
NUBA: Non-Uniform Bandwidth GPUs

Xia Zhao
Artificial Intelligence Research Center

Defense Innovation Institute
Academy of Military Science

China

Magnus Jahre
Department of Computer Science

Norwegian University of Science and
Technology (NTNU)

Norway

Yuhua Tang
State Key Laboratory of High
Performance Computing

College of Computer Science and
Technology

National University of Defense
Technology

China

Guangda Zhang
Artificial Intelligence Research Center

Defense Innovation Institute
Academy of Military Science

China

Lieven Eeckhout
Department of Electronics and

Information Systems
Ghent University

Belgium

ABSTRACT

The parallel executionmodel of GPUs enables scaling to hundreds of
thousands of threads, which is a key capability that many modern
high-performance applications exploit. GPU vendors are hence
increasing the compute and memory resources with every GPU
generation Ð resulting in the need to efficiently stitch together a
plethora of Symmetric Multiprocessors (SMs), Last-Level Cache
(LLC) slices and memory controllers while maximizing bandwidth
and keeping power consumption and design complexity in check.
Conventional GPUs are Uniform Bandwidth Architectures (UBAs)
as they provide equal bandwidth between all SMs and all LLC
slices. UBA GPUs require a uniform high-bandwidth Network-on-
Chip (NoC), and our key observation is that provisioning a NoC to
match the LLC slice bandwidth incurs a hefty power and complexity
overhead.

We propose the Non-Uniform Bandwidth Architecture (NUBA),
a GPU system architecture aimed at fully utilizing LLC slice band-
width. A NUBA GPU consists of partitions that each feature a few
SMs and LLC slices as well as a memory controller Ð hence ex-
posing the complete LLC bandwidth to the SMs within a partition
since they can be connected with point-to-point links Ð and a NoC
between partitions Ð to enable access to remote data. Exploiting the
potential of NUBA GPUs however requires carefully co-designing
system software, the compiler and architectural policies. The criti-
cal system software component is our Local-And-Balanced (LAB)
page placement policy which enables the GPU driver to place data
in local partitions while avoiding load imbalance. Moreover, we
propose Model-Driven Replication (MDR) which identifies read-
only shared data with data-flow analysis at compile time. At run
time, MDR leverages an architectural mechanism that replicates

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASPLOS ’23, March 25ś29, 2023, Vancouver, BC, Canada

© 2023 Association for Computing Machinery.
ACM ISBN 978-1-4503-9916-6/23/03. . . $15.00
https://doi.org/10.1145/3575693.3575745

read-only shared data across LLC slices when this can be done
without pressuring cache capacity. With LAB and MDR, our NUBA
GPU improves average performance by 23.1% and 22.2% (and up to
183.9% and 182.4%) compared to iso-resource memory-side and SM-
side UBA GPUs, respectively. When the NUBA concept is leveraged
to reduce overhead while maintaining similar performance, NUBA
reduces NoC power consumption by 12.1× and 9.4×, respectively.

CCS CONCEPTS

· Computer systems organization → Multiple instruction,

multiple data.

KEYWORDS

GPU; Non-Uniform Bandwidth Architecture (NUBA)

ACM Reference Format:

Xia Zhao, Magnus Jahre, Yuhua Tang, Guangda Zhang, and Lieven Eeckhout.
2023. NUBA: Non-Uniform Bandwidth GPUs. In Proceedings of the 28th

ACM International Conference on Architectural Support for Programming

Languages and Operating Systems, Volume 2 (ASPLOS ’23), March 25ś29,

2023, Vancouver, BC, Canada. ACM, New York, NY, USA, 16 pages. https:
//doi.org/10.1145/3575693.3575745

1 INTRODUCTION

GPUs are widely used in high-performance computing, machine
learning and data analytics. To continuously increase the raw com-
puting power, GPU vendors keep adding evermore Streaming Mul-
tiprocessors (SMs) to their GPUs. In addition, they increase the
amount of Last-Level Cache (LLC) and memory bandwidth to sat-
isfy the data bandwidth demand of the larger number of SMs. For
example, Nvidia scaled the number of SMs from 16 to 108 (7× in-
crease), the LLC size from 768 KB to 40 MB (53× increase), and
memory bandwidth from 177 GB/s to 1.5 TB/s (9× increase) from
Fermi [55] to A100 [64]; the GPUs from other vendors follow similar
trends [2, 5]. GPU memory systems are hence becoming increas-
ingly complex and power-hungry, and our goal is to redesign the
GPU system architecture to improve performance while reducing
power consumption and design complexity.

Conventional GPUs are Uniform Bandwidth Architectures (UBAs)

because they provide equal bandwidth between the SMs and all

https://doi.org/10.1145/3575693.3575745
https://doi.org/10.1145/3575693.3575745
https://doi.org/10.1145/3575693.3575745

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Xia Zhao, Magnus Jahre, Yuhua Tang, Guangda Zhang, and Lieven Eeckhout

MC

SM

L1

SM

L1

SM

L1

SM

L1

Partion0 Partion1

SM

L1

SM

L1

SM

L1

SM

L1

LLC

MC

LLC

MC

Crossbar

(a) Memory-side UBA

(c) Memory-side NUBA (this work)

(b) SM-side UBA

Data block Data block

LLC LLC

MC

SM

L1

SM

L1

SM

L1

SM

L1

LLC

MC

LLC

MC

Partion0 Partion1

Crossbar Crossbar

Coherent NoC

Crossbar

Figure 1: A memory-side Uniform Bandwidth Architec-

ture (UBA), an SM-side UBA and our memory-side Non-

Uniform Bandwidth Architecture (NUBA); the area of the

crossbar/NoC indicates power overhead. The memory-side UBA

is limited by the crossbar overheads whereas the SM-side UBA does not

scale because LLC partitions must be kept coherent. NUBA is scalable

and provides high bandwidth at low power overhead.

Last-Level Cache (LLC) slices. The most predominant LLC organi-
zation in modern-day GPUs from both Nvidia [55, 56, 57, 58, 60, 59]
and AMD [3, 4] is a memory-side UBA in which each LLC slice
caches a subset of the memory address space as specified by the
address mapping policy [49]. A high-bandwidth crossbar NoC con-
nects all SMs and LLC slices (see Figure 1a). Unfortunately, a high-
bandwidth crossbar incurs significant power overheads, which may
force architects to set the NoC bandwidth (much) lower than the
LLC bandwidth to meet the power budget. The root cause is that
crossbar overhead scales quadratically with the number of end-
points [22, 70, 69, 79]. To reduce NoC overhead, recent GPUs such
as Nvidia’s A100 [64] have adopted an SM-side UBA organization
where each LLC slice caches data from all memory partitions (see
Figure 1b). While this reduces NoC overhead, it comes at the cost
of maintaining coherence among LLC partitions Ð adding undesir-
able design complexity and limiting scalability with an increasing
number of partitions.

In this work, we propose the Non-Uniform Bandwidth Architec-

ture (NUBA), a GPU system architecture that distributes the SMs
and LLC slices evenly across memory controllers as shown in Fig-
ure 1c; we refer to the co-located SMs, LLCs and memory controller

as a partition. NUBA exposes the full bandwidth of the LLC slices
to the SMs within the same partition as they are connected via
point-to-point links, while providing access to all remote LLC slices
and memory partitions via the NoC. The advantage of NUBA over
UBA is twofold. First, NUBA offers a clear performance advantage
over UBA by providing higher effective bandwidth to the local LLC
slices. Second, since most accesses are local, NUBA is less NoC-
bandwidth-sensitive which enables reducing NoC bandwidth, and
thus NoC power and complexity, without adversely affecting per-
formance. NUBA with lower NoC bandwidth yields higher (or at
least similar) performance than UBA with higher NoC bandwidth.

NUBA is the GPU equivalent of the Non-Uniform Cache Ar-
chitecture (NUCA) [43, 35, 41, 93, 31] and Non-Uniform Memory
Architecture (NUMA) [87, 47, 71, 67, 51, 52, 27] proposals in the
CPU domain. However, the motivation is fundamentally different.
GPUs are highly bandwidth-sensitive as SMs switch between a
large number of Cooperative Thread Arrays (CTA) when encoun-
tering a stall on one of them. This execution model implies that
memory bandwidth in GPU systems is (practically) independent
of latency, and it is hence critical to map frequently accessed data
locally to maximize the effective memory bandwidth. In contrast,
because of the limited number of concurrent threads per core Ð
and hence limited Memory-Level Parallelism (MLP) Ð the primary
motivation behind NUCA and NUMA in the CPU domain is not
to maximize memory bandwidth but to minimize access latency
by mapping data to nearby caches and memories. Moreover, the
need for high bandwidth in GPUs results in power-hungry and
complex NoCs whereas CPU NoCs are typically much simpler. In
other words, NUBA and NUCA/NUMA embrace non-uniformity
for fundamentally different reasons: NUBA maximizes the effective
memory bandwidth while reducing power and complexity over-
head for GPUs, whereas NUCA/NUMA minimizes the effective
memory latency for CPUs.

While NUBA creates the architectural foundation for exploit-
ing non-uniformity in GPUs, the highly parallel execution model
means that we have to carefully co-design system software, the
compiler, and the architectural policies to fully unleash the NUBA
potential. The first challenge is to allocate memory pages such that
requests mostly access the local LLC slices (to capitalize on their
bandwidth benefit), while retaining load balance (to ensure that the
aggregate LLC and memory bandwidth is used efficiently). Memory
page allocation in GPUs is done in system software, i.e., the GPU
driver on the host CPU allocates a memory page to a particular
memory module upon its first access. The most commonly used
page allocation policies are first-touch and round-robin [32], but they
are both ineffective for NUBA GPUs. First-touch places a memory
page in the local memory module of the SM that first accesses it
and may cause severe load imbalance in NUBA GPUs. Round-robin
evenly distributes pages across modules and does not benefit from
non-uniformity. We propose Local-And-Balanced (LAB) page allo-
cation to exploit the high local bandwidth of NUBA GPUs while
simultaneously ensuring that pages are evenly distributed across
modules. LAB tracks the number of memory pages allocated to each
memory module. If the pages are not sufficiently evenly allocated,
LAB allocates the page to the module that currently has the lowest
number of allocated pages. Conversely, LAB allocates the page to

NUBA: Non-Uniform Bandwidth GPUs ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

the memory module of the requesting partition when pages are suf-
ficiently well distributed. LAB achieves the best of both worlds and
performs similarly to first-touch for low-sharing applications and
similarly to round-robin for high-sharing applications, yielding a
90.9% and 14.9% performance improvement compared to first-touch
and round-robin, respectively.

The second challenge is that shared data in a NUBA GPU must
necessarily be mapped to a single memory partition and hence it
is remote for at least one sharer, limiting the effective bandwidth.
Replicating shared data across partitions in NUBA GPUs has the
potential to greatly improve the effective memory bandwidth. How-
ever, data replication may also pressure the effective cache capacity
if the shared data set is large. We hence proposeModel-Driven Repli-

cation (MDR) to trade-off the improvement in effective bandwidth
versus the degradation in effective cache capacity. MDR leverages
data-flow analysis within the compiler to identify read-only shared
data. We focus on read-only data sharing because (i) it is common
in GPUs [90, 95], and (ii) read-only data can be replicated with-
out creating cache coherence issues. At runtime, MDR leverages a
novel hardware component which employs an analytical model to
balance the bandwidth benefit of shared data replication against
the potential bandwidth cost of increased LLC miss rates. MDR
is effective for high-sharing applications, yielding a performance
improvement of 18.4% on average (and up to 183.9%) compared to
no replication in a NUBA GPU baseline under LAB.

The NUBA concept can be leveraged in various ways, (1) to
improve performance, (2) to reduce NoC power consumption and
complexity, or (3) to improve performance and reduce NoC com-
plexity, and we provide experimental results for the three cases. (1)
When both the NUBA and the memory-side and SM-side UBAs are
configured with a 1.4 TB/s crossbar NoC, NUBA improves perfor-
mance by 23.1% and 22.2% on average (and up to 183.9% and 182.4%),
respectively. (We note that keeping memory accesses mostly lo-
cal is also beneficial in terms of energy, as NUBA reduces GPU
energy consumption by 16.0% and 13.1% on average compared to
iso-resource memory-side and SM-side UBA GPUs, respectively.)
(2) When configuring the NUBA with a 700 GB/s NoC, NUBA re-
duces NoC power consumption by 12.1× and 9.4× compared to the
memory-side and SM-side UBAs with a 5.6 TB/s NoC (as for the
A100 [64]), respectively, for similar performance. (3) NUBA with
a 700 GB/s NoC outperforms the memory-side and SM-side UBAs
with a 1.4 TB/s NoC by 12.7% and 11.3%, while at the same time
reducing NoC power by 2.3× and 1.6×, respectively.

