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Abstract: The early detection of breast cancer using mammogram images is critical for lowering
women’s mortality rates and allowing for proper treatment. Deep learning techniques are commonly
used for feature extraction and have demonstrated significant performance in the literature. However,
these features do not perform well in several cases due to redundant and irrelevant information.
We created a new framework for diagnosing breast cancer using entropy-controlled deep learning
and flower pollination optimization from the mammogram images. In the proposed framework, a
filter fusion-based method for contrast enhancement is developed. The pre-trained ResNet-50 model
is then improved and trained using transfer learning on both the original and enhanced datasets.
Deep features are extracted and combined into a single vector in the following phase using a serial
technique known as serial mid-value features. The top features are then classified using neural
networks and machine learning classifiers in the following stage. To accomplish this, a technique
for flower pollination optimization with entropy control has been developed. The exercise used
three publicly available datasets: CBIS-DDSM, INbreast, and MIAS. On these selected datasets, the
proposed framework achieved 93.8, 99.5, and 99.8% accuracy, respectively. Compared to the current
methods, the increase in accuracy and decrease in computational time are explained.

Keywords: breast cancer; data augmentation; deep learning; features fusion; feature optimization

1. Introduction

Breast cancer is the most common disease among women, and it affects the breast
region and spreads to other body parts. Breast cancer affects the breast tissue and is known
to be the second most widely spread disease in the world [1]. In an investigation by the
World Health Organization (WHO), 8.4% of breast cancer patients received a diagnosis,
and 6.6% passed away [2]. Breast cancer affects more than 8% of women at some point in
time [3]. Breast cancer claimed the lives of 43,250 women in 2022. Breast cancer-related
tumors are classified as benign or malignant [4]. A malignant tumor spreads to other organs,
whereas a benign tumor does not spread to the rest of the body [5]. There are numerous
imaging tools available for early breast cancer treatment. A pathological biopsy is one of
the most accurate methods; according to evidence-based medicine, patients with cancerous
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tumors should avoid having too many biopsies performed in order to stop cancer cell
growth and metastasis. As a result, pathological examinations are frequently performed
prior to chemotherapy [6]. Furthermore, computer-aided radiologists (CAD) discovered
that diagnosis aids in the early detection of breast cancer in ultrasound images (US) while
decreasing operator-dependent US imaging behavior [7].

Mammography monitoring is one of the most important methods for preventing breast
cancer. An X-ray is used to examine the breast in this technique [8]. Asymptomatic women
are subjected to mammography screenings and procedures in order to detect early, clinically
undiagnosed breast cancer [9]. The best imaging method for detecting microcalcifications
and ductal carcinoma in situ is mammography (DCIS) [10]. The widespread adoption of
screening mammography is likely to blame for the rise in the overall incidence of DCIS
during the past 20 years [11]. Prior to classification, previous research used a variety of
techniques to develop computer-aided diagnosis (CAD) systems, including images. To
improve the images’ ability to identify benign or malignant tissue, edge detection, wavelet
transform, microcalcification detection, and region of interest (ROI) segmentation were
used [12].

Causes such as noise, poor image quality, and unrelated parts will have an impact
on the most common characteristics in the field of medical images [13]. Preprocessing
techniques are used to address this issue [14]. The preprocessing technique is the technique
that improves the image quality [15]. The next process is to extract features from the
targeted region [16]. After passing these features to a classifier, it determines whether these
mammogram images are normal or abnormal [17]. Feature selection is a procedure that
follows feature extraction and is frequently used in machine learning [18]. The primary
goal of feature selection is to remove redundant features from the original data [19]. The
many characteristics of machine learning algorithms include effective performance on
healthcare datasets involving images such as X-rays, and various blood samples [20].

Deep learning has recently significantly improved in several areas, including cell
segmentation, skin melanoma, and hemorrhage detection [21]. Deep learning has been
shown to be effective in medical imaging, particularly in COVID-19, breast cancer detection,
the diagnosis of brain tumors, Alzheimer’s disease, and a variety of other conditions. A
convolutional neural network (CNN) is a deep learning-based architecture with many
layers. CNN converts pixels in an image into features [22]. Later, the characteristics are
used to identify and classify infections. The features were extracted by CNN from the
original images. The collection of irrelevant features extracted from the raw images also
influences how well the classification performs. Choosing only the most relevant features
is critical for improving classification precision. An active research area is the selection of
the best features from the extracted initial features. Particle swarm optimization (PSO),
genetic algorithm (GA) [23], and a few other selection algorithms are described and used
in the literature for medical imaging [24]. These methods focus on the most beneficial
subset of features rather than the entire feature field. The ability of feature selection
methods to improve system accuracy while reducing computation time is their primary
advantage. However, when selecting the best features, some critical features are sometimes
overlooked, reducing the system’s precision. As a result, experts in computer vision
developed feature fusion techniques. The system is more precise and has more predictors as
a result of the fusion procedure. Two popular fusion techniques are serial-based fusion and
parallel fusion.

