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Abstract: In this work, we propose a novel policy network architecture for model-free Reinforce-
ment Learning (RL)-based path-following and collision avoidance in marine surface vessels. By
applying convolutional neural networks (CNNs) for mapping LiDAR-like distance measurements
to Collision Risk Indices (CRIs), we evaluate the utility of risk-based pretraining of CNN feature
extractors prior to RL. Where previous works required hand-crafted preprocessing of high-
resolution distance measurements to train an autonomous RL agent successfully, the proposed
approach achieves this goal in a data-driven fashion. Ultimately, we propose future directions
to improve CNN-based perception models for collision avoidance in range sensing applications.
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1. INTRODUCTION

Human error is a leading cause of accidents on the road
(Dingus et al. (2016); Thomas et al. (2013)), and reports
show that accidents at sea are no different. According
to the Annual Overview of Marine Casualties and Inci-
dents published by the European Maritime Safety Agency
(EMSA), human error was attributed to over 50% of acci-
dental events between 2011-17 (EMSA, 2021). In addition
to reducing accidents (and thereby fatalities), environ-
mental damage, and costs, autonomous marine operations
allow for optimized route planning.

There is an increasing trend in applying deep reinforce-
ment learning (DRL) algorithms for local mission planning
and collision avoidance (Sarhadi et al., 2022). To enable
collision avoidance in autonomous vessels, the controller
must perceive its immediate surroundings. Such measure-
ments will typically be of high dimension and require
dimensionality reduction for machine learning controllers.
Previous works (Larsen et al., 2021; Heiberg et al., 2022)
on reinforcement learning (RL)-based autonomous control
for path-following and collision avoidance in marine sur-
face vessels considered a hand-crafted feasibility pooling
algorithm for dimensionality reduction. While this ap-
proach is highly efficient in encoding the observation space,
it also entails a significant information loss.

In this work, we propose using a Convolutional Neural
Network (CNN) as an alternative approach for feature
extraction. CNNs are widely adopted for feature extrac-
tion in high-dimensional, spatially structured data. Wang
utilize a VGG-19 CNN pretrained from image classifica-
tion to extract features in an analogous image generation

task. RGB images are typically structured as a [0, 1]m×n×3

matrix with m and n typically in the order of 101 − 103.
We consider a LiDAR-like sensor that produces a 1D
array of planar distance measurements on the form [0, 1]N ,
where each element covers a 2π/N angle area (see Fig.
1). We do not consider a typical point cloud output but
rather a rangefinder similar to a discretized 2D (planar)
LiDAR. One may argue, purely based on the difference
in dimensionality, that our LiDAR-like data contains sig-
nificantly simpler features than natural images. However,
LiDAR data has a similar spatial property, i.e., neighbor-
ing measurements are highly correlated, given sufficient
sensor resolution. Since CNNs efficiently extract localized
features from spatial information, they can be useful for
encoding the distance and localization of nearby obstacles
from high-resolution distance measurements. The CNN-
based approach may enable the identification of complex
features utilizing the sensor’s full resolution compared to
the feasibility pooling method.

Moreover, a CNN feature extractor can be seamlessly
integrated into a larger neural network structure, e.g., the
policy network of an RL agent. In contrast to feasibility
pooling, the CNN approach requires learning relevant fea-
tures in a data-driven fashion. In this work, we investigate
the feasibility of pretraining CNNs via supervised regres-
sion for collision risk estimation, i.e., finding a mapping
from encoded LiDAR data to collision risk prior to RL.
To this end, the current research addresses the following
questions:

• Can we use a CNN to better utilize the full resolution
of the rangefinder sensor?
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• Can we do a reasonably good estimation of risk using
CNN?

• Can risk-based CNN pretraining accelerate RL train-
ing?

The article is organized as follows: Section 2 presents
the relevant theory required to appreciate the work, fol-
lowed by Section 3, which provides all the information
that makes the current work reproducible. Results and
discussions are presented in Section 4, followed by a brief
conclusion and proposed future work in Section 5.

