 026 -111
Pig #18 0.06 + 053 043 -94 0.01 £ 043 0.36 -116 001 £+ 048 034 -101
Pig #2202 0.01 + 038 033 -155 0.02 + 040 034 -140 000 £+ 038 029 -151
Only Insulin Pig #2312 0.01 + 015 049 -336 001 £+ 016 0.13 307 0.00 + 037 029 -160
Injections (IP) Pig #24 0.05 & 0.24 -192 0.07 £ 033 022 -181 001 £+ 022 015 -267
Pig #25 003 + 0.11 -354 0.00 £ 010 0.07 -417 000 £ 016 012 -329
Pig #26 0.06 + -182 0.01 £ 022 017 -282 000 £ 035 030 -188
Pig #27 004 £ -209 001 + 025 021 -229 0.00 £ 026 022 -226
Pig #28 002 £ -220 001 + 012 0.10 -362 0.00 £ 008 0.05 -456.
Pig #29 006 £ -128 0.05 + 046 0.38 -116 0.00 £ 030 025 -204
Training Data 0.08 + 094 036 -147 - + - - - - + - - -
Test Data 0.05 + 0.37 0.30 -194 - + - - - - + - - -
All Data 0.04 + 0.36 0.31 -184 0.03 =+ 0.30 0.23 -207 0.00 =+ 0.36 0.26 -196

in training the Meta
urement is utilized in training the Meta-model.
PHL measurement is utilized in training the Meta-model.

@)

8. Performance of the meta-model in predicting the BGL

The combination of MPC with moving horizon estimation
(MHE) is one of the most commonly used control approaches in
APs [26]. The MHE uses the historical BGL data to estimate state
values. Based on the estimated states, the MPC predicts the BGL
and finds optimal insulin or glucagon boluses to keep the BGL in
the range. As a result, the proposed model should be consistent
with past data and effective at predicting.

In this section, we compare the performance of the proposed
meta-model (in which {1, ..., B4, @7} must be identified) with
the other models in terms of prediction. For that purpose, we
proposed the following two scenarios:

8.1. Scenarios 1: Bi-hormonal model identification and prediction at
every sampling time

This scenario aims to evaluate the proposed meta-model and
low-order model fitting the data and predicting each sampling
time for bi-hormonal experiments.

The parameters are re-identified for both models after mea-
suring the BGL at every sampling time. Then, based on the iden-
tified model and future inputs, a 100 min prediction will be
performed. After that, the MSE of the models for both fitting to
the measured BGL and the prediction are calculated. For example,
at ith sample, the fitting MSE is the mean squared error of the
model in fitting to the BGL samples {1, ..., i}, and Prediction MSE
is the mean squared error of the model in predicting the BGL
samples {i+ 1, ..., (i + 100/T;)}.

24

In order to have proper initial values for the parameter esti-
mation, one needs to have at least one insulin and one glucagon
infusion before starting the identification and predictions. There-
fore, this scenario starts after collecting 100 min of the BGL
measurements, and the starting model is obtained by the param-
eter identification over that 100 min time window. Notably, the
half-life IP insulin (for the kind of insulin used in our tests) is
within the first 100 min of injection, according to our experience.
Additionally, glucagon effects fade off after 100 min. Therefore,
the 100 min prediction window for IP insulin and glucagon is
chosen in this scenario.

To have a fair comparison of the models, an overview of
the fitting MSE and prediction MSE are shown in Fig. 7 for the
experiments Pig#{1, 3, 8, 16, 17, 18, 24, 25, 26, 27, 28, 29}. The
selected experiments contain only IP insulin and glucagon with
continuous IV glucose infusion that was not used to train the
meta-model. Pig#9 was not included since the glucose infusion
in this experiment was discontinuous and unrealistic for real-life
situations. The supplementary material in Appendix B provides
the detailed performance of each model in Scenario 1 on all
available experiments with IP injections.

As shown in Fig. 7, the low-order model has a mean model
fitting MSE that is 26.6% lower than the meta-model. For both
models, the mean fitting MSE is less than 1 [mmol/1]?. In predic-
tion, the meta-model has a 39.2% lower mean MSE and a 64.0%
lower standard deviation than that of the low-order model. The
meta model has a mean prediction MSE of less than 1 [mmol/l].

In summary, by comparing the performance of the models
in scenario 1, one can infer that the low-order model performs
better in fitting the measurements. However, the fitting MSE of
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Fig. 6. Three examples of meta-model performance on test data are shown in the figure. Notably, meta-model 1 is used for single-hormonal experiment Pig #16
and meta-model 2 is utilized for bi-hormonal experiments in Pigs #01, #09. The performance of the presented model in fitting to the BGL measurements for the
other experiments is presented in Table 4. However, the MAE (mean absolute error) of the proposed model is for the BGL measurements written in the titles in
order to quantify the quality of the fittings. The dashed line in the first row is the IV glucose infusion rate which simulates the meal digestion rate in the intestines.

Fitting MSE [mmol/1]>

0.2

0.15

0.1

0.05

Low-Order Model ~ Meta-Model

35 Prediction MSE [mmol/1*

Low-Order Model ~ Meta-Model

Fig. 7. The figure compares the proposed meta-model with the low-order model regarding the fitting MSE and prediction MSE for the selected test experiments in
Scenario 1. The panel on the left shows the mean and standard deviation (SD) of fitting MSE at all sampling times of the selected experiments. Similarly, the panel
on the right shows the mean and SD of 100 min of prediction MSE at all sampling times for the selected experiments.

both models is in the acceptable range for control purposes. In
contrast, the proposed meta-model performs significantly better
in prediction, which is more important than fitting when you aim
to use the model in control. In summary, the fewer parameters,
the acceptable fitting MSE, and the low prediction MSE in the
meta-model make it a suitable choice for model-based control.

8.1.1. Scenarios 2: Prediction of the BGL interaction with different
insulin boluses

This scenario investigates the effect of considering the HFP
effect on prediction and fitting to the measurements. Among the
available animal experiments, Pigs #23-28 with weights of 36-
41 kg were given a constant basal glucose infusion proportional
to their weight and three different insulin boluses, i.e., 2, 5, and
10 Units with various orders. These experiments are performed

25

to investigate the saturation of the HFP published in [11]. It is
shown that the liver of these subjects is saturated after 5U of
insulin, and then the insulin enters the central blood circulation.
The duration of the experiment chosen for this scenario is about
500 min in which insulin boluses were given approximately at
t; =75, t, = 210, and t3 = 350 min.

In this scenario, we first identified the parameters of the
different models using the BGL measurements in the time interval
[0, t;) and evaluated the models’ prediction performance in the
time interval [t;, 480). Then, we identified the parameters using
the BGL measurements interval [0, t3) and again evaluated the
prediction performance during the time interval [ts, 480). Both
identification and prediction MSE of each experiment for the
different models are presented in Table 5. Please Note that the
Pig #23 was included in the training data while it is also included
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Mean squared error (MSE) of the different models in identification and prediction for the second scenario. The terms Iden. and Pred.
in _this table relate to the identification and prediction MSEs, respectively.

Identification Model Pig #23 Pig #24 Pig #25 Pig #26 Pig #27 Pig #28 Average
Period Iden. Pre. Iden. Pre. Iden. Pre. Iden. Pre. Iden. Pre. Iden. Pre. Iden. Pre.
Linear Model 0.0 0.5 0.1 0.2 0.0 1.8 0.0 26.6 0.1 1.6 0.0 13.7 0.0 7.4
0,t2) Low-order Model 0.0 26 01 106 00 06 00 1.8 00 13 00 L1 00 47
) Meta-Model 0.0 0.2 0.1 0.8 0.0 0.6 0.0 1.0 0.1 0.2 0.0 0.6 0.0 0.6
Linear Model 0.1 3.7 0.1 0.4 0.0 0.8 0.1 8.1 0.1 17 0.0 0.0 0.1 2.5
[0,£3) Low-order Model 0.0 3.9 0.1 0.6 0.0 0.0 0.0 0.8 0.1 2.5 0.0 0.2 0.0 1.3
Meta-Model 0.0 0.1 0.1 1.0 0.0 0.1 0.1 0.5 0.1 0.5 0.0 0.4 0.1 0.4
Pig #23 Pig #26
b~ ! ——
)
5 6
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E 4
g
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Fig. 8. Comparison of different models’ prediction performance. The identification period for the upper figures was t, = 200 min and t; = 350 min for the lower
figures. The proposed meta-model has a better prediction for both small and large insulin boluses; this is most notable for the 10U insulin bolus because it is the
only model considering the HFP effect. In contrast, the other models fail to respond to smaller and larger insulin boluses.

in this scenario to compare the performance of the meta-model
on both training and test data.

The proposed meta-model outperformed the other models’
predictions when different insulin boluses were given. As an
example, the performance of the models in fitting and predicting
the BGL measurement of Pigs #23, #26, and #27 are shown in
Fig. 8. Due to the modeled HFP effect and the prior information
in the meta-model, it performs better in response to 5 and 10U,
while the other models fail to predict the BGL correctly.

By looking at the average error of the models in Fig. 7 and
Table 5, one can conclude that the proposed meta-model and the
models in the literature for the IP route can track the BGL mea-
surements for anesthetized pigs with acceptable performance.
However, the proposed meta-model outperforms the other mod-
els in terms of prediction. The average prediction MSE in Table 5
shows that the low-order model performs better than the linear
model. Additionally, because of fewer parameters of the meta-
model, this model can be set up and used in the controller more
quickly than the other models.

9. Discussions

In contrast to the SC drug pathway, it is demonstrated in [5]
that the insulin absorption from the peritoneal cavity is quick
enough to control the BGL without the meal announcement.
Furthermore, an important feature of IP injection is the fact
that insulin is transported directly to the liver through the PV,
where the HFP effect applies before entering the central blood
circulation system. It is shown that the HFP effect significantly
influences how the body responds to different insulin bolus sizes.
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For that reason, a nonlinear model containing the HFP effect is
presented.

In order to identify the parameters of the designed model,
a large number of tests must be performed to stimulate all the
system dynamics. Furthermore, it is necessary to measure both
the PIL and PHL to address the identifiability issues for this model.
However, invasive tests and measurements are not applicable at
a large scale or are dangerous for the animals.

As an alternative to performing all the tests on each subject,
the meta-model is designed to allow us to perform the tests
on a large group of animals. This approach allows us to con-
duct less invasive experiments and identify parameters that are
weight-dependent or parameters that have a fixed value for all
animals.

Using the training data, it is shown that only five parameters
must be individually identified for each animal to simulate the
BGL dynamics. The remaining parameters are either constant
among the animals or can be calculated using body weight.

The model is identified using data and assumptions related
to anesthetized pigs weighing between 30 kg and 60 kg. It is
shown that the model has an acceptable performance. In addition,
it performs accurately in predicting the BGL for various inputs and
provides better prediction with fewer parameters, making it ideal
for control purposes. In future work, one might design the MPC
controller for APs using the model proposed in this paper.

The same procedure used in this paper can also be used for
humans. However, some distinctions between the IP structures of
humans and pigs must be taken into account. In addition, one can
use the proposed meta-model to design less invasive experiments
for humans or awake animals.
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Fig. A.9. Components of the columns of V' that S,(t, n') has eigenvalues less than 10~ for system (14a). The non-zero (non-vanishing) components are associated
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and case 4 are with assuming 84, 87, 812 and 814 equal to one (as explained in Section 6). There are no non-vanishing components in case 2 and case 4. The smallest

singular value is printed in the lower-left corner.

Due to limitations with experiments in anesthetized animals,
the length of the experiments was shorter than a half-day.
Therefore, we assumed that the parameters remained constant
throughout the experiments. One might need to consider intra-
subject variation in extended experiments or human experi-
ments. In addition, one may need more training data for longer
experiments. However, the thirteen training experiments for this
paper seem to be enough to identify the parameters of the
meta-model.
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Appendix A. Local structural identifiability of the parameters

In this part, we examine the identifiability of the proposed
meta-model. To this end, we employ the algorithm described
in [27]. In this algorithm, the sensitivity matrix S,(t, n) defined
n (A.1), which is the sensitivity of the output of the model, y,
at each sampling time, t = {t,, ..., t;}, to the parameters, n =

{m, ..., np}, must be found locally around the identified values
for the parameters.
_m_ 9y(to) _p_ 9y(to)
y(to) am y(tg) Omp
S (tn) = : : (A1)
N1 9y(ty) np_ 9y(ty)
yty)  om y(tn) omp

By considering small random perturbations in parameters sets,
n', one needs to calculate singular value decomposition (SVD) for
S:(t, n') as follows:

Se (') = Uy zivf (A2)

where U; and V; are orthogonal matrices, and X; is a matrix
containing the p singular values of S,(t, n') in decreasing order on
the diagonal, while all the other elements are zero. It is shown
that in [27] that if the smallest singular value of X; is zero or
very small, the last column of V; shows the parameters that
are correlated and non-identifiable. Notable, due to numerical
errors, we considered any singular values less than 107° as zero.
Therefore, the columns of V; related to any singular values less
than 10~¢ will be considered null space.

This algorithm is used in four stages to evaluate the effective-
ness of the proposed meta-model and assumptions in reducing
the number of non-identifiable parameters:

A.1. Identifiability of the meta-model using single BGL measure-
ments

This section aims at finding which of the parameters of the
proposed individual model (14b) are non-identifiable without
having the PIL, PHL measurements, and the multiple animal BGL
data. To do this, we identified the parameters using the BGL
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Fig. A.10. Components of the columns of V' that S,(t, n') has eigenvalues less than 10~ for system (14b). The non-zero (non-vanishing) components are associated
with the null space of S,(t, n') as described in Appendix A. Case 1 is the identification based on only BGL measurements of Pig#6, Case 2 is identification based
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explained in Section 6) and taking PIL, PHL, and BGL of all training data into account. There are no non-vanishing components in case 3. The smallest singular value

is printed in the lower-left corner.

measurements of Pig#6. As shown in the first case of Fig. A.10,
thirteen parameters in (14b) are correlated. Notably, the reason
for choosing the Pig#6 for this example is that it had received
wide ranges of insulin, glucagon, and glucose infusions.

A.2. Identifiability of the meta-model using BGL measurements from
multiple animals

In this stage, we investigate how many parameters become
identifiable by using the BGL measurements of the eight pigs
named as training data. As shown in the second case of Fig. A.10,
eight parameters in (14b) are correlated in that case.

A.3. Identifiability of the PIL and PHL sub-models

By employing all of the PIL and PHL measurements of the
training data in identification, four parameters are correlated in
both the PIL and PHL sub-models. The correlated parameters are
shown in cases 1 and 3 of Fig. A.9. However, as shown in cases
2 and 4 of Fig. A9, with the assumptions given in Section 6
for preselecting values for 44, 87, 812 and 814, no correlated pa-
rameters are found. Therefore, the PIL and PHL sub-models are
considered structurally identifiable with the parameters found
using the selected training data and the assumptions in Section 6.

A.4. Identifiability of the meta-model using the chosen training data
set

For the meta-model parameters that are identified using the
assumption outlined in Section 4 as well as the BGL, PIL, and
PHL measurements present in the training data set, the minimum
eigenvalue of the sensitivity matrix is greater than 10 — 2.94. In
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other words, all the parameters of the meta-model can be con-
sidered structurally identifiable. As it is shown in the third case
of Fig. A.10, there are no parameters in (14b) that are correlated
in that case.

Appendix B. Supplementary data

Supplementary material related to this article can be found
online at https://doi.org/10.1016/j.jprocont.2022.11.008.
References

[1] A. Katsarou, S. Gudbjérnsdottir, A. Rawshani, D. Dabelea, E. Bonifacio, B.J.
Anderson, L.M. Jacobsen, D.A. Schatz, A. Lernmark, Type 1 diabetes mellitus,
Nat. Rev. Dis. Primers 3 (1) (2017) 1-17.

P. Herrero, J. Bondia, N. Oliver, P. Georgiou, A coordinated control strategy
for insulin and glucagon delivery in type 1 diabetes, Comput. Methods
Biomech. Biomed. Eng. 20 (13) (2017) 1474-1482.

SJ. Moon, I Jung, C-Y. Park, Current advances of artificial pancreas
systems: A comprehensive review of the clinical evidence, Diabetes
Metabolism J. 45 (6) (2021) 813-839.

C. Cobelli, E. Renard, B. Kovatchev, Artificial pancreas: past, present, future,
Diabetes 60 (11) (2011) 2672-2682.

C. Toffanin, L. Magni, C. Cobelli, Artificial pancreas: In silico study shows
no need of meal announcement and improved time in range of glucose
with intraperitoneal vs. Subcutaneous insulin delivery, IEEE Trans. Med.
Robot. Bionics 3 (2) (2021) 306-314.

J.A. Nelson, R. Stephen, S.T. Landau, D.E. Wilson, F.H. Tyler, Intraperitoneal
insulin administration produces a positive portal-systemic blood insulin
gradient in unanesthetized, unrestrained swine, Metabolism 31 (10) (1982)
969-972.

C. Botz, B. Leibel, W. Zingg, R. Gander, A. Albisser, Comparison of peripheral
and portal routes of insulin infusion by a computer-controlled insulin
infusion system (artificial endocrine pancreas), Diabetes 25 (8) (1976)
691-700.

A. Giacca, A. Caumo, G. Galimberti, G. Petrella, M.C. Librenti, M. Scavini,
G. Pozza, P. Micossi, Peritoneal and subcutaneous absorption of insulin
in type I diabetic subjects, J. Clin. Endocrinol. Metab. 77 (3) (1993)
738-742.

[2

3]

[4

[5

6

[7

8



K.D. Benam, H. Khoshamadi, M.K. Am et al.

19]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

AM. Albanese, E.F. Albanese, J.H. Mifio, E. Gomez, M. Gémez, M. Zan-
domeni, A.B. Merlo, Peritoneal surface area: measurements of 40 structures
covered by peritoneum: correlation between total peritoneal surface area
and the surface calculated by formulas, Surg. Radiol. Anat. 31 (5) (2009)
369-377.

M. Schiavon, C. Cobelli, C. Dalla Man, Modeling intraperitoneal insulin
absorption in patients with type 1 diabetes, Metabolites 11 (9) (2021)
600.

I. Dirnena-Fusini, M.K. Am, AL Fougner, S.M. Carlsen, S.C. Christiansen,
Intraperitoneal insulin administration in pigs: effect on circulating insulin
and glucose levels, BM] Open Diabetes Res. Care 9 (1) (2021) e001929.
C. Lopez-Zazueta, A.L. Fougner, et al., Low-order nonlinear animal model
of glucose dynamics for a bihormonal intraperitoneal artificial pancreas,
IEEE Trans. Biomed. Eng. (2021).

M.K. Am, L. Dirnena-Fusini, A.L. Fougner, S.M. Carlsen, S.C. Christiansen,
Intraperitoneal and subcutaneous glucagon delivery in anaesthetized pigs:
effects on circulating glucagon and glucose levels, Sci. Rep. 10 (1) (2020)
1-8.

V. Claassen, Intraperitoneal drug administration, Negl. Factors Pharmacol.
Neurosci. Res. 12 (1994) 46-58.

D.H. Wasserman, Four grams of glucose, Am. ]. Physiol.-Endocrinol. Metab.
296 (1) (2009) E11-E21.

J.E. Hall, M.E. Hall, Guyton and Hall Textbook of Medical Physiology E-Book,
Elsevier Health Sciences, 2020.

P. Canal, Y. Plusquellec, E. Chatelut, R. Bugat, J. De Biasi, G. Houin,
A pharmacokinetic model for intraperitoneal administration of drugs:
application to teniposide in humans, J. Pharm. Sci. 78 (5) (1989) 389-392.

29

[18]

[19]
[20]
[21]

[22]

[23]

[24]

[25]

[26]

[27]

6.2 PAPER2 <« 97

Journal of Process Control 121 (2023) 13-29

JM. Collins, RL. Dedrick, F.G. King, J.L. Speyer, C.E. Myers, Nonlin-
ear pharmacokinetic models for 5-fluorouracil in man: intravenous and
intraperitoneal routes, Clin. Pharmacol. Ther. 28 (2) (1980) 235-246.

C. Mulder, AJ. Hendriks, Half-saturation constants in functional responses,
Glob. Ecol. Conserv. 2 (2014) 161-169.

V. Rudralingam, C. Footitt, B. Layton, Ascites matters, Ultrasound 25 (2)
(2017) 69-79.

K.P. Davy, D.R. Seals, Total blood volume in healthy young and older men,
J. Appl. Physiol. 76 (5) (1994) 2059-2062.

A. Raue, C. Kreutz, T. Maiwald, J. Bachmann, M. Schilling, U. Kling-
miiller, J. Timmer, Structural and practical identifiability analysis of
partially observed dynamical models by exploiting the profile likelihood,
Bioinformatics 25 (15) (2009) 1923-1929.

S.L. Hansard, H. Sauberlich, C. Comar, Blood volume of swine, Proc. Soc.
Exp. Biol. Med. 78 (2) (1951) 544-545.

S. Wolfensohn, M. Lloyd, Handbook of Laboratory Animal Management and
Welfare, John Wiley & Sons, 2008.

A. Chakrabarty, J.M. Gregory, LM. Moore, P.E. Williams, B. Farmer, A.D.
Cherrington, P. Lord, B. Shelton, D. Cohen, H.C. Zisser, et al., A new animal
model of insulin-glucose dynamics in the intraperitoneal space enhances
closed-loop control performance, J. Process Control 76 (2019) 62-73.

