

N
T

N
U

N
o
rw

e
g

ia
n

 U
n

iv
e

rs
it
y
 o

f
S

c
ie

n
c
e

 a
n

d
 T

e
c
h
n

o
lo

g
y

F
a

c
u

lt
y
 o

f
In

fo
rm

a
ti
o
n

 T
e
c
h
n

o
lo

g
y
 a

n
d

 E
le

c
tr

ic
a

l
E

n
g

in
e
e

ri
n

g

D
e
p

a
rt

m
e
n

t
o

f
E

le
c
tr

o
n

ic
 S

y
s
te

m
s

B
a
c
h
e
lo

r'
s
 t
h
e
s
is

Annik Riise

CoT DevKit IoT: Internet of Things hardware
with Wi-Fi and narrowband IoT capabilities
specialised for use in the
Norwegian educational system

Electrical Engineering, Electronics and sensor systems
Main supervisor: Arne Midjo
August 2023

Project title:
CoT DevKit IoT: Internet of Things hardware with Wi-Fi and narrowband IoT capa-
bilities specialised for use in the Norwegian educational system
Prosjekt tittel:
CoT DevKit IoT: Tingenes internett maskinvare med Wi-Fi og narrowband IoT
funksjonaliteter spesialisert for bruk i det norske utdanningssystemet
Author: Submitted: Pages/Appendices/Attachments: Grade:
Annik Riise 20.08.2023 84/14/15 [X] open []

closed
Study programme: Bachelor in Electrical Engineering
Field of study: Electronics and sensor systems
Supervisors:
Arne Midjo (Main supervisor), Department of Electronic Systems NTNU
Lars Lundheim (Co-supervisor), Department of Electronic Systems NTNU
Nils Kristian Rossing (Co-supervisor), Skoleaboratoriet, Department of Physics NTNU
Client: Company of Things AS
Contact: Aasmund G. Nørsett, aasmund@cot.as
Executive summary:
Through this bachelor thesis, a proof-of-concept of the "CoT DevKit IoT" was built.
CoT DevKit IoT is a development board with Wi-Fi and NB-IoT capabilities suited for
entry-level projects. The proof-of-concept’s main components are the microcontroller
ESP32-WROOM-32E with built Wi-Fi and the NB-IoT modem Monarch 2 GMS02.
The components were compatible, and the demonstration setup showcased the network
functionalities, and low-power modes and proved to be cost-effective. Main improve-
ment areas include more complex hardware flow control, better power consumption
measurements, and further NB-IoT data transmission testing before beginning the PCB
design.
Kortfattet sammendrag:
Gjennom denne bacheloroppgaven ble det bygget et konseptbevis av "CoT DevKit
IoT". CoT DevKit IoT er et utviklingsbrett med Wi-Fi- og NB-IoT funksjonaliteter
som passer godt for nybegynnerprosjekter. Konseptbevisets hovedkomponenter er
mikrokontrolleren ESP32-WROOM-32E med innebygd Wi-Fi og NB-IoT-modemet
Monarch 2 GMS02. Komponentene var kompatible, og demonstrasjonsoppsettet viste
nettverksfunksjonalitetene, laveffekts modusene og viste seg å være kostnadseffek-
tivt. De viktigste forbedringsområdene inkluderer mer kompleks maskinvareflytkon-
troll, bedre målinger av strømforbruk og ytterligere testing av NB-IoT-dataoverføring
før PCB-designet starter.
Keywords: Stikkord:
Internet of Things (IoT), Wi-Fi, Narrow-
band IoT (NB-IoT), development board,
proof-of-concept, Norwegian education,
ESP32, Monarch 2 GM02S

Tingenes internett (IoT), Wi-Fi, Nar-
rowband IoT (NB-IoT), utviklingskort,
konseptbevis, norsk utdanning, ESP32,
Monarch 2 GM02S

Table 1: Thesis information

Abstract

Abstract

This report documents the creation of a proof-of-concept for the "CoT DevKit IoT", a
versatile Internet of Things (IoT) development board with Wi-Fi and narrowband IoT
(NB-IoT) capabilities. It is specialised for entry-level projects in the Norwegian edu-
cational system. The project is officially launched with this bachelor’s thesis, and its
continued development will be made possible by its conclusion.

IoT is a significant part of the present and future landscape of electronics and should,
therefore, be incorporated into teaching in an engaging way. However, educational in-
stitutions frequently lack the funds, equipment, and time necessary to do this. As of
March 2023, there are no single-board devices that meet the desire for both short- and
long-range wireless communication (Wi-Fi and NB-IoT), are beginner-friendly for upper
secondary and university students, have low power consumption, and are cost-effective to
match limited school budgets.

The approach to fabricating the proof-of-concept involved selecting technology and sys-
tem requirements based on feedback from educators at a conference and significant market
research, as well as iteratively implementing the various elements and testing them in-
dividually before integrating them together. This resulted in a working product with
the stated network functionalities, low-power modes, and component compatibility. The
main components of the product are the microcontroller module ESP32-WROOM-32E
with built-in Wi-Fi and the NB-IoT modem module Monarch 2 GMS02.

The primary areas for future work include more complex hardware flow control and em-
ploying proper power consumption measurements. Furthermore, more comprehensive
NB-IoT data transmission testing is needed, as limitations from the original plan oc-
curred. During the semester, a potential competition emerged – a development board
that employs similar components. Despite this fact, it does not cater to the same in-
tended market.

Throughout the course of this project, a successful proof-of-concept of the CoT DevKit
IoT development board was built.

i

Sammendrag

Sammendrag

Denne rapporten dokumenterer utviklingen av et konseptbevis for "CoT DevKit IoT",
et allsidig utviklingsbrett for Tingenes Internett (IoT) med Wi-Fi- og narrowband IoT
(NB-IoT) funksjonaliteter. Den er spesialisert for nybegynnerprosjekter innen det norske
utdanningssystemet. Prosjektet blir offisielt lansert med denne bacheloroppgaven, og dets
videre utvikling vil bli muliggjort gjennom oppgavens konklusjon.

IoT er en betydelig del av dagens og fremtidens elektronikklandskap, og bør derfor in-
tegreres på en engasjerende måte i undervisningen. Imidlertid mangler utdanningsin-
stitusjoner ofte midler, utstyr og tid til å gjøre dette. Per mars 2023 finnes det in-
gen enkeltbrettsenheter som tilfredsstiller behovet for både kort- og langdistanse trådløs
kommunikasjon (Wi-Fi og NB-IoT), er brukervennlige for videregående skole og univer-
sitetsstudenter, har lavt strømforbruk og er kostnadseffektive nok til å passe innenfor
begrensede skolebudsjetter.

Tilnærmingen til å lage konseptbeviset innebar å velge teknologi og systemkrav basert
på tilbakemeldinger fra lærere på en konferanse, samt omfattende markedsundersøkelser.
Videre ble de ulike elementene iterativt implementert og testet individuelt før de ble
integrert sammen. Dette resulterte i et fungerende produkt med de angitte nettverks-
funksjonene, laveffekts moduser og komponentkompatibilitet. Hovedkomponentene til
produktet er mikrokontroller modulen ESP32-WROOM-32E med integrert Wi-Fi og NB-
IoT modem modulen Monarch 2 GMS02.

De viktigste områdene for fremtidig arbeid inkluderer mer kompleks maskinvare kontroll
flyt og ordentlige strømforbruk målinger. Videre er det behov for grundigere testing
av NB-IoT-dataoverføring, da det oppstod begrensninger i forhold til den opprinnelige
planen. I løpet av semesteret dukket det opp en potensiell konkurrent – et utviklingskort
som bruker lignende komponenter. Til tross for dette, retter den seg ikke mot det samme
tiltenkte markedet.

I løpet av dette prosjektet ble det bygget et vellykket konseptbevis av CoT DevKit IoT
utviklingsbrettet.

ii

Acknowledgements

Acknowledgements

This project was made possible with experience and knowledge gained from the bachelor
program in electrical engineering with specialisation in electronics and sensor systems at
NTNU. During the project development, the following people provided significant assis-
tance.

I would like to thank my main supervisor, Arne Midjo, for providing great guidance along
the way and especially for your expertise in engineering project development. Further-
more, thank you, Arne, for your support when I fell ill. Thank you to co-supervisor Lars
Lundheim for quality feedback, particularly your knowledge of educating engineers. Nils
Kristian Rossing, you have been a great co-supervisor. Having you as a sparring partner
whenever I was stuck was invaluable, especially since you have a grasp of working with
narrowband IoT. I would like to thank Ingulf Helland for assisting in figuring out how
proper power consumption measurements could be done with the sensitive components.

I would like to thank Adrian Heyerdahl, whom I was initially working with before splitting
the bachelor group, for being a great partner for collaboration, for everything administra-
tive you did in the beginning, for pushing myself and the project forward, and for being
such a good leader for Company of Things. Furthermore, I would like to thank everyone
else at Company of Things, including Aasmund G. Nørsett, Tobias Domaas, Andreas
Ødegård, Trym B. Aasheim, Sebastian Kalland, Erlend Storsve, and Thomas H. Tangen
for creating such an exceptional company that was able to provide this project.

Annik Riise
Trondheim, 20.08.2023

iii

List of figures

List of figures

1 Internet of Things illustration [4] . 3

2 Wi-Fi connection request and response [7] . 4

3 PSM cycle [15] . 7

4 eDRX cycle [15] . 8

5 Survey question 1 . 14

6 Survey question 2 . 14

7 Survey question 3 . 14

8 LoRaWAN coverage [26] . 17

9 Telenor NB-IoT coverage [27] . 17

10 Iterativ design process [33] . 19

11 ESP32-WROOM-32E [57] . 26

12 ESP32 DevKitC V4 . 26

13 Monarch 2 GM02S [63] . 29

14 Monarch 2 GM02S NEKTAR Evaluation Kit [67] 29

15 System architecture CoT DevKit IoT . 31

16 System architecture with demonstration system 32

17 System architecture with demonstration system 33

18 Physical setup of CoT DevKit IoT proof-of-concept with Demo Setup . . . 33

19 Webpage hosted by ESP32 . 34

20 Arduino IDE with Serial Monitor (dark mode) 34

21 Block diagram with system connections . 35

22 ESP32 as access point and web server [73] . 37

23 Active mode details [78] . 38

24 Light-sleep mode details [78] . 38

iv

List of figures

25 Deep-sleep mode details [78] . 38

26 Modes and transitions (B.2 page 14) . 39

27 Monarch 2 power modes and functionalities (B.2 page 14) 39

28 PSM signal example [79] . 40

29 Monarch 2 PSM diagram (B.8 page 3) . 40

30 eDRX signal example [79] . 41

31 Monarch 2 eDRX diagram (B.8 page 3 . 41

32 Flowchart of code . 43

33 Start . 44

34 Hardware UART specifications in CoT_Monarch library 45

35 AT command function for Monarch 2 UART configurations 46

36 Setup . 47

37 Flowchart and code: Type AT command or Function name in Serial Monitor 48

38 Flowchart and code: NB-IoT button (send PING) 50

39 Flowchart and code: Wi-Fi button (change state on webpage) 51

40 Flowchart and code: ESP32 enter Light Sleep Mode after inactivity (but-
tons not pressed) . 52

41 Setup . 57

42 UART0 settings from datasheet implemented in Tera Term (B.3 page 4) . 58

43 Local echo enabled . 58

44 Functionality test with AT commands . 59

45 UART setup . 60

46 UART switch . 60

47 UART port selection . 60

48 Type AT commands in Serial Monitor . 60

49 Response Serial Monitor . 61

v

List of figures

50 NB-IoT button setup . 62

51 First iteration NB-IoT button code (see Figure 38 for final version) 62

52 Wi-Fi test setup . 63

53 Wi-Fi button setup . 64

54 Adding ESP32 wake up button . 65

55 Tømmerdalen and Realfagsbygget on Google Maps 67

56 Telenor coverage map of Trondheim [27] . 68

57 Setup outside in Tømmerdalen . 68

58 Type AT commands manually . 70

59 Type function name manually . 71

60 Function placed in code . 71

61 NB-IoT button pressed inside Realfagsbygget 72

62 Telenor coverage map Tømmerdalen [27] . 72

63 Google maps with pins . 72

64 Response at purple pin . 73

65 Response at red pin . 73

66 Wi-Fi button pressed with webpage . 73

67 Power Saving Mode (PSM) initiated upon startup 74

68 LED during active mode . 74

69 ESP32 going to sleep and wake up button pressed 75

70 Monarch 2 protective power measurement circuit 79

71 S-chart of the bachelor project . 93

72 Survey question 1: "Which wireless technologies are you interested in util-
ising for educational purposes, ideally? . 93

73 Survey question 2: "Which development boards/microcontrollers do you
prefer to use in your teaching?" . 94

vi

List of figures

74 Survey question 3: "Which programming languages do you prefer to use in
your teaching?" . 94

75 ESP32 pinout diagram [58] . 95

76 Pinout of expansion connections on Monarch 2 EVK (B.3 page 22) 95

77 ESP32-WROOM-32 block diagram [57] . 96

78 Monarch 2 block diagram (B.2 page 2) . 96

79 ESP32 WROOM 32E module Schematics ([57] page 22) 97

80 Monarch 2 top assembly (B.3 page 16) . 97

81 Monarch 2 bottom assembly (B.3 page 17) 98

82 Monarch 2 evaluation kit schematics part 1 98

83 Monarch 2 evaluation kit schematics part 2 99

84 Monarch 2 evaluation kit schematics part 3 99

vii

Abbreviations

Abbreviations and terminology

Add-on component - Hardware that enhances the capabilities or performance of other
hardware

AT commands - "Attention" commands used to send intructions used to control a modem

DCE - Data Communications Equipment

Development board - A microcontroller integrated on a PCB for easier usage and access

DTE - Data Terminal Equipment

DTE-DCE connection - Interface where DTE is the master and DCE the subordi-
nate

eDRX - extended Discontinuous Reception

ESP32 - Used as name for microcontroller module ESP32-ESP32-WROOM-32E and
ESP32 DevKitC V4

Hardware flow control - Method in which a serial device controls data transmission to
itself

Integration testing - Checking individual components of software to find problems
or to verify that they work together

IoT - Internet of Things

IoT-platform - A website or software application that supports interacting with mi-
crocontrollers/development boards over the internet

IP address - Internet Protocol address
Iterative design - Cyclic process of prototyping, testing, analysing, and refining a prod-
uct or process
Low-power modes - Reduce amount of power consumptions at different levels (ex. deep
sleep)

LTE - Long-term evolution cellular network

LTE-M - Long-term evolution machine type communication cellular network

MCU - Microcontroller unit

viii

Abbreviations

Microcontroller - Integrated circuit designed to govern a specific operation in an em-
bedded system (can be seen as a small computer)

Modem - Hardware that converts data from a digital format into a format suitable
for an analog transmission (often wireless)

Module - Functional unit or component that is part of a larger system

Monarch 2 - Used as name for Monarch 2 GM02S Module and Monarch 2 GM02S
NEKTAR Evaluation Kit

NB-IoT - Narrowband Internet of Things protocol using cellular low-power wide area
network technology

PCB - Printed Circuit Board

Proof-of-concept - Demonstration of a product

PSM - Power Saving Mode
SoC - System on chip

UART - Universal Asynchronous Receiver/Transmitter (hardware communication pro-
tocol)

Unit testing - Small testable parts of an application

USB - Universal Serial Bus

Wi-Fi - Wireless networking technology that uses radio waves to provide wireless high-
speed Internet access

ix

Table of contents

Table of contents

Abstract i

Sammendrag ii

Acknowledgements iii

List of figures iv

Abbreviations and terminology viii

1 Introduction 1
1.1 Background and motivation . 1
1.2 Requirements and objective . 1
1.3 Report structure . 2
1.4 Who should read this report . 2

2 Theoretical framework 3
2.1 Internet of Things . 3
2.2 Microcontrollers . 4
2.3 Wi-Fi . 4
2.4 Narrowband Internet of Things (NB-IoT) . 5

2.4.1 AT commands . 5
2.5 Low-power modes and techniques . 6

2.5.1 Low-power modes . 6
2.5.2 Low-power techniques on cellular network 6

2.6 Pedagogical principles when creating a development board 8

3 Method 9
3.1 Project planning and management . 9

3.1.1 Goals . 9
3.1.2 Quality and progress ensured with work packages and Gantt-chart 10
3.1.3 Quality and progress ensured with supervisors 10
3.1.4 Risk assessment . 11
3.1.5 Time and cost . 11

3.2 System requirements . 12
3.2.1 Technology and Research Education Conference 13
3.2.2 Wireless communication and programming language 14
3.2.3 Concluding system requirements . 18

3.3 Design methodology . 19
3.4 Choice of main technological components . 20

3.4.1 Existing development boards and add-on components 20
3.4.2 Choice of microcontroller with Wi-Fi 24
3.4.3 ESP32-WROOM-32E specifications 26
3.4.4 Choice of NB-IoT modem . 27

x

Table of contents

3.4.5 Monarch 2 GM02S specifications . 28
3.5 Testing methods . 30

4 System design 31
4.1 System architecture and setup . 31

4.1.1 System architecture of CoT DevKit IoT 31
4.1.2 System architecture with Demonstration System 32
4.1.3 Finalised setup . 33

4.2 Detailed system design: Hardware . 35
4.2.1 DCE-DTE connection . 36
4.2.2 Hardware flow control . 36
4.2.3 Web server . 37
4.2.4 ESP32 low-power . 37
4.2.5 Monarch 2 low-power . 38

4.3 Detailed system design: Software . 42
4.3.1 Flowchart of code . 42
4.3.2 Start . 44
4.3.3 Setup . 47
4.3.4 Loop . 47

4.4 Design choices . 53
4.4.1 System architecture with Demonstration Setup 53
4.4.2 Enabling Arduino IDE Serial Monitor as functional terminal 53
4.4.3 Hardware control pin connections . 53
4.4.4 UART library . 53
4.4.5 Design of webpage . 54
4.4.6 Creating own library for Monarch 2 54
4.4.7 Power source . 55
4.4.8 ESP32 sleep mode . 55
4.4.9 Why Monarch 2 mostly uses PSM and not eDRX 55
4.4.10 Why could not test with IoT-platform Deploii 55
4.4.11 Why all software is Arduino C . 56
4.4.12 Why evaluation boards instead of creating PCB from the beginning 56

5 Implementation and testing 57
5.1 Process of implementation and testing throughout 57

5.1.1 Initial test of Monarch 2 . 57
5.1.2 Control Monarch 2 with ESP32 . 58
5.1.3 NB-IoT button . 62
5.1.4 Creating AT command functions and CoT_Monarch library 63
5.1.5 Wi-Fi test . 63
5.1.6 Wi-Fi button . 64
5.1.7 Monarch 2 low-power . 64
5.1.8 ESP32 low-power . 65

5.2 Testing and validation of final Demonstration System 66
5.2.1 ESP32 and Monarch 2 compatibility 66
5.2.2 NB-IoT functionality . 66

xi

Table of contents

5.2.3 Monarch 2 power saving . 68
5.2.4 Wi-Fi functionality . 69
5.2.5 ESP32 power saving . 69

6 Results 70
6.1 ESP32 and Monarch 2 compatibility . 70
6.2 NB-IoT functionality . 72
6.3 Wi-Fi functionality . 73
6.4 Monarch 2 power saving . 74
6.5 ESP32 power saving . 75

7 Analysis and discussion 76
7.1 Project process . 76
7.2 ESP32 and Monarch 2 compatibility . 76
7.3 NB-IoT functionality . 77
7.4 NB-IoT functionality inside and outside . 77
7.5 Wi-Fi . 78
7.6 ESP32 power saving . 78
7.7 Monarch 2 power saving . 78
7.8 Measure Monarch 2 power consumption . 79
7.9 Product cost and market value . 79
7.10 Outline example of student project assignment 80
7.11 Future work . 81

8 Conclusion 83

9 References 85

A Appendices 91
A.1 Gantt-chart . 91
A.2 S-curve . 93
A.3 Survey Technology and Research Education Conference 93
A.4 ESP32 DevKit V4 pinout diagram . 95
A.5 Monarch 2 pinout sockets . 95
A.6 ESP32 block diagram . 96
A.7 Monarch 2 block diagram . 96
A.8 ESP32 schematics . 97
A.9 Monarch 2 circuit assembly . 97
A.10 Monarch 2 schematics . 98
A.11 Serial Monitor upon system power-up . 100
A.12 Serial Monitor NB-IoT button pushed . 105
A.13 Type function name in Serial Monitor . 106
A.14 Type AT commands in Serial Monitor . 107

B Attachments 109
B.1 Project documentation . 109

xii

Table of contents

B.2 Monarch 2 datasheet . 109
B.3 Monarch 2 NEKTAR-B User Manual . 110
B.4 Monarch 2 AT Commands Use Cases . 110
B.5 Monarch 2 System Integration Guide . 110
B.6 Monarch 2 Module Integration Guide . 110
B.7 Monarch 2 release Notes R02 . 110
B.8 Monarch 2 Power Consumption Measurements 110
B.9 Monarch 2 AT Commands Reference Manual 110
B.10 Serial Monitor as terminal window . 110
B.11 Standalone Narrowband IoT demonstration 111
B.12 Standalone Wi-Fi demonstration . 111
B.13 Final project code: Wi-Fi and NB-IoT demo 112
B.14 CoT_Monarch library . 118

B.14.1 CoT_Monarch library header file . 118
B.14.2 CoT_Monarch library CPP file . 119

B.15 Poster . 127

xiii

Introduction

1 Introduction

This chapter gives an introduction to the project and its background. The executive
summary of the project can be read in Table 1, and the thesis poster is located in Appendix
B.15.

1.1 Background and motivation

Internet of Things (IoT) is a central subject within the present and future of electronics.
Here physical objects are connected together to facilitate data change to facilitate more
efficient and sustainable systems. Given its vital role, it is important to include it in
education.

This custom bachelor project was created in collaboration with Company of Things AS
(CoT). CoT is a startup that produces different products, learning materials, and lectures
focused on electronics and IoT for educational purposes. CoT aims at making it easier to
integrate these themes into subjects by assisting the Norwegian school system, which lacks
resources, time, and tools. They want to encourage a more practical learning approach
and student engagement.

CoT has not produced any hardware devices yet and therefore wants to begin the design
of a development board. This leads to the problem statement/project goal of this thesis
shown below. The development board has been given the temporary name "CoT DevKit
IoT". It will eventually be a complete circuit board that includes various components,
interfaces, and firmware necessary to easily create electronics projects. CoT would like
this board to be compatible with the IoT platform "Deploii" that they are developing.

Problem statement/Project goal:
"Create a proof-of-concept of an adaptable Internet of Things (IoT) development board,
customised to cater to the specific demands and needs of the Norwegian education system."

1.2 Requirements and objective

The requirements and objectives are based on the problem statement/project provided
above. The objective is to create a proof-of-concept of the CoT DevKit IoT that align
with the functionality requirements given by Company of Things. To meet these func-
tionality requirements, specific technologies were selected, and system requirements were
formulated through this project. The following bullet list describes these.

System requirements for proof-of-concept of CoT DevKit IoT:
• Short-range wireless communication for indoor use: Wi-Fi.
• Long-range wireless communication for outdoor use: Narrowband IoT.

1

Introduction

• Entry-level microcontroller programming language: Arduino C.
• Possibility for low power modes.
• Strive for low cost.

1.3 Report structure

The project report is divided into eight main chapters.

Chapter 1, "Introduction", gives an introduction to the project and its background.

Chapter 2, "Theoretical framework", explains some necessary theoretical themes that are
imperative to understand the project but are not expected as a prior requisite for the
reader.

Chapter 3, "Method", describes project management, approach and choice of technologies,
system requirements, design, and test methodologies.

Chapter 4, "System design", first gives an overview of the system architecture, then elab-
orates on the hardware and software design and functionality, and lastly discusses reason-
ings behind some of the design choices.

Chapter 5, "Implementation and testing", describes the process of implementing the sys-
tem and testing it.

Chapter 6, "Results", showcases the results from testing the final system setup, as de-
scribed in the previous chapter.

Chapter 7, "Discussion", examines the project results and discusses other aspects related
to it, such as how it could be implemented in subjects and future work.

Chapter 8, "Conclusion", restates the problem statements/project goal and addresses
which requirements have been accomplished, challenges, project process, and what to
prioritise as future work.

1.4 Who should read this report

This report is intended to be read by individuals with experience and knowledge within
electrical engineering, equivalent to a minimum of three years of university education. It
explains the theory that not everyone within that field is familiar with but subsequently
does not dive deep into topics that are expected to know.

2

Theoretical framework

2 Theoretical framework

This Chapter elaborates on the central technologies and theoretical background needed
to understand this project report.

2.1 Internet of Things

The phrase "Internet of Things" (IoT) encompasses the idea of establishing interconnected
networks composed of different "things" to enhance efficiency [1]. Figure 1 illustrates
this. "Things" refer to different physical entities equipped with sensors, software, and
connectivity capabilities for data exchange and acquisition between them while keeping
low-power consumption. IoT is a central part of the fourth industrial revolution known
as "Industry 4.0" [2]. Implementations of IoT systems are vast and include industrial
machinery, vehicles, household and human wearable appliances, and entire smart cities.
Electronics engineers play a crucial role in this field, as they can design and develop
both hardware and software for IoT devices [3]. Given IoT’s significance for the future,
education should incorporate IoT.

Figure 1: Internet of Things illustration [4]

3

Theoretical framework

2.2 Microcontrollers

Microcontrollers serve as a central technical element within the realm of IoT. These com-
pact integrated circuits are specifically designed to control specific operations within em-
bedded systems [5]. They are commonly referred to as an MCU (microcontroller unit).
A typical microcontroller consists of a processor, memory, and input/output (I/O) pe-
ripherals, all housed on a single chip. Being able to utilise microcontrollers is essential
for developing IoT systems. C and C++ are the most commonly used programming
languages, but others can be employed [6].

2.3 Wi-Fi

Wi-Fi is a wireless network technology that uses radio waves to connect devices to the
internet [7]. Operating based on the IEEE 802.11 standard, which serves as the foundation
for wireless local area networking. It commonly uses the frequency bands 2.4 GHz and 5
GHz.

The two main components within a Wi-Fi network are access points (APs) and clients
[7]. Access points host the local network where clients can connect. Examples of client
devices are laptops and smartphones, while an AP can be a Wi-Fi router in a home. To
ensure data security, the transmission of data between the client and the access point is
encrypted. Figure 2 shows a common connection request and approval between an AP
and a client.

Figure 2: Wi-Fi connection request and response [7]

4

Theoretical framework

2.4 Narrowband Internet of Things (NB-IoT)

Narrowband IoT (NB-IoT) is a wireless communication protocol that has been specifically
devised to cater to the requirements of the Internet of Things (IoT) domain. It leverages
the utilisation of low-power wide-area network (LPWAN) technology, which enables the
transmission of limited data volumes over a constrained bandwidth, thereby conserving
substantial amounts of power [8]. NB-IoT operates within cellular networks and can be
classified as a subset of long-term evolution (LTE) wireless broadband. To put it simply,
LTE corresponds to the 4G network, while LTE-M refers to an optimised variant of 4G [9].
Notably, 4G pertains to the fourth generation of broadband cellular network technology.
Furthermore, it is worth mentioning that NB-IoT is also anticipated to be made available
within 5G networks [10]. Alternative terminologies and specifications associated with
NB-IoT encompass LTE Cat-NB1, and LTE Cat-NB2 [8].

2.4.1 AT commands

AT commands (short for "Attention") are used to control modems [11]. These are often
entered in a terminal window on a PC, where the device is connected to a serial port. If
"AT" is typed and it returns "OK", this indicates that they are connected properly. AT
commands have a few classifications and syntaxes.

AT command type: Syntax: Description:

Test AT+command name=? Check if command is supported by the modem
and possible parameter values

Read AT+command name? Check current parameter values and settings

ATcommand name Basic command, no "+" prefix

ATcommand name=xx Basic command with sub parameter

AT+command name Extended command, prefix with "+"

AT+command name= , , xx Some sub parameters may be omitted

Write

AT^command name Some private commands use other characters
instead of "+", e.g. "AT^RESET"

Table 2: AT command classifications and syntaxes [11]

5

Theoretical framework

2.5 Low-power modes and techniques

When designing IoT systems and devices, a crucial aspect includes minimising power
consumption. Devices often have different techniques to enter different power-saving
modes. Distinguishing techniques and modes are important. Modes refer to distinct power
states that offer different available functionalities, whereas techniques entail methods for
transitioning into and out of these states. Employing techniques and modes instead of
merely shutting devices off ensures that different configurations are not lost and keeps
some services.

2.5.1 Low-power modes

Unnecessary power consumption is not ideal and sustainable in many projects. Having
a balance between power-saving and required functionality operations becomes a central
part of the design. Devices often have their own specific power-saving modes where
they deactivate some elements and can transition between them as needed [12]. For
instance, if some functionalities are only required at certain times, it is nonessential to
keep all functionalities active continuously. Terms such as "idle" and "sleep" are frequently
employed to describe different low-power states. "Idle" often refers to devices not being in
use and goes, for example, into "deep sleep" when it has been in idle for an extended period
of time, where it shuts down even more elements [13]. Detailed information regarding
specific modes relevant to the components utilised in this project can be found in their
corresponding descriptions in Chapter 4.2.4 and 4.2.5.

2.5.2 Low-power techniques on cellular network

Employing power-saving techniques, as opposed to merely shutting down the modem,
ensures that the device, for example, deactivates radio functionalities while retaining con-
nectivity to the network without necessitating the power-intensive attachment procedure
for reconnecting. There are two main power-saving techniques when considering cellular
networks (including NB-IoT): Power Saving Mode (PSM) and extended Discontinuous
Reception (eDRX) [14]. In essence, PSM and eDRX differ in terms of the depth and
duration of sleep. PSM allows for significantly longer sleep duration, enabling the device
to enter a deeper sleep state that consumes less power. However, this comes at the cost
of a longer wake-up period. In the case of PSM, "sleep" refers to the state where both the
receiver (RX) and transmitter (TX) of the radio are turned off while the device remains
registered with the network. On the other hand, eDRX involves turning off the TX and
intermittently activating the RX to listen for paging messages that inform the device that
there is data pending. Enabling eDRX to listen for incoming data more often consumes
more power. PSM and eDRX can also be combined. When going to sleep, the connection
to the network is turned off, referring to RRC idle (Radio Resource Control).

6

Theoretical framework

Power Saving Mode (PSM):
PSM is an optimal choice when devices can operate independently for prolonged dura-
tions without network interaction [15]. It is explicitly designed for IoT devices. Both
the network and device must support this functionality to enable PSM. PSM refers to
a state wherein the device minimises its power consumption by entering a sleep mode
while maintaining connectivity configurations. During PSM, the device ceases to monitor
paging, rendering it unreachable.

The device periodically wakes up and transmits a Tracking Area Update (TAU) to the net-
work. TAU is a signaling procedure to inform the network about its location to optimise
resource allocation and ensure efficient communication. Here, two timers are involved:
Periodic TAU timer (T3412) and Active Timer (T3324). The Periodic TAU timer deter-
mines the duration between these device awakenings. The Active Timer (T3324) defines
the time at which the device is reachable. The difference between these two is the duration
for which a device remains in Power Saving Mode. This is visualised in Figure 3, where
the x-axis is power consumption and user equipment (UE) refers to the device. However,
the device can also be triggered to be woken up by other events, such as sensor activation
or another external request, for example, a pin toggle.

Figure 3: PSM cycle [15]

extended Discontinuous Reception (eDRX):
eDRX, an extension of DRX and closely related to PSM, offers enhanced flexibility in
defining the cycles [15]. eDRX monitors the network more frequently than PSM, although
at the expense of reduced energy savings. Whereas PSM cycles can span over several days,
eDRX cycles have a maximum duration of a few hours but typically operate in seconds
and minutes.