2 BACKGROUND

GPU architecture. We now return to Figure 1 to explain the GPU
architectures in more detail. Both the UBA and NUBAGPUs contain
64 SMs, 64 LLC slices and 32 memory controllers, and there is
hence a 2:2:1 ratio of SMs, LLC slices and memory controllers. The
partitions shown in Figure 1c are hence exactly the same as in our
NUBA baseline except that our baseline has 32 partitions whereas
the simplified NUBA GPU in Figure 1c has only two partitions. We
refer to the LLC slices andmemory controller within the partition as
local, and the LLC slices and memory controllers in other partitions
as remote. The memory-side UBA GPU uses a crossbar NoC to
connect the L1 caches of all SMs to all LLC slices, and point-to-point

Bank BlockColColumnRow
0671117202131

Channel
1216

Page OffsetPhysical Page Number

10

Figure 2: Partition-aware address map. The channel bits are

selected outside of the memory page offset and not randomized to give

the GPU driver control over memory page placement.

links between the LLC slices and memory controllers. The SM-side
UBA GPU uses a crossbar to connect the SMs’ L1 caches to the LLC
slices within one of two partitions; hardware coherence keeps the
two partitions (containing of 32 LLC slices each) consistent. The
NUBA architecture uses a crossbar to connect all LLC slices to all
other LLC slices. The interconnection network between the SMs’ L1
caches and the LLC slices are low-complexity point-to-point links:
we do not need input buffers and virtual channels as in typical NoC
routers. For requests, routing requires inspecting the appropriate
memory address bits on the L1-side, and control is provided by a
round-robin arbiter on the LLC-side (which also handles requests
from the inter-partition NoC). All architectures use hierarchical
crossbars to minimize their power and area cost [94]. Both the UBA
and NUBA GPUs can be clustered [89] (i.e., L1s in UBA and LLC
slices in NUBA share NoC ports to reduce area and power overheads
at the cost of reduced bandwidth), yet we use a one-to-one mapping
in our setup.

Address mapping policy. Conventional UBA GPUs employ ran-
domizing address mapping policies to evenly distribute non-shared
requests across memory channels and banks [49]; shared data is
necessarily located in a single memory channel which can lead
to intermittent congestion [95, 94]. In a NUBA GPU, the address
mapping policy needs to be designed such that the GPU driver can
influence the placement of memory pages to be able to capitalize on
its non-uniform bandwidth. More specifically, the channel bits need
to be selected outside of the memory page as shown in Figure 2.
Moreover, the address mapping policy must copy these bits directly
to preserve the channel mapping. However, it can still harvest ad-
dress entropy across the row, channel and bank bits, and use this to
randomize the bank bits as in the PAE address mapping policy [49];
we use the least significant bank bit(s) to select the LLC slice. To
ensure a fair comparison, we use the same fixed-channel address
mapping policy for both the UBA and NUBA GPUs in this work,
even if UBA performs slightly (3.1%) better with PAE since it also
randomizes the channel bits. We show in our sensitivity analysis
that our performance-optimized NUBA GPU still outperforms UBA
with PAE by a significant margin (see Section 7.5 for details).

Workload sharing behavior. Before delving into the details of
how to design NUBA GPUs, we first categorize our set of bench-
marks based on their sharing degree as we find it useful to discuss
NUBA performance. In particular, we evaluate the degree to which
memory pages are shared between different SMs for the bench-
marks we consider in this work. We perform this evaluation on our
baseline 64-SM GPU with a 4 KB page size; we will consider other
page sizes in Section 7.5.

Figure 3 shows the degree to which memory pages are shared
across SMs. A page is shared if it is accessed by more than one SM

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Xia Zhao, Magnus Jahre, Yuhua Tang, Guangda Zhang, and Lieven Eeckhout

0%

20%

40%

60%

80%

100%

L
A

V
A

M
D

L
B

M

D
W

T
2
D

K
M

P
V

C

B
H

W
C

S
M

2
D

C
O

N
V

M
V

T

F
W

T

B
P

F
D

T
2
D

C
O

N
V

A
T

A
X

G
E

S
U

M
M

S
C

2
M

M

L
E

U

B
T

S
G

E
M

M

M
M

3
D

C
O

N
V

A
N

S
N

R
N

G
R

U

N
W

B
IC

G

P
e

rc
e

n
ta

g
e

 o
f

p
a

g
e

s

Low-sharing

1 SM 2-10 SMs 11-25 SMs 26-64 SMs

High-sharing

Figure 3: Memory page sharing degree for different GPU

applications. For low-sharing applications, most of the memory

pages are accessed by only one SM; for high-sharing applications, a

large portion of memory pages are accessed by tens of SMs.

during execution, and we count the number of SMs that access each
shared page. Benchmarks exhibit different sharing behavior, and we
partition the benchmarks into two groups based on their sharing
degree, see Figure 3. For the low-sharing applications, more than
80% of the memory pages are accessed by a single SM and are hence
not shared. The high-sharing benchmarks feature a reasonably large
fraction of shared pages. The degree of sharing varies significantly
within this group. For example, ∼30% of pages are shared by 2ś
10 SMs for SC, whereas more than 70% of the memory pages are
shared by 26ś64 SMs for AN, SN and GRU. In contrast to what
one may expect, some applications with irregular memory access
patterns exhibit low-sharing characteristics (such asMVT, ATAX
and GESUMM), while others feature high-sharing characteristics
(such asNW and BICG). The key difference is whether the irregular
memory accesses of different SMs target the same shared memory
pages or not.

The sharing degree is an important workload characteristic in the
context of a NUBA architecture. NUBA will maximize performance
for the low-sharing applications because most memory accesses
will be local provided that (i) Cooperative Thread Arrays (CTAs) are
evenly distributed across SMs, and (ii) the memory pages that these
CTAs access are mapped to the local memory partition. For the high-
sharing applications on the other hand, irrespective of how CTAs
are distributed across SMs and how memory pages are mapped
across the different memory partitions, a significant fraction of
memory accesses will be remote. These remote accesses traverse
the NoC and hence experience lower effective bandwidth than local
accesses. It is hence critical to map memory pages optimally and
maximize the effective bandwidth for applications with substantial
sharing.

3 THE NON-UNIFORM BANDWIDTH
ARCHITECTURE

ImplementingNUBA.Wefirst describe howNUBA supports local
and remote memory accesses in the LLC slices. The SM translates
virtual memory addresses to physical addresses using the TLBs (or
possibly page tables). After address translation, the SM accesses the
L1 cache which returns the data upon a cache hit. Otherwise, the
memory request needs to access the LLC, and the LLC slice that the

Xbar

MC

SM

L1

SM

L1

LLC

MC

SM

L1

SM

L1 MC L1

SM

L1

Remote access

Bypass LLC

SM

Local

access

Figure 4: NUBA local and remote memory access example.

Tags &
data

MSHR

LMR
Queue

RMR
Queue

Local Memory
Request (LMR)

Remote Memory
Request (RMR)

Send requests
to local MC

M
U

X

Send replies
to NoC

Send requests
to NoC

Return data
replies to SM

Memory requests
from SMs

Requests from
other SMs

Local
access

remote
access

SMs

MC

SM

NoC

LLC slice

1

2 3 7

4

5

6

Figure 5: NUBA LLC slice microarchitecture.

data can reside in is uniquely identified by the architecture’s address
mapping scheme (see Section 2). Figure 4 shows an example of local
and remote memory accesses in NUBA. If the memory page is
mapped to the local memory partition, the data is cached by a local
LLC slice and the request is sent directly to this slice. The local LLC
slice responds with the data upon a cache hit. Otherwise, the request
is passed on to the local memory controller, and the requested data
is inserted into the cache when it returns. If the request maps to
a memory page that is stored in a remote memory partition, the
request bypasses the local LLC slice and instead accesses the LLC
slice in the remote partition.

Figure 5 shows the LLC slice design that we use in NUBA to sup-
port local and remote memory accesses. Upon receiving a memory
request, the LLC inspects the memory address of the request and
uses this to determine its destination. If the request is local, it is
inserted into the Local Memory Request (LMR) queue to eventually
access the LLC’s tag and data arrays 1 . Otherwise, the memory
request is forwarded to the NoC which routes it to the appropriate
remote LLC slice based on its memory address 2 . The LLC slice also
needs to service remote requests that it receives through the NoC.
These requests are stored in the Remote Memory Request (RMR)
queue 3 . The LLC needs to arbitrate between the LMR and RMR
as it can issue one request per cycle to the tag and data arrays. We
use a round-robin selection policy 4 , i.e., if both the LMR and RMR
contain requests we alternate between the queues in subsequent
cycles.

If the memory request hits in the LLC, the data is returned to
the SM directly if the request is local 5 or inserted into the NoC
if the request is remote 6 . LLC misses on both local and remote
requests reserve an entry in the LLC’s Miss Status Holding Register

NUBA: Non-Uniform Bandwidth GPUs ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

(MSHR) and the access is forwarded to the local memory controller
7 . When the data returns, it is installed in the LLC if the request
was from a local SM or forwarded to the requesting SM over the
crossbar otherwise.

The NUBA design space. Our baseline NUBA GPU consists of 32
partitions with two SMs, two LLC slices and one memory controller
in each partition. This is only one point in the design space though,
and we now discuss how to scale NUBA with resource availability.
The limiting factor is typically the number of memory controllers
that can be accommodated as adding more memory channels is
relatively more costly than adding compute resources. In particular,
increasing the number of memory channels requires more pins
which in turn requires more expensive packages in single-package
designs [12], while it increases integration costs in multi-chip mod-
ules [42].

The next step is to decide upon the ratio of SMs and LLC slices
per memory channel within a partition. If the architecture focuses
on compute-intensive applications, it may be appropriate to have
relatively many SMs per memory channel (e.g., 4 SMs per channel)
whereas our baseline is morememory-orientedwith 2 SMs per chan-
nel. Howmany LLC slices to distribute the aggregate cache capacity
across also needs to be decided. Current architectures typically have
twice as many LLC slices as there are memory controllers [64]. The
number of LLC slices is a trade-off between providing more band-
width Ð as slices can be accessed in parallel Ð versus the overheads
of connecting the slices to each other and duplicating the access
circuitry (i.e., everything except the tag and data arrays in Figure 5).
We explore the performance of various NUBA configurations in
Section 7.5.

We propose to keep the ratio of SMs and LLC slices to memory
controllers constant when scaling NUBA GPUs. The reason is that
adding more SMs increases the bandwidth demand and the architec-
ture would hence quickly become imbalanced if compute resources
are scaled faster than memory resources, and vice versa. We hence
scale NUBA by increasing the number of partitions, and we adjust
the focus on compute versus memory by adjusting the ratio of SMs
to LLC slices and memory controllers within each partition.

NUBA die layout.We believe that manufacturing a NUBA GPU is
feasible. In commercial products such as Nvidia’s A100, where LLCs
are concentrated in the middle of the die, all SMs already have LLC
slices that are physically close versus LLC slices that are relatively
far away [25]. It is hence unnecessary to re-distribute LLCs across
the die to enable a NUBA architecture. Moreover, each LLC slice is
already connected to a nearby memory controller in the A100. A
NUBA GPU can hence be implemented by linking nearby SMs to
nearby LLC slices to form partitions, and the LLC slices can retain
their memory controller links. The LLC slices will then need to
be connected to each other using the crossbar, but this crossbar is
similar to the crossbar used to connect the SMs to the LLC slices in
the conventional UBA GPU.

4 LOCAL-AND-BALANCED PAGE
ALLOCATION

A NUBA GPU will only outperform a UBA GPU if it is able to
predominantly steer memory requests to the local LLC slices and

memory channels while achieving good load balance. We first ex-
plain why the existing round-robin and first-touch page allocation
policies [6] fall short before we describe the details of our newly
proposed Local-And-Balanced (LAB) policy.

First-touch and round-robin page allocation. The page place-
ment policy has limited performance impact in UBA GPUs as a ran-
domized address mapping policy will distribute memory accesses
evenly across LLC slices and memory channels [49]. However, page
mapping policies have been studied in the context of multi-chip
module GPUs. More specifically, the designers of MCM-GPU [6]
considered the round-robin and first-touch page allocation poli-
cies. Under round-robin, the GPU driver distributes memory pages
evenly across memory partitions, whereas first-touch allocates a
page in the memory partition closest to the SM that first accessed
the page. The key difference between our NUBA architecture and a
multi-chip module is the granularity of allocation.

The fine-grained resource distribution in NUBA GPUs results in
neither round-robin nor first-touch page allocation being effective.
The reason is that low-sharing applications prefer first-touch be-
cause distributed CTA scheduling already distributes CTAs evenly
across SMs while maximizing locality. The CTAs of low-sharing
applications allocated to the same SM hence mostly access the same
memory pages so it is beneficial to place them in the local mem-
ory partition. In contrast, first-touch is detrimental to performance
for high-sharing applications because the locality optimization of
distributed CTA scheduling tends to allocate heavily shared pages
to relatively few memory channels. This leads to poor bandwidth
utilization as few channels are heavily congested whereas others
are lightly loaded. While round-robin avoids this pathological be-
havior, it is also unable to leverage the non-uniform bandwidth of
the NUBA since it is equally likely to allocate a page to any memory
channel.