R. Gondhalekar, E. Dassau, FJ. Doyle, Moving-horizon-like state estimation
via continuous glucose monitor feedback in MPC of an artificial pancreas
for type 1 diabetes, in: 53rd IEEE Conference on Decision and Control,
IEEE, 2014, pp. 310-315.

J.D. Stigter, J. Molenaar, A fast algorithm to assess local structural
identifiability, Automatica 58 (2015) 118-124.






6.3 PAPER3 <« 99

6.3 PAPER 3

Title: “Blood Glucose Level Prediction Using Subcutaneous Sensors for
in Vivo Study: Compensation for Measurement Method Slow Dynamics
Using Kalman Filter Approach”

Published in the Conference Proceedings of IEEE 61st Conference on
Decision and Control (CDC) December 6-9, 2022. Cancun, Mexico [3].






2022 IEEE 61st Conference on Decision and Control (CDC) | 978-1-6654-6761-2/22/$31.00 ©2022 IEEE | DOI: 10.1109/CDC51059.2022.9992638

2022 IEEE 61st Conference on Decision and Control (CDC)
December 6-9, 2022. Cancun, Mexico

6.3 PapER3 <« 101

Blood Glucose Level Prediction Using Subcutaneous Sensors for in Vivo
Study: Compensation for Measurement Method Slow Dynamics Using
Kalman Filter Approach

Martha Halvorsen, Karim Davari Benam*, Hasti Khoshamadi*, Anders Lyngvi Fougner

Abstract— The continuous glucose monitoring (CGM) system
is the most common system used by people with type 1 diabetes
to monitor blood glucose levels. However, it measures glucose
in interstitial fluid in subcutaneous tissue rather than directly
in plasma. Measuring blood glucose level in this method has
slow dynamics and introduce a time lag in capturing the
blood glucose level. This can reduce the quality of blood
glucose regulation and result in hypo- or hyperglycemia. In
this paper, a linear Kalman filter is developed to predict blood
glucose concentration using CGM data to compensate for that
slow dynamics. To this end, an observable input-less model
describing the glucose diffusion from plasma to interstitial fluid
is utilized. Notably, this model is physiology-based, and its
parameters can be obtained from the literature. The designed
structure is evaluated on data from two animal experiments
conducted on anesthetized pigs. The data sets include CGM
measurements every 1.2 seconds and sporadic blood sample
analysis during experiments. Results show that the designed
approach sufficiently can compensate for the slow dynamics of
CGM measurements when compared to blood glucose samples,
and the performance is measured using statistical accuracy
scores. This compensation can improve the decision-making of
control algorithms for glucose regulation during rapid changes
in glucose concentration, e.g., during meals and exercise.

I. INTRODUCTION

Diabetes mellitus is a metabolic disorder or disease that af-
fects approximately 537 million adults worldwide as of 2021
[1]. It is characterized by chronic hyperglycemia in response
to ingestion of carbohydrates, fat, and protein, resulting
from defects of insulin secretion, insulin action, or both
[2]. In a healthy individual, glucose regulation is performed
by two hormones, insulin, and glucagon, produced in the
pancreas. Insulin secretion makes the glucose concentration
in the blood decrease, while glucagon secretion increases
the blood glucose (BG) concentration [2]. In type 1 diabetes
mellitus (T1DM), the pancreas does not produce insulin due
to the destruction of beta cells, which produce insulin in the
pancreas [3]. Hence the insulin must be administered by an
external source [2]. As a result, people with type 1 diabetes
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require daily insulin treatment, regular BG monitoring, and
a healthy lifestyle to manage their condition effectively [4].

In 1999 diabetes technology made huge progress when the
continuous glucose monitoring (CGM) system was approved
by the Food and Drug Administration (FDA) and became
commercially available [5]. The CGM sensor is placed in
the subcutaneous tissue and measures glucose levels in the
interstitial fluid in real-time [2]. The minimally invasive
structure of the sensor system allows for continuous glucose
measurements, eliminating the need for self-monitoring sys-
tems, e.g., finger prick [5]. In addition, continuous glucose
measurements provide BG trends and fluctuations.

Despite the sensor’s revolutionary qualities, it is not with-
out problems. One of its disadvantages is that the sensor
measures ISF glucose level rather than plasma glucose level.
Due to plasma-to-ISF glucose dynamics, the CGM measure-
ments are delayed compared to measurements taken directly
from the blood during rapid changes in BG [6]. The plasma-
to-ISF glucose dynamics refers to glucose diffusion across
capillaries and through the interstitial space where the sensor
is located [6]. Hence, during both BG rising and falling, the
time of the diffusion process will result in the ISF glucose
lagging behind the BG. The slow dynamics between these
two compartments, together with sensor processing time,
causes about, on average, a 4 —10 min lag between the BG
and the sensor readings [2].

Control algorithms, along with CGM sensors and infusion
pumps, are employed in commercially available control
devices (artificial pancreas) to regulate BG levels in patients
with TIDM. Based on the CGM measurements, the control
algorithm will automatically infuse the optimal amount of
insulin, and glucagon, in a timely manner. Notably, the
absorption and effect of hormones are not instantaneous.
Hence, using CGM measurements can lead to a late response
to BG level fluctuations which in turn cause severe low or
high BG levels. Therefore, predicting the BG levels can help
artificial pancreas systems to improve glycemic control.

There are several ways proposed in the literature for
predicting or estimating the blood glucose level using CGM
measurements. The deconvolution approach is employed to
reconstruct the plasma glucose from ISF glucose measure-
ments in [7]. However, it is concluded that perfect linearity
and time invariance of the system is required for this method.
In addition, various works have addressed the problem
through the use of Kalman filtering. In [8], a physiological
model is considered for the glucose diffusion from plasma to
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ISF glucose dynamic; nevertheless, it is assumed that plasma
glucose changes randomly in a step or rate fashion. In [9], the
Kalman filter estimates plasma glucose and sensor gain from
CGM and fingerstick measurements. In this approach, both
plasma glucose level and sensor gain are modeled as ramp
disturbances; however, the time lag between plasma and ISF
glucose is neglected. A smoothing Kalman filter is used in
[10] in an offline manner to interpolate BG measurements
when blood samples are taken irregularly utilizing the CGM
and fingerstick measurements. The smoothing Kalman filter
is based on the central-remote rate model proposed for
plasma glucose dynamics. Moreover, the plasma-to-ISF dy-
namic is also combined in the model. This Kalman smoother
was not applied in the current study because it is non-causal.

In this paper, the Kalman filter, together with the input-less
model introduced in [10] is utilized to estimate the BG level
and compensate for the slow plasma-to-ISF dynamics. The
proposed structure is tested on data from animal experiments,
and the performance is analyzed using standard statistical
methods. To the author’s knowledge, the application of the
proposed method to the real-life scenarios of anesthetized
animal experiments, having the CGM system with a high
sampling rate (every 1.2 seconds), frequent measurements of
the blood gas analyzer (BGA) to evaluate the performance of
the estimator, and together with the use of the intraperitoneal
route for insulin and glucagon infusions are novel in the
subject.

The paper is structured as follows. The data used in this
paper is described in Section II. A brief description of the
standard linear Kalman filter is given in Section III, a plasma-
to-ISF glucose dynamics model is introduced in Section
IV and evaluation tools and metrics for measuring filter
performance are given in V. The results are presented in VI,
and are discussed in VII, before a conclusion is provided in
Section VIII.

II. DATA

The data used for the simulations in this paper is collected
through two animal experiments performed in the animal
faculty of the University of Norwegian science and technol-
ogy. These experiments were conducted on two anesthetized
pigs whose endogenous insulin and glucagon secretions were
suppressed using Octreotide (Sandostatin) with a rate of 5
pg/kg/h. In addition, intravenous glucose infusion (with a
concentration of 200mg/ml) was used to simulate different
meals in the anesthetized animal experiments. In order to
control the BG level, intraperitoneal insulin and glucagon
administrations were used.

The CGM sensors used in these experiments were the
Medtronic Enlite sensor (Northridge, Canada). These sensors
were paired with custom transmitters from Inreda Diabetic
(Goor, the Netherlands), providing measurements with a
sampling rate of 1.2s. In order to measure the BG level
directly, blood samples were taken sporadically, varying be-
tween every 5min-1hour, and analyzed by ABL800 FLEX
analyzer (Copenhagen, Denmark), which is a BGA system.

Data set 1 is the collected data from animal experiment
1 and consists of three meals, where the weight of the pig
was 36 kg, while data set 2 the collected data from animal
experiment 2 and consists of four meals, where the weight of
the pig was also 36 kg. The CGM measurements are plotted
together with the BGA measurements for data set 1 and for
data set 2 in (1).

III. KALMAN FILTER

The Kalman filter is a recursive filter that uses a time series
of measurements in order to estimate the internal states of
a linear dynamical system. Given an output signal y, any
time-invariant discrete system can be assumed to be modelled
as follows:

Tp+1 = Fap + Buy + wy (€)]
yr = Hxp + vy (2)

where z, € R", up € RP, and y, € R™ is the system
state, system input and the system output vectors at time
iteration k, respectively. Moreover, F’ is the state transition
matrix, B is the input transition matrix, and H is the
measurement matrix. Assume that the system matrices all
have appropriate dimensions. The process and measurement
noises are denoted by wy, and v, which satisfy the following
conditions:

wi, ~ (0,Q)
v ~ (0, R)
E[wkw]-T] = Q0p—j 3)
E[vkvf] = Réj—;
E[vkw]T] =0.

where () and R are covariance matrices of process and
measurement noises respectively. In addition, d5_; is the
Kronecker delta function which gives d,_; = 1 if k = j,
and 0j—; = 0 if k # j [11].

The Kalman filter computes an estimate of the internal
states, &, as well the estimation error covariance matrix, P,
for each time iteration k. Pj can be considered as a tool to
evaluate of the quality the current estimate Z; quantitatively
[12].

The estimation process is performed in two steps, a
prediction step, and a correction step. In the prediction step
the filter uses the model from (1) to predict the states one
iteration ahead of time. The resulting estimate is known
as the a priori estimate, and will be denoted as Zj41 and
Py1. In the following correction step the a priori estimate
is used in combination with the measurement y; to update
and improve the a posteriori estimate, which is denoted 2,41
and pk-+1.

Hence the Kalman filter equations are given by the fol-
lowings [11]:

6035

Authorized licensed use limited to: Norges Teknisk-Naturvitenskapelige Universitet. Downloaded on May 21,2023 at 16:17:34 UTC from IEEE Xplore. Restrictions apply.



6.3 PapER3 <« 103

Animal experiment 1
T T

R

600 700 800 1000 1100

Glucose [mmol/L]

Animal experiment 2
T T

500 600 700

Time [min]

o BGA [__JMeal | [_Meal 2 _]Meal 3 [__JMeal 4]

800 900 1000 1100

Fig. 1: Continuous glucose monitoring (CGM) and blood gas analyzer (BGA) measurements sectioned by color into specific
meal times. The top row describes the data set from animal experiment 1, with three observed meal times, while the bottom
row describes the data set from animal experiment 2, with four observed meal times.

Prediction:
ZTk4+1 = FZp + Bug
P =FP.FT +Q
4

Correction:
K =P HT(HP,  HT + R)™!
g1 = Tpg1 + Ki(yp — HTp41)
Poy1 = (I — Ky H)Pyy .

where K} is the Kalman gain matrix at time iteration k.
The dynamical system given by (1) and (2) must be fully
observable for the Kalman filter to obtain optimal estimates
of all internal states. When a system is fully observable, the
observability given by (5) is full rank.

H
HF

0= (5)

HF:n_l
IV. MATHEMATICAL MODEL

Using a Kalman filter requires a mathematical, dynamic
model describing the system. Models describing the glucose
dynamics are not limited in the literature, and they range

from minimal [13] to quite complex [14]. Models like these
describe the glucose dynamics where insulin and meals are
inputs of the system. Using such models requires precise
information about inputs and parameters, which is not always
available or bears the quality needed. In this paper, the
introduced model in [10] which combines the ISF glucose
dynamics with a plasma glucose dynamical model is used.
The combined model makes it possible to have plasma
glucose as a state of the system, which is observable with
CGM measurement. Notably, insulin and meals are treated
as unknown system disturbances in this model.

A. Plasma-ISF Glucose Dynamics

The Steil-Rebrin model is a model describing the ISF
glucose dynamics, using a two compartmental structure as
follows [15], [16] :

dGisy .\
7 (t) = —(koz + k12)Glisf (t) + ka1 va(t)- (6)
2

where koo is the glucose uptake rate of subcutaneous tissue
from ISFE, k15 and ko, are diffusion rates between plasma and
ISF compartments, V7 and V5, are volumes of the plasma and
ISF glucose compartments, respectively [11]. G,y describes
the glucose concentration in ISF, and G, describes the
glucose concentration in plasma. The relationship between
the plasma glucose concentration and the ISF glucose con-
centration can be further simplified:

Wi
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Fig. 2: Kalman filter estimate, Gp, plotted together with the moving average smoothed Kalman filter estimate, épysmm,thed,
where Continuous glucose monitoring (CGM) measurements and blood gas analyzer (BGA) measurements are shown for

comparison.

dGiy 1 g
dt (t)*ffstzsf(t)J"nSpr(t)v 7

where Tj,; is the diffusion time constant, and g is a steady-
state gain. These parameters are defined as follows:

1
T & ——— 8
7™ oz + ks ®
a |41
A MR
g <7€21 v, ) Tt )

Notably, in the steady state, g = Gs5/Gp. Physiologi-
cally, for a given change in plasma glucose concentration,
the same long-term change in the ISF glucose concentration
is expected, and thus g =1 [7], [11].

B. Central-Remote Rate Model

The plasma glucose model is divided into a central com-
partment, C., and a remote compartment, C,. Insulin or
meals going into the system will first affect the central com-
partment before it diffuses over to the remote compartment
by a first-order delay [10], where it finally causes changes
in the plasma glucose concentration, G,,. The state-space
equations are as followings:

G, , .
5 W =6
ac.,. 1
o M= fodCc(t) (10)
dc, 1

) = 7(Cu(t) = Oy (1),

where T, is a time constant, describing the diffusion rate
between the central and remote compartments [10].

C. Combined Model

The models from (IV-A) and (IV-B) are combined to
create a fully observable system in which the plasma glucose
concentration is part of the state vector. At the same time, it
also provides an insight into plasma glucose dynamics. The
state-space form of this combined model is given by:

Gk 0 0 1 0 Gy
C&k _ 0 _1Td 01 0 Oc,k +w
Cr (1) T 01 Cr k
Gisfk 7., O 0 =77l [Gissk
Gp ke
C{'k
00 o0 1 ,
Yk [ } Cok + vk
Gistk
(11)
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TABLE I: Mean absolute error (MAE) and mean absolute percentage error (MAPE) scores for the continuous glucose
monitoring (CGM) measurements, the Kalman filter blood glucose estimate, G, and for the moving average smoothed
Kalman filter estimate, G smoothed, Where blood gas analyzer (BGA) is considered as the reference blood glucose level.

MAE [mmol/L] MAPE [%]
CGM  Gp  Gpmoothea  CGM Gy Gypsmoothed

Data set 1  Meal 1 0.38 0.24 0.21 4.82 2.99 2.61
Meal 2 0.34 0.31 0.20 4.68 4.17 2.69

Meal 3 0.55 0.47 0.45 8.02 6.90 6.60

All 0.32 0.30 0.25 4.68 4.36 3.72

Data set 2 Meal 1 0.46 0.48 0.50 5.78 6.47 6.55
Meal 2 0.43 0.16 0.17 5.86 2.03 222

Meal 3 0.65 0.21 0.13 9.53 2.71 1.86

Meal 4 0.44 0.37 0.34 7.30 6.12 5.55

All 0.40 0.28 0.27 5.84 4.11 3.98

where the dot notation is equivalent to the time-derivative
notation, i.e & = d;—(;) Notably, by assuming A as the
continuous state transition matrix of the combined systems
of eq. (10) and eq. (7), the combined system is discretized
by setting the discrete state transition matrix equal to e44?,
where the time step At is set to % min (in which 1.2sec
is the CGM sampling time).

V. METRICS

To evaluate the performance of the filter more in detail, the
mean absolute error (MAE) and mean absolute percentage
error (MAPE) are used, which are defined as below:

n

1
MAE = — el
- Z eil, (12)
i=1

1 n ‘e |
MAPE = — Z “1100% 13)

ne= Yi

with

e = Yi — Ui, (14)

where y; and g; are the real value and the estimate of that,
respectively, and n is the total number of samples. The more
accurate the method, the smaller the resulting values for
MAE and MAPE.

In the calculation of MAE and MAPE, the CGM measure-
ments, the Kalman filter estimate (GI,), and the smoothed
estimates (G‘p,s,,,wot;wd) are compared with the BGA mea-
surement as the reference value. As the BGA samples were
taken sporadically while CGM sensor readings and the
estimates via Kalman filter are available every 1.2sec, the
error is calculated based on BGA samples and their closest
corresponding samples in CGM readings or Kalman filter
estimates.

VI. RESULTS

In order to predict the BG level using the CGM mea-
surements, a Kalman filter is utilized. This filter is designed
based on the model given in (11). In this model, Ty is set
to 10 min as in [10], and T,y is set to 7min, as the middle

point of what has been reported in the literature (4 —10 min)
[2]. The process noise covariance () and the measurement
noise covariance R are given in as followings, respectively.

0.01 0 0 0

0 001 O 0
Q= 0
0

JR=2 (15)

0 001 O

0 0 0.01

The Kalman filter estimates, as well as CGM measure-
ments and BGA samples for each of the two animal experi-
ments, are shown in fig. 2. This figure describes specifically
the meals throughout the experiments, which are recognized
by rise and fall in the blood glucose concentration. As is
shown in fig. 2, the Kalman filter successfully reconstructed
the BG level using the CGM measurements and compensated
for what can be interpreted as the time lag due to the glucose
diffusion process between plasma and interstitial compart-
ments. The Kalman filter is observed to be oversensitive to
small changes in the CGM measurements, hence a moving
average smoother is employed to smooth the estimates. Using
a moving average function in Matlab with a span of 1000
samples does not make a significant delay in the estimates,
but it results in smoothed estimates. The only drawback is
the requirement of having enough CGM samples to start the
smoother, which is equal to having 20 min of CGM readings.

In table I, the evaluation scores are calculated for every
meal registered in each data set, as well as for the whole time
window, with the exception of the calibration interval, from
about 0 —200min. As demonstrated in this table, there is
a clear trend where the Kalman filter outperforms the CGM
system due to the prediction, and the moving average filtering
improves the performance of the Kalman filter. Meal 1 in
data set 2 is an exception to this trend, showing the best
score for MAE and MAPE in the CGM measurements. As
shown in Meal 1, data set 2, in fig. 2, approximately no
time lag exists between CGM and BGA measurements when
glucose is decreasing, implying that the poor performance
of the Kalman filter in this meal is more related to the
sensor itself rather than the Kalman filter. The importance
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of smoothing can be observed in meal 2 of data set 1, where
the CGM and the Kalman filter performances do not differ
to a high degree, while the smoothed Kalman filter estimate
has a significantly lower score for both MAE and MAPE,
see table I, and follows the slope of the BGA precisely,
see fig. 2. Predictions achieved by the Kalman filter and
the smoothed Kalman filter bear more resemblance to the
BGA measurements compared to the CGM readings, and for
most of the meals the estimates can be seen eliminating what
can be interpreted as the slower dynamic of CGM. This is
especially evident in Meal 1, Meal 2 and on glucose increase
in Meal 3, for data set 1, and Meal 2, Meal 3, and on glucose
increase in Meal 4, in data set 2, see fig. 2.

VII. DISCUSSION

For the sake of simplicity, a linear model was used in
this study. Future research should examine the impact of
model choice on the outcomes and evaluate whether a more
sophisticated or even simpler model might enhance the pre-
dictions. The parameters of the model are adjusted according
to the literature. Hence, given any CGM measurements,
the proposed method with the same parameters should be
able to predict the BG level without system identification.
However, performance degradation might be expected if
the CGM sampling rate decreases. In addition, a trial-and-
error approach is used to tune the covariance matrices to
achieve satisfactory results while a methodical approach
to adjust the KF can improve the performance. Moreover,
only two data sets have been used in the simulations for
evaluation, and in order to achieve more reliable results, the
method should be tested on more data sets that are saved for
future studies. The proposed method can be used in closed-
loop systems and/or state estimators (for example [17]) to
decrease the delays in artificial pancreas systems. However,
the effectiveness of the suggested method in closed-loop
systems may be evaluated by using the control-variability
grid analysis (CVGA) method.

