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ABSTRACT

The number of maritime projects is increasing yearly, including
offshore applications, underwater robotics for ocean condition
monitoring, and autonomous ship transport. Many of these ac-
tivities are safety-critical, making it essential to have a robust
closed-loop control system that satisfies constraints arising from
underlying physical limitations and safety aspects. However, this
is often challenging to achieve for real-world systems. For ex-
ample, autonomous ships at sea have non-linear and uncertain
dynamics and are subject to numerous time-varying environmen-
tal disturbances such as waves, currents, and wind. There is
growing interest in using machine learning-based approaches to
adapt these systems to more complex scenarios. However, there
is currently no standard framework to guarantee the safety and
stability of such systems. Predictive safety filters have emerged
recently as a valuable method for ensuring constraint satisfac-
tion, even when unsafe control inputs are used. The safety filter
approach leads to a modular separation of the problem, allowing
the usage of arbitrary control policies in a task-agnostic way. In
this work, a predictive safety filter is developed to ensure anti-
grounding and ship collision avoidance for a small prototype
ferry. The filter takes in a nominal input sequence from a po-
tentially unsafe controller and solves an optimization problem to
compute a minimal perturbation of the nominal control inputs,
which adheres to physical and safety-related constraints. The
system is validated by simulations for several realistic scenarios
with map data from Trondheim, Norway. It is demonstrated that
the predictive safety filter can avoid collisions with static and dy-
namic obstacles. The predictive safety filter approach is flexible
and can be used to improve the robustness of various offshore ap-
plications, e.g. wind turbine stabilization, autonomous vessels,
and marine robotics.
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1. INTRODUCTION
Learning-based control approaches are gaining popularity today,
particularly for highly complex, nonlinear, and stochastic systems
where standard control design methods do not always perform
satisfactorily [1–3]. Learning-based methods can discover new
patterns and actions, adapting to the environment for better per-
formance. However, in practice, it is challenging to guarantee
that such a controller will always respect system constraints, es-
pecially during the initial training phase [4]. For example, an
autonomous ship with azimuthal thrusters must avoid all colli-
sions while keeping in mind the maximum output and turning
rate of its thrusters. These issues limit the applicability of such
methods to many real-world systems.

A natural solution to this problem is to use a predictive safety filter
[5]. This auxiliary system detects when the controlled system is
headed towards an unsafe state and immediately falls back to a
control policy known to be safe. This setup resembles how a
driving instructor might intervene during a lesson. The essential
characteristic of a predictive safety filter is that it attempts to
find a minimal modification to the control inputs that respects
the constraint set over a finite number of future time steps. This
separation of concerns yields a modular approach, where the
learning-based component can be freely designed and optimized
while the safety filter guarantees constraint satisfaction. The
advantages are two-fold. First, the predictive safety filter is a more
straightforward optimization problem than a predictive controller
that optimizes performance and safety. Secondly, the learning-
based component can be trained using more complex, sparser cost
functions without compromising the convergence of the safety
filter, which can yield higher performance after training. For
maritime systems, the predictive safety filter is comparable to
collision avoidance (COLAV) systems for autonomous ships.

A rich set of studies on automatic maritime collision avoidance
exist today, and recent review articles can be found that sum-
marize the majority of state-of-the-art methods [6, 7]. A non-
exhaustive review is given here. A common way of structuring
the COLAV system is using a hierarchy of planners [8–11]. The
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authors in [11] divide the COLAV problem into three levels sep-
arated by their timescale: (a) High-level planning, (b) Mid-level
planning, and (c) Low-level planning. A high-level planner gener-
ates a trajectory or path to the final destination, considering static
obstacle data from, e.g., Electronic Navigational Charts (ENC).
The trajectory is represented by a series of waypoints 𝜂𝑖 to follow
in marine navigation. Because of the larger timescales (min-
utes/hours/days), the dynamics of the ship are often simplified,
reducing this to a path-finding problem. Grid-based or lattice-
based methods typically discretize the map geometry [12] or
partition it into, e.g., Voronoi cells [13]. Randomized sampling
methods that explore the space using random steps have also been
successfully applied [14, 15].

Mid-level COLAV planning algorithms try to avoid static and
dynamic obstacles near the own-ship. Dynamic obstacles are
typically detected and tracked online using the onboard extero-
ceptive sensors and Automatic Identification System (AIS) data.
At this level and timescale (seconds/minutes), the planner should
simulate the vessel to suggest feasible maneuvers for the ship to
execute. Because there may be multiple obstacles, the suggested
manoeuvre should ideally guarantee safety at all time steps con-
sidered in its horizon. For sampling-based methods such as
Scenario-based model predictive control (MPC) approaches, one
considers multiple possible maneuvers that the own-ship (and dy-
namic obstacles) can take at multiple decision points in time [16].
Other methods in this category include e.g. A-star-based plan-
ning [17], Voronoi-diagram-based planning [13] and Rapidly-
exploring Random Trees (RRT) [14, 18].