2. THEORY

2.1 Ship model

Cybership II (Skjetne et al., 2004) is a 1:70 replica of a
supply ship, whose dynamics model was estimated through
experimental data, given the following assumptions; (1)
the vessel moves on a surface, i.e., there is no heave motion;
(2) there are no disturbances (wind, currents, or waves) to
the vessel. Under these assumptions, the dynamics model
is expressed in 3-DOF as

η̇ = Rz,ψ(η)ν (1)

Mν̇ +C(ν)ν +D(ν)ν = Bf , (2)

where Rz,ψ represents a rotation of ψ radians about the
z-axis; η = [xn, yn, ψ]T describes the vessel’s position and
heading in the North-East-Down (NED) inertial frame;
ν = [u, v, r]T describes the vessel’s translational and
angular velocities; B is the actuator configuration matrix;
and M, C(ν), and D(ν) are the mass, Coriolis, and
damping matrices, respectively. Finally, the control input,
f = [Tu, Tr], consists of the surge force and yaw moment.
The original model includes a bow thruster which is
omitted in this work due to its limited effectiveness at
high speeds (Sørensen et al., 2017).

2.2 Collision risk

The collision risk index (CRI) is a common property
to quantify collision risk at sea. The CRI combines risk
factors to evaluate the risk of collision between the own
ship and a target ship, where the distance to the closest
point of approach (DCPA) and time to the closest point of
approach (TCPA) are preferred factors to include (Gang
et al., 2016; Zhao et al., 2016).

Evaluating the risk factors of the CRI is not straight-
forward, as collision risk assessment is characterized by
subjectivity and ambiguity. A common approach is to
use fuzzy theory to integrate expert knowledge in the
risk estimation (Abebe et al., 2021). Fuzzy comprehen-
sive evaluation methods are among the strategies, where
membership functions u(·) ∈ [0, 1] are used to determine
the risk level associated with each risk factor, the final CRI
being the weighted sum of the membership functions. Con-
sidering the risk factors DCPA, TCPA, relative distance
R, relative velocity V and relative bearing θT as suggested
by (Heiberg et al., 2022), the CRI takes the form

CRI = αCPA

√
u(DCPA) · u(TCPA)

+ αθTu(θT) + αRu(R) + αVu(V ),

where αDCPA + αTCPA + αθT + αR + αV = 1. Further
details of the membership functions and numerical values
are found in (Heiberg et al., 2022).

2.3 Reinforcement learning

RL is a massive multi-disciplinary field that describes
a framework for iterative learning through trial and
error. Model-free RL considers an agent that learns
a decision-making policy through acting in an envi-
ronment, given only scalar reward feedback. Formally,
this can be defined as finding the policy parameters,
θ∗, that maximize the expected return, i.e., θ∗ =
argmaxθ Eτ∼πθ(τ) [r(τ)], where τ is the sequence of states
and actions, {(s1, a1), ..., (sT , aT )}, πθ(τ) is the trajec-
tory distribution given by θ, and r(τ) =

∑
t r(st, at) is

the reward sum over the trajectory (Sutton and Barto,
2018). Model-free RL methods can largely be grouped
into three distinct groups: policy gradient, actor-critic,
and value-based methods. In this work, we consider the
Proximal Policy Optimization (PPO) algorithm (Schul-
man et al., 2017) — a widely adopted policy gradi-
ent approach based around advantage estimation in a
surrogate policy-improvement objective: J(θ′) − J(θ) =
Eτ∼πθ′(τ)

[
∑

t γ
tAπθ (st, at)]. Baker et al. (2020) apply the

PPO algorithm on a competitive multi-agent task, where
1D convolution of a LiDAR-like perception model is part
of the observation space.

3. METHOD AND SETUP

3.1 Simulation environment

This work considers the simulation framework for au-
tonomous surface vessels in maritime environments, “gym-
auv”, developed by Meyer et al. (2020b). This OpenAI
Gym-style (Brockman et al., 2016) simulator can be used
for training RL agents in various marine environments and
manually maneuvering the surface vessel. We consider an
environment that models a calm ocean surface, including
a vessel governed by the 3-DOF Cybership II dynamics
model, initialized at the start of a randomly generated
path of fixed length. A set of static and dynamic obstacles
represent landmasses and other moving vessels. These are
distributed on and along the path according to a normal
distribution, with the mean on the path. Typically, one
would not set the desired path to intersect with known
obstacles; we consider an unreliable desired path affected
by human error or unknown obstacles to challenge the RL
agent’s collision avoidance capability. The moving obsta-
cles travel in straight lines at randomly chosen velocities
between 0.06 ms−1 and 1.99 ms−1. The number of gener-
ated static and dynamic obstacles are fixed at 11 and 17,
respectively. An example scenario is shown in Fig. 3.