VIII. CONCLUSIONS

The glucose diffusion process from plasma to intersti-
tial fluid causes a time lag between BG levels and CGM
measurements as the CGM sensor measures glucose in the
subcutaneous tissue. The Kalman filter with an input-less
model of the glucose dynamics has been used to estimate
the BG level based on the CGM measurement. In addition,
the Kalman filter estimates were smoothed in order to reduce
the Kalman filter sensitivity to the disturbances of CGM
readings. Considering the BGA values as the reference, the
performance of the CGM sensor, Kalman filter, and mov-
ing average smoothed Kalman filter were assessed. Results
showed that estimates obtained from both the Kalman filter
and moving average smoothed Kalman filter resembled the
BGA measurements to a higher degree, than the CGM
measurements.
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Estimation and Prediction of Glucose Appearance
Rate for Use in a Fully Closed-Loop Dual-Hormone
Intraperitoneal Artificial Pancreas

Karim Davari Benam, Student Member, IEEE, Sebastien Gros, and Anders Lyngvi Fougner, Member, IEEE

Abstract—Objective: A fully automated artificial pancreas
requires a meal estimator and predictions of blood glucose levels
(BGL) to handle disturbances during meal times, all without
relying on 1 meal ts and user interventions.
This study introduces a technique for estimating the glucose
appearance rate (GAR) and predicting BGL in people with
type 1 diabetes and insulin and glucagon administration. It is
demonstrated for intraperitoneal insulin and glucagon delivery
but may be adapted to other delivery sites. Method: The estima-
tor is designed based on the moving horizon estimation (MHE)
approach, where the underlying cost function incorporates prior
statistical information on the GAR in subjects over the course of
a day. The proposed prediction scheme is developed to predict
GAR using estimated states and an intestinal model, which is
then used to predict BGL with the help of an animal glucose
metabolic model. Results: The intraperitoneal dual-hormone
estimator was evaluated on three anesthetized animals, achieving
a 21.8% mean absolute percentage error (MAPE) for GAR
estimation and a 10.0% MAPE for BGL prediction when the
future GAR is known. For a 120-minute prediction horizon, the
proposed predictor achieved an 18.0% MAPE for GAR and a
28.4% MAPE for BGL. Conclusion: The findings demonstrate
the effectiveness and reliability of the proposed estimator and
its potential for use in a fully automated artificial pancreas and
reducing user interventions. Significance: This study represents
advancements toward the development of a fully automated
artificial pancreas, ultimately enhancing the quality of life for
people with type 1 diabetes.

Index Terms—Artificial pancreas, Conti glucose itor-
ing, Diabetes mellitus type 1, Meal estimation, Moving horizon
estimation.

I. INTRODUCTION

N people with type 1 diabetes (T1D), the pancreas produces

insufficient or no insulin. External insulin delivery is the
current approach for these patients to regulate blood glucose
levels (BGL). Insulin is a hormone that allows the cells
to use glucose as fuel or store it as glycogen. The most
common insulin administration method is injecting insulin into
the subcutaneous tissue. The amount of insulin required is
estimated based on the meal size, activity level, and physical
features [1], [2]. The calculation of required insulin can be
done by patients or by a control system. A fully automated
artificial pancreas (AP) is a system that consists of an infusion
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Engineering Cybernetics, Faculty of Information Technology and Electrical
Engineering, Norwegian University of Science and Technology (NTNU), O.
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This research is funded by the Research Council of Norway (project no.
248872) and Centre for Digital Life Norway.

pump, a control algorithm, and continuous glucose monitoring
(CGM) system that delivers the required insulin automatically
without the need for a meal and exercise announcements [3].

Due to the significant time delay in insulin absorption from
subcutaneous (SC) tissue, the carbohydrate content of each
meal must be announced to the control algorithms in advance
to administer a meal-time insulin bolus at the appropriate
time [4]. However, estimating the meal size is challenging
[5], and patients occasionally forget to announce it to the AP.
Unannounced meals can result in high BGL and increase the
risk of insulin overdosing in an attempt to decrease the BGL.
In addition, any human interventions in the medical control
systems are not desired.

Dual-hormone SC APs, which can deliver insulin and
glucagon subcutaneously, effectively decrease the risk of
hypoglycemia [6]. However, there is still a high risk of
hyperglycemia in the case of an unannounced meal [7] due
to the slow pharmacokinetics and pharmacodynamics of the
SC route. The intraperitoneal (IP) route is the faster route for
insulin and glucagon absorption compared to the SC route [8].
The IP-AP imitates pancreatic function by delivering insulin
and glucagon to the peritoneal fluid and ultimately to the liver
via the portal vein [9]. The fast insulin absorption in this route
is proven efficient in BGL control without meal announcement
[8].

Due to the novelty of using the IP route for treating diabetes
and the lack of information, fewer studies have been done on
the IP route compared to the SC route. However, the IP-AP
has garnered interest due to recent developments in medical
technology [1], [8], [10]; however, meal estimation is still
needed to determine the appropriate insulin dosage even with
the faster absorption of insulin from IP route.

Model predictive control (MPC) is a widely used control
method in AP systems [11]. It requires a model, predictions,
and estimates of GAR, as well as an estimation of immeasur-
able states to function effectively. Among the models proposed
for the dual-hormone intraperitoneal artificial pancreas (DIP-
AP) systems, our previously developed meta model [9] is
accurate in predictions and offers the advantage of a simple
and short identification process. Most meta model parameters
were identified and validated through prior information from
26 animal experiments, and only four parameters require
identification for each new subject.

The primary focus of this paper is the development of a
complete-state moving horizon estimation (MHE) approach.
This method utilizes statistical characteristics of GAR obtained
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through the daily life of the patients to estimate the states
and GAR. Moreover, we propose a technique to predict GAR
without meal announcements to enable the MPC methods to
predict BGL. To evaluate the effectiveness of our proposed
estimator and predictor, we conducted animal experiments on
three anesthetized pigs for a duration of 24 hours. While
our primary objective in this study is to design an estimator
for implementation in the MPC methods, it is important to
recognize that the estimator can also be utilized in other
control techniques, including PID or adaptive control methods.
By incorporating the estimated and predicted GAR, these
control methods can be better equipped to handle unannounced
meals and exercise routines.

Our research group has previously presented a method based
on MHE for detecting meals in single-hormonal subcutaneous
AP systems in [12], and [13]. This approach showed promising
results in simulations and was validated on clinical data. In
addition, in a post-processing manner, a Kalman filter was
designed to estimate the time and the size of the meal [14].
However, this method was not designed for real-time use. A
different approach was investigated for early meal detection
based on abdominal sound [15]. Similar studies have been
conducted in IP AP systems using a Kalman filter [8] and
a nonlinear high gain observer [16] based on the IP model
presented in [17]. These methods use complex models with
multiple states and require individual identification. This paper
presents an estimator designed explicitly for control purposes
in dual hormone IP AP systems. One novelty lies in using
“meta model” particularly suited for MPC approaches [9],
which significantly reduces the number of parameters to be
identified, making the identification process more straight-
forward in closed-loop experiments. Another novelty is that
the model includes both insulin and glucagon dynamics (both
pharmacodynamics and pharmacokinetics), making the esti-
mator suitable for a dual hormone system, while the other
estimators reported in the literature were developed for single
hormone systems.

The paper is structured as follows. Animal care and surgical
procedures are described in Section II. Section III provides the
models for DIP-AP and the intestines used in the estimator.
The estimator is designed based on the animal model in
Section IV. In Section V, a predictor scheme for closed-loop
MPC techniques is suggested using the proposed models and
the designed MHE. The demonstrative scenarios are employed
in Section VI to examine the accuracy and reliability of the
estimates and the predictions. The discussions and conclusions
are provided in Sections VII and VIII, respectively.

II. ANIMAL EXPERIMENTS AND DATA

To evaluate the method proposed in this paper, we employed
data from three animal experiments performed by our research
group. This section provides a short overview of the experi-
ments and the clinical procedures. The procedures are similar
to the experiments described in [9], [18], [19].

A. Experiments and Animal Handling

There experiments were carried out on three, male non-
diabetic farm pigs (Sus scrofa domesticus). The experiments

IPinsulin and
Glucagon
infusion sets

Fig. 1. The experimental setup of the dual-hormone intraperitoneal artificial
pancreas for Experiment 1. The experiments were conducted on anesthetized
pigs.

were named “Experiment 17, “Experiment 2”, and “Experi-
ment 3,” in this paper where the pigs weighed 36, 36, and
40 kg, respectively.

Before the experiments, the animals were given a week to
adapt to the staff and their new environment. When possible,
groups of animals were kept together. Before the experiment,
they were provided unlimited access to water and twice-
daily feedings of commercial growth feed. The procedure
of inserting insulin and glucagon catheter into the peritoneal
cavity, anesthesia, and euthanization at the end of the ex-
periments is similar to the presented procedures in [9]. In
order to suppress endogenous insulin and glucagon secretion,
the pigs received octreotide as a Spg/kg/h intravenous (IV)
infusion. The experiments lasted up to 24 hours and the
pigs were euthanized with an IV overdose of pentobarbital
(100 mg/kg)(pentobarbital NAF, Apotek, Lgrenskog, Norway)
while fully anesthetized.

These experiments were carried out at the Norwegian
University of Technology (NTNU) in accordance with “The
Norwegian Regulation on Animal Experimentation” and “Di-
rective 2010/63/EU on the protection of animals used for
scientific purposes.” Furthermore, the Norwegian Food Safety
Authority (FOTS number 12948) approved the animal exper-
iments.

B. Data

Each of the experiments lasted nearly 24 hours. In order to
simulate a real-life scenario and mimic the intestine functions
in anesthetized pigs, an IV glucose serum with a concentration
of 200 mg/ml is used. The profile of the glucose infusion
rate through the day is generated based on a human intestine
model (“model 2”) proposed in [20]. The scenarios are further
discussed in Section IV-C.

Infusing the glucose intravenously to simulate the intestines
in anesthetized pigs provides unique data to evaluate the
performance of the estimator in detail. In order to infuse
the glucose accurately according to the time, we used three
programmable Chemyx Fusion 100 syringe pumps (Chemyx
Inc., Stafford, TX, United States). The experimental setup in
Experiment 1 is illustrated in Fig. 1. As shown in Fig. 1,
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three glucose pumps were used in the experiments in parallel
to avoid frequent refills of the syringe during the experiment.

Three Medtronic Enlite sensors (Northridge, CA, USA)
with custom-made transmitters from Inreda Diabetic (Goor,
the Netherlands) are used to measure the BGL during the
experiment. The sensors are attached one day before the exper-
iments. The Data acquisition system can connect to only two
transmitters, and one of the sensors was a backup in case the
two others failed. Of the two working sensors, the one with the
most accurate performance was used in the controller. In order
to choose the best sensor, blood samples were taken at varying
sampling times between every 5-60 minutes and analyzed
by an ABL800 FLEX analyzer (Copenhagen, Denmark). In
these experiments, a dual hormone IP AP based on an MPC
method was used to regulate the BGL within a normal range.
This paper does not address the designed AP system; instead,
only the data collected is used to evaluate the effectiveness of
the proposed estimator, and the AP system will be reported
elsewhere. The controller could give IP insulin or glucagon
every 5 minutes using two infusion pumps provided by Inreda
Diabetic (Goor, the Netherlands).

III. BACKGROUND
A. Meta Model

The model used in this study is the meta model presented
in [9]. Meta model (1) describes the interactions of BGL with
IP insulin, IP glucagon, and IV glucose infusions.

X1 —(B1+ B2 X2+ fB3-x3) - x1 + HGP 77G(t)
X B5 (—x2 4+ (B7 - 71 x4 — Fsat)) 0
X3 Bs (—x3 + Fyat) 0

4l x | = 71 X4 + i)
X5 Bo (—x5 + Bro%e) 0
X6 —Y2 X6 YoH (t)
X7 Y3-X3-X1 —v4- HGP 0

D
In this model, {x;,x2,X3,x4} are the states of the insulin
sub-model including blood glucose level [mmol/l], effective
insulin rate in the organs other than the liver [U/min], effective
insulin rate in the liver [U/min], and concentration of insulin
in the IP fluid [U/ml], respectively. In This sub-model, I(t)
is the IP insulin infusion rate [U/min], and G(¢) is the IV
glucose infusion rate [mmol/min]. Notably, we assume that G
is equivalent to the GAR in awake animals and represents the
meal digestion rate in the intestines.
The term F,,; in this sub-model is used to model the
saturation of the Hepatic first pass (HFP) effect, which is
defined as follows:

Bi3Y5Xa

Bz + PisBrrixa

The states {xs,xg,x7} are the states of the glucagon
sub-model that includes effective glucagon rate in the liver
[mg/min], glucagon concentration in the IP fluid [mg/ml], and
glycogen storage level [%]. H(t) is the IP glucagon infusion
rate [mg/min], and HGP is the hepatic glucose production
rate modeled as follows.

Fiat(xa) £ Bs ()]

HGP £ Byx5y/X7 - exp (—f11 - X3) S

In (1), the parameter set {31, ..., 84} and the initial value
of the glycogen storage level are needed to be identified
individually. However, the parameters s, ..., 513 are shown
to be relatively fixed among the different pigs, and they are
identified using the prior information of the other subjects. The
parameters 7, ...,79 are body-weight dependant parameters
that are known functions (See equations (16) and (17) in [9]).

The equation (1) is discretized using the Euler method.
Since 5 minutes is the most typical sample rate for CGM
devices, that duration is chosen for the sampling time. The
following equation represents the discretized system under the
given assumptions.

Tht1 = F(xlmGkak-,Hk) + wy,
yr = Czp + vy

(4a)
(4b)

where the discretized right hand side of (1) is denotes as
F(xk, Gy, Iy, Hy,). yi is the BGL and C £ 10000 0 0].
For the sake of simplicity, the discretized state vector
[X1,X2, X3, X4, X5,Xg, X7]” is denoted as x) where the same
notation applied for the inputs and measurements. wy, is the
process noise, and vy, is the measurement noise.

B. Intestine Model

The model for the intestine used in this study to generate
scenarios and design the predictor is “model 2 proposed in
[20]. This model is given as follows.

Gstot = —ko1* qsior + D

45102 = _kempt * Gsto2 t+ k21 * Gstol 5)
(}gul = —Kabs Qaut + ]fempt * Qsto2

Ra(t) = f " kabs - Ggut

where ggo1 and g¢go2 are the weight of the solid and liquid
glucose in the stomach, respectively. gy is the mass of the
glucose present in the intestines. The size of the meal rate
is D, and Ra(t) is the glucose that appears in the blood
via absorption in the intestines. The coefficient Keppt is the
emptying rate of the stomach which is a nonlinear function
defined as follows:

kempt (QSto) =
kmax - kmin

kmiu + 2

-{tanh [a (gsto — b - D)]
— tanh [ (g — ¢ D)) +2} (6)

where ¢so = Gstol + Gsto2 - The other parameters of the model
are positive constant values that are defined and given more
in detail in [20].

Using the similar notation in the previous section and Euler
approximation, one can find the discretized version of (5) in
the following form:

(7a)
(7b)

where Fy(.) is the discrete form of the right-hand side of

the (5), Gk [qsml s Gsto2 >qul]Ts and Cq £ [0 0 kal)>]~
Moreover, wg, and v, ;. are the process measurement noises,
respectively.

Qer1 = Fo(qr, Di) +wq
Ray, = quk + g,k
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C. Comments on the meta model and the CGM devices

In the design of the meta model, it is assumed that glucagon
production in the pancreas is also affected in diabetes, and
the pancreas is not able to produce glucagon. However, in the
case of endogenous glucose production, G represents the meal
digestion rate plus the endogenous glucose production (EGP)
rate.

In the experiments, the BGL is measured using CGM
devices. This system measures the concentration of glucose
in interstitial fluid instead of the blood. The filters used in this
CGM system and the process of glucose moving from blood
to interstitial fluid cause a time lag in the measurements. In
this paper, we ignored the measurement delays. However, the
Kalman filter proposed in [21] can be used to compensate for
the time lag. However, in this paper, we only used the sensor
measurements for the sake of simplicity.

IV. MOVING HORIZON ESTIMATION

In order to estimate the states of (4a), an approach similar
to MHE is employed in this work. MHE is an optimization-
based estimation technique for nonlinear systems where the
current state of a system is estimated from a finite set of past
measurements [22].

Regarding the accuracy of the different estimation tech-
niques in nonlinear systems, MHE commonly outperforms
standard state estimation approaches such as the extended
Kalman filter (EKF). This is certainly relevant for nonlinear
systems, which have been thoroughly considered in MHE.
Unlike the EKF, MHE considers a horizon of recent measure-
ments and a nonlinear model to estimate the state trajectories.
In addition, using the MHE approach, one can estimate the
sequence of the unknown inputs over the estimation horizon.

The capability and ease of accommodating constraints, prior
knowledge of the states, or disturbances with non-Gaussian
statistics are the other significant advantages of MHE. How-
ever, all of these advantages come at a higher computational
cost. The basics of a standard MHE scheme are described in
the following section.

A. Design of a Standard MHE with Assuming Glucose Ap-
pearance Rate is Known

The fundamental idea behind MHE is that the current state
of the system is derived from a finite sequence of prior
measurements taken within a time window of length N,;. This
sequence is subject to the disturbances and the model of the
system.

The MHE can be expressed as an optimization problem in
which the decision variables are the initial values of the states
and the sequence of the process disturbances over the time
estimation horizon. As an example, for the states (4a) and
measurement (4b) with known Gy, Iy, and Hy, the MHE cost
function takes the following form [23].

k
)+ Z L1 (wj—1,v;) (8)

j=to

Dy (Z4y, Wiy—1, -y We—1) = T1(p

4
subject to:
P= ‘ilo = Ty, (8b)
ﬁk+1 :F(i'k,Gk.Ik,Hk) + wy, (8C)
vk =yr — Cly (8d)
TR € Qxa wg € Qw (8e)
where ty := K — Ny + 1, T'i(p) pT'P~'p and

Ly (wg, vg) = w] Q™ wy, +vf R~1vy. Matrices R and Q are
covariance matrices of process noises and measurement noise,
respectively. The term I'y(p) is the arrival cost that carries
prior information on the state of the system before time k = .
Ty, 1S a priori state estimate and P represents the covariance
of Z;,. Variable Z) is the estimated state vector at time k.
Equation (8e) represents the constraints on the values of the
states, process noises, and measurement noise, respectively.

The meals are not announced in the desired fully automated
AP systems, and the GAR must be estimated. Similar to [12]
and [13], one approach to estimate the GAR and detect the
meals is to design and identify a model for the intestines
(similar to equation (4) in [12]) to combine it with the meta
model.

In the method mentioned above, the parameters of the
intestine model need to be identified individually. Moreover,
the glucose absorption rate is variable for the different types
of meals. For example, the intestines absorb liquids faster than
solid meals [20]. In addition, the EGP has different dynamics
than the intestine. It is possible to employ a complex model for
G to get around the problems mentioned above. However, it
needs parameter identification, adds a higher computational
cost, and requires additional information about the initial
values and covariance matrices, which are not available.

In the next section, a dual-hormone intraperitoneal moving
horizon estimator is designed to estimate the glucose appear-
ance rate independently of the intestine model and based on
measurements and prior knowledge about the lifestyle of the
subjects.

B. Dual-hormone Intraperitoneal Moving Horizon Estimator
with Unknown Glucose Appearance Rate

The main idea behind the estimator presented in this study
is to directly estimate G over the MHE horizon based on the
lifestyle of the patients. For the sake of simplicity, we recall
the estimator in this section as Dual-hormone Intraperitoneal
Moving Horizon Estimator (DIP-MHE).

We assumed that G is an input with a probability distri-
bution function (PDF). An intestine and exercise model that
generates the GG based on the meals and the activities can be
used to find the PDF function from the information gathered
about the daily diets and exercise routines of the patients. The
idea mentioned above can be formulated as followings:

2 (ZELU-,GLQ—I«,~--7Gk71-,wL0717-<--,wkfl) =

& k
() + D Lo(wjmr,v) + T (G]) o

Jj=to Jj=to
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subject to: (8b), (8d), (8e) and

= F(n, G I, Hy) + wi, (9b)

(9c)

in which To(p) = pT Py 'p and Ly (wy,vy,) = wi Qy wy +
vaR; lvk. where P, 02, and Ry are positive definite matrices
with the same definitions as in Section IV-A. The estimated
glucose appearance rate is denoted as Gr.

The term 7 () is the prior knowledge embedded in the cost
function to impose the feature of the G to the estimator.
Therefore, 7 (-) must be designed based on the body weight
and the inverse distribution function (IDF) of Gj. One may
use the log(-) function or numerical approximation methods
to obtain the IDF using the PDF.

We can use the statistics of G, to embed the prior knowl-
edge of GAR into the MHE. To achieve this, we must
approximate the GAR according to the lifestyle and find
its PDF. However, the complete information regarding the
lifestyle and G might not be available, and the information
that the approximate PDF provides for the MHE might be
incomplete. We know that glucose absorption in the intestines
and hepatic glucose production have slow dynamics and are
continuous functions. Therefore, one can find the PDF of the
AGy := Gy — G_1 (rate of GAR) as well and use it as an
additional embedded prior knowledge for GAR.

Let us assume f,.(Gj) and f4,-(AGy) are PDFs of G, and
AG}, respectively. In this case, one can use the following
formulation to embed these PDFs in MHE by designing the
J(+) as follows:

T(G)) £ pr £ HG)) + par - £, (AG))
+pT(\(G_7 76])2 (10)

where f71(G;) and f;'(AG;) are IDFs of G; and AG;,
respectively. As mentioned earlier, the IDFs can be found using
the log(+) function or numerically from the found PDFs. p, and
P4y are positive constant scalars. In (10), G ; is the prior value
chosen for the scalar G. Therefore, the term p,,(G; — G;)?
is similar to the arrival cost in the MHE. p,, p4,, and p,, are
positive constant scalars.