At the lowest level (seconds or milliseconds), the planner must be
able to react quickly to unexpected situations. Due to the short
time scales involved, these methods are also referred to as reactive
COLAV. Such situations can arise when a nearby vessel makes
a sudden and dangerous maneuver or loses control of the vessel.
Higher-level planners can also fall back to reactive COLAV if
there is high uncertainty regarding the positions of nearby ships
due to sensor malfunctions. Classic examples include Potential
Field (PF) methods [19, 20] and Velocity Obstacle (VO) methods.
VO based approaches identify unsafe own-ship velocities that
result in collision [21, 22]. These computations are very efficient
when all ships are modeled with constant velocities. However,
this assumption is only valid on short-time scales.

The predictive safety filter is best formulated as an optimiza-
tion problem over multiple time steps [5] and is, therefore, most
comparable to a mid-level COLAV algorithm. The novelty of
this work is the implementation and validation of a safety filter
on a maritime vessel that can act as a safety harness around,
e.g., learning-based planning algorithms higher up in the plan-
ning hierarchy. These methods have the potential to enable safer
navigation, which is illustrated in the context of a passenger ferry
voyaging in a narrow water canal. The contributions of this article
are thus:

• The implementation of a predictive safety filter on a passen-
ger ferry platform for both anti-grounding and ship collision
avoidance.

FIGURE 1: THE MILLIAMPERE FERRY

• Validation of the method via simulation

This paper is structured as follows. Relevant modeling of the
own-ship platform is presented in Section 2. The safety filter is
detailed in Section 3. Results and their discussions are presented
in Section 4 and finally, Section 5 concludes the current work.

2. MODELING
This work considers milliAmpere 1, a small passenger ferry pro-
totype intended for urban environments. It aims to be a safe,
flexible, and on-demand replacement for bridges [23]. The ferry
is small and maneuverable, with two azimuthal thrusters mounted
on the underside, which allow it to navigate crowded waterways
with other ships. The following subsections present the equa-
tions of motion of the craft, the thruster dynamics, and a simple
Line-of-Sight (LOS) controller for waypoint tracking. A more
in-depth model derivation and experimental identification of the
parameters can be found in [24].

2.1 Kinematics and Kinetics
The model formulation is based on the 3 degrees of freedom
(DOF) Robot-Inspired Model for marine craft [25]. The position
[𝑥 𝑦] is expressed in North-East (NE) coordinates, and the yaw
𝜓 is defined as the angle between the North axis and the forward-
facing direction of the vessel. The forward and side velocities
of the ship (relative to a coordinate frame fixed to the ship) are
denoted 𝑢 and 𝑣, while the yaw rate is denoted 𝑟. The equations
of motion are given by

𝜼̇ = R(𝜓)𝝂
M𝝂̇ + C(𝝂)𝝂 + D(𝝂)𝝂 = 𝝉

(1)

where the pose of the ship is 𝜼 = [𝑥 𝑦 𝜓]⊤, the velocity is
𝝂 = [𝑢 𝑣 𝑟]⊤, and the rigid body mass M, Coriolis matrix C(𝝂)
and damping matrix D(𝝂) are all 3× 3 matrices. The generalized
force 𝝉 represents all forces acting on the ship, including that of
the actuators. External forces due to waves, wind, and currents
are neglected for simplicity. The kinematics simplify to:

𝜼̇ = R(𝜓)𝝂 =

⎡⎢⎢⎢⎢⎣
cos𝜓 − sin𝜓 0
sin𝜓 cos𝜓 0

0 0 1

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
𝑢

𝑣

𝑟

⎤⎥⎥⎥⎥⎦ (2)

2



and the kinetics can be written

𝝂̇ = M−1 (𝝉 − C(𝝂)𝝂 − D(𝝂)𝝂) (3)

The inertia and Coriolis matrices can be written as follows [24]:

M =

⎡⎢⎢⎢⎢⎣
𝑚11 0 0
0 𝑚22 𝑚23
0 𝑚32 𝑚33

⎤⎥⎥⎥⎥⎦ , C(𝝂) =
⎡⎢⎢⎢⎢⎣

0 0 𝑐13 (𝝂)
0 0 𝑐23 (𝝂)

𝑐31 (𝝂) 𝑐32 (𝝂) 0

⎤⎥⎥⎥⎥⎦
𝑐13 (𝝂) = −𝑚22𝑣 − 𝑚23𝑟

𝑐23 (𝝂) = 𝑚11𝑢

𝑐31 (𝝂) = −𝑐13 (𝝂)
𝑐32 (𝝂) = −𝑐23 (𝝂)