In addition to observing guidance-theoretic navigation fea-
tures for path-following, the ownship is equipped with a
synthetic 2D LiDAR-like sensor suite for distance measure-
ments. A single scan consists of 180 measured distances
uniformly distributed in the horizontal plane around the
vessel with a range of 150m, as illustrated in Fig. 1. These
distance measurements are transformed into closeness by
flipping and normalizing the measurements, such that 0
corresponds to no measured obstacles and 1 to a collision.

3.2 CNN architecture design

Compared to typical deep CNNs applied in computer
vision tasks, the networks proposed here are shallow, and
the kernels are wide. Fig. 1 illustrates how the 1D convolu-
tional filter interfaces with the sensor data and corresponds
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• Can we do a reasonably good estimation of risk using
CNN?

• Can risk-based CNN pretraining accelerate RL train-
ing?

The article is organized as follows: Section 2 presents
the relevant theory required to appreciate the work, fol-
lowed by Section 3, which provides all the information
that makes the current work reproducible. Results and
discussions are presented in Section 4, followed by a brief
conclusion and proposed future work in Section 5.

2. THEORY

2.1 Ship model

Cybership II (Skjetne et al., 2004) is a 1:70 replica of a
supply ship, whose dynamics model was estimated through
experimental data, given the following assumptions; (1)
the vessel moves on a surface, i.e., there is no heave motion;
(2) there are no disturbances (wind, currents, or waves) to
the vessel. Under these assumptions, the dynamics model
is expressed in 3-DOF as

η̇ = Rz,ψ(η)ν (1)

Mν̇ +C(ν)ν +D(ν)ν = Bf , (2)

where Rz,ψ represents a rotation of ψ radians about the
z-axis; η = [xn, yn, ψ]T describes the vessel’s position and
heading in the North-East-Down (NED) inertial frame;
ν = [u, v, r]T describes the vessel’s translational and
angular velocities; B is the actuator configuration matrix;
and M, C(ν), and D(ν) are the mass, Coriolis, and
damping matrices, respectively. Finally, the control input,
f = [Tu, Tr], consists of the surge force and yaw moment.
The original model includes a bow thruster which is
omitted in this work due to its limited effectiveness at
high speeds (Sørensen et al., 2017).

2.2 Collision risk

The collision risk index (CRI) is a common property
to quantify collision risk at sea. The CRI combines risk
factors to evaluate the risk of collision between the own
ship and a target ship, where the distance to the closest
point of approach (DCPA) and time to the closest point of
approach (TCPA) are preferred factors to include (Gang
et al., 2016; Zhao et al., 2016).

Evaluating the risk factors of the CRI is not straight-
forward, as collision risk assessment is characterized by
subjectivity and ambiguity. A common approach is to
use fuzzy theory to integrate expert knowledge in the
risk estimation (Abebe et al., 2021). Fuzzy comprehen-
sive evaluation methods are among the strategies, where
membership functions u(·) ∈ [0, 1] are used to determine
the risk level associated with each risk factor, the final CRI
being the weighted sum of the membership functions. Con-
sidering the risk factors DCPA, TCPA, relative distance
R, relative velocity V and relative bearing θT as suggested
by (Heiberg et al., 2022), the CRI takes the form

CRI = αCPA

√
u(DCPA) · u(TCPA)

+ αθTu(θT) + αRu(R) + αVu(V ),

where αDCPA + αTCPA + αθT + αR + αV = 1. Further
details of the membership functions and numerical values
are found in (Heiberg et al., 2022).