The defined cost (10) embeds the approximated statistics
of Gy to the estimator. The challenge in this approach is
selecting f,-(.) and fg4,-(.). These PDFs are time-varying, and
they can change according to the changes in lifestyle and diet.
For instance, the type and size of the meals can be chosen
based on the body weight and diet to produce the G for the
entire day, but if the patients change their diet, the type of
food they eat, or the number of meals they eat throughout the
day, the PDFs must be updated to reflect the new changes.
We assumed that the patients followed a relatively consistent
routine in their lifestyle regarding the number of meals per
day, activity level, and the size of the meals relative to their
body weight. Therefore, f,(.) and fg,(.) are considered as
time-invariant functions. In the next section, a demonstrative
example is provided to find f-(.) and fg4-(.) for the animal
experiments.

C. Probability Distribution Functions of Glucose Appearance
Rate for a Demonstrative Scenario in Animal Experiment

As mentioned earlier, GAR must be found according to the
lifestyle, diet, and physical characteristics of the patients. This
section illustrates how to generate G and then find f,.(.) and
far(.) for the 24-hour anesthetized animal trial.

The IV glucose infusion is used in animal experiments
to simulate the GAR. We simulated the EGP, main meals,
and exercise events within 24 hours. The GAR is chosen to
present significant challenges to the controller used in these
experiments. The controller and experiment design are beyond
the scope of this paper. The different elements of this scenario
are defined as follows.

1) EGP Simulation: The basal rate of glucose production in
adults is 2-8 mg/min/kg [24]. To prevent hypoglycemia and
make sure that the pig received enough glucose during the
experiment, we assumed that EGP has a constant rate during
the day with a rate of 5 mg/min/kg.

2) Meal Simulation: To mimic the behavior of the intestines
in the body and generate the GAR for a full-day experiment,
we used the intestine (5) with the parameter identified in
human trials listed in [20]. The experiments are scheduled to
begin at 9:30 a.m. The times and sizes of meals are chosen
based on body weight in the following manner:

e 11:00 a.m.:

o 01:00 p.m.:

o 06:45 p.m.:

o 09:45 p.m.:

0.30 gr/kg meal as a small breakfast.
0.70 gr/kg meal as a lunch.

1.00 gr/kg meal as a dinner.

0.60 gr/kg soft drink.

o 11:45 p.m.: 0.00 gr/kg sleeping.

e 03:50 a.m.: 0.70 gr/kg meal as a breakfast.

3) Exercise/Low Glucose Scenario: In reality, the impact
of physical activity on BGL is multifaceted. Nonetheless,
anesthetized animals cannot perform an exercise. Therefore,
to simulate the effect of exercise at aerobic (low/medium)
intensity, we lowered the glucose infusion from the baseline
GAR. It was simulated as a "negative meal” (subtracted from
the baseline glucose infusion) with a size of 0.25 mg/kg
administered at 04:30 PM.

The designed scenario is illustrated in Fig. 2. Based on the
designed scenario, we found the PDFs of G and AGy,. The
gamma distribution function is chosen to define the probability
feature of G since the glucose appearance rate is always a
positive value. For the sake of simplicity, we assumed that G
and AG, are independent variables. In addition, it is assumed
that AG}, has a normal distribution. With these assumptions,
the estimated G over the MHE horizon can increase or
decrease at the same rate due to the normal distribution of
the AG), independently of the estimated values for G.

In order to identify the parameters of the mentioned PDFs,
the maximum likelihood method is used. The scenario for the
experiments and the found PDFs are illustrated in Fig. 2.

D. Comments on the Designed DIP-MHE

In order to impose the prior knowledge to MHE, the
cost (10) is proposed to embed into the standard MHE cost
function. A Gamma PDF is identified for G. For simplicity,
it is assumed that the AG) has a normal distribution and is
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Fig. 2. The glucose appearance rate (G) designed for the 24-hour anesthetized
animal experiments is shown in panel (a). The glucose was given intra-
venously. The fitted probability distribution functions of G (with gamma PDF)
and AG}, (with normal PDF) are shown in panels (b) and (c), respectively.

independent of G.. However, this simplification might not be
accurate in real life, and the AG), has a dependency on GJ.
Additionally, the scenario is intended to last 24 hours due
to the restrictions on the duration of the anesthetized animal
trials. One should create weekly or monthly routines to achieve
more accurate PDFs. Additionally, performing the exercise on
anesthetized pigs is unfeasible. Thus, we have lowered the
glucose infusion rate to simulate the impact of exercise at a
low to medium aerobic intensity. Nonetheless, it is important
to perform the actual exercise testing on awake animal subjects
or proceed to the human phase for better evaluation of the
designed estimator in exercise events.

V. BLOOD GLUCOSE PREDICTOR SCHEME WITH
UNANNOUNCED MEAL

In the MPC methods, the BGL is predicted based on
the possible combinations of future insulin and glucagon
boluses. However, the future glucose appearance rates over
the prediction horizon are needed to perform the predictions,
while this information is unavailable when the meals are not
unannounced. This section proposed an estimating scheme for
short-term prediction of BGL that can be used for control
purposes.

The idea is to estimate the states of the model 2 using the
estimated GAR and predict it over the prediction horizon of N,
with assuming no meal over the time window {k, ..., k+ N, —
1}. Different methods, such as EKF, high-gain observers, and
others, can also be used to estimate the states of the digestive
model at each sampling time with G (the estimated GAR using
the DIP-MHE). However, a standard MHE approach is used
in this paper with the following cost function to estimate the

ESTIMATORS PREDICTORS

l’n.vmu’ I

le Future Inputs

-1 |

TI(k Noo)

-
| § IR, (ke Ny — 1)
”(kk Nop), - H(k = 1) ¢ {HK), o H (ke + Ny — 1
DIP-MHE ERS)
(®y) BGL(k+N,)
Ge=Nov) iy _
: De— EGP : A
G(k—1) G(k+N,—1)
Standard MHE qk—1) Digestion Model
(Py) (Model 2)

f
Assumption 2)
Future Meals = 0

Assumption 1)
EGP = 5 mg/minkg

Fig. 3. The proposed BGL predictor scheme with unannounced meals.
The estimators are shown in the green box. The problems ®2 and ®3 are
solved sequentially to maintain modularity and simplicity of combining other
observers instead of ®3. The gray box can be replaced with an MPC algorithm
in the closed-loop system. BGL(k + 1), ..., BGL(k + Njp) in the yellow box
are the predicted blood glucose level.

states of the intestine model (7a) — (7b).

@3 (qtqu,tofl’ Wa,tgs - wq,kfl) =
k
Ts(pg) + Y L (wg-1,v4;) (11a)
j=to
subject to:
Pq = Gty — Gto (11b)
Ger1 = Fo(qr, Gr) + wq (11c)
Vg, = (Gk - EGP) - Cq(jk (1 ld)
ar € Qg Wak € Qugs Vg k € Qg (11e)

Pq Pq lp, and L3 (wq].,vq].) =
Wq Qq Wq; + Vg R‘ vq;- Notably, the positive definite
matrices Py, @4, and R have the same definition as P, @,
and R in (8a), respectively. The output of model 2 (7a) —
(7b) is the glucose absorbed from the intestines and does not
consider the EGP. Therefore, one must deduct the EGP from
G as in (11d). For the predictions, we must add the EGP to
the predicted glucose absorbed from the intestines to obtain
the total predicted GAR.

The proposed block diagram for the predictor is shown in
Fig. 3, with having the estimates of the model 2 at time £ — 1
and assuming no meal consumption in the prediction horizon
with the length of NV}, one can have an estimation of G for the
future time samples of {k,k + 1,...,k + N, — 1}. Having the
Iy, together with predicted G enables us to predict the BGLs
for any future insulin and glucagon boluses using the meta
model.

in which T'3(pq)

A. Comments on the Designed Predictor

The predictor assumes that no meals will be consumed
during the prediction period, which could lead to an underesti-
mation of BGL if a meal will be consumed. However, underes-
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timating meals could prevent excessive insulin administration
and reduce the risk of postprandial hypoglycemia.

A limitation of the proposed scheme is the increased com-
putational cost associated with solving @5 and ®3 separately.
However, the problems ®5 and ®3 could be combined, but this
would lead to undesirable interactions between the parameters
of the model 2 and the estimation of the states of the meta
model and Gy. Solving the problems ®, and ®3 in a sequence
is made for ease of tuning the estimators, reducing complexity,
and maintaining the modularity of the method.

VI. DEMONSTRATIVE EXAMPLES

The performance of the DIP-MHE and the proposed predic-
tor scheme is evaluated using the test data from three animal
experiments in this section. To this aim, two scenarios are
designed; Scenario 1 evaluates the performance of the DIP-
MHE in a post-processing manner, and Scenario 2 evaluates
the performance of the proposed predictor scheme for closed-
loop systems. These scenarios are described in the following
sections.

A. Scenario 1, Performance Evaluation of the DIP-MHE in
Post-Processing:

This scenario evaluates the performance of the designed
DIP-MHE in estimating the glucose appearance rate, states,
robustness of the estimator to model mismatches, and the reli-
ability of the estimates. Three sub-scenarios have been created
to simulate real-world situations and test the performance of
the proposed method in detail:

1) Scenario 1.A, Accuracy of Glucose Appearance Rate
Estimates: This scenario aims to evaluate the performance of
the DIP-MHE in estimating the GAR. As shown in Fig. 4, the
estimated GAR is compared with the rate of the infused IV
glucose during the experiments. In this scenario, the param-
eters of the meta model are identified individually. However,
in closed-loop tests and experiments on awake animals, the
available data for identification is limited, which could impact
the accuracy of the meta model and subsequently and the
performance of the estimator. These cases are discussed later
in Scenarios 1.C and 2.

2) Scenario 1.B, Accuracy of the State Estimates: This
scenario focuses on evaluating the ability of the DIP-MHE
to estimate the states of the meta model. The estimated states
must be compared to their actual values to assess the per-
formance accurately. However, the states Xo, X3, X4, X5, X, X7
are not directly measurable. We assumed that the time lag of
the CGM sensors is negligible, the only measurable quantity
in these experiments is x;, which is obtained using CGM
systems.

As previously mentioned, the primary goal of the DIP-MHE
is to enable accurate predictions for use in MPC techniques.
Therefore, the performance of the DIP-MHE in estimating &,
can be indirectly evaluated by comparing the predicted BGL
with the measured BGL in a post-processing manner, assuming
that the future glucose infusion is known to the model. As
shown in Fig. 3, the predicted BGL is obtained by using the
estimated 7y, feature inputs, and the identified meta model.

Data Set (Future Data)

Data Set (Past Data) [

Do k=N Dy ® | | 160, (k4 Ny = 1)
= Nop), o Ik =1) | |OHGK (k+N,—1) |
L HGK =Ny, HO—1) G, Gk + Ny —1) |
) !
DIP-MHE Q) Animal Model
@ " (Meta-Model)

T
v

Plot (Scenario 1. A) Plot (Scenario 1. B)

G, 6k -1 Yk + 1), y(k + N,)
Vs. Vs.
G(1),...,G(k—1) Y (e + 1), e, Yo (ke + Np)

Fig. 4. Scenario 1.A and Scenario 1.B are illustrated. In Scenario 1.A,
the performance of DIP-MHE in estimating glucose infusion rate (GAR) is
evaluated by comparing it to the actual rate of intravenous glucose infusion
during the experiments. In Scenario 1.B, the performance of DIP-MHE in
estimating the states is evaluated indirectly by comparing the predicted blood
glucose level (BGL) based on an animal model to the measured BGL in a
post-processing manner. Ny, and N, represent the estimation and prediction
horizons, respectively.

The predicted BGL is then compared with the measured BGL.
This comparison is considered as an indirect evaluation of the
DIP-MHE in estimating ;. To ensure that the evaluation is
accurate, the selected prediction horizon (/V,) must be long
enough to cover a full meal; in this scenario, IV, = 48 samples,
or 4 hours, were chosen.

The initial value selected for the states are &% =
[¥1m0,0,0,0,0,0,30] where Y, is the first BGL measured
at time £ = 1. In addition, the initial glucose appearance
rate is set to G; = 5 mg/min/kg for j = [1,Ng — 1],
which is equal to the basal body glucose appearance rate
[24]. Regarding the initial values chosen (i‘UT), it is known
that there has been no presence of insulin or glucagon in
the bloodstream or peritoneal fluid for an extended period of
time. However, the selected glycogen storage level is based on
previous subjects and there is less confidence in the chosen
initial glycogen value for each new subject. Additionally, the
accuracy of selecting Gj = 5 mg/min/kg for j = [1, Nob—1]
is uncertain. To address these uncertainties, a warm-up period
was considered for the designed estimator using initial samples
of the experiment. During the warm-up period, the arrival
cost was set to P3~! = diag(25,25,25,100,5,5,1073). The
warm-up period was set to 180 minutes (36 samples), which
is longer than the half-life time of IP insulin, glucagon, and
the tail of the glucose absorption due to the meal. After the
warm-up period, the arrival cost coefficient will increase to
P;71 =100 x diag(50, 50, 50, 100, 50, 50,0.5).

The matrix R3 ' is the inverse of covariance of the mea-
surement noise, and generally speaking, it is a scaling penalty
on how accurately the model output (y;) must be fitted to
the measurements (y,,,;,) over the time estimator horizon. In
this paper, this matrix is chosen as R3~! = 102 x T where T
is a Ny, x N, identity matrix. Other tuning parameters are

r =1, par = 1, pry, = 1, and Q3 = 07x7. For simplicity,
we considered that there is no process noise or endogenous
insulin and glucagon production. The parameters are tuned to
achieve satisfactory results for the first experiments and then
tested on the other experiments.
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Fig. 5. The figure illustrates the performance of the proposed DIP-MHE in
Scenario 1.A, by comparing the glucose appearance rate (G) given to the
pigs via the IV route to the estimations (G) made by DIP-MHE for different
observation horizons (N,p).

It is important to note that the population parameters of
model (1) are identified based on short-term anesthetized pig
experiments and as it is mentioned in [9], the charging rate
of glycogen (73) is identified near zero. We found a better
performance of the estimator when replacing 3 with 0.8/35.
From a philological point of view, it means that the 80% of
the up-taken glucose in the liver will be saved as accessible
glycogen.

A key parameter in the DIP-MHE design is N,p, which
can impact the estimation accuracy, convergence, and com-
putational complexity. From an accuracy standpoint, longer
estimation horizons are preferable as the estimator will have
access to more information about the dynamics of the sys-
tem from measurements. However, using longer horizons can
increase computational difficulty.

TABLE I
MEAN ABSOLUTE PERCENTAGE ERROR (MAPE) OF THE PROPOSED
DIP-MHE IN ESTIMATING THE GLUCOSE APPEARANCE RATE (G) AND
THE MAPE OF THE FOUR-HOUR BGL PREDICTION (AVERAGED OVER ALL
SAMPLING TIMES) IN SCENARIO 1.A AND SCENARIO 1.B, RESPECTIVELY.

MAPE (G) (%] MAPE (BGL Pre.) [%]

Ny, Expl Exp2 Exp3 Ave. Expl Exp2 Exp3 Ave.
5 16.9 23.9 24.1 21.6 | 8.3 12.0 9.5 9.9
10 16.6 26.3 23.0 22.0 | 8.9 12.4 8.3 9.9
15 17.2 26.5 23.1 22.3 | 9.0 12.2 9.0 10.1
20 17.0 26.0 23.1 22.0 | 8.9 12.0 9.0 10.0
25 17.8 24.7 24.2 22.2 | 9.1 115 9.7 10.1
30 17.0 23.7 20.6 20.4 | 9.3 11.3 9.0 9.9
Ave. 171 25.2 23.0 21.8 89 11.9 9.1 10.0

In order to find the suitable horizon length, performance
analysis is done for N,;, = {5, 10, ...,30}. The sampling time
is 5 minutes and, therefore, N, x dt = {25,50,...,150}
minutes. We found that the half-life of the IP insulin and

Scenario 1.B: 4 hours Prediction of BGL
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Boundaries of BGL prediction ()
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Example Pre.

Fig. 6. The figure illustrates the performance of the proposed DIP-MHE
in Scenario 1.B by comparing the four-hour BGL predictions (based on
estimated GAR and the states) to the measured BGL using the CGM (ym).
The predictions are made at every sampling time, and the shaded area shows
the boundaries of predicted BGL at each sampling time. As an example, the
predicted trajectories are shown for each meal for an observation horizon of
Nop = 15.

glucagon in the pigs is less than 100 minutes [25]. Therefore,
the maximum estimation horizon evaluated in this paper is set
at 150 minutes.

For the selected set of IV,;,, the mean absolute percentage
error (MAPE) of estimating glucose appearance rate and the
MAPE of the four-hour predictions are shown in Table I. As
an example, for N,, = {5,15,30} the estimated G}, and the
boundaries of the four-hour predicted BGL are illustrated in
Fig. 5 and Fig. 6, respectively. In experiment 1, we did not
carry out the simulation of the soft drink as the heart rate
was elevated following dinner. Once the heart rate returned to
normal, we proceeded with simulating sleep.

A similar performance is achieved for all three experiments
with a fixed tuning of DIP-MHE and different values of N.
The DIP-MHE has achieved an average MAPE of 21.8% in
estimating GAR (Scenario 1.A) and an average MAPE of 10%
in predicting the BGL for four hours (Scenario 1.B).

In the third experiment (as shown in Fig. 6), the insulin and
glucagon pumps were intentionally misconnected (their reser-
voirs interchanged) as a simulation of user error. This resulted
in elevated glucose levels at the start of the experiment. We
believe that this simulated user error also affected the response
of the pig to insulin later in the experiment, as the animal did
not receive insulin for an extended period of time.

As shown in Fig. 7, when the number of observations,
Nop, is high, the ability to predict BGL is greatest during
the transient period. This suggests that the accuracy of state
estimation improves as the estimation horizon is extended.
However, this improvement comes at the cost of longer
computation times. On a regular desktop PC, the average
computation time for N,, = 5, 10, ..., 30 are 2.33, 2.87, 2.90,
3.14, 3.37, and 3.95 seconds, respectively. However, due to
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Fig. 7. The wideness of the boundaries of the predicted BGL in Scenario
1.B refers to how much variation there is in the predicted values. It can be
an indication of how uncertain or confident the prediction is. It is important
to have less wide boundaries when it comes to predicted BGL, which is
necessary for managing diabetes.

the large sampling intervals (5 minutes), the calculations are
done without optimizing the simulation codes.

3) Scenario 1.C, Performance of the DIP-MHE with model
mismatches:

In the previous scenarios, a satisfactory performance in esti-
mating the glucose appearance rate and prediction of the BGL
is achieved using the proposed DIP-MHE. This is done using
the tuned DIP-MHE on the first experiment and the model,
identified individually using their full-day BGL measurements.
In the short-term closed-loop animal experiments, there are
not enough BGL measurements to identify the individual
parameters of the meta model ({1, 82,83, 84}). In addition,
tuning the parameters of the DIP-MHE is challenging to
perform during the experiments.

A practical way to address these challenges is to leverage
information from previous experiments, such as utilizing data
from a pig with a similar body weight, to tune the parameters
of the meta model and DIP-MHE for new experiments. We
refer to this data from prior experiments as “training data”.
This approach can help overcome the challenges and ensure
accurate estimations. However, the insulin and glucagon re-
sponses differ from pig to pig. Therefore, the performance of
the DIP-MHE in the presence of the model identification error
must be studied. To that end, we proposed Scenariol.C, in
which the first experiment serves as training data and the DIP-
MHE is then performed on the second and third experiments
without re-tuning and model identification.

Fig. 8 and Table II provide details on the performance of
the DIP-MHE in Scenario 1.C. The DIP-MHE had the same
settings as Scenario 1.A, with N,, = 15.

The estimator was able to achieve an accurate estimation
of the GAR for experiment 2, with a MAPE of 23.3%.
Furthermore, it was able to generate a four-hour blood glucose
level (BGL) prediction with an average MAPE of 12.9%. For

Scenario 1.C: DIP-MHE Performance
‘Without System Identification

WAl

50 100 150 200 250
Sampling Time
Boundaries of 4hrs Pre. i, Example Pre. i,

........... Y (CGM Device)

[

Fig. 8. The figures show the estimated glucose appearance rate and the
boundaries of the BGL prediction in Scenario 1.C. Estimations are done with
Ny, = 15. The predictions and the estimations are made using the identified
meta model [9] for experiment 1. y,, is the measured BGL using the CGM
device, G is the given IV glucose infusion during the experiments, and G is
the estimated GAR.

TABLE II
MEAN ABSOLUTE PERCENTAGE ERROR (MAPE) OF THE PROPOSED
DIP-MHE IN ESTIMATING THE GLUCOSE APPEARANCE RATE (G) AND
THE MAPE OF THE FOUR-HOUR BGL PREDICTION (AVERAGED OVER ALL
SAMPLING TIMES) IN SCENARIO 1.C.

MAPE (G) [%] MAPE (BGL Pre.) [%]
Exp?2 Exp3 Exp3® Exp3® Exp?2 Exp3 Exp3® Exp3®
(Part 1)  (Part 2) (Part 1)  (Part 2)
23.3 41.3 61.3 28.3 12.9 20.2 27.5 17.1

) Part 1: [0,500]min. (Effect of the user error simulation).
3 Part 1: [505, 1265]min.

the third experiment, there is a bias and error in estimating
the glucose appearance rate in the first 100 samples. As
explained earlier, this is due to the simulated user error in
the third experiment. The MAPE of GAR estimation and BGL
prediction decreased to 28.3% and 17.1%, respectively, for the
rest of the experiment.