We now explain this behavior in more detail with an example.
Figure 6a shows a timeline of accesses for two SMs, SM0 and SM1,
that are allocated to different NUBA partitions. There is no data
sharing as SM0 accesses page P1 and P2 whereas SM1 accesses page
P0 and P3; we number the pages in the order they are accessed by
the SMs. Pages accessed by SM0 are green, pages that are accessed
by SM1 are red, and shared pages are blue. Figure 6b illustrates
how the first-touch policy allocates pages to memory modules on a
simplified NUBA architecture with two partitions and one SM, one
LLC slice, and one memory channel per partition given the access
order in Figure 6a. Under first-touch, the GPU driver first allocates
P0 to M1 because it is accessed by SM1. Then, it allocates P1 to M0,
P2 to M0, and finally P3 to M1, hence succeeding in keeping all
memory requests within the module. Figure 6c shows that round-
robin is ineffective as it first allocates P0 to M0, P1 to M1, P2 to
M0, and finally P3 to M2. While the load on the NoC and memory
channels is equal, it is suboptimal since NoC bandwidth is lower
than the local LLC bandwidth.

Figure 6d shows the access order of a high-sharing application
in which SM0 and SM1 access the same pages. Again, first-touch
allocates pages into the memory of the SM that accessed the page
first (see Figure 6e). SM1 accesses P0 and P2 first and these are hence
placed inM1. Then, SM0 accesses P1which results in the GPU driver
placing it in M1. SM1 then accesses P3, and it is allocated to M1.

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Xia Zhao, Magnus Jahre, Yuhua Tang, Guangda Zhang, and Lieven Eeckhout

SM0

SM1

Time

P1 P2 P1 P2

P0 P0 P0 P3

(a) Low-sharing application timeline

Partition 0 Partition 1

SM0 SM1

M0 M1

LLC0 LLC1

High BW High BW

NoC

Idle

P1 P2 P0 P3

(b) Low-sharing application with first-touch

Partition 0 Partition 1

SM0 SM1

M0 M1

LLC0 LLC1

High BW High BWHigh load

NoC

P0 P2 P1 P3

(c) Low-sharing application with round-robin

SM0

SM1

Time

P1 P2 P0 P3

P0 P2 P3 P1

(d) High-sharing application timeline

Partition 0 Partition 1

SM0 SM1

M0 M1

LLC0 LLC1

High BW High BW

NoC

High load

P0 P2 P1

P3

(e) High-sharing application with first-touch

Partition 0 Partition 1

SM0 SM1

M0 M1

LLC0 LLC1

High BW High BWHigh load

NoC

P0 P1 P2 P3

(f) High-sharing application with round-robin

Figure 6: Page allocation scheme for low-sharing and high-sharing applications. Round-robin page allocation distributes pages evenly

across memory channels while first-touch scheme allocates the page in the partition near the SM that first accesses the page.

First-touch is hence suboptimal as M0 achieves a disproportionately
large fraction of the memory memory pages. Round-robin works
better for high-sharing applications as it distributes pages evenly
across modules (i.e., P0 and P2 go to M0 and P1 and P3 go to M1 as
shown in Figure 6f). The fundamental problem is that shared data
necessarily will be accessed by multiple SMs and it is hence critical
to distribute this load across channels.

Local-and-balanced page allocation.We now describe our Local-
And-Balanced (LAB) page allocation policy which steers accesses to
the local LLC slices and memory channels while at the same time
distributing pages across channels to avoid load imbalance when
necessary. More specifically, LAB employs first-touch as long as it
can without creating load imbalance, while reverting to least-first

page allocation otherwise. Least-first allocates a page to one of
the modules that have the lowest number of pages allocated to
it, breaking ties arbitrarily. Once the pages are sufficiently evenly

allocated to memory modules, LAB reverts back to first-touch. In
other words, while LAB improves locality through first-touch, it
steers pages to the most lightly loaded memory partitions when
the allocation is imbalanced Ð by doing so, LAB optimizes locality
while retaining sufficient balance among the memory partitions.

LAB, like first-touch and round-robin, is implemented within
the GPU driver. Unlike first-touch and round-robin though, LAB
keeps track of the number of memory pages it has allocated to
each of the memory partitions. The GPU driver runs on the host
CPU and tracking the number of allocated pages hence requires
allocating a 32-entry array in CPU memory for our baseline (as it
has 32 channels). Under LAB, each time the GPU driver allocates a
new page in GPU memory, it first computes the Normalized Page
Balance (NPB):

NPB =

1

𝑛
×

𝑛∑︁

𝑖=1

𝑃𝑖

max(𝑃1, 𝑃2, . . . , 𝑃𝑛)
. (1)

NUBA: Non-Uniform Bandwidth GPUs ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

More specifically, we first compute the ratio of the number of pages
𝑃𝑖 in partition 𝑖 to the maximum number of pages currently allo-
cated to any partition. We then take the sum of these ratios across
all 𝑛 partitions and finally divide by 𝑛 to normalize and compute
NPB. NPB is a number between 1/𝑛 and 1 where 1 means that the
memory pages are evenly allocated and 1/𝑛 means that all pages
are allocated to a single partition. In this work, LAB adopts the
first-touch policy if NPB is above 0.9 and uses least-first otherwise.
We empirically determined that a threshold of 0.9 balances the per-
formance gain across high-sharing and low-sharing applications
(see Section 7.5 for details).

5 MODEL-DRIVEN DATA REPLICATION

Frequent accesses to shared data pose a challenge for NUBA GPUs.
Shared data structures accessed by multiple CTAs are allocated to a
single memory partition and are hence cached in its corresponding
LLC slice. This creates two problems. (i) SMs in other partitions
need to traverse the NoC to access the shared data in a remote LLC
slice, which is suboptimal in terms of effective bandwidth compared
to a local access. (ii) Multiple SMs accessing the shared data around
the same time leads to camping in front of the LLC slice. We propose
Model-driven Data Replication (MDR) of read-only shared data to
alleviate this bandwidth bottleneck.

5.1 Data Replication Trade-Off

Replicating shared data across LLC slices increases the effective
bandwidth as multiple SMs can then access the shared data locally
and in parallel, as opposed to requiring a remote access and possibly
serializing in front of an LLC slice. We propose to only replicate
read-only shared data as the vast majority of shared cache lines
is read-only [90, 95]. Read-write shared data is not replicated to
avoid coherence overheads for keeping the replicated copies up to
date. We rely on compiler analysis to identify accesses to read-only
shared data structures within a kernel (as described later).

Data replication leads to a bandwidth versus cache capacity
trade-off. Replicating data increases the effective bandwidth (im-
proving performance) while at the same increasing pressure on
cache capacity (degrading performance). In fact, replicating a small
shared data set is most likely to be beneficial whereas replicating
a large shared data set may lead to cache thrashing. MDR makes
this bandwidth-capacity trade-off dynamically in hardware. If the
predicted bandwidth benefits of replication outweigh the increase
in LLC miss rate, MDR replicates the data; this is done on demand
and on a per-cacheline basis, i.e., whenever an SM requests a shared
read-only cacheline, the cacheline is cached locally and hence repli-
cated if deemed beneficial by MDR. If not, the shared data is not
replicated and SMs will need to traverse the NoC to access the
shared data in a remote partition.

MDR divides time into fixed-length epochs (e.g., 20 K clock cy-
cles) and re-evaluates the policy’s selection at epoch boundaries.
Profiling results collected during the previous epoch are used as
input to the performance model to predict whether or not to repli-
cate in the next epoch. MDR compares the estimated bandwidth
consumption with versus without data replication. It estimates the

effective bandwidth of full replication while running under no repli-
cation, and vice versa. The configuration that yields the highest
effective bandwidth is adopted.

No Replication: The effective bandwidth under no replication
(𝐵𝑊𝑁𝑜𝑅𝑒𝑝) is estimated as the weighted sum of the effective band-
width to the local and remote partitions:

𝐵𝑊𝑁𝑜𝑅𝑒𝑝 = 𝐹𝑟𝑎𝑐𝑙𝑜𝑐𝑎𝑙 · 𝐵𝑊𝑙𝑜𝑐𝑎𝑙 + 𝐹𝑟𝑎𝑐𝑟𝑒𝑚𝑜𝑡𝑒 · 𝐵𝑊𝑟𝑒𝑚𝑜𝑡𝑒

𝐵𝑊𝑙𝑜𝑐𝑎𝑙 = 𝐿𝐿𝐶ℎ𝑖𝑡 · 𝐵𝑊𝐿𝐿𝐶 + 𝐵𝑊𝐿𝐿𝐶_𝑚𝑖𝑠𝑠

𝐵𝑊𝐿𝐿𝐶_𝑚𝑖𝑠𝑠 = 𝑀𝑖𝑛{𝐿𝐿𝐶𝑚𝑖𝑠𝑠 · 𝐵𝑊𝐿𝐿𝐶 , 𝐵𝑊𝑀𝐸𝑀 }

𝐵𝑊𝑟𝑒𝑚𝑜𝑡𝑒 = 𝑀𝑖𝑛{𝐵𝑊𝑁𝑜𝐶 , 𝐿𝐿𝐶ℎ𝑖𝑡 · 𝐵𝑊𝐿𝐿𝐶 + 𝐵𝑊𝐿𝐿𝐶_𝑚𝑖𝑠𝑠 }

The effective local bandwidth 𝐵𝑊𝑙𝑜𝑐𝑎𝑙 is the sum of the LLC hit and
miss bandwidth. The former is the LLC hit rate times the raw LLC
bandwidth, while the latter is the minimum of the raw memory
bandwidth and the LLC miss rate times the raw LLC bandwidth.
The effective remote bandwidth 𝐵𝑊𝑟𝑒𝑚𝑜𝑡𝑒 is computed in a similar
way except that it is further constrained by the NoC bandwidth
as remote requests need to traverse the NoC. For simplicity, we
assume that the LLC hit and miss rates are the same for local and
remote requests.

Full Replication: Under full replication, the effective bandwidth
(𝐵𝑊𝐹𝑢𝑙𝑙𝑅𝑒𝑝) is estimated as the sum of the LLC hit and miss band-
width as all L1 misses access the local LLC slices:

𝐵𝑊𝐹𝑢𝑙𝑙𝑅𝑒𝑝 = 𝐿𝐿𝐶ℎ𝑖𝑡 · 𝐵𝑊𝐿𝐿𝐶 + 𝐵𝑊𝐿𝐿𝐶_𝑚𝑖𝑠𝑠

𝐵𝑊𝐿𝐿𝐶_𝑚𝑖𝑠𝑠 = 𝑀𝑖𝑛{𝐿𝐿𝐶𝑚𝑖𝑠𝑠 · 𝐵𝑊𝐿𝐿𝐶 , 𝐵𝑊𝑙𝑜𝑐𝑎𝑙/𝑟𝑒𝑚𝑜𝑡𝑒 }

𝐵𝑊𝑙𝑜𝑐𝑎𝑙/𝑟𝑒𝑚𝑜𝑡𝑒 = 𝐹𝑟𝑎𝑐𝑙𝑜𝑐𝑎𝑙 · 𝐵𝑊𝑀𝐸𝑀 + 𝐹𝑟𝑎𝑐𝑟𝑒𝑚𝑜𝑡𝑒 · 𝐵𝑊𝑟𝑒𝑚𝑜𝑡𝑒

𝐵𝑊𝑟𝑒𝑚𝑜𝑡𝑒 = 𝑀𝑖𝑛{𝐵𝑊𝑁𝑜𝐶 , 𝐵𝑊𝑀𝐸𝑀 }

The LLC miss bandwidth is computed as the minimum of the LLC
miss rate times the raw LLC bandwidth and the effective memory
bandwidth (𝐵𝑊𝑙𝑜𝑐𝑎𝑙/𝑟𝑒𝑚𝑜𝑡𝑒), which is a weighted sum of the local
and remote memory bandwidth, with the latter being the memory
bandwidth derated with the NoC bandwidth.

Note that some inputs to the above formulas are specific to the
microarchitecture, i.e., the bandwidth numbers of the LLC, NoC
and memory. Other parameters are a function of the workload
and whether replication is applied or not, i.e., the fraction local
versus remote accesses as well as the LLC hit and miss rates. The
latter parameters are estimated during profiling using dynamic set
sampling [75] in which we profile 8 sets in a single LLC slice. The
hardware overhead to collect the required profiling information
is limited to 384 bytes, i.e., 8 sets times 16 ways times 24 bits per
entry. The MDR model decides whether read-only shared data
should be replicated in the next 20K-cycle epoch by evaluating the
above model in hardware once per epoch. MDR assumes custom
circuitry with two fixed-point ALUs and control logic.We can hence
compute the no-replication and full-replication cases in parallel
in 116 cycles.1 The runtime overhead for evaluating the model is
hence negligible; the overhead for filling the cache with replicated
cache lines is faithfully modeled in our simulation setup.