(4)
Note that these matrices combine rigid body and "added mass"
terms, the latter being a virtual mass added to the system due to
the volume of fluid that is accelerated along with the vessel. This
modification reduces the identification problem to identifying
suitable values for𝑚𝑖 𝑗 . The decoupled damping matrix is written
as:

D(𝝂) =
⎡⎢⎢⎢⎢⎣
𝑑11 (𝝂) 0 0

0 𝑑22 (𝝂) 𝑑23 (𝝂)
0 𝑑32 (𝝂) 𝑑33 (𝝂)

⎤⎥⎥⎥⎥⎦
𝑑11 (𝝂) = −𝑋𝑢 − 𝑋 |𝑢 |𝑢 |𝑢 | − 𝑋𝑢𝑢𝑢𝑢2

𝑑22 (𝝂) = −𝑌𝑣 − 𝑌|𝑣 |𝑣 |𝑣 | − 𝑌|𝑟 |𝑣 |𝑟 | − 𝑌𝑣𝑣𝑣𝑣2

𝑑23 (𝝂) = −𝑌𝑟 − 𝑌|𝑣 |𝑟 |𝑣 | − 𝑌|𝑟 |𝑟 |𝑟 |
𝑑32 (𝝂) = −𝑁𝑣 − 𝑁 |𝑣 |𝑣 |𝑣 | − 𝑁 |𝑟 |𝑣 |𝑟 |
𝑑33 (𝝂) = −𝑁𝑟 − 𝑁 |𝑣 |𝑟 |𝑣 | − 𝑁 |𝑟 |𝑟 |𝑟 | − 𝑁𝑟𝑟𝑟𝑟

2

(5)

All coefficients are identified experimentally. Refer to [24] for
the precise values.

2.2 Actuator dynamics
The ferry has two azimuthal thrusters that rotate freely, as shown
in Figure 2. These angles are denoted as 𝜶, the motor speeds (in
RPM) as 𝝎, and the resulting net thrusts as 𝒇 . The subscript 𝑖
refers to the properties of an individual thruster, e.g., 𝛼𝑖 is the
angle of the 𝑖th thruster. From Figure 2, the net force and moment
on the ship are:

𝝉 =

⎡⎢⎢⎢⎢⎣
𝜏𝑥
𝜏𝑦
𝜏𝑚

⎤⎥⎥⎥⎥⎦ = T(𝜶)f =
⎡⎢⎢⎢⎢⎣

cos𝛼1 cos𝛼2
sin𝛼1 sin𝛼2
ℓ1 sin𝛼1 ℓ2 sin𝛼2

⎤⎥⎥⎥⎥⎦
[︃
𝑓1
𝑓2

]︃
. (6)

Choosing the thrust f to achieve some force 𝝉 is known as the con-
trol allocation problem. The simplest approach is to extend T(𝜶)
by decomposing the thrust vectors into their 𝑥 and 𝑦 components:

𝝉 =T𝑒f𝑒

=

⎡⎢⎢⎢⎢⎣
1 0 1 0
0 1 0 1
0 ℓ1 0 ℓ2

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎣
𝑓1,𝑥
𝑓1,𝑦
𝑓2,𝑥
𝑓2,𝑦

⎤⎥⎥⎥⎥⎥⎥⎦
(7)

thereby yielding the linear transformation T𝑒. Appropriate values
for f and 𝜶 can then be found by taking the pseudoinverse of T𝑒.

The control allocation mapping is denoted as:

(𝜶, f) = T−1 (𝝉) s.t.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
f𝑒 = T†𝑒𝝉
𝑓𝑖 =

√︂
𝑓 2
𝑖,𝑥
+ 𝑓 2

𝑖,𝑦
𝑖 ∈ {1, 2}

𝛼𝑖 = arctan2 ( 𝑓𝑖,𝑦 , 𝑓𝑖,𝑥) 𝑖 ∈ {1, 2}
(8)

This approach does not consider actuator constraints and can
therefore yield infeasible control sequences in practice. In this
case, the control allocation problem T−1 (𝝉) is best formulated as
a constrained Nonlinear Program (NLP) [25]. Control allocation
is implicitly handled by the predictive safety filter framework
when actuator constraints are included in the formulation. The
thrust 𝑓𝑖 is related to the motor RPM𝜔𝑖 by the following invertible
function:

f = L(𝝎) (9)

This mapping was determined experimentally and modeled as
an invertible polynomial [24]. The relationship between the de-
sired motor RPM 𝝎𝑑 and the actual value 𝝎 is modeled as a
proportional control law with gain 𝐾𝜔𝑖

corresponding to thruster
𝑖:

𝜔̇𝑖 = 𝐾𝜔𝑖
(𝜔𝑑,𝑖 − 𝜔𝑖) (10)

Finally, the azimuthal thrusters have a constant turning rate 𝐾𝛼𝑖
.