2.3 Reinforcement learning

RL is a massive multi-disciplinary field that describes
a framework for iterative learning through trial and
error. Model-free RL considers an agent that learns
a decision-making policy through acting in an envi-
ronment, given only scalar reward feedback. Formally,
this can be defined as finding the policy parameters,
θ∗, that maximize the expected return, i.e., θ∗ =
argmaxθ Eτ∼πθ(τ) [r(τ)], where τ is the sequence of states
and actions, {(s1, a1), ..., (sT , aT )}, πθ(τ) is the trajec-
tory distribution given by θ, and r(τ) =

∑
t r(st, at) is

the reward sum over the trajectory (Sutton and Barto,
2018). Model-free RL methods can largely be grouped
into three distinct groups: policy gradient, actor-critic,
and value-based methods. In this work, we consider the
Proximal Policy Optimization (PPO) algorithm (Schul-
man et al., 2017) — a widely adopted policy gradi-
ent approach based around advantage estimation in a
surrogate policy-improvement objective: J(θ′) − J(θ) =
Eτ∼πθ′(τ)

[
∑

t γ
tAπθ (st, at)]. Baker et al. (2020) apply the

PPO algorithm on a competitive multi-agent task, where
1D convolution of a LiDAR-like perception model is part
of the observation space.

3. METHOD AND SETUP

3.1 Simulation environment

This work considers the simulation framework for au-
tonomous surface vessels in maritime environments, “gym-
auv”, developed by Meyer et al. (2020b). This OpenAI
Gym-style (Brockman et al., 2016) simulator can be used
for training RL agents in various marine environments and
manually maneuvering the surface vessel. We consider an
environment that models a calm ocean surface, including
a vessel governed by the 3-DOF Cybership II dynamics
model, initialized at the start of a randomly generated
path of fixed length. A set of static and dynamic obstacles
represent landmasses and other moving vessels. These are
distributed on and along the path according to a normal
distribution, with the mean on the path. Typically, one
would not set the desired path to intersect with known
obstacles; we consider an unreliable desired path affected
by human error or unknown obstacles to challenge the RL
agent’s collision avoidance capability. The moving obsta-
cles travel in straight lines at randomly chosen velocities
between 0.06 ms−1 and 1.99 ms−1. The number of gener-
ated static and dynamic obstacles are fixed at 11 and 17,
respectively. An example scenario is shown in Fig. 3.

In addition to observing guidance-theoretic navigation fea-
tures for path-following, the ownship is equipped with a
synthetic 2D LiDAR-like sensor suite for distance measure-
ments. A single scan consists of 180 measured distances
uniformly distributed in the horizontal plane around the
vessel with a range of 150m, as illustrated in Fig. 1. These
distance measurements are transformed into closeness by
flipping and normalizing the measurements, such that 0
corresponds to no measured obstacles and 1 to a collision.

3.2 CNN architecture design

Compared to typical deep CNNs applied in computer
vision tasks, the networks proposed here are shallow, and
the kernels are wide. Fig. 1 illustrates how the 1D convolu-
tional filter interfaces with the sensor data and corresponds

to the minimal CNN architecture (1conv) configuration.
The intuition behind this design choice is based on the rel-
ative simplicity of the information to be extracted; the dis-
tance and relative position of any nearby obstacles should
be sufficient to guide an autonomous controller to avoid a
collision. While more advanced and modern network archi-
tectures exist (e.g., recurrent networks and transformers),
we aim to find the simplest representation necessary to
solve the task. Table 1 describes the proposed architectures
in detail. The investigation of these three configurations
serves as an initial, small-scale hyperparameter- and neural
architecture search. A more extensive search is considered
outside the scope of this work and will be considered in
future work.

Table 1. CNN architectures investigated in
this work. D,K, S, P, F , and O denote the
depth, kernel size, stride, padding, number of
features, and output size, respectively. The
“Deep” model contains max-pooling layers af-
ter each activation. The padding mode (where
applicable) is “circular”, as illustrated in Fig.

1.

Model D K S P F O
1conv 1 45 15 15 1 12
3conv 3 45,3,3 15,1,1 15,0,0 3,2,1 12
Deep 4 9 1 4 2,4,4,6 8

Stride : 15 

Padding : 15

Kernel size : 45 sensors

N, N-1, ...

Fig. 1. Mechanism of a convolutional filter processing
radial distance measurements. N distance measure-
ments are uniformly distributed in a 1D array starting
directly behind the vessel, rotating 2π rad around the
vessel. The convolution kernel covers N

4 measurements

and strides across N
12 sensors for each feature acti-

vation. Circular padding at the boundaries ensures
continuous overlap. This configuration thus encodes
N measurements to 12 latent features.