1Computing the LLC hit/miss rate and fraction local/remote accesses, and computing
the model equations involves 4 divisions of 25 cycles each, 4 multiplications of 3 cycles
each, and 2 additions and 2 comparisons of 1 cycle each (116 cycles in total).

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Xia Zhao, Magnus Jahre, Yuhua Tang, Guangda Zhang, and Lieven Eeckhout

5.2 Compiler Analysis and Runtime Support

MDR relies on the compiler to identify read-only shared data struc-
tures for the hardware to replicate if deemed appropriate. As in
prior work [95], the compiler employs data flow analysis at the PTX
intermediate code level [62] to identify accesses to read-only data
structures within a kernel boundary. If a data structure is never
written to within a kernel, it is marked as read-only; otherwise, it
is marked as read-write. Note that a data structure marked as read-
only in one GPU kernel can be read-write in another kernel, e.g., the
output of one kernel can serve as input to another kernel. Load op-
erations accessing read-only data structures using the ld.global
instruction are then replaced by a newly introduced ld.global.ro
instruction, indicating to hardware that these instructions operate
on read-only data that can be replicated.

To differentiate requests to read-only and read-write shared data
at runtime, the instruction decoder in hardware, upon decoding
an ld.global.ro instruction adds a read-only bit to the memory
request metadata which MDR uses to identify candidates for repli-
cation. This extra bit does not add overhead because a read request
only needs to transmit the address to be fetched (8 bytes in our
setup), while a write request needs to transmit both the address
and the data (16 bytes). In other words, there are spare bits among
the request links to mark accesses to read-only shared data. Repli-
cating cachelines under MDR in hardware is as simple as caching
remote cache lines locally, i.e., we route requests to remote shared
read-only cachelines to the local LLC first and then to the remote
LLC (and memory) upon a miss. We rely on the cache replacement
policy to keep the hottest cachelines in the local LLC, i.e., we treat
replicated cachelines equally to other cachelines.

5.3 Cache Coherence Implications

GPUs typically employ software cache coherence protocols with
write-through L1 caches [61, 53, 90, 77], which is what we assume in
this work. At synchronization boundaries, e.g., a sync instruction or
kernel boundary, the SMs flush (invalidate) their L1 cache to ensure
that the LLC contains the most recent values. When employing
replication, our compiler support guarantees that the local LLC
only caches read-only data; dirty replicas hence do not exist. We
do however flush the LLC on kernel boundaries as read-only data
in the current kernel can become read-write in the next kernel.
(We faithfully model this overhead in our evaluation.) NUBA GPUs
handle atomic instructions the same way as UBA GPUs. More
specifically, UBA GPUs use the raster operation units located in
the LLCs to handle atomic instructions [1, 33].

6 METHODOLOGY

Simulated System: We substantiallymodifiedGPGPU-sim v3.2.2 [13]
to evaluate NUBA. In particular, to faithfully model the memory
subsystem, we have integrated Ramulator [44] into GPGPU-sim.
We also added TLB and MMU support to simulate unified memory.
A two-level TLB design is used where each SM has its private L1
TLB and all SMs share an L2 TLB as in prior work [8, 80, 81, 9, 91].
A TLB miss triggers a page table walk upon a page fault; up to 64
concurrent page walkers are supported. A fixed latency penalty
(20 µs) is assumed to model the overhead of page fault handling
and page eviction [96]. Similar to previous work, we assume 4 KB

Table 1: Simulated GPU architecture.

No. SMs 64 SMs

SM resources
1.4 GHz, 32 SIMT width, 96 KB shared memory

Max. 2048 threads (64 warps/SM, 32 threads/warp)
Scheduler 2 warp schedulers per SM, GTO policy

L1 data cache
48 KB per SM (6-way, 64 sets), 128 B block,

128 MSHR entries, write-through, write-no-allocate

L1 TLB
128 entries per SM, single port,

1-cycle latency, LRU

LLC
6 MB in total (64 slices, 16-way, 48 sets),
120 clock cycles latency, write-back

L2 TLB
512 entries in total, 16-way set-associative,

10-cycle latency, LRU, 2 ports
Page table
walker

shared, 64 concurrent walkers

NoC 64 × 64 crossbar, 1.4 TB/s
Memory stack
configuration

350 MHz, 4 memory stacks, 8 channels/stack,
FR-FCFS, 64 entries/queue, 16 banks/chan., 720 GB/s

HBM Timing
[20, 44]

tRC=24, tRCD=7, tRP=7, tCL=7,
tWL=2, tRAS=17,tRRDl=5, tRRDs=4, tFAW=20

tRTP=7, tCCDl=1, tCCDs=1, tWTRl=4, tWTRs=2

Table 2: GPU-compute benchmarks.

Benchmark Abbr. Sharing Memory Footprint
Degree / Read-Only Shared

LavaMD [21] LAVAMD Low 7 MB / 0.9 MB
Lattice-Boltzmann [82] LBM Low 389 MB / 33 MB

DWT2D [21] DWT2D Low 302 MB / 0.01 MB
Kmeans [21] KMEANS Low 136 MB / 0.1 MB

Page View Count [36] PVC Low 1,081 MB / 0.6 MB
Black-Scholes [65] BH Low 48 MB / 5.3 MB
Wordcount [36] WC Low 542MB / 0.9 MB
Stringmatch [36] SM Low 146 MB / 1.2 MB

2DConvolution [34] 2DCONV Low 1,074 MB / 17 MB
Mvt [34] MVT Low 6,443 MB / 0.1 MB

FastWalshTransform [65] FWT Low 269 MB / 0.01 MB
Backprop [21] BP Low 75 MB / 0.4 MB
Fdtd2D [34] FTD2D Low 51 MB / 0.07 MB

Convolution Separable [65] CONVS Low 151 MB / 20 MB
ATAX [34] ATAX Low 1,342 MB / 0.08 MB

Gesummv [34] GESUMM Low 1,073 MB / 0.1 MB

Streamcluster [21] SC High 302 MB / 8 MB
2MM [34] 2MM High 84 MB / 6 MB

Leukocyte [21] LEU High 2 MB / 1 MB
B+tree [21] BT High 39 MB / 36 MB
SGemm [82] SGEMM High 9 MB / 8 MB

Matrixmul [65] MM High 8 MB / 7 MB
3DConvolution [34] 3DCONV High 1,074 MB / 68 MB

AlexNet[86] AN High 1 MB / 0.4 MB
SqueezeNet [86] SN High 1 MB / 0.9 MB
ResNet [86] RN High 4 MB / 0.7 MB

Gated Recurrent Unit [86] GRU High 2 MB / 0.4 MB
Needleman-Wunsch [21] NW High 16 MB / 10 MB

BICG [34] BICG High 2,013 MB / 472 MB

memory pages [96, 73, 81, 72, 88]; 2 MB page size is evaluated in
the sensitivity analysis. We use our fixed-channel address mapping
policy as discussed in Section 2 unless mentioned otherwise.

The simulated UBA and NUBA architectures feature 64 SMs, 64
LLC slices, 32 memory channels, and 4 HBM stacks, i.e., 8 memory
controllers per HBM stack and 2 LLC slices per memory controller.
The SM-side UBA features 2 LLC partitions with 32 LLC slices each
as in Nvidia’s A100 [64]. In the NUBA configuration, we assume
that a partition consists of two SMs that are locally connected to two
LLC slices and one memory controller. All simulated configurations
assume a 1.4 TB/s hierarchical crossbar NoC [94], unless stated

NUBA: Non-Uniform Bandwidth GPUs ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

otherwise, built by assembling a total of 16 8 × 8 crossbars. Each
8×8 crossbar incurs a 4-cycle latency and 16 B link width. The
reply data packet size equals 136 bytes (128 bytes data plus 8 bytes
control). The NoC bandwidth and latency are hence exactly the
same for all iso-resource NoCs. The point-to-point links between
the L1 caches and their respective local LLC slice under NUBA
provide 2.8 TB/s.

We further assume distributed CTA scheduling [6] to maximize
data locality within an SM (for the UBA GPU) and within a partition
(for NUBA). Table 1 provides further details about the simulated
GPU architectures. We use GPUWattch [48] and DSENT [83] to
estimate GPU and NoC power, respectively, assuming a 22 nm tech-
nology node. The compile-time support needed by NUBA analyzes
PTX code (CUDA’s intermediate code representation) as compiled
using nvcc 4.0 [63].

Workloads: We use a wide range of GPU benchmarks including
regular applications from Rodinia [21] and CUDA SDK [65], as well
as irregular applications from Mars [36], deep learning applications
fromTango [86] and additional sources [34, 82]. Details are provided
in Table 2. We use the default input data set for each benchmark
and cover a wide range of different memory footprints (as large as
6.4 GB). The benchmarks are classified as low-sharing versus high-
sharing based on the memory page sharing characteristics across
SMs as discussed before. We simulate 1 billion instructions to obtain
stable and representative results following common practice [7, 45,
6, 94], and we confirm that this is representative. We compute
average speedup using the harmonic mean and then report average
improvement as a percentage.

7 EVALUATION

We evaluate the following four proposals:

• Memory-side UBA: The conventional memory-side UBA
GPU baseline architecture.

• SM-side UBA: The SM-side UBA GPU architecture.
• NUBA-No-Rep: The proposed NUBA GPU architecture
with LAB page allocation but without MDR.

• NUBA: The proposed NUBA architecture with LAB page
allocation and MDR-driven data replication.

7.1 Overall Performance

Iso-resource GPU architectures. Figure 7 reports performance
for the two NUBA variants normalized to the conventional UBA
baseline in iso-resource configurations (i.e., all architectures use
the same 1.4 TB/s crossbar NoC). We focus the comparison against
our baseline memory-side UBA because the SM-side UBA only
marginally outperforms the baseline in cases where data repli-
cation across LLC partitions is beneficial (by 1.0% on average).
NUBA provides a substantial performance speedup for both the
low-sharing and high-sharing applications: we report an average
performance improvement of 30.4% on average (and up to 97.9%)
for the low-sharing applications versus an average performance
improvement of 15.1% (and up to 183.9%) for the high-sharing ap-
plications. Overall, across our complete set of benchmarks, NUBA
improves performance by 23.1% on average.

The performance improvement correlates strongly with the ef-
fective bandwidth (replies/cycle) perceived by the SMs, see Figure 8.

0

0.5

1

1.5

2

L
A

V
A

M
D

L
B

M

D
W

T
2
D

K
M

P
V

C

B
H

W
C

S
M

2
D

C
O

N
V

M
V

T

F
W

T

B
P

F
D

T
2
D

C
O

N
V

A
T

A
X

G
E

S
U

M
M

S
C

2
M

M

L
E

U

B
T

S
G

E
M

M

M
M

3
D

C
O

N
V

A
N

S
N

R
N

G
R

U

N
W

B
IC

G

A
V

G
-L

S

A
V

G
-H

S

A
V

G

N
o
rm

a
liz

e
d
 p

e
rf

o
rm

a
n
c
e

Low-sharing applications

Memory-side UBA SM-side UBA NUBA-No-Rep NUBA
2.84

High-sharing applications

Figure 7: Performance improvement obtained by NUBA and

NUBA-No-Rep over UBA. NUBA improves performance by 30.4%

on average for the low-sharing applications and by 15.1% for the high-

sharing applications, and by 23.1% overall.

0

2

4

6

8

L
A

V
A

M
D

L
B

M

D
W

T
2

D

K
M

P
V

C

B
H

W
C

S
M

2
D

C
O

N
V

M
V

T

F
W

T

B
P

F
D

T
2
D

C
O

N
V

A
T

A
X

G
E

S
U

M
M

S
C

2
M

M

L
E

U

B
T

S
G

E
M

M

M
M

3
D

C
O

N
V

A
N

S
N

R
N

G
R

U

N
W

B
IC

G

A
V

G
-L

S

A
V

G
-H

S

A
V

G

D
a

ta
 b

a
n

d
w

id
th

 t
o

 S
M

s

Low-sharing applications

Memory-side UBA SM-side UBA NUBA-No-Rep NUBA

High-sharing applications

12.7

Figure 8: Memory bandwidth (replies/cycle) perceived by the

SMs under UBA, NUBA-No-Rep and NUBA. NUBA significantly

improves the effective memory bandwidth.