The Paging Cycle Length (PCL) parameter determines the interval at which network
monitoring occurs, while the Paging Transmission Window (PTW) parameter specifies the
duration of this monitoring. The device and the network engage in a negotiation process
to establish a specific sleep cycle duration. In Figure 4, the eDRX cycle is depicted, with
the x-axis representing power consumption. The light blue column is PTW, and that
column plus the eDRX cycle is the PCL.

7

Theoretical framework

Figure 4: eDRX cycle [15]

2.6 Pedagogical principles when creating a development board

During the fabrication process of the development board with its intended use in educa-
tion, it is important to keep pedagogical principles in mind. This is also essential when
creating different assignments.

Project-based and hands-on learning approaches stimulate active and experiential learn-
ing, contrasting with passive methods, by offering a practical dimension that enhances
student engagement [16].

Contextual learning arises when students acquire proficiency in utilising the development
board while simultaneously gaining knowledge about various real-life applications [17].
Within the context of IoT, this might be smart homes or environmental monitoring.

Assignments that are problem-centered [18] and conducted in teams [19] necessitate the
utilisation of reflective, analytical, and problem-solving skills among students while con-
currently fostering collaboration and enhancing communication abilities.

Providing board flexibility and adaptability allows students to explore and properly cus-
tomise their own projects [20]. This is an important aspect to consider during its devel-
opment. This also translates to that it should not be too complected to begin using.

By implementing these principles in the fabrication of the board and assignments, students
not only grasp the curriculum but also nurture critical thinking, problem-solving skills,
creativity, and collaboration.

8

Method

3 Method

This chapter provides a comprehensive overview of the methods utilised to implement
the project structure and design and why these were chosen. It includes the project’s or-
ganisational aspects, system, requirements, design methodology, the reasoning behind the
selection of the primary components, and testing methods employed. After this chapter,
the reader should have an informational overview to understand the further and actual
implementation of the project.

3.1 Project planning and management

Project planning and management methods were established with the pre-project report.
However, in the beginning, the project group consisted of two members. Due to one of
them falling ill, the decision to split up the project was made so that the other could
submit it on time. From the beginning, the project consisted of two pretty separate
parts, therefore presented the division no great challenge. One part of the project was
developing the IoT platform Deploii, while the other part was the proof-of-concept of an
IoT development board. Evidently, this project report encompasses the latter. Attending
the Technology and Research Education Conference was an overlapping task and was
therefore kept in both. It is worth mentioning that the project developer, Annik Riise, is
the electrical engineering student carrying out this bachelor project on behalf of Company
of Things but is also the company’s COO. All documents related to the project were
added to the Microsoft Teams for this bachelor thesis, available for supervisors. These
are attached to the submission. See B.1.

3.1.1 Goals

The main project goal, presented in Chapter 1.1, states: "Create a proof-of-concept of
an adaptable Internet of Things (IoT) development board, customised to cater to the
specific demands and needs of the Norwegian education system". Based on this and other
wishes from Company of Things, a small list has been created, as shown below. The
work packages in the next Subchapter, "3.1.2 Quality and progress ensures with work
packages", can also be seen as goals.

• Hardware for proof-of-concept of CoT DevKit IoT
• Software/code for proof-of-concept of CoT DevKit IoT
• Able to work with the IoT-platform Deploii
• Final project report
• Final presentation and poster

9

Method

3.1.2 Quality and progress ensured with work packages and Gantt-chart

To keep track of time and ensure progress and quality, the project was divided into smaller
subtasks called work packages. The work packages are based on the system requirements,
goals stated, and wishes of Company of Things. The choice of type of main technological
components was done prior to the pre-project report. Therefore are specifications included
in the work packages. Reasoning for them can be read about in Chapter "3.4 Choice
of main technological components". The bullet list below showcases the different work
packages. The "H" stands for "Hardware", "OF" stands for "Outreach and Feedback", and
"R" stands for "Presenting results".

• H1: Decide on microcontroller and NB-IoT modem
• H2: Test Wi-Fi and narrowband data transfer and communication
• H3: Test data transfer and communication with the IoT-platform (Deploii)
• H4: Possible low-power mode
• OF1: Technology and Research Education Conference
• P1: Final report
• P2: Final presentation and poster

The Gantt chart in Appendix A.1 visualises the work packages, the planned duration,
and actual progress. Most tasks used approximately the expected time period. Planning
for OF1 took longer than anticipated, causing a delay in H2 startup. H3 was not done,
as the IoT platform Deploii was not ready throughout the project period. The project
developer was sick from week 19 through week 21 when no work was done on the project.
After this, the progress was slower due to not being completely well and working at half
capacity. This resulted in a total delay of approximately two months.

3.1.3 Quality and progress ensured with supervisors

Academic support and feedback from supervisors allowed for constant improvement and
progress, keeping the project on track and ensuring quality. Having these sparring part-
ners also contributed to the best solutions. In the first half of the semester, meetings
were held every other week, and in the second half of the semester, every week. One
supervisor, Even J. Christiansen, a staff engineer at the Department of Electronic System
NTNU, dropped out due to now having enough time. This somewhat negatively affected
the project, as he knows quite a bit about microcontrollers. However, questions were still
directed towards him. Additionally, Ingulf Helland, a senior engineer in the same de-
partment, provided assistance with hardware questions. The other supervisors provided
great feedback and assistance with their knowledge of wireless communication, Arduino
programming, electronics, pedagogical methodology, and general project management.
Below is a list of the supervisors.

• Arne M. Midjo (Main supervisor), Department of Electronic Systems NTNU

10

Method

• Lars M. Lundheim (Co-supervisor), Department of Electronic Systems NTNU
• Nils Kristian Rossing (Co-supervisor), Skoleaboratoriet, Department of Physics NTNU

3.1.4 Risk assessment

The project has no HSE (Health, Safety and Environment) risks since the work was done
on computers and with low-power circuitry. Interpreting "risk" as a broader term, the
main risk was keeping to the laid-out plan. This is due to the project being created from
passion, and the project developer might get stuck on certain details.

3.1.5 Time and cost

Cost consists of equipment and man-hours. The final expenses and when they occurred,
is visualised in the S-curve chart in Appendix A.2.

The price of equipment was estimated to be 3800 NOK, while the actual material expenses
ended up on 3072 NOK (excluding transport), as depicted in the list below.

• 2x Development board with microcontroller that has integrated Wi-Fi, 210 NOK.
• 2x Evaluation kit with NB-IoT module, 2162 NOK.
• 2x SIM card with NB-IoT subscription, 50 NOK each month (4x50 NOK).
• Other (breadboard, cables, battery), 500 NOK.

Starting salary for newly graduated electrical engineers in Norway is typically 550 000
NOK [21]. This includes 48 work weeks a year, each week consisting of 5 days, where one
day is 7,5 hours. This results in 1800 hours a year with an hourly salary of 550 000/1800
= circa 305 NOK. Due to other commitments, the project developer worked 3 days a week
from January through March, and after this, 5 days a week. The conference was in week
11 in March, therefore all 5 days went to this. The project developer has exams in May
and will therefore miss 12 workdays. This was the original plan, was that the project
lasted from 9th of January until 4th of June, leading to a predicted (11weeks ⋅ 3days ⋅
7,5hours) + (5days ⋅ 7,5hours) + (10weeks ⋅ 5days ⋅ 7,5hours) − (12days ⋅ 7,5hours) = 570
hours => 173 850 NOK. The expected cost, combining material and man-hour expenses,
was 177 650 NOK.

As stated, the project progression went according to plan from January through the first
week of May. After that, there was 3 weeks without work, and following this worked at
half capacity. Additionally, week 26 went to another job. The project was done in week
31. This results in total cos of man-hours to be (11weeks ⋅ 3days ⋅ 7,5hours) + (5days ⋅
7,5hours)+(5weeks ⋅5days ⋅7,5hours)−(12days ⋅7,5hours)+(9weeks ⋅3days ⋅7,5hours) =
585 hours => 178 425 NOK.

The actual cost of the project, with 3072 NOK for equipment and 178 425 NOK for
man-hours (585 hours), ended up at 181 497 NOK.

11

Method

3.2 System requirements

The system requirements of the project are primarily derived from the specific needs of the
Norwegian education system and the preferences of Company of Things. This subchapter
provides a comprehensive explanation as to why these chosen technologies constitute
system requirements for the project, and they are presented in the concluding section of
this subchapter. Therefore, the "Functionality requirements" refer to the specifications
and functionalities requested by Company of Things. While the "System requirements"
delve deeper into the specific technologies and components are chosen by the project
developer to fulfill the functionality requirements.

First, it is important to reflect on the reasons behind Company of Things’ specific re-
quirements for CoT DevKit IoT. The scope of Internet of Things (IoT) extends to both
indoor and outdoor settings, including remote areas, necessitating the utilisation of wire-
less data transfer technologies that cater to both short and long-range communication.
Consequently, the development board should be purposefully designed to accommodate
entry-level projects, thereby influencing the selection of an appropriate programming lan-
guage and level of complexity. In the context of IoT, the capability to conserve energy
through low-power options is of paramount importance to ensure product sustainability
and longevity. Given that the projects undertaken by students are not expected to be ex-
cessively large in scale, high bandwidth requirements for data transfer are not imperative.
These functional requirements are succinctly summarised in the following list.

Functionality requirements for proof-of-concept of CoT DevKit IoT:

• Short-range wireless communication for indoor use.
• Long-range wireless communication for outdoor use.
• Entry-level microcontroller programming language.
• Strive for low-power consumption.
• Strive for low cost.
• No need for highest data transmission.

With the list above in mind, there are a few possible wireless communication and pro-
gramming language option to be considered.

Possible technologies:

• Wireless communication technology:
– Short-range: Bluetooth or Wi-Fi
– Long-range: Cellular 4G/5G, LoRaWAN or Cellular narrowband IoT

• Programming language:
– C/C++, Arduino C or Python/microPython

12

Method

Below are the concluding system requirements. The rest of this subchapter explains why
these were chosen.

System requirements for proof-of-concept:
• Short-range wireless communication for indoor use: Wi-Fi.
• Long-range wireless communication for outdoor use: Narrowband IoT.
• Entry-level microcontroller programming language: Arduino C.
• Possibility for low power modes.
• Strive for low cost.

3.2.1 Technology and Research Education Conference

The Technology and Research Education Conference held in March at Arendal Upper Sec-
ondary School provided valuable insights into the preferences and inclinations of teachers
regarding the integration of Internet of Things projects into their lectures. This annual
conference is organised by the Schoollaboratory at NTNU and Tekna and is specifically
targeted at upper secondary school teachers instructing the subject "Technology and Re-
search" (Teknologi og Forskningslære) from all over the country. As representatives of
Company of Things, one of my colleagues and I participated in the conference and deliv-
ered presentations, and gained feedback on products being developed. Our data acquisi-
tion methods included direct conversations with the teachers as well as a survey.

To illustrate the outcomes of inquiries related to this thesis, three questions from the
survey have been selected. The graphs are presented in Figures 5, 6, and 7 below. Larger
versions of the images can be found in Appendix A.3. The questions are, translated from
Norwegian, as follows: "Which wireless technologies are you interested in utilising for ed-
ucational purposes, ideally?", "Which development boards/microcontrollers do you prefer
to use in your teaching?" and "Which programming languages do you prefer to use in your
teaching?". By engaging in direct conversations with the teachers, we gained a deeper un-
derstanding of the reasoning behind their responses. It is important to acknowledge that
the sample pool for the survey was relatively small, with 10-12 responses, and therefore
the findings should be interpreted with caution. However, this is a good starting point.

13

Method

Figure 5: Survey question 1 Figure 6: Survey question 2

Figure 7: Survey question 3

There seems to be a correspondence between the types of programming languages and
wireless communication technologies and the microcontroller boards employed. For in-
stance, Arduino and ESP32 boards utilise Arduino C, while Micro:bit boards are com-
patible with Python/microPython. Micro:bit predominantly employs Bluetooth, whereas
ESP32 offers both Wi-Fi and Bluetooth capabilities. On the other hand, Arduino Uno, the
most commonly used Arduino board, lacks access to either of these connectivity options.
Nevertheless, a few teachers informed us that they had procured additional components
to enable Wi-Fi connectivity for their Arduino boards. A lot of the schools already have
Micro:bit and Arduino broads. ESP32 is gaining popularity in higher education as it is
perceived as more cost-effective, secure, and versatile than Arduino boards, thanks to its
Wi-Fi and Bluetooth capabilities. This trend might be transferred to upper secondary
education. A noteworthy finding from the survey is that none of the teachers currently
employ narrowband, although they express a keen interest in incorporating it into their
teaching.

3.2.2 Wireless communication and programming language

Short-range wireless communication:
The technologies being examined are Bluetooth and Wi-Fi. Bluetooth operates on the
2.4 GHz radio frequency band and enables device connectivity within a specified range

14

Method

[22]. Wi-Fi allows devices to connect wirelessly to the internet and facilitates intercon-
nection among devices operating in both the 2.4 GHz and 5 GHz frequency bands [7].
Data obtained from the survey at the Technology and Research conference indicates that
teachers express a nearly equal desire to employ these resources, see Figure 6.

Compared to Bluetooth, Wi-Fi has a wider coverage range, encompassing distances rang-
ing from tens to hundreds of meters depending on the specific equipment and environment
[7]. In contrast, Bluetooth has a shorter range, with Bluetooth 4.2 reaching a maximum
of 60 meters and Bluetooth 5.0 reaching 240 meters [22]. Notice that these distances
can be significantly influenced by environmental factors and infrastructure, resulting in
reduced range. Wi-Fi, compared to Bluetooth, has faster data transmission speeds. The
latest version of Bluetooth has significantly improved, but it can still only transmit up to
2 megabits per second [22]. Whereas Wi-Fi can transmit up to a few gigabits per second
[7]. An advantage of Bluetooth emerges from its narrower range and lower transmission
speeds, as this results in lower power consumption. However, another disadvantage is
that it is a less secure protocol [22].

In summary, Wi-Fi offers superior data transfer speeds, broader coverage, and enhanced
security compared to Bluetooth. Nevertheless, the lower power consumption of Bluetooth
and the absence of a requirement for very high data transmission may make it a viable
option in certain scenarios. However, in this particular project, Wi-Fi is chosen based
on a few factors. Wi-Fi provides indoor/short-range coverage that extends beyond a sin-
gle classroom to encompass the entire school, which would be unreliable with Bluetooth.
Additionally, secure data transfer is prioritised. This development board is specifically
designed for seamless integration with the IoT platform, Deploii, developed by the Com-
pany of Things. The initial connection method being implemented with this platform is
Wi-Fi. Furthermore, as stated, the survey suggests that teachers are indifferent about
which of these two to use. Based on this, Wi-Fi is chosen as the short-range wireless
communication technology. More about narrowband IoT can be read in 2.3 Wi-Fi, under
the Theoretical Framework chapter.

Long-range wireless communication:
The long-range wireless communication technology options encompass 4G, 5G, LoRaWAN,
and NB-IoT. 4G, or fourth-generation wireless, is a high-speed cellular network technol-
ogy [23]. 5G, or fifth-generation wireless, represents the most recent iteration within
this series, characterised by decreased latency, heightened capacity, and augmented data
transfer swiftness compared to 4G [24]. LoRaWAN stands for Long Range Wide Area
Network and is, as the name suggests, a long-range, low-power wide-area network (LP-
WAN) technology [25]. It is specifically designed for IoT applications and employs a
proprietary spread spectrum modulation technique called LoRa. Meaning it has its own
network. NB-IoT, short for Narrowband IoT, is also a low-power LPWAN technology
created for IoT [8]. However, NB-IoT utilises the existing 4G infrastructure and is set to
also work on the 5G network.

The key distinctions between 4G/5G, NB-IoT, and LoRaWAN lie in their cellular con-
nectivity, data rates, power consumption, and range/coverage capabilities. 4G and 5G

15

Method

are high-speed technologies, while NB-IoT and LoRaWAN are LPWAN technologies opti-
mised for low-power IoT devices. While both NB-IoT and 4G/5G utilise cellular networks
and operate on licensed frequency bands, NB-IoT is a subset of 4G. In contrast, LoRaWAN
operates on unlicensed frequency bands and does not rely on cellular infrastructure. 4G
and 5G offer high data transfer rates suitable for applications that necessitate real-time
streaming and high-bandwidth communication. NB-IoT and LoRaWAN provide lower
data rates but have low power consumption and are ideal for connecting IoT devices over
long distances. Considering the functional requirements of this project, the high data
rates and power consumption of 4G/5G are not necessary. Additionally, teachers at the
Technology and Research conference only showed minimal interest in using 4G (see Figure
5). Therefore, the choice comes down to LoRaWAN or NB-IoT.

LoRaWAN has a lower data rate and power consumption compared to NB-IoT. Although a
high data rate is not crucial for this project, having really low limits students from creating
more versatile products. Since the projects created by students may involve monitoring
real-time data transmission, such as remote monitoring or control systems, NB-IoT is
better suited. LoRaWAN boasts ultra-low power consumption, with devices often having
a battery life of 15+ years, while NB-IoT offers a battery life of 10+ years [25]. However,
these optimisations may not be necessary for student projects. Allowing students to
develop more dynamic projects with slightly higher bandwidth is more valuable than
achieving the lowest possible power consumption. One of the advantages of LoRaWAN is
that users can operate their own network operator, thereby avoiding restrictions imposed
by specific network operators. However, this also presents the main disadvantage of
LoRaWAN: poor coverage. LoRaWAN adopts a star-of-stars network architecture, where
end devices communicate with gateways that forward the data to a central network server.
In Norway, there are not many gateways available, and schools may need to establish their
own infrastructure. In comparison, NB-IoT utilises the existing 4G network, which offers
extensive coverage in Norway. Maps of this can be seen in Figures 8 and 9. Note that the
NB-IoT map is from Telenor’s network, a Norwegian majority state-owned multinational
telecommunications company and that the map consists of multiple images due to not
being able to zoom out more. The coverage of NB-IoT is also superior indoors and in
underground areas like cellars. Furthermore, LoRaWAN may face signal disturbances
from building infrastructure. Teachers at the Technology and Research conference, even
though they do not use NB-IoT today, seemed quite eager to include it in their lecturers
(see Figure 5). Moreover, the market already offers a considerable number of LoRaWAN
development boards. Taking all these factors into consideration, NB-IoT emerges as the
most suitable choice. More about narrowband IoT can be read in 2.4 Narrowband Internet
of Things (NB-IoT), under the Theoretical Framework chapter.

16

Method

Figure 8: LoRaWAN coverage [26] Figure 9: Telenor NB-IoT coverage [27]

Programming language and integrated development environment:
When embarking on the journey of learning how to use microcontrollers, selecting the
most suitable programming language is a crucial decision. The options to consider are
Python/microPython, C/C++, and Arduino C.

C and C++ are popular within microcontroller programming due to their ability to access
hardware at a low level, deliver high performance, and have a wide range of existing li-
braries [28]. However, for beginners, the complexity of C and C++ can be overwhelming.
In response to this, Arduino C was developed as a beginner-friendly language based on
C++ [29]. Python is not traditionally a microcontroller programming language but it is
becoming increasingly more attractive to use as such. Allowing individuals with Python
experience to engage with microcontrollers without needing to learn a new language [30].
Notably, teachers at the Technology and Research conference exhibit a preference for
Python and Arduino C, with Python slightly surpassing Arduino C (see Figure 7). Inter-
estingly, when considering the preferred development board, Arduino only slightly out-
performs Micro:bit (see Figure 6). This observation suggests that while Arduino boards
are favored, Python is the most used language.

Nonetheless, C remains inherently more well-suited for microcontroller programming. For
students delving deeper into the subject, transitioning from Arduino C to regular C/C++
is a more natural progression compared to transitioning from Python. Additionally, from
a practical standpoint, the project developer for this thesis has more experience with
Arduino C than Python.

In the case of utilising NB-IoT modems, which have been selected for this project, control

17

Method

is achieved through AT commands ("AT" stands for "attention"). These commands are
entered into a terminal program on the computer. This aspect can also be slightly daunt-
ing for absolute beginners. Fortunately, Arduino offers its own integrated development
environment known as Arduino IDE [31]. The IDE includes a tool called "Serial Monitor"
which is a type of terminal but can, with minimal code, replicate the functionalities of
standard terminal programs such as PuTTY and Tera Term [32]. This integration of
code execution, manual command input, and display of responses within a single program
fosters organisation and contributes to an improved workflow and user experience.

Considering all these factors, Arduino C with Arduino IDE emerges as the optimal choice
for this project.

3.2.3 Concluding system requirements

Based on everything above, the functionality requirements can be specified into system
requirements.

System requirements for proof-of-concept:
• Short-range wireless communication for indoor use: Wi-Fi.
• Long-range wireless communication for outdoor use: Narrowband IoT.
• Entry-level microcontroller programming language: Arduino C.
• Possibility for low-power modes.
• Strive for low cost.

18

Method

3.3 Design methodology

The design methodology employed for creating this project was iterative design method-
ology. Iterative design is an approach that involves continuously improving a concept or
product through a series of iterations [33]. See Figure 10 for a visual representation of this
process. In the context of this project, the iterative design process was applied within each
work functionality requirement. This approach involved working on individual subtasks,
testing them, making adjustments, and repeating the process until satisfactory results
were achieved. Once all the separate parts were completed, they were combined to form
the final proof-of-concept with the demonstration setup.

It is important to note that the participants involved in this design cycle included the
project developer, supervisors, employees at Company of Things, and potential teachers.
However, it is worth mentioning that users or students were not directly involved in this
particular design cycle.

Figure 10: Iterativ design process [33]

19

Method

3.4 Choice of main technological components

In order to develop a proof-of-concept aligned with the specified system requirements,
it is essential to conduct a comprehensive analysis of the current market landscape and
then choose the right components. The system’s central components are a microcontroller
that controls the entire system and narrowband and Wi-Fi communication modems. They
need to be compatible with Arduino C and have low-power abilities. An additional aspect
to consider is the objective of achieving a low-cost solution. Determining a reasonable
price point and assessing the affordability within the school system present challenging
questions to address. In this context, it becomes essential to select components that are
both cost-effective and capable of meeting the specified requirements. The primary aim
is to ensure maximum affordability for schools during the procurement process.

The market analysis was performed in March 2023, prior to the submission of the pre-
project report. Consequently, it is important to acknowledge that there may have been
subsequent changes in the market dynamics. The market analysis involved gathering in-
formation about existing development boards and compatible add-on components. Add-
on components are boards that can be combined with other development boards to
achieve the desired functionalities. Furthermore, moving on to the most important part
of analysing existing microcontrollers and modems. When choosing which of these will
be integrated in CoT DevKiT IoT.

3.4.1 Existing development boards and add-on components

Table 3 provides an overview of the available development boards that are pertinent to
entry-level IoT projects, exhibiting certain functionalities that are aligned with the system
requirements. Most of these do not include both narrowband IoT and Wi-Fi, meaning
they would need to be combined with add-on components shown in Table 4 and 5, making
them all together even more expensive.

The only available development board identified, possessing both narrowband IoT and
Wi-Fi capabilities, which appears to be targeted towards entry-level applications and
reasonably priced, is the LILYGO T-SIM7080G-S3 [34]. Consequently, it serves as a
direct competitor to CoT DevKit IoT. Upon conducting online research, it is evident that
the available documentation for this board is relatively limited. However, it should still be
manageable as it utilises the ESP32-S3 microcontroller, which has sufficient resources and
supporting documentation accessible [35]. It is worth noting that this particular board
cannot be purchased through reliable distributors such as Mouser or Digi-Key, thereby
raising concerns about the quality and reliability of the product. Nonetheless, Company
of Things remains confident in its ability to compete with this competitor.

The applicable development boards with narrowband IoT were Arduino MKR NB 1500
[36], AVR-IoT Cellular Mini [37], and SparkFun Thing Plus [38]. However, both the
SparkFun Thing Plus and Arduino MKR NB 1500 exhibit relatively high price points, re-

20

Method

spectively approximately 1000 NOK and 1500 NOK. This elevated cost can be attributed
to them using expensive NB-IoT modems. On the other hand, the AVR-IoT Cellular
Mini, despite being relatively expensive considering its sole narrowband IoT function-
ality, is priced lower compared to the two others. Furthermore, Microchip Technology
provides comprehensive support resources for this particular board, enhancing its appeal
and usability.

There are considerably more available boards with Wi-Fi. Therefore, the boards presented
in Table 3 have been meticulously chosen as the most discerning options. The options are
Arduino UNO WiFi REV2 [39], ESP32-DevKitC V4 [40] and Raspberry Pi Pico W [41].
Respectively priced at around 550 NOK, 110 NOK and 65 NOK, the Arduino UNO WiFi
REV2 appears to be way overpriced. Both ESP32-DevKitC V4 and Raspberry Pi Pico
W seem like quality boards. Something interesting to note is that the microcontroller
on ESP32-DevKitC V4 has integrated Wi-Fi, while Raspberry Pi Pico W has separate
microcontroller and Wi-Fi modem.

Existing Development Boards March 2023

Dev Board: Manufacturer: NB-IoT: Wi-Fi: Arduino C
compatible:

Low-
power:

Price
in

NOK:

Arduino MKR
NB 1500 Arduino SARA-

R410M-02B – ✓ ✓
934
[36]

Arduino UNO
WiFi REV2 Arduino – NINA-

W102 ✓ ✓
543
[39]

AVR-IoT
Cellular Mini

Microchip
Technology

Monarch 2
GM02S – ✓ ✓

746
[37]

ESP32-DevKitC
V4

Espressif
Systems –

ESP32-
WROOM-

32E
✓ ✓

108
[40]

LILYGO
T-SIM7080G-S3 LILYGO SIM7080G ESP32-S3 ✓ ✓

320
[34]

Raspberry Pi
Pico W Raspberry Pi – Infineon

CYW43439 ✓ ✓ 65 [41]

SparkFun Thing
Plus

SparkFun
Electronics nRF9160 – ✓ ✓

1513
[38]

Table 3: Available Development Boards and some of their functionality

21

Method

Moving on to the discussion of add-on boards, first looking at the narrowband options
presented in Table 4. The LTE CAT M1/NB-IoT Shield for Arduino stands out as
quite expensive, with a price close to 1000 NOK [42]. Additionally, Arduino boards
themselves are already known for their relatively high costs. Similar to this, the Dragino
NB-IoT Shield-B5 for Arduino, although reasonably priced as an add-on, still inherits
the higher expense associated with Arduino boards [43]. On the other hand, the NB-IoT
Click from Mikro Elektronika exhibits versatility, allowing it to be combined with various
development boards [44]. Another option worth paying attention to is the SIM7020E NB-
IoT Module, specifically designed for Raspberry Pi Pico [45]. The combined cost of the
two amounts to approximately 280 NOK, which is a highly competitive price point. This
combination provides a product that fulfills all the system requirements and serves as a
potential competitor. Taking one of the development boards with Wi-Fi, for example,
the ESP32-DevKitC V4, and incorporating NB-IoT Click, results in a combined cost of
around 750 NOK.

Existing NB-IoT add-on components for development boards March 2023

Add-on
component: Manufacturer: NB-IoT: Arduino C

compatible: Low-power: Price in
NOK:

Dragino NB-IoT
Shield-B5 for

Arduino
Seed Studio BC95-B20 ✓ ✓ 390 [43]

LTE CAT
M1/NB-IoT
Shield for
Arduino

SpakrFun SARA-R410M-
02B ✓ ✓ 985 [42]

NB-IoT Click MikroE BC95-G ✓ ✓ 639 [44]

SIM7020E
NB-IoT Module
For Raspberry

Pi Pico

Waveshare SIM7020E ✓ ✓ 217 [45]

Wappsto:bit NB
IoT for micro:bit Wappsto BC66-NA – ✓ 806 [46]

Table 4: NB-IoT Add-on Components such as clicks and shields for development boards

22

Method

Compared to the NB-IoT add-ons, the Wi-Fi add-ons, as presented in Table 5, exhibit
more favourable pricing. The SparkFun WiFi Shield - ESP8266 is available for around
200 NOK [47], the WIFI 7 CLICK for 300 NOK [48], and the WIFI ESP CLICK for 160
NOK [49]. These options demonstrate minimal differentiation, particularly as they all
incorporate parts from the ESP series.

The Wappsto:bit NB-IoT for micro:bit [46], priced at around 800 NOK, appears rela-
tively expensive, considering it offers both narrowband and Wi-Fi capabilities. However,
it is essential to highlight that this add-on is exclusively compatible with the micro:bit
microcontroller board, which can be purchased for approximately 170 NOK [50]. Conse-
quently, the combined price totals 870 NOK, still significantly higher than, for example,
the LILYGO T-SIM7080G-S3, priced at 320 NOK. Additionally, the Wappsto:bit NB IoT
is not intended for programming with Arduino C.

Existing Wi-Fi add-on components for development boards March 2023

Add-on
component: Manufacturer: Wi-Fi: Arduino C

compatible: Low-power: Price in
NOK:

SparkFun WiFi
Shield -
ESP8266

SparkFun ESP8266 ✓ ✓ 197 [47]

Wappsto:bit NB
IoT for micro:bit Wappsto ESP32 – ✓ 806 [46]

WIFI 7 CLICK MikroE ATWINC1510-
MR210PB ✓ ✓ 308 [48]

WIFI ESP
CLICK MicroE ESP8266 ✓ ✓ 159 [49]

Table 5: Wi-Fi Add-on Components such as clicks and shields for development boards

Considering all the factors, the CoT DevKit IoT project has drawn inspiration from the
boards mentioned above. The primary contenders in today’s market are the LILYGO T-
SIM7080G-S3 and the Raspberry Pi Pico W in conjunction with the SIM7020E NB-IoT
Module add-on. However, the LILYGO T-SIM7080G-S3 faces challenges due to the lack
of comprehensive documentation and reliable distributors. Additionally, the combination
of the Raspberry Pi Pico W and the SIM7020E NB-IoT Module does not fulfil the desired
objective of integrating all functionalities onto a single board.

Upon analysing the various development boards and add-ons, it becomes evident that
it is more convenient and cost-effective to opt for a microcontroller with integrated Wi-
Fi capabilities. This approach not only reduces the overall expenses but also minimises

23

Method

physical space requirements on the final printed circuit board, making it a more prac-
tical choice. As a result, the two primary components of the system will consist of a
microcontroller with an integrated Wi-Fi modem and a separate NB-IoT modem.

3.4.2 Choice of microcontroller with Wi-Fi

The choice of microcontroller with an integrated Wi-Fi modem is based on what excit-
ing boards use, as discussed earlier, but also further market analysis of other available
microcontrollers with Wi-Fi capabilities. The relevant choices are depicted in Table 6.

Microcontrollers with integrated Wi-Fi March 2023

Microcontroller: Manufacturer: Arduino C
compatible: Low-power: Other ca-

pabilities:
Price in
NOK:

ESP32-S2-SOLO-2
module

Espressif
Systems ✓ ✓ – 28 [51]

ESP32-WROOM-
32E

module

Espressif
Systems ✓ ✓ Bluetooth 52 [52]

CC3220SF Texsas
Instruments Not entirely ✓ – 70 [53]

WFI32E01 Microchip
Technology Not entirely ✓ – 145 [54]

Table 6: Available microcontrollers with integrated Wi-Fi taken into consideration

24

Method

It is important to note that the ESP32-S2-SOLO-2 [51] and ESP32-WROOM-32E [40]are
modules rather than solely system-on-chips (SoCs) like the CC3220SF [53] and WFI32E01
[54]. This implies that they are situated on a small circuit board primarily containing an
antenna. This aspect is favourable to the ESP series, as it simplifies the design process
of the eventual CoT DevKit IoT printed circuit board. Besides being modules, they are
more cost-effective than the other alternatives.