B. Comments on the Reliability of the Estimates

The proposed DIP-MHE has been shown to accurately
estimate GAR and predict BGL in a post-processing manner.
However, when using the estimator in closed-loop systems, it
is essential to consider the reliability of the estimator. Various
methods have been proposed in the literature for analyzing
the stability of the MHE, such as the approaches in [26]. One
way to analyze the estimator is by finding the covariance of
the estimates, which can be challenging. However, the inverse
of the Hessian matrix can be used as an approximation for the
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covariance matrix of estimation error, as shown by Gejadze et
al. in [27]. The Hessian matrix is defined as:

H(pyk = V2<I>2’k (12)

Where ®, j, is the cost function (9a) minimized at the sampling
time k. Hg , is the Hessian matrix found for the estimates at
time k.

The fact mentioned above has been a well-known finding
in statistics for decades, and multiple studies offer the same
conclusion. Nevertheless, there has also been considerable
ambiguity which has been discussed in [27].

As mentioned earlier, the matrix Hg j must be calculated
at each sample time after the estimations are complete. The
constraints mentioned in (8e) and (9¢) are positive constraints,
meaning that the states and G are zero or greater than zero.
We assume that the covariances of the active constraints
(parameters estimated as zero) are actually zero. For example,
the amount of glucagon in the peritoneal cavity (zg) is zero
before or after glucagon boluses since there is no glucagon
infusion into the cavity except by pumps. Therefore, the rows
and columns of Hg j, corresponding to the active constraints
will be removed. To prevent numerical errors in finding the
inverse of Hg j, we calculate ), j, which is the smallest
eigenvalue of Hg ), and defined as follows.

Aok :=min {det(He )} (13)

The estimates corresponding to A,; — 0 have large
covariance, which indicates less reliable estimates.

Fig. 9 illustrates the average absolute values of A, ; for all
sampling times in all experiments. The trend in this graph
shows that longer horizon length results in 10-18% lower
values for A, which means the average reliability of the
estimates decreases with large values for Np.

The reliability of the estimates for experiments 1 and
2 are similar even though the parameters of their models
are different. Experiment 2 had a different glucose infusion
profile due to the soft drink consumption. However, DIP-MHE
showed less reliable estimates than the third experiment due
to the simulated user error at the beginning of the experiment.

The authors believe that the lack of insulin in the blood for
a long period of time and a high BGL may affect the dynamics
of the metabolic system. A, j for the third experiment is shown
in Fig. 10. The eigenvalues for the time interval k € [20, 50]
(the period after simulated user error) are smaller than the
rest of the experiment for all N,, = {5,10,15,20,25,30}.

The Smallest Eigenvalue of Hy ) for Experiment 3

50 100 150 200 250
Sampling Time

Fig. 10. The smallest eigenvalues of the Hg (k) of the experiment 3 plotted
for different N,;,. The black box shows the period where glucagon boluses
were given instead of insulin, and the pig did not receive insulin. The red
box indicated the period that the authors believe that the metabolic dynamics
have been affected due to the prolonged lack of insulin at the beginning of
the experiment.

It is also evident from Fig. 5 and Fig. 6 that the estimates
of DIP-MHE are unreliable for this period. The absence of
insulin boluses (no exciting inputs) and the prolonged lack
of insulin in the bloodstream can contribute to the small A,
at k € [20,50] and practical unidentifiablity in experiment 3.
This is a good indication that the inverse Hessian matrix can
serve as an approximation of the covariance matrix and the
reliability metric in closed-loop applications.

C. Scenario 2, Prediction Performance in Closed-loop Sys-
tem:

This scenario uses the tuned DIP-MHE in Scenario 1.C to
evaluate the proposed predictor method in Section V. This
scenario aims to evaluate the performance of the proposed
prediction scheme in MPC methods. The main difference from
Scenarios 1.C, is that in Scenario 2 the future GAR is unknown
and is instead predicted. At each sampling time, the future
insulin and glucagon infusions are assumed to be known,
since we want to compare the predicted BGL trajectories with
the actual measured BGL in the experiments. In closed-loop
systems, the MPC provides the future insulin and glucagon.

In order to tune the cost function (11a), the measurements
of Experiment 1 are used as training data. In this tuning, the
estimated glucose appearance rate covariance is considered
constant and R, = 1072 x I where I is a Ny, x Ny
identity matrix. The other tuning parameters are chosen as
Q;l = diag(0.01,0.01,1), Pq’1 = diag(0.01,0.01,0.01), and
Nop = 15.

In a closed-loop experiment, the prediction horizon must
be chosen based on the dynamics of the system, available
computing power, uncertainties, and disturbances. The main
effect (half-life) of IP insulin and IP glucagon is seen within
the first 100 minutes (20 samples) after injection; therefore, a
prediction horizon of 120 minutes is sufficiently long for the
model-based predictive controllers. Additionally, predicting
the GAR for a longer horizon can be extremely uncertain
because of unannounced meals.

The predicted trajectories of the BGL and the GAR are
illustrated in Fig. 11. As shown in Table III, the proposed
method could predict the BGL and GAR with an average
MAPE of 18.1% and 28.4%, respectively.

As previously stated, the glucose appearance rate is esti-
mated passively from the revolutions in the BGL since the
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Fig. 11.

Performance of the proposed DIP-MHE and the predictor scheme in Scenario 2 for the three animal experiments; In this scenario, the BGL and

glucose appearance rate predictions are made using the scheme proposed in Fig. 3. The parameters of the meta model (1), the estimators (9a), and (11a) are
identified and tuned using the first experiment. ¥, is the measured BGL via the CGM Device, and @, is the predicted BGL. G is the IV glucose infusion
rate during the experiments, G is the estimated glucose infusion rate by DIP-MHE, and G is the predicted glucose infusion rate made for 120 minutes without

any meal announcement.

TABLE III
MEAN ABSOLUTE PERCENTAGE ERROR (MAPE) OF THE PROPOSED
METHOD IN PREDICTING THE GLUCOSE APPEARANCE RATE (G PRE.) AND
THE MAPE OF BGL PREDICTION (BGL PRE.) FOR 120 MINUTES IN
SCENARIO 2.

MAPE (G Pre.) [%]
No, Expl Exp2 Exp3
15 127 19.7 22.0

MAPE (BGL Pre.) (%]
Ave. Expl Exp2 Exp3
18.1  23.6 31.4 30.2

Ave.
28.4

meal amount, meal time, and type of meals are not pre-
dictable without the meal announcement. Furthermore, eating
is a continuous process; the amount of glucose given to the
stomach and intestinal system continuously rises. Therefore,
the predicted BGL diverge from the actual future BGL just
before the meal absorption starts and during the meal, as seen
in Fig. 11. However, as more BGL measurements are obtained,
the predictions are updated and become more precise.

The proposed scenario for the second and third experiments
is the worst-case scenario. The DIP-MHE and the model have
been tuned and identified using data from the first experiment.
In real-world situations, such as human trials or longer animal
experiments, there would be sufficient data to identify the
model and tune the DIP-MHE individually.

In summary, the proposed predictor based on the DIP-
MHE performed reasonably well in experiments 2 and 3. The
predictions of the GAR over shots during the fast glucose rise
(the soft-drink event) in the second experiment. It is important
to consider the overshoots of the proposed prediction scheme
when designing an MPC controller.

VII. DISCUSSION

This study focuses on designing an estimator and predictor
for the GAR and meta model states, which can be applied in
MPC methods. The meta model is based on animal data using
intraperitoneal injection of insulin and glucagon. To utilize
this method in human trials, the model needs to be adapted
to human data. Although designed for dual-hormone systems,
the method can also be used in insulin-only APs. However,
the use of the intraperitoneal route has some challenges, which
are discussed in [8]. Alternatively, the proposed method can
also be used in currently available insulin-only APs using
subcutaneous injections. To this end, the IP model used in
the estimator needs to be substituted with an SC model that
provides comparable accuracy. However, this replacement ne-
cessitates the recalibration and optimization of the parameters.
Specifically, due to the slower dynamics of the SC route,
it may be necessary to select a longer estimator horizon
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for improved performance. Although the intraperitoneal route
is more invasive and costly, it has the advantage of faster
insulin absorption, which makes it easier to avoid oscillations
and thereby achieve larger safety margins and achieve a
lower average glucose level. We utilized data from three
comprehensive experiments in anesthetized animals. However,
further experiments with longer duration are required before
implementing the method in humans.

VIII. CONCLUSIONS

The proposed DIP-MHE is tested in animal experiments
in near-real-life conditions and with model mismatches. It is
shown to be a reliable and effective method for estimating the
glucose appearance rate and states of the metabolic system.
The proposed predictor scheme can be used in closed-loop
systems to make accurate predictions of the BGL, allowing
for more precise insulin and glucagon bolus calculations
without human interventions. Furthermore, the estimator can
be utilized to estimate glucose absorption from the intestines
to develop and identify an accurate model for the digestive
system. The method has been successfully tested in animal
trials and has the potential to be adapted for use in human
trials.
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Abstract: A fully automated artificial pancreas (AP) requires accurate blood glucose (BG)
readings. However, many factors can affect the accuracy of commercially available sensors.
These factors include sensor artifacts due to the pressure on surrounding tissues, connection
loss, and poor calibration. The AP may administer an incorrect insulin bolus due to inaccurate
sensor data when the patient is not supervising the system. The situation can be even worse in
animal experiments because animals are eager to play with the sensor and apply pressure.

In this study, we propose and derive a Multi-Model Kalman Filter with Forgetting Factor
(MMKFF) for the problem of fusing information from redundant subcutaneous glucose sensors.
The performance of the developed MMKFF was assessed by comparing it against other Kalman
Filter (KF) strategies on experimental data obtained in two different animals. The developed
MMKFF was shown to provide a reliable fused glucose reading. Additionally, compared to the
other KF approaches, the MMKFF was shown to be better able to adjust to changes in the
accuracy of the glucose sensors.

Keywords: Developments in measurement, signal processing, Diabetes.

1. INTRODUCTION

Monitoring blood glucose (BG) level in subjects with dia-
betes is important for managing their treatment. Over the
last two decades, continuous glucose monitoring (CGM)
systems have become more and more common in patients
with diabetes mellitus type 1. Most commercially avail-
able CGMs provide measurement samples each 5 minutes
allowing for a better description of the subject’s glucose
variability.

The artificial pancreas (AP) automates BG control by
reading levels from a CGM, calculating the insulin bolus
dose using a control algorithm, and infusing the insulin
with a pump. A reliable system for measuring BG level
with minimal supervision is essential to achieve the ulti-
mate goal of reducing supervision. However, real-life situ-
ations can cause CGMs to provide inaccurate information
or disconnect from APs; posing a risk to BG control in a
single-sensor APs.

For simplicity and to reduce the wiring, the common off-
the-shelf CGMs have a transmitter to connect wirelessly
with the AP. The communication methods are Bluetooth
or ANT+, which will lose connection if the CGM and

* This work was funded by the IFD Grand Solution project ADAPT-
T2D, project number 9068-00056B, the Research Council of Norway
(project no. 248872), and the Centre for Digital Life Norway.

the receiver /pump are on opposite sides of the body, e.g.
during sleep. Furthermore, compression artifacts caused
by external pressure on the CGM can rapidly decrease the
measured BG level and cause failure of the APs. Many
other circumstances make single-sensor APs unreliable,
making the supervision of the CGM necessary for patients.
These circumstances have been summarised by Facchinetti
(2016).

The glucose sensors have a warm-up period, which means
that each new sensor attached will not provide accurate
data for a while. Warm-up times vary between brands
and range from 2 hours to 2 days. In other words, if
the CGM fails unexpectedly in single-sensor APs, patients
must manually control the BG during the warm-up period
of the new sensor. The issue gets aggravated in awake
animal experiments since it is challenging to take frequent
blood samples to measure the BG. Additionally, since
animals are eager to play with the sensors attached to their
bodies or exert pressure on them, the circumstances above
are more likely to occur in animal experiments. Notably,
the warm-up period in the animal experiment is not ideal
because it lengthens the experiment and raises the cost
of the experiment. In this setting, the animal experiments
are used to test controllers.

Redundant sensors are advised in the literature to address
the issues above. For example, Jacobs et al. (2014) used
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Experiment 1 |

Fig. 1. Placement of glucose sensors. Left: Experiment 1,
both sensors Expl.S1 and Exp1.52 placed on the pig’s
belly. Right: Experiment 2, two sensors on the left
side of the neck. Another two sensors were on the
pig’s right side, with sensor Exp2.54 attached at the
bottom and Exp2.52 at the top.

two sensors in their AP where one sensor would replace the
active one in the event of a sensor failure. In the present
study, instead of using the other sensor(s) only for backup,
we developed a method based on a Multi-Model Kalman
Filter (MMKF) approach to combine the data from all
the glucose sensors attached on the subject to increase
the reliability. The proposed method was evaluated using
experimental data from anesthetized and awake pigs.

The works in Facchinetti et al. (2013, 2015); Vettoretti
et al. (2019) used data batches from multiple CGMs
devices together with an accurate reference BG data
for the aim of obtaining a detailed parametric model
description for the measurement errors in specific CGM
devices. Therefore, the methods developed in these works
are not suitable for a real time sensor fusion of CGMs for
APs.

Kalman Filter (KF) strategies have been used in previ-
ously reported studies with CGMs for the purpose of cali-
brating one CGM device with self monitored blood glucose
samples obtained by finger pricking Knobbe and Bucking-
ham (2005); Kuure-Kinsey et al. (2006); Facchinetti et al.
(2010). While these solutions primarily focused on sensor
calibration, in this paper we aim to fuse information from
numerous CGM devices with varying degrees of accuracy
considering that one or more sensors can fail and recover
over time.

The contributions of this work are as following:

e We show how MMKF can be used for the fusing of
CGM devices. In addition, we derive a MMKF with
a Forgetting Factor (MMKFF) in Section 4.

e We apply the MMKFF on two sets of experimental
data and evaluate its performance in Section 5 com-
paring it with different types of KFs.

2. ANIMAL EXPERIMENTS

The example data sets used in this paper are from two
different animal experiments. The tests were carried out
in two non-diabetic farm pigs (Sus scrofa domesticus) of
36 and 40 kg, respectively.

The first experiment (Expl) was performed in an anes-
thetized pig for 24 hours. Three Medtronic Enlite glucose
sensors (Northridge, Canada) with custom transmitters
from Inreda Diabetic (Goor, the Netherlands) were used

(hereafter named Expl.S1, Expl.S2, and Expl.S3) with a
1.2s sampling time. The provided data acquisition system
could only receive data from two of the sensors. There-
fore, one of the sensors only served as a backup sensor.
Blood samples were taken sporadically to calibrate the
sensors and compare them. A blood gas analyser (BGA)
of ABL800 FLEX (Copenhagen, Denmark) was used to
measure the actual BG level throughout the experiment.
We compared the performance of the developed MMKFF
method with the BGA. Expl.S1 and Expl.S2 were at-
tached to each side of the belly as shown in Figure. 1, and
Exp1.S3 was attached to the neck as backup. The protocol
for this animal experiment was similar to the protocols
used in Halvorsen et al. (2022) and Benam et al. (2023).

The second experiment (Exp2) was closer to real-life condi-
tions than Expl since it was performed in an awake animal
where it could move freely. In this experiment, four sensors
were used to decrease the chance of losing data or basing
decisions on faulty data. Sensors Exp2.S1 and Exp2.S2
were factory-calibrated Dexcom G6 (San Diego, CA) with
5min sampling time. Sensors Exp2.S3 and Exp2.S4 were
Medtronic Guardian sensors 3 (Northridge, Canada) with
custom-made transmitters from Inreda Diabetic (Goor,
the Netherlands) with 1.2s sampling time. To reduce the
connection losses during the experiments, the sensors were
mounted on both sides of the neck, as shown in Figure 1.
Unlike Expl, taking frequent blood samples was not pos-
sible. However, depending on the sensor connection losses,
general behaviours of the sensors compared to others, and
position of the pig, the experiment’s operators were giving
each sensor a reliability indicator between 0 and 1. Then
we calculated a weighted average of the sensors using
their assigned reliability indicators. With the weighted
average value as a benchmark, we evaluated the perfor-
mance of the proposed sensor fusion technique. Readings
at time 5k [min], £ € Z>o from Expl.S1/ Exp2.S1,
Expl.S2/Exp2.52, Exp2.S3, and Exp2.54 will be denoted
as yx[1],yx[2],yx[3], and yx[4], respectively.

3. NOTATIONS

For a random variable x, we write x for its realization.
We write N(p1, ¥) for the normal distribution with mean
1 and variance Y. Let two successive time instants t
and ty4; be such that tx4; — ¢, = jT, j € Z with
T € R, then variables z(t;),z(tk+;) will be denoted as
T, Titj- The symbol ST, (S%,) is used for the set of
positive definite (semi-definite) matrices with dimension
n. We write [N] = {1,...,N}, N € Zs,. We write a
diagonal matrix with diagonal elements v = [vy, ... ,vnf
as diag (v). We use I for the identity matrix.

4. METHOD
In this section, we will first present the models used for the
glucose sensors in 4.1. Afterwards, the MMKFF method
will be described in 4.2.
4.1 Problem Setup

We consider a setup in which we have N € Zso CGM
sensors. At each sample time k, a portion of the sensors



0 < ng < N will provide readings y, € R™ . This setup
considers cases when the sensors can fail for some periods
of time. For the modeling, we consider in this paper N
linear Gaussian dynamic models M? with i € [N] as the
following
Thpr = A'zj + Blwp, wi ~N(0,Q7),  (1a)
Yk = Cllcx}ﬂ + U};ﬂ ,U};: ~ N(Ov B}c) (1b)
with ¢ € R n, € Zsg, A' € R™X"e [ ¢
R™ X" n, € Zso, Qi € S;L“O, wi is an independent
and identically distributed (IID) process, Ci € RmXne,
Ri € S%, and v € R™ is a IID process. Similar to
the previous works in Knobbe and Buckingham (2005);
Facchinetti et al. (2010) in which integrators of white noise
with different orders are chosen to represent a description
for the dynamics of BG concentrations, we choose matrices
Al=A, F'=E, Q' =Q and C} = Cj, for all the models
i € [N] such that A, F,Q, and C represent the discrete
output of a triple integrated white noise w as following

1 0 0 T 001

A=| T 1 o|l,E=|T%2/2|,C, = € R X3
2 3 3 .
T2/2 T3/6 1 T3/6 001

with T [min] being the sampling time!. The integrated
white noise model serves as a prior assumption regarding
the stationarity and the power spectrum density of the BG
concentration. Additionally, if the model in (1a) is viewed
as a discretized version of a continuous time dynamical
glucose model, then it captures our knowledge that BG
concentration is differentiable with respect to time. This
choice is common in time series estimation of physiological
processes (see De Nicolao et al. (1997) for e.g.). The higher
the order of the integrator, the smoother the continuous
time BG concentration is assumed to be. The variance @
of the driving white noise can be understood as a repre-
sentation of how confident we are in the assumed model
(see Section 5.1 for more details). Note that the model
does not reflect the ground truth of the time evolution
for BG concentration and different models with differ-
ent accuracy and inputs (e.g. insulin, physical activity,
meals, etc...) can also be considered and used. For the
simplicity in this paper, we considered a simple white noise
integrator which can work in a general setting in which
data regarding more specific inputs is not available. As
for the covariance matrix R}; for the measurement noise,
it will be chosen differently for each model i € [N]. To
define R};,, let ¥* € RY such that the i;, element of r*
is o while the rest of the elements in 7% are o2 with
oy > o0p. Let s € RV such that the iy, element of sy
is 1 if the 4, sensor is providing a reading at sample
k and zero otherwise. Then the covariance matrix R is
chosen as R}C = diag (sz—rl) . This basically means that for
each sensor i, we have a model M’ that assumes a lower
variance for the iy, sensor (o) than the variance for the
other sensors (02). In other words, each model is more
confident with respect to one sensor than the others. Note
that it is possible with this structure to have a continuum
of models weighting the sensors differently. However, we
chose to have a finite number of models for simplicity
and tractability. Finally, we define for each model M* a

L If the sensors are operating at different sampling rates then 7' can
be chosen to be the minimum of the different sampling times.
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random variable m§ € {0,1} such that p(m’) = P(m} =
1) := P (M’ is the best model at step k). Note that the
time dependence for m}c is included to account for the
fact that some sensors will become better than others for
a period of time. To relate m}C 41 with m}c, we use the
following

p(mjp1) = (i [mi)p(my) == (1 —a)p(my) +af’; (2)
with 0 < a < 1 a constant which we call the forgetting
factor, and 0 < * < 1 with Zf\;l B = 1 are predefined
probabilities for the models. The dynamic model in (2) is
to be understood as a prior model in the absence of mea-
surement updates (similar to (1a)). A measurement correc-
tion step will be introduced in section 4.2. To understand
more what "forgetting" is meant with (2), assume we start
from probabilities p(mi) > 0, Vi € [N] representing our
knowledge at step k regarding the models. If we only follow
the update in equation (2), then the [ — step prediction is
pmi_ ) =(1-a)pmi)+(1-(1-a))B . H0<a<l,
we can see that limy_,, p(mj,,) = B°. This means that
Vi € [N], our knowledge regarding the models p(m,) with
equation (2) only is "forgotten" exponentially with a rate
1 — o to converge to a predefined knowledge captured
in B°. The predefined probabilities 5’ can be uniform
(B* = 4, Vi € [N]) or prior probabilities regarding the
models.