Several computer vision-based methods for detecting and classifying breast cancer
using mammography images have been presented in recent years [25]. Some worked
on segmentation, while others focused on feature extraction and feature extraction from
raw images [26]. In addition, researchers used and worked on the preprocessing step to
enhance the affected area for better feature extraction and to improve the contrast and
noisy images [27]. For example, Dilovan et al. [28] presented a method for deep learning in
breast cancer. In this suggested approach, the region is selected using machine learning
techniques of interest. The region of interest is separated and divided into different blocks.
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The researchers extracted deep features and optimized them by utilizing a genetic algorithm.
As a result, they achieved 98.7% accuracy. The limitation of this proposed method was
that there were multiple features from each diagnosed block. Shahan et al. [29] presented
a method that utilizes deep learning for breast cancer. In the proposed methodology,
they collected information from various sources, fused the datasets, and simulated them
using breast image data. They obtained 99% accuracy as a result. The proposed method’s
drawback was that computational intelligence techniques could be used to increase the
system’s accuracy.

Huynh et al. [30] described a procedure for treating breast cancer using transfer
learning from a deep convolution network. They used and extracted features from CNN to
train the support vector machine according to this proposed approach. A 90% accuracy
rate was achieved. The deep learning strategy used in the suggested method, which uses
large datasets and potent computational resources, has a drawback. Ghada et al. [31]
reported a deep learning-based method for classifying breast cancer cases. Retina net,
a deep learning-based model, was used in this suggested classification technique. The
results were 97% accurate as a result. The shortcomings of the proposed technique were
data duplication, imbalance, and inconsistent object detectors. Jing et al. [32] reported a
technique for identifying breast cancer using the deep learning Ada Boost algorithm. They
used CNN LSTM and advanced computational methods in the suggested methodology.
They had a 98.3% success rate. The suggested approach’s disadvantage was the required
sizeable quantity of training data. Neslihan et al. [33] presented a deep-learning image
classification method for treating breast cancer. In the suggested approach, they used a
CNN-based model to forecast both the likelihood of malignant tumors and the degree of
image malignancy. They were accurate to 82.13%. The task-wise early stopping in the
multitasking design was the method’s flaw. Naresh et al. [34] presented the use of a deep
learning system for detecting breast cancer. In the proposed approach, they compared
deep learning algorithms to machine learning algorithms using a deep learning neural
network model. Their success percentage was 99.67%. The lack of data for expansion
was a problem with the suggested approach. A breast cancer treatment method reported
by Yeman et al. [35] used deep learning. This technique used a patch-based multi-input
CNN to detect breast tumors. As a result, they had a 92% accuracy rate. The proposed
method’s disadvantage was that reliability and detection accuracy could be improved by
training with a larger data set. Luqman et al. [36] presented a method for the semantic
segmentation of image data for breast cancer using deep learning. They used RCNN and
a transfer learning preprocessing algorithm in this approach. They were, therefore, 98%
accurate. The suggested methodology’s limitations were fewer training instances, sampling
disease, and class imbalance. Aruna et al. [37] described a technique for the early detection
of breast cancer using statistical tools. Support vector machines and Naive Bayes were
contrasted with other data mining methods. They discovered the best predictor using
WEKA. They were entirely accurate. The SVMs, both linear and non-linear, could not
be analyzed using the suggested approach. Kundan et al. [38] presented a convolutional
neural network-based treatment for breast cancer. They used a CNN-based model and
classified the features in the suggested methodology. An accuracy of 90% was attained.
The proposed method’s limitation was the small size of the data collection. Bindu et al. [39]
described a method for categorizing breast cancer using an artificial neural network with
the ideal amount of inputs. They classified the features using the feed-forward algorithm
in the suggested approach. They obtained 90% accuracy as a result. The method’s flaw
was that determining the tumor variety took longer and cost more money. Umar et al. [40]
presented a technique for detecting breast cancer that classified mammography images
using a convolution neural network. They used the CNN-based model in this methodology
for training, and applied the winner filter’s preprocessing procedure. They then divided
the crucial data into segments (masses). They were, therefore, 98% accurate.
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1.1. Major Challenges

The approaches discussed above emphasized preprocessing and deep learning-based
techniques to increase classification accuracy. However, they had to deal with limited data,
parallels between benign and malignant masses, and redundant feature data. The most
crucial stage in any computer-aided diagnostic system is feature engineering, according to
literature reviews. Additionally, it is noted that the experts did not consider the optimization
process, which can improve the accuracy and shorten the computation time. The key
challenges which we consider in this work are as follows: (i) It is difficult to manually
separate malignant and benign extracted slices from original compact images. (ii) Because
there are fewer malignant images than benign lesions, this affects the selected deep learning
model during the training process. (iii) Regarding the small growth of lesions, the visual
has a high degree of similarity between benign and malignant lesions, which may distort
the correct classification. (iv) To improve accuracy, selecting important features ignores
some essential features found by several optimization algorithms [41], due to their stopping
condition and search criteria [42]. We can address these issues using a mammography
image classification for breast cancer using a deep-learning approach.

1.2. Major Contributions

Here is a list of this study paper’s main contributions:

• A fusion-based contrast enhancement technique was proposed for lesion contrast
enhancement of the original images.

• We used a deep learning model called ResNet50 that had already been trained to
perform the fine-tuning. After that, deep transfer learning with set hyper-parameters
was used to train both the original and enhanced images.