3.3 Mapping LiDAR data to collision risk

The general regression problem can be formulated as
y = F(X, θ), where F is a mapping from input X to
output y, parameterized by θ. The objective is to find the
mapping that minimizes the sum of mean squared error

(MSE):
∑N

i=0(F(Xi, θ)−yi)
2. In this work, we formulate a

risk regression problem where distance measurements are

mapped to CRIs, using a CNN to parameterize F . The
dataset was collected using the simulation framework for
autonomous surface vessels in maritime environments by
Meyer et al. (2020b). The collision risk associated with
each obstacle within range of the sensor is calculated as
defined in Heiberg et al. (2022). As multiple CRIs may
exist for each scan (one for each nearby obstacle), we define
the target risk y to be the maximum CRI present. Thus,
given the closeness measurement X, the CNN is trained
to predict the maximum associated collision risk y.

3.4 Reinforcement Learning

The PPO algorithm has previously been shown to solve
the simultaneous path-following and collision avoidance
problem in the aforementioned simulation environment
and outperforms a set of other model-free RL algorithms
(Larsen et al., 2021). In this work, we consider the same
RL control problem and expand the perception model
for the RL agent from feasibility pooling to utilizing raw
sensor measurements. Meyer et al. (2020a) experienced
unstable training when passing the rangefinder measure-
ments directly into a fully connected network. Although
a CNN architecture results in fewer learnable parameters
and preserves the spatial information of the sensor data, we
attempt initializing the CNN subnetwork via supervised
risk regression to stabilize and accelerate the RL agent’s
training. Fig. 2 illustrates the proposed policy network
architecture. To evaluate whether pretraining the CNN
is beneficial to the RL agent, we further compare the
following configurations; 1) the pretrained CNN feature
extractor is initialized with locked parameters and will not
be modified by the RL algorithm (“locked”), 2) the pre-
trained CNN is initialized, and its parameters are allowed
to be modified by the RL algorithm (“unlocked”), and 3)
the CNN is initialized with random weights and is trained
purely through the RL algorithm (“random”).

180
LiDAR

6

6

NAV

12
2

Action

CNN
Dense

Observation RL Agent

Fig. 2. RL agent architecture. A CNN encodes the LiDAR-
like distance measurements, and navigation features
are calculated using guidance theory. The concate-
nated range and navigation features are fed into a
fully connected network. The RL agent then outputs
the thrust action to act on its environment.

3.5 Experiment setup

This work involves two experiments. Firstly, we collect a
dataset of range measurements and CRI pairs to train
CNNs via regression. Secondly, we train a variety of
DRL agents to solve the path-following and collision
avoidance problem. To initialize the CNN subnetwork in
the RL agent’s policy network, we use the pretrained
CNNs obtained in the first experiment.

Pretraining CNNs: As the models are trained to solve a
scalar risk regression problem, fully connected regression
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heads are appended to the CNN architectures. The regres-
sion heads for the CNNs with one and three layers consist
of a single linear layer, while the deep network has two
hidden layers of size 40 and 8. The data set of 10 000
samples is split into a training, validation, and test set
of ratios 0.5, 0.2, and 0.3, respectively. The models are
trained to minimize MSE over ten epochs using the Adam
optimizer (Kingma and Ba, 2014) with learning rates of
λ = 0.0025, λ = 0.002 and λ = 0.0005 for the 1conv
CNN, 3conv CNN and DeepCNN, respectively. We store
intermediate models and select the ones that produce the
lowest validation losses. Finally, the CNNs are evaluated
on 100 trajectories in the simulation environment.

RL setup and performance evaluation: We train an
RL agent using Stable-Baselines3’s PPO implementation
(Raffin et al., 2021) for simultaneous path-following and
collision avoidance in the synthetic and stochastic envi-
ronment for each architecture and configuration of CNN
feature extractors. The hyperparameters for the PPO al-
gorithm are identical to the ones applied in Larsen et al.
(2021). After training the agents for 3M timesteps each,
we evaluate whether (1) training an autonomous agent
is possible by processing LiDAR-like data with a CNN
architecture in the RL agent and (2) pretraining the
CNN for risk regression is beneficial for the RL training
process. To this end, we evaluate a set of performance
attributes over 100 testing episodes — average “progress”:
how far along a set path the agent can progress, “collision
avoidance” (COLAV): how often the agent refrains from
colliding, average “cross-track error” (CTE): how far the
agent deviates from the set path; and average time spent
per episode.