This is approximated with the help of the function:

𝜆(𝛽; 𝜖) = ssa (𝛽)√
ssa (𝛽)2+𝜖

(11)

where ssa (·) is the smallest signed angle function. Given the
desired angles 𝜶𝑑 and the actual angles 𝜶, the turning rate for the
𝑖th thruster is then:

𝛼̇𝑖 = 𝐾𝛼𝑖
𝜆
(︁
𝛼𝑑,𝑖 − 𝛼𝑖; 𝜖𝑖

)︁
(12)

where 𝐾𝛼𝑖
, 𝜖𝑖 , 𝐾𝜔𝑖

are thruster-specific parameters. Refer to [24]
for the precise values.

2.3 Full dynamics
The full dynamics of the ferry can now be written as:

𝜼̇ = R(𝜓)𝝂
𝝂̇ = M−1 (T(𝜶) L(𝝎) − C(𝝂)𝝂 − D(𝝂)𝝂)
𝝎̇ = K𝝎 (𝝎𝑑 − 𝝎)
𝛼̇𝑖 = 𝐾𝛼𝑖

𝜆
(︁
𝛼𝑑,𝑖 − 𝛼𝑖; 𝜖𝑖

)︁ (13)

The inputs to this model are the desired thruster angles 𝜶𝑑 and
thrust vector 𝝎𝑑 , which are typically computed from a desired
force 𝝉𝑑 using Equation (8). However, as will be seen later, it is
simpler to skip this step when formulating the predictive safety
filter and select 𝜶𝑑 and 𝝎𝑑 as decision variables.

2.4 Naive controller
The safety filter is validated using a simple LOS guidance law
controller that tracks a path specified by a sequence of waypoints.
When the own-ship comes within a specified radius of the current
target waypoint, the reference is switched to the next waypoint in
the sequence [25]. The LOS guidance law is defined as:

𝜓𝑑 = 𝜋𝑝 − arctan
(︂ 𝑦𝑒
Δ

)︂
(14)
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FIGURE 2: ACTUATORS ON THE MILLIAMPERE FERRY. THERE
ARE TWO AZIMUTHAL THRUSTERS THAT CAN ROTATE FREELY.

 

FIGURE 3: INTERACTIONS BETWEEN SAFETY FILTER AND TYP-
ICAL GUIDANCE SYSTEM. STATE ESTIMATION IS NOT INCLUDED
IN THIS WORK.

Where 𝜋𝑝 is the angle of the vector from the previous waypoint
to the current target waypoint defined in the NE-frame, Δ is the
look-ahead distance, and 𝑦𝑒 is the cross-track error, calculated
from Equation (12.43) in [25]. The desired force on the ship is
then defined as:

𝝉𝑑 =

⎡⎢⎢⎢⎢⎣
𝜏𝑥,𝑑
𝜏𝑦,𝑑
𝜏𝑚,𝑑

⎤⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎣

𝑇𝑥,𝑑
0

𝐾𝑝 (𝜓𝑑 − 𝜓)

⎤⎥⎥⎥⎥⎦ (15)

where the 𝝉𝑑 vector is a constant desired force 𝑇𝑥,𝑑 in the forward
ship direction, zero desired force laterally, and a desired moment
proportional to the difference between the desired heading and
actual heading. Finally, the desired force vector is mapped to
control inputs (f𝑑 ,𝜶𝑑) by:

(f𝑑 ,𝜶𝑑) = T−1 (𝝉𝑑)
(𝜶,𝝎) = (𝜶𝑑 ,L−1 (f𝑑))

(16)

These control inputs are likely to be unsafe or infeasible, and
are therefore passed on to the safety filter for evaluation and
modification.

3. SAFETY FILTER
The predictive safety filter is formulated as an optimization prob-
lem constrained by the ferry dynamics, state and actuator limits,
and anti-collision conditions. The objective of the problem is
to find a minimal perturbation 𝜹 to the input 𝝉 such that the
safety requirements are satisfied. The modified input 𝝉̄ is then
passed to the system. Figure 3 shows how the safety filter inter-
acts with an idealized guidance and navigation system. Note that

perfect knowledge of the ship’s and obstacles’ state is assumed;
handling uncertainty and robust constraint satisfaction is left as
future work.