0

0.2

0.4

0.6

0.8

1

L
A

V
A

M
D

L
B

M

D
W

T
2
D

K
M

P
V

C

B
H

W
C

S
M

2
D

C
O

N
V

M
V

T

F
W

T

B
P

F
D

T
2
D

C
O

N
V

A
T

A
X

G
E

S
U

M
M

S
C

2
M

M

L
E

U

B
T

S
G

E
M

M

M
M

3
D

C
O

N
V

A
N

S
N

R
N

G
R

U

N
W

B
IC

G

A
V

G
-L

S

A
V

G
-H

S

A
V

G

A
c
c
e

s
s
 b

re
a

k
d

o
w

n

Low-sharing applications

Remote memory access Local memory access
UBA NUBANUBA-No-Rep

High-sharing applications

Figure 9: L1 miss breakdown under UBA (memory-side and

SM-side UBA yield the same breakdown), NUBA-No-Rep and

NUBA. NUBA turns the majority of remote memory accesses into

local high-bandwidth accesses.

NUBA increases the perceived bandwidth by 51.7% on average (and
up to 117.9%) for the low-sharing applications and by 24.7% on
average (and up to 137.5%) for the high-sharing applications. Over-
all, NUBA increases the effective perceived memory bandwidth by
38.9% on average.

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Xia Zhao, Magnus Jahre, Yuhua Tang, Guangda Zhang, and Lieven Eeckhout

0
5

10
15
20
25
30
35

0 10 20 30 40 50 60

N
o

rm
a

liz
e

d
 p

e
rf

o
rm

a
n

c
e

Crossbar power consumption (W)

Memory-side UBA GPU SM-side UBA GPU NUBA GPU (this work)

5.6 TB/s

5.6TB/s

2.8 TB/s

2.8 TB/s

1.4 TB/s

1.4 TB/s

0.7 TB/s

Figure 10: Performance improvement versus NoC power con-

sumption for UBA and NUBA. NUBA retains high performance

while significantly reducing NoC power and complexity.

The fundamental reason for the increase in perceived bandwidth
is explained in Figure 9. In a conventional UBA architecture, all
L1 misses have to traverse the 1.4 TB/s NoC and are hence remote.
Under NUBA, the vast majority of L1 misses turn into accesses to
the local LLC/memory partition over the high-bandwidth 2.8 TB/s
point-to-point links. This is particularly true for the low-sharing
applications; for some of the high-sharing applications, selective
data replication under NUBA turns a large fraction of the accesses
to shared read-only data into local accesses as well. This leads to a
significant performance improvement for 2MM, AN, SN and RN.
(In spite of the dramatic increase of local accesses for 3DCONV
due to data replication, this does not translate into a significant per-
formance improvement as this benchmark is relatively bandwidth-
insensitive.) Overall, under NUBA, 63.9% of the L1 misses turn into
local accesses.

Performance versus NoC power/complexity trade-off. While
comparing iso-resource NUBA and UBA configurations enables a
fair comparison, it does not exploit NUBA’s potential for reduc-
ing NoC power and complexity. The fact that NUBA is much less
sensitive to NoC bandwidth than the UBA architectures provides
an opportunity to reduce NoC power/complexity while providing
similar (or higher) performance. More specifically and as shown
in Figure 10, NUBA with a 700 GB/s NoC provides similar perfor-
mance as the memory-side and SM-side UBAs with a 5.6 TB/s NoC
for a 12.1× and 9.4× reduction in NoC power consumption, respec-
tively; note that a 5.6 TB/s NoC provides similar bandwidth to the
NoC in the SM-side Nvidia A100 UBA [64]. NUBA can also improve
performance and at the same time reduce NoC power consumption,
see for example how NUBA with a 700 GB/s NoC outperforms the
memory-side and SM-side UBAs with a 1.4 TB/s NoC by 12.7% and
11.3%, while at the same time reducing NoC power by 2.3× and
1.6×, respectively.

7.2 LAB Page Allocation

As shown in Figure 11, LAB page allocation outperforms conven-
tional first-touch (FT) and round-robin (RR) page allocation. For
the low-sharing applications, LAB and FT map memory pages to
the memory partition where it is accessed locally, thereby increas-
ing the effective memory bandwidth. In contrast, RR spreads out
memory pages across the system which leads to a large fraction
of remote accesses. For the high-sharing applications, FT leads to
(very) heavily skewed page placement, i.e., some frequently ac-
cessed memory pages are mapped to the same memory partition,
thereby leading to a severe bandwidth bottleneck when the other

0

0.5

1

1.5

2

L
A

V
A

M
D

L
B

M

D
W

T
2
D

K
M

P
V

C

B
H

W
C

S
M

2
D

C
O

N
V

M
V

T

F
W

T

B
P

F
D

T
2
D

C
O

N
V

A
T

A
X

G
E

S
U

M
M

S
C

2
M

M

L
E

U

B
T

S
G

E
M

M

M
M

3
D

C
O

N
V

A
N

S
N

R
N

G
R

U

N
W

B
IC

G

A
V

G
-L

S

A
V

G
-H

S

A
V

GN
o
rm

a
liz

e
d
 p

e
rf

o
rm

a
n
c
e

Low-sharing applications

Memory-side UBA NUBA (FT) NUBA (RR) NUBA (LAB)

2.25

High-sharing applications

Figure 11: The impact of page allocation on NUBA perfor-

mance. LAB achieves high performance for both the low- and high-

sharing applications.

0

0.5

1

1.5

2

L
A

V
A

M
D

L
B

M

D
W

T
2
D

K
M

P
V

C

B
H

W
C

S
M

2
D

C
O

N
V

M
V

T

F
W

T

B
P

F
D

T
2
D

C
O

N
V

A
T

A
X

G
E

S
U

M
M

S
C

2
M

M

L
E

U

B
T

S
G

E
M

M

M
M

3
D

C
O

N
V

A
N

S
N

R
N

G
R

U

N
W

B
IC

G

A
V

G
-L

S

A
V

G
-H

S

A
V

G

N
o
rm

a
liz

e
d
 p

e
rf

o
rm

a
n
c
e

Low-sharing applications

Memory-side UBA NUBA-No-Rep NUBA-Full-Rep NUBA

2.89 2.84

High-sharing applications

Figure 12: The impact of data replication on NUBA perfor-

mance. MDR effectively balances maximizing bandwidth to shared

read-only data against reducing pressure on cache capacity.

partitions access the data. LAB and RR alleviate this problem by
evenly distributing memory pages across the different memory
partitions. In NUBA, LAB improves average performance by 88.9%
and 14.3% compared to first-touch and round-robin, respectively.
Overall, LAB improves performance by 14.8% on average compared
to UBA.

7.3 Model-Driven Data Replication

MDR is critical for the high-sharing applications. Figure 12 reports
the performance impact of data replication for three configurations:
no replication (No-Rep), full replication (Full-Rep) and MDR, as-
suming LAB page allocation. Whereas full replication dramatically
improves performance for a number of benchmarks, e.g., 2MM

(189.9%), AN (75.1%), SN (72.0%) and RN (33.9%), due to increased
effective bandwidth to shared data. However, it also significantly
degrades performance for others, e.g., SC (17.9%), BT (18.6%), GRU
(18.3%) and BICG (16.5%) because of increased pressure on cache ca-
pacity, i.e., LLC miss rate increases by 10.7% (SC), 21.9% (BT), 90.0%
(GRU), 10.8% (BICG). MDR only replicates cache lines if deemed
beneficial, which leads to an average performance improvement of
15.1% compared to no replication.

NUBA: Non-Uniform Bandwidth GPUs ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

0.4

0.6

0.8

1

L
A

V
A

M
D

L
B

M

D
W

T
2

D

K
M

P
V

C

B
H

W
C

S
M

2
D

C
O

N
V

M
V

T

F
W

T

B
P

F
D

T
2

D

C
O

N
V

A
T

A
X

G
E

S
U

M
M

S
C

2
M

M

L
E

U

B
T

S
G

E
M

M

M
M

3
D

C
O

N
V

A
N

S
N

R
N

G
R

U

N
W

B
IC

G

A
V

G
-L

S
A

V
G

-H
S

A
V

G

N
o

rm
a

liz
e

d
 G

P
U

 e
n

e
rg

y

Low-sharing applications

NoC rest of GPU
Memory-side UBA SM-side UBA

High-sharing applications

NUBA

Figure 13: Normalized GPU energy consumption: NoC versus

the rest of the GPU. NUBA decreases NoC energy by 54.5% and

total GPU energy by 16.0% on average.

0

0.5

1

1.5

N
o

rm
a

liz
e

d
 p

e
rf

o
rm

a
n

c
e

Memory-side UBA SM-side UBA NUBA

Address
mapping

Page
size

#SM:#LLC:#MC
LLC

capacity
GPU
Size

Figure 14: Sensitivity analyses. NUBA improves performance

across the broad design space while varying the number of SMs, par-

tition setup, LLC capacity, page size and address mapping policy.

7.4 Energy Consumption

NUBA reduces NoC energy compared to UBA by 54.5% on average
by having fewer requests traverse the NoC, i.e., most accesses are
to the local memory partition. Due to the reduction in execution
time, NUBA leads to a reduction in overall GPU energy by 16.0%
on average and up to 44.2%, see Figure 13. This is a substantial
improvement over SM-side UBA which reduces NoC energy by
25.9% and total GPU energy by 2.9% on average.

7.5 Sensitivity Analyses

We now evaluate NUBA’s effectiveness across the broad design
space, see also Figure 14.

GPU size: We assume a 2:2:1 ratio of SMs, LLC slices and memory
channels per partition as we scale system size by 0.5×, 1× (base-
line) and 2×, i.e., we scale compute, LLC and memory bandwidth
proportionally while keeping LLC slice capacity constant (we thus
effectively scale LLC capacity). NUBA’s average performance bene-
fit increases from 15.9% to 23.1% and 30.1%, respectively. Increased
LLC capacity increases the number of accesses to the local LLC
slices, which increases the opportunity for NUBA to outperform
UBA.

Partition:We assumed a 2:2:1 ratio of SMs, LLC slices and memory
controllers throughout the paper. We now change the number of
LLC slices per partition while keeping total LLC capacity constant.

Increasing the number of LLC slices increases the effective band-
width that the LLC can provide to the local SMs, which in turn
increases the opportunity for NUBA to outperform UBA. We report
a performance improvement of 15.1%, 23.1% and 41.2% for 1, 2 and
4 LLC slices per partition, respectively.

LLC capacity: NUBA performs better for systems with larger LLC
capacity, changing from 12.9% at 0.5× to 31.7% at 2× the baseline
capacity. The reason is that increased LLC capacity increases the
fraction of local memory accesses under NUBA.

Page size: Increasing the memory page size from 4 KB to 2 MB
slightly reduces the performance benefit obtained through NUBA to
21.6%. A large page size does not affect NUBA’s effectiveness for low-
sharing applications. For high-sharing applications, a large page
size increases the sharing degree, thereby decreasing the number of
memory accesses that can be turned into local accesses. Fortunately,
NUBA’s selective data replication largely counters this effect.

Address mapping: Changing the UBA address mapping policy
from our fixed-channel policy as described in Section 2 to PAE [49]
to randomize the channel bits in addition to the bank bits does
not significantly affect NUBA’s performance benefit (19.7% average
improvement).

LAB threshold: LAB uses a normalized page balance threshold to
tune its affinity for placing data locally. Increasing the threshold
slightly improves the performance for high-sharing applications
while slightly reducing the performance for low-sharing applica-
tions. The reason is that LAB tolerates less page imbalance with a
higher threshold and hence places fewer pages locally. Conversely,
decreasing the threshold benefits low-sharing applications and re-
duces performance for high-sharing applications. The performance
effect is limited, i.e., LAB with thresholds of 0.95 and 0.8 improves
average performance by 13.1% and 14.5%, respectively, compared
to UBA, which is only slightly worse than the 14.8% average per-
formance improvement LAB achieves with our default threshold of
0.9.

7.6 NUBA in Alternative Configurations

MCM-GPU systems: Multi-GPU systems have recently been pro-
posed to continue to scale GPU performance in spite of Moore’s
Law slowing down. GPUs can be connected through the PCB (e.g.,
Nvidia NVLink and NVSwitch [66]) or via an interposer (e.g., multi-
chip-module (MCM) GPUs [6], see also Figure 15). We find that
NUBA is even more important for MCM-GPUs than it is for mono-
lithic GPUs as the inter-module link bandwidth is smaller than
the NoC bandwidth. We find that NUBA improves performance by
40.0% on average for an MCM-GPU with 128 SMs, 128 LLC slices
and 64 memory controllers distributed across four modules with
720 GB/s bidirectional inter-module links, versus 30.1% for a mono-
lithic GPU with the same number of SMs, LLC slices and memory
controllers, see Figure 16. For the low-sharing applications, the per-
formance improvement in an MCM-GPU context through NUBA
is similar to what we observe for monolithic GPUs. In contrast,
we note substantially higher performance improvements for the
high-sharing applications as shared data replication across mod-
ules becomes even more important due to lower inter-module link
bandwidth versus on-chip NoC bandwidth.