4. RESULTS AND DISCUSSIONS

4.1 CNN risk estimation

MSEs of the predicted risk after training the proposed
architectures are displayed in Table 2. All models have
a small MSE, indicating that the range data contains
sufficient information to estimate the maximum CRI, even
though the problem is under-determined; our measure-
ments contain information about the distance and bear-
ing of target ships, while the CRI also depends on their
relative velocities. Of the three architectures, the deep
CNN yields the lowest MSE by a small margin. This
marginal improvement implies that increasing the model
complexity yields diminishing returns for risk estimation.
The predicted risk along the trajectory by the pretrained
1conv CNN is displayed in Fig. 3. Though there are some
deviations between the predicted and true risk, the pre-
diction reasonably follows the true curve.

Table 2. Mean squared error on risk predictions
over 100 randomly generated environments

Model MSE ± ∆MSE
1conv 0.0217± 0.0150
3conv 0.0236± 0.0141
Deep 0.0156± 0.00875

4.2 RL agents

Table 3 presents statistics from testing the RL agents in
100 generated environments. The 1conv and 3conv CNNs
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Fig. 3. Performance of an RL-agent with a pretrained
1conv feature extractor with unlocked variables. The
upper image shows the environment and the desired
path marked by the dashed black line. The colored
line is the path taken by the agent. The lower plot
shows the risk along the path. The dashed line is the
calculated risk, and the colored line is the predicted
risk by the pretrained CNN. The color corresponds to
the progress along the path.

achieved sufficient average progress to solve the environ-
ment, while the deeper CNNs did not. Single-layer CNNs
yield low CTE, indicating consistent path adherence but
are not collision-free. In contrast, the three-layer CNN
yields the best collision avoidance but deviates more from
the path. Common for both of the shallow configurations
is that locked CNN parameters led to worse performance.
Fig. 4 illustrates these results for the 1conv architecture.
Finally, deeper CNN had high collision avoidance scores
but failed to adhere to the paths and reach the goals.
This failure could originate from max-pooling the fea-
ture activations, which inherently removes some positional
information. Yet, the deep CNN configurations display
the most significant impact from pretraining the CNNs
via risk regression. In the other configurations, random
initializations perform at least as well as the pretrained
ones. In summary, where the previous works experienced
difficulties in directly utilizing the full resolution of the
LiDAR-like data, the CNN-based architecture enables end-
to-end learning of an RL agent for path-following and
collision avoidance.

5. CONCLUSION AND FUTURE WORK

Our results can be summarized as follows:
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samples is split into a training, validation, and test set
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λ = 0.0025, λ = 0.002 and λ = 0.0005 for the 1conv
CNN, 3conv CNN and DeepCNN, respectively. We store
intermediate models and select the ones that produce the
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RL setup and performance evaluation: We train an
RL agent using Stable-Baselines3’s PPO implementation
(Raffin et al., 2021) for simultaneous path-following and
collision avoidance in the synthetic and stochastic envi-
ronment for each architecture and configuration of CNN
feature extractors. The hyperparameters for the PPO al-
gorithm are identical to the ones applied in Larsen et al.
(2021). After training the agents for 3M timesteps each,
we evaluate whether (1) training an autonomous agent
is possible by processing LiDAR-like data with a CNN
architecture in the RL agent and (2) pretraining the
CNN for risk regression is beneficial for the RL training
process. To this end, we evaluate a set of performance
attributes over 100 testing episodes — average “progress”:
how far along a set path the agent can progress, “collision
avoidance” (COLAV): how often the agent refrains from
colliding, average “cross-track error” (CTE): how far the
agent deviates from the set path; and average time spent
per episode.