All of these microcontrollers offer various low-power modes and functionalities. The
ESP32-WROOM-32E also incorporates Bluetooth, which is not a requirement for this
project but could be of interest for further development on the IoT development board
following the completion of this thesis. In terms of Arduino C compatibility, the ESP
series provides multiple libraries and references and is widely recognised for its usage.
Conversely, the CC3220SF and WFI32E01 come with references for programming them
in embedded C, which is the industry standard for most microcontrollers. An Arduino
library would therefore, therefore, be necessary. While this is a possibility, it might be
overly ambitious for this bachelor project considering time constraints. Therefore, due to
these factors and their higher prices, the CC3220SF and WFI32E01PC are excluded from
further consideration for implementation in this project.

The choice then lies between the ESP32-S2-SOLO-2 and ESP32-WROOM-32E. A care-
ful examination of their datasheets reveals several key differences. As mentioned, the
ESP32-WROOM-32E also incorporates Bluetooth. Furthermore, it features a dual-core
CPU, unlike the ESP32-S2-SOLO-2. A dual-core CPU can offer significantly improved
performance compared to a single-core CPU operating at the same speed. Multiple cores
make microcontrollers able to execute multiple processes at the same. In terms of memory,
the ESP32-S2-SOLO-2 has 320KB of SPRAM (static random access memory), whereas
the ESP32-WROOM-32E offers 520 KB. SPRAM retains data bits in its memory as long
as power is supplied, eliminating the need for continuous refreshing like dynamic RAM
(DRAM) [55]. This results in improved performance and lower power consumption. From
a student project perspective, greater SPRAM capacity enables the storage of more data
before, for instance, transmitting it to a PC for display purposes. Moreover, the ESP32-
S2-SOLO-2 provides more general input/output pins (GPIOs), as well as an LCD and
camera interface, which are advantageous for certain projects. However, it should be
noted that the ESP32-WROOM-32E’s pins can be configured to emulate these interfaces,
making them non-essential. The ESP32-S2-SOLO-2 surpasses the ESP32-WROOM-32E
and is more energy efficient. When the Wi-Fi modem enters sleep mode, the ESP32-
WROOM-32E consumes approximately 27mA-44mA under 160 MHz testing conditions,
whereas the ESP32-S2-SOLO-2 only requires 16mA.

Nevertheless, after consulting with colleagues at Company of Things, the ESP32-WROOM-
32E has been selected for this project. More specifically, the ESP32 DevKitC V4 board
has the module, making it easier to implement it in a proof-of-concept. It costs 110 NOK
[56]. The presence of a dual-core CPU, particularly the potential for future expansion of
the IoT development board’s functionalities with Bluetooth, outweighs the slightly higher
power consumption and a marginal increase in cost.

25

Method

3.4.3 ESP32-WROOM-32E specifications

Figure 11 depicts the ESP32-WROOM-32E module [57], while Figure 12 displays the
ESP32 DevKitC V4 [58]. Although the module itself has been selected for the CoT De-
vKit IoT, the development board, as mentioned, has been utilised to construct the proof-
of-concept in this project. Henceforth, both will be collectively referred to as "ESP32"
within this report. As established, the ESP32, manufactured by Espressif Systems, serves
as a suitable microcontroller module for entry-level IoT projects due to its versatile char-
acteristics and affordable price. Table 7 presents several pertinent specifications of the
ESP32. Block diagram can be found in Appendix A.6.

Figure 11: ESP32-WROOM-32E [57] Figure 12: ESP32 DevKitC V4

ESP32 specifications:

Number of cores 2x LX6 microprocessor

Architecture 32-bit

CPU frequency 160 MHz

Wi-Fi 802.11b/g/n/e/i

Bluetooth v4.2 BR/EDR and BLE

Bandwidth 72 MHz

Data rate 150 Mbps

RAM 512 KB

Flash 15 MB

Power supply voltage 3.6V

GPIO pins 36

Busses SPI, I2C, UART, I2S, CAN

ADC pins 18

DAC pins 2

Power save modes Modem, Light, Deep, Hibernation

Table 7: ESP32 specifications [57]

26

Method

3.4.4 Choice of NB-IoT modem

The choice of narrowband modem is based on what existing boards use, as discussed
earlier, but also further market analysis of other available NB-IoT modems. The relevant
choices are depicted in Table 8.

NB-IoT modems March 2023

NB-IoT Modem: Manufacturer: Low-power: Other
capabilities:

Price in
NOK:

BC66-NA Quetel ✓ – 118 [59]

BC95-GV Quectel ✓ – 147 [60]

EXS82-W Telit Cinterion ✓ LTE-M (4G) 295 [61]

LBAD0ZZ1SE-743 Murata
Electronics ✓ LTE-M (4G) 600 [62]

Monarch 2 GM02S Sequans ✓
LTE-M (4G)
and 5G ready 229 [63]

SARA-R412M-02B u-blox ✓ LTE-M (4G) 710 [64]

SIM7022 SIMCom ✓ – 130 [65]

TX82 Telit Cinterion ✓
LTE-M (4G)
and 5G ready 299 [66]

Table 8: Available NB-IoT modems taken into consideration

Firstly, SARA-R412M-02B priced at 710 NOK [64] (used by Arduino MKR NB 1500) and
LBAD0ZZ1SE-743 priced at 600 NOK [62], are significantly more expensive than the rest
and are therefore excluded from further consideration.

Modems from the BC-series by Quetel are used by quite a few add-ons and are priced
under 200 NOK [59] [60], making them a relevant choice. Similarly, the SIM7022 mod-
ule [65], an upgraded edition of the LILYGO T-SIM7080G-S3 modem, also falls within
this price range. However, the other modules on the list offer cellular LTE-M/4G func-
tionalities, which could be advantageous for future expansions of the CoT DevKiT IoT’s
capabilities. Making it an even more well-rounded IoT board. The relevance of this aspect
was discussed with Company of Things, and if the cost increase was reasonable, it was
deemed worthwhile to choose a modem that allows for this future development without
the need for an entirely new board with new components. Modules such as EXS82-W [61],
Monarch 2 GM02S [63], and TX82 [66], priced around 230-300 NOK, incur an additional
cost of approximately 100 NOK compared to those without LTE-M functionality. This
cost increment is certainly justified for Company of Things. Since the selection between
these modules is motivated by the board’s future evolution, it is worth noting that the
hardware of Monarch 2 GM02S and TX82 is designed to be compatible with the LTE-M
and NB-IoT networks’ 5G specifications. Hence, the choice narrows down to these two.

27

Method

Although these two modules share many similarities, they also exhibit a few differences.
Both modules operate on the LTE Cat M1/NB1/NB2 bands, but the TX82 module also
supports 2G. However, 2G technology is considered outdated and not relevant for Nor-
wegian education. Both modules are capable of transmitting data, but the Monarch 2
GM02S module additionally supports SMS transmission, but this is only relevant for spe-
cific projects. On the other hand, the integration of GPS (Global Positioning System)
would be a valuable future enhancement. The TX82 module has integrated GNSS (Global
Navigation Satellite System) support, simplifying the connection of a GPS module. How-
ever, wanting to add more and more possible capabilities takes away from the actual
project that is being created through this thesis. Company of Things agreed that easier
integration with GPS is not the biggest priority. Monarch 2 GM02S module features
its own LTE-M/NB-IoT protocol stack, resulting in easier management. Moreover, the
Monarch 2 GM02S module offers a few more UARTs, interfaces, and GPIOs.

Cost is a crucial factor to consider, both in terms of the module itself and the evaluation
kit. The Monarch 2 GM02S module is priced at 229 NOK, whereas the TX82 module
costs 299 NOK, making Monarch 2 GM02S module more affordable. Since this project is
a proof-of-concept, utilising evaluation kits would be ideal. Not having an evaluation kit
would require creating a separate printed circuit board solely for testing and integration
with other components, which can be time-consuming. The Monarch 2 GM02S NEKTAR
Evaluation Kit is priced at 1218 NOK, while the TX82-DEVKIT-GEM costs 1148 NOK.
Therefore, both the Monarch 2 GM02S module and its evaluation kit are cheaper than
those of the TX82 module.

Considering all these factors, the Monarch 2 GM02S module emerges as the best choice.
Although the easier implementation of GPS with the TX82 module is tempting, the
Monarch 2 GM02S module’s lower cost, LTE-M/NB-IoT protocol stack, and additional
interfaces outweigh this little advantage.

3.4.5 Monarch 2 GM02S specifications

The Monarch 2 GM02S module [63] is illustrated in Figure 13, while Figure 14 displays
its NEKTAR Evaluation Kit [67]. The module has been selected for implementation
on CoT DevKit IoT, while the evaluation kit has been utilised to develop the proof-
of-concept in this project. Henceforth, both the module and the evaluation kit will be
collectively referred to as "Monarch 2" in this report. As previously stated, the Monarch 2
module is designed for cellular LTE-M/NB-IoT applications and is based on the SQN3430
chipset developed by Sequans. Its exceptional suitability for IoT projects lies, among other
things, in its low power consumption, many interfaces, and ability to operate across all
GSM (Global System for Mobile Communications) bands worldwide. For further details
regarding its pertinent specifications, refer to Table 9. Additionally, the block diagram
can be found in Appendix A.7.

28

Method

Figure 13: Monarch 2 GM02S [63] Figure 14: Monarch 2 GM02S NEKTAR
Evaluation Kit [67]

Monarch 2 specifications:

LTE features

• 3GPP LTE Release 14/15 Cat M1/NB1/NB2 compliant
• LTE Cat M1: 1.1 Mbps / 0.3 Mbps UL/DL throughput
• LTE Cat NB1: 62.5 kbps / 27.2 kbps UL/DL throughput
• LTE Cat NB2: 160 kbps / 120.7 kbps UL/DL throughput

Single-SKU with support for
LTE bands 1, 2, 3, 4, 5, 8, 12, 13, 14, 17, 18, 19, 20, 25, 26, 28, 66, 70, 71, 85

SMS Text and PDU modes

Max transmit power +23dBm

Single power supply 2,2-5,5V

Busses 4x UART, JTAG, I2C, SPI, 2x USIM

GPIO pins 33

ADC pins 1

Software

• Field proven LTE-M and NB-IoT LTE software stack
• Rich set of AT commands compatible with previous generation
• IP and non-IP data delivery
• LPP and certified LWM2M stack
• Cloud Connector for direct HTTPS, MQTTS, CoAP to
connect to all cloud platforms

Power save modes • Power Saving Mode (PSM)
• extended Discontinuous Reception (eDRX)

Table 9: Monarch 2 specifications B.2

29

Method

3.5 Testing methods

The test plan for this project encompassed both integration testing and unit testing.
Integration testing aimed to verify the proper functioning of different system components
or modules when integrated [68]. On the other hand, unit testing focused on testing
individual codes in isolation to ensure their correct functionality at an individual level
[69].

The implementation process and testing conducted in this project followed the following
sequence is shown below. This is done and elaborated on in Chapter "5.2 Testing and
validation of final Demonstration System".

1. Initial testing of the Monarch 2 module as an individual component.

2. Integration testing between the main components, namely ESP32 and Monarch 2,
to ensure their compatibility and proper communication.

3. Unit testing of various NB-IoT functionalities to validate their correct operation.

4. Unit testing of various Wi-Fi functionalities to ensure their proper functioning.

5. Unit testing of low-power mode for Monarch 2 to verify its effectiveness in reducing
power consumption.

6. Unit testing of power-saving techniques for the ESP32 to assess its impact on power
consumption.

7. Final comprehensive testing of the complete system, including integration testing of
all hardware components and code, followed by testing all intended functionalities
to ensure they were functioning as expected inside and outside. For outside testing,
Tømmerdalen in Trondheim was selected, due to it being close to where the Telenor
map showcases no coverage.

By following this sequence of implementation and conducting various tests, the project
aimed to ensure the proper functioning and compatibility of the system components and
validate the functionality of the implemented features.

30

System design

4 System design

This chapter describes the realised CoT DevKit IoT proof-of-concept and its demonstra-
tion setup. Firstly, an overview of the system architecture is given and after that delves
deeper into how the hardware and software works. Lastly, the reasoning behind some of
the design choices are discussed.

4.1 System architecture and setup

This project designed a proof-of-concept for the CoT DevKit IoT development board. The
primary objective was to establish communication and data exchange between the two
main components, namely the ESP32 and Monarch 2. Enabling ESP32 to connect to the
Wi-Fi network and Monarch 2 to the NB-IoT network. These are the foundational fea-
tures of CoT DevKit IoT, providing students with a starting point for creating their own
projects. In order to showcase the implementation of these functionalities and a demon-
stration system was devised. In short, the demonstration system comprises two primary
buttons. The first button demonstrated Wi-Fi connectivity and the other narrowband.
First the fundamental system architecture is examined and then the demo system.

4.1.1 System architecture of CoT DevKit IoT

Figure 15 illustrates the foundational system architecture of CoT DevKit IoT. ESP32
serves as the primary microcontroller, exerting control over the entire system. Addition-
ally, it integrates a Wi-Fi modem, facilitating connectivity to the Wi-Fi network. Monarch
2 functions as the narrowband modem responsible for connecting to the NB-IoT network,
with ESP32 as its host MCU (microcontroller unit). Communication between the two
components is established over a UART line (Universal Asynchronous Receiver/Trans-
mitter).

Figure 15: System architecture CoT DevKit IoT

31

System design

4.1.2 System architecture with Demonstration System

Figure 16 expands upon the previous diagram and encompasses the components of the
demonstration system. This system serves as a practical example to showcase the board’s
capability to establish connections with both networks and facilitating data exchange.

Figure 16: System architecture with demonstration system

Figure 17 depicts a logic diagram of the system functionalities. The Wi-Fi element,
depicted in purple, involves configuring the ESP32 as a web server that hosts a webpage.
When the "Wi-Fi Button" is pressed, the state of the button is updated on the webpage,
thereby demonstrating the Wi-Fi connectivity.

The narrowband aspect, illustrated in orange, encompasses the general setup, config-
urations, and initialisation of Monarch 2. At system startup, the basic configurations
are automatically implemented. Additionally, users have the option to manually send
commands. The "NB-IoT Button" can be pressed to initiate a test signal (PING) to a
designated URL address of a website, confirming the system’s successful connection to the
narrowband network. Monarch 2 is also in sleep mode to save power before the button is
pressed and wakes the modem up.

After a predefined period of inactivity, during which neither button has been pressed, the
ESP32 enters a light sleep mode to conserve power. To awaken the microcontroller unit,
the "ESP32 wake-up button" is pressed.

32

System design

Figure 17: System architecture with demonstration system

4.1.3 Finalised setup

The three figures below display the final setup of this project’s system, meaning CoT
DevKit IoT proof-of-concept with the Demonstration setup. Figure 18 shows the physical
hardware setup. Note that in the image, the PC and USB cables are not included. Figure
19 is the webpage hosted by ESP32. Figure 20 is the Arduino IDE with the Serial Monitor
setup, working as the primary user interface. The next chapter will explain how it works.

Figure 18: Physical setup of CoT DevKit IoT proof-of-concept with Demo Setup

33

System design

Figure 19: Webpage hosted by ESP32

Figure 20: Arduino IDE with Serial Monitor (dark mode)

34

System design

4.2 Detailed system design: Hardware

As previously stated, the ESP32 assumes the role of the master, governing the entire
system, while Monarch 2 acts as its subordinate. The ESP32 exclusively manages the Wi-
Fi functionality, whereas the NB-IoT functionality naturally encompasses both modules.
A block diagram of pin connection for the system is depicted in Figure 21. Schematics
and pinout diagram for ESP32 can be found in Appendix A.8 and A.4. Schematics and
pinout for Monarch 2 can be found in Appendix A.10 and A.5. Figure 18 above shows
the physical hardware realisation of the main and final setup for this project report.

Figure 21: Block diagram with system connections

The system is powered through USB cables connected to a PC. The cable connected to
Monarch 2 serves solely as a power source, whereas the cable connected to the ESP32
serves the dual purpose of power supply and monitoring/displaying transmissions and
responses. Buttons, resistors, and all cables are interconnected using a breadboard. To
establish a connection to the NB-IoT network, a SIM card (subscriber identity module)
from Telenor is inserted.

The ESP32 controls Monarch 2 by transmitting AT commands over the UART line. AT
commands, also known as "Attention" commands, are specifically designed for modem
management. For further details, please refer to Chapter "2.4.1 AT commands". The
UART line also enables data transmission between the ESP32 and Monarch 2. The
selected UART configuration for this communication is "Type 1," as described in Monarch
2’s System Integration Guide (B.5 page 1). This configuration was chosen due to its

35

System design

support for hardware flow control and low-power capabilities. The UART communication
takes place between ESP32’s UART2 pins and Monarch 2’s UART0 pins, utilising the
DCE-DTE convention (see below) with hardware flow control (B.6 page 13). The serial
link settings for this communication include a baud rate of 115200, 8 data bits, no parity,
and 1 stop bit (B.6 page 14). Note that "0" on the "UART SEL" (S3) switch on the
Monarch module must be changed to "EXT". Further information regarding this can be
found in Chapter 5.1.2.

4.2.1 DCE-DTE connection

As mentioned, this system utilises the DCE-DTE convention. Where DTE refers to "Data
Terminal Equipment," representing a user device, and DCE refers to "Data Communica-
tions Equipment," representing a network device [70]. Within this context, the ESP32
serves as the DTE, functioning as the master of the system, while Monarch 2 is the DCE
and serves as the subordinate. Acting as the DTE, the ESP32 serves as both the source
and destination for data transmission. Conversely, as the DCE, Monarch 2 is responsible
for the transmission and reception of data over the narrowband network.

In a conventional DTE-DTE connection, the transmit pin (TX) on one device is linked
to the receive pin (RX) on the other device, while the receive pin (RX) is connected to
the transmit pin (TX) [71]. However, in the case of a DCE-DTE connection, the DCE
perceives data from the same perspective as the DTE. Consequently, the DCE (Monarch
2) connects its TX pin to the TX pin of the DTE (ESP32) and its RX pin to the RX pin
of the DTE.

4.2.2 Hardware flow control

Hardware flow control was implemented to regulate data flow between ESP32 and Monarch
2. This mechanism’s primary objective is to prevent data loss and buffer overflow by en-
suring that data transmission occurs only when the receiving device is ready to accept
data. This was done by employing Request to Send (RTS) and Clear to Send (CTS)
signals and pins on both devices [71].

When the ESP32 wants to send data, it toggles the RTS signals to indicate this. Monarch
2 receives this and toggles its CTS pin low, signifying that it is ready to receive data or
AT commands (B.5 page 5). If the buffer is full, the data transmission is temporarily
halted until ready and then toggles CTS.

Monarch 2 also allows for an additional flow control pin. The RING line monitors pending
data and unsolicited result codes (URC) on the UART line. An unsolicited result code is
a string message that is not triggered as an information text response to a previous AT
command and can be output at any time to inform a specific event or status change [72].
This is, for example a "+SYSSTART" response from Monarch 2 when it is powered up.

36

System design

4.2.3 Web server

The Wi-Fi element only uses the ESP32. The ESP32 offers three predefined Wi-Fi modes:
Access Point, Station, and both modes simultaneously [73]. In Wi-Fi networks, access
points provide network connectivity, while stations are devices that connect to these access
points. For example, a Wi-Fi router in a home acts as an access point and a mobile phone
functions as a station. In this project, the ESP32 operates as an access point, establishing
a connection with a Wi-Fi router and creating its own Wi-Fi network for station clients
to connect to. Figure 76 illustrates this setup.

Technically, ESP32 acts as a "soft (software) access point" since it does not connect further
to a wired network [74]. In this project, the ESP32 operates as a web server, hosting a
webpage. As a web server, it stores, processes, and delivers webpage content using the
Hypertext Transfer Protocol (HTTP) [75]. HTTP serves as a method for encoding and
transporting information between the client and the web server [76]. The content of the
webpage is created using Hyper Text Markup Language (HTML) code.

Figure 22: ESP32 as access point and web server [73]

4.2.4 ESP32 low-power

The ESP32 microcontroller is highly capable but can, at times, be relatively power-hungry.
To address this issue, the ESP32 offers various power-saving modes. The two major beings
"Light-sleep" and "Deep-sleep", but they also supports a few sup-modes [77]. When the
MCU is in "Active" mode, all functionalities of the module are activated, resulting in a
power consumption ranging from approximately 160-260mA. Depicted in Figure 23 [78].

In Light-sleep mode, shown in 24, Wi-Fi and Bluetooth functionalities are turned off,
the clock signal is removed or ignored when the circuit is not in use, meaning that it
clock-gates the digital peripherals, CPU (Central Processing Unit, and most of the RAM
(Random-Access Memory). This approach contributes to additional power savings down
to 0,8mA [78]. A sub-mode, called Modem-sleep, turns only of Wi-Fi and Bluetooth but
uses 3-20mA [78].

Moving on to Figure 25, the Deep-sleep mode is presented. In this mode, all digital

37

System design

peripherals, the CPU, and a significant portion of the RAM are disabled. Only specific
components, such as the ULP (ultra-low power) Co-processor, RTC (Real Time Clock)
Controller, RTC Peripherals, and RTC fast and slow memory, remain active [78]. The
next sub-mode is Hibernation, where also both the internal 8 MHz oscillator and the ULP
Co-processor are disabled [78]. Only one RTC timer, operating on a slow clock, and a
few RTC GPIOs are kept active to facilitate waking the chip. Here no data can be saved,
but a substantial power reduction of 2,5µA is achieved [78].

Figure 23: Active mode details [78]

Figure 24: Light-sleep mode details [78] Figure 25: Deep-sleep mode details [78]

4.2.5 Monarch 2 low-power

The Monarch 2 can require very low power consumption. In the context of Monarch 2
power optimization, it is crucial to differentiate between modes and techniques. Modes
represent distinct power states that offer varying functionalities, while techniques involve
methods for transitioning into and out of these states. Power modes are described in
Figure 27 and illustrated in Figure 26, while the power saving techniques PSM and eDRX
are delved into further below.

The power modes of Monarch 2 encompass a sequential progression of functionalities. The
device operates with all functionalities enabled in "Active" mode. In "Standby" mode, the
network accessibility is restricted. "Sleep" and "Deep Sleep" deactivate most function-
alities to achieve greater power savings. When going into sleep mode, it enters Radio
Resource Control (RRC) idle, which means that it disables the connection to the NB-IoT
network. In order to resume operation from the Sleep and Deep Sleep modes, the modem

38

System design

necessitates a wake-up mechanism. In this project, the RTS0 (request to send) pin on
Monarch 2 is configured as a wake source when toggled. The system stays in the loop
between "Active Standby" and "Sleep/Deep Sleep" in Figure 26, waking up whenever the
"NB-IoT Button" is pressed as this signals the RTS0 and so on.

Figure 26: Modes and transitions (B.2 page 14)

Figure 27: Monarch 2 power modes and functionalities (B.2 page 14)

Monarch 2 incorporates two primary power reduction techniques: Power Saving Mode
(PSM) and extended Discontinuous Reception (eDRX). A more fundamental explanation
of these techniques can be found in Chapter 2 Theoretical framework, section 2.5 Low-
power. The module power mode selection is internally managed by the module software
(B.6 page 15), and both techniques have been made available in the project. In summary,
these protocols allow the modem to enter sleep mode while retaining network configu-
rations. During these states, the UART functionalities of Monarch 2 are deactivated.
Timers are employed to periodically wake up and monitor the modem, although external
events like pin toggling can also trigger the wake-up process (RTS0).

The distinction between PSM and eDRX lies in the frequency of monitoring and the depth
of sleep achieved. PSM enables significantly longer sleep duration, making it suitable for
devices that do not require continuous active interaction with the network. On the other

39

System design

hand, eDRX is designed for more frequent paging and achieves a shallower sleep mode
compared to PSM, resulting in reduced energy consumption during wake-up. eDRX
mostly enters sleep mode but can also reach deep sleep. While PSM always goes into
deep sleep. In PSM mode, both the receiver (RX) and transmitter (TX) are turned off,
while in eDRX, the TX is disabled, and the RX is periodically activated. Maximum
expected power consumption in PSM sleep is 48µA, and eDRX sleep is 45-268 µA (B.7
page 9). The project system does not wait for sensor data or anything equivalent where
the user does not activate it, only button input. Therefore, monitoring frequently with
timers is not necessary, and in later testing, PSM is used. Even though, as mentioned, it
is configured to also work with eDRX.

The Paging Cycle Length (PCL) determines the interval at which the network is mon-
itored. For Monarch 2’s eDRX implementation in NB-IoT, the minimum PCL is 10,24
seconds, while the maximum is 2,91 hours. Conversely, with PSM, the maximum PCL is
310 hours or approximately 13 days. A significant difference.

In Figures 28 and 29 PSM mechanism is illustrated. Figure 28 is a power signal example,
and Figure 29 is a diagram from Monarch 2’s datasheet explaining it. TAU stands for
Tracking Area Update and is a signaling procedure to inform the network about its loca-
tion to optimise resource allocation and ensure efficient communication. The "TAU+data"
period describes when there is data transfer and updating of the tracking area. The du-
ration between two TAU is determined by the T3412 Periodic TAU Timer. T3324 is the
Active Timer and defines the time the device is reachable. It is reachable in the "Short
idle" period in the figure, where it can monitor paging as the T3324 counts down before
going into PSM sleep.

Figure 28: PSM signal example [79] Figure 29: Monarch 2 PSM diagram (B.8
page 3)

40

System design

Figure 30 and 31 illustrate eDRX mechanism. Figure 30 is a power signal example and
Figure 31 is a diagram from Monarch 2’s datasheet explaining it. Paging Transmission
Window (PTW) defines how long it monitors. The PTW window in eDRX is when the
device is reachable. eDRX also uses the T3412 Periodic TAU Timer and TAU in between
a few PTWs, but is not illustrated in the figures.

Figure 30: eDRX signal example [79]
Figure 31: Monarch 2 eDRX diagram (B.8
page 3

The Telenor network supports both techniques [79]. Mentioned earlier, the demonstration
system has implemented possibility to enter both PSM and eDRX. However, testing
mostly used PSM.

41

System design

4.3 Detailed system design: Software

The software for the Wi-Fi and NB-IoT demonstration setup was developed using Arduino
C. In addition to this, a custom library was created to handle Monarch configurations,
making it suitable for integration into any CoT DevKiT IoT project, not limited to the
current project. The complete code is titled
"Final_complete_code-WIFI_and_NB_demo_cot_devkit_iot.ino", see Attachment B.13.

The entire development process was carried out using Arduino IDE. Arduino IDE also
serves as the user interface (UI), as it displays all communication and data transfer in
Serial Monitor. Users have the capability to manually input AT commands or predefined
function names via the Serial Monitor, enabling them to control Monarch 2 through
the ESP32. The first time plugging the Monarch 2 into a PC, the necessary Sequans
Communications drivers will be installed.

4.3.1 Flowchart of code

The flowchart presented in Figure 32, depicted on the subsequent page, provides a visual
representation of the logical sequence of operations. The program adheres to a conven-
tional structure of Arduino C code, featuring a "void setup()" section that executes once
and a "void loop()" section that runs continuously as long as the system is powered. The
rest of this sub-chapter will dive deeper into how the code works.

42

System design

Figure 32: Flowchart of code

43

System design

4.3.2 Start

The first section of the code incorporates all necessary libraries and variables, as well as
webpage arrangement.

Figure 33: Start

Libraries used:
• HardwareSerial.h: This library facilitates UART communication between Monarch 2,

ESP32, and the PC.

• CoT_Monarch.h: The CoT_Monarch.h library was developed as a part of this bachelor
thesis and incorporates specific configurations and functionalities for Cot DevKit IoT.

• ESP32 add-on: The ESP32 add-on library must be installed in Arduino IDE to enable
ESP32 development. Detailed instructions can be found in the linked guide [80]. The
rest of the libraries are included in this add-on.

– WiFi.h: The WiFi.h library provides the necessary functionalities for Wi-Fi op-
erations on the ESP32.

– AsyncTCP.h: The AsyncTCP.h library is used for asynchronous transmission
control protocol, which is required for the ESP32 to act as a web server.

– ESPAsyncWebServer.h: This library enables the ESP32 to function as an asyn-
chronous web server.

CoT_Monarch.h library:
Consists of hardware UART specifications and handles the response from Monarch 2 and
different AT functions that can either be placed in the code or typed manually in Serial
Monitor.

The hardware specifications for the UART lines are defined from the perspective of the
ESP32. For the communication between Monarch 2 and the ESP32, the UART2 pins of
the ESP32 are utilised. On the other hand, the UART0 of the ESP32 is connected to
the PC via the USB cable. This configuration is achieved using the HardwareSerial class,
as demonstrated in the code snippet provided in Figure 34. The RX and TX pins are
defined within this class, while the hardware flow control pins are defined separately, as
indicated in the code.

44

System design

1 // UART ports on ESP32 defined in .cpp file:
2 HardwareSerial monarchSerial(2); // Between ESP32 and Monarch 2
3 HardwareSerial esp32Serial(0); // Between ESP32 and PC (USB-cable)
4
5 // Hardware flow control pins declared in .h file:
6 const int RTS_pin = 14; // Request to Send, also wake up source for Monarch 2
7 const int CTS_pin = 15; // Clear to Send
8 const int RING_pin = 32; // Monitors data and URC on UART line

Figure 34: Hardware UART specifications in CoT_Monarch library

"void handleResponse()" is a central function within the library that monitors and handles
data on the ESP32-Monarch UART-line and displays the responses in Serial Monitor. If
an AT function name is typed (see below), and any of the commands return "ERROR",
the execution of the rest is stopped to protect the system. This function is used in all
communication between the two devices.

The predefined AT functions are comprised of a combination of AT commands specific
for Monarch 2 configurations. Below is a list of all of them. It is necessary to implement
the UART initialisation, operation configuration mode and connect to the network in
that order for the Monarch to operate. SIM should be checked if facing any connectivity
problems.

Available AT command functions:
• uartInitMonarch ⇒ Configure UART on Monarch 2
• selectSIM ⇒ Select SIM slot
• powerSIM ⇒ Power correct SIM slot
• configureOperationMode ⇒ Configure Monarch Operation Mode
• connectNetwork ⇒ Connect Monarch to NB-IoT Network
• initPSM ⇒ Initialize Power Saving Mode
• init_eDRX ⇒ Initialize Extended Discontinuous Reception (eDRX)
• scanNetwork ⇒ Informal Network Scan (can be done before PSM and eDRX)

Using the "uartInitMonarch" function as an example, as shown in Figure 35, all the
commands required for configuring the UART with hardware flow control and setting
RTS as a wake-up source are listed. The function iterates through these commands,
sending one command at a time.

45

System design

1 void uartInitMonarch() {
2 Serial.println("Beginning UART Monarch 2 init!");
3 Serial.println();
4
5 // List of AT commands to send
6 String commands[] = {
7 "AT", // Test AT command connection
8 "AT+CFUN=5", // Entering manufacturing mode
9 "AT+SQNIPSCFG=2,100", // UART timeout 100ms

10 "AT+SQNHWCFG=\"uart0\",\"enable\",\"rtscts\"", // Enable hardware flow control on Monarch
UART0

11 "AT+SQNHWCFG=\"wakeRTS0\",\"enable\"", // Setting RTS0 as wake source
12 "AT+SQNRICFG=1,3,100", // RING timeout 100ms
13 "AT^RESET"
14 };
15
16 // Loop through each command and forward to Monarch
17 for (int i = 0; i < sizeof(commands) / sizeof(commands[0]); i++) {
18 String currentCommand = commands[i];
19 monarchSerial.println(currentCommand);
20
21 // Print the command
22 Serial.println("Command: ");
23 Serial.println(currentCommand);
24
25 handleResponse();
26
27 // Skip printing the extra line if it is the last command
28 if (i < sizeof(commands) / sizeof(commands[0]) - 1) {
29 Serial.println();
30 }
31 delay(2000);
32 }
33 Serial.println("Finished UART init.");
34 Serial.println();
35 delay(500);
36 }

Figure 35: AT command function for Monarch 2 UART configurations

Creating webpage:
Setting up the webpage includes defining password and SSID (Service Set Identifier/-
name of network) for the local Wi-Fi network that the ESP32 will use to behave as an
access point. HTML (Hyper Text Markup Language) code is utilised to design the visual
appearance of the webpage, which is largely inspired by the linked tutorial [81]. This
code defines the layout, structure, and styling elements of the page. Port 80, which is
a commonly used internet communication protocol associated with HTML, is employed
for transmitting and receiving data. The asynchronous web server then stores different
placeholders for states of the hardware.