4.2 Multiple Models Kalman Filter with Forgetting Factor

The idea of the MMKF, which was first introduced in
Magill (1965), is to run a KF for each model M in
parallel and combine the estimated results to obtain a
better new estimate. In this section, we will extend the
MMKF with the forgetting factor equation (2) and provide
a description for the MMKFF strategy. Note that the
MMKFF can be thought of as a specific case for dynamic
MMKF where the probabilities of the true models evolve
with time and it is different from the one in (Bar-Shalom
et al., 2004, chapter 11) since (7) is not a homogeneous
Markov chain. For ease of notation, we will use B]ill ey =
p(m}cl‘yk,z) with k1,ke € Z>o, and Vi, = (Y1, -+, Yks)
being a tuple of all the available measurement up until
sample ky. Assume now at iteration k we have an estimate
&gy ~ N (pg), Prji) for the states and probabilities [J’,ilk.
If there is an available measurement reading yy+1, then we
run a KF for each model M? as following
Time update:

tis1pe = Apglis Prg1je = APy AT + EQET
Measurement Correction:

. ) A .
Gkt = Ye+1 — Crbrt1pk, Skyapp = CoPrpuCr + R,

(3a)

(4a)
iy 1pkr = Pefe + P pC (Shyan) " ke (4b)
P = (T PustpCY (Sha) 7'Ck) P (40)

To derive a time update step and a measurement correc-
tion step for the probabilities 3;, F1lk41 WE use Baye’s rule
to write

p(m}c+17yk+1)

k4-1[k+1 p(mj 1| Vet1) pVri1)
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(g Ve yier1) POy, Ve Trrak)
P(Vit1) B P(Vk+1)
p(f’k+1\k‘m2+17yk)p(miv-;-pyk)
P(Vrt1)
P(Fk1pelmiy )0, [Vi)p(Vr)
P(Vrt1)
 p(Trsapelmiy )p(my o V)
B p(¥)
P(Fer1pimy, ) q
ZZ‘J\;1 p(ykJrlk|m§€+1)p(m§g+1|yk)p(1nk+1|y(k))
5

with , _ _ _
p(mjy1|Vk) = p(mij i [m)p(mi [V5) (©)
= (1= a)p(m|Vx) + af*
To summarize, (5) and (6) are written as a time update
step and a measurement correction step with the notation
5121' &, s following
Time update (using (6)):
Bipaps = (L= a)By, + (7)
Measurement Correction (using (5)):
P (Tksgk | mi )
N . -
Zizl 52“%? (yk:+1\k: ‘ mL+1
with p (Qkﬂ‘k | m};H) being the multi-normal probability
density function with zero mean and covariance matrix
Sli+1|k' Finally, let Ay, = P11 — Mht1lh+1s then
the estimated mean and covariance matrix of the states
are computed as following

512+1\k+1 =

)ﬁ};+1|k~ ®)

N
Hit1lk+1 = Z/B;%+1\k+1/“;c+1|k+1 (9a)
i=1
i T
Prrjerr = Zﬁlchrl\kJrl <P1z+1|k+1 + Apthys (A//iﬁ—l) ) .
i=1
(9b)

Note that the values Blic+1|k+1 in (9a) are acting as weights
for the estimates obtained from the different KFs. The
values 3}, 1lkt will be referred to as "trust values for
sensor 3" in the next section.

5. RESULTS

We compare the MMKFF presented in this paper with the
following KFs:

e Linear KF.

e The Distributionally Robust KF (DRKF) from Wang
and Ye (2022) with a moment based ambiguity set
and an e—contamination set for outliers.

e The Adaptive Fading KF (AFKF) based on Xia et al.
(1994) but with the fading applied to the covariance
matrix R(k) adapting to sensor changes.

e The MMKF.

5.1 Choice of the Kalman Filters’ Parameters

All the KFs share the same value of Q. For a higher value
of @, the KFs will rely on the measurements more for

their estimates which will make them faster to respond
to changes in BG but more prone to noise. On the other
hand, a smaller value of @ will make the KFs rely more
on the model predictions but will hinder their ability to
respond quickly to changes in BG. The value of @ in this
paper was chosen to be Q = 1. For the distributionally
robust KF, we tuned the parameters denoted in the paper
Wang and Ye (2022) as 05 4,02 4, € to be 05 5, = 05, = 1.02
and € = 0.005. For Expl, we only compared MMKF
and MMKFF due to limited space. For Exp2, the one
model KFs share one covariance matrix Ry, = diag (s} )

with » = [1 1100 100] " since our prior knowledge is
such that Exp2.S1 and Exp2.S2 perform better than
Exp2.S3 and Exp2.54. For the multi-model KFs, we chose
0?2 = 1 and 02 = 100 for the both experiments. The
forgetting factor was chosen to be a« = 0.05. The KFs
for both Expl and Exp2 were initialized with poo =
[00 0.5y0[1] — 0.5y[2]] " and Py = I where yo[1] and
yo[2] are the measurements of the first and second sensors
of both experiments, respectively. For Expl, we chose
Boo = B =[05 0.5}T based on our prior knowledge (no
prior preference over the sensors). As for Exp2, G0 =
B=1[0.30.30.20.2]" based on our prior knowledge.

5.2 Results from Fxpl

In Figure 2, MMKFF and MMKF were tested on data
from Expl.S1 and Exp2.S2 and the result compared to
BGA. The MMKF and MMKFF performed similarly, with
their fused CGM being close to the accurate BG readings.
The fused CGM managed to overcome the drifting in
Expl.S2 and stayed close to the reading from the Blood
Gas Analyser (BGA). However, we can see that the trust
values ﬁélk and lek evolved differently with the CGM
readings. The trust values from the MMKF converged
faster towards Expl.S1 (ﬂ;‘k ~ 1, Bz‘k ~ 0) during the
case when Expl.S2 was being calibrated than the trust
values of MMKFF (see Figure 3). In this particular excerpt
for Expl, favoring Expl.S1 quickly from the beginning
as done by MMKF is better since the performance of
Expl.S2 continued to degrade during the period of data
collection. However, events like Exp2.S2 improving beyond
the calibration point without drifting or Exp1.S1 deterio-
rating during the trial, for instance, due to connection loss,
can still occur. In these events, the MMKFF will perform
better than MMKF since it does not immediately converge
to trusting one sensor over the others. Additionally, it
is able to "forget" past experiences which will enable it
to adapt to new changes. This is shown in the findings
for Exp2, where the MMKFF outperformed the MMKF
in a more realistic case where the quality of the sensors
varied over time. It is important to note that even though
forgetting can offer better adaptivity to changes in the
quality of sensors, it comes with the cost of slower reaction
towards abrupt events as seen in Figure 3. The lower the
forgetting factor, the faster the reaction of MMKFF to
abrupt events and vice versa.

5.8 Results from Exp2

Figure 4 shows the results for three different excerpts
of Exp2 compared to a fused CGM signal obtained by
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Fig. 2. Results from Expl. BGA represents the values from the blood gas analyser, and ‘Calibration’ represents points
where sensors S1 and S2 were calibrated using the BGA values. The Upper plot shows a comparison between
MMKFF and MMKF using the readings from Expl.S1 and Expl.S2, while the lower plot shows the trust values

Bt in (8) for each of the sensors i € {1,2}.
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Fig. 3. The upper plot shows the response of MMKFF
and MMKEF with different forgetting factors, while the
lower plot shows the trust values.

manually tuning a weighted average of the four CGMs in
an online fashion (labeled Manual in the plots). In the
first excerpt (left of the figure), the four sensors were all
working as expected and readings were provided each 5
minutes. The MMKFF was the closest to the manually
tuned signal. For the second excerpt (middle of the figure),
Exp2.S3 was not working properly and stopped provid-
ing measurements towards the end. Additionally, Exp2.52
was performing poorly with missing measurements and
reporting readings which were close to 0 [mmol/L] while
Exp2.54 was performing better and close to Exp2.S1. This
situation is challenging not only due to the missing and
wrong readings of some sensors, but also due to the fact
that our prior knowledge prefers Exp2.S1 and Exp2.S2
over Exp2.53 and Exp2.S4. Despite these challenges, the
MMKFF performed the best in the sense of being the clos-
est to the manually tuned reading. Observe how both the
MMKF and MMKFF reduced the trust value of Exp2.54
when it stopped providing readings around 50 [min] of
the excerpt. However, the MMKFF increased the trust
value of Exp2.54 when it started providing good readings
again, unlike the MMKF. Moreover, the MMKFF started
trusting Exp2.52 more when its readings improved. For the
third excerpt (right of the figure), Exp2.S3 was not provid-
ing any readings, and Exp2.54 started providing readings
around the time when Exp2.51 and Exp2.S2 stopped pro-

viding readings. Out of the four KFs, the MMKFF was still
the closest to the manually tuned reading on average and
had the lowest maximum ARE value. Additionally, notice
how it was difficult for the MMKF to increase its trust
value of EX2.54 again when it was providing readings. On
the other hand, the MMKFF increased the trust value of
EX2.S54 when it started providing readings again. These
results show how the MMKFF is able to adapt better to
changes in the quality of the sensors.

6. CONCLUSION AND FUTURE WORK

For CGM devices, the MMKFF fusing approach was in-
troduced. The technique was evaluated using two separate
sets of experimental data, and it was shown to be capable
of producing a reliable fused CGM signal. It was demon-
strated that MMKFF can respond to variations in the
quality of the CGM readings more effectively when com-
pared to other KF approaches. However, it was observed
that MMKFF’s ability for adaptation came at the expense
of a slower reaction to sudden changes. Future studies
could improve this by taking into account an adaptive for-
getting factor for MMKFF. Additionally, the past data and
inputs can be used with the high gain observer suggested
in Benam et al. (2019) and Benam et al. (2022) to estimate
the BG levels when the sensor connection is lost. Evaluat-
ing the proposed fusing approach on additional data from
various experiments can provide a better understanding
of the strategy’s performance and its likelihood of being
applied in a human environment.

7. ACKNOWLEDGMENT

The experimental services were provided by the Compar-
ative medicine Core Facility (CoMed), Norwegian Univer-
sity of Science and Technology (NTNU). CoMed is funded
by the Faculty of Medicine at NTNU and Central Norway
Regional Health Authority. The transmitters (for Expl
and Exp2) and the hormone infusion systems in Expl were
provided by Inreda Diabetic BV (Goor, the Netherlands).
We want to thank Marte Kierulf Am, Oddveig Lyng, and
Patrick Christian Bosch for their invaluable contribution
to the data collection. We also thank Professor Sven
Magnus Carlsen for his help in experimental design and
discussions.



130 » ORIGINAL PUBLICATIONS

~—Ex2.81 —Ex2.82 —Ex2.83

Ex2.54

8
5 . —~_
- ——
10 / - 4 —~
AN 5 2
—
0 0
2040 60 80 100 120 20 40 60 80 _ 100 120 0 20 40 60 80 100 120
F — DRKF — AFKF —MMKF —— MMKFF - Manual
Ma
6
4
0 20 40 60 8 100 120
04
03
02
0.1
0 20 40 60 8 100 120
—
08 7
0.6 Az
: - 1
0.4 A
\
| 02 .
0 20 40 60 80 100 120 .. =TT Pt et Nt S
Excerpt 1 0 20 40 80 100 120 0 20 40 60 80 100 120
Excerpt 2 Excerpt 3
Time [min]
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Fully Automated Bi-Hormonal Intraperitoneal Artificial Pancreas
Using a Two-Layer PID Control Scheme

Jana Langholz, Karim Davari Benam, Bindu Sharan, Sebastien Gros, Anders Lyngvi Fougner

Abstract—Treatment of type 1 diabetes mellitus is signifi-
cantly improved by using commercially available hybrid closed-
loop systems to deliver insulin. These systems, also called arti-
ficial pancreas (AP), use the subcutaneous (SC) route to deliver
insulin. However, meal announcements are necessary due to
the slow insulin absorption from the SC tissue. Thus due to the
need for human intervention, it is called “hybrid closed loop”
AP. In this work, a bi-hormonal AP with intraperitoneal (IP)
infusion is designed to increase the time within the range of 3.9-
10.0 mmol/l and alleviate the burden of meal announcements.
A two-layer controller is designed to provide safe and effective
insulin and glucagon delivery. The primary layer is based on
classical PID controllers for insulin and glucagon, and the
supervisory layer includes four parts: (A) Zone-based control
settings, (B) Extrapolation of sensor data to compensate for
sensor delay in SC tissue, (C) Auto-tuning of the PID parameters
in the primary layer through simulation in an animal model,
and (D) Safety barriers. The controller is designed to prevent
hypoglycemia after meals and during physical activity, as well as
prevent postprandial hyperglycemia. The designed AP achieved
92.5% of the time within the range of 3.9-10.0 mmol/l on a
simulator trained on data from animal experiments. The results
indicate that this two-layer control structure with IP infusions
makes it feasible to achieve a fully automated artificial pancreas
without the need for meal announcements, i.e. without human
intervention.

I. INTRODUCTION

Patients with type 1 diabetes depend on exogenous insulin
since their insulin-producing (-cells are destroyed or are not
able to produce enough insulin. As a result, the body fails to
control the Blood Glucose Level (BGL) [1]. Current diabetes
treatment consists of three stages; First, the BGL must be
measured, then the amount of the necessary hormone must
be determined, and finally, this amount must be injected. The
automated system that can perform these procedures is called
the artificial pancreas (AP). Commercially available AP sys-
tems include a control system to determine the amount of
insulin, a pump for injecting the insulin into the subcutaneous
(SC) tissue, and a blood glucose sensor for measuring the
BGL [2].

Due to the slow insulin absorption from the SC tissue,
most control approaches fail to keep the BGL within the

This research is funded by the Research Council of Norway (project no.
248872), and the Centre for Digital Life Norway.

J. Langholz, and B. Sharan are with Institute of Control Systems,
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desired range when facing an unannounced meal [3]. Notably,
the meal announcements need to be done by the patients
well in advance. Otherwise, a delayed meal announcement
or underestimated size of the meal can cause hyperglycemia
(high BGL). Hyperglycemia is caused by too little (or no)
meal insulin or the meal insulin being given too late relative
to the meal. If hyperglycemia occurs often, the patient
will have a higher risk of microvascular complications and
cardiovascular diseases. Improved glycemic control alleviates
these risks.

On the other hand, an overestimated meal size can cause
hypoglycemia (low BGL). Since hypoglycemia can have
serious short- and long-term implications, it is a critical oc-
currence that must be avoided. As categorized later in Table II
by the American Diabetes Association, the first level of hypo-
glycemia is set at a threshold where neuroendocrine response
starts failing. However, the symptoms can be unrecognized,
and for that reason, the risk of experiencing hypoglycemic
unawareness exists. In the second level, neuroglycopenic
symptoms arise, and immediate actions should be taken. If it
stays untreated, the patient can experience significant changes
in mental and physical functioning, progressing further into
consciousness, seizure, coma, or death [1, Chapter 6].

It has been shown in [3] that the intraperitoneal (IP)
route has a faster insulin absorption than the SC route,
and the AP systems using the IP route do not need the
meal announcements. In addition, bi-hormonal AP systems
are shown to be effective in avoiding hypoglycemia [4].
Bi-hormonal AP uses a second hormone next to insulin
to increase the BGL. This hormone, called glucagon, can
stimulate the breakdown of glycogen into glucose in the liver.
Thus, glucose is accessible in case of need for energy [5].

Several studies have been done in the literature to design
different controller approaches, such as Model predictive
control (MPC) and PID controller for single hormonal SC AP
[6]-[8]. In addition, a few other research groups are focusing
on bi-hormonal SC AP [9]-[11] showing more promising
results than single-hormonal APs. However, few controllers
have been tested and designed for single hormonal IP AP
without meal announcements. This is due to the lack of a sim-
ulator for the IP insulin and glucagon infusion. Nonetheless,
Toffanin et al. in [3] used an MPC approach to control the
BGL for single hormonal IP AP, where they used a modified
version of the SC simulator. The results showed that IP
insulin does not require meal announcement. Huyett et al. in
[12] used a simulator with intravenous (IV) insulin infusion
and assumed that IP and IV insulin infusions have the same
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Fig. 1: Block diagram of the proposed two-layer control
structure. The primary layer consists of two PID controllers
for insulin and glucagon infusions. The supervisory layer
manages the safety barriers, extrapolates the sensor data to
compensate for the sensor delay, and modifies the set points
and PID coefficients in accordance with the BGL values. The
inputs to the primary layer are the auto-tuned gains for the
controller, the reference BGL of the active zone, the output
insulin (I), and glucagon (H). After the safety barrier, the
output might be modified, shown by the superscript *. Meal
& Exercises are implemented as glucose infusion rates in
the simulator. The simulator outputs are blood glucose level
(BGL) and the subcutaneously BGL (SC BGL) measurement.

absorption rates. Then, they designed a PID controller for
insulin infusion using the sensors inside the peritoneal cavity.
The results showed significant improvements in simulations.

This paper thereby focuses on designing the control al-
gorithm for a bi-hormonal IP AP. To this end, a two-layer
control structure is developed and tested on the simulator.
As shown in Fig. 1, the primary layer includes two PID
controllers for insulin and glucagon, respectively; at every
instant only one of them is activated by the supervisory
layer depending on the BGL and its derivative. In addition,
reference BGL and PID coefficients are specified by the auto-
tuning algorithm in the supervisory layer. Moreover, the su-
pervisory layer is responsible for safety barriers, emergency
modes, and compensating for sensor delays.

The proposed control structure is tested on a simulator
which was trained/identified based on data from 13 animal
experiments [13]. The controller was exposed to scenarios
aiming for typical real life conditions, e.g., with meals,
physical activity, sleep, and model mismatch (tuning the
controller for a model that does not match perfectly the
simulator it was tested on, e.g., by making a time varying
insulin sensitivity). To the best knowledge of the authors,
the design and test of a bi-hormonal IP AP on a simulator
trained and tested for the IP route is novel.

The paper is structured as follows. First, the simulator used
to develop the control structure is described in Section II.
Then the different stages of the proposed control structure
are presented in Section III. Different metrics are employed
to assess the proposed controller, and they are introduced
in Section IV. The performance of the controller is assisted
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in different scenarios in Section V. Finally, these results
are discussed in Section VI, and a conclusion is given in
Section VII.

II. SIMULATOR AND SCENARIOS

The development and evaluation of the proposed con-
trol structure take place in a simulator. To the authors’
best knowledge, the proposed “meta model” in [13] is the
only model available for testing a bi-hormonal IP artificial
pancreas. Other models in the literature are developed for
IP routes, but they are designed only for control purposes
and have simple pharmacokinetics and pharmacodynamics to
serve as a simulator [14], [15]. The meta model is generally
based on physiology, and its parameters are identified empir-
ically through 13 experiments in anesthetized pigs, making
it a suitable option for a simulator.

The control inputs of the meta model are IP insulin and
IP glucagon. IV glucose infusion is used as an additional
input to mimic the intestines in anesthetized pigs that absorb
glucose, but this input is hidden for the controller. It is used
to design challenges (such as meals and exercise) for the
controller.

There are only five parameters that must be identified for
each new subject:

o The insulin-independent glucose uptake rate (o)

o The liver’s sensitivity to insulin (ag)

« The sensitivity of other organs to insulin (a3)

o The liver’s sensitivity to glucagon ()

o The liver’s initial glycogen storage level (o)

These parameters are unknown to the controller and the
sensitivity parameters (oo, as,aq) can vary over time. In
[13], the ranges of these parameters are identified based on
the animal experiments as follows:

as € [0.57,5.84], (1a)
az € [4.92,17.22], (1b)
ay € [6,20]. (lc)

These ranges are used for challenging the controller with
different scenarios in which the sensitivities vary. The other
parameters of the meta model are population parameters,
which are already identified and known using the information
from the previous experiments on different subjects.

The simulator was combined with a subcutaneous sensor
model that provides a BGL with a time lag as in actual
APs. The inputs and outputs of the simulator are illustrated
around “animal model” in Fig. 1. The meta model is thereby
the basis of the simulator. Insulin and glucagon are the
control inputs, meals and physical activity are unknown to the
system and thus can be seen as disturbances, the individual
parameters are modifiable internal parameters, and actual
BGL and subcutaneous BGL (SC BGL) are the output values.
To simulate the SC BGL time lag, we used a first order
derivative model with parameters (See equation (7) in [16]).
Similar to most commercial AP systems, the sampling time
of 5 min is chosen for the simulator.
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A. Sensitivity to Insulin and Glucagon

As mentioned earlier, the sensitivities of the patient to
insulin and glucagon are time-varying parameters. They are
influenced by various hormones and conditions, which can
affect AP performance. Since determining the sensitivity
related to hormones is not straightforward, different modeling
possibilities are presented in this section to provide realistic
challenges to the controller.

To this end, three different modes are introduced in Fig. 2:
The first mode represents the constant value identified during
the 13 animal experiments [13]. The second mode is a
sinusoidal variation representing fluctuations of sensitivities
during the a day. Lastly, a sawtooth profile is used to examine
the reaction of the controller to discontinuities due to e.g., a
replacement of the infusion set, which would typically hap-
pen every 2-3 days in a clinical study. In these simulations,
the frequency was increased to make it even more challenging
for the controller. For modes 2 and 3, a counteracting effect
for insulin sensitivity and glucagon sensitivity is implemented
using a phase shift. For example, for mode 2, a phase shift
of 90° is used. The designed scenario ensures the most
significant challenge for the controller because this emulates
the fact that when insulin has a high effect on BGL, the
glucagon will have the lowest effect, and thus the rescue
process is prolonged.