The system dynamics given by Equation (13) are discretized using
an explicit Runge-Kutta method of order 1 with constant time-
step ℎ. The inputs and states at each time step are taken as
decision variables, also known as direct multiple shooting. In the
following, the subscripts 𝑘 are used to refer to the time step, 𝑖
for vector elements, and 𝑗 for the 𝑗 th obstacle. The full NLP is
written as

min
𝜼𝑘 ,𝝂𝑘 ,𝜶𝑘 ,𝝎𝑘𝜹𝑘

𝑁∑︂
𝑘=1

𝛾2
𝛼∥𝜹𝛼,𝑘 ∥2 + 𝛾2

𝜔 ∥𝜹𝜔,𝑘 ∥2

s.t. 𝛼𝑙𝑏 ≤ 𝛼𝑖,𝑘 ≤ 𝛼𝑢𝑏 ∀𝑖, 𝑘
𝜔𝑙𝑏 ≤ 𝜔𝑖,𝑘 ≤ 𝜔𝑢𝑏 ∀𝑖, 𝑘
𝜶̄𝑘 = 𝜶𝑘 + 𝜹𝛼,𝑘
𝝎̄𝑘 = 𝝎𝑘 + 𝜹𝜔,𝑘

𝜼𝑘+1 = 𝜼𝑘 + ℎR(𝜓)𝝂𝑘
𝝂𝑘+1 = 𝝂𝑘 + ℎM−1 [𝝉(𝜶̄𝑘 , 𝝎̄𝑘) − C(𝝂)𝝂 − D(𝝂)𝝂]
|𝛼̄𝑖,𝑘+1 − 𝛼̄𝑖,𝑘 | ≤ Δ𝛼 ∀𝑖, 𝑘
|𝜔̄𝑖,𝑘+1 − 𝜔̄𝑖,𝑘 | ≤ Δ𝜔 ∀𝑖, 𝑘
(Ap𝑘 − b) + 𝑑 ≤ 0 ∀𝑘
𝑔𝑗 (p𝑘 , o𝑗 ,𝑘) > 0 ∀ 𝑗 , 𝑘
o𝑗 ,𝑘+1 = o𝑗 ,𝑘 + v𝑗ℎ ∀ 𝑗 , 𝑘

(17)
The position [𝑥 𝑦] of the own-ship at time-step 𝑘 is denoted p𝑘 ,
and 𝑑 is the safe radius. The perturbed inputs 𝜶̄ and 𝝎̄ are bounded
by (𝛼𝑙𝑏, 𝛼𝑢𝑏) and (𝜔𝑙𝑏, 𝜔𝑢𝑏) respectively, and rate-limited by the
constants Δ𝛼 and Δ𝜔 respectively. The rate-limiting constraints
were chosen instead of directly modeling the actuator dynamics
given in Equation (13). This was found to simplify the problem
greatly and is a sufficiently accurate approximation, particularly
for 𝜶. Anti-grounding is achieved by defining a safe water re-
gion using the linear constraint set defined by A and b, regularly
updated as the vessel advances along the path. Section 3.1 de-
scribes how A and b are computed. In this formulation, both
static and dynamic obstacles are modeled as ellipses centered at
the positions 𝒐𝑗 ,𝑘 = [𝑥𝑜𝑏𝑠 𝑦𝑜𝑏𝑠], where 𝑘 again refers to the
time-step and 𝑗 is the obstacle index. This is achieved using
signed distance functions 𝑔𝑗 (·), which measure the distance be-
tween the safe radius of the own-ship and the surface of the 𝑗 th
ellipse, and are defined precisely in Section 3.2. The distance
function returns a negative value if the safe radius and the el-
lipse intersect. Dynamic obstacle movement is modeled with a
constant velocity v𝑗 , which updates the position 𝒐𝑗 ,𝑘 at each time
step. Further implementation details and parameter values can
be found in Section 3.3.

3.1 Anti-grounding constraint representation
In the vicinity of land, the area in which the ship can safely navi-
gate within a given timespan is generally a non-convex set. This
constraint is challenging to model in an optimization problem.
Instead, a convex subset of this area is identified online from
cartographic data. This area is referred to as the Convex Safe
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Set (CSS). The procedure is based on the algorithm presented by
[26] and is summarized in Algorithm 1. The algorithm is imple-
mented using the Shapely python package [27]. The estimated
CSS is updated every 10 seconds in the simulation. The advan-
tages of this approach are that it is relatively cheap to compute
the CSS, it can be represented as a linear constraint set, and it
can be pre-computed at regular points along a nominal trajectory
if needed. The disadvantage is that a CSS can be overly conser-
vative, especially when the vessel is close to either land or some
obstacle.

