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Abstract

We compare the homological support and tensor triangular support for ‘big’ objects in a rigidly-
compactly generated tensor triangulated category. We prove that the comparison map from the 
homological spectrum to the tensor triangular spectrum is a bijection and that the two notions of 
support coincide whenever the category is stratified, extending the work of Balmer. Moreover, we 
clarify the relations between salient properties of support functions and exhibit counter-examples 
highlighting the differences between homological and tensor triangular support.

1. Introduction

Support functions for the objects of a given tensor triangulated category have been employed in a vari-
ety of contexts to establish classification theorems. Prominent historical examples include the support 
varieties of modular representation theory [13, 14, 18], chromatic support in stable homotopy theory 
[24, 25] and notions of support for derived categories in algebraic geometry [33, 39]. Balmer [1] 
unified these developments by constructing a universal notion of support (Spc(𝒦),supp𝒦) for any 
essentially small tensor triangulated category 𝒦. Taking values in the Balmer spectrum Spc(𝒦), this 
universal notion of support classifies the thick tensor-ideals of 𝒦 and provides an abstract conceptual 
generalization of the specific support theories that arise in different subjects.

More recently, motivated by the elusive search for residue fields in tensor triangular geometry, 
Balmer et al. [7] have introduced the so-called homological residue fields of 𝒦. They are parameter-
ized by a new space Spch(𝒦) called the homological spectrum, and they have been used by Balmer 
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748 T. BARTHEL et al.

[3] to introduce a new notion of support (Spch(𝒦),supph
𝒦) for the objects of 𝒦, which comple-

ments the universal notion of support (Spc(𝒦),supp𝒦). By virtue of the universal property, there 

is a canonical continuous map ϕ : Spch(𝒦) → Spc(𝒦) such that supph
𝒦 = ϕ−1(supp𝒦). This com-

parison map ϕ is surjective (under very mild hypotheses) and turns out to be bijective in all known 
examples [3, Section 5]. This motivates the following conjecture: (Personal communication; see also 
[3, Rem. 5.15])

Conjecture (Balmer). The map ϕ : Spch(𝒦) → Spc(