46

System design

4.3.3 Setup

This is the "void setup()" section that runs once when powering up the system.

Figure 36: Setup

The NB, Wi-Fi, and wake-up buttons are configured and interrupt enabled for the ESP32
wake-up button.

First, the NB-IoT setup is established by beginning communication between ESP32 and
Monarch 2. The essential AT command functions are implemented. The "initPSM"
function, which initialises power saving mode, is also applied, allowing the modem to
directly enter sleep mode.

Then the Wi-Fi setup is initiated. ESP32 connects to the network and prints its IP
address (Internet Protocol), which is also the URL (Uniform Resource Locator) of the
webpage that the user types in a desired web browser. As a web server, it uses GET
requests to set up the web page and call button data.

4.3.4 Loop

The "void loop()" runs continuously and infinitely until the power is shut off. This function
is divided into three parts to examine and understand the code better.

Read Serial Monitor input field:
Figure 37 illustrates the flowchart and accompanying code for the process of entering AT
commands or function names in the Serial Monitor. This code snippet encompasses three
distinct functionalities. Firstly, it constantly monitors the serial line between the ESP32
and the PC, displaying any data transmitted within the system on the Serial Monitor.
Secondly and thirdly, it allows the user to manually input commands or function names
via the Serial Monitor input field.

47

System design

When the user enters something that begins with "AT," indicating an AT command, it is
sent to the NB-IoT modem for execution. On the other hand, if the input does not start
with "AT" but contains some text, it is interpreted as a function name. If the function
name is recognisable, it triggers the execution of a predefined function. These predefined
functions are defined within the CoT_Monarch library and entail multiple essential AT
commands that configure the specified functionality. The library also handles the response
from Monarch 2 and prints it accordingly. In the event that any of the commands return
an "ERROR" response, the execution of that function is aborted. Further details on the
available functions and additional information can be found in the preceding "4.3.2 Start"
and "4.3.3 Setup" within this Chapter. The "executeFunction()" is what allows the user
to type in function names.

1 //----- Type AT command or Function name -----//
2
3 // Monitoring uart line
4 if (esp32Serial.available()) {
5 // Read input typed in Serial Monitor
6 String input = esp32Serial.readStringUntil('\n');
7 input.trim(); // Remove whitespaces
8
9 // Check if the input is an AT command

10 if (input.startsWith("AT")) {
11 // Send the AT command to Monarch
12 monarchSerial.println(input); // Forward data
13 Serial.println();
14 Serial.println("Command: ");
15 Serial.println(input); // Echo
16 delay(100);
17
18 // Read and print the response from Monarch
19 Serial.print("Response: ");
20 while (monarchSerial.available()) {
21 char c = monarchSerial.read();
22 esp32Serial.write(c); // Forward data
23 }
24 Serial.println();
25 }
26 // Else a function name was typed
27 else {
28 executeFunction(input);
29 }
30 }

Figure 37: Flowchart and code: Type AT command or Function name in Serial Monitor

48

System design

Read NB button state:
Figure 38 presents the flowchart and corresponding code that handles the NB-IoT button
and its state monitoring. The button’s state is continuously observed throughout the
process. When the button is pressed, the following sequence of actions occurs:

First, the RTS pin (request to send) is toggled, serving the purpose of waking up the
modem. In the demonstration system, the modem is initially in power-saving mode. As
stated before, the RTS pin is configured as a wake source for Monarch 2, although it still
functions within hardware flow control.

Then the CTS pin (clear to send) is checked to ensure that Monarch 2 is ready for
data exchange. It must be in a low state to indicate readiness. This verification is
followed by the execution of the "AT+CFUN?" command, which checks the phone/cellular
functionality and that it is connected to a network (B.9 page 156).

The CoT_Monarch library includes a predefined function that handles the response from
"AT+CFUN?". If the response is "OK," it indicates that the system is awake. Sub-
sequently, a PING test is sent to "www.sequans.com" to verify the connection to the
NB-IoT network (B.9 page 48). This is just a random website selected. The "AT-
PING=www.sequans.com" command should return the IP address of the website.

After completing the above steps, the RTS pin is toggled once again, placing the system
back into sleep mode.

Furthermore, the elapsed time since the button was last pressed is measured. If neither
the NB-IoT button nor the Wi-Fi button has been pressed within the last minute, the
ESP32 enters light sleep mode. In this mode, the NB-IoT connection is disabled, while
the configurations from the setup section are retained. For additional information, refer
to "4.2.4 ESP32 low-power".

49

System design

1 //-------- NB-IoT button (send PING) --------//
2
3 // Read the current button state
4 nb_buttonState = digitalRead(NB_BUTTON);
5
6 // Check if the button pressed
7 if (nb_buttonState != nb_lastButtonState &&

nb_buttonState == LOW) {
8 Serial.println("NB-IoT button pushed!");
9

10 // Toggle RTS0 to wake modem from power save mode
11 // RTS0 is configured as wake source
12 Serial.println("Waking up modem");
13 digitalWrite(RTS_pin, HIGH);
14 int rts_state = digitalRead(RTS_pin);
15 Serial.print("RTS0 state: ");
16 Serial.println(rts_state);
17 delay(100);
18
19 // Check if CTS pin is low (indicating modem is

ready to receive data and AT commands)
20 if (digitalRead(CTS_pin) == LOW) {
21 Serial.println("CTS is clear");
22 String checkReady = "AT+CFUN?";
23 monarchSerial.println(checkReady);
24 Serial.println("Checking if buffer is ready for

data and AT commands");
25 Serial.println(checkReady);
26
27 // Handle response from Monarch and send PING

test to www.sequans.com to see that it is
attached to NB-IoT network

28 buttonNB_handleResponse_sendPING();
29
30 } else {
31 Serial.println("CTS not clear and Monarch 2 not

ready");
32 }
33 delay(100);
34
35 // Toggle RTS pin after data transmission is

complete
36 digitalWrite(RTS_pin, LOW);
37 Serial.print("RTS0 state: ");
38 Serial.println(rts_state);
39 Serial.println();
40
41 nb_lastButtonPressTime = millis(); // Keep time
42 delay(100);
43 }
44
45 // Update button state
46 nb_lastButtonState = nb_buttonState;

Figure 38: Flowchart and code: NB-IoT button (send PING)

50

System design

Read Wi-Fi button state:
Figure 39 illustrates the flowchart and accompanying code responsible for managing the
Wi-Fi button and its state monitoring. The following actions occur when the button is
pressed:

The program records the time since the button was last pressed. This time measurement
serves two purposes: debouncing the button to eliminate noise and determining when to
enter sleep mode. After debouncing the button, the updated button state is sent to and
visualised on the webpage.

As previously mentioned, if neither the NB-IoT button nor the Wi-Fi button is pressed
within a one-minute timeframe, the ESP32 enters light sleep mode. In this mode, Wi-Fi
functionalities are disabled.

1 //----- Wi-Fi button (change state webpage) -----//
2
3 // Read the current button state
4 int wifi_actual_buttonState = digitalRead(wifi_BUTTON);
5
6 // If button pushed, save time
7 if (wifi_actual_buttonState != wifi_lastButtonState) {
8 wifi_lastButtonPressTime = millis();
9 }

10 // If button pushed, change state on webpage
11 if ((currentTime - wifi_lastButtonPressTime) >

debounceDelay) {
12 if (wifi_actual_buttonState != wifi_buttonState) {
13 wifi_buttonState = wifi_actual_buttonState;
14 if (wifi_buttonState == HIGH) {
15 wifi_outputState = !wifi_outputState;
16 }
17 }
18 }
19
20 // Change state on output test point
21 digitalWrite(wifi_output_point, wifi_outputState);
22 // Update button state
23 wifi_lastButtonState = wifi_actual_buttonState;

Figure 39: Flowchart and code: Wi-Fi button (change state on webpage)

51

System design

ESP32 light sleep mode
Figure 51 depicts the flowchart and corresponding code responsible for the ESP32 entering
light sleep mode when the system remains inactive for over a minute. In this context,
"inactive" refers to the absence of button presses for the NB-IoT and Wi-Fi buttons.
When the system enters light sleep mode, the following actions take place:

Wi-Fi and UART peripherals are disabled, subsequently leading to the deactivation of
NB-IoT connectivity as well. As a result, both the NB-IoT and Wi-Fi buttons become
non-functional, and the user can no longer input any commands via the Serial Monitor.

However, the configurations specified in the "Setup" section are retained, enabling these
functionalities to be reinstated immediately upon waking up the system by pressing the
"ESP32 wake-up button". In "void setup()", the function
esp_sleep_enable_ext0_wakeup(GPIO_NUM_33, 0) configures the external pin con-
nected to the button. This pin triggers an interrupt when it is in a low state (0).

It is important to note that light sleep mode provides power-saving benefits by disabling
certain components while maintaining the ability to restore functionality upon wake-
up. Monarch 2 retains its configuration even though the UART line is disabled and the
webpage is still configured.

1 //----- ESP32 enter Light Sleep Mode -----//
2
3 // Entering Light Sleep Mode after both buttons

inactive for 1min
4 if ((currentTime - nb_lastButtonPressTime >=

lightSleepTime) && (currentTime -
wifi_lastButtonPressTime >= lightSleepTime)) {

5 Serial.println("Zzz");
6
7 // Enter light sleep mode
8 // Function is from esp_sleep.h library in ESP32 add-

on
9 esp_light_sleep_start();

10
11 // Reset last button pressed times
12 nb_lastButtonPressTime = currentTime;
13 wifi_lastButtonPressTime = currentTime;
14 }

Figure 40: Flowchart and code: ESP32 enter Light Sleep Mode after inactivity (buttons
not pressed)

52

System design

4.4 Design choices

In this chapter, the rationale behind some of the design choices is discussed.

4.4.1 System architecture with Demonstration Setup

The demonstration setup and code included in this project serve to showcase the basic
functionalities of CoT DevKit IoT. They aim to inspire students by illustrating how the
board can be utilised. The setup demonstrates how Monarch 2 can be controlled, and
data can be exchanged with ESP32. The buttons in the system simulate input data,
mimicking the functionality of sensors that students can integrate into their own projects.
Furthermore are, power-saving techniques incorporated to show them how that can be
done.

4.4.2 Enabling Arduino IDE Serial Monitor as functional terminal

A microcontroller device connected to a PC over a UART line (for example, a USB cable)
can be monitored in a serial terminal window. Serial Monitor in Arduino IDE serves as
a terminal, and with minimal code, this project was able to configure it to both monitor
and control the system. This creates a unified interface, where both code and terminal
are integrated into a single application, eliminating the need to constantly switch between
programs. This significantly enhances the user experience.

4.4.3 Hardware control pin connections

Monarch 2 has four different possible UART hardware pin connection options, derived
from possible combinations including/not including low-power and hardware flow control
capabilities. For this project, it was desired to have both low-power and hardware flow
control features. Therefore Type 1 configuration was chosen; read more about it in
Monarch 2’s "System Integration Guide" (B.5 page 1-4).

4.4.4 UART library

General communication and execution of AT commands between ESP32 and Monarch 2 is
done over UART lines. The ESP32 microcontroller needs to be programmed to be able to
utilise this data transfer method. Espressif Systems, the manufacturer of ESP32, provides
an official IoT development framework known as ESP-IDF [82]. This framework includes
the ESP-IDF UART library [83], and the ESP-AT library used for AT commands [84].
The initial appeal of this UART library was its detailed hardware flow control options.

53

System design

However, both of these present the same issue related to the connection between ESP32
and Monarch 2.

The core problem is that this library treats the ESP32 as a Wi-Fi and Bluetooth modem
and not as a host microcontroller, necessitating an additional microcontroller to act as the
host. In this project, the ESP32 is the master microcontroller that controls the Monarch
2 modem. Specifically, the ESP32 acts as data Terminating Equipment (DTE), while the
modem functions as the Data Communication Equipment (DCE). This means that the
ESP32 role in the ESP-IDF UART (and subsequently ESP-AT) library and the actual
projects are reversed, and the framework cannot be used. Additionally, this firmware is
quite a large package, which is not ideal for students to need to download. Furthermore, it
is wise to minimise the reliance on many different libraries during the development stages,
as this makes it easier for Company of Things to expand on the project in the future.

The ESP32 add-on for Arduino IDE must be downloaded regardless. This add-on includes
the HardwareSerial library [85]. Although it may appear simpler compared to ESP-
IDF, this library allows for the required configuration of hardware flow control and other
required specifications. Therefore, it was chosen for this project implementation. Serial
flow control is often used with the ESP32, but the Monarch 2 documentation states that
this would overwrite the hardware flow control, making this not an option (B.5). However,
it is important to note that the choice of UART library is solely a software decision and
does not impact the hardware connections. If a more suitable library is discovered or
developed in the future, the HardwareSerial library can be substituted.

4.4.5 Design of webpage

The webpage code used for the Wi-Fi demonstration is largely based on a project from
Random Nerd Tutorials [81]. This decision was made due to the fact that the construction
of a webpage from scratch with HTML code is not the primary objective of this project.
Another reason is that the project developer does not have experience in this field and
would use an unnecessary amount of time to do it. The code is inspired by the tutorial
but has been modified to better align with this project’s requirements.

4.4.6 Creating own library for Monarch 2

A custom library for Monarch 2 was created for this project. The motivation behind this
was to have more clear and manageable communication between ESP32 and Monarch 2,
which is quite specific to this project. The approach of creating the library offered greater
control and flexibility during the project development and allowed for easier expansion in
the future.

54

System design

4.4.7 Power source

Although it is possible to connect an external battery circuit to the ESP32 and Monarch
2, for the sake of simplified project development, they are powered through USB cables
connected to a PC. The ESP32 utilises the same cable for both power supply and serial
communication between itself and the PC.

4.4.8 ESP32 sleep mode

As explained in Chapter "4.2.4 ESP32 low-power", the ESP32 has different power saving
modes. Deep sleep saves the most amount of power but has a big drawback. When the
microcontroller enters this mode, all configurations from the setup section of the code
are lost, including all AT command executions. This means that the setup code would
need to be re-executed upon each wake-up, something that would take time. This does
not align with the system requirements, as action should be carried out right after the
system has been woken up by button presses. The light sleep mode, however, keeps the
setup configurations, eliminating this problem. However, it consumes more power than
deep sleep. This is a necessary compromise.

4.4.9 Why Monarch 2 mostly uses PSM and not eDRX

The main differences between Power Saving Mode (PSM) and extended Discontinuous
Reception (eDRX) are how often the device is woken up and how deep it sleeps. eDRX
listens for data more frequently, typically ranging from seconds to minutes. This also
makes the device consume more power. PSM typically listens between minutes and hours.
The demonstration setup for CoT DevKit IoT in this project only needs to be woken up
and send data when the buttons are pushed. That is why it made more sense to test the
system using PSM. Predefined functions for both PSM and eDRX are implemented in the
CotT_Monarch library, enabling students to choose what fits their project best.

4.4.10 Why could not test with IoT-platform Deploii

One of the main objectives for this project was to establish connection and exchange
data with Company of Thing’s IoT platform Deploii. However, the platform is still
under development and was not ready for NB-IoT communication at the time of testing.
Therefore, this objective/work package could not be done and was replaced with the PING
test. It is important to note that Deploii was able to work with Wi-Fi. However, testing
the platform with an ESP32 was something Company of Things had done extensively and
was therefore not necessary in this thesis.

55

System design

4.4.11 Why all software is Arduino C

Arduino C is a "simplified" version of C++ designed to make it more approachable for
beginners. An argument can be made that the core software functionalities developed
throughout this project could have been written in more low-level embedded C code.
This still allows the user to program their project in Arduino C on top of this. How-
ever, it is deemed more important to maintain a more open-source mentality. Fostering
transparency for beginners and not just more advanced students. This also makes the
development board even more adaptable and allows the students to gain an even deeper
understanding of how it actually works.

4.4.12 Why evaluation boards instead of creating PCB from the beginning

A development board is essentially a printed circuit board (PCB). It is more efficient and
practical to start the design process with evaluation kits and breadboards. PCB design
can take a lot of time. When selecting different components and wire connections, it is
easier to do this with a breadboard setup. Furthermore, the first iterations of PCB layouts
often have mistakes. When troubleshooting, other mistakes can be falsely interpreted that
the fault lies with the component connections, while in reality, it can, for example, be a
missed ground connection. The approach of using evaluation kits and breadboards saves
time, makes troubleshooting easier, and allows for a smoother transition into the actual
PCB design.

56

Implementation and testing

5 Implementation and testing

This chapter encompasses the process of actually constructing the system with all chal-
lenges that occurred. The setup was incrementally implemented and sequentially tested.
Thenceforth, combining all parts and testing the final setup with the demonstration sys-
tem.

5.1 Process of implementation and testing throughout

Different steps were taken to arrive at the final CoT DevKit IoT proof-of-concept with a
demonstration setup. This subchapter describes these steps and what occurred at each
stage.

5.1.1 Initial test of Monarch 2

The first step involved conducting a direct setup and assessment of the NB-IoT modem, as
illustrated in Figure 41. When connecting the evaluation kit to a PC for the first time, the
requisite drivers were automatically installed. The Monarch 2 module’s UART0 interface
was linked to the PC via a USB cable. UART0 is the UART port on Monarch 2 used for
AT commands. Unfortunately, the SIM cards dispatched by Telenor were misplaced in
transit. However, the evaluation kit was accompanied by a global SIM card that could be
employed for the preliminary testing phase. Subsequently, the awaited Telenor SIM card
eventually arrived, facilitating subsequent testing procedures.

Figure 41: Setup

57

Implementation and testing

Controlling and configuring Monarch 2 was done with the utilisation of AT commands,
which can be manually typed into a computer terminal. At this stage, the Tera Term
serial terminal emulator program was employed [86]. Upon launching the program, the
appropriate COM port for the USB cable was selected, and the necessary configuration
settings for UART0 were adjusted under Setup > Serial port, see Figure 42. To see
entered commands, the local echo functionality was activated under Setup > Terminal.
See Figure 43.

Figure 42: UART0 settings from datasheet
implemented in Tera Term (B.3 page 4)

Figure 43: Local echo enabled

In order to verify the operational status of the module, several functionality tests AT com-
mands were transmitted as shown in Figure 49. Table 10 briefly explains the commands.
For more details, see the "Monarch 2 AT Command Use Cases" document in Attachment
B.4. Encouragingly, the modem performed as expected, exhibiting the desired behavior
and functionality. However, the narrowband network was not always stable.

AT command: Meaning:
AT See if computer (serial port) and module are connected properly
AT+SQNCTM Select operation mode
AT+SQNBANDSEL Select appropriate bands
AT+CPIN? Check if SIM is inserted and unlocked
AT+CFUN=1 Attach to network
AT+PING Check network connection
AT+SQNMONI Network scan

Table 10: Meaning of functionality test AT commands (see B.4)

5.1.2 Control Monarch 2 with ESP32

The next step involved controlling Monarch 2 with ESP32, using Serial Monitor in Arduino
IDE as a terminal that works with the system. This communication between Monarch 2

58

Implementation and testing

Figure 44: Functionality test with AT commands

and ESP32 is the core functionality of the entire project in this thesis. Everything related
to NB-IoT is built upon it. This entailed establishing physical UART connections between
the two components, configuring UART communication code to control Monarch 2 with
ESP32, and creating some code to modify the Serial Monitor in Arduino IDE to provide
similar functionalities as Tera Term (but connected to ESP32 and not Monarch 2). This
enabled the input of AT commands and reading of responses in the Serial Monitor. This
is also to confirm that ESP32 and Monarch 2 can operate together.

The pin connections can be found in Chapter "4.2 Detailed system design: Hardware,
Figure 21. Note that only the UART pins from the figure are attached at this stage,
and not the different buttons. The physical setup is shown in Figure 45 and 46. In this
case, the communication with Monarch 2 bypasses the USB cable and instead utilises the
physical pins. To enable this configuration, the UART0 switch "S3" on the evaluation kit
must be set to "EXT," as depicted in Figure 46. The power source is still the PC through
the USB cable.

The code created to control Monarch 2 with ESP32 through Serial Monitor was not
long, and the most important parts are shown in the figures below in Figure 47 and 48.
This code file, called "type_at_esp32_monarch2.ino", is attached to the submission of
this thesis. See Attachment B.10. The UART library "HardwareSerial" from Arduino
was utilised. Different libraries, like Espressif IoT Development Framework designed for
ESP32, were tested but could not get them to work. Read more about this decision in
Chapter "4.4.4 UART library".

The code in Figure 47 defines, with class "HardwareSerial", the different UART ports
between ESP32 and, respectively, Monarch 2 and the PC. Figure 48 encompasses the
"void loop()". Here the UART line between PC and ESP32, "esp32Serial", is constantly

59

Implementation and testing

Figure 45: UART setup

Figure 46: UART switch

monitored to see if anything was entered in Serial Monitor. If an AT command is typed,
it is forwarded to Monarch 2. It also echoes the command so that users can see what
they typed. The UART line between Monarch 2 and ESP32, "monarchSerial", is also
constantly monitored, listening for data from Monarch 2. If anything comes on this line,
like a response for the AT command, it is displayed in Serial Monitor.

1 // UART configuration between ESP32 and
Monarch 2 uses ESP32 UART2

2 HardwareSerial monarchSerial(2);
3 // UART configuration between ESP32 and PC

uses ESP32 UART0 (USB cable)
4 HardwareSerial esp32Serial(0);

Figure 47: UART port selection

1 void loop() {
2
3 // Forward from ESP32 to Monarch 2
4 // Type AT command in Serial Monitor
5 if (esp32Serial.available()) {
6 char c = esp32Serial.read();
7 monarchSerial.write(c); // Forward

data
8 esp32Serial.write(c); // Echo
9 }

10
11 // Forward data from Monarch 2 to ESP32
12 // Read AT response in Serial Monitor
13 if (monarchSerial.available()) {
14 char c = monarchSerial.read();
15 esp32Serial.write(c); // Forward data
16 }
17 }

Figure 48: Type AT commands in Serial
Monitor

60

Implementation and testing

With this program, the UART communication lines are established, but not the modem
configurations. Monarch 2 needs to be configured with AT commands that initiate UART,
configure operation mode, and connect to the network (see Chapter 4.3.2). When all
these commands are executed, the system can actually operate. The network scan and
connection test from the last step was carried out successfully, as shown in Figure 49.

Figure 49: Response Serial Monitor

61

Implementation and testing

5.1.3 NB-IoT button

In addition to the existing code, a fundamental NB-IoT button was added to the project.
Please refer to Figure 21 for the button’s connection and physical setup in Figure 50.

The purpose of this button is to test the ESP32 and Monarch 2 system’s ability to connect
and transmit data over the narrowband network. This was originally going to be done
with the IoT platform, Deploii, but it was not ready for an NB-IoT connection at the
time of testing. Therefore, it was replaced with a PING test to a website URL (Uniform
Resource Locator).

The "handleResponse()" function was created to monitor the UART lines and print re-
sponses from Monarch 2 in Serial Monitor. This also included incoming ULC (Uplink
Commands). The first iteration of the NB-IoT button code snippet did not have proper
flow control logic but was added in the subsequent iteration. This required its own
response function called "buttonNB_handleResponse_sendPING()". The differences in
complexity can be seen by comparing Figure 51 below and Figure 38 in Chapter 4.3.4.
The final NB-IoT button code snippet also verified if the modem had woken up.

During this stage, the Telenor SIM cards that Company of Things had bought arrived.
However, there were some connectivity issues with the SIM cards intermittently working
for certain weeks and not working at other times. In an attempt to resolve the issue,
a Telenor SIM card borrowed from supervisor Nils Kristian Rossing was also utilised -
switching between the different cards. The narrowband IoT network was stable when
testing Monarch 2 alone.

Figure 50: NB-IoT button setup

1 // Read current button state
2 buttonState = digitalRead(BUTTON_pin);
3
4 // If button pressed, send PING test
5 if (buttonState != lastButtonState &&

buttonState == LOW) {
6 Serial.println("NB-IoT button pushed");
7
8 // Send command to the modem
9 String pingCommand = "AT+PING=\"www.sequans.

com\"";
10 monarchSerial.println(pingCommand);
11
12 // Echo the command
13 Serial.println("Command: ");
14 Serial.println(pingCommand);
15
16 handleResponse();
17 delay(100);
18 }
19
20 lastButtonState = buttonState; // Update button

state

Figure 51: First iteration NB-IoT button
code (see Figure 38 for final version)

62

Implementation and testing

5.1.4 Creating AT command functions and CoT_Monarch library

Typing in AT commands manually can get tiresome, as many Monarch 2 configurations
require many different commands. This is especially relevant when powering up the
system. Therefore, a set of predefined functions with different configuration AT commands
were created. These functions are described in Chapter 4.3.2. This allows users to simply
only type in the function name in Serial Monitor instead of each AT command individually.
Single commands were still possible to type in.

Significant modification to the original code, shown in Figure 48, was necessary to im-
plement this new feature. The main change was being able to distinguish between AT
commands and function names. This was done by examining the first two characters of
the input, as all AT commands begin with "AT". The original code used "Serial.write()",
which sends raw bytes, one at a time. This function allows for more control but cannot
handle strings. The modified code, therefore, switched to "Serial.print()" which sends an
ASCII-encoded version of the string. The data flow control challenge was improved by
employing trimming techniques and more precise timing.

The demo with only the NB-IoT button is attached to this submission. See Attachment
B.11. All of these AT functions were stored in the CoT_Monarch library files for the final
system.

5.1.5 Wi-Fi test

The Wi-Fi element of the project works without Monarch 2. Therefore it was subsequently
tested without it first. Testing that the ESP32 could find the local network, the built-in
"WiFiScan" example was executed. It is found in Arduino IDE under File > Examples
> WiFi > WifiScan. The hardware setup was only the ESP32 connected to the PC. See
Figure 52.

Figure 52: Wi-Fi test setup

63

Implementation and testing

5.1.6 Wi-Fi button

Detailed information on setting up the ESP32 as a web server that hosts a webpage can be
found in Chapter 4.3.3. For the code snippet related to the Wi-Fi button, refer to Chapter
4.3.4. The demonstration code specifically designed for the Wi-Fi button, excluding other
functionalities, is attached to this thesis submission. See Attachment B.12.

The first version of the code is similar to the final. When the button is pressed, the
webpage button state is updated accordingly. Observant readers may notice that the final
code still includes a test point named "wifi_output_point", which is the same variable
used for the webpage button. This pin, GPIO 2 on the ESP32, was also connected to
a LED (Light Emitting Diode) to verify the changes, which turned the LED on and off.
See Figure 53. Additionally, users could also click the button on the wabpage and send a
signal back and see the LED change. Everything was also printed out in Serial Monitor.

When the Wi-Fi button was operational, it was combined with the NB button and AT
command/function type code. As well as placing the buttons on the same breadboard.

Figure 53: Wi-Fi button setup

5.1.7 Monarch 2 low-power

The implementation of power-saving techniques for Monarch 2 was the next step. Specif-
ically, Power Saving Mode (PSM) and extended Discontinuous Reception (eDRX) were
incorporated into the system. While both functionalities were made available to the user,
PSM was predominantly used due to specific reasons outlined in Chapter 4.4.9.

Two separate AT command functions, one for PSM named "initPSM" and the other for
eDRX named "init_eDRX", were developed and added to the CoT_Monarch library. The
PSM function was placed in the setup section of the code, enabling Monarch 2 to enter
sleep mode right after startup configurations were complete. Additionally, the logic for
hardware flow control pins was implemented into the NB-IoT button, as demonstrated in
the NB button code presented in Chapter 4.3.4, Figure 38. The module was woken up by

64

Implementation and testing

toggling the RT pin, which was configured as the wake-up source. The changes in power
saving states were verified by monitoring the RTS and CTS values in Serial Monitor.

Furthermore, an LED was connected to the "PS_status" pin on Monarch 2 to indicate
when the module was in active mode, as shown in Figure 68. However, it should be noted
that 1,8V was emitted from this line, which was the theoretical minimum voltage required
to power the LED.

5.1.8 ESP32 low-power

The last button added to the system was the "ESP wake up" button, as shown in Figure
54. The goal was to not only conserve energy in the Monarch 2 module but also with
the ESP32 and, consequently, the entire system. The Wi-Fi and NB-IoT buttons were
originally designed to simulate sensor data. Therefore, when there was no data being
transmitted, indicated by neither the Wi-Fi nor the NB-IoT button being pressed within
a specific timeframe, the system would enter a sleep mode to conserve power.

Further details regarding the code implementation and its functionality can be found in
Chapter 4.3.4. This feature is an integral part of the final system and will be further
elaborated upon in the next Chapter "5.2 Testing and validation of final Demonstration
System".

Figure 54: Adding ESP32 wake up button

65

Implementation and testing

5.2 Testing and validation of final Demonstration System

Implementing the system consisted of an iterative design and systematic approach. The
previous Subchapter explained the process of building the system. For each step, there
were tests to verify the functionality. This Subchapter will look at how the final system,
meaning the CoT DevKit IoT proof-of-concept with demonstration setup, was tested.
Please refer to Chapter "4.1.3 Finalised setup" for physical setup in Figure 18, webpage in
Figure 19, and Figure 20 for Arduino IDE with Serial Monitor interface. The final code
is delivered with this thesis submission, see Attachment B.12, and is also printed out in
Attachment B.13 for readers that do not have access to the separate files.

The final system was within itself a test setup for development board proof-of-concept,
with the objective of showing that ESP32 and Monarch 2 could be integrated into a board
that has all the system requirements: Wi-Fi and narrowband capabilities, being able to
program in Arduino C and low power modes to save energy. The UART with hardware
flow control line between ESP32 and Monarch 2 showed that the modules were actually
compatible and could communicate. The Wi-Fi and NB-IoT buttons were examples
of both network connectivity, mirroring the functionality of sensors that students can
incorporate into their projects. The ESP32 wake-up button and Monarch 2’s power-
saving functions reveal the low-power capabilities. Testing the final system consisted of
just doing the different things it was supposed to do. Verifying the functionalities with
what happened with the buttons, responses in Serial Monitor, changes on the webpage,
and some physical LEDs.

5.2.1 ESP32 and Monarch 2 compatibility

The initial tests were conducted to verify the compatibility of the ESP32 and Monarch 2
components. The ESP32 acted as the DTE (Data Termination Equipment) and served
as the master of the system and controlled Monarch 2. Monarch 2 was the DCE (Data
Communication Equipment). To perform these tests, AT commands and function names
were manually entered into the Serial Monitor, and the corresponding responses were
observed. These tests also indirectly tested if Arduino C was a good program to write
the code in and able to utilise Serial Monitor as a terminal window. This testing stage
was a crucial part of the entire system.

5.2.2 NB-IoT functionality

Some of the relevant testing with the narrowband network was conducted in the previous
Subchapter, "5.2.1 ESP32 and Monarch 2 compatibility".

Moving forward, the testing focused on the NB-IoT button by pressing it and verify-
ing whether it successfully transmitted a connectivity test signal (PING) to the website
"www.sequans.com." This test aimed to demonstrate that the system was capable of send-

66

Implementation and testing

ing data from the ESP32 to the Monarch 2 module beyond just sending AT commands.
This was done both inside at Realfagsbygget Gløshaugen NTNU and outside at Tøm-
merdalen in Trondheim, as shown in Figure 55. Tømmerdalen was specifically chosen
because it is a weak spot in the Telenor network; see Figure 56. Figure 57 shows the
setup outside, inside was the same as before.

When the button was pushed, feedback was displayed in Serial Monitor. Including if
Monarch 2 woke up, sent a PING test, and subsequently went back to sleep. Furthermore,
the toggling of RTS and CTS pins was also printed out to verify this. RTS was toggled to
wake up, CTS checked if the module was ready for data exchange, and a response from
"AT-CFUN?" checked the network connection status.