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Xia Zhao, Magnus Jahre, Yuhua Tang, Guangda Zhang, and Lieven Eeckhout

SM
L1

SM
L1

SM
L1

SM
L1

Xbar
LLC
MC

LLC
MC

LLC
MC

GPM0 Ring NoC

Package

(a) Memory-side UBA MCM

GPM2 GPM3

GPM1

Package

GPM2 GPM3

GPM1

GPM0

Xbar

LLC

SM
L1

SM
L1

LLC

M
C

M
C SM

L1
SM
L1

Ring NoC

(b) NUBA MCM

Figure 15: UBA and NUBA Multi-Chip Module (MCM) GPUs.

0

1

2

3

4

5

L
A

V
A

M
D

L
B

M

D
W

T
2
D

K
M

P
V

C

B
H

W
C

S
M

2
D

C
O

N
V

M
V

T

F
W

T

B
P

F
D

T
2
D

C
O

N
V

A
T

A
X

G
E

S
U

M
M

S
C

2
M

M

L
E

U

B
T

S
G

E
M

M

M
M

3
D

C
O

N
V

A
N

S
N

R
N

G
R

U

N
W

B
IC

G

A
V

G
-L

S

A
V

G
-H

S

A
V

G

N
o
rm

a
liz

e
d

 p
e

rf
o
rm

a
n
c
e

Low-sharing applications

Memory-side UBA MCM NUBA MCM

High-sharing applications

Figure 16: The impact of NUBA on MCM-GPU performance.

NUBA is even more important for MCM-GPU systems.

Alternative page allocation: Prior work proposed page migra-
tion based on page access counts over a predefined interval [14],
and page replication if there is sufficient free memory, trading off
memory capacity versus memory bandwidth [27]. Both techniques
could be used as alternative solutions for the LAB page allocation
policy proposed in this work. We find that for the low-sharing ap-
plications, page migration and replication deliver a performance
improvement of around 26% as these techniques indeed bring the
data close to the requesting SMs. For the high-sharing applications,
we find that page migration and replication degrade performance
by up to 80.4% (2MM) and 60.1% (3DCONV). Page migration in-
curs high migration overhead when different SMs access the same
memory pages. In contrast, LAB does not migrate pages, instead it
evenly distributes pages across the system. Page replication leads
to severe cache thrashing effects. In contrast, MDR replicates at
the cache line level, not the page level, to maximize bandwidth to
read-only shared data.

8 RELATED WORK

The most closely related work to NUBA targets MCM-GPUs [6] and
multi-socket GPU systems [53]. Their goal is primarily to overcome
manufacturing limitations, yet it indirectly leads to a non-uniform
GPU architecture where each module or package has local LLC and
memory resources. Young et al. [90] propose caching remote data in
the local video memory of a GPU module to reduce communication
overhead; Baruah et al. [14] propose the Griffin page migration sys-
tem for migrating data between GPUs in multi-GPU systems; and
Khairy et al. [42] propose to create a virtual uniform architecture
consisting of discrete GPUs that internally are MCMs. This body of
prior work focuses on non-uniformity across packages and mod-
ules whereas we focus on exposing and exploiting non-uniformity
across NUBA partitions within a single package or module. The
key difference is that NUBA has (much) more fine-grained resource
partitioning, i.e., there are 64 SMs per module in MCM-GPU [6]
compared to two (or four) SMs per NUBA partition Ð leading to
more severe load imbalance and more common inter-partition data
sharing.

Another branch of related work focuses on reorganizing the
internal resources within a GPU module. More specifically, they
explore shared versus private LLC and L1 cache organizations [39,
40, 95, 94]. These architectures are all UBAs and do not exploit
that supplying uniform bandwidth between SMs and caches can be
inefficient.

As mentioned before, NUBA is the GPU equivalent of NUCA [43]
in the CPU domain, yet NUBA and NUCA are fundamentally dif-
ferent as the cost of non-uniformity is bandwidth in GPUs ver-
sus latency in CPUs. The goal in the CPU domain is to minimize
latency, and many works have focused on favorably combining
shared and private LLC organizations to get the capacity advan-
tage of the shared LLC and the latency advantage of a private LLC.
For example, researchers have proposed to combine intelligent
data placement with dynamic migration [35, 41, 93], selective data
replication [19, 24, 92, 15, 37] and adaptive cache capacity shar-
ing [31, 74]. For GPUs, the key issues are to (i) distribute memory
pages across partitions such that memory bandwidth utilization is
maximized (i.e., LAB), and (ii) leverage that the GPU programming
model enables effective compiler-guided replication (i.e., MDR).
Non-uniformity maximizes the effective memory bandwidth to the
SMs in a GPU while at the same time reducing NoC complexity.

The challenge of allocating threads to cores while simultaneously
optimizing locality and load-balance also occurs in the CPU do-
main. One line of prior work focuses on developing affinity-targeted
thread mapping policies [78, 29, 17, 30, 23, 84, 11, 17, 76, 38, 46].
Another line of work focuses on data mapping, i.e., the assign-
ment of memory pages to memory controllers. Basic data mapping
mechanisms such as home-node allocation, page-interleaved al-
location, and first-touch allocation have been proposed [47, 68].
Other prior work exploits data allocation, migration, and replica-
tion techniques [54, 16, 71, 50, 67], or relies on hardware perfor-
mance counters to analyze memory access behavior which in turn
supports decision-making mechanisms in the operating system or
hardware [51, 52, 18, 87, 85, 10, 28, 26]. The primary goal of this
prior work is to minimize the effective memory access latency. In
contrast, NUBA’s primary goal is to maximize the effective memory

NUBA: Non-Uniform Bandwidth GPUs ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

bandwidth within each partition while at the same time balanc-
ing bandwidth demand across all partitions to maximize aggregate
memory system bandwidth.

9 CONCLUSION

We have introduced the Non-Uniform Bandwidth Architecture
(NUBA) which, in contrast to the current Uniform Bandwidth Ar-
chitecture (UBA) paradigm, exposes the complete bandwidth of
LLC slices to SMs without incurring prohibitive NoC power and
area overheads. Realizing the potential of NUBA GPUs requires
a full-stack approach. First, we need to place data in local NUBA
partitions Ð to capitalize on the higher bandwidth to local LLC
slices compared to remote LLC slices Ð while avoiding load im-
balance. We hence propose the Local-And-Balanced (LAB) page
allocation policy which places memory pages in local memory
partitions while maintaining sufficient load balance. Second, our
Model-Driven Replication (MDR) scheme further increases the pro-
portion of local accesses by replicating shared read-only data across
partitions when the shared data set is sufficiently small. We showed
that the NUBA concept can be used to (1) improve performance
compared to iso-resource UBA GPUs, (2) reduce NoC power con-
sumption significantly by maintaining similar performance to UBA
GPUs with much higher NoC bandwidth, and (3) both improve
performance and reduce NoC complexity and power overhead.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their thoughtful and valu-
able feedback. Xia Zhao is supported by the National Natural Sci-
ence Foundation of China (Grant No. 62102438) and sponsored by
the Beijing Nova Program. Magnus Jahre is supported by the Re-
search Council of Norway (Grant No. 286596). Lieven Eeckhout is
supported in part by the UGent-BOF-GOA grant No. 01G01421, and
the European Research Council (ERC) Advanced Grant agreement
No. 741097.

REFERENCES

[1] Tor M. Aamodt, Wilson W. L. Fung, and Timothy G. Rogers.
2018. General-Purpose Graphics Processor Architectures. Mor-
gan & Claypool Publishers.

[2] AMD. 2012. AMD Graphics Core Next. https:
//www.techpowerup.com/gpu-specs/docs/amd-gcn1-
architecture.pdf.

[3] AMD. 2019. Introducing RDNA Architecture. https://www.
amd.com/system/files/documents/rdna-whitepaper.pdf.

[4] AMD. 2020. Introducing AMD CDNA Architecture.
https://www.amd.com/system/files/documents/amd-cdna-
whitepaper.pdf.

[5] AMD. 2021. AMD Radeon PRO V620. https://www.amd.com/
en/products/server-accelerators/amd-radeon-pro-v620.

[6] Akhil Arunkumar, Evgeny Bolotin, Benjamin Cho, Ugljesa
Milic, Eiman Ebrahimi, Oreste Villa, Aamer Jaleel, Carole-Jean
Wu, and David Nellans. 2017. MCM-GPU: Multi-Chip-Module
GPUs for Continued Performance Scalability. In Proceedings of

the International Symposium on Computer Architecture (ISCA).
320ś332.

[7] Akhil Arunkumar, Shin-Ying Lee, Vignesh Soundararajan, and
Carole-Jean Wu. 2018. LATTE-CC: Latency Tolerance Aware

Adaptive Cache Compression Management for Energy Effi-
cient GPUs. In Proceedings of the International Symposium on

High Performance Computer Architecture (HPCA). 221ś234.
[8] Rachata Ausavarungnirun, Joshua Landgraf, Vance Miller,

Saugata Ghose, Jayneel Gandhi, Christopher J. Rossbach, and
Onur Mutlu. 2017. Mosaic: A GPU Memory Manager with
Application-Transparent Support for Multiple Page Sizes. In
Proceedings of the International Symposium on Microarchitec-

ture (MICRO). 136ś150.
[9] Rachata Ausavarungnirun, Vance Miller, Joshua Landgraf,

Saugata Ghose, Jayneel Gandhi, Adwait Jog, Christopher J.
Rossbach, and Onur Mutlu. 2018. MASK: Redesigning the
GPU Memory Hierarchy to Support Multi-Application Con-
currency. In Proceedings of the International Conference on Ar-

chitectural Support for Programming Languages and Operating

Systems (ASPLOS). 503ś518.
[10] Manu Awasthi, David Nellans, Kshitij Sudan, Rajeev Balasub-

ramonian, and Al Davis. 2010. Handling the Problems and
Opportunities Posed byMultiple On-chipMemory Controllers.
In Proceedings of the International Conference on Parallel Ar-

chitectures and Compilation Techniques (PACT). 319ś330.
[11] Reza Azimi, David K. Tam, Livio Soares, and Michael Stumm.

2009. Enhancing Operating System Support for Multicore
Processors by Using Hardware Performance Monitoring. ACM
SIGOPS Operating Systems Review 43, 2 (2009), 56ś65.

[12] Ali Bakhoda, John Kim, and TorM. Aamodt. 2010. Throughput-
Effective On-Chip Networks for Manycore Accelerators. In
Proceedings of the International Symposium on Microarchitec-

ture (MICRO). 421ś432.
[13] Ali Bakhoda, George L. Yuan, WilsonW. L. Fung, HenryWong,

and Tor M. Aamodt. 2009. Analyzing CUDAWorkloads Using
a Detailed GPU Simulator. In Proceeding of the International

Symposium on Performance Analysis of Systems and Software

(ISPASS). 163ś174.
[14] Trinayan Baruah, Yifan Sun, Ali Tolga Dinçer, Saiful A. Mo-

jumder, José L. Abellán, Yash Ukidave, Ajay Joshi, Norman
Rubin, John Kim, and David Kaeli. 2020. Griffin: Hardware-
Software Support for Efficient Page Migration in Multi-GPU
Systems. In Proceedings of the International Symposium on High

Performance Computer Architecture (HPCA). 596ś609.
[15] Bradford M. Beckmann, Michael R. Marty, and David A. Wood.

2006. ASR: Adaptive Selective Replication for CMP Caches. In
Proceedings of the International Symposium on Microarchitec-

ture (MICRO). 443ś454.
[16] François Broquedis, Olivier Aumage, Brice Goglin, Samuel

Thibault, Pierre-Andr Wacrenier, and Raymond Namyst. 2010.
Structuring the Execution of OpenMP Applications for Multi-
core Architectures. In Proceedings of the International Sympo-

sium on Parallel Distributed Processing (IPDPS). 1ś10.
[17] François Broquedis, Nathalie Furmento, Brice Goglin, Pierre-

André Wacrenier, and Raymond Namyst. 2010. ForestGOMP:
an Efficient OpenMP Environment for NUMA Architectures.
International Journal of Parallel Programming 38, 5 (2010), 418ś
439.

[18] Rohit Chandra, Scott Devine, Ben Verghese, Anoop Gupta, and
Mendel Rosenblum. 1994. Scheduling and Page Migration for

https://www.techpowerup.com/gpu-specs/docs/amd-gcn1-architecture.pdf
https://www.techpowerup.com/gpu-specs/docs/amd-gcn1-architecture.pdf
https://www.techpowerup.com/gpu-specs/docs/amd-gcn1-architecture.pdf
https://www.amd.com/system/files/documents/rdna-whitepaper.pdf
https://www.amd.com/system/files/documents/rdna-whitepaper.pdf
https://www.amd.com/system/files/documents/amd-cdna-whitepaper.pdf
https://www.amd.com/system/files/documents/amd-cdna-whitepaper.pdf
https://www.amd.com/en/products/server-accelerators/amd-radeon-pro-v620
https://www.amd.com/en/products/server-accelerators/amd-radeon-pro-v620

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Xia Zhao, Magnus Jahre, Yuhua Tang, Guangda Zhang, and Lieven Eeckhout

Multiprocessor Compute Servers. In Proceedings of the Inter-

national Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS). 12ś24.
[19] Jichuan Chang and Gurindar S. Sohi. 2006. Cooperative

Caching for ChipMultiprocessors. In Proceedings of the Interna-
tional Symposium on Computer Architecture (ISCA). 264ś276.