Algorithme 1 : INNER CONVEX SAFE SET ESTIMATION
𝑝 ← Current position of ship;
𝐻 ← Rectangle with center at 𝑝 and width,height = 𝐷𝑚𝑎𝑥 ;
𝑆 ← Polygonal representation of safe region around 𝑝,
extracted from map data;
𝑆′ ← 𝐻 ∩ 𝑆;
𝐵← Boundary(𝑆′);
𝐶 ← Empty table for storing constraints;

while 𝐵 ≠ 𝐸𝑚𝑝𝑡𝑦 do
𝑝𝑛 ← Nearest point on 𝐵, as seen from 𝑝;
𝐶′ ← Constraint line orthogonal to (𝑝𝑛 − 𝑝), with
mid-point at 𝑝𝑛;

Remove segments of 𝐵 that are outside of constraint line
𝐶′, as seen from 𝑝;

Add constraint line 𝐶′ to table 𝐶
return 𝐶

3.2 Obstacle constraint representation
In this work, obstacles are represented as oriented ellipses, which
provides more design flexibility than a circular representation and
more closely matches the profile of a typical vessel. In theory,
it is possible to use Algorithm 1 to compute a safe set without
obstacles. However, requiring the safe set to be convex can be
conservative, particularly when the vessel must perform a sharp
turn. Figure 5 illustrates such an example. Here the vessel must
navigate between two obstacles (denoted obs1 and obs2), and the
nominal trajectory is already safe. However, due to the angle of
the approach, there is no possible convex set that contains the
nominal trajectory and the own-ship. The safety filter, therefore,
corrects course and takes an evasive maneuver instead. This
issue arguably resolves itself when the ship passes obs1, and a
CSS that contains the nominal path can then be found. However,
depending on the vessel’s speed, it may already be too late to
correct course again and avoid obs2. In the best case, the vessel
may take the turn later than desirable, which breaks Rules 8 and
16 of Convention on the International Regulations for Preventing
Collision at Sea (COLREGS) (i.e., maneuvers must be made or
signaled in ample time). By representing the obstacles directly
using additional constraints, the predictive safety filter can plan
much more effectively. This problem is nonetheless very tractable
despite the added complexity, as will be shown experimentally

Ship area horizon

Safe bounding  polygon

Ship

(a) Initial

Ship area horizon

New safe area bound

Ship

Nearest point

Constraint line

(b) Iteration 1

Ship

Ship area horizon

(c) Final iteration

Ship

Ship area horizon

Convex safe area

(d) Final CSS

FIGURE 4: ALGORITHM FOR COMPUTING CONVEX SAFE SET BY
SAMPLING NEAREST POINTS ON CONSTRAINTS (MARKED Pi ).

in Section 4 that this problem is still very tractable despite the
added complexity.

The parameters for the 𝑗 th obstacle are defined as the tuple
(o𝑗 , v𝑗 , 𝑎𝑜𝑏𝑠, 𝑗 , 𝑏𝑜𝑏𝑠, 𝑗 , 𝜃𝑜𝑏𝑠, 𝑗 ), where o𝑗 is the coordinate vector
for the center of the obstacle, v𝑗 is the velocity of the obstacle,
𝑎𝑜𝑏𝑠, 𝑗 and 𝑏𝑜𝑏𝑠, 𝑗 is 1/2 the length of the ellipse in its semi-major
and semi-minor axes respectively, and 𝜃𝑜𝑏𝑠 denotes the angle
between the coordinate-frame x-axis and the semi-major axis of
the elliptical obstacle. The formula for an elliptical disk can be
written as:

𝐸 (𝒙, 𝑎, 𝑏) ≤ 0 (18)

Convex
safe set

Obs₁ Obs₂

Nominal

Trajectory

"Safe"

Trajectory

FIGURE 5: ILLUSTRATION OF A CONVEX SAFE SET THAT ALSO
TAKES OBSTACLES (MARKED OBS) INTO ACCOUNT. DESPITE
THE NOMINAL TRAJECTORY BEING SAFE, THE REQUIREMENT
THAT THE SAFE SET BE CONVEX IS OVERLY CONSERVATIVE.
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where

𝐸 (𝒙, 𝑎, 𝑏) =
𝑥2

1
𝑎2 +

𝑥2
2
𝑏2 − 1 (19)

The constraint function 𝑔𝑗 (p, o) for the 𝑗 th obstacle is defined as:

𝑔𝑗 (p, o) = 𝐸 [𝑹(𝜃𝑜𝑏𝑠) (p − o), 𝑎𝑜𝑏𝑠 + 𝑑, 𝑏𝑜𝑏𝑠 + 𝑑] (20)

where 𝑹(𝜃𝑜𝑏𝑠) is the rotation matrix:

𝑹(𝜃𝑜𝑏𝑠) =
[︃
cos 𝜃𝑜𝑏𝑠 − sin 𝜃𝑜𝑏𝑠
sin 𝜃𝑜𝑏𝑠 cos 𝜃𝑜𝑏𝑠

]︃
(21)

Equation (20) can be expanded as:

𝑔𝑗 (p, o) =
(cos 𝜃𝑜𝑏𝑠 (𝑥 − 𝑥𝑜𝑏𝑠) − sin 𝜃𝑜𝑏𝑠 (𝑦 − 𝑦𝑜𝑏𝑠))2

(𝑎𝑜𝑏𝑠 + 𝑑)2

+ (sin 𝜃𝑜𝑏𝑠 (𝑥 − 𝑥𝑜𝑏𝑠) + cos 𝜃𝑜𝑏𝑠 (𝑦 − 𝑦𝑜𝑏𝑠))2
(𝑏𝑜𝑏𝑠 + 𝑑)2

− 1 (22)

The dynamic obstacle motion over the prediction horizon is
taken into account using a movement constraint with the form
o𝑖,𝑘+1 = o𝑖,𝑘 + v𝑖ℎ, where the linear velocity of the 𝑖th obstacle is
denoted v𝑖 . Straight-line obstacle motion is thus assumed, which
is deemed reasonable as longer time horizons are not considered.

3.3 Implementation
The CasADi symbolic framework is used to efficiently encode the
resulting optimization scheme [28], which is then solved using
the open-source IPOPT software [29]. A time-step of ℎ = 0.5𝑠
yielded sufficiently accurate state predictions for the relatively
slow dynamics of the ship. Furthermore, a prediction horizon of
𝑁 = 30 was selected, giving a fair balance between performance
and computational complexity. The total number of decision
variables to be computed for each solver iteration is 𝑁 (𝑛𝑥 +𝑛𝑢) =
30(6 + 4) = 300. All experiments were run on a consumer-grade
laptop. The cost parameters were chosen as follows:

𝛾2
𝛼 =

1
(𝛼𝑢𝑏 − 𝛼𝑙𝑏)2

𝛾2
𝜔 =

10
(𝜔𝑢𝑏 − 𝜔𝑙𝑏)2

(23)

Due to the relatively high cost of perturbing 𝝎, the safety filter
prioritizes turning the ship by modifying 𝜶, rather than slowing
down by setting 𝝎̄ ≈ 0. Table 1 shows the parameters that were
used in the experiments.

4. RESULTS AND DISCUSSIONS
Realistic scenarios in the Trondheim canal were constructed us-
ing the seacharts library for Python [30]. All scenarios were
designed in the Trondheim canal, as shown in Figure 6, and can
be summarized as:

(a) Two wide barriers blocking the canal

(b) Planned path cuts through land

(c) Curved barrier forcing the ship to backtrack

(d) Case (c) with a longer prediction horizon

TABLE 1: SAFETY FILTER PARAMETERS

Parameter Value Description
Δ 100 m Lookahead distance
𝐾𝜓 200 Heading gain
𝑇𝑥,𝑑 350 N Constant forward force

𝑁 30 Horizon length
ℎ 0.5 s time-step
Δ𝛼 0.5 rad Rate limit (𝜶)
Δ𝜔 0.875 krpm Rate limit (𝝎)
𝛼𝑙𝑏 −𝜋 [rad] Lower bound (𝜶)
𝛼𝑢𝑏 𝜋 [rad] Upper bound (𝜶)
𝜔𝑙𝑏 −4 krpm Lower bound (𝝎)
𝜔𝑢𝑏 4 krpm Upper bound (𝝎)
𝑑 5 m Own-ship safe radius
𝛾𝛼 0.159 rad−1 Perturbation cost (𝜶)
𝛾𝜔 0.39 krpm−1 Perturbation cost (𝝎)

Trondheim fjord

Canal

Nidelv river

FIGURE 6: SIMPLIFIED NAVIGATIONAL CHART OF TRONDHEIM
AREA
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(e) Single incoming ship

(f) Two incoming ships

Figure 7 shows how the safety filter corrects unsafe control inputs
to avoid collisions in each test case. The results of each case
are discussed individually, but cases (c) and (d) are emphasized
because they demonstrate the consequences of handling goal ful-
fillment and safety separately. The actual perturbations done to
the azimuthal angles in cases (c) and (d) are shown in Figures 8
and 9 respectively, and the computation time throughout each
case is plotted in Figure 10. The motor speed perturbations were
relatively small due to the high cost placed on them and were
therefore not included.

Figure 7a shows that the system can perform effective anti-
grounding even when the reference waypoint is infeasible. No-
tably, a kink is introduced into the otherwise smooth trajectory.
This abnormality is possibly due to a small outcrop of land further
along the path, yielding an overly conservative anti-grounding
safe set. Further investigation found that this behavior can also
occur when there is a tight chokepoint in the canal, as seen in
Figure 11.