A sinusoidal and sawtooth profile oscillate around a neutral
position. Three different neutral positions c,,, are defined,
given by

max: Cppmaz = by — (bu + by) - %T (2a)
1

cen: Cpp cen = by — (bu +by) - 2 (2b)

min: Cup min = by + (by +by) - %T, (2¢)

where b is defined as boundary value with either index u as
upper or index ! as lower value of the regions from (la)-
(Ic). The variable v, € [0,100]% ensures that the sensitivity
always stays within the regions, no matter which setting is
chosen. The amplitude a is defined as

a=(by—b)- % (2d)

Insulin Related Sensitivity Variation oy

NOONN RN
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Fig. 2: Visualisation of modes for time-variant hormone
sensitivity (using the insulin sensitivity as an example).

B. Glucose Infusion

As described in [13], the meal and exercises can be
simulated by the glucose infusion rate R, in anesthetized
pigs. In addition, according to [17], the basal rate of glucose
production in adults is between 2-8 [m;:?’kg]. In this paper,
we assumed that the basal glucose infusion rate is 5 [ﬁ?’kg],
and it is constant in the simulations.

For modeling different realistic scenarios of glucose in-
fusion, basal glucose production can be taken as a basis.
To model the food intake of a normal day, different events
such as breakfast, lunch, and dinner, as well as soft drinks,
can be taken into account, with different amounts resulting
in an increase in the glucose infusion rate. Additionally,
physical activities can be modeled by decreasing glucose
production below basal glucose in anesthetized pigs. The
realistic scenario considered to challenge the controller is
shown in Fig. 3. The profile of the glucose infusion rate
through the day is generated based on the intestine model
("model 2”) proposed in [18].

1500 - ]
Soft Drink
E
“~ 1000 b
\E\ Lunch Breakfast
P
= 0 Breakfast
s 500 1
54
. . . .

0

L
00:00 05:00 10:00

Time
Fig. 3: A demonstrative example of an IV glucose infusion
rate in 24 hr to simulate a real-life scenario. Exercise is simu-
lated by reducing the glucose infusion, since it is impossible
to perform exercise in anesthetized pigs. The x-axis shows
the time (in HH:mm format) since the start of the experiment
of the experiment.

ITII. TWO-LAYER PID CONTROL SCHEME

With the control of the BGL we want to ensure that
the BGL is within the target region most of the time.
Additionally, the requirement is set to lower or increase the
BGL in a safe way. This is because too much glucagon or
insulin injection could lead to a dangerous drop or increase of
the BGL and can cause severe side effects. Furthermore, os-
cillations are unwanted, and the amount of injected glucagon
should be as low as possible. Therefore, a supervisory layer
is implemented to ensure these requirements are met.

There are four different stages implemented in the super-
visory layer. The first stage is sensor data extrapolation, the
second is dividing the BGL into different zones, the third
is the auto-tuning of the PID coefficients in the defined
zones, and the last stage is implementing the safety barriers.
The designed control scheme is shown in Fig. 4, and the
defined stages are explained in more detail in the following
subsection.



6.6 PAPER6 <« 137
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Fig. 4: Detailed block diagram of the two-layer PID controller. The white color denotes the supervisory layer, whereas
the blue color represents the primary layer. The four strategies are displayed: (1) Extrapolation. (2) Division into zones.
(3) Auto-Tuning. (4) Safety Barrier. As in Fig. 1 shown, the input is the subcutaneous blood glucose level (SC BGL), the
extrapolated BGL is presented as BGL*, glucagon (H) and insulin (I) are determined during the process and outputted in

the end.

A. Extrapolation of Sensor Data

SC sensors measurements lag behind the real BGL value
due to physiological delays and their slow dynamics [19]. We
implement the linear extrapolation method in the supervisory
layer to predict the BGL in the next step and compensate for
the sensor delay.

B. Zones

The first stage of the supervisory layer of the controller
splits the BGL into seven zones, as shown in Fig. 5. In
zones 1, 2, and 3, insulin is injected, and in zones 5, 6, and
7, glucagon is injected. Zone 4 is called the “quiet” zone,
where no controller is activated so that neither insulin nor
glucagon can be injected. The first and the last zone are the
emergency zones, where in zone 1, an insulin bolus is given,
and in zone 7, a glucagon bolus is injected. In total, a PID
controller with four sets of coefficients is implemented, two
for the injection of each hormone. Zones 2 and 6 consist of
a more aggressively tuned PID controller, whereas zone 3
and 5 have a less aggressively tuned PID controller, both for
insulin and glucagon respectively. Each zone has a separately
chosen setpoint to allow a smooth transition into the next
zone. To ensure safety, we opted for a target blood glucose
level (BGL) of 6.4 mmol/l. BGLs below this level, falling
into zones 4-7, are classified as low BGL. In such cases, no
insulin is given to allow the BGL to return to the baseline.

C. Auto-Tuning PID controllers

To achieve an optimal performance of the designed PID,
we implement a real-time auto-tuning stage to tune the
PID controller for different individuals and scenarios. This
is done by predicting the BGL for NN, samples using the
individually identified meta-model [13] for each subject and
then minimizing the quadratic error of the predicted BGL
with the reference BGL value. The reference BGL value
is selected according to the active zone as provided in the
previous section. The decision variables in the optimization
process are the PID coefficients. Notably, this procedure is
done online and at every sampling time for zones 2,3,5 and

Zone 1: Emergency bolus insulin

Zone 2: Hard PID insulin

BGL*=8Y

Zone 3: Soft PID insulin
6 Zone d: Quict zone
Zone 5: Soft PID glucagon

BGLA= 6
Tn(:m: 5 oi

Zone 6: Hard PID glucagon |

Zone 7: Emergency bolus glucagon

0 5 10 15 20

Fig. 5: Division of the BGL into 7 zones with different
control types and actions. The borders of each zone as well
as the setpoints (BGL*) are illustrated.

6. As explained in the previous section, the reference BGL is
defined separately for the different zones. The cost function
designed for this end is defined as follows:

4

(G; — Gsc)’s ®3)

c=
i=1

@

where NN, is the prediction horizon, and at time k, c¢ is
the cost for the prediction interval [k, k + Np], G* is the
defined reference BGL for the current zone, and Ggc,; is
the ¢ step ahead prediction of the BGL using the animal
model at time k + 4. In order to estimate the future BGL, a
glucose infusion rate is needed. Here, for the zones 2 and 3
we assumed that the future glucose infusion rate equals the
basal glucose infusion rate (see Section 1I-B). In contrast, to
achieve a pessimistic prediction, a zero glucose infusion rate
is assumed for the zones 5 and 6 (where the glucagon must
be given).

The optimization problem can have multiple local minima,
resulting in sub-optimal solutions. In order to address this
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issue, the initial values given to the optimizer must be chosen
carefully. In this paper, we choose the initial values using a
trial-and-error method performed in multiple simulations for
each zone. In addition, the decision variables are constrained
in different zones to control the aggressiveness of the PID
controller. The selected boundaries and the initial values
are shown in Table I. The interior-point method is used to
minimize the designed cost function (3).

TABLE I: Initial values and boundaries of the PID controller
coefficients for different zones. The values are given in the

format [K,, K;, Kgl.
Zone \ Initial Value Lower Boundary Upper Boundary
2 [0.2, 0, 5] [0.1, 0, 1] [0.5, 0, 20]
3 [0.1, 0, 2] [0.01, 0, 0.02] [0.2, 0, 10]
5 [-0.5, -0.01, -8]  [-5, -0.01, -10] [-0.1, 0, -0.1]
6 [-1, -0.01, -5] [-10, -0.01, -30] [-1, 0, -5]

D. Safety Barriers

The BGL slope is one of the factors we need to consider
for patient safety since if insufficient glycogen is stored in the
liver, a rapid BGL drop can result in a hypoglycemic event.
Thus, if the slope value exceeds a “dangerous value”, the
designed controller will be turned off to prevent excessive
insulin. Since insulin is only given in zones 2 and 3, this
is the only place where this safety barrier is needed. The
threshold for the slope must be tuned based on the zone.

Furthermore, due to the pharmacokinetics and pharma-
codynamics of the IP insulin, the half-life time of insulin
is 60-100 minutes for IP injections [13]. In other words,
the maximum effect of insulin and maximum drop in BGL
appear 60—100 minutes after injection. Therefore, to prevent a
rapid decrease in BGL in the next 60—100 minutes, additional
safety parameters are used in zones 2 and 3 to stop the
controller from giving more than a specified amount of
insulin. The threshold for the amount of insulin must be
chosen according to the body weight, sensitivity to insulin,
and based on the active zone.

For example, for the pigs with 36 kg of body weight, the
“dangerous slope” is defined as less than -0.01 mmol/L/min
and 0 mmol/L/min for zones 2 and 3, respectively. In
addition, the maximum amount of insulin that can be injected
over a rolling time window of 60 min is set to 1.5 U for zone
2 and 2 U for zone 3. These values are chosen using a trial-
and-error method in the simulations represented in the paper.

IV. PERFORMANCE MEASURES

In order to evaluate the performance of the proposed
control structure, three metrics are defined as follows:

A. Metric 1, Time in Range (TIR)

The Time in Range (TIR) is the first metric used to
assess the controller’s performance, indicating the duration
for which the BGL remains in the desired range. Table II
provides the ideal range, hyperglycemia levels, and hypo-
glycemia levels specified by the American Diabetes Associ-
ation. Evaluating the effectiveness of treatments using Time

above Range (TAR, hyperglycemia) and Time below Range
(TBR, hypoglycemia) is also recommended [1, Chapter 6].

TABLE II: Glycemic targets for adults according to the
American Diabetes Association [1, Chapter 6].

Ranges BGL range | Target Target

‘ [mmol/L] [%] ‘ [Time/Day]
Level 2 hyperglycemia >13.9 <5 1h 12min
Level 1 hyperglycemia 10.1 - 13.9 <25 6h
Time in range 3.9 -10.0 >70 16h 48min
Level 1 hypoglycemia 3.0-38 <4 58min
Level 2 hypoglycemia <3.0 <1 14min

These glycemic targets can be formulated as

N
T = Mwith 7, = {1 for G; € Range
N,

s

0 else @

with N, the total number of steps, 7 as the resulting target
value for each zone, which depends on the current step <,
has to meet a condition based on the BGL value G; and
the ranges defined in Table II. This produces five different
values for the zones. It should be noted that the BGL ranges
are defined for humans, while the simulator used in this study
is based on pig data.

B. Metric 2, Amount of Used Insulin and Glucagon

The second metric measures the control energy. For this,
the used amount of insulin and glucagon is calculated to
check how much control input was needed to control the
BGL. Additionally, these values are used as an indicator, if
enough insulin is injected and if the requirement is met that
as little glucagon as possible is injected. This yields

N
Xused = ZXL (5)
i=1

where X denotes the placeholder for insulin 7 and glucagon
H. X, seq is the amount of hormone used over the simulation
time, N the total number of control intervals, and X, the
amount of injected hormone at each sampling interval 3.

C. Metric 3, Severity of Hyperglycemia and Hypoglycemia

To compare the severity of hypoglycemia and hyper-
glycemia with different controllers or setups, we consider
the integral of the BGL above or below the defined BGL
thresholds. This threshold is chosen to be Gpj. = 10
mmol/L for hyperglycemia and G4, = 3.9 mmol/L for
hypoglycemia. We defined the severity of hyperglycemia
[min-mmol/L ] as follows.

She = — Qu(G) ~ Quy ©)
NaB NaB

where G is the BGL, n,p in the number of the samples that

G > Gp e Qu(QG) is integral of the BGL values exceeding

Gh,he, and QU.,b = Gb,he -ngp - AT, in which AT is the

sampling time. Similar to S, the severity of hypoglycemia

is defined as follows.

Qr(Gyno) — QL p

Sho = -
nyB

()



where 7 is the number of the samples that G < G ho,
Qr(G) is integral of the BGL values less than G} e, and
Qrp = Gpho - pp - AT.

V. RESULTS

This section presents the results of the proposed control
approach in different scenarios. For a detailed evaluation, we
show the effect of having each of the proposed stages of the
supervisory layer (extrapolation, zones, auto-tuning, safety
barriers), which are added one by one, yielding the final con-
troller with all implemented stages in the end. As explained
in section II, the parameters of the simulator are identified
using the animal experiment conducted on anesthetized pigs.
Then, the effectiveness of the safety barriers and the zone
PID with auto-tuning is assessed on other subjects using the
proposed metrics.

In order to challenge the controller, four sets of
{a1, g, ..., as } are identified from four animal experiments,
and the designed controller is performed on them in the
simulator. In addition, three sets of extended simulations with
time-varying sensitivity values (as, ag, ay) are done on each
of them, resulting in 16 simulations in total. In the extended
simulations, a3, a3, a4 are changing in the sinusoidal shape
with three neutral positions (max, cen, and min) explained
in Section II-A. The effectiveness of the proposed stages in
the designed structure is evaluated in the following sections.

A. Development Stages

As shown in Fig. 4, the input of the controller is repre-
sented by the sensor value. In order to compensate the delay,
sensor data is extrapolated by predicting a future step. Fig. 6
shows an approximation of the extrapolated BGL value to
the actual BGL using the delayed sensor. It can be easily
seen that the extrapolated and actual BGL have almost the
same sinusoidal peaks.

Blood Glucose Level

Time in [b]

Fig. 6: Extrapolation reduces the time lag of the SC sensors.

A PID controller is chosen as a comparison control struc-
ture, which has the same tuning as zone 3 for insulin infu-
sions and the same tuning as zone 5 for glucagon infusions.
However, the reference BGL for this single-layer PID is set
to 7 mmol/L (middle point of the desired range of 3.9-10
mmol/L) to avoid problems with hypoglycemia. The effect
of the control scheme stages can be seen in Fig. 7, 8 and
9. When looking at Fig. 7, the first stage of the two-layer
controller injects slightly larger amounts of insulin, and the
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transition between injecting the hormones is characterized by
small pauses, compared to the single-layer controller.

Auto-tuning significantly increases the use of the control
input, which, however, can also considerably decrease the
average of the BGL (Fig. 8 and 9). The maximum BGL is
noticeably reduced, while the minimum BGL is increased. It
is important to note that these are average values of the results
of 16 simulations. This reduction in the range of the BGL is
also evident from Fig. 7, where the increased aggressiveness
of the controller is noticeable from the inputs.

The increase in aggressiveness due to auto-tuning is also
noticeable in an increase in hypoglycemic events. Therefore,
the safety barrier is implemented for zone 2. This method
shows a negligible effect on the total avoidance of hypo-
glycemic events and reduction of insulin usage. In contrast,
when implemented in zones 2 and 3, the amount of insulin
can be significantly reduced. This also reduces the need for
glucagon injections. However, the activation of safety barrier
for both zones leads to a renewed slight increase in the
average and maximum BGL. The increased course of BGL
is also evident from Fig. 7.

single-layer PID (BH)
zones

Blood Glucose Level

12 T T T

safety barrier

4 6 8 10
Control Activity Singl
T T T

Time in [h]

Fig. 7: Comparison of BGL course in 3 stages of proposed
2-layer PID controller (added incrementally) with a single-
layer bi-hormonal (BH) PID controller (tuned like zones 3
and 5 of 2-layer). Zones denote 2nd stage, auto-tuning is
3rd, and safety barrier is 4th (activated for zones 2 and
3). Extrapolation is implemented for each stage since it
represents the first stage. Subplots show insulin and glucagon
control input for each stage.

B. Final Controller

The proposed PID controller includes auto-tuning, time de-
lay compensation through extrapolation, zone-based switch-
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Fig. 8: Comparison of the minimum, average and maximum
BGL over the different stages.
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Fig. 9: Course of the control inputs insulin and glucagon over
the different development stages of the controller (averaged
for the 16 simulations).

ing, and a safety barrier to limit BGL rate. Table III shows
the performance of the final PID controller for different
sensitivity settings. L2 hypoglycemia and L2 hyperglycemia
can be avoided except for the constant sensitivity setting.
When considering the TIR, a crucial dependence of the ef-
fectiveness of therapy on sensitivity is also apparent. Despite
an increase in the amount of insulin, the greatest proportion
of hyperglycemia occurs for the minimum sensitivity. With
an increase in sensitivity, the TIR and the necessary amount
of glucagon increases, while maximum sensitivity achieves
the smallest BGL range and mean.

For the constant sensitivity values, one data set has the
lowest sensitivity values, leading to hypoglycemic events.
Away from this, less insulin but more glucagon is used, which
results otherwise in the range of the other sensitivity values.

Fig. 10 shows the comparison of the results when the saw-
tooth profile and the sinusoidal profile are evaluated. Here,
the sawtooth profile shows stronger irregularities, which is
due to the fast and abrupt change of the sensitivities. This
means that the extremes are stronger, although they are still
within a satisfactory range.

VI. DISCUSSION

The supervisory layer’s extrapolation compensates for sen-
sor time delay, resulting in a slight minimum BGL increase
and maximum BGL reduction. The zone stage improves
glycemic control, as evident from Fig. 7. However, this
improvement comes with the cost of more tuning parameters

TABLE III: Performance metrics (averaged over different
data sets): The settings min, cen, and max correspond to the
sinusoidal settings, described in Egs. (2a)—(2c). The constant
setting (con) represents the time-invariant sensitivity values.
L1 describes regular hyperglycemia or hypoglycemia events,
whereas L2 describes severe events. N(She) and N(Sh,)
represent the number of hyperglycemic and hypoglycemic
events.

Overall Min Cen Max Con
L2_hyper [%] 0.00 0.00 0.00 0.00 0.00
L1_hyper [%] 6.57 17.66  5.75 091 1.94
TIR [%] 92.51 8234 9425 99.09 94.35
L1_hypo [%] 0.93 0.00 0.00 0.00 3.71
L2_hypo [%] 0.00 0.00 0.00 0.00 0.00
1[U] 34.40 4247 3386 31.49 29.78
H [ng] 152.25 77.81 100.51  151.50  279.17
She [min-mmol/L] 0.53 0.87 0.30 0.35 0.48
N(She) 1.50 2.50 2.25 0.50 0.75
Sho [min-mmol/L] 0.07 0.00 0.00 0.00 0.28
N(Sho) 0.19 0.00 0.00 0.00 0.75
min(BGL) [mmol/L] 4.44 4.70 4.66 4.35 4.07
meanBGL) [mmol/L] | 7.22 8.10 7.34 6.82 6.63
max(BGL) [mmol/L] 10.78 11.89  10.74 10.12 10.36
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Fig. 10: A final evaluation of the performance of the final
controller where the controller is applied to the two different
sensitivity profiles, where the insulin sensitivity and the
glucagon sensitivity are time-variant as a sinusoidal or a saw-
tooth function. Apart from the sensitivity profiles everything
is identical.

and the complexity of the controller. The tunable parame-
ters must be studied in detail, and sensitivity analysis of
the controller to these parameters should be done before
implementing the designed method in practice, which is kept
for future work. In addition, A high-gain observer can be
incorporated with the controller for better functionality and
safer control, as discussed in [20], [21]. Auto-tuning adjusts
PID parameters automatically for different individuals and
scenarios with time-varying settings, resulting in reduced
minimum and average BGL for all individuals. However,
increased aggressiveness can lead to undershoots close to the
lower limit. A penalty could be added to the cost function



to limit hormone use, but this is not included in the current
simple cost function. Improvements to the auto-tuning stage
are left for future work. The safety barriers in zone 2 and
3 terminate insulin injections early, thus reducing the impact
of increased aggressiveness and control activity from auto-
tuning. Consequently, there is a significant increase in the
minimum BGL, but at the cost of a decrease in mean BGL
and some slight hyperglycemic events.

It is important to note that glucagon is an unstable liquid
that can cause blockage of the infusion set and the pump.
However, in real experiments, we suggest changing the
glucagon infusion set every 24 hours similar to [22].

Overall, the proposed control structure meets the require-
ments specified in Table II. However, the controller’s ef-
fectiveness is heavily influenced by insulin and glucagon
sensitivities. Despite the saw-tooth profile’s discontinuities,
it produces satisfactory control results. The enhanced perfor-
mance and safety of the controller are achieved at the cost
of increased complexity and tuning parameters compared to
the single-layer PID controller.

VII. CONCLUSION

This paper proposes a two-layer PID controller with four
stages to improve glycemic control. The controller compen-
sates for sensor delay, prevents on-off behavior, adjusts PID
coefficients automatically, and adds safety barriers to avoid
hypoglycemia. Auto-tuning predicts future BGL, making the
structure comparable to MPC approaches and computation-
ally efficient for real-time use. The proposed controller is
effective on a complex and well-tuned simulator based on
an animal model, achieving satisfactory results despite time-
varying insulin and glucagon sensitivities. Future studies
can evaluate the framework on a human-based simulator
to determine if similar outcomes can be achieved without
requiring meal announcements.
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Abstract—In late-stage type 2 diabetes, automated titration
algorithms provide a promising alternative to the current
standard-of-care. Many published methods rely on personalized
dose-response models to predict a safe and effective insulin
dose. In this case study, we address the challenge of how to
collect an informative data set to ensure practical identifiability
of such models. We apply optimal experimental design to
enhance the performance of a published titration algorithm.
For a 24-hour experiment, we solve an optimization problem
to select the size of three meals and the hourly fast-acting insulin
infusion rate. In simulation, we demonstrate how the optimized
protocol improves the safety of the algorithm’s dose-predictions.
The results indicate that optimal experimental design has the
potential to improve model-based algorithms and may be used
as a qualitative tool when planning clinical experiments.