[20] Niladrish Chatterjee, Mike O’Connor, Donghyuk Lee, Daniel R.
Johnson, StephenW. Keckler, Minsoo Rhu, andWilliam J. Dally.
2017. Architecting an Energy-Efficient DRAM System for
GPUs. In International Symposium on High Performance Com-

puter Architecture (HPCA). 73ś84.
[21] Shuai Che, Michael Boyer, Jiayuan Meng, David Tarjan,

Jeremy W. Sheaffer, Sang-Ha Lee, and Kevin Skadron. 2009.
Rodinia: A Benchmark Suite for Heterogeneous Computing.
In Proceedings of the International Symposium on Workload

Characterization (IISWC). 44ś54.
[22] Gregory K. Chen, Mark A. Anders, and Himanshu Kaul. 2017.

Scalable crossbar apparatus andmethod for arranging crossbar
circuits. US Patent 9,577,634.

[23] Hu Chen, Wenguang Chen, Jian Huang, Bob Robert, and H.
Kuhn. 2006. MPIPP: An Automatic Profile-Guided Parallel Pro-
cess Placement Toolset for SMP Clusters and Multiclusters. In
Proceedings of the International Conference on Supercomputing

(ICS). 353ś360.
[24] Zeshan Chishti, Michael D. Powell, and T. N. Vijaykumar. 2005.

Optimizing Replication, Communication, and Capacity Allo-
cation in CMPs. In Proceedings of the International Symposium

on Computer Architecture (ISCA). 357ś368.
[25] Jack Choquette, Edward Lee, Ronny Krashinsky, Vishnu Balan,

and Brucek Khailany. 2021. 3.2 The A100 Datacenter GPU and
Ampere Architecture. In Proceedings of the International Solid-

State Circuits Conference (ISSCC), Vol. 64. 48ś50.
[26] Ilaria D. Gennaro, Alessandro Pellegrini, and Francesco

Quaglia. 2016. OS-Based NUMA Optimization: Tackling the
Case of Truly Multi-thread Applications with Non-partitioned
Virtual Page Accesses. In Proceedings of the International Sym-

posium on Cluster, Cloud and Grid Computing (CCGrid). 291ś
300.

[27] Mohammad Dashti, Alexandra Fedorova, Justin Funston, Fa-
bien Gaud, Renaud Lachaize, Baptiste Lepers, Vivien Quema,
and Mark Roth. 2013. Traffic Management: A Holistic Ap-
proach to Memory Placement on NUMA Systems. In Proceed-

ings of the International Conference on Architectural Support

for Programming Languages and Operating Systems (ASPLOS).
381ś394.

[28] Matthias Diener, Eduardo H.M. Cruz, Philippe O.A. Navaux,
Anselm Busse, and Hans-Ulrich Heiß. 2014. KMAF: Automatic
Kernel-Level Management of Thread and Data Affinity. In
Proceedings of the International Conference on Parallel Archi-

tectures and Compilation (PACT). 277ś288.
[29] Matthias Diener, Felipe Madruga, Eduardo Rodrigues, Marco

Alves, Jorg Schneider, Philippe Navaux, and Hans-Ulrich Heiss.
2010. Evaluating Thread Placement Based on Memory Ac-
cess Patterns for Multi-core Processors. In Proceedings of In-

ternational Conference on High Performance Computing and

Communications (HPCC). 491ś496.

[30] Wei Ding, Yuanrui Zhang, Mahmut Kandemir, Jithendra Srini-
vas, and Praveen Yedlapalli. 2013. Locality-aware Mapping
and Scheduling for Multicores. In Proceedings of the Interna-

tional Symposium on Code Generation and Optimization (CGO).
1ś12.

[31] Haakon Dybdahl and Per Stenstrom. 2007. An Adaptive
Shared/Private NUCA Cache Partitioning Scheme for Chip
Multiprocessors. In Proceedings of the International Symposium

on High Performance Computer Architecture (HPCA). 2ś12.
[32] Fabien Gaud, Baptiste Lepers, Justin Funston, Mohammad

Dashti, Alexandra Fedorova, Vivien Quéma, Renaud Lachaize,
and Mark Roth. 2015. Challenges of Memory Management on
Modern NUMA Systems. Commun. ACM 58, 12 (2015), 59ś66.

[33] David B. Glasco, Peter B. Holmqvist, George R. Lynch,
Patrick R. Marchand, Karan Mehra, and James Roberts. 2012.
Cache-based Control of Atomic Operations in Conjunction
With an External ALU Block. US Patent 8,135,926 B1.

[34] Scott Grauer-Gray, Lifan Xu, Robert Searles, Sudhee Ayalaso-
mayajula, and John Cavazos. 2012. Auto-tuning a High-Level
Language Targeted to GPU Codes. In Proceedings of Innovative

Parallel Computing (InPar). 1ś10.
[35] Nikos Hardavellas, Michael Ferdman, Babak Falsafi, and Anas-

tasia Ailamaki. 2009. Reactive NUCA: Near-optimal Block
Placement and Replication in Distributed Caches. In Proceed-

ings of the International Symposium on Computer Architecture

(ISCA). 184ś195.
[36] Bingsheng He, Wenbin Fang, Qiong Luo, Naga K Govindaraju,

and Tuyong Wang. 2008. Mars: A MapReduce Framework on
Graphics Processors. In Proceedings of the International Con-

ference on Parallel Architectures and Compilation Techniques

(PACT). 260ś269.
[37] Christopher Hughes, Changkyu Kim, and Yen-Kuang Chen.

2010. Performance and Energy Implications of Many-Core
Caches for Throughput Computing. IEEE Micro 30, 6 (Novem-
ber 2010), 25ś35.

[38] Joshua Hursey, Jeffrey M. Squyres, and Terry Dontje. 2011.
Locality-Aware Parallel Process Mapping for Multi-core HPC
Systems. In Proceedings of International Conference on Cluster

Computing (CLUSTER). 527ś531.
[39] Mohamed A. Ibrahim, Onur Kayiran, Yasuko Eckert, Gabriel H.

Loh, and Adwait Jog. 2020. Analyzing and Leveraging Shared
L1 Caches in GPUs. In Proceedings of the International Con-

ference on Parallel Architectures and Compilation Techniques

(PACT). 161ś173.
[40] Mohamed A. Ibrahim, Onur Kayiran, Yasuko Eckert, Gabriel H.

Loh, and Adwait Jog. 2021. Analyzing and Leveraging De-
coupled L1 Caches in GPUs. In Proceedings of the Interna-

tional Symposium on High Performance Computer Architecture

(HPCA). 2ś12.
[41] Mahmut Kandemir, Feihui Li, Mary Jane Irwin, and SeungWoo

Son. 2008. A Novel Migration-based NUCA Design for Chip
Multiprocessors. In Proceedings of the Conference on Supercom-

puting (SC). 1ś12.
[42] Mahmoud Khairy, Vadim Nikiforov, David Nellans, and Timo-

thy G. Rogers. 2020. Locality-Centric Data and Threadblock
Management for Massive GPUs. In Proceedings of the Interna-

tional Symposium on Microarchitecture (MICRO). 1022ś1036.

NUBA: Non-Uniform Bandwidth GPUs ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

[43] Changkyu Kim, Doug Burger, and Stephen W. Keckler. 2002.
An Adaptive, Non-uniform Cache Structure for Wire-delay
Dominated On-chip Caches. In Proceedings of the Interna-

tional Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS). 211ś222.
[44] Yoongu Kim, Weikun Yang, and Onur Mutlu. 2016. Ramula-

tor: A Fast and Extensible DRAM Simulator. IEEE Computer

Architecture Letters 15, 1 (January 2016), 45ś49.
[45] Gunjae Koo, Yunho Oh, Won Woo Ro, and Murali Annavaram.

2017. Access Pattern-Aware CacheManagement for Improving
Data Utilization in GPU. In Proceedings of the International

Symposium on Computer Architecture (ISCA). 307ś319.
[46] Argonne National Laboratory. 2013. Using the Hydra Process

Manager. https://wiki.mpich.org/mpich/index.php/Using_
the_Hydra_Process_Manager.

[47] Stefan Lankes, Boris Bierbaum, and Thomas Bemmerl. 2009.
Affinity-on-next-Touch: An Extension to the Linux Kernel
for NUMA Architectures. In Proceedings of the International

Conference on Parallel Processing and Applied Mathematics

(PPAM). 576ś585.
[48] Jingwen Leng, Tayler Hetherington, Ahmed ElTantawy, Syed

Gilani, Nam Sung Kim, TorM. Aamodt, and Vijay Janapa Reddi.
2013. GPUWattch: Enabling Energy Optimizations in GPGPUs.
In Proceedings of the International Symposium on Computer

Architecture (ISCA). 487ś498.
[49] Yuxi Liu, Xia Zhao, Magnus Jahre, Zhenlin Wang, Xiaolin

Wang, Yingwei Luo, and Lieven Eeckhout. 2018. Get Out
of the Valley: Power-Efficient Address Mapping for GPUs.
In Proceedings of the International Symposium on Computer

Architecture (ISCA). 166ś179.
[50] Henrik Löf and Sverker Holmgren. 2005. Affinity-on-next-

Touch: Increasing the Performance of an Industrial PDE Solver
on a Cc-NUMA System. In Proceedings of the International

Conference on Supercomputing (ICS). 387ś392.
[51] Jaydeep Marathe and Frank Mueller. 2006. Hardware Profile-

Guided Automatic Page Placement for CcNUMA Systems. In
Proceedings of the International Symposium on Principles and

Practice of Parallel Programming (PPoPP). 90ś99.
[52] Jaydeep Marathe, Vivek Thakkar, and Frank Mueller. 2010.

Feedback-directed Page Placement for ccNUMA via Hardware-
generated Memory Traces. J. Parallel and Distrib. Comput. 70,
12 (2010), 1204ś1219.

[53] Ugljesa Milic, Oreste Villa, Evgeny Bolotin, Akhil Arunku-
mar, Eiman Ebrahimi, Aamer Jaleel, Alex Ramirez, and David
Nellans. 2017. Beyond the Socket: NUMA-Aware GPUs. In Pro-

ceedings of the International Symposium on Microarchitecture

(MICRO). 123ś135.
[54] Dimitrios S. Nikolopoulos, Theodore S. Papatheodorou, Con-

stantine D. Polychronopoulos, Jesus Labarta, and Eduard
Ayguade;eacute;. 2000. Is Data Distribution Necessary in
OpenMP?. In Proceedings of the Conference on Supercomputing

(SC). 47ś61.
[55] NVIDIA. 2009. NVIDIA’s Next Generation CUDA Compute

Architecture. https://www.nvidia.com/content/PDF/fermi_
white_papers/NVIDIA_Fermi_Compute_Architecture_
Whitepaper.pdf.

[56] NVIDIA. 2012. NVIDIA GeForce GTX 680. https:
//www.nvidia.com/content/PDF/product-specifications/

GeForce_GTX_680_Whitepaper_FINAL.pdf.
[57] NVIDIA. 2014. NVIDIA GeForce GTX 980. https:

//www.microway.com/download/whitepaper/NVIDIA_
Maxwell_GM204_Architecture_Whitepaper.pdf.

[58] NVIDIA. 2016. NVIDIA Tesla P100. https://images.nvidia.
com/content/pdf/tesla/whitepaper/pascal-architecture-
whitepaper.pdf.

[59] NVIDIA. 2016. NVIDIA Turing GPU Architecture.
https://images.nvidia.cn/aem-dam/en-zz/Solutions/design-
visualization/technologies/turing-architecture/NVIDIA-
Turing-Architecture-Whitepaper.pdf.

[60] NVIDIA. 2017. NVIDIA Tesla V100 Volta Architecture. http://
www.nvidia.com/object/volta-architecture-whitepaper.html.

[61] NVIDIA. 2018. VOLTA Architecture and performance
optimization. http://on-demand.gputechconf.com/gtc/2018/
presentation/s81006-volta-architecture-and-performance-
optimization.pdf.

[62] NVIDIA. 2019. Parallel Thread Execution ISA Version
6.5. https://docs.nvidia.com/cuda/parallel-thread-execution/
index.html.

[63] NVIDIA. 2020. CUDA COMPILER DRIVER NVCC. https:
//docs.nvidia.com/pdf/CUDA_Compiler_Driver_NVCC.pdf.

[64] NVIDIA. 2020. NVIDIA A100 Tensor Core GPU Architec-
ture. https://www.nvidia.com/content/dam/en-zz/Solutions/
Data-Center/nvidia-ampere-architecture-whitepaper.pdf.