Figure 55: Tømmerdalen and Realfagsbygget on Google Maps

67

Implementation and testing

Figure 56: Telenor coverage map of Trondheim [27]

Figure 57: Setup outside in Tømmerdalen

5.2.3 Monarch 2 power saving

Some of the relevant tests overlapped with the previous Subchapter, "5.2.2 NB-IoT func-
tionality", specifically regarding the observation of the Monarch module being woken up
when the NB-IoT button was pressed and subsequently going back to sleep.

When the system was powered up, the setup section of the code was executed. The setup
section included the initialisation function for Power Saving Mode, which aimed at putting
Monarch 2 to sleep right after the setup configurations were done. AT commands were
included in the function, and their responses were printed out in Serial Monitor. This

68

Implementation and testing

allowed for constant monitoring and verification.

A LED was connected to the PS_status pin on Monarch 2 to see how it illuminated
depending on Monarch 2’s power state. This pin delivers a maximum of 1,8V (B.2 page
10). This should theoretically just work, but a more extended cable connection was
replaced with directly holding it against the pin to eliminate as much resistance as possible.

5.2.4 Wi-Fi functionality

Testing the Wi-Fi functionality involved verifying whether the ESP32 could successfully
connect to the local network, act as a web server, host a webpage, and ensure that the
state of the physical button corresponded to the state displayed on the webpage. This
was done in Ralfagsbygget at Gløshaugen NTNU.

The ESP32 should establish a connection to the network and print its IP (Internet Pro-
tocol) address in Serial Monitor during the first execution of the code’s main loop. The
user then copies this IP and pastes it into a web browser, as this is the webpage’s URL.

5.2.5 ESP32 power saving

The ESP32 was programmed to enter light sleep mode after one minute of inactivity,
where none neither the NB-IoT nor Wi-Fi buttons were pushed. The testing procedure
consisted of waiting one minute and observing activity in Serial Monitor. After that,
pressing the NB-IoT and Wi-Fi button and reloading the webpage to see if they did not
work to confirm that the system had gone into deep sleep. Lastly, the ESP32 wake-up
button was pressed, and the subsequent same tests were done to see if the system had
been woken up.

69

Results

6 Results

Results and data are acquired from the tests conducted in Chapter "5.2 Testing and
validation of final Demonstration System." The figures below in this chapter depict images
of the Arduino IDE with the Serial Monitor, while a full printout of the Serial Monitor
can be found in the appendices.

6.1 ESP32 and Monarch 2 compatibility

AT command executions are done to demonstrate ESP32 and Monarch 2 compatibility
since this represents if they are able to communicate with each other.

Manually enter AT commands in Serial Monitor
Figure 58 showcases the last manually entered AT commands in the Serial Monitor, along
with the corresponding responses, which were used to configure the UART functionalities
on the Monarch 2 module. See Appendix A.14 for a full printout.

Figure 58: Type AT commands manually

Manually enter function name in Serial Monitor
Figure 60 illustrates the same set of last commands, but this time they were executed by
typing the "uartInitMonarch" function name. See Appendix A.13 for full print out. This
was also done with the other predefined functions.

70

Results

Figure 59: Type function name manually

Automatical function execution within code
Lastly, Figure 60 also presents the same set of AT commands, but in this case, the
"uartInitMonarch" function was placed within the "void setup()" section of the code, being
executed upon system power-up. The full printout can be found within Appendix A.11.
This was also done with the other predefined functions.

Figure 60: Function placed in code

71

Results

6.2 NB-IoT functionality

Figure 61 displays the response observed in the Serial Monitor when the NB-IoT button
was pressed inside Realfagsbygget at Gløshaugen. For a full printout, see Appendix A.12.
Figure 62 depicts the Telenor coverage map over Tømmerdalen. The line and pins in
Figure 63 is where the button was pressed outside in Tømmerdalen. Figure 64 shows the
response on the purple pin, and Figure 65 depicts the response on the red pin.

Figure 61: NB-IoT button pressed inside Realfagsbygget

Figure 62: Telenor coverage map Tøm-
merdalen [27]

Figure 63: Google maps with pins

72

Results

Figure 64: Response at purple pin

Figure 65: Response at red pin

6.3 Wi-Fi functionality

Figure 66 showcases the response in Serial Monitor after the Wi-Fi button was pressed, as
well as the webpage with the ESP32’s IP address entered as the URL. Wi-Fi connection
and IP address were printed out upon powering up the system. See the last lines in
Appendix A.11.

Figure 66: Wi-Fi button pressed with webpage

73

Results

6.4 Monarch 2 power saving

Figure 67 present the last part of the AT commands needed to configure and enter Power
Saving Mode (PSM), the function "initPSM()" was placed in the code’s setup section; see
Appendix A.11 for print out. Figure 61 shows that Monarch 2 woke up when the NB-IoT
button was pressed and went to sleep after; see Appendix A.11 for printout.

Figure 68 depicts a picture of the LED connected to the PS_status/GPIO 2 pin during
active mode. Even though cable was eliminated to reduce resistance, it did not illuminate.

Figure 67: Power Saving Mode (PSM) initi-
ated upon startup

Figure 68: LED during active mode

74

Results

6.5 ESP32 power saving

The Serial Monitor, as shown in Figure 69 below, displays the responses that occur after
neither the Wi-Fi nor the NB-IoT buttons have been pressed within the last minute.
Additionally, the Serial Monitor also displays the responses following the pressing of the
ESP32 wake-up button. The "Zzz" indicates that the MCU went into light sleep mode.
This is also printed out in the last lines of Appendix A.11.

Figure 69: ESP32 going to sleep and wake up button pressed

75

Analysis and discussion

7 Analysis and discussion

This chapter provides an analysis of the results and the project’s overall process and
objective.

7.1 Project process

The main deviation from the original project plan was that the developer fell ill. This
resulted in the original bachelor group, consisting of two people, to split. This turned
out not to affect the project quality and proved to be a good solution. The original
assignment was already quite divided, so this was not a problem. Consequently, this
thesis was delayed by approximately two months, but all together, work hours and cost
did not deviate much, as shown in the Gantt chart A.1 and S-curve A.2. This decision
allowed the previous partner to complete their part on time and allowed this thesis’s
project developer to complete a sufficient product.

7.2 ESP32 and Monarch 2 compatibility

Manually typing in AT commands and function names in Serial Monitor and placing the
functions within the code consistently worked. See Figures 58, 59, and 60, as well as
Appendix A.14. The timing of the responses aligned with the delays programmed into
the code. In some cases, it took the response longer than expected but eventually came
later. Indicating that the system was able to catch up. However, if the response took
too long, it would overwrite the next command and, as defined in the code, would abort
further execution. Nevertheless, in most instances, the system functioned as intended.

The system did not work in some instances. It seemed to occur whenever the divide had
been active for an extended period of time. A possible explanation for this could be data
overflow on the UART line between Monarch 2 and ESP32, indicating that the buffer
was full. Improving the hardware flow control could be a solution. The RING line on
Monarch 2, which is responsible for monitoring data and unsolicited result codes (URCs)
on the UART line, is handled internally. However, more comprehensive monitoring of the
RING line and adapting ESP32’s behavior accordingly could be a substantial improve-
ment. Another suggestion for finer hardware flow control is to explore alternative UART
libraries. Other hardware flow control libraries were tested but did not work. Therefore
better monitoring of the UART line appears to be more efficient. The hardware flow
control library utilised is HardwareSerial. This already includes the necessary technical
specifications outlined in Monarch 2’s documentation (B.5), and there is no need for a
more complex library. It is important to note that if another more sufficient library is
discovered in the future, it is possible to implement it since this is related to software and
not hardware connections.

76

Analysis and discussion

7.3 NB-IoT functionality

The NB-IoT button PING connectivity test generally worked well, see Figure 61 and
Appendix A.12. However, for some instances when the ESP32 sent the request, Monarch
2 responded by not being ready to transfer data over the network. This could be because of
wake-up latency after the ESP32 wake-up button was pushed since it worked consistently
after a few seconds. The Monarch 2 latency is described in its documentation (B.5 page
27). Possible solutions could be to implement a longer system wake-up delay or implement
a debounce on the button.

The SIM cards exhibited varying behaviour, where they sometimes worked and sometimes
did not. The reasons for this happening align with the theory proposed earlier regarding
buffer overflow in "7.2 ESP32 and Monarch 2 compatibility". Switching the SIM cards
meant turning the entire system off and on, which could have cleared the buffer. Co-
supervisor Nils Kristian Rossing, who had previous experience from a narrowband IoT
project, encountered similar problems with Telenor SIM cards. His solution was to imple-
ment a watchdog timer (WDT). A watchdog could be used to monitor the CoT DevKit
IoT. This approach is also suggested in Monarch 2’s documentation (B.5 page 9). Ross-
ing’s watchdog operated in a more abrupt manner, completely shutting down and waking
up the system. Something that is not suitable for this project, as the whole setup section
of the code is then executed upon power-up. Based on these observations, it is likely that
the issue lies within the system itself rather than the SIM cards and narrowband IoT
network.

The initial plan was to test the NB-IoT connectivity with the IoT platform, Deploii,
which is under development at Company of Things. However, at the time of testing
for this project, the platform was not ready. Although it was possible to configure a
combination of different HTTP AT command protocols from Monarch 2 to make the CoT
DevKit IoT appear online on the platform, this approach was not prioritised. This is
because of that it did not involve the transfer of sensor data, which was the original plan
and a better demonstration of the system’s functionality. Therefore the test switched to
a PING. This test demonstrated that the system could connect to the network. However,
it does not fully illustrate the system’s intended functionality of the buttons simulating
sensor data. Given the circumstances with Deploii, the PING test was deemed sufficient
for demonstrating the CoT DevKit IoT’s ability to connect to the narrowband network.

7.4 NB-IoT functionality inside and outside

There was virtually no difference between responses from testing inside Realfagsbygget at
Gløshaugen NTNU and outside at Tømmerdalen, see Appendix A.12, as well as Figures
61 and 64. This demonstrates how well the narrowband IoT network works both inside
and outside. This corresponds with the fact that narrowband IoT also should have good
coverage inside compared to other cellular networking technologies such as 4G. The button
was pressed along the line in the map in Figure 63. Connectivity was lost at the red pin

77

Analysis and discussion

and gained back at the purple pin. This matches well with the Telenor coverage map in
Figure 62, making this a reliable map for students to refer to.

7.5 Wi-Fi

The Wi-Fi button demonstrated a high level of reliability, with minimal difficulties in
updating the button state on the webpage when the button was pushed. See Figure 66.
Only when the local Wi-Fi network encountered connectivity problems was the reliability
of the connection compromised. The Wi-Fi button did include debounce, which the NB-
IoT button did not. However, there was a delay when the ESP32 woke up, the same as
with the NB-IoT button.

7.6 ESP32 power saving

As illustrated in Figure 69, the ESP32, and subsequently the entire system, entered light
sleep mode after one minute and 17 milliseconds of inactivity from any of the buttons.
This consistent delay of 10-20 milliseconds indicates a reliable transition into sleep mode.
Something that could simply only be the delay of printing the message in Serial Monitor.
Nonetheless, these measurements are within an acceptable time frame.

The system woke up when the ESP32 wake-up button was pressed, with approximately
a 0,5-second delay, meaning that power-up was not instantaneous. Data/button presses
before it was functional, was not registered. Nonetheless, this was not critical for this
demonstration setup but could become an issue for other projects that require real-time
data transfer. Temporarily storing the data might be a solution to prevent data loss.

7.7 Monarch 2 power saving

Feedback from Monarch 2 indicated that it went into power saving mode and sleep after
setup and after the NB-IoT button was done sending, see Figure 61. This part went
smoothly. The reason for placing the LED in the PS_status line was for students to
visually see that the power states changed. However, as seen in Figure 68, this did not
work. The voltage output on the pin should have been just enough to illuminate it, but it
did not. With a multimeter, it was measured to be 1,7V when it should have been 1,8V.
But it makes sense to have real-world differences. Read more about measuring Monarch
2’s power consumption in the next subsection.

78

Analysis and discussion

7.8 Measure Monarch 2 power consumption

If not for the scope of this project, it would have been beneficial to graph the different
power states and consumption of Monarch 2, as well as measure the overall system’s power
consumption. However, this proved to be more challenging than initially anticipated.

Finding an oscilloscope with the required accuracy, as stated in Monarch 2’s "Power
Consumption Measurements on Monarch 2" document B.8, was difficult. It should be at
par or under 1µA. The Department of Electronic Systems at NTNU had an oscilloscope
that could meet the accuracy requirement, but there was not enough time to complete the
second necessary step. Since Monarch 2 is a sensitive module, a protective circuit would
be needed for power measurements. Senior engineer Ingulf Helland from the department
recommended using the TC1262-5.0VDB Low-dropout regulator (LDO) from Microchip
Technologies [87]. An LDO can regulate the output voltage even when the supply voltage
is very close to the output voltage. The circuit depicted in Figure 70 would have been
implemented if there was enough time to prioritise it. By knowing the input voltage and
the consumption of the LDO with the variable resistor R3, it would have been possible
to measure over R1 and calculate Monarch 2’s power consumption. The C2 LDO output
capacitor stabilises the LDO, and C1 stabilises the input. The R2 resistor acts as a
dummy-proof component in case the variable resistor is turned to 0Ω.

Figure 70: Monarch 2 protective power measurement circuit

7.9 Product cost and market value

As of July 2023, the Monarch 2 GM02S module is priced at around 200 NOK, depending
on the quantity purchased [88]. On the other hand, the ESP32-WROOM-32E module is
priced at 32 NOK [89]. Considering the system requirement of achieving low cost, the fact
that these two main components only amount to a total of 232 NOK is very favourable.

When considering the market value of the development board with both Wi-Fi and NB-
IoT capabilities in March 2023, the LILYGO T-SIM7080G-S3 emerged as a competitor
with a price of 320 NOK, as seen in Table 3 in Chapter 3.4.1. However, it lacked sufficient
support documentation and reliable distributors. Another option was the combination of
Wappsto:bit and Micro:bit, which amounted to approximately 970 NOK (Figure 4). This

79

Analysis and discussion

was both expensive and impractical, as it required two separate boards. The Raspberry
Pi Pico W combined with the SIM7020E NB-IoT module was also considered as a solution
to integrate all desired functionalities but came with the same impracticality of being two
separate boards.

However, during the course of this project, a competitor emerged. QuickSpot is develop-
ing a board called "Walter" with ESP32-S3 and Monarch 2 [90]. This presents significant
competition, as it utilised the same components, albeit with ESP32-S3 instead of ESP32.
QuickSpot appears to have a larger team dedicated to its development. From a positive
perspective, this could indicate that the selection of the main components was a good
choice. However, Company of Things may need to reassess CoT DevKit IoT. One pos-
sibility is to explore the option of switching to the TX82 NB-IoT modem, which was
a close second to the Monarch 2. Although it is slightly more expensive, it could be a
viable alternative. Additionally, Company of Things could focus on specifically targeting
the Norwegian market and offer package deals to schools, leveraging their IoT platform
Deploii. This aligns with the goal of integrating CoT DevKit IoT with the Deploii plat-
form and offering software solutions as an added advantage. The bachelor thesis project
developer recommends Company of Things use this strategic marketing approach rather
than substitute the components.

7.10 Outline example of student project assignment

An outline of a student assignment can be created by considering the project results
and the pedagogical principles related to the development board, which are elaborated
on in Chapter "2.6 Pedagogical principles". This example is not only limited to the fi-
nalised CoT DevKit IoT board, as the proof-of-concept has demonstrated usability at
this level. However, continuous improvement in its functionality can make it even bet-
ter. The development board enables teachers to design project-based assignments that
provide students with active and engaging hands-on learning experiences. Dividing into
groups allows them to acquire communication skills. For enhanced comprehension, the
assignment can be contextual and problem-centered, with teachers presenting examples
of how IoT technology can solve real-world problems. The project may have a somewhat
predefined solution if the objective is for students to learn something specific, or it can
remain open-ended to allow students to genuinely solve the task on their own. The CoT
DevKit IoT is versatile and suitable for a diverse range of projects. Below is an example
that takes everything mentioned into account.

Title/Problem to solve: Where is it best to place solar panels on campus?
Group: 2-3 students
Components:
CoT DevKit IoT, PC, LDR/photoresistor (light sensors), battery, wires and resistors
Description:
The school wants to install solar panels on campus, and it could be exciting to involve
students in the process. Each group places the set up at different locations on campus,

80

Analysis and discussion

lasting from, for example, a day to a week. They will collect light data using either
Wi-Fi and/or NB-IoT, depending on which they decide suits the purpose better. If
possible, data collection can be done at different times during the school year to take
seasons changing into consideration. This approach might not be the most accurate,
but this can also provide a valuable starting point for discussion among students. The
mentioned components represent the basic requirements, but students are encouraged to
explore further possibilities. The components mentioned are only the basics, meaning
that students can, for example, add more, create a capsule, or whatever they deem fit to
address the problem effectively.

This project fosters problem-solving skills, critical thinking, creativity, and collaboration.

7.11 Future work

The design produce of a development board is a complex and time-consuming process.
Based on the project findings, the following list is areas that Company of Things should
prioritise for future work:

• Improved UART flow control: Enhance hardware flow control between Monarch 2 and
ESP32. This is to prevent data overflow and improve overall reliability by ESP32
monitoring the RING line more and implementing debounce on the button.

• Watchdog implementation: Integrating a watchdog timer into the system to moni-
tor and control the operation of the ESP32 and Monarch 2, ensuring stability and
preventing potential issues.

• Power consumption measurement: Conducting power consumption measurements on
the Monarch 2 module using an accurate oscilloscope and implementing the protective
circuit for safe measurements. To do this, Company of Things would need to invest in
an accurate enough oscilloscope.

• External power source: Implement external power source, such as batteries with a
battery management system and the mentioned watchdog.

• Alternative NB-IoT modem evaluation: Assessing the possibility of using alternative
NB-IoT modems, such as the TX82, which may offer improved features or performance
compared to the Monarch 2.

• Integrate with Deploii: Establish connectivity and data transfer over the NB-IoT net-
work between CoT DevKit IoT and the IoT platform Deploii when Deploii is ready.

• Expansion of functionalities and reliability testing: The addition of new functionalities
or sensors to the CoT DevKit IoT, to expand its capabilities and versatility for various
IoT applications. This translates to conducting extensive reliability testing, including
stress testing, to identify any potential weaknesses or issues in the system and address
them accordingly. This becomes even more important when operation with Deploii is
established.

81

Analysis and discussion

• Test with students: Conducting testing of the proof-of-concept with students would
provide valuable insights into potential challenges and perspectives that may not have
been considered. Additionally, fostering further collaboration and cooperation with
teachers and lecturers would be a wise step to gather feedback and enhance the project’s
effectiveness.

• Expand to Bluetooth and 4G: The main components already have these functionalities,
and expanding the system characteristics makes it an even more well-rounded IoT
development board.

82

Conclusion

8 Conclusion

The problem statement/project goal provided by Company of Things was to: "Create a
proof-of-concept of an adaptable Internet of Things (IoT) development board, customised
to cater to the specific demands and needs of the Norwegian education system". This
translated to the functionality requirements they also desired. The board needed to be
suitable for both short-range indoor and long-range outdoor usage to facilitate learning
about IoT in different environments. The programming language needed to be beginner-
friendly, as the board is going to be used in entry-level courses. Low-power consumption is
a central aspect of IoT. This was, therefore, an attribute they wanted. Lastly, keeping the
main components at a low cost was important due to limited financial resources within
the educational system. Throughout this project process, the development of the CoT
DevKit IoT proof-of-concept has been carried out with consideration to these requisites.

These functionality requirements were translated into deciding on specific technological
system requirements to solve the problem statement. The choices were based on acquired
information from teachers at the Technology and Research Education Conference and ex-
tensive online research. Wi-Fi was selected for short-range indoor use, while narrowband
IoT was chosen for long-range outdoor use. Arduino C was selected as the programming
language as it is suitable for beginners in microcontroller programming, and Serial Moni-
tor in its IDE is useful for users. To meet these requirements, achieve possible low-power
consumption, and strive for low cost, the main components chosen were the Monarch 2
GMS02S module that works as the NB-IoT modem and the ESP32-WROOM-32E micro-
controller module with integrated Wi-Fi that operates as the system’s main processing
unit. All these system requirements were met but could have been expanded upon to
improve these functionalities even more. This bachelor project is the beginning of the de-
velopment of CoT DevKit IoT, which is a long process. Therefore are, the project results
excellent, and the final proof-of-concept is well-suited for education.

The finalised system in this project demonstrated the different functionalities of CoT
DevKiT IoT. It consisted of three buttons to prove Wi-Fi, NB-IoT, and low-power con-
sumption functionalities. When the "Wi-Fi button" was pressed, its state was successfully
updated on a webpage hosted by the ESP32, proving the system’s Wi-Fi capabilities.
When the "NB-IoT button" was pressed, it woke Monarch 2 up from sleep and sent a
PING test to a website to confirm a network connection. The narrowband test worked
both inside and outside, matching the Telenor coverage map. To save even more energy,
after a minute of inactivity, the ESP32 went into light sleep. The ESP32 was success-
fully woken up by pressing the "ESP32 wake up button". The Monarch 2 and ESP32
proved to be excellently compatible and easy to use with Arduino C. The ESP32 could
control Monarch 2 with AT commands being automatically executed and implemented
in the code, or users could manually type them in. Some areas for improvement were
identified for communication between the two components and data transfer on the NB-
IoT network. The buffers seemed to overflow. To fix this, improved dataflow monitoring
and control should be implemented. Furthermore, the original goal was to connect the
board to Company of Things’ IoT platform, Deploii. This could not be achieved due to

83

Conclusion

the platform not being ready for NB-IoT data transactions. The PING test served as a
sufficient replacement, even though data transfer could not be properly tested.

Some unforeseen challenges occurred throughout the project. The project developer fell
ill, which led to a delay of two months. Despite this, a satisfactory product was presented
at the end. The original estimated cost of this project, including time and resources, was
177 650 NOK, and the actual cost ended up to be 181 497 NOK. As of March 2023, there
was no substantial competitor. However, Walter from QuickSpot was later discovered.
This board is not jet available on the market but is set to employ similar components. For
this reason, other components might be worth considering. Nevertheless, Monarch 2 and
ESP32 seem to be the most suitable components, and the recommendation is, therefore,
not to switch them. The recommended strategy from the project developer is to tailor
CoT DevKit IoT even more to the Norwegian market. This encompasses the fact that
convenience and the easiest implementation are what schools desire and have the capacity
for. Offering a package deal with both Deploii and CoT DevKit IoT could be an effective
plan of action.

Developing a development board is a long process. After this bachelor project conclusion,
there are some things to prioritise for future work. Detailed elaboration can be found in
Chapter "7.11 Future work". The first thing Company of Things should do is to assess if
they actually want to use these components further, even though they are recommended
by this bachelor project developer. The second thing is to improve monitoring of the Ring
line to hopefully improve UART flow control. If this does not help, the next step is to
employ a watchdog. Furthermore, implement external power sources and measure power
consumption. Once Deploii is ready, data transfer with the platform should be prioritised.
The demonstration could be expanded upon with different sensors and purposes to test
the board’s versatility. Having trials with students would be valuable. Exploring the
already built-in Bluetooth and 4G functionalities in the main components could be led to
an even more versatile IoT board. Only after all these improvements should Company of
Things proceed with designing the printed circuit board (PCB) layout.

In conclusion, the CoT DevKit IoT proof-of-concept with Monarch 2 and ESP32 met all
functionality requirements to be well suited for usage in the Norwegian educational system.
Wi-Fi and NB-IoT allow for versatile IoT projects in different environments. Arduino C
and Arduino IDE with Serial Monitor facilitate beginner-friendliness. Its focus on low
power demonstrates this central IoT concept for students. The cost-effectiveness of the
main components is an important achievement. There are areas of improvement, and
its market value must be acknowledged. However, the proof-of-concept exhibits a robust
groundwork for further development of CoT DevKit IoT.

84

References

9 References

[1] A. S. Gillis, What is the internet of things (iot)? Available at https://www.
techtarget.com/iotagenda/definition/Internet-of-Things-IoT
(March 2022).

[2] IBM, What is industry 4.0? Available at https://www.ibm.com/topics/
industry-4-0 (2023).

[3] T. Engineering, Internet of things (iot) in engineering, Available at https://
technosofteng.com/applications-of-internet-of-things-iot-
in-engineering/ (28.07.2020).

[4] A. Garg, How to connect iot sensors wirelessly with a web application? Available
at https://www.analyticsvidhya.com/blog/2022/09/how- to-
connect-iot-sensors-wirelessly-with-a-web-application/ (02.09.2022).

[5] B. Lutkevich, Microcontroller (mcu), Available at https://www.techtarget.
com/iotagenda/definition/microcontroller (November 2019).

[6] BBC, Systems approach to designing, Available at https://www.bbc.co.uk/
bitesize/guides/z6kr97h/revision/3 (2023).

[7] M. Brain and T. Homer, How wifi works, Available at https://computer.
howstuffworks.com/wireless-network.htm (17.08.2021).

[8] L. Rosencrance,Narrowband iot (nb-iot), Available at https://www.techtarget.
com/whatis/definition/narrowband-IoT-NB-IoT (2023).

[9] Telenor, Lte-m vs nb-iot – a guide exploring the differences between lte-m and nb-iot,
Available at https://iot.telenor.com/iot-insights/lte-m-vs-nb-
iot-guide-differences/ (2023).

[10] A. Froehlich,What’s the role of narrowband iot in 5g networks? Available at https:
//www.techtarget.com/searchnetworking/answer/Whats- the-
role-of-narrowband-IoT-in-5G-networks (2023).

[11] N. Agnihotri, At commands, gsm at command set, Available at https://www.
engineersgarage.com/at-commands-gsm-at-command-set/ (2023).

[12] Particle,An introduction to low power iot, Available at https://www.particle.
io/iot-guides-and-resources/low-power-iot/ (2023).

[13] J. Tollefson and L. Reese, Low power technology, Available at https://no.
mouser.com/applications/low-power-ewc-low-power/ (2023).

[14] 1NCE, Psm and edrx: Power saving in cellular lpwan - possibilities and limitations,
Available at https://1nce.com/en-eu/resources/news-insights/
blog/psm-and-edrx (2023).

[15] Velos, What are psm and edrx features in lte-m and nb-iot? Available at https:
//blog.velosiot.com/what-are-psm-edrx-features-in-lte-m-
and-nb-iot (16.03.2022).

85

https://www.techtarget.com/iotagenda/definition/Internet-of-Things-IoT
https://www.techtarget.com/iotagenda/definition/Internet-of-Things-IoT
https://www.ibm.com/topics/industry-4-0
https://www.ibm.com/topics/industry-4-0
https://technosofteng.com/applications-of-internet-of-things-iot-in-engineering/
https://technosofteng.com/applications-of-internet-of-things-iot-in-engineering/
https://technosofteng.com/applications-of-internet-of-things-iot-in-engineering/
https://www.analyticsvidhya.com/blog/2022/09/how-to-connect-iot-sensors-wirelessly-with-a-web-application/
https://www.analyticsvidhya.com/blog/2022/09/how-to-connect-iot-sensors-wirelessly-with-a-web-application/
https://www.techtarget.com/iotagenda/definition/microcontroller
https://www.techtarget.com/iotagenda/definition/microcontroller
https://www.bbc.co.uk/bitesize/guides/z6kr97h/revision/3
https://www.bbc.co.uk/bitesize/guides/z6kr97h/revision/3
https://computer.howstuffworks.com/wireless-network.htm
https://computer.howstuffworks.com/wireless-network.htm
https://www.techtarget.com/whatis/definition/narrowband-IoT-NB-IoT
https://www.techtarget.com/whatis/definition/narrowband-IoT-NB-IoT
https://iot.telenor.com/iot-insights/lte-m-vs-nb-iot-guide-differences/
https://iot.telenor.com/iot-insights/lte-m-vs-nb-iot-guide-differences/
https://www.techtarget.com/searchnetworking/answer/Whats-the-role-of-narrowband-IoT-in-5G-networks
https://www.techtarget.com/searchnetworking/answer/Whats-the-role-of-narrowband-IoT-in-5G-networks
https://www.techtarget.com/searchnetworking/answer/Whats-the-role-of-narrowband-IoT-in-5G-networks
https://www.engineersgarage.com/at-commands-gsm-at-command-set/
https://www.engineersgarage.com/at-commands-gsm-at-command-set/
https://www.particle.io/iot-guides-and-resources/low-power-iot/
https://www.particle.io/iot-guides-and-resources/low-power-iot/
https://no.mouser.com/applications/low-power-ewc-low-power/
https://no.mouser.com/applications/low-power-ewc-low-power/
https://1nce.com/en-eu/resources/news-insights/blog/psm-and-edrx
https://1nce.com/en-eu/resources/news-insights/blog/psm-and-edrx
https://blog.velosiot.com/what-are-psm-edrx-features-in-lte-m-and-nb-iot
https://blog.velosiot.com/what-are-psm-edrx-features-in-lte-m-and-nb-iot
https://blog.velosiot.com/what-are-psm-edrx-features-in-lte-m-and-nb-iot

References

[16] N. S. of Architecture and Design, What are the benefits of hands-on learning? Avail-
able at https://newschoolarch.edu/blog/what-are-the-benefits-
of-hands-on-learning/ (2023).

[17] C. Pritchett, What is contextual learning, Available at https://www.igi-
global.com/dictionary/contextual-learning/5675 (2008).

[18] U. of Illinois at Urbana-Champaign Center for Innovation in Teaching Learning,
Problem-based learning (pbl), Available at https://citl.illinois.edu/
citl-101/teaching-learning/resources/teaching-strategies/
problem-based-learning-(pbl) (2023).

[19] I. Andreev, Collaborative learning, Available at https://www.valamis.com/
hub/collaborative-learning (21.06.2023).

[20] A. Norris, Flexibility and the project approach, Available at https://illinoisearlylearning.
org/blogs/perspectives/flexibility-project/ (2023).

[21] E. T. Garvik, Utdanning.no: Elektroingeniør, Available at https://utdanning.
no/tema/yrkesintervju/elektroingenior (2023).

[22] B. Technology, Bluetooth specifications, Available at https://www.bluetooth.
com/specifications/ (2023).

[23] S. M. Kerner, 4g (fourth-generation wireless), Available at https://www.techtarget.
com/searchmobilecomputing/definition/4G (01.04.2021).

[24] M. Company,What is 5g? Available at https://www.mckinsey.com/featured-
insights/mckinsey-explainers/what-is-5g (07.10.2021).

[25] Semtech, What is lora? Available at https://www.semtech.com/lora/
what-is-lora (2023).

[26] E. Helium, Lorawan hotspot map, Available at https://explorer.helium.
com/ (2023).

[27] Telenor, Dekningskart, Available at https://www.telenor.no/dekning/
#dekningskart (2023).

[28] L. Xiao, What is c++ used for? Available at https://www.codecademy.com/
resources/blog/what-is-c-plus-plus-used-for/ (10.05.2021).

[29] S. Shinde, What are the key pros and cons of the arduino programming language?
Available at https://emeritus.org/blog/coding-arduino-programming-
language/ (25.01.2023).

[30] A. Subero, Programming Microcontrollers with Python, 1st ed. Apress, 2021.
[31] Arduino, Arduino ide downloads, Available at https://www.arduino.cc/en/

software (2023).
[32] G2, Best terminal emulator software, Available at https://www.g2.com/

categories/terminal-emulator (2023).
[33] D. Yatsenko, Try, then try again: Why iterative design process brings the finest

results, Available at https://www.eleken.co/blog-posts/iterative-
design-process (2023).