I. INTRODUCTION

Worldwide, one in eleven people lives with diabetes and
the prevalence continues to increase. Of all diabetes cases,
type 2 diabetes (T2D) accounts for 90%. In T2D, persis-
tent high blood glucose levels occur due to an imbalance
between the secretion of the regulatory hormone insulin and
the insulin sensitivity in the body. Left untreated, elevated
glucose levels can have serious consequences, e.g., vision
loss or amputations. Numerous medications exist to enhance
insulin secretion or improve the insulin sensitivity. However,
as T2D progresses over time, daily basal insulin injections
can become necessary to sufficiently lower the glucose levels
[11.

Initiating basal insulin treatment is a challenge. The re-
sponse to insulin is highly individual and overdoses can be
both uncomfortable and dangerous. To safely reach the target
glucose range, people with T2D titrate to find a personalized
daily injection dose. Based on daily pre-breakfast finger-
prick measurements, the individual adjusts the insulin dose
in small steps to reach clinical targets. This process can take
several months, and for some even years. Despite a high drug
efficacy in clinical trials, up to 60% of the people initiating
basal insulin treatment never reach clinical targets. The daily
workload is one of many reasons for failed insulin titration

[2].
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To improve clinical outcomes, the titration burden can
be reduced through automation. Published algorithms for
automated titration use combinations of data from insulin in-
jection pens, finger-prick measurements, continuous glucose
monitors (CGM) and/or insulin pumps to identify a person-
alized target insulin dose [3]-[7]. Many of these methods
rely on identifying a dose-response model for the individual
[51-[7]. The quality of the dose prediction therefore critically
depends on successful model identification.

Model-based design of experiments (MBDoE) has been
applied in diabetes research to enhance the identification
of physiological models and improve control algorithms
for artificial pancreas (AP) systems [8]-[13]. Most work
in this field dates ten years back, where the aim was to
identify when to draw blood samples to obtain the most
information about an individual’s physiological response to
insulin and meals. Today, improvements in sensor technology
have excluded the need for selecting blood sampling times,
as CGMs present reliable measurements every five minutes.
Still, only a few studies on optimal experimental design have
exploited this technological development [12], [13]. To the
best of our knowledge, no studies have focused on model-
based design of titration experiments in T2D. We believe
there is a potential to improve model-based insulin dosing
algorithms in T2D using MBDoE.

In this case study, we apply optimal experimental design to
improve model identification in a personalized dose-guidance
algorithm from [7]. We design a 24-hour experiment with
three meals and insulin infusion to estimate parameters in
a dose-response model. To evaluate the safety of the new
design, we test the protocol in 100 virtual subjects. From the
experimental data, we identify parameters in a personalized
dose-response model for each subject. With the identified
models, we predict a daily insulin dose to reach clinical
targets. In simulation, we evaluate the safety and efficacy
of the dose prediction and compare the results to [7].

This paper is organized as follows. In Section II, we
introduce the model-based dose-guidance algorithm that we
aim to improve through optimal experimental design. Section
IIT describes the optimization problem and briefly presents
the two models employed for experimental design and simu-
lation. In Section IV, we present the new experimental design
and show the performance of the dose-guidance algorithm
with the optimal data collection protocol. Section V discusses
the design and results in comparison to [7]. In Section VI,
we conclude on the main findings from this case study.
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Fig. 1. A visualization of the titration solution from [7]. Data from
an artificial pancreas (AP) enables the prediction of an insulin dose for
injection-based therapy with long-acting insulin. In the AP period, fast-
acting insulin (up) infusion is based on glucose measurements from
a continuous glucose monitor (CGM). We use the AP data to identify
parameters in a dose-response model. The model predicts an insulin dose
to reach target glucose concentrations. After dose-prediction, a daily dose
of long-acting insulin (uy,) is injected before breakfast and fasting blood
glucose (FBG) measurements are used for daily monitoring.

II. THE TEST CASE

In previous work, we present a model-based titration algo-
rithm to predict a personalized daily insulin dose [7]. With 24
hours of data from an artificial pancreas (AP), we identify
a dose-response model. For parameter estimation, We use
a one step prediction error method (PEM) using maximum
likelihood estimation (MLE). We apply the continuous-
discrete extended Kalman filter (CDEKF) to approximate
the likelihood function. We refer to [7] for technical details
on the titration algorithm. Figure 1 shows the conceptual
setup of the original titration solution. In this paper, we
revisit this algorithm and apply optimal experimental design
to maximize the information collected with the AP. The
former design does not include meals and requires fasting
for the 24 hour long AP period. In this work, we solve an
optimization problem to find a protocol for both meal and
insulin inputs. Figure 2 (adapted from [7]) shows that several
dose predictions are unsafe when we use the original data
collection protocol. We aim to decrease the amount of unsafe
dose estimates, whilst meeting clinical safety requirements
during experimental data collection.

III. METHODS

In this section, we introduce the two models we use for
experimental design, prediction, and simulation. We define
the optimization problem, the decision variable and the
constraints.

A. Design model

To optimize the experimental design, we employ a phys-
iological T2D model from [14]. We include the adaptations
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Fig. 2. Simulation results for 100 virtual people using the titration solution
in [7]. During the first 24 hours, a closed-loop system gradually increases
fast-acting insulin infusion and the plasma glucose drops. After 24 hours, the
collected data enables parametrization of a dose-response model. The model
predicts a daily insulin dose to reach glucose targets. For the remaining days,
the predicted dose is injected prior to breakfast. Seven people have unsafe
dose-estimates.

from [15] to ensure structural identifiability. The design
model describes the impact of meals and insulin on plasma
glucose levels and consists of six differential equations,

S0 10000 Ag 1
D(t) = d(®) =3 =% = —-Dalt) (1a)
: 1 1
Do(t) = ?Dl(t) - TDz(t) (1b)
. 1 1
Loolt) = —ult) = —Loe(t) (Ic)
: 1 1
Ip(t) = ;ISC(t) - ?]Ip(t) (1d)
Teps(t) = ps(I,(t) + Ienpo - G(t) — psleps(t)  (le)
G(t) = —(GEZI + Silz5(t)) - G(t)
+ EGP + R4(t). (1f)

D; [mmol/min] and Dy [mmol/min] are meal compartments
representing absorption of carbohydrate intake, d(t) [g/min].
The exogenous insulin input, u(t) [U/min], is absorbed
subcutaneously in I, [U/min] before reaching plasma, I,
[U/min). I, ;[U/min] describes the combined insulin effect
of exogenous insulin input and the endogenous insulin pro-
duction, Ignpo [U-L/mmol-min]. G [mmol/L] is the plasma
glucose level. R4(t) = 5;—:’3 [mmol/L/min] is the rate of
appearance of glucose from consumed meals. Table I lists
parameter descriptions and provides a reference for each
parameter value.



146 » ORIGINAL PUBLICATIONS

The system outputs discrete sensor measurements,
Yo = G(tk) + v ()

affected by independent and identically distributed noise,
vk ~ N;ia(0, R). Through these measurements, we aim to
determine the parameter set § = [S;, EGP,Ignpo]. To
provide dose-guidance, we utilize a personalized version of
the model (1) with the individual estimates of 6, and for the
rest of the model parameters we adopt the published values
listed in Table 1.

B. Optimal Experimental Design

The aim of optimal experimental design is to maximize
the information collected in an experimental data set [18]. To
enhance the estimation of the parameter set, , we solve an
optimization problem to find an experimental design vector,
¢, that best excites the system,

mdin U(p,0) (3a)
st. ¢ = [u(t), d(t)] (3b)
z(0) =0 (3¢)
) = [, ut),d0).0) G
Uk = h(tk, I(tk)) + vk (3e)
0 > c(t, z(t), u(t), d(t), 0). (3f)

The dynamics of the system we wish to identify are ap-
proximated by the model, f(-), a discrete measurement
function, h(-), and measurement noise, vy ~ N;;q(0, R).
The system states, x(t), are a N,-dimensional vector and
x( contains the initial state values. The exogenous insulin,
u(t), and the meals, d(t), are the system inputs. § denotes
a vector of discrete measurements estimated by the model.
The constraints on the inputs and output are given by (3f).

The cost function of the optimization problem acts on the
parameter variance-covariance matrix, Cy, which quantifies
the parametric uncertainty. Reducing the value of Cjy is
equivalent to improving the parameter estimates. Hence, we
wish to determine,

¢ = argmin{y[Cy (0, ¢)]} ~ argmin{y[1(0,6)7]} @)

where 1 is the design criterion, an assigned measurement
function of Cy. As an approximation of Cy, we apply the
inverse of Fisher’s information matrix, 1(6, ¢).

Several design criteria exist [18]. To minimize the volume
of the hyper box which bounds the variance ellipsoid, we
apply A-optimality, i.e. minimizing the trace of the inverse
Fisher Information matrix,

wA(¢79) =1tr (1(97¢)_1) ) )

where Fisher’s Information matrix is defined as

N
1(0,6) = > Sy(te) " RSy (th). ©)

k=1
R is the covariance matrix of the measurements, N is
the total number of measurements over the length of the
experiment, and .S, is the output sensitivity matrix. Sy, (tz)

is a measure of the change in each of the n, outputs for each
of the ny estimated parameters at sampling point k,

v (tk) v (tk)
00, T 00,
Sy(te) = : : . O]
Oyn,, (tr) Oyn,y, (tk)
00, T 00,y

We compute S, using central differentiation. To avoid nu-
merical issues during the optimization, we normalize the
parameters with respect to the (supposed) true values for the
subject shown in Table I. We adjust the value for insulin
sensitivity, Sy, to ensure that the design and simulation
models reach the same fasting glucose, yo, at zero insulin
infusion,

ESE —GEZI
S = B P — 8)
ENDO " Yo

To reduce the risk of numerical errors, we scale the state
Ic.ry by a factor ¢y = 1000 and obtain similar orders of
magnitude for all states. The equations (1e) and (1f) become,

Losp(t) = c-p3s(Lp(t) + Ienpo - G(t)) — psleps(t) (9a)
G(t) = —(GEZI + SiLs£(t)/cs) - G(t)

+ EGP + Ra(t). (9b)

C. Decision Variable

We fix the length of the experiment to 24 hours. To ensure
that the optimization problem is tractable, we describe the
inputs of the design vector, ¢, in the following way.

¢ = [u(t),d(t)] = [u1,us,..

We apply a zero-order hold parametrization on wu(t), and
fix the duration and mealtimes for the meal input, d(¢). For
the insulin input, we determine the optimal insulin infusion
over 24 one-hour blocks of piece-wise constant input. The
three meals are consumed over five minute intervals at 07:00,
12:30 and 18:00. We determine the optimal size of each meal.

., u24,dp,dr,dp] (10)

D. Design Constraints

To design a physically feasible and safe experiment, we
select a set of input and output constraints. The insulin input
must be non-negative and may not exceed an infusion rate of
15 mU/min. All three meals must be within a minimum 20 g
and maximum 100 g of carbohydrates. We select a minimal
meal size to ensure that the optimal solution contains all
three meals.

In current clinical guidelines, the target range for fasting
glucose levels is 4.4-7.2 mmol/L [1]. We strive to achieve
glucose levels within the range, however a swift drop in
glucose concentration can lead to complications, e.g., vision-
loss and nerve-damage [19]. To avoid complications, we
enforce a maximal drop rate for the glucose concentration.
We simulate how much the fasting glucose decreases in an
insulin naive cohort after a standardized first dose of 0.1U/kg
insulin [1]. Based on the simulation results, we fix the drop
rate to —0.001 (mmol/L)/min.
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TABLE I
POPULATION PARAMETERS FOR THE DESIGN MODEL

Parameter ~ Value Unit Description Reference
T 60 [min] Time constant for fast-acting insulin absorption [16]
Tm 40 [min] Time constant for meal absorption [17]
Va 25 [L] Glucose distribution volume [16]
Ag 0.8 [unitless] Bioavailability of consumed carbohydrates [17]
MG 180.1559  [g/mol] Molecular weight of glucose [14]
p3 0.011 [1/min] Delay in insulin action [15]
Sr 0.44 [L/U-min] Insulin sensitivity [15]
GEZI 0.0023 [1/min] Insulin-independent glucose clearance [15]
EGP 0.0672 [mmol/L-min]  Endogenous glucose production [15]
IENDO 0.0018 [U/mmol] Endogenous insulin production [15]

Glucose
[mmol/L]

Yo+
Yo

0.001 [mmol/L]/min

Fig. 3. Output constraints for the optimal experimental design. Over
the course of the experiment, the glucose concentration must drop slowly
towards the target range. We allow the glucose to fluctuate within the
constraints yo — 0.001 -t — § < yr < yo — 0.001 - ¢t + §. Where
yo is initial fasting glucose, ¢y is the time in minutes, y is the output
at time tg, and ¢ is half of the width of the target range. Once the target
range is reached, it defines the output constraints. After meals, the output
constraint is raised by b = 5.0 mmol/L for the next by = 5.5 hours.

From the initial fasting blood glucose measurement, ¥,
and the 4.4-7.2 mmol/L target glucose range, we select
constraints that define how quick the fasting glucose con-
centration may drop. Following meals, we increase the upper
glucose constraint by 5 mmol/L for 5.5 hours to ensure that
the optimized insulin input is selected to excite the system,
rather than compensating for postprandial peaks. Figure 3
shows the output constraints.

E. Simulation model and implementation

We test the optimal protocol in simulation on a model with
higher complexity. In [7], Engell et al. employ an augmented
version of the integrated glucose-insulin (IGI) model from
[20]. We use the same model together with the simulation
setup from [7] to generate a virtual cohort of 100 people
with T2D.

We implement the simulation, MBDoE and parameter
estimation in Mat lab R2020b, and solve the optimization
problem using sgp.

IV. RESULTS

In this work, we investigate how optimal experimental
design may improve the performance of an insulin titration
algorithm for people with T2D. We solve the optimization
problem in (3) to design a 24 hour long experiment to capture
data for parameter identification. Figure 4 shows the resulting
experimental protocol where all design constraints are met.

Glucose

251 Target Range f
--------- Constraints
— = = ‘Low Glucose Threshold

uF [mU/min]

0 5 10 15 20
Time [b]

N
S

=)
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o

o
o
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Fig. 4. The optimal experimental design for parameter estimation given the
input and output constraints. Meal consumption happens over a five minute
interval, hence the three meal sizes are 57g, 67g, and 31g of carbohydrates.
The insulin infusion starts three hours after the first meal and remains on the
maximal infusion rate, 15mU/min, throughout the rest of the experiment.

The first two meals (57g and 67g of carbohydrate, respec-
tively) drive the glucose concentration to the upper bound
and maximize the effect of Ixxpo. The last meal is smaller,
31g of carbohydrate, and lets the insulin input drive the
glucose concentration closer to the lower bound emphasizing
the influence of S;. The insulin infusion resembles a step
function. At 10AM, the infusion increases from 0 mU/min to
15 mU/min and remains at maximal infusion until the end of
the experiment. The optimal input strategy separates different
model dynamics as the insulin input increases three hours
after the first meal. Figure 5 presents the output sensitivity of
each of the three estimated parameters during the experiment.
The sensitivities appear to be somewhat correlated and all
three are of similar absolute magnitude.

We test the design protocol in a simulation model which
has a higher complexity than the design model. Figure 6
shows how the structural mismatch leads to a different
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Fig. 5. The output sensitivities for the three estimated parameters over the
course of the experiment. The parameters show some correlation.

glucose response. Over the majority of the experiment, the
mean glucose curve remains within the output constraints.
However, the first two meals cause a slightly higher rise
in glucose than the design model prediction in Figure 4.
Towards the end of the experiment, the insulin infusion
drives the glucose concentration lower than the design model
predicts. Still, due to the tight constraints in the optimization
problem, the over and undershoot is minimal and the exper-
iment appears to be safe for all the people in the simulated
cohort. Compared to the original algorithm performance in
Figure 2, the new protocol improves the quality and safety
of the dose predictions. In Figure 6, all 100 dose predictions
for injection-based treatment drive the glucose concentration
into the 4.4-7.2 mmol/L target range.

V. DISCUSSION

Safety is critical in diabetes treatment. An open-loop
implementation of an untested experimental design poses
a significant risk and may have limited uptake in clinics.
Instead, a qualitative assessment of the new design, rather
than a direct implementation, may still improve dose predic-
tions. Figure 6 shows that the system identification improves
when insulin infusion starts three hours after the first meal.
This split between insulin and meal response could be
incorporated when collecting data for parameter estimation.
In a real-world implementation, health care professionals
may select the maximal insulin infusion rate specifically
for the individual or adjust it to match existing treatment
guidelines. Closed-loop control could provide an additional
safety measure as an artificial pancreas would reduce the
insulin infusion in case of too low glucose values.

Compared to the original design, the new protocol has
an equivalent amount of insulin input. The mean fast-
acting insulin infusion in Figure 2 is 13 U/day. In the new
experimental protocol, each individual receives 12.6 U/day.
The combined excitation from meals and insulin appears to
benefit system identification. However, fixed meal sizes and
times can be hard to enforce in a real-world setting. Based
on the optimal design, the evening meal needs to have a
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Fig. 6. Test of the experimental design on 100 virtual patients. Over
the first 24 hours, we administer the optimized meal, d(t), and fast-acting
insulin, up (), inputs. Meals are consumed over 5 minute intervals. In the
experiment, the mean glucose curve mildly exceeds the output constraints
after the first and second meal. After 24 hours of data collection, we
parameterize a dose-response model for each individual and predict a basal
insulin dose, up, (t), to reach the glucose target range. Each subject receives
a daily injection with the estimated basal insulin dose at 7AM. To test if the
basal insulin dose can control the fasting glucose levels we do not administer
meals during the last five days of the simulation. All basal dose estimates
are safe and effective.

low carbohydrate content, but the exact number of carbs in
each meal may be less important. Still, the timing of and
carbohydrate content of meals must be recorded accurately
to provide data for system identification. Compared to the
original design, meal logging will place a larger work-load
on the person with diabetes. Still, one day of logging and
counting carbs may pose an appealing alternative to 24 hours
of fasting or several months of manual titration.

In manual titration, the slow iterative journey to the
clinical target minimizes the risk of nerve- and eye-damage
caused by swift drops in glucose concentration. Although
the simulation results in this work show that it is possible
to find a personalized insulin dose in 24 hours, it can be
unsafe to deliver the full dose in an injection of long-acting
insulin on the next day. In Figure 2 and 6, the glucose
levels drop drastically on the second simulation day when
the first long-acting insulin injection is administered. The
figures are not meant as implementation proposals to use
in clinics. The plots serve to evaluate whether the predicted
dose is safe and effective, i.e. that it does not cause low
glucose levels and can drive the fasting glucose levels into the
4.4-7.2 mmol/L target range. For a clinical implementation,
the person with T2D may step-wise increase the daily
dose over a number of weeks, similar to standard-of-care
insulin titration. Knowing the target insulin dose, would



allow greater step-wise increases and reduce the length of the
titration period. The predicted target dose can help people
with T2D and their health care professionals to set goals,
balance expectations and evaluate progress of the insulin
titration process. Additionally, knowing the target dose size
may improve the safety and reduce the fear of overdosing.

In this case study, 24 hours of experimental data is enough
to parameterize a dose-response model. In a real-world set-
ting, inter and intraday variations in insulin response may call
for longer data collection periods and a different approach to
computing the output sensitivities. Due to interday variations,
a model identified today may not be representative tomorrow.
Hence, data collection over several days, and potentially even
weeks, could very well be required to fully understand the
dose-response. Additionally, intraday parameter variations
can lead to sub-optimal experimental designs, since we base
the optimization on output sensitivities we compute from a
fixed parameter value.

In this work, we evaluate the output sensitivities locally
based on the published population parameters. The local
sensitivities provide information about the relevance of 6 in
the proximity of the reference point. Ideally, the reference
point should be the true parameter set for the population as a
wrong assumption can lead to sub-optimal design protocols.
We test our design in a simulation model with structural
and parametric differences. Despite model mismatch, the new
experimental protocol improves dose predictions hinting that
the parameter assumptions are sufficiently representative to
design an informative experiment. For future work, testing
alternative computation methods for global sensitivities could
be a relevant step before clinical implementation of an
experimental design in a nonlinear physiological system.

VI. CONCLUSION

In this case study, we use MBDoE to improve the per-
formance of a model-based insulin titration algorithm. In
the framework of a published algorithm, we optimize meal
and insulin inputs in a 24-hour data collection period to
parameterize a dose-response model. In simulation, we test
the safety and efficacy of the model-based dose predictions.
The previously published algorithm provides 93% safe and
effective insulin doses. By exploiting MBDOoE to optimize the
titration experiment, the safety and effectiveness is improved
and all of the dose predictions are safe in the simulations.
We conclude that MBDoE has a potential to improve the
performance of model-based dose-guidance solutions. How-
ever, it is essential to consider the variations in real-world
data before a implementing an optimal protocol in clinics.
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