[65] NVIDIA. 2022. NVIDIA CUDA SDK Code Samples. https:
//developer.nvidia.com/cuda-downloads.

[66] NVIDIA. 2022. NVLink and NVSwitch. https://www.nvidia.
com/en-us/data-center/nvlink/.

[67] Takeshi Ogasawara. 2009. NUMA-Aware Memory Manager
with Dominant-Thread-Based Copying GC. In Proceedings of

the International Conference on Object Oriented Programming

Systems Languages and Applications (OOPSLA). 377ś390.
[68] Oracle. 2010. Solaris OS Tuning Features. https://docs.oracle.

com/cd/E18659_01/html/821-1381/aewda.html.
[69] Giorgos Passas, Manolis Katevenis, and Dionisis Pnev-

matikatos. 2010. A 128 x 128 x 24Gb/s Crossbar Interconnect-
ing 128 Tiles in a Single Hop and Occupying 6% of Their Area.
In Proceedings of the International Symposium on Networks-on-

Chip (NoCS). 87ś95.
[70] Giorgos Passas, Manolis Katevenis, and Dionisios Pnev-

matikatos. 2011. VLSI Micro-Architectures for High-Radix
Crossbar Schedulers. In Proceedings of the International Sym-

posium on Networks-on-Chip (NoCS). 217ś224.
[71] Guilherme Piccoli, Henrique N. Santos, Raphael E. Rodrigues,

Christiane Pousa, Edson Borin, and Fernando M. Quintão
Pereira. 2014. Compiler Support for Selective Page Migration
in NUMA Architectures. In Proceedings of the International

Conference on Parallel Architectures and Compilation (PACT).
369ś380.

[72] Bharath Pichai, Lisa Hsu, and Abhishek Bhattacharjee. 2014.
Architectural Support for Address Translation on GPUs: De-
signing Memory Management Units for CPU/GPUs with Uni-
fied Address Spaces. In Proceedings of the International Confer-

ence on Architectural Support for Programming Languages and

Operating Systems (ASPLOS). 743ś758.

https://wiki.mpich.org/mpich/index.php/Using_the_Hydra_Process_Manager
https://wiki.mpich.org/mpich/index.php/Using_the_Hydra_Process_Manager
https://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
https://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
https://www.nvidia.com/content/PDF/fermi_white_papers/NVIDIA_Fermi_Compute_Architecture_Whitepaper.pdf
https://www.nvidia.com/content/PDF/product-specifications/GeForce_GTX_680_Whitepaper_FINAL.pdf
https://www.nvidia.com/content/PDF/product-specifications/GeForce_GTX_680_Whitepaper_FINAL.pdf
https://www.nvidia.com/content/PDF/product-specifications/GeForce_GTX_680_Whitepaper_FINAL.pdf
https://www.microway.com/download/whitepaper/NVIDIA_Maxwell_GM204_Architecture_Whitepaper.pdf
https://www.microway.com/download/whitepaper/NVIDIA_Maxwell_GM204_Architecture_Whitepaper.pdf
https://www.microway.com/download/whitepaper/NVIDIA_Maxwell_GM204_Architecture_Whitepaper.pdf
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
https://images.nvidia.com/content/pdf/tesla/whitepaper/pascal-architecture-whitepaper.pdf
https://images.nvidia.cn/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://images.nvidia.cn/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
https://images.nvidia.cn/aem-dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf
http://www.nvidia.com/object/volta-architecture-whitepaper.html
http://www.nvidia.com/object/volta-architecture-whitepaper.html
http://on-demand.gputechconf.com/gtc/2018/presentation/s81006-volta-architecture-and-performance-optimization.pdf
http://on-demand.gputechconf.com/gtc/2018/presentation/s81006-volta-architecture-and-performance-optimization.pdf
http://on-demand.gputechconf.com/gtc/2018/presentation/s81006-volta-architecture-and-performance-optimization.pdf
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html
https://docs.nvidia.com/pdf/CUDA_Compiler_Driver_NVCC.pdf
https://docs.nvidia.com/pdf/CUDA_Compiler_Driver_NVCC.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/nvidia-ampere-architecture-whitepaper.pdf
https://developer.nvidia.com/cuda-downloads
https://developer.nvidia.com/cuda-downloads
https://www.nvidia.com/en-us/data-center/nvlink/
https://www.nvidia.com/en-us/data-center/nvlink/
https://docs.oracle.com/cd/E18659_01/html/821-1381/aewda.html
https://docs.oracle.com/cd/E18659_01/html/821-1381/aewda.html

ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada Xia Zhao, Magnus Jahre, Yuhua Tang, Guangda Zhang, and Lieven Eeckhout

[73] Jason Power, Mark D. Hill, and David A. Wood. 2014. Sup-
porting x86-64 Address Translation for 100s of GPU Lanes.
In Proceedings of the International Symposium on High Perfor-

mance Computer Architecture (HPCA). 568ś578.
[74] Moinuddin K Qureshi. 2009. Adaptive Spill-Receive for Ro-

bust High-Performance Caching in CMPs. In Proceedings of

the International Symposium on High Performance Computer

Architecture (HPCA). 45ś54.
[75] Moinuddin K. Qureshi, Daniel N. Lynch, Onur Mutlu, and

Yale N. Patt. 2006. A Case for MLP-Aware Cache Replacement.
In Proceedings of the International Symposium on Computer

Architecture (ISCA). 167ś178.
[76] Petar Radojković, Vladimir Čakarević, Miquel Moretó, Javier

Verdú, Alex Pajuelo, Francisco J. Cazorla, Mario Nemirovsky,
and Mateo Valero. 2012. Optimal Task Assignment in Multi-
threaded Processors: A Statistical Approach. In Proceedings of

the International Conference on Architectural Support for Pro-

gramming Languages and Operating Systems (ASPLOS). 235ś
248.

[77] Xiaowei Ren, Daniel Lustig, Evgeny Bolotin, Aamer Jaleel,
Oreste Villa, and David Nellans. 2020. HMG: Extending Cache
Coherence Protocols Across Modern Hierarchical Multi-GPU
Systems. In Proceedings of the International Symposium on High

Performance Computer Architecture (HPCA). 582ś595.
[78] Eduardo R. Rodrigues, Felipe L. Madruga, Philippe O. A.

Navaux, and Jairo Panetta. 2009. Multi-core Aware Process
Mapping and its Impact on Communication Overhead of Paral-
lel Applications. In Proceedings of the International Symposium

on Computers and Communications (ISCC). 811ś817.
[79] Korey Sewell, Ronald G. Dreslinski, Thomas Manville, Sudhir

Satpathy, Nathaniel Pinckney, Geoffrey Blake, Michael Cieslak,
Reetuparna Das, Thomas F. Wenisch, Dennis Sylvester, David
Blaauw, and Trevor Mudge. 2012. Swizzle-Switch Networks
for Many-Core Systems. IEEE Journal on Emerging and Selected

Topics in Circuits and Systems 2, 2 (June 2012), 278ś294.
[80] Seunghee Shin, Guilherme Cox, Mark Oskin, Gabriel H. Loh,

Yan Solihin, Abhishek Bhattacharjee, and Arkaprava Basu.
2018. Scheduling Page Table Walks for Irregular GPU Ap-
plications. In Proceedings of the International Symposium on

Computer Architecture (ISCA). 180ś192.
[81] Seunghee Shin, Michael LeBeane, Yan Solihin, and Arkaprava

Basu. 2018. Neighborhood-Aware Address Translation for
Irregular GPU Applications. In Proceedings of the International

Symposium on Microarchitecture (MICRO). 352ś363.
[82] John A Stratton, Christopher Rodrigues, I-Jui Sung, Nady

Obeid, Li-Wen Chang, Nasser Anssari, Geng Daniel Liu, and
Wen-mei W Hwu. 2012. Parboil: A Revised Benchmark Suite for

Scientific and Commercial Throughput Computing. Technical
Report. University of Illinois at Urbana-Champaign.

[83] Chen Sun, Chia-Hsin Owen Chen, George Kurian, Lan Wei,
Jason Miller, Anant Agarwal, Li-Shiuan Peh, and Vladimir
Stojanovic. 2012. DSENT - A Tool Connecting Emerging
Photonics with Electronics for Opto-Electronic Networks-on-
Chip Modeling. In Proceedings of the International Symposium

on Networks-on-Chip (NOCS). 201ś210.
[84] David Tam, Reza Azimi, and Michael Stumm. 2007. Thread

Clustering: Sharing-Aware Scheduling on SMP-CMP-SMT

Multiprocessors. In Proceedings of the European Conference

on Computer Systems (EuroSys). 47ś58.
[85] Mustafa M. Tikir and Jeffrey K. Hollingsworth. 2004. Using

Hardware Counters to Automatically Improve Memory Per-
formance. In Proceedings of the International Conference on

Supercomputing (SC). 46ś46.
[86] San Jose State University. 2019. Tango: ADeepNeural Network

Benchmark Suite for Various Accelerators. https://gitlab.com/
Tango-DNNbench/Tango.

[87] Ben Verghese, Scott Devine, Anoop Gupta, and Mendel Rosen-
blum. 1996. Operating System Support for Improving Data
Locality on CC-NUMA Compute Servers. In Proceedings of the

International Conference on Architectural Support for Program-

ming Languages and Operating Systems (ASPLOS). 279ś289.
[88] Jan Vesely, Arkaprava Basu, Mark Oskin, Gabriel H. Loh, and

Abhishek Bhattacharjee. 2016. Observations and Opportuni-
ties in Architecting Shared Virtual Memory for Heterogeneous
Systems. In Proceedings of the International Symposium on Per-

formance Analysis of Systems and Software (ISPASS). 161ś171.
https://doi.org/10.1109/ISPASS.2016.7482091

[89] Lu Wang, Xia Zhao, David Kaeli, Zhiying Wang, and Lieven
Eeckhout. 2018. Intra-Cluster Coalescing to Reduce GPU
NoC Pressure. In Proceedings of the International Parallel and

Distributed Processing Symposium (IPDPS). 990ś999.
[90] Vinson Young, Aamer Jaleel, Evgeny Bolotin, Eiman Ebrahimi,

David Nellans, and Oreste Villa. 2018. Combining HW/SW
Mechanisms to Improve NUMA Performance of Multi-GPU
Systems. In Proceedings of the International Symposium on

Microarchitecture (MICRO). 339ś351.
[91] Qi Yu, Bruce Childers, Libo Huang, Cheng Qian, and Zhiying

Wang. 2020. HPE: Hierarchical Page Eviction Policy for Unified
Memory in GPUs. IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems 39, 10 (2020), 2461ś2474.
https://doi.org/10.1109/TCAD.2019.2944790

[92] Michael Zhang and Krste Asanovic. 2005. Victim Replication:
Maximizing Capacity While Hiding Wire Delay in Tiled Chip
Multiprocessors. In Proceedings of the International Symposium

on Computer Architecture (ISCA). 336ś345.
[93] Yuanrui Zhang, Wei Ding, Mahmut Kandemir, Jun Liu, and

Ohyoung Jang. 2011. A Data Layout Optimization Framework
for NUCA-based Multicores. In Proceedings of International

Symposium on Microarchitecture (MICRO). 489ś500.
[94] Xia Zhao, Almutaz Adileh, Zhibin Yu, Zhiying Wang, Aamer

Jaleel, and Lieven Eeckhout. 2019. Adaptive Memory-Side
Last-Level GPU Caching. In Proceedings of the International

Symposium on Computer Architecture (ISCA). 411ś423.
[95] Xia Zhao, Magnus Jahre, and Lieven Eeckhout. 2020. Selective

Replication in Memory-Side GPU Caches. In Proceedings of

the International Symposium on Microarchitecture (MICRO).
967ś980.

[96] Tianhao Zheng, David Nellans, Arslan Zulfiqar, Mark Stephen-
son, and Stephen W. Keckler. 2016. Towards High Perfor-
mance Paged Memory for GPUs. In Proceedings of the Interna-

tional Symposium on High Performance Computer Architecture

(HPCA). 345ś357.

Received 2022-07-07; accepted 2022-09-22

https://gitlab.com/Tango-DNNbench/Tango
https://gitlab.com/Tango-DNNbench/Tango
https://doi.org/10.1109/ISPASS.2016.7482091
https://doi.org/10.1109/TCAD.2019.2944790

	Abstract
	1 Introduction
	2 Background
	3 The Non-Uniform Bandwidth Architecture
	4 Local-And-Balanced Page Allocation
	5 Model-Driven Data Replication
	5.1 Data Replication Trade-Off
	5.2 Compiler Analysis and Runtime Support
	5.3 Cache Coherence Implications

	6 Methodology
	7 Evaluation
	7.1 Overall Performance
	7.2 LAB Page Allocation
	7.3 Model-Driven Data Replication
	7.4 Energy Consumption
	7.5 Sensitivity Analyses
	7.6 NUBA in Alternative Configurations

	8 Related Work
	9 Conclusion