• After that, a fusing method known as serial mid-value feature fusion was proposed.
• Flower pollination was proposed, using a controlled regula falsi-based best features

selection method before using machine learning classifiers to classify the results.

2. Materials and Methods

This section presents a proposed breast cancer classification method based on mammo-
gram images. Figure 1 depicts the proposed framework. The initial mammography images
of the datasets are first augmented, and the augmented datasets are then contrasted. The
refined Resnet50 deep network was then fed the original and improved images, which were
then taught using deep transfer learning. The trained models are then used to determine the
characteristics of the global average pool layer. Following feature extraction, the proposed
technique is used for fusion. In the following step, we created a feature selection method to
select the best features from the fused vector. Finally, machine learning classifiers are used
to categorize the best features. Each stage is explained in detail below.

2.1. Dataset Collection

In this work, we consider three mammography image datasets: CBIS-DDSM [43],
INbreast [44], and MIAS [45]. There are two classes in the CBIS-DDSM dataset, malignant
and benign. The second INbreast dataset uses the classifications benign and malignant. The
MIAS collection uses the classifications benign, malignant, and normal. Table 1 provides a
short description of the images in these datasets. We used data augmentation to carry out
all three procedures shown in Figure 2 because these datasets were unbalanced. First, we
turned them 90 degrees, and then flipped them to the left and right.
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Table 1. Brief description of selected datasets.

Dataset Name Classes Images Augmented Training/Testing

CBIS-DDSM
Benign 557 6000 3000/3000

Malignant 637 6000 3000/3000

INbreast
Benign 76 4000 2000/2000

Malignant 70 4000 2000/2000

MIAS
Benign 52 4000 2000/2000

Malignant 39 4000 2000/2000
Normal 209 4000 2000/2000

2.2. Dataset Augmentation

Recently, several researchers performed data augmentation to improve the learning
capability of deep learning methods [46]. For the deep learning model, the data sets
currently available in the medical industry are from low-resource areas, but a significant
amount of training data are needed [47]. Therefore, a data augmentation process must be
used to increase the diversity of the initial datasets. Three datasets are used for validation
in this study, as mentioned above. There are 1134 average-sized images in the collection of
500 × 500 pixels in the first CBIS-DDSM dataset. There are two categories in this dataset:
Figure 3 shows the number of benign (557) and malignant (637) lesions. The second dataset
of breast images contains 146 images with an average resolution of 500 × 500 pixels. This
dataset consists of two categories: benign (76) and malignant (70), as shown in Figure 3.

In the third dataset of MIAS, there are 300 images with average sizes from the collection
of 500× 500 Pixels. There are three categories collectively in this dataset: benign, malignant,
and normal (209), as seen in Figure 3. We split the entire dataset into training and testing
groups (50:50). After training the images for each class, the dataset is inadequate to train the
deep learning model. Therefore, three operations—horizontal flip, vertical flip, and rotation
90◦—are performed on the original mammography images to increase the dataset diversity.
Multiple iterations of these procedures are performed until each class of images contains
at least 6000 for CBIS-DDSM and 4000 for INbreast and MIAS. After the augmentation
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method, the number of images in CBIS-DDSM is 12,000, 8000 in the INbreast dataset, and
12,000 in the MIAS dataset.
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2.3. Contrast Enhancement

Enhancing an input image is crucial for improving the original image’s quality. Re-
cently, a lot of technology devices have been introduced for improving image acquisition,
but they still they pose several challenges. The challenges include those specific to medical
imaging, especially mammography, and are contrast imperfections, chromatic anomalies,
and noise. In this proposed technique, our main goal is to improve the infected region
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and enhance the overall pixels of the image that are more pleasant to the human eye [48].
The objective of this study is to visualize datasets with breast cancer images rather than
healthy ones. We created a hybrid approach that relies on combining various filtering
results because the breast cancer mammography images’ poor quality and low contrast
required us to do so. Considering we have an input image denoted by φ(x, y) of size
M× N × 3, let us have a grayscale image of size M× N denoted by φ̃(x, y). In the first
step, the probability density function is applied to the grayscale image as follows:

p(φ̃k) =
hk
h

,k = 0, 1, 2, 3, . . . , L− 1 (1)

where hk denotes the number of pixels having an intensity φ̃k and h represents the total
number of images ∆. In the next step, CDF is computed as follows:

c(φ̃k)∑k
i=0 p(φ̃k) (2)

Using the CDF, the transformation function is defined as follows:

F(φ̃k) = φ̃0 + (φ̃L−1 − φ̃0) ∗ c(φ̃k) (3)

ψ = {F(φ̃(x, y)/∀ φ̃(x, y)) ∈ φ̃} (4)

After that, the spatial domain transformation is applied on F(φ̃k).