86

https://newschoolarch.edu/blog/what-are-the-benefits-of-hands-on-learning/
https://newschoolarch.edu/blog/what-are-the-benefits-of-hands-on-learning/
https://www.igi-global.com/dictionary/contextual-learning/5675
https://www.igi-global.com/dictionary/contextual-learning/5675
https://citl.illinois.edu/citl-101/teaching-learning/resources/teaching-strategies/problem-based-learning-(pbl)
https://citl.illinois.edu/citl-101/teaching-learning/resources/teaching-strategies/problem-based-learning-(pbl)
https://citl.illinois.edu/citl-101/teaching-learning/resources/teaching-strategies/problem-based-learning-(pbl)
https://www.valamis.com/hub/collaborative-learning
https://www.valamis.com/hub/collaborative-learning
https://illinoisearlylearning.org/blogs/perspectives/flexibility-project/
https://illinoisearlylearning.org/blogs/perspectives/flexibility-project/
https://utdanning.no/tema/yrkesintervju/elektroingenior
https://utdanning.no/tema/yrkesintervju/elektroingenior
https://www.bluetooth.com/specifications/
https://www.bluetooth.com/specifications/
https://www.techtarget.com/searchmobilecomputing/definition/4G
https://www.techtarget.com/searchmobilecomputing/definition/4G
https://www.mckinsey.com/featured-insights/mckinsey-explainers/what-is-5g
https://www.mckinsey.com/featured-insights/mckinsey-explainers/what-is-5g
https://www.semtech.com/lora/what-is-lora
https://www.semtech.com/lora/what-is-lora
https://explorer.helium.com/
https://explorer.helium.com/
https://www.telenor.no/dekning/##dekningskart
https://www.telenor.no/dekning/##dekningskart
https://www.codecademy.com/resources/blog/what-is-c-plus-plus-used-for/
https://www.codecademy.com/resources/blog/what-is-c-plus-plus-used-for/
https://emeritus.org/blog/coding-arduino-programming-language/
https://emeritus.org/blog/coding-arduino-programming-language/
https://www.arduino.cc/en/software
https://www.arduino.cc/en/software
https://www.g2.com/categories/terminal-emulator
https://www.g2.com/categories/terminal-emulator
https://www.eleken.co/blog-posts/iterative-design-process
https://www.eleken.co/blog-posts/iterative-design-process

References

[34] Lilygo, T-sim7080g-s3, Available at https://www.lilygo.cc/products/t-
sim7080-s3 (2023).

[35] E. Systems, Esp32-s3, Available at https://www.espressif.com/en/
products/socs/esp32-s3 (2023).

[36] Arduino, Arduino mkr nb 1500, Available at https://store.arduino.cc/
products/arduino-mkr-nb-1500 (2023).

[37] M. Technology, Avr-iot cellular mini, Available at https://www.microchip.
com/en-us/development-tool/ev70n78a (2023).

[38] SparkFun, Sparkfun thing plus - esp32 wroom (micro-b), Available at https://
www.sparkfun.com/products/15663 (2023).

[39] Arduino, Arduino uno wifi rev2, Available at https://store.arduino.cc/
products/arduino-uno-wifi-rev2 (2023).

[40] DigiKey, Esp32-devkitc-32e, Available at https://www.digikey.no/no/
products/detail/espressif-systems/ESP32-DEVKITC-32E/12091810
(2023).

[41] R. Pi, Buy a raspberry pi pico, Available at https://www.raspberrypi.com/
products/raspberry-pi-pico/ (2023).

[42] SparkFun, Sparkfun lte cat m1/nb-iot shield - sara-r4, Available at https://www.
sparkfun.com/products/14997 (2023).

[43] S. Studio, Dragino nb-iot shield-b5, Available at https://www.seeedstudio.
com/Dragino-NB-IoT-Shield-B5.html (2023).

[44] M. Elektronika, Nb iot click, Available at https://www.mikroe.com/nb-
iot-click (2023).

[45] Waveshare, Sim7020e nb-iot hat, Available at https://www.waveshare.com/
wiki/SIM7020E_NB-IoT_HAT (2023).

[46] RS, Wappsto:bit nb iot, Available at https://no.rs-online.com/web/p/
bbc-micro-bit-add-ons/2251594 (2023).

[47] SparkFun, Sparkfun wifi shield - esp8266, Available at https://www.sparkfun.
com/products/13287 (2023).

[48] M. Elektronika, Wifi 7 click, Available at https://www.mikroe.com/wifi-
7-click (2023).

[49] ——, Wifi esp click, Available at https://www.mikroe.com/wifi-esp-
click (2023).

[50] SparkFun, Micro:bit v2 board, Available at https://www.sparkfun.com/
products/17287 (2023).

[51] M. Electronics, Esp32-s2-solo-n4r2, Available at https://shorturl.at/xLPS6
(2023).

[52] ——, Esp32-wroom-32e-n8, Available at https://shorturl.at/zLNPV (2023).

87

https://www.lilygo.cc/products/t-sim7080-s3
https://www.lilygo.cc/products/t-sim7080-s3
https://www.espressif.com/en/products/socs/esp32-s3
https://www.espressif.com/en/products/socs/esp32-s3
https://store.arduino.cc/products/arduino-mkr-nb-1500
https://store.arduino.cc/products/arduino-mkr-nb-1500
https://www.microchip.com/en-us/development-tool/ev70n78a
https://www.microchip.com/en-us/development-tool/ev70n78a
https://www.sparkfun.com/products/15663
https://www.sparkfun.com/products/15663
https://store.arduino.cc/products/arduino-uno-wifi-rev2
https://store.arduino.cc/products/arduino-uno-wifi-rev2
https://www.digikey.no/no/products/detail/espressif-systems/ESP32-DEVKITC-32E/12091810
https://www.digikey.no/no/products/detail/espressif-systems/ESP32-DEVKITC-32E/12091810
https://www.raspberrypi.com/products/raspberry-pi-pico/
https://www.raspberrypi.com/products/raspberry-pi-pico/
https://www.sparkfun.com/products/14997
https://www.sparkfun.com/products/14997
https://www.seeedstudio.com/Dragino-NB-IoT-Shield-B5.html
https://www.seeedstudio.com/Dragino-NB-IoT-Shield-B5.html
https://www.mikroe.com/nb-iot-click
https://www.mikroe.com/nb-iot-click
https://www.waveshare.com/wiki/SIM7020E_NB-IoT_HAT
https://www.waveshare.com/wiki/SIM7020E_NB-IoT_HAT
https://no.rs-online.com/web/p/bbc-micro-bit-add-ons/2251594
https://no.rs-online.com/web/p/bbc-micro-bit-add-ons/2251594
https://www.sparkfun.com/products/13287
https://www.sparkfun.com/products/13287
https://www.mikroe.com/wifi-7-click
https://www.mikroe.com/wifi-7-click
https://www.mikroe.com/wifi-esp-click
https://www.mikroe.com/wifi-esp-click
https://www.sparkfun.com/products/17287
https://www.sparkfun.com/products/17287
https://shorturl.at/xLPS6
https://shorturl.at/zLNPV

References

[53] CC3220SF-LAUNCHXL, How wifi works, Available at https://shorturl.at/
luWY1 (2023).

[54] M. Electronics, Wfi32e01ue-i, Available at https://shorturl.at/hiVZ3
(2023).

[55] R. Sheldon, Sram (static random access memory), Available at https://www.
techtarget.com/whatis/definition/SRAM-static-random-access-
memory (2023).

[56] M. Electronics, Esp32-devkitc v4 development board, Available at https://no.
mouser.com/new/espressif/espressif-esp32-devkitc-da-development-
board/ (2023).

[57] E. Systems, Esp32-wroom-32 datasheet, Available at https://www.espressif.
com/sites/default/files/documentation/esp32-wroom-32e_esp32-
wroom-32ue_datasheet_en.pdf (2023).

[58] ——, Esp32-devkitc v4 getting started guide, Available at https://docs.espressif.
com/projects/esp-idf/en/latest/esp32/hw-reference/esp32/
get-started-devkitc.html (2023).

[59] T. Electronics, Bc66, Available at https://www.top-electronics.com/en/
bc66-multi-band-nb-iot-module-1 (2023).

[60] ——, Bc95-gv, Available at https://www.top- electronics.com/en/
compact-nb-iot-module-multiband-1 (2023).

[61] T. Cinterion, Exs82, Available at https : / / www . telit . com / devices /
exs82/ (2023).

[62] M. Electronics, Lbad0zz1se-743, Available at https://shorturl.at/esX56
(2023).

[63] Sequans, Monarch 2 gm02s module (global), Available at https://sequans.
com/products/monarch-2-gm02s/ (2023).

[64] M. Electronics, Sara-r412m-02b, Available at https://shorturl.at/foP04
(2023).

[65] SIMcom, Sim7022, Available at https://www.simcom.com/product/SIM7022.
html (2023).

[66] T. Cinterion, Tx82, Available at https://www.telit.com/devices/tx82/
(2023).

[67] Sequans, Monarch 2 gm02s nektar evaluation kit (global), Available at https:
//sequans.com/products/monarch-2-gm02s-nektar-evk/ (2023).

[68] ITpedia, Hva er integrasjonstesting og hvorfor gjør vi det? Available at https:
//no.itpedia.nl/2019/05/17/wat-is-integratietesten-en-
waarom-doen-we-het/ (2023).

[69] Yuhiro, Hva er enhetstesting, Available at https://www.software-developer-
india.com/no/hva-er-enhetstesting/ (2023).

88

https://shorturl.at/luWY1
https://shorturl.at/luWY1
https://shorturl.at/hiVZ3
https://www.techtarget.com/whatis/definition/SRAM-static-random-access-memory
https://www.techtarget.com/whatis/definition/SRAM-static-random-access-memory
https://www.techtarget.com/whatis/definition/SRAM-static-random-access-memory
https://no.mouser.com/new/espressif/espressif-esp32-devkitc-da-development-board/
https://no.mouser.com/new/espressif/espressif-esp32-devkitc-da-development-board/
https://no.mouser.com/new/espressif/espressif-esp32-devkitc-da-development-board/
https://www.espressif.com/sites/default/files/documentation/esp32-wroom-32e_esp32-wroom-32ue_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-wroom-32e_esp32-wroom-32ue_datasheet_en.pdf
https://www.espressif.com/sites/default/files/documentation/esp32-wroom-32e_esp32-wroom-32ue_datasheet_en.pdf
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/hw-reference/esp32/get-started-devkitc.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/hw-reference/esp32/get-started-devkitc.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/hw-reference/esp32/get-started-devkitc.html
https://www.top-electronics.com/en/bc66-multi-band-nb-iot-module-1
https://www.top-electronics.com/en/bc66-multi-band-nb-iot-module-1
https://www.top-electronics.com/en/compact-nb-iot-module-multiband-1
https://www.top-electronics.com/en/compact-nb-iot-module-multiband-1
https://www.telit.com/devices/exs82/
https://www.telit.com/devices/exs82/
https://shorturl.at/esX56
https://sequans.com/products/monarch-2-gm02s/
https://sequans.com/products/monarch-2-gm02s/
https://shorturl.at/foP04
https://www.simcom.com/product/SIM7022.html
https://www.simcom.com/product/SIM7022.html
https://www.telit.com/devices/tx82/
https://sequans.com/products/monarch-2-gm02s-nektar-evk/
https://sequans.com/products/monarch-2-gm02s-nektar-evk/
https://no.itpedia.nl/2019/05/17/wat-is-integratietesten-en-waarom-doen-we-het/
https://no.itpedia.nl/2019/05/17/wat-is-integratietesten-en-waarom-doen-we-het/
https://no.itpedia.nl/2019/05/17/wat-is-integratietesten-en-waarom-doen-we-het/
https://www.software-developer-india.com/no/hva-er-enhetstesting/
https://www.software-developer-india.com/no/hva-er-enhetstesting/

References

[70] GeeksForGeeks, Difference between dte and dce, Available at https://www.
geeksforgeeks.org/difference-between-dte-and-dce/ (2023).

[71] M. Technologies, Hardware flow control, Available at https://onlinedocs.
microchip.com/pr/GUID-167CA20A-2C0F-4CBC-A693-9FD032B9B193-
en-US-1/index.html?GUID-C8B83E54-0F62-4205-98DD-B1560AACDBB4
(2023).

[72] Riot, At (hayes) command set library, Available at https://doc.riot-os.
org/group__drivers__at.html (2023).

[73] S. Santos, How to set an esp32 access point (ap) for web server, Available at
https://randomnerdtutorials.com/esp32-access-point-ap-web-
server/ (2018).

[74] M. Brain and T. Homer,How wifi works, Available at https://source.android.
com/docs/core/connect/wifi-softap (2023).

[75] T. J., What is a web server? how it works and more, Available at https://www.
hostinger.com/tutorials/what-is-a-web-server (07.06.2023).

[76] Cloudflare, What is http? Available at https://www.cloudflare.com/
learning/ddos/glossary/hypertext- transfer- protocol- http/
(2023).

[77] E. Systems, Sleep modes, Available at https:// docs.espressif.com/
projects/esp- idf/en/latest/esp32/api- reference/system/
sleep_modes.html (2023).

[78] L. M. Engineering, Insight into esp32 sleep modes their power consumption, Avail-
able at https://lastminuteengineers.com/esp32-sleep-modes-
power-consumption/ (2023).

[79] Telenor, Strømbesparende funksjoner for lte-m og nb-iot, Available at https://
www.telenor.no/bedrift/iot/teknologi/edrx-spesifikasjoner/
(2023).

[80] R. N. Tutorials, Installing the esp32 board in arduino ide (windows, mac os x, linux),
Available at https://randomnerdtutorials.com/installing-the-
esp32-board-in-arduino-ide-windows-instructions/ (2023).

[81] R. Santos, Esp32 web server – arduino ide, Available at https://randomnerdtutorials.
com/esp32-web-server-arduino-ide/ (2023).

[82] E. Systems, Esp-idf: Get started, Available at https://docs.espressif.com/
projects/esp-idf/en/latest/esp32/get-started/ (2023).

[83] ——, Esp-idf: Universal asynchronous receiver/transmitter (uart), Available at https:
//docs.espressif.com/projects/esp-idf/en/latest/esp32/api-
reference/peripherals/uart.html (2023).

[84] ——, Esp-at: Hardware connection, Available at https://docs.espressif.
com/ projects/ esp- at/ en/ release- v2 .2 .0 .0 _esp32c3 /Get _
Started/Hardware_connection.html (2023).

89

https://www.geeksforgeeks.org/difference-between-dte-and-dce/
https://www.geeksforgeeks.org/difference-between-dte-and-dce/
https://onlinedocs.microchip.com/pr/GUID-167CA20A-2C0F-4CBC-A693-9FD032B9B193-en-US-1/index.html?GUID-C8B83E54-0F62-4205-98DD-B1560AACDBB4
https://onlinedocs.microchip.com/pr/GUID-167CA20A-2C0F-4CBC-A693-9FD032B9B193-en-US-1/index.html?GUID-C8B83E54-0F62-4205-98DD-B1560AACDBB4
https://onlinedocs.microchip.com/pr/GUID-167CA20A-2C0F-4CBC-A693-9FD032B9B193-en-US-1/index.html?GUID-C8B83E54-0F62-4205-98DD-B1560AACDBB4
https://doc.riot-os.org/group__drivers__at.html
https://doc.riot-os.org/group__drivers__at.html
https://randomnerdtutorials.com/esp32-access-point-ap-web-server/
https://randomnerdtutorials.com/esp32-access-point-ap-web-server/
https://source.android.com/docs/core/connect/wifi-softap
https://source.android.com/docs/core/connect/wifi-softap
https://www.hostinger.com/tutorials/what-is-a-web-server
https://www.hostinger.com/tutorials/what-is-a-web-server
https://www.cloudflare.com/learning/ddos/glossary/hypertext-transfer-protocol-http/
https://www.cloudflare.com/learning/ddos/glossary/hypertext-transfer-protocol-http/
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/system/sleep_modes.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/system/sleep_modes.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/system/sleep_modes.html
https://lastminuteengineers.com/esp32-sleep-modes-power-consumption/
https://lastminuteengineers.com/esp32-sleep-modes-power-consumption/
https://www.telenor.no/bedrift/iot/teknologi/edrx-spesifikasjoner/
https://www.telenor.no/bedrift/iot/teknologi/edrx-spesifikasjoner/
https://randomnerdtutorials.com/installing-the-esp32-board-in-arduino-ide-windows-instructions/
https://randomnerdtutorials.com/installing-the-esp32-board-in-arduino-ide-windows-instructions/
https://randomnerdtutorials.com/esp32-web-server-arduino-ide/
https://randomnerdtutorials.com/esp32-web-server-arduino-ide/
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/get-started/
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/get-started/
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/peripherals/uart.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/peripherals/uart.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/api-reference/peripherals/uart.html
https://docs.espressif.com/projects/esp-at/en/release-v2.2.0.0_esp32c3/Get_Started/Hardware_connection.html
https://docs.espressif.com/projects/esp-at/en/release-v2.2.0.0_esp32c3/Get_Started/Hardware_connection.html
https://docs.espressif.com/projects/esp-at/en/release-v2.2.0.0_esp32c3/Get_Started/Hardware_connection.html

References

[85] E. S. GitHub,Hardwareserial.h, Available at https://github.com/espressif/
arduino-esp32/blob/master/cores/esp32/HardwareSerial.h (2018).

[86] T. Term, Tera term home page, Available at https://ttssh2.osdn.jp/
index.html.en (2023).

[87] M. Electronics, Tc1262-5.0vdb, Available at https://shorturl.at/vwFUY
(2023).

[88] Digikey, Gm02s, Available at https://shorturl.at/nARUX (2023).
[89] ——, Esp32-wroom-32e-n4, Available at https://shorturl.at/xzM45 (2023).
[90] Quickspot,Meet walter, your new best friend, Available at https://www.quickspot.

io/ (2023).

90

https://github.com/espressif/arduino-esp32/blob/master/cores/esp32/HardwareSerial.h
https://github.com/espressif/arduino-esp32/blob/master/cores/esp32/HardwareSerial.h
https://ttssh2.osdn.jp/index.html.en
https://ttssh2.osdn.jp/index.html.en
https://shorturl.at/vwFUY
https://shorturl.at/nARUX
https://shorturl.at/xzM45
https://www.quickspot.io/
https://www.quickspot.io/

Appendices

A Appendices

A.1 Gantt-chart

Gantt-chart of the bachelor project.

91

Appendices

A.2 S-curve

Figure 71: S-chart of the bachelor project

A.3 Survey Technology and Research Education Conference

Figure 72: Survey question 1: "Which wireless technologies are you interested in utilising
for educational purposes, ideally?

93

Appendices

Figure 73: Survey question 2: "Which development boards/microcontrollers do you prefer
to use in your teaching?"

Figure 74: Survey question 3: "Which programming languages do you prefer to use in
your teaching?"

94

Appendices

A.4 ESP32 DevKit V4 pinout diagram

Figure 75: ESP32 pinout diagram [58]

A.5 Monarch 2 pinout sockets

Figure 76: Pinout of expansion connections on Monarch 2 EVK (B.3 page 22)

95

Appendices

A.6 ESP32 block diagram

Figure 77: ESP32-WROOM-32 block diagram [57]

A.7 Monarch 2 block diagram

Figure 78: Monarch 2 block diagram (B.2 page 2)

96

Appendices

A.8 ESP32 schematics

Figure 79: ESP32 WROOM 32E module Schematics ([57] page 22)

A.9 Monarch 2 circuit assembly

Figure 80: Monarch 2 top assembly (B.3 page 16)

97

Appendices

Figure 81: Monarch 2 bottom assembly (B.3 page 17)

A.10 Monarch 2 schematics

Figure 82: Monarch 2 evaluation kit schematics part 1

98

Appendices

Figure 83: Monarch 2 evaluation kit schematics part 2

Figure 84: Monarch 2 evaluation kit schematics part 3

99

Appendices

A.11 Serial Monitor upon system power-up

When powering up the system, everything in the setup section in the code is executed.
Including AT command functions and Wi-Fi configuration. Corresponding actions and
responses are printed in Serial Monitor, as depicted below. The last line also depicts the
ESP32 going into deep sleep.
2 0 : 5 5 : 3 0 . 6 99 −> Beginning UART Monarch 2 i n i t !
2 0 : 5 5 : 4 9 . 5 89 −>
20 : 55 : 4 9 . 5 89 −> Command:
20 : 5 5 : 4 9 . 5 89 −> AT
20 : 55 : 4 9 . 5 89 −> Response :
2 0 : 5 5 : 4 9 . 5 89 −> OK
20 : 55 : 4 9 . 5 89 −>
20 : 55 : 4 9 . 5 89 −>
20 : 55 : 4 9 . 5 89 −>
20 : 55 : 5 1 . 5 86 −> Command:
20 : 5 5 : 5 1 . 5 86 −> AT+CFUN=5
20 : 5 5 : 5 3 . 0 72 −> Response :
2 0 : 5 5 : 5 3 . 0 72 −> OK
20 : 55 : 5 3 . 0 72 −>
20 : 55 : 5 3 . 0 72 −>
20 : 55 : 5 3 . 0 72 −>
20 : 55 : 5 5 . 0 57 −> Command:
20 : 5 5 : 5 5 . 0 57 −> AT+SQNIPSCFG=2 ,100
20 : 5 5 : 5 5 . 1 03 −> Response :
2 0 : 5 5 : 5 5 . 1 03 −> +CEREG: 0
20 : 5 5 : 5 5 . 1 03 −>
20 : 55 : 5 5 . 1 03 −> OK
20 : 55 : 5 5 . 1 03 −>
20 : 55 : 5 5 . 1 03 −>
20 : 55 : 5 5 . 1 03 −>
20 : 55 : 5 7 . 1 10 −> Command:
20 : 5 5 : 5 7 . 1 10 −> AT+SQNHWCFG="uart0 " , " enable " , " r t s c t s "
2 0 : 5 5 : 5 7 . 1 10 −> Response :
2 0 : 5 5 : 5 7 . 1 10 −> OK
20 : 55 : 5 7 . 1 10 −>
20 : 55 : 5 7 . 1 10 −>
20 : 55 : 5 7 . 1 10 −>
20 : 55 : 5 9 . 1 18 −> Command:
20 : 5 5 : 5 9 . 1 18 −> AT+SQNHWCFG="wakeRTS0 " , " enable "
2 0 : 5 5 : 5 9 . 1 18 −> Response :
2 0 : 5 5 : 5 9 . 1 18 −> OK
20 : 55 : 5 9 . 1 18 −>
20 : 55 : 5 9 . 1 18 −>
20 : 55 : 5 9 . 1 18 −>

100

Appendices

2 0 : 5 6 : 0 1 . 1 44 −> Command:
20 : 5 6 : 0 1 . 1 44 −> AT+SQNRICFG=1 ,3 ,100
20 : 5 6 : 0 1 . 1 44 −> Response :
2 0 : 5 6 : 0 1 . 1 44 −> OK
20 : 56 : 0 1 . 1 44 −>
20 : 56 : 0 1 . 1 44 −>
20 : 56 : 0 1 . 1 44 −>
20 : 56 : 0 3 . 1 57 −> Command:
20 : 5 6 : 0 3 . 1 57 −> AT^RESET
20 : 56 : 0 3 . 4 70 −> Response :
2 0 : 5 6 : 0 3 . 4 70 −> OK
20 : 56 : 0 3 . 4 70 −>
20 : 56 : 0 3 . 4 70 −>
20 : 56 : 0 5 . 4 69 −> Fin i shed UART i n i t .
2 0 : 5 6 : 0 5 . 4 69 −>
20 : 56 : 0 5 . 9 64 −> Conf igure Operation Mode !
2 0 : 5 6 : 0 5 . 9 64 −>
20 : 56 : 0 5 . 9 64 −> Command:
20 : 5 6 : 0 5 . 9 64 −> AT+SQNCTM="standard "
20 : 5 6 : 0 6 . 5 56 −> Response :
2 0 : 5 6 : 0 6 . 5 56 −> +SHUTDOWN
20 : 56 : 0 6 . 5 56 −>
20 : 56 : 0 6 . 5 56 −> +SYSSTART
20 : 56 : 0 6 . 5 56 −>
20 : 56 : 0 6 . 5 56 −> OK
20 : 56 : 0 6 . 5 56 −>
20 : 56 : 0 6 . 5 56 −>
20 : 56 : 0 6 . 5 56 −>
20 : 56 : 0 9 . 5 61 −> Command:
20 : 5 6 : 0 9 . 5 61 −> AT+SQNCTM?
20 : 56 : 0 9 . 6 08 −> Response :
2 0 : 5 6 : 0 9 . 6 08 −> +SQNCTM: standard
20 : 5 6 : 0 9 . 6 08 −>
20 : 56 : 0 9 . 6 08 −> OK
20 : 56 : 0 9 . 6 08 −>
20 : 56 : 0 9 . 6 08 −>
20 : 56 : 0 9 . 6 08 −>
20 : 56 : 1 2 . 6 03 −> Command:
20 : 5 6 : 1 2 . 6 03 −> AT+SQNBANDSEL?
20 : 5 6 : 1 2 . 6 38 −> Response :
2 0 : 5 6 : 1 2 . 6 38 −> +SQNBANDSEL: 0 ,3 gpp−conformance , " "
2 0 : 5 6 : 1 2 . 6 38 −> +SQNBANDSEL: 0 , att , " 2 , 4 , 1 2 "
2 0 : 5 6 : 1 2 . 6 38 −> +SQNBANDSEL: 0 ,docomo , " 1 , 1 9 "
2 0 : 5 6 : 1 2 . 6 38 −> +SQNBANDSEL: 0 , kddi , " 1 8 , 2 6 "
2 0 : 5 6 : 1 2 . 6 38 −> +SQNBANDSEL: 0 , standard , " 3 , 8 , 2 0 "

101

Appendices

2 0 : 5 6 : 1 2 . 6 38 −> +SQNBANDSEL: 0 , tmo , " 2 , 4 , 5 , 1 2 , 6 6 "
2 0 : 5 6 : 1 2 . 6 79 −> +SQNBANDSEL: 0 , ver izon−no−roaming , " 4 , 1 3 "
2 0 : 5 6 : 1 2 . 6 79 −> +SQNBANDSEL: 0 , ver izon , " 1 3 , 4 , 5 , 1 2 , 1 7 , 2 0 "
2 0 : 5 6 : 1 2 . 6 79 −>
20 : 56 : 1 2 . 6 79 −> OK
20 : 56 : 1 2 . 6 79 −>
20 : 56 : 1 2 . 6 79 −>
20 : 56 : 1 2 . 6 79 −>
20 : 56 : 1 5 . 6 76 −> Command:
20 : 5 6 : 1 5 . 6 76 −> AT+SQNBANDSEL=0 ," standard " , " 3 , 8 , 2 0 "
2 0 : 5 6 : 1 5 . 7 23 −> Response :
2 0 : 5 6 : 1 5 . 7 23 −> +SQNBANDSEL: 0 , standard , " 3 , 8 , 2 0 "
2 0 : 5 6 : 1 5 . 7 23 −>
20 : 56 : 1 5 . 7 23 −> OK
20 : 56 : 1 5 . 7 23 −>
20 : 56 : 1 5 . 7 23 −>
20 : 56 : 1 5 . 7 23 −>
20 : 56 : 1 8 . 7 19 −> Command:
20 : 5 6 : 1 8 . 7 19 −> AT+SQNEARFCNSEL?
20 : 5 6 : 1 8 . 7 98 −> Response :
2 0 : 5 6 : 1 8 . 7 98 −> +SQNEARFCNSEL: 0 ,3 gpp−conformance , " "
2 0 : 5 6 : 1 8 . 7 98 −> +SQNEARFCNSEL: 0 , att , " "
2 0 : 5 6 : 1 8 . 7 98 −> +SQNEARFCNSEL: 0 ,docomo , " "
2 0 : 5 6 : 1 8 . 7 98 −> +SQNEARFCNSEL: 0 , kddi , " "
2 0 : 5 6 : 1 8 . 7 98 −> +SQNEARFCNSEL: 0 , standard , " "
2 0 : 5 6 : 1 8 . 7 98 −> +SQNEARFCNSEL: 0 , tmo , " "
2 0 : 5 6 : 1 8 . 7 98 −> +SQNEARFCNSEL: 0 , ver izon−no−roaming , " "
2 0 : 5 6 : 1 8 . 7 98 −> +SQNEARFCNSEL: 0 , ver izon , " "
2 0 : 5 6 : 1 8 . 7 98 −>
20 : 56 : 1 8 . 7 98 −> OK
20 : 56 : 1 8 . 7 98 −>
20 : 56 : 1 8 . 7 98 −>
20 : 56 : 1 8 . 7 98 −>
20 : 56 : 2 1 . 8 29 −> Command:
20 : 5 6 : 2 1 . 8 29 −> AT+SQNEARFCNSEL=0 ," standard " , " "
2 0 : 5 6 : 2 2 . 2 03 −> Response :
2 0 : 5 6 : 2 2 . 2 03 −> ERROR
20 : 56 : 2 2 . 2 03 −>
20 : 56 : 2 2 . 2 03 −>
20 : 56 : 2 2 . 2 03 −>
20 : 56 : 2 5 . 1 98 −> Command:
20 : 5 6 : 2 5 . 1 98 −> AT+SQNEARFCNSEL?
20 : 5 6 : 2 5 . 2 76 −> Response :
2 0 : 5 6 : 2 5 . 2 76 −> +SQNEARFCNSEL: 0 ,3 gpp−conformance , " "
2 0 : 5 6 : 2 5 . 2 76 −> +SQNEARFCNSEL: 0 , att , " "

102

Appendices

2 0 : 5 6 : 2 5 . 2 76 −> +SQNEARFCNSEL: 0 ,docomo , " "
2 0 : 5 6 : 2 5 . 2 76 −> +SQNEARFCNSEL: 0 , kddi , " "
2 0 : 5 6 : 2 5 . 2 76 −> +SQNEARFCNSEL: 0 , standard , " "
2 0 : 5 6 : 2 5 . 2 76 −> +SQNEARFCNSEL: 0 , tmo , " "
2 0 : 5 6 : 2 5 . 2 76 −> +SQNEARFCNSEL: 0 , ver izon−no−roaming , " "
2 0 : 5 6 : 2 5 . 2 76 −> +SQNEARFCNSEL: 0 , ver izon , " "
2 0 : 5 6 : 2 5 . 2 76 −>
20 : 56 : 2 5 . 2 76 −> OK
20 : 56 : 2 5 . 2 76 −>
20 : 56 : 2 5 . 2 76 −>
20 : 56 : 2 5 . 2 76 −>
20 : 56 : 2 8 . 2 74 −> Command:
20 : 5 6 : 2 8 . 2 74 −> AT+SQNCTM=?
20 : 5 6 : 2 8 . 2 74 −> Response :
2 0 : 5 6 : 2 8 . 2 74 −> +SQNCTM: (" standard " , "3 gpp−conformance " , " ve r i zon " ,
" ver izon−no−roaming " , " a t t " , " docomo " , " kddi " , " tmo ")
20 : 5 6 : 2 8 . 3 20 −>
20 : 56 : 2 8 . 3 20 −> OK
20 : 56 : 2 8 . 3 20 −>
20 : 56 : 2 8 . 3 20 −>
20 : 56 : 2 8 . 3 20 −>
20 : 56 : 3 1 . 3 16 −> Command:
20 : 5 6 : 3 1 . 3 16 −> AT+SQNCTM="standard "
20 : 5 6 : 3 1 . 3 62 −> Response :
2 0 : 5 6 : 3 1 . 3 62 −> OK
20 : 56 : 3 1 . 3 62 −>
20 : 56 : 3 1 . 3 62 −>
20 : 56 : 3 1 . 3 62 −>
20 : 56 : 3 4 . 3 59 −> Command:
20 : 5 6 : 3 4 . 3 59 −> AT+SQNCTM=?
20 : 5 6 : 3 4 . 3 59 −> Response :
2 0 : 5 6 : 3 4 . 3 59 −> +SQNCTM: (" standard " , "3 gpp−conformance " , " ve r i zon " ,
" ver izon−no−roaming " , " a t t " , " docomo " , " kddi " , " tmo ")
20 : 5 6 : 3 4 . 3 59 −>
20 : 56 : 3 4 . 3 59 −> OK
20 : 56 : 3 4 . 3 59 −>
20 : 56 : 3 4 . 3 59 −>
20 : 56 : 3 7 . 3 69 −> Fin i shed con f i gu r i n g opera t i on mode .
2 0 : 5 6 : 3 7 . 3 69 −>
20 : 56 : 3 7 . 8 68 −> Connecting to NB−IoT network !
2 0 : 5 6 : 3 7 . 8 68 −>
20 : 56 : 3 7 . 8 68 −> Command:
20 : 5 6 : 3 7 . 8 68 −> AT+CFUN=1
20 : 5 6 : 3 7 . 8 68 −> Response :
2 0 : 5 6 : 3 7 . 8 68 −> OK