Figure 7b demonstrates that the safety filter can avoid large ob-
stacles by turning early. This scenario represents the worst-case,
where the own-ship needs to move from one canal bank to the
other in relatively little time.

Figures 7c and 7d show how the behavior of the safety filter for
a planning horizon of 30 s and 50 s respectively. In the first case,
the concavity of the barrier forces the own-ship to backtrack.
In this situation, the safety filter has to force the own-ship to
move in the opposite direction of the desired path. A shorter
planning horizon causes the own-ship to turn quite late, causing
an aggressive turning maneuver. The looping behavior can be
explained by the fact that the safety filter no longer activates when
the own-ship moves away, such that the naive controller moves the
own-ship towards the barrier again. This issue is easily mitigated
by increasing the planning horizon, as shown in Figure 7d. The
longer planning incurs a higher solve-time for the safety filter,
which occasionally reaches the threshold for computation time.
While this might cause the solver to return a sub-optimal solution,
in practice, the solve-times quickly decay due to the warm-start
strategy (see Figure 10b).

Figure 7e shows how the safety filter can easily handle a large
moving obstacle. The positions of the own-ship and the dynamic
obstacle are shown at three different time steps for clarity. The
safety filter can also avoid multiple dynamic obstacles, as shown
in Figure 7f. Again, the positions of the own-ship and obstacles
are plotted at multiple time steps. These two test cases highlight
that the safety filter does not follow the COLREGS as outlined in
[31]. Specifically, the own-ship should give way to the right (rules
14 and 15), with a maneuver initiated in ample time to signal its
intention to the other ships (rule 8). The simple objective function
in Equation (17) does not capture these considerations. Instead,
the role of the safety filter is to serve as a "last line of defense"
for a learning-based algorithm trained to maneuver correctly in
traffic situations.

Waypoint path

Naive LOS

LOS + Safety filter

(a) Anti-grounding

LOS + Safety filter 

Naive LOS

(b) Static obstacles

Naive LOS

LOS + Safety filter

Obstacles

(c) Concave static obstacles: Horizon N = 30

LOS + Safety filter

Naive LOS
Obstacles

(d) Concave static obstacles: Horizon N = 50

Naive LOS

LOS + Safety filter

(e) Single dynamic obstacle

(f) Multiple dynamic obstacles

FIGURE 7: OVERVIEW OF WAYPOINT (MARKED WPi ) TRACKING
RESULTS FOR ALL TEST CASES.
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FIGURE 8: AZIMUTH ANGLE CONTROL INPUT MODIFICATION FOR
CASE (C)
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FIGURE 9: AZIMUTH ANGLE CONTROL INPUT MODIFICATION FOR
CASE (D)
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(b) Case (d)

FIGURE 10: SOLVE TIME OVER THE COURSE OF THE TRAJEC-
TORY FOR CASES (C) AND (D)

Ship

Target waypoint

Convex
safe area

(a) Open area

Ship

Convex
safe area

Target waypoint

(b) Chokepoint

FIGURE 11: COMPARISON OF BEST -AND WORST CASE PERFOR-
MANCE FOR CONVEX SAFE SET ESTIMATION ALGORITHM

5. CONCLUSION
Self-improving systems that can automatically learn from experi-
ence and optimize their performance are increasingly becoming
a reality. In practice, it is challenging to guarantee safe operation
due to the learning subsystems without significantly restricting
their model class. In order to retain this flexibility, other systems
that robustly guarantee safety are essential tools in designing con-
trol systems that incorporate learning components. In this work,
the predictive safety filter proposed by [5] has been adapted to the
domain of autonomous collision avoidance for ships. The filter
activates when the control system proposes a potentially unsafe
trajectory, and it computes a minimal adjustment of the input in
order to satisfy the constraints. Anti-grounding is achieved via
the computation of a convex safe set from cartographic data us-
ing the method proposed by [26]. In addition, static and dynamic
obstacles are modeled as ellipses, and the corresponding distance
functions are used as constraints when formulating the predictive
safety filter.

The predictive safety filter was implemented using open-source
software and is shown to be feasible for real-time applications
(< 1 Hz), despite the nonlinear obstacle constraints. The perfor-
mance was not optimized further in this work, but this can be
achieved without significant effort by using the acados library
[32] to compile the solver code or simply by using faster hard-
ware. The limitations of the approach include (i) Sub-optimal
behavior when the planning horizon is too short (ii) Conserva-
tive safe set estimation that performs poorly in narrow canals
(iii) Static obstacles are modeled with constant velocities (iv) No
handling of uncertainties (v) The safe trajectories do not follow
traffic rules according to the COLREGS [31]. Points (ii-v) are
of particular interest and will be the subject of future work. The
flexibility and efficiency of the approach make it suitable for use
with learning-based planning or control methods, which will be
explored in future work.
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