G(x, y) = τ[F(x, y)] (5)

G(x, y) = Q(x, y)[F(x, y)− c× µ(x, y)] + µ(x, y)a (6)

Here, G(x, y) is a transformed image and Q(x, y) is a contrast stretching function that is
mathematically defined as follows:

Q(x, y) =
K× gm

σ(x, y) + β
(7)

gm =
1

M× N ∑M−1
x=0 ∑N−1

y=0 F(x, y) (8)

where gm denotes the global mean value, σ denotes the standard deviation, k and β denote
the constant parameters and values manually assigned. Hence, the final transformation
function is defined as follows:

G(x, y) =
K× gm

σ(x, y) + β
[F(x, y)− c× µ(x, y)] + µ(x, y)a (9)

The visual output of the resultant enhanced image G(x, y) is illustrated in Figure 4.

2.4. ResNet50 Deep Learning Features

Deep learning networks acknowledge images as inputs and extract features from them
that are later fed to the classifier for classification. This process of feature extraction and
classification is conducted automatically [49]. Deep learning methods lower classification
error rates to 5%, comparable to human mistakes [50].
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denote the constant parameters and values manually assigned. Hence, the final transfor-
mation function is defined as follows: 

𝐺𝐺(𝑥𝑥,𝑦𝑦) =
𝐾𝐾 × 𝑔𝑔𝑔𝑔
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Figure 4. For improved visualization of the images, contrast-enhancing methods were used. Left
side: Original images before any image enhancement technique; Right Side: improved images after
applying the proposed fused contrast enhancement method.

ResNet50 [51] is the most frequently utilized subclass of convolution neural networks
for picture classification. Figure 5 depicts the ResNet50 design. In this applicable ResNet50
deep learning model, the training was carried out with various weights. A broader network
can benefit from extensive training, improving accuracy and outcomes. The ResNet50
network consists of several deep layers with a max-pool layer kernel size of 3 × 3 and a
small, related field of 7 × 7 in the input layer.
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Figure 5. The architecture of ResNet50 model.

In this research, we improved this deep algorithm for breast cancer classification. We
eliminated the first three layers and introduced three new ones to accomplish this. Later,
we clarified the chosen dataset for breast cancer. The training process was conducted
using deep transfer learning. Additionally, we did not freeze any single layer during the
fine-tuning process.

Deep Transfer Learning: A pre-trained model is reused using the machine learning
method known as transfer learning for another task [47]. The sampling efficiency could
be greatly increased by transferring or reusing data from previously taught tasks for the
newly learned activities [52]. TL is used in this case to extract deep features. To perform
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this, a pre-trained model is initially tweaked before being trained via TL [53]. The process
of TL is defined as follows:

The two parameters that comprise the domain D = {2, p(z)} are the feature space z
and the distributions of the marginal probabilities f (z), where z = {z1, z2, . . . . zn} ∈ z. If
two domains are distinct, they either have different marginal probabilities (p(zp) 6= p(zq))
or feature space (zp 6= zq). Given a specific domain, there are two parts to this task
t { s, g(.)} : the label space s, and a prediction function g (.); this is not immediately apparent
but can be obtained using training data

{
(kj,uj j{1 , 2, 3, 4 . . . . . . .N}, where k j anduj s

}
; thus,

a probabilistic approach c
(
k j
)

can be written as p
(
uj
∣∣k j
)
, and so we rewrite this function

v as V = {s, p(s|z)}. When two functions are different from each other, their label space
is also different

(
sp 6= sq

)
or produces different distributions with conditional probability(

p
(
sp
∣∣zp
)
6= p

(
sq
∣∣zq
))

.
Figure 6 gives a detailed overview of the visual transfer learning method. The modified

deep model receives the original model’s (source domain) information (target domain)
to train this updated model. The following hyperparameters are used in the model: the
learning rate is 0.001, the mini-batch size is 16, and there are 200 epochs when using the
stochastic gradient descent learning method. The features are extracted from the updated
deep model’s Global Average Pooling (GAP) layer. Two feature vectors have been returned
in an output that is finally fused using a serial-based mid-value approach.
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2.5. Novelty 2: Serial Based Mid Value Fusion

Improving an object’s information through the fusion of data from two or more sources
is known as information fusion. A serial-based feature is used when putting information
from different sources together into a single matrix; the feature fusion method is simple to
use while maintaining all features. However, this process added all relevant and irrelevant
features. Adding all features increases the computational time and results in maximum
chances of a high error rate for the classification purpose. Therefore, in this work, a new
mid-value-based function is developed and finds a middle value used for the fusion of
final features.

Consider that we have two feature vectors of original and enhanced datasets de-
noted by f 1 and f 2. The dimensions of the extracted feature vectors are N × 2048 and
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N × 2048 , respectively. The serially fused vector dimension will be N× 4098 based on the
following equation:

k fq(v) =

[
f 1
f 2

]
N×j1+w×j2

(10)

This process combined all of the extracted features. Using this fused vector, we computed
the mid-value using the following formula:

Fnc = MidV
(

k fq(v)

)
(11)

MidV =
lw + hw

2
(12)

The returned middle value is passed to the threshold function for finding the final fused vector.

Thers =
{

Fus( f ) f or k fq(v)(j) ≥ Fnc
Ignore Elsewhere

(13)

where Fus( f ) denotes the fused feature vector of dimension N × 2772. Further enhance-
ment of this outcome vector was carried out with the flower pollination-controlled regula
falsi method.