103

Appendices

2 0 : 5 6 : 3 7 . 8 68 −>
20 : 56 : 3 7 . 8 68 −>
20 : 56 : 3 7 . 8 68 −>
20 : 56 : 4 1 . 8 85 −> Command:
20 : 5 6 : 4 1 . 8 85 −> AT+CREG?
20 : 5 6 : 4 1 . 8 85 −> Response :
2 0 : 5 6 : 4 1 . 8 85 −> +CEREG: 2
20 : 5 6 : 4 1 . 8 85 −>
20 : 56 : 4 1 . 8 85 −> +CEREG: 1 , "816B" , " 030D6901 " , 7 , , , " 00001000 " , " 10000110 "
20 : 5 6 : 4 1 . 8 85 −>
20 : 56 : 4 1 . 8 85 −> OK
20 : 56 : 4 1 . 8 85 −>
20 : 56 : 4 1 . 8 85 −>
20 : 56 : 4 1 . 8 85 −>
20 : 56 : 4 5 . 8 69 −> Command:
20 : 5 6 : 4 5 . 8 69 −> AT+CGPADDR
20 : 56 : 4 5 . 8 69 −> Response :
2 0 : 5 6 : 4 5 . 8 69 −> +CGPADDR: 1 , " 1 0 . 1 3 5 . 1 6 . 2 0 " , " 4 2 . 2 . 3 3 . 3 3 . 2 . 7 1 . 1 0 0 . 1 8 7 .
0 . 0 . 0 . 1 0 0 . 6 6 . 1 7 6 . 7 3 . 1 "
2 0 : 5 6 : 4 5 . 8 69 −>
20 : 56 : 4 5 . 8 69 −> OK
20 : 56 : 4 5 . 8 69 −>
20 : 56 : 4 5 . 8 69 −>
20 : 56 : 4 9 . 8 87 −> Connected to Telenor NB−IoT network .
2 0 : 5 6 : 4 9 . 8 87 −>
20 : 56 : 5 0 . 4 00 −> I n i t i a l i z i n g Power Saveing Mode !
2 0 : 5 6 : 5 0 . 4 00 −>
20 : 56 : 5 0 . 4 00 −> Command:
20 : 5 6 : 5 0 . 4 00 −> AT+SQNEDRX=0
20 : 5 6 : 5 0 . 4 47 −> Response :
2 0 : 5 6 : 5 0 . 4 47 −> OK
20 : 56 : 5 0 . 4 47 −>
20 : 56 : 5 0 . 4 47 −>
20 : 56 : 5 0 . 4 47 −>
20 : 56 : 5 0 . 5 25 −> Command:
20 : 5 6 : 5 0 . 5 25 −> AT+CPSMS=1 , , , "10000110" , "00001000"
20 : 5 6 : 5 0 . 6 04 −> Response :
2 0 : 5 6 : 5 0 . 6 04 −> OK
20 : 56 : 5 0 . 6 04 −>
20 : 56 : 5 0 . 6 04 −>
20 : 56 : 5 0 . 6 04 −>
20 : 56 : 5 0 . 6 97 −> Command:
20 : 5 6 : 5 0 . 6 97 −> AT+CEREG=4
20 : 5 6 : 5 0 . 7 43 −> Response :
2 0 : 5 6 : 5 0 . 7 43 −> OK

104

Appendices

2 0 : 5 6 : 5 0 . 7 43 −>
20 : 56 : 5 0 . 7 43 −>
20 : 56 : 5 0 . 7 43 −>
20 : 56 : 5 0 . 8 23 −> Command:
20 : 5 6 : 5 0 . 8 23 −> AT+CFUN=1
20 : 5 6 : 5 0 . 8 23 −> Response :
2 0 : 5 6 : 5 0 . 8 23 −> OK
20 : 56 : 5 0 . 8 23 −>
20 : 56 : 5 0 . 8 23 −>
20 : 56 : 5 1 . 9 28 −> RTS0 s t a t e : 0
20 : 5 6 : 5 1 . 9 28 −> Fin i shed Power Saveing Mode i n i t i a l i z a t i o n .
2 0 : 5 6 : 5 1 . 9 28 −>
20 : 56 : 5 3 . 5 50 −> Connecting to WiFi . . .
2 0 : 5 6 : 5 3 . 5 50 −> 192 . 168 . 43 . 205
20 : 5 6 : 5 3 . 5 50 −>
20 : 57 : 5 3 . 5 49 −> Zzz

A.12 Serial Monitor NB-IoT button pushed

21 : 0 2 : 4 7 . 3 54 −> NB−IoT button pushed !
2 1 : 0 2 : 4 7 . 3 54 −> Waking up modem
21 : 02 : 4 7 . 3 54 −> RTS0 s t a t e : 1
21 : 0 2 : 4 7 . 4 47 −> CTS i s c l e a r
2 1 : 0 2 : 4 7 . 4 47 −> Checking i f bu f f e r i s ready f o r data and AT commands
21 : 0 2 : 4 7 . 4 47 −> AT+CFUN?
21 : 0 2 : 4 7 . 4 47 −> Response :
2 1 : 0 2 : 4 7 . 4 47 −> +CFUN: 1
21 : 0 2 : 4 7 . 4 47 −>
21 : 02 : 4 7 . 4 47 −> OK
21 : 02 : 4 7 . 4 47 −>
21 : 02 : 4 7 . 5 26 −> Ready f o r PING t e s t
2 1 : 0 2 : 4 7 . 5 26 −> Command:
21 : 0 2 : 4 7 . 5 26 −> AT+PING="www. sequans . com"
21 : 0 2 : 4 7 . 5 26 −> Response :
2 1 : 0 2 : 4 7 . 5 72 −> +PING: 1 , 209 . 126 . 25 . 3 , 350 , 50
21 : 0 2 : 4 7 . 5 72 −> +PING: 2 , 209 . 126 . 25 . 3 , 200 , 50
21 : 0 2 : 4 7 . 5 72 −> +PING: 3 , 209 . 126 . 25 . 3 , 200 , 50
21 : 0 2 : 4 7 . 5 72 −> +PING: 4 , 209 . 126 . 25 . 3 , 200 , 50
21 : 0 2 : 4 7 . 5 72 −>
21 : 02 : 4 7 . 5 72 −> OK
21 : 02 : 4 7 . 5 72 −>
21 : 02 : 4 7 . 5 72 −>
21 : 02 : 4 7 . 5 72 −>
21 : 02 : 4 7 . 6 50 −> RTS0 s t a t e : 0

105

Appendices

A.13 Type function name in Serial Monitor

Function name typed was "uartInitMonarch" in Serial Monitor input field, below is what
was printed out.
2 1 : 0 6 : 1 4 . 9 61 −> Beginning UART Monarch 2 i n i t !
2 1 : 0 6 : 1 4 . 9 61 −>
21 : 06 : 1 4 . 9 61 −> Command:
21 : 0 6 : 1 4 . 9 62 −> AT
21 : 06 : 1 4 . 9 62 −> Response :
2 1 : 0 6 : 1 4 . 9 62 −> +CFUN: 1
21 : 0 6 : 1 4 . 9 62 −>
21 : 06 : 1 4 . 9 62 −> OK
21 : 06 : 1 4 . 9 62 −>
21 : 06 : 1 4 . 9 62 −>
21 : 06 : 1 4 . 9 62 −>
21 : 06 : 1 6 . 9 42 −> Command:
21 : 0 6 : 1 6 . 9 42 −> AT+CFUN=5
21 : 0 6 : 1 6 . 9 89 −> Response :
2 1 : 0 6 : 1 6 . 9 89 −> +PING: 1 , 209 . 126 . 25 . 3 , 210 , 50
21 : 0 6 : 1 6 . 9 89 −> +PING: 2 , 209 . 126 . 25 . 3 , 200 , 50
21 : 0 6 : 1 6 . 9 89 −> +PING: 3 , 209 . 126 . 25 . 3 , 200 , 50
21 : 0 6 : 1 6 . 9 89 −> +PING: 4 , 209 . 126 . 25 . 3 , 200 , 50
21 : 0 6 : 1 6 . 9 90 −>
21 : 06 : 1 6 . 9 90 −> OK
21 : 06 : 1 6 . 9 90 −>
21 : 06 : 1 6 . 9 90 −>
21 : 06 : 1 6 . 9 90 −>
21 : 06 : 1 8 . 9 93 −> Command:
21 : 0 6 : 1 8 . 9 93 −> AT+SQNIPSCFG=2 ,100
21 : 0 6 : 1 8 . 9 93 −> Response :
2 1 : 0 6 : 1 8 . 9 93 −> OK
21 : 06 : 1 8 . 9 93 −>
21 : 06 : 1 8 . 9 93 −>
21 : 06 : 1 8 . 9 93 −>
21 : 06 : 2 1 . 0 00 −> Command:
21 : 0 6 : 2 1 . 0 00 −> AT+SQNHWCFG="uart0 " , " enable " , " r t s c t s "
2 1 : 0 6 : 2 1 . 0 00 −> Response :
2 1 : 0 6 : 2 1 . 0 00 −> OK
21 : 06 : 2 1 . 0 00 −>
21 : 06 : 2 1 . 0 00 −>
21 : 06 : 2 1 . 0 00 −>
21 : 06 : 2 2 . 9 88 −> Command:
21 : 0 6 : 2 2 . 9 88 −> AT+SQNHWCFG="wakeRTS0 " , " enable "
2 1 : 0 6 : 2 2 . 9 88 −> Response :
2 1 : 0 6 : 2 2 . 9 88 −> +CEREG: 0

106

Appendices

2 1 : 0 6 : 2 2 . 9 88 −>
21 : 06 : 2 2 . 9 88 −> OK
21 : 06 : 2 2 . 9 88 −>
21 : 06 : 2 2 . 9 88 −>
21 : 06 : 2 2 . 9 88 −>
21 : 06 : 2 5 . 0 00 −> Command:
21 : 0 6 : 2 5 . 0 00 −> AT+SQNRICFG=1 ,3 ,100
21 : 0 6 : 2 5 . 0 00 −> Response :
2 1 : 0 6 : 2 5 . 0 00 −> OK
21 : 06 : 2 5 . 0 00 −>
21 : 06 : 2 5 . 0 00 −>
21 : 06 : 2 5 . 0 00 −>
21 : 06 : 2 6 . 9 98 −> Command:
21 : 0 6 : 2 6 . 9 98 −> AT^RESET
21 : 06 : 2 6 . 9 98 −> Response :
2 1 : 0 6 : 2 6 . 9 98 −> OK
21 : 06 : 2 6 . 9 98 −>
21 : 06 : 2 6 . 9 98 −>
21 : 06 : 2 8 . 9 98 −> Fin i shed UART i n i t .

A.14 Type AT commands in Serial Monitor

Individual AT commands were typed in Serial Monitor input field, that combined initiate
UART on Monarch 2 ("uartInitMonarch"). Below is what was printed out.
2 1 : 0 9 : 1 0 . 9 98 −> Command:
21 : 0 9 : 1 0 . 9 98 −> AT
21 : 09 : 1 1 . 0 75 −> Response :
2 1 : 0 9 : 1 1 . 0 75 −> OK
21 : 09 : 1 1 . 0 75 −>
21 : 09 : 1 1 . 0 75 −> OK
21 : 09 : 1 1 . 0 75 −>
21 : 09 : 1 1 . 0 75 −>
21 : 09 : 1 1 . 0 75 −>
21 : 09 : 1 1 . 0 75 −>
21 : 09 : 1 1 . 0 75 −>
21 : 09 : 1 1 . 0 75 −> OK
21 : 09 : 1 1 . 0 75 −>
21 : 09 : 1 8 . 9 35 −>
21 : 09 : 1 8 . 9 35 −> Command:
21 : 0 9 : 1 8 . 9 35 −> AT
21 : 09 : 1 9 . 0 29 −> Response :
2 1 : 0 9 : 1 9 . 0 29 −> OK
21 : 09 : 1 9 . 0 29 −>

107

Appendices

2 1 : 0 9 : 2 1 . 0 39 −>
21 : 09 : 2 1 . 0 39 −> Command:
21 : 0 9 : 2 1 . 0 39 −> AT+CFUN=5
21 : 0 9 : 2 1 . 1 15 −> Response :
2 1 : 0 9 : 2 1 . 1 15 −> OK
21 : 09 : 2 1 . 1 15 −>
21 : 09 : 2 7 . 9 65 −>
21 : 09 : 2 7 . 9 65 −> Command:
21 : 0 9 : 2 7 . 9 65 −> AT+SQNIPSCFG=2 ,100
21 : 0 9 : 2 8 . 0 58 −> Response :
2 1 : 0 9 : 2 8 . 0 58 −> OK
21 : 09 : 2 8 . 0 58 −>
21 : 09 : 3 9 . 7 59 −>
1 : 0 9 : 5 7 . 4 9 8 −>
21 : 09 : 5 7 . 4 98 −> Command:
21 : 0 9 : 5 7 . 4 98 −> AT+SQNHWCFG="uart0 " , " enable " , " r t s c t s "
2 1 : 0 9 : 5 7 . 5 91 −> Response :
2 1 : 0 9 : 5 7 . 5 91 −> OK
21 : 09 : 5 7 . 5 91 −>
21 : 10 : 1 7 . 4 19 −>
21 : 10 : 1 7 . 4 20 −> Command:
21 : 1 0 : 1 7 . 4 20 −> AT+SQNHWCFG="wakeRTS0 " , " enable "
2 1 : 1 0 : 1 7 . 5 45 −> Response :
2 1 : 1 0 : 1 7 . 5 45 −> OK
21 : 10 : 1 7 . 5 45 −>
21 : 10 : 2 4 . 1 98 −>
21 : 10 : 2 4 . 1 99 −> Command:
21 : 1 0 : 2 4 . 1 99 −> AT+SQNRICFG=1 ,3 ,100
21 : 1 0 : 2 4 . 2 77 −> Response :
2 1 : 1 0 : 2 4 . 2 77 −> OK
21 : 10 : 2 4 . 2 77 −>
21 : 10 : 3 3 . 7 48 −>
21 : 10 : 3 3 . 7 48 −> Command:
21 : 1 0 : 3 3 . 7 48 −> AT^RESET
21 : 10 : 3 3 . 8 42 −> Response :
2 1 : 1 0 : 3 9 . 6 67 −> +SHUTDOWN
21 : 10 : 3 9 . 6 67 −> ?
21 : 1 0 : 3 9 . 7 30 −> +SYSSTART

108

Attachments

B Attachments

The submission of this bachelor thesis includes different documents in addition to the
project report. Here are the different documents and folders listed. The main project
code is also printed out, to make the report more comprehensibly for readers that do not
have access to the complete submission.

B.1 Project documentation

There was a Microsoft Teams set up for this project with a number of folders and files
relevant to the project and process. Note that the titles are written in Norwegian, as this
was the working language with the supervisors. The documents related to Monarch 2 is
also placed as their own attachments to make it easier to refer to them in the text.

Folders and contents:

• Dokumenter (Documents)

– Bachelor form
– Different documents about Monarch 2 provided by Sequans Communications,

see other attachments below.

• Forprosjekt (Pre-project)

• Maler (Templates)

• Møteraferater (Meeting minutes) - also worked as status reports

• Sluttprodukt (Final product)

– Project report
– Poster
– Final project code of demonstration setup
– Standalone Narrowband IoT demonstration
– Standalone Wi-Fi demonstration
– Latex code of project report

B.2 Monarch 2 datasheet

Name of file: Monarch2-GM02S-DataSheet-Rev.14

109

Attachments

B.3 Monarch 2 NEKTAR-B User Manual

File name: Monarch2-NEKTARB-EVK-UsersManual-TruPhone-Rev.2

B.4 Monarch 2 AT Commands Use Cases

File name: Monarch2-LR8.0-ATCommandsUseCases-Rev.6

B.5 Monarch 2 System Integration Guide

File name: Monarch2-SystemIntegrationGuide-Rev.8a

B.6 Monarch 2 Module Integration Guide

File name: NDA - GM02S_ModuleIntegrationGuide_Rev2

B.7 Monarch 2 release Notes R02

File name: LR8.0.5.12 Release Notes_R02

B.8 Monarch 2 Power Consumption Measurements

File name: NDA- Monarch2-PowerConsumptionMeasurementAppNote_Rev3

B.9 Monarch 2 AT Commands Reference Manual

File name: Monarch2-LR8.0-ATCommandsReferenceManual-Rev.9

B.10 Serial Monitor as terminal window

Basic functionality. Enable Serial Monitor in Arduino IDE to be a functioning terminal
where the ESP32 controls the Monarch 2.
File name: type_at_esp32_monarch2.ino

110

Attachments

B.11 Standalone Narrowband IoT demonstration

Standalone NB-IoT demonstration part from final project.
File name: NB_demo_cot_devkit_iot.ino

B.12 Standalone Wi-Fi demonstration

Standalone Wi-Fi demonstration part from final project.
File name: WIFI_demo_cot_devkit_iot.ino

111

Attachments

B.13 Final project code: Wi-Fi and NB-IoT demo

The main project code for CoT DevKit IoT proof-of-concept with demonstration setup
with Wi-Fi and NB-IoT.
File name: Final_complete_code-WIFI_and_NB_demo_cot_devkit_iot.ino

1 /*
2 * CoT DevKit IoT --> NB-IoT and Wi-Fi demo
3 * Filename: Final_complete_code-WIFI_and_NB_demo_cot_devkit_iot.ino
4
5 * NB-IoT:
6 - ESP32 controls modem Monarch 2 through UART
7 - Type in AT commands or function name in Serial Monitor
8 - Physical button pushed sends PING test to network
9

10 * Wi-Fi:
11 - ESP32 acts as access point and web server
12 - Physical button pushed and state updated on webpage
13 - Physical button wake ESP32 (also effects Monarch 2)
14 */
15
16
17 // Libraries
18 // ESP32 library already included in Arduino IDE (check if you have esp_sleep.h)
19 #include <HardwareSerial.h> // Serial/UART communication library
20 #include <WiFi.h> // Library for Wi-Fi with ESP
21 #include <AsyncTCP.h> // Asynchronous TCP library for ESP
22 #include <ESPAsyncWebServer.h> // Asynchronous WebServer library for ESP
23 /* Self-made library for communication between Monarch 2 and ESP32
24 Defining UART configurations, ports and hardware flow control pins
25 Operational command functions to be included in program or typed manually in Serial Monitor

*/
26 #include "CoT_Monarch.h"
27
28 #define BAUD_RATE 115200
29
30 const int esp32_wake_BUTTON = 33; // Wake up button connected to this pin on ESP32
31 unsigned long currentTime = 0; // Keep track of last time buttons pressed
32 const unsigned long lightSleepTime = 60000; // Wait this long after Wi-Fi button inactive to

go into lgiht sleep
33
34 // NB-IoT variables
35 const int NB_BUTTON = 4; // NB button connected to this pin on ESP32
36 bool nb_buttonState = false;
37 bool nb_lastButtonState = false;
38 unsigned long nb_lastButtonPressTime = 0;
39
40 // Wi-Fi variables
41 const char* SSID = "Xperia XA_22c1"; // Wi-Fi network name
42 const char* PASSWORD = "annikerbest"; // Password
43 const char* INPUT_PARAM = "state"; // Save parameter for webpage
44 const int wifi_BUTTON = 0; // Wi-Fi button connected to this pin on ESP32
45 const int wifi_output_point = 2; // Test pin - output
46 int wifi_outputState = LOW;
47 int wifi_buttonState;
48 int wifi_lastButtonState = LOW;
49 unsigned long wifi_lastButtonPressTime = 0;
50 unsigned long lastDebounceTime = 0; // For webpage to keep track
51 unsigned long debounceDelay = 50;
52
53 // Enable web server on port 80 (HTTP)
54 AsyncWebServer server(80);
55
56 // Webpage HTML code - inspired by https://randomnerdtutorials.com/esp32-web-server-arduino-

ide/
57 const char index_html[] PROGMEM = R"rawliteral(

112

Attachments

58 <!DOCTYPE HTML><html>
59 <head>
60 <title>CoT DevKit IoT - WiFi demo</title>
61 <meta name="viewport" content="width=device-width, initial-scale=1">
62 <style>
63 html {font-family: Arial; display: inline-block; text-align: center;}
64 h2 {font-size: 2.5rem;}
65 p {font-size: 2.5rem;}
66 body {max-width: 600px; margin:0px auto; padding-bottom: 25px;}
67 .switch {position: relative; display: inline-block; width: 180px; height: 100px}
68 .switch input {display: none}
69 .slider {position: absolute; top: 0; left: 0; right: 0; bottom: 0; background-color: #

D3D3D3; border-radius: 40px}
70 .slider:before {position: absolute; content: ""; height: 80px; width: 80px; left: 10px;

bottom: 10px; background-color: #FFF; -webkit-transition: .4s; transition: .4s; border-
radius: 70px}

71 input:checked + .slider {background-color: #68a0b4}
72 input:checked + .slider:before {-webkit-transform: translateX(80px); -ms-transform:

translateX(80px); transform: translateX(80px)}
73 </style>
74 </head>
75 <body>
76 <h2>CoT DevKit IoT - WiFi demo</h2>
77 %BUTTONPLACEHOLDER%
78 <script>function toggleCheckbox(element) {
79 var xhr = new XMLHttpRequest();
80 if(element.checked){ xhr.open("GET", "/update?state=1", true); }
81 else { xhr.open("GET", "/update?state=0", true); }
82 xhr.send();
83 }
84 setInterval(function () {
85 var xhttp = new XMLHttpRequest();
86 xhttp.onreadystatechange = function() {
87 if (this.readyState == 4 && this.status == 200) {
88 var inputChecked;
89 var outputStateM;
90 if(this.responseText == 1){
91 inputChecked = true;
92 outputStateM = "On";
93 }
94 else {
95 inputChecked = false;
96 outputStateM = "Off";
97 }
98 document.getElementById("wifi_output_point").checked = inputChecked;
99 document.getElementById("wifi_outputState").innerHTML = outputStateM;

100 }
101 };
102 xhttp.open("GET", "/state", true);
103 xhttp.send();
104 }, 1000) ;
105 </script>
106 </body>
107 </html>
108)rawliteral";
109
110 // Replace placeholder with actual button state on webpage - inspired by same source
111 String processor(const String& var) {
112 if (var == "BUTTONPLACEHOLDER") {
113 String buttons = "";
114 String wifi_outputStateValue = wifi_check_outputState();
115 buttons += "<h4></h4><label class=\"switch\"><

input type=\"checkbox\" onchange=\"toggleCheckbox(this)\" id=\"wifi_output_point\" " +
wifi_outputStateValue + "></label>";

116 return buttons;
117 }
118 return String();
119 }
120

113

Attachments

121 // Check state on output point to place on webpage - inspired by same source
122 String wifi_check_outputState() {
123 if (digitalRead(wifi_output_point)) {
124 return "checked";
125 } else {
126 return "";
127 }
128 return "";
129 }
130
131
132 //======================== VOID SETUP ========================//
133
134 void setup() {
135 Serial.begin(BAUD_RATE);
136
137 // Enable physical button as wake up source after ESP32 has entered light sleep mode
138 pinMode(esp32_wake_BUTTON, INPUT_PULLUP);
139 esp_sleep_enable_ext0_wakeup(GPIO_NUM_33, 0);
140
141 //------------------- NB-IoT setup -------------------//
142
143 // Begin UART communication
144 esp32Serial.begin(BAUD_RATE); // Between ESP32 and PC
145 monarchSerial.begin(BAUD_RATE); // Between ESP32 and Monarch 2
146
147 Serial.setRxBufferSize(0); // Disable software serial buffer
148
149 pinMode(NB_BUTTON, INPUT_PULLUP); // Configure the button pin as input with internal pull-

up resistor
150
151 // Configure hardware flow control pins
152 pinMode(RTS_pin, OUTPUT);
153 pinMode(CTS_pin, INPUT);
154 pinMode(RING_pin, INPUT);
155
156 /*
157 * Functions that can be executed on startup
158 * Placed in order of necessary execution
159 * Required: uartInitMonarch, configureOperationMode, connectNetwork
160 * Rest is optional, choose between PSM and eDRX
161 */
162 uartInitMonarch(); // Configure UART between ESP32 and Monarch
163 // selectSIM(); // Select SIM slot
164 // powerSIM(); // Power correct SIM slot
165 configureOperationMode(); // Configure Monarch Operation Mode
166 connectNetwork(); // Connect Monarch to NB-IoT Network
167 initPSM(); // Initialize Power Saving Mode
168 // init_eDRX(); // Initialize Extended Discontinuous Reception (eDRX)
169 // scanNetwork(); // Informal Network Scan (can be done before PSM and eDRX)
170
171 //------------------- Wi-Fi setup -------------------//
172
173 // Configure Wi-Fi button and test point
174 pinMode(wifi_BUTTON, INPUT_PULLUP);
175 pinMode(wifi_output_point, OUTPUT);
176 digitalWrite(wifi_output_point, LOW);
177
178 // Connect to Wi-Fi
179 WiFi.begin(SSID, PASSWORD);
180 while (WiFi.status() != WL_CONNECTED) {
181 delay(1000);
182 Serial.println("Connecting to WiFi ...");
183 }
184
185 // Print ESP32's IP address (URL of webpage)
186 Serial.println(WiFi.localIP());
187 Serial.println();
188

114

Attachments

189 // Route for root/webpage
190 server.on("/", HTTP_GET, [](AsyncWebServerRequest* request) {
191 request->send_P(200, "text/html", index_html, processor);
192 });
193
194 // GET request to <ESP_IP>/update?state=<inputMessage>
195 server.on("/update", HTTP_GET, [](AsyncWebServerRequest* request) {
196 String inputMessage;
197 String inputParam;
198
199 // GET value on <ESP_IP>/update?state=<inputMessage>
200 if (request->hasParam(INPUT_PARAM)) {
201 inputMessage = request->getParam(INPUT_PARAM)->value();
202 inputParam = INPUT_PARAM;
203 digitalWrite(wifi_output_point, inputMessage.toInt());
204 wifi_outputState = !wifi_outputState;
205 } else {
206 inputMessage = "No message sent";
207 inputParam = "none";
208 }
209
210 Serial.println(inputMessage);
211 request->send(200, "text/plain", "OK");
212 });
213
214 // GET request to <ESP_IP>/state
215 server.on("/state", HTTP_GET, [](AsyncWebServerRequest* request) {
216 request->send(200, "text/plain", String(digitalRead(wifi_output_point)).c_str());
217 });
218
219 // Start server
220 server.begin();
221 }
222
223
224 //======================== VOID LOOP ========================//
225
226 void loop() {
227 currentTime = millis(); // Keep time configure buttons, remove noise and define sleep time
228
229 //----------------- NB-IoT button (send PING) -----------------//
230
231 nb_buttonState = digitalRead(NB_BUTTON); // Read the current button state
232
233 // Check if the button state has changed (button pushed)
234 if (nb_buttonState != nb_lastButtonState && nb_buttonState == LOW) {
235 Serial.println("NB-IoT button pushed!");
236
237 // Toggle RTS0 to wake modem if in power save mode (PSM or eDRX)
238 // RTS0 is configured as wake source
239 Serial.println("Waking up modem");
240 digitalWrite(RTS_pin, HIGH);
241 int rts_state = digitalRead(RTS_pin);
242 Serial.print("RTS0 state: ");
243 Serial.println(rts_state);
244 delay(100);
245
246 // Check if CTS pin is low (indicating modem is ready to receive data and AT commands)
247 if (digitalRead(CTS_pin) == LOW) {
248 Serial.println("CTS is clear");
249
250 String checkReady = "AT+CFUN?";
251 monarchSerial.println(checkReady);
252 Serial.println("Checking if buffer is ready for data and AT commands");
253 Serial.println(checkReady);
254
255 // Handle response from Monarch and send PING test to www.sequans.com to see that it is

attached to NB-IoT network
256 buttonNB_handleResponse_sendPING();

115

Attachments

257
258 } else {
259 Serial.println("CTS not clear and Monarch 2 not ready");
260 }
261 delay(100);
262
263 // Toggle RTS pin after data transmission is complete
264 digitalWrite(RTS_pin, LOW);
265 Serial.print("RTS0 state:");
266 Serial.println(rts_state);
267
268 Serial.println();
269 nb_lastButtonPressTime = millis();
270 delay(100);
271 }
272
273 nb_lastButtonState = nb_buttonState; // Update button state
274
275
276 //-------- Type AT command or Function name in Serial Monitor --------//
277
278 // Monitoring uart line
279 if (esp32Serial.available()) {
280
281 // Read input typed in Serial Monitor
282 String input = esp32Serial.readStringUntil('\n');
283 input.trim(); // Remove leading/trailing whitespaces
284
285 // Check if the input is an AT command
286 if (input.startsWith("AT")) {
287
288 // Send the AT command to Monarch
289 monarchSerial.println(input); // Forward data
290 Serial.println();
291 Serial.println("Command: ");
292 Serial.println(input); // Echo to display what typed
293
294 delay(100);
295
296 // Read and print the response from Monarch
297 Serial.print("Response: ");
298 while (monarchSerial.available()) {
299 char c = monarchSerial.read();
300 esp32Serial.write(c); // Forward data
301 }
302
303 Serial.println();
304 }
305
306 /*
307 * Else a function name was typed.
308 * Function names available (see CoT_Monarch.h library):
309 - uartInitMonarch // Configure UART between ESP32 and Monarch
310 - selectSIM // Select SIM slot
311 - powerSIM // Power correct SIM slot
312 - configureOperationMode // Configure Monarch Operation Mode
313 - connectNetwork // Connect Monarch to NB-IoT Network
314 - initPSM // Initialize Power Saving Mode
315 - init_eDRX // Initialize Extended Discontinuous Reception (eDRX)
316 - scanNetwork // Informal Network Scan (can be done before PSM and eDRX)
317 */
318 else {
319 executeFunction(input);
320 }
321 }
322
323
324 //------------ Wi-Fi button (change state on webpage) ------------//
325

116

Attachments

326 int wifi_actual_buttonState = digitalRead(wifi_BUTTON); // Read the current button state
327
328 // If button pushed, save time
329 if (wifi_actual_buttonState != wifi_lastButtonState) {
330 wifi_lastButtonPressTime = millis();
331 }
332 // If button pushed, change state on webpage
333 if ((currentTime - wifi_lastButtonPressTime) > debounceDelay) {
334 if (wifi_actual_buttonState != wifi_buttonState) {
335 wifi_buttonState = wifi_actual_buttonState;
336 if (wifi_buttonState == HIGH) {
337 wifi_outputState = !wifi_outputState;
338 }
339 }
340 }
341
342 digitalWrite(wifi_output_point, wifi_outputState); // Change state on output test point
343 wifi_lastButtonState = wifi_actual_buttonState; // Update button state
344
345
346 //---------- ESP32 enter Light Sleep Mode after inactivity ----------//
347
348 // Entering Light Sleep Mode after both buttons inactive for defined value of lightSleepTime
349 if ((currentTime - nb_lastButtonPressTime >= lightSleepTime) && (currentTime -

wifi_lastButtonPressTime >= lightSleepTime)) {
350 Serial.println("Zzz");
351 esp_light_sleep_start(); // Enter light sleep mode, function from

esp_sleep.h library in ESP32 add-on
352 nb_lastButtonPressTime = currentTime; // Reset last button pressed times
353 wifi_lastButtonPressTime = currentTime; // Reset last button pressed times
354 }
355 }
356
357 //===//