4. RESULTS AND DISCUSSIONS

4.1 CNN risk estimation

MSEs of the predicted risk after training the proposed
architectures are displayed in Table 2. All models have
a small MSE, indicating that the range data contains
sufficient information to estimate the maximum CRI, even
though the problem is under-determined; our measure-
ments contain information about the distance and bear-
ing of target ships, while the CRI also depends on their
relative velocities. Of the three architectures, the deep
CNN yields the lowest MSE by a small margin. This
marginal improvement implies that increasing the model
complexity yields diminishing returns for risk estimation.
The predicted risk along the trajectory by the pretrained
1conv CNN is displayed in Fig. 3. Though there are some
deviations between the predicted and true risk, the pre-
diction reasonably follows the true curve.

Table 2. Mean squared error on risk predictions
over 100 randomly generated environments

Model MSE ± ∆MSE
1conv 0.0217± 0.0150
3conv 0.0236± 0.0141
Deep 0.0156± 0.00875

4.2 RL agents

Table 3 presents statistics from testing the RL agents in
100 generated environments. The 1conv and 3conv CNNs
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1conv feature extractor with unlocked variables. The
upper image shows the environment and the desired
path marked by the dashed black line. The colored
line is the path taken by the agent. The lower plot
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calculated risk, and the colored line is the predicted
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achieved sufficient average progress to solve the environ-
ment, while the deeper CNNs did not. Single-layer CNNs
yield low CTE, indicating consistent path adherence but
are not collision-free. In contrast, the three-layer CNN
yields the best collision avoidance but deviates more from
the path. Common for both of the shallow configurations
is that locked CNN parameters led to worse performance.
Fig. 4 illustrates these results for the 1conv architecture.
Finally, deeper CNN had high collision avoidance scores
but failed to adhere to the paths and reach the goals.
This failure could originate from max-pooling the fea-
ture activations, which inherently removes some positional
information. Yet, the deep CNN configurations display
the most significant impact from pretraining the CNNs
via risk regression. In the other configurations, random
initializations perform at least as well as the pretrained
ones. In summary, where the previous works experienced
difficulties in directly utilizing the full resolution of the
LiDAR-like data, the CNN-based architecture enables end-
to-end learning of an RL agent for path-following and
collision avoidance.

5. CONCLUSION AND FUTURE WORK

Our results can be summarized as follows:
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Fig. 4. Example episode for each configuration of the 1conv CNN DRL agent: (a) randomly initialized parameters, (b)
pretrained with locked parameters, and (c) pretrained with unlocked parameters. The black line is the desired path,
and the red line is the agent’s path. Each configuration’s evaluation metrics (d) are averaged over 100 episodes.

Table 3. RL test results averaged over 100
episodes in the simulation environment for
each CNN architecture and parameter config-
uration. Bold entries indicate the best perfor-

mance in the category.

Configuration Avg.prog COLAV CTE Time
1conv random 98.03% 98% 30m 1018s
1conv locked 94.16% 98% 26m 1515s
1conv unlocked 98.28% 97% 33m 971s
3conv random 97.06% 100% 182m 1694s
3conv locked 93.45% 90% 20m 1010s
3conv unlocked 94.19% 99% 113m 1894s
Deep random 44.75% 95% 774m 8278s
Deep locked 71.93% 90% 71m 3210s
Deep unlocked 85.28% 100% 471m 3347s

• We found CNN-based mappings from LiDAR-like dis-
tance measurements to CRIs with low MSE, despite
the underdetermined problem.

• We trained autonomous path-following and collision
avoidance RL agents using guidance-theoretic naviga-
tion features for path-following and CNN-based fea-
ture extraction to encode a high-fidelity rangefinder
sensor for collision avoidance.

• With the proposed CNN architectures, we found that
the utility of pretraining the CNNs to accelerate the
training of RL agents is limited. However, our results
indicate that the utility increases for deeper CNNs
rather than shallow ones.

Ultimately, the results show that the shallow CNN-based
perception model can yield autonomous path-following
and collision avoidance agents that perform comparably
to the previous approach using feasibility pooling. While
the new approach has room for improvement in collision
avoidance, its advantage lies in the ease of implementation
on physical hardware. The CNN-based model needs only
the distance measurements, whereas the feasibility pooling
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method requires additional knowledge of the decomposed
velocity components of each nearby obstacle. Other CNN
architectures can be investigated to improve the approach,
and stacking temporal frames of measurements can enable
the CNN to infer the velocity and acceleration of surround-
ing obstacles.
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