2.6. Feature Optimization

Feature selection involves selecting the best features to improve accuracy and reduce
computation time in computer vision. The size of the solution space grows exponentially
as the number of features in the dataset increases. According to the theory, using fewer
features improves classifier performance. It speeds up classification, resulting in accuracy
rates equal to or higher than those obtained when all features are used. Based on the
flower pollination-controlled regula falsi, this study developed a feature selection technique
(FPcRF). Laws and floral reproduction inspire the flower optimization method. The FPA [54]
is used for optimization, feature selection, and other optimization techniques in order to
minimize its search space. The final selection requires a fitness function, and in this work,
we used Fine-KNN. The initial representation of the flower consistency is

yij+1 = yij + ϑL(λ)
(

yij − B
)

(14)

where yij is a pollen i or solution vector yi and iteration j and B is the best solution. The
symbol ϑ is a given factor of scaling. The Levy Flight Distribution is defined as follows:

L ∼ λ
Γ(λ) sin

(
Π
2

)
/

Π
1

s1+λ
, (s0 >> s0 > 0) (15)

where Γ(λ) is also due to the accuracy of this distribution and the gamma function for
significant steps s> 0; the local fertilization is shown as follows:

yij+1 = yij + µ
(

yzj − ykj
)

(16)

where yij and ykj are pollens of different flowers of the same plant.
False Regulation Formula: assume that the number of yij+1 is denoted by r1, the

greatest number is represented by r2, and then the root value’s approximation is calculated
as follows:

V1 =
[r1 f (r2)− r2 f (r1)]

[ f (r2)− f (r1)]
(17)

Vn =
[rn−1 f (rn)− rn f (rn−1)]

[ f (rn)− f (rn−1)]
(18)
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where Vn is the final approximate root value of selected vector y ij+1. Based on Vn, the final
selection is performed and passed to the fitness function again to check the performance.
The selected features are finally classified using machine learning classifiers for the final
classification accuracy. Moreover, a detailed algorithm is presented in Algorithm 1.

Algorithm 1 Proposed Breast Cancer Classification Algorithm

Input: Original Image φ(x, y)
Output: Labeled Image φ̂(x, y)
Step 1: Dataset Augmentation
Step 2: Contrast Enhanced using Equations (1)–(9)

- The resultant Image is denoted by G(x, y)
Step 3: Trained Deep Learning Model
Step 4: Deep Features Extraction from Original and Enhanced Datasets
Step 5: Features Fusion using Equations (10)–(13)

- Thers =
{

Fus( f ) f or k fq(v)(j) ≥ Fnc
Ignore Elsewhere

Step 6: Best Feature Selection
- Objective function: minimum and maximum f (x), x = (x1, x2 . . . ..xd)
- Initialization: A population of n flower with a random solution
- Find the best solution: g∗ initial population
- Probability: p ∈ [0, 1]

While ( j < max _iteration)
for i = 1: n
if rand < p,
Draw step levy distribution is given as

Global pollination via yij+1 = yij + ϑL(λ)
(

yij − B
)

Else
Draw Q from a uniform distribution [0, 1]

Local pollination via L∼ λ
Γ(λ) sin( Π

2 ) /
Π

1
s1+λ , (s0 >> s0 > 0)

end if
Evaluate new solution
end
for best solution
Find best root using Equations (17)–(18)
Final Best Solution
end while

3. Experimental Results and Discussion
3.1. Datasets and Experiments

Extensive experiments have been performed for the analysis of the proposed frame-
work. Graphical representations and tabular data are used to show the findings. For
the experimental procedure, three datasets have been used, and details are provided in
Section 3.1. Furthermore, several experiments have been performed, such as proposed
fusion and feature selection. In addition, the intermediate results are also provided to show
the efficiency of the proposed framework.

3.2. Experimental Setup

The suggested framework’s training-to-testing ratio is set at 50/50. Several hyper-
parameters have been used during the design and experimental process, including a
learning rate of 0.0002, epochs of 100, mini-batch size of 32, momentum value of 0.7223, and
stochastic gradient descent (SGD) as an optimizer. During the testing procedure, a 10-fold
cross-validation was used for each experiment. Various metrics were used to evaluate the
success of the various classifiers, including F1-Score, FPR, Kappa, MCC, Accuracy, and
Time as examples of statistical measures. A desktop computer was used, by one individual,
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with 16 GB of RAM and an 8 GB graphics card running MATLAB2022a, which simulated
the full experimental procedure.

3.3. CBIS-DDSM Breast Cancer Dataset Results

The breast cancer information from the CBIS-DDSM dataset that was recommended
for merging is displayed in Table 2. The cubic SVM (CSVM) had a maximum accuracy of
93.8%. The other calculated CSVM performance metrics had a precision rate of 93.09%,
F1-score of 93.89%, FPR of 0.07, Kappa and MCC of 86.87%, and Sensitivity rates of 94.70%
and 87.68%, respectively. These results for the remaining classifications demonstrate that
CSVM surpasses them all. Figure 7 also displays the CSVM confusion matrix, which can
be used to confirm the claimed performance metrics. The computation times for each
classifier are also given; the MNN classifier recorded the lowest computation time of
249.39 s (seconds). Figure 8 shows the computational time mentioned previously.