117

Attachments

B.14 CoT_Monarch library

B.14.1 CoT_Monarch library header file

1 /*
2 * CoT_Monarch.h is a library designed for CoT DevKit IoT
3 * It enables communication between Monarch 2 (DCE) and ESP32 (DTE)
4 * Stores useful functions
5 */
6
7 #ifndef COT_MONARCH_H
8 #define COT_MONARCH_H
9

10 #include <Arduino.h>
11 #include <HardwareSerial.h>
12
13 extern HardwareSerial monarchSerial;
14 extern HardwareSerial esp32Serial;
15
16 /*
17 * Hardware flow control pins on ESP32 connected to corresponding pins on Monarch 2
18 * RX and TX are defined in monarchSerial
19 */
20 const int RTS_pin = 14; // Request to Send, also wake up source for Monarch 2
21 const int CTS_pin = 15; // Clear to Send
22 const int RING_pin = 32; // Line that monitors data and URC on UART line
23
24 // Type function names in Serial Monitor to execute manually
25 void executeFunction(String function);
26
27 // Process response from Monarch 2 to ESP32
28 void handleResponse();
29
30 // For NB-IoT PING test button -> processes response from Monarch and send PING test to www.

sequans.com to see that it is attached to NB-IoT network
31 void buttonNB_handleResponse_sendPING();
32
33 // Initializes UART communication with hardware flow control between Monarch 2 and ESP32
34 void uartInitMonarch();
35
36 // Selecting SIM slot on Monarch 2
37 void selectSIM();
38
39 // Power correct SIM sloton Monarch 2
40 void powerSIM();
41
42 // Configure Monarch 2 Operation Mode
43 void configureOperationMode();
44
45 // Connect Monarch 2 to NB-IoT Network
46 void connectNetwork();
47
48 // Initialize low-power mode: Power Saving Mode
49 void initPSM();
50
51 // Initialize low-power mode: Extended Discontinuous Reception (eDRX)
52 void init_eDRX();
53
54 // Informal Network Scan
55 void scanNetwork();
56
57 #endif

118

Attachments

B.14.2 CoT_Monarch library CPP file

1 #include "CoT_Monarch.h"
2
3 // UART configuration between ESP32 and Monarch 2 uses ESP32 UART2
4 HardwareSerial monarchSerial(2);
5 // UART configuration between ESP32 and PC uses ESP32 UART0 (USB cable)
6 HardwareSerial esp32Serial(0);
7
8 //--------- Execute function when typed in Serial Monitor ---------//
9

10 void executeFunction(String function) {
11 // All function names created will be included here
12
13 // Configure UART bewteen ESP32 and Monarch 2
14 if (function == "uartInitMonarch") {
15 uartInitMonarch();
16 delay(100);
17 }
18
19 // Select SIM slot
20 if (function == "selectSIM") {
21 selectSIM();
22 delay(100);
23 }
24
25 // Power correct SIM slot
26 if (function == "powerSIM") {
27 powerSIM();
28 delay(100);
29 }
30
31 // Configure Monarch Operation Mode
32 if (function == "configureOperationMode") {
33 configureOperationMode();
34 delay(100);
35 }
36
37 // Connect Monarch to NB-IoT Network
38 if (function == "connectNetwork") {
39 connectNetwork();
40 delay(100);
41 }
42
43 // Initialize Power Save Mode
44 if (function == "initPSM") {
45 initPSM();
46 delay(100);
47 }
48
49 // Initialize Extended Discontinuous Reception (eDRX)
50 if (function == "init_eDRX") {
51 init_eDRX();
52 delay(100);
53 }
54
55 // Informal Network Scan
56 if (function == "scanNetwork") {
57 scanNetwork();
58 delay(100);
59 }
60 }
61
62 //---------------- Response from Monarch ----------------//
63
64 void handleResponse() {
65
66 // Read and forward response

119

Attachments

67 String response;
68 bool errorDetected = false;
69 bool responseComplete = false;
70 unsigned long startTime = millis();
71
72 while (millis() - startTime < 5000) { // Wait for response
73 if (monarchSerial.available()) {
74 char c = monarchSerial.read();
75 response += c;
76
77 // Check if the response starts with "\r\nOK\r\n" or ends with "\r\nOK\r\n" or ends with

"\r\nERROR\r\n"
78 if (response.startsWith("\r\nOK\r\n") || response.endsWith("\r\nOK\r\n") || response.

endsWith("\r\nERROR\r\n")) {
79 responseComplete = true;
80 break;
81 }
82 }
83 }
84
85 if (responseComplete) {
86 // Print the response
87 Serial.print("Response: ");
88 Serial.println(response);
89
90 // Check if the response contains "ERROR"
91 if (response.indexOf("ERROR") != -1) {
92 errorDetected = true; // Stops execution of rest of AT commands
93 }
94 }
95
96 else {
97 Serial.println("No complete response received");
98 errorDetected = true; // Stops execution of rest of AT commands
99 }

100
101 Serial.println();
102 }
103
104 //------- Handle Response from Monarch and send test PING ------//
105
106 void buttonNB_handleResponse_sendPING() {
107
108 // Read and forward the response
109 String response;
110 bool errorDetected = false;
111 bool responseComplete = false;
112 unsigned long startTime = millis();
113
114 while (millis() - startTime < 5000) { // Wait for response
115 if (monarchSerial.available()) {
116 char c = monarchSerial.read();
117 response += c;
118
119 // Check if the response starts with "\r\nOK\r\n" or ends with "\r\nOK\r\n" or ends with

"\r\nERROR\r\n"
120 if (response.startsWith("\r\nOK\r\n") || response.endsWith("\r\nOK\r\n") || response.

endsWith("\r\nERROR\r\n")) {
121 responseComplete = true;
122 break;
123 }
124 }
125 }
126
127 if (responseComplete) {
128 // Print the response
129 Serial.print("Response: ");
130 Serial.println(response);
131

120

Attachments

132 // Check if the response contains "ERROR"
133 if (response.indexOf("ERROR") != -1) {
134 errorDetected = true;
135 }
136 }
137
138 else {
139 Serial.println("No complete response received");
140 errorDetected = true; // Stops execution of rest of AT commands
141 }
142
143 delay(100);
144
145 //If ready to for AT command, do ping check
146 if (response.endsWith("\r\nOK\r\n")) {
147 Serial.println("Ready for PING test");
148
149 // Send command to the modem
150 String pingCommand = "AT+PING=\"www.sequans.com\"";
151 monarchSerial.println(pingCommand);
152 // Print the command
153 Serial.println("Command: ");
154 Serial.println(pingCommand);
155
156 handleResponse();
157 }
158
159 Serial.println();
160 }
161
162 //---------- Configure UART between ESP32 and Monarch ---------//
163
164 void uartInitMonarch() {
165
166 Serial.println("Beginning UART Monarch 2 init!");
167 Serial.println();
168
169 // List of AT commands to send
170 String commands[] = {
171 "AT", // Test AT command connection
172 "AT+CFUN=5", // Entering manufacturing mode
173 "AT+SQNIPSCFG=2,100", // UART timeout 100ms
174 "AT+SQNHWCFG=\"uart0\",\"enable\",\"rtscts\"", // Enable hardware flow control on Monarch

UART0
175 "AT+SQNHWCFG=\"wakeRTS0\",\"enable\"", // Setting RTS0 as wake source
176 "AT+SQNRICFG=1,3,100", // RING timeout 100ms
177 "AT^RESET"
178 };
179
180 // Loop through each command and forward to Monarch
181 for (int i = 0; i < sizeof(commands) / sizeof(commands[0]); i++) {
182 String currentCommand = commands[i];
183 monarchSerial.println(currentCommand);
184
185 // Print the command
186 Serial.println("Command: ");
187 Serial.println(currentCommand);
188
189 handleResponse();
190
191 // Skip printing the extra line if it is the last command
192 if (i < sizeof(commands) / sizeof(commands[0]) - 1) {
193 Serial.println();
194 }
195
196 delay(2000);
197 }
198
199 Serial.println("Finished UART init.");

121

Attachments

200 Serial.println();
201 delay(500);
202 }
203
204 //---------- Select SIM slot ---------//
205
206 void selectSIM() {
207
208 Serial.println("Selecting SIM card on Monarch!");
209 Serial.println();
210
211 // List of AT commands to send
212 String commands[] = {
213 // Select SIM slot
214 "AT+CSUS=?", // Check number of SIM slots
215 "AT+CSUS?", // Checking that SIM slot 0 is selected
216 "AT+CFUN=0",
217 "AT+CSUS=0", // Selecting SIM slot 0
218 "AT+CSUS?",
219 "AT+CFUN=4", // Set to ariplaine mode
220 "AT+CIMI",
221 "AT+CSUS?",
222 "AT^RESET",
223 "AT+CSUS?"
224 };
225
226 // Loop through each command
227 for (int i = 0; i < sizeof(commands) / sizeof(commands[0]); i++) {
228 // Send command to the modem
229 String currentCommand = commands[i];
230 monarchSerial.println(currentCommand);
231
232 // Print the command
233 Serial.println("Command: ");
234 Serial.println(currentCommand);
235
236 handleResponse();
237
238 // Skip printing the extra line if it's the last command
239 if (i < sizeof(commands) / sizeof(commands[0]) - 1) {
240 Serial.println();
241 }
242
243 delay(3000); // Delay between commands to allow for stability
244 }
245
246 Serial.println("Finished selecting SIM.");
247 Serial.println();
248 delay(500);
249 }
250
251 //---------- Power correct SIM slot ---------//
252
253 void powerSIM() {
254
255 Serial.println("Power SIM card on Monarch!");
256 Serial.println();
257
258 // List of AT commands to send
259 String commands[] = {
260 // Power SIM slot
261 "AT+CFUN=1", // Enter full functionality mode
262 "AT+CPIN?" // Check if SIM is ready
263 };
264
265 // Loop through each command
266 for (int i = 0; i < sizeof(commands) / sizeof(commands[0]); i++) {
267 // Send command to the modem
268 String currentCommand = commands[i];

122

Attachments

269 monarchSerial.println(currentCommand);
270
271 // Print the command
272 Serial.println("Command: ");
273 Serial.println(currentCommand);
274
275 handleResponse();
276
277 // Skip printing the extra line if it's the last command
278 if (i < sizeof(commands) / sizeof(commands[0]) - 1) {
279 Serial.println();
280 }
281
282 delay(2000); // Delay between commands to allow for stability
283 }
284
285 Serial.println("Finished powering SIM.");
286 Serial.println();
287 delay(500);
288 }
289
290 //---------- Configure Monarch Operation Mode ---------//
291
292 void configureOperationMode() {
293
294 Serial.println("Configure Operation Mode!");
295 Serial.println();
296
297 // List of AT commands to send
298 String commands[] = {
299 // Configure Operation Mode of the modem
300
301 // Check current mode
302 "AT+SQNCTM=\"standard\"",
303 "AT+SQNCTM?",
304
305 // Limit number of bands
306 "AT+SQNBANDSEL?",
307 "AT+SQNBANDSEL=0,\"standard\",\"3,8,20\"",
308
309 // Defined preffered EARFNC (E-UTRA Absolute Radio Frequency Channel Number) to be scanned

in priority
310 "AT+SQNEARFCNSEL?",
311 "AT+SQNEARFCNSEL=0,\"standard\",\"\" ", // Enter an empty list to reset the EARFCN list

to the default valuees
312 "AT+SQNEARFCNSEL?",
313
314 // Select operation mode
315 "AT+SQNCTM=?",
316 "AT+SQNCTM=\"standard\"",
317 "AT+SQNCTM=?"
318 };
319
320 // Loop through each command
321 for (int i = 0; i < sizeof(commands) / sizeof(commands[0]); i++) {
322 // Send command to the modem
323 String currentCommand = commands[i];
324 monarchSerial.println(currentCommand);
325
326 // Print the command
327 Serial.println("Command: ");
328 Serial.println(currentCommand);
329
330 handleResponse();
331
332 // Skip printing the extra line if it's the last command
333 if (i < sizeof(commands) / sizeof(commands[0]) - 1) {
334 Serial.println();
335 }

123

Attachments

336
337 delay(3000); // Delay between commands to allow for stability
338 }
339
340 Serial.println("Finished configuring operation mode.");
341 Serial.println();
342 delay(500);
343 }
344
345 //---------- Connect Monarch to NB-IoT Network ---------//
346
347 void connectNetwork() {
348
349 Serial.println("Connecting to NB-IoT network!");
350 Serial.println();
351
352 // List of AT commands to send
353 String commands[] = {
354 // Connect to the Network and Check Attach is Done
355 "AT+CFUN=1", // Attach to network
356 "AT+CREG?", // Check network's registration status
357 "AT+CGPADDR" // Check IP address
358 };
359
360 // Loop through each command
361 for (int i = 0; i < sizeof(commands) / sizeof(commands[0]); i++) {
362 // Send command to the modem
363 String currentCommand = commands[i];
364 monarchSerial.println(currentCommand);
365
366 // Print the command
367 Serial.println("Command: ");
368 Serial.println(currentCommand);
369
370 handleResponse();
371
372 // Skip printing the extra line if it's the last command
373 if (i < sizeof(commands) / sizeof(commands[0]) - 1) {
374 Serial.println();
375 }
376
377 delay(4000); // Delay between commands to allow for stability
378 }
379
380 Serial.println("Connected to Telenor NB-IoT network.");
381 Serial.println();
382 delay(500);
383 }
384
385
386 //---------- Initialize Power Saving Mode ---------//
387
388 void initPSM() {
389
390 Serial.println("Initializing Power Saveing Mode!");
391 Serial.println();
392
393 // List of AT commands to send
394 String commands[] = {
395 "AT+SQNEDRX=0", // Disabling eDRX
396
397 // Enable PSM
398 // "10100011": Requested Periodic TAU timer (T3412 Extended), 3 min
399 // "00100001": Requested Active timer (T3324), 1 min
400 "AT+CPSMS=1,,,\"10000110\",\"00001000\"",
401
402 "AT+CEREG=4",
403 "AT+CFUN=1"
404 };

124

Attachments

405
406 // Loop through each command
407 for (int i = 0; i < sizeof(commands) / sizeof(commands[0]); i++) {
408 // Send command to the modem
409 String currentCommand = commands[i];
410 monarchSerial.println(currentCommand);
411
412 // Print the command
413 Serial.println("Command: ");
414 Serial.println(currentCommand);
415
416 handleResponse();
417
418 // Skip printing the extra line if it's the last command
419 if (i < sizeof(commands) / sizeof(commands[0]) - 1) {
420 Serial.println();
421 }
422
423 delay(100); // Delay between commands to allow for stability
424 }
425
426 //Toogle RTS0 LOW and enter sleep mode
427 digitalWrite(RTS_pin, LOW);
428 delay(1000);
429 int real_rts = digitalRead(RTS_pin);
430 Serial.print("RTS0 state: 0");
431 // Serial.println(real_rts);
432 Serial.println();
433
434 Serial.println("Finished Power Saveing Mode initialization.");
435 Serial.println();
436 delay(500);
437 }
438
439 //-------- Initialize Extended Discontinuous Reception (eDRX) -------//
440
441 void init_eDRX() {
442
443 Serial.println("Initializing Extended Discontinuous Reception (eDRX)!");
444 Serial.println();
445
446 // List of AT commands to send
447 String commands[] = {
448 "AT+CPSMS=0", // Disabling PSM
449
450 /* Enable eDRX and unsolicited result code
451 * Type of access technology, 4 = E-UTRAN (WB-S1 mode) and 5 = E-UTRAN (NB-S1 mode)
452 * eDRX cycle 20.48s
453 * WB-S1 PTW Value 2.65s and NB-S1 PTW Value 5.12s
454 */
455 "AT+SQNEDRX=2,5,\"0010\",\"0001\"",
456 "AT+SQNEDRX?",
457 "AT+CEDRXS?"
458 };
459
460 // Loop through each command
461 for (int i = 0; i < sizeof(commands) / sizeof(commands[0]); i++) {
462 // Send command to the modem
463 String currentCommand = commands[i];
464 monarchSerial.println(currentCommand);
465
466 // Print the command
467 Serial.println("Command: ");
468 Serial.println(currentCommand);
469
470 handleResponse();
471
472 // Skip printing the extra line if it's the last command
473 if (i < sizeof(commands) / sizeof(commands[0]) - 1) {

125

Attachments

474 Serial.println();
475 }
476
477 delay(100); // Delay between commands to allow for stability
478 }
479
480 // Toogle RTS0 low
481 digitalWrite(RTS_pin, LOW);
482 delay(1000);
483 int real_rts = digitalRead(RTS_pin);
484 Serial.print("RTS0 state: ");
485 Serial.println(real_rts);
486 Serial.println();
487
488 Serial.println("Finished eDRX initialization.");
489 Serial.println();
490 delay(500);
491 }
492
493 //---------- Informal Network Scan ---------//
494
495 void scanNetwork() {
496
497 Serial.println("Beginning informal network scan!");
498 Serial.println();
499
500 // List of AT commands to send
501 String commands[] = {
502 "AT+CFUN=0", // Enter minimum functionality
503 "AT+SQNINS=0", // Scan all bands
504 "AT+SQNMONI=9" // Report information
505 };
506
507 // Loop through each command
508 for (int i = 0; i < sizeof(commands) / sizeof(commands[0]); i++) {
509 // Send command to the modem
510 String currentCommand = commands[i];
511 monarchSerial.println(currentCommand);
512
513 // Print the command
514 Serial.println("Command: ");
515 Serial.println(currentCommand);
516
517 handleResponse();
518
519 // Skip printing the extra line if it's the last command
520 if (i < sizeof(commands) / sizeof(commands[0]) - 1) {
521 Serial.println();
522 }
523
524 delay(4000); // Delay between commands to allow for stability
525 }
526
527 Serial.println("Finished informal network scan.");
528 Serial.println();
529 delay(500);
530 }

126

Attachments

B.15 Poster

Poster for the bachelor project.

127

C
o
T

D
e
v
K

it
I
o
T
:

 I
n
te

rn
e
t

o
f

T
h
in

g
s
 h

a
rd

w
a
re

 w
it

h
 W

i-
F
i
a
n
d
 n

a
rr

o
w

b
a
n
d
 I

o
T

c
a
p
a
b
il
it

ie
s
 s

p
e
c
ia

li
s
e
d
 f

o
r

u
s
e
 i
n
 t

h
e
 N

o
rw

e
g
ia

n
 e

d
u
c
a
ti

o
n
a
l
s
y
s
te

m

A
n
n
ik

 R
ii
s
e

D
e
p
a
rt

m
e
n
t

o
f
E
le

c
tr

o
n
ic

 S
y
s
te

m
s
 N

T
N

U

P
ro

je
c
t

re
s
u
lt
e
d
 i
n
 a

 p
ro

o
f-

o
f-

c
o
n
c
e
p
t

th
a
t

w
o
rk

s
 a

s
 i
n
te

n
d
e
d
 w

it
h
 t

h
e
 d

e
s
ir
e
d
 s

p
e
c
if
ic

a
ti
o
n
s
.
T
h
is

 t
h
e
s
is

 i
s
 t

h
e

b
e
g
in

n
in

g
 o

f
th

e
 b

ig
g
e
r

d
e
s
ig

n
 p

ro
c
e
s
s
 o

f
th

e
 d

e
v
e
lo

p
m

e
n
t

b
o
a
rd

.
B
e
lo

w
 a

re
 p

ri
o
ri

ti
s
e
d

s
u
g
g
e
s
ti
o
n
s
 f
o
r

fu
tu

re
 w

o
rk

:

•
M

o
re

 c
o
m

p
re

h
e
n
s
iv

e
 h

a
rd

w
a
re

 f
lo

w
 c

o
n
tr

o
l
w

it
h
 R

IN
G

 l
in

e
 m

o
n
it
o
ri

n
g
 a

n
d
 p

e
rh

a
p
s
 a

 w
a
tc

h
d
o
g
.

•
P
ro

p
p
e
r

p
o
w

e
r

c
o
n
s
u
m

p
ti
o
n

m
e
a
s
u
re

m
e
n
ts

 w
it
h
 p

ro
te

c
ti
v
e
 c

ir
c
u
it

a
n
d

a
c
c
u
ra

te
e
q
u
ip

m
e
n
t.

•
F
u
rt

h
e
r

N
B
-I

o
T

d
a
ta

tr
a
n
s
m

is
s
io

n
te

s
ti
n
g
,
p
re

fe
ra

b
ly

 w
it
h

th
e
 I

o
T
 p

la
tf

o
rm

D
e
p
lo

ii
.

C
o
n
c
lu

s
io

n
 &

 F
u
tu

re
 w

o
rk

P
ro

o
f-

o
f-

c
o
n
c
e
p
t

o
f

a
 d

e
v
e
lo

p
m

e
n
t

b
o
a
rd

 i
n
te

n
d
e
d
 t

o

te
a
c
h
 u

n
iv

e
rs

it
y
 a

n
d
 u

p
p
e
r

s
e
c
o
n
d
a
ry

 s
c
h
o
o
l
s
tu

d
e
n
ts

a
b
o
u
t

In
te

rn
e
t

o
f
T
h
in

g
s
 (

Io
T
).

 E
n
a
b
li
n
g
 t

h
e
m

 t
o

c
re

a
te

 t
h
e
ir

 o
w

n
 p

ro
je

c
ts

,
s
p
e
c
if
ic

a
ll
y
 w

it
h
 W

i-
F
i
a
n
d

n
a
rr

o
w

b
a
n
d
 I

o
T
 (

N
B
-I

o
T
).

E
S
P
3
2
 h

a
s
 a

n
 i
n
te

g
ra

te
d
 W

i-
F
i
m

o
d
e
m

 a
n
d
 i
s
 t

h
e
 M

C
U

th

a
t

c
o
n
tr

o
ls

 t
h
e
 w

h
o
le

 s
y
s
te

m
.

M
o
n
a
rc

h
 2

 i
s
 t

h
e
 N

B
-

Io
T
 m

o
d
e
m

 a
n
d
 i
s
 c

o
n
fi
g
u
re

d
 w

it
h
 A

T
 c

o
m

m
a
n
d
s
.

E
v
e
ry

th
in

g
 i
s
 a

c
c
o
m

p
li
s
h
e
d
 w

it
h
in

 A
rd

u
in

o
 I

D
E
 w

it
h
 i
ts

S
e
ri

a
l
M

o
n
it
o
r

w
o
rk

in
g
 a

s
 t

h
e
 t

e
rm

in
a
l.

A
b
s
tr

a
c
t

T
h
is

 p
ro

je
c
t

c
o
n
s
is

ts
 o

f
th

e
 C

o
T

D
e
v
K
it

Io
T
 w

it
h
 a

d
e
m

o
n
s
tr

a
ti
o
n
 s

y
s
te

m
 t

h
a
t

h
a
s
 t

h
e
 f
u
n
c
ti
o
n
a
li
ti
e
s

b
e
lo

w
.

S
e
n
d
in

g
 A

T
 c

o
m

m
a
n
d
s
:

S
in

g
le

 A
T
 c

o
m

m
a
n
d
s
 a

n
d
 f
u
n
c
ti
o
n
 n

a
m

e
s
 (

p
re

d
e
fi
n
e
d

c
o
m

b
in

a
ti
o
n
 o

f
c
o
m

m
a
n
d
s
)

c
a
n
 m

a
n
u
a
ll
y
 b

e
 t

y
p
e
d
 i
n

S
e
ri

a
l
M

o
n
it
o
r.

 T
h
e
 f
u
n
c
ti
o
n
 n

a
m

e
s
 c

a
n
 a

ls
o
 b

e

a
u
to

m
a
ti
c
a
ll
y
 e

x
e
c
u
te

d
 b

y
 p

la
c
in

g
 t

h
e
m

 i
n
 t

h
e

p
ro

g
ra

m
 c

o
d
e
.

W
i-

F
 b

u
tt

o
n
:

E
S
P
3
2
 a

c
ts

 a
s
 a

 w
e
b
 s

e
rv

e
r

a
n
d
 a

c
c
e
s
s
 p

o
in

t,
 h

o
s
ti
n
g

a
 w

e
b
p
a
g
e
.

P
re

s
s
in

g
 t

h
e
 p

h
y
s
ic

a
l
W

i-
F
i
b
u
tt

o
n
 u

p
d
a
te

s

th
e
 b

u
tt

o
n
 s

ta
te

 o
n
 t

h
e
 w

e
b
p
a
g
e
.

N
B
-I

o
T
 b

u
tt

o
n
:

P
re

s
s
in

g
 t

h
e
 N

B
-I

o
T
 b

u
tt

o
n
 w

a
k
e
s
 M

o
n
a
rc

h
 2

 u
p
 f
ro

m

p
o
w

e
r

s
a
v
in

g
 m

o
d
e
,

s
e
n
d
s
 a

 P
IN

G
 c

o
n
n
e
c
ti
v
it
y
 t

e
s
t

to

a
 w

e
b
s
it
e
 a

n
d
 g

o
e
s
 a

ft
e
rw

a
rd

s
 b

a
c
k
 t

o
 s

le
e
p
.

E
S
P
3
2
 w

a
k
e
 u

p
 b

u
tt

o
n
:

M
o
n
a
rc

h
 2

 i
s
 i
n
 c

o
n
s
ta

n
t

p
o
w

e
r

s
a
v
in

g
 m

o
d
e
.
A
ft

e
r

1

m
in

,
E
S
P
3
2
 e

n
te

rs
 s

le
e
p
 m

o
d
e
,

s
e
iz

in
g
 a

ll
 s

y
s
te

m

fu
n
c
ti
o
n
a
li
ti
e
s
 –

in
c
lu

d
in

g
 M

o
n
a
rc

h
 2

.
E
S
P
3
2
 w

a
k
e
 u

p

b
u
tt

o
n
 i
s
 p

re
s
s
e
d
 t

o
 w

a
k
e
 t

h
e
 s

y
s
te

m
 u

p
 a

g
a
in

.

D
e
m

o
n
s
tr

a
ti

o
n
 s

e
tu

p

•
M

a
in

 c
o
m

p
o
n
e
n
ts

:
E
S
P
3
2
 D

e
v
K
it
C

V
4
 a

n
d
 M

o
n
a
rc

h
 2

 G
M

0
2
S
 N

e
k
ta

r
E
v
a
lu

a
ti
o
n
 K

it
•

S
h
o
rt

-r
a
n
g
e
 w

ir
e
le

s
s
 c

o
m

m
u
n
ic

a
ti
o
n
 f
o
r

in
d
o
o
r

u
s
e
:

W
i-

F
i

•
L
o
n
g
-r

a
n
g
e
 w

ir
e
le

s
s
 c

o
m

m
u
n
ic

a
ti
o
n
 f
o
r

o
u
td

o
o
r

u
s
e
:

N
a
rr

o
w

b
a
n
d
 I

o
T
 (

N
B

-I
o
T
)

•
E
n
tr

y
-l

e
v
e
l
m

ic
ro

c
o
n
tr

o
ll
e
r

p
ro

g
ra

m
m

in
g
 l
a
n
g
u
a
g
e
:

A
rd

u
in

o
 C

•
L
o
w

-p
o
w

e
r

m
o
d
e
s
 a

n
d
 t

e
c
h
n
iq

u
e
s
:

-
E
S
P
3
2
:

L
ig

h
t

s
le

e
p

-
M

o
n
a
rc

h
 2

:
P
o
w

e
r

S
a
v
in

g
 M

o
d
e
 (

P
S
M

)
a
n
d
 e

x
te

n
d
e
d
 D

is
c
o
n
ti
n
u
o
u
s
 R

e
c
e
p
ti
o
n
 (

e
D

R
X
)

T
e
c
h
n
ic

a
l
s
p
e
c
if

ic
a
ti

o
n
s

	Abstract
	Sammendrag
	Acknowledgements
	List of figures
	Abbreviations and terminology
	Introduction
	Background and motivation
	Requirements and objective
	Report structure
	Who should read this report

	Theoretical framework
	Internet of Things
	Microcontrollers
	Wi-Fi
	Narrowband Internet of Things (NB-IoT)
	AT commands

	Low-power modes and techniques
	Low-power modes
	Low-power techniques on cellular network

	Pedagogical principles when creating a development board

	Method
	Project planning and management
	Goals
	Quality and progress ensured with work packages and Gantt-chart
	Quality and progress ensured with supervisors
	Risk assessment
	Time and cost

	System requirements
	Technology and Research Education Conference
	Wireless communication and programming language
	Concluding system requirements

	Design methodology
	Choice of main technological components
	Existing development boards and add-on components
	Choice of microcontroller with Wi-Fi
	ESP32-WROOM-32E specifications
	Choice of NB-IoT modem
	Monarch 2 GM02S specifications

	Testing methods

	System design
	System architecture and setup
	System architecture of CoT DevKit IoT
	System architecture with Demonstration System
	Finalised setup

	Detailed system design: Hardware
	DCE-DTE connection
	Hardware flow control
	Web server
	ESP32 low-power
	Monarch 2 low-power

	Detailed system design: Software
	Flowchart of code
	Start
	Setup
	Loop

	Design choices
	System architecture with Demonstration Setup
	Enabling Arduino IDE Serial Monitor as functional terminal
	Hardware control pin connections
	UART library
	Design of webpage
	Creating own library for Monarch 2
	Power source
	ESP32 sleep mode
	Why Monarch 2 mostly uses PSM and not eDRX
	Why could not test with IoT-platform Deploii
	Why all software is Arduino C
	Why evaluation boards instead of creating PCB from the beginning

	Implementation and testing
	Process of implementation and testing throughout
	Initial test of Monarch 2
	Control Monarch 2 with ESP32
	NB-IoT button
	Creating AT command functions and CoT_Monarch library
	Wi-Fi test
	Wi-Fi button
	Monarch 2 low-power
	ESP32 low-power

	Testing and validation of final Demonstration System
	ESP32 and Monarch 2 compatibility
	NB-IoT functionality
	Monarch 2 power saving
	Wi-Fi functionality
	ESP32 power saving

	Results
	ESP32 and Monarch 2 compatibility
	NB-IoT functionality
	Wi-Fi functionality
	Monarch 2 power saving
	ESP32 power saving

	Analysis and discussion
	Project process
	ESP32 and Monarch 2 compatibility
	NB-IoT functionality
	NB-IoT functionality inside and outside
	Wi-Fi
	ESP32 power saving
	Monarch 2 power saving
	Measure Monarch 2 power consumption
	Product cost and market value
	Outline example of student project assignment
	Future work

	Conclusion
	References
	Appendices
	Gantt-chart
	S-curve
	Survey Technology and Research Education Conference
	ESP32 DevKit V4 pinout diagram
	Monarch 2 pinout sockets
	ESP32 block diagram
	Monarch 2 block diagram
	ESP32 schematics
	Monarch 2 circuit assembly
	Monarch 2 schematics
	Serial Monitor upon system power-up
	Serial Monitor NB-IoT button pushed
	Type function name in Serial Monitor
	Type AT commands in Serial Monitor

	Attachments
	Project documentation
	Monarch 2 datasheet
	Monarch 2 NEKTAR-B User Manual
	Monarch 2 AT Commands Use Cases
	Monarch 2 System Integration Guide
	Monarch 2 Module Integration Guide
	Monarch 2 release Notes R02
	Monarch 2 Power Consumption Measurements
	Monarch 2 AT Commands Reference Manual
	Serial Monitor as terminal window
	Standalone Narrowband IoT demonstration
	Standalone Wi-Fi demonstration
	Final project code: Wi-Fi and NB-IoT demo
	CoT_Monarch library
	CoT_Monarch library header file
	CoT_Monarch library CPP file

	Poster