Table 2. Classification results of proposed feature fusion CBIS-DDSM dataset.

Classifier Precision Sensitivity F1-Score FPR Kappa MCC Accuracy Time (s)

CSVM 93.09 94.70 93.89 0.07 87.67 87.68 93.8 743.76
LSVM 89.83 90.67 90.25 0.10 80.40 80.40 90.2 598.94
QSVM 92.03 93.20 92.61 0.08 85.13 85.14 92.6 598.17

MGSVM 91.55 92.47 92.01 0.08 83.93 83.94 92.0 824.48
MNN 90.79 92.03 91.41 0.09 82.70 82.71 91.3 249.39
WNN 91.45 92.00 91.72 0.08 83.40 83.40 91.7 255.09
FKNN 91.96 93.73 92.84 0.08 85.53 85.55 92.8 531.48
NNN 90.03 90.57 90.30 0.10 80.53 80.53 90.3 344.00
BNN 89.37 89.63 89.50 0.01 78.97 78.97 89.5 419.86
TNN 88.86 89.90 89.38 0.11 78.63 78.64 89.3 764.00
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Figure 8. Comparison of proposed fusion and selection steps in terms of computational time.

Based on the suggested FPcRF, Table 3 presents the optimal feature selection results
from the CBIS-DDSM. The CSVM classifier has a maximum accuracy of 93.3%. Additional
metrics include a precision rate of 92.26%, sensitivity rate of 94.57%, F1-score of 93.40%,
FPR of 0.07, Kappa of 86.63%, and MCC of 86.66%, supporting the proposed findings.
Figure 9 depicts the CSVM’s confusion matrix, which can be used to verify computed
performance measures. The assessment procedure also tracks how long each classification’s
computations take. From lowest to highest, the spread is 82.532 (s) to 503.23 (s). Figure 8
visually compares the stated computational times for each classifier for both trials. The
computational time is drastically decreased when the suggested FPcRF selection method is
used, as is abundantly clear from this figure. Additionally, overall accuracy is improved
after employing the recommended feature selection approach.

Table 3. Classification results of proposed FPcRF-based feature selection for CBIS-DDSM dataset.

Classifier Precision Sensitivity F1-Score FPR Kappa MCC Accuracy Time (s)

CSVM 92.26 94.57 93.40 0.07 86.63 86.66 93.3 330.67
LSVM 89.04 89.87 89.45 0.11 78.80 78.80 89.4 295.41
QSVM 90.95 92.77 91.85 0.09 85.53 83.55 91.8 287.11

MGSVM 91.03 92.30 91.66 0.091 83.20 83.21 91.6 411.00
MNN 89.99 90.50 90.24 0.10 80.43 80.43 90.2 82.53
WNN 90.47 90.80 90.63 0.09 81.23 81.23 90.6 128.72
FKNN 92.06 93.50 92.77 0.08 85.43 85.44 92.7 264.14
NNN 88.48 89.37 88.92 0.11 77.73 77.74 88.9 171.24
BNN 88.81 89.40 89.10 0.11 78.13 78.14 89.1 400.99
TNN 87.91 89.43 88.66 0.12 77.13 77.14 88.6 503.23
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3.4. INbreast Breast Cancer Dataset Results

Table 4 displays the outcomes of the INbreast breast cancer dataset’s suggested fusion.
The narrow neural network (NNN) classification achieved the highest accuracy of 99.5%,
with values of 99.35%, 99.65%, 99.50%, and 99.00% for the precision rate, sensitivity, F1-
score, Kappa, and MCC, respectively. These numbers are also calculated for the remaining
classifiers, and the NNN’s best performance is discovered. Figure 9 shows a confusion
matrix for NNN. The malignant class accurate prediction rate is shown in this figure to be
above 99%. Each classifier’s computational time is mentioned, and the min-max range is
100.94–289.57 (s). Overall, the NNN produced better outcomes but took longer, which is
a disadvantage.

We suggested a feature selection technique to address this flaw, and the results are
shown in Table 5. This table shows that the best accuracy, 99.6%, which was attained using
a bi-layered NN. A 99.45% accuracy rate, a 99.65% sensitivity rate, an F1-score of 99.55%,
an FPR of 0.05, a Kappa of 99.10%, and an MCC of 99.10% are all the values reported. These
metrics are calculated using various algorithms, including SVM, neural networks, and
fine-KNN. Figures 10 and 11 depicts the confusion matrices that displays the correct rate
for each class, such as 99.45% for the malignant class.

It should be observed that the accuracy for the maximum classifier is consistent with
Table 4, and for some classifiers it is improved. Each classifier’s computational duration,
which can range from 127 s to 39.88 s, is also noted. Figure 12 compares proposed fusion
and selection techniques and demonstrates how much less time is needed when using
FPcRF selection.
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Table 4. Classification results of proposed feature fusion for INbreast dataset.

Classifier Precision Sensitivity F1-Score FPR Kappa MCC Accuracy Time (s)

CSVM 99.15 99.70 99.43 0.08 98.85 98.85 99.4 123.89
LSVM 98.37 99.60 98.98 0.01 97.95 97.96 99.0 121.42
QSVM 99.20 99.55 99.38 0.08 98.75 98.75 99.4 116.32

MGSVM 98.71 99.45 99.08 0.01 98.15 98.15 99.1 179.52
MNN 99.25 99.70 99.48 0.07 98.95 98.95 99.5 108.77
WNN 99.25 99.60 99.43 0.07 98.85 98.85 99.4 150.39
FKNN 98.70 99.00 98.85 0.01 97.70 97.70 98.9 289.57
NNN 99.35 99.65 99.50 0.06 99.00 99.00 99.5 101.52
BNN 98.45 99.40 99.42 0.05 98.85 98.85 99.4 103.49
TNN 99.35 99.40 99.38 0.06 98.75 98.75 99.4 100.94

Table 5. Classification results for INbreast dataset using proposed feature selection technique.

Classifier Precision Sensitivity F1-Score FPR Kappa MCC Accuracy Time (s)

CSVM 99.35 99.65 99.50 0.06 99.0 99.0 99.5 49.65
LSVM 98.32 99.60 98.96 0.01 97.90 97.91 99.0 54.65
QSVM 99.30 99.65 99.48 0.07 98.95 98.95 99.5 46.45

MGSVM 98.66 99.55 99.10 0.01 98.20 98.20 99.1 78.90
MNN 99.25 99.50 99.38 0.07 98.75 98.75 99.4 42.14
WNN 99.35 99.45 99.40 0.06 98.80 98.80 99.4 63.26
FKNN 98.90 99.20 99.05 0.01 98.10 98.10 99.1 127.00
NNN 99.55 99.50 99.52 0.04 99.05 99.05 99.5 40.01
BNN 99.45 99.65 99.55 0.05 99.10 99.10 99.6 39.88
TNN 99.35 99.45 99.40 0.06 98.80 98.80 99.4 40.75
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3.5. Mias Dataset Results

Table 6 shows the outcomes of the suggested fusion technique on the MIAS dataset.
The NNN classifier achieved maximum accuracy at 99.8%. Several additional performance
metrics have also been calculated, including the precision rate, sensitivity rate, F1-score,
Kappa value, and MCC value, which are all 99.82, 99.60, 99.82, and 99.73%, respectively.
Figure 13, which displays the computed values as a confusion matrix, can be used to
validate them. The benign and malignant classes in this figure had 100% and 99.7%
accurate prediction rates. Each classifier’s computational duration is also listed, taking a
maximum of 556.93 s and a minimum of 106.68 s.
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Table 6. Classification results of proposed features fusion for MIAS dataset.

Classifier Precision Sensitivity F1-Score FPR Kappa MCC Accuracy Time (s)

CSVM 99.82 99.82 99.82 0.08 99.60 99.73 99.8 364.76
LSVM 99.49 99.49 99.49 0.02 98.85 99.23 99.5 224.13
QSVM 99.76 99.76 99.76 0.01 99.45 99.63 99.8 325.27

MGSVM 99.82 99.82 99.82 0.08 99.60 99.73 99.8 556.93
MNN 99.56 99.56 99.56 0.02 99.00 99.33 99.6 107.21
WNN 99.67 99.67 99.9 0.01 99.25 99.50 99.7 183.39
FKNN 98.50 98.47 98.46 0.07 96.55 97.72 98.5 340.18
NNN 99.51 99.51 99.51 0.02 98.90 99.27 99.5 104.89
BNN 99.47 99.47 99.47 0.02 98.80 99.20 99.5 106.68
TNN 98.98 98.98 99.98 0.05 97.70 98.47 99.0 131.41
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Overall, the CSVM produced better outcomes, but this experiment’s disadvantage
was that it took longer. To address this issue, a feature selection method is suggested.
The outcomes are shown in Table 7. The CSVM yields the highest accuracy of 99.8% for
this experiment. In particular, the Kappa is 99.50%, the MCC is 99.67%, the sensitivity is
99.78%, the F1-score is 99.78%, and the precision rate is 99.78%. SVM, neural networks, and
fine KNN are just a few algorithms used to calculate all these metrics. Figure 14 shows a
confusion matrix with the accurate prediction rates for each class, respectively, 99.7% and
100% for benign and malignant classes. It should be noted that the accuracy is consistent
with Table 6, while the computational time is considerably shorter. Finally, the proposed
fusion and selection techniques are compared in Figure 15, which illustrates a substantial
reduction in computational time.
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Table 7. Classification results of proposed feature selection technique for MIAS dataset.

Classifier Precision Sensitivity F1-Score FPR Kappa MCC Accuracy Time (s)

CSVM 99.78 99.78 99.78 0.01 99.50 99.67 99.8 173.23
LSVM 99.34 99.33 99.33 0.03 98.50 99.00 99.3 102.25
QSVM 99.69 99.69 99.69 0.01 99.30 99.53 99.7 146.78

MGSVM 99.82 99.82 99.82 0.08 99.60 99.73 99.8 313.13
MNN 99.45 99.44 99.44 0.02 98.75 99.17 99.4 41.72
WNN 99.51 99.51 99.51 0.02 98.90 99.27 99.5 65.96
FKNN 98.47 98.42 98.42 0.07 96.45 97.65 98.3 170.29
NNN 99.36 99.36 99.36 0.03 98.55 99.04 99.4 41.62
BNN 98.96 98.96 98.96 0.05 97.65 98.44 99.0 43.81
TNN 98.69 98.69 99.69 0.06 97.05 98.04 98.7 50.72
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3.6. Comparison with Other State-of-the-Art Techniques

The proposed strategy is contrasted with a few contemporary techniques in Table 8.
In [23], the authors proposed a multi-fractal and fusion approach and obtained an accuracy
of 98% using three mammography breast cancer datasets, including CBIS-DDSM, INbreast,
and MIAS. The precision for CBIS-DDSM, INbreast, and MIAS was 98.4% using the CNN-
based model [46]. In this work, the authors used capsule network based architecture.
The CNN-based architecture and fusion method were used in [47]. They obtained 96%
accuracy, later improved by [48] using modified deep learning architecture, and achieved
an average of 99.0% accuracy. The proposed framework obtained an accuracy of 93% on
the CBIS-DDSM dataset, 99.5% on the INbreast dataset, and 99.8% on the MIAS dataset.
These values show the improvement in accuracy compared to the existing techniques.

Table 8. Comparison with other state-of-the-art techniques.

Model Year Method F1-Score Accuracy

[55] 2022 Capsule Neural
Network Model

CBIS-DDSM/
INbreast/MIAS 98.4

[56] 2017 All Convolutional Design CBIS-DDSM/
INbreast/MIAS 96

[57] 2022 CoroNet CBIS-DDSM/
INbreast/MIAS 99.7

Proposed Method -
Fine-Tuned ResNet50 Model,
Fusion & Flower Pollination

Optimization Algorithm

CBIS-DDSM/
INbreast/MIAS

93.3%
99.5%
99.8%

3.7. Confidence Interval-Based Analysis

A detailed confidence interval-based analysis is conducted in this section for all three
datasets. The confidence interval (CI) is computed based on the Kappa measure. For the
CBIS-DDSM dataset, the minimum and maximum noted values are 77.13% and 86.63%.
Using these values, the obtained margin of error (MoE) is illustrated in Figure 16. In
this figure, it is noted that at a confidence level of 68.3%, σx ,̄ the margin of error is
82.88 ± 4.066 (±4.91%). For a confidence level of 95%, 1.960σx ,̄ the margin of error is
82.88 ± 7.969 (±9.62%). This shows that the error dropped to 5% when a confidence
level changed. Similarly, the MoE is computed for the rest of both datasets (Inbreast and
MIAS), and the values are illustrated in Figure 17. For the Inbreast dataset, the MoE is
98.5 ± 0.832 (±0.84%) at a confidence level of 95%, 1.960σx .̄ For the MIAS dataset, the
MoE is 97.975 ± 2.114 (±2.16%) at a confidence level of 95%, 1.960σx .̄ This shows that the
performance of the proposed method is sufficient.
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3.8. Visual Facts

In the end, the visualization is performed for the proposed deep learning framework.
The Grad-CAM visualization is employed for the gradient visualization of the proposed
deep framework, as shown in Figure 18. In this figure, a heatmap is applied to the important
region based on the grad-CAM. The brown color shows the most important region that
reveals this framework’s performance. In addition, the labeled prediction results are
illustrated in Figure 19. Based on this figure, we can see that the proposed framework
correctly predicts the benign and malignant classes. Finally, we also added a brief analysis
for the selection of training and testing ratios. As shown in Figure 20, accuracy is consistent
and only a minor change occurred for our selected ratio of 50:50. However, it is noted that
the accuracy is going to decrease when the ratio is 40:60 or 30:70.
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4. Conclusions

Breast cancer is the leading cause of cancer death in women worldwide. The early
detection of malignant and benign cancers can help patients receive timely treatment. This
study proposed a new framework based on fusion-based contrast enhancement using deep
learning features from the average pool layer. It proposed feature selection for breast cancer
classification based on mammography images. While some of the original points were lost
during the fusion process as a result of the contrast enhancement phase, the performance
of the fine-tuned deep learning model outperformed that of the original images. The
fusion of deep features reduced the proposed framework’s effectiveness while improving
accuracy and overall computational time. As a result, we proposed a feature selection
method that improved precision while reducing computational time. Furthermore, the
proposed framework improves accuracy for all three selected datasets by 93, 99.5%, and
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99.8%, respectively. This work’s main limitations are as follows: i) the addition of a contrast
enhancement technique improves image quality but increases computational time; ii) two
consecutive constant values are not always obtained in the selection step, and the entire
algorithm is executed for all initialized iterations. This takes longer and can result in the
loss of important features.

Future Scope

• Propose a new method for improving the contrast of the infected region pixels, which
will improve the visibility of the lesion region and help with the correct segmentation.

• Propose a segmentation technique using deep learning and a saliency map for tumor
detection. The residual block will be added in the deep learning model, which can aid
in better learning for the detection process.

• Develop a fusion-based deep learning architecture with Bayesian optimization-based
hyperparameters initialization.

• Propose a new feature selection technique that will stop the iteration in a maximum of
two constant cost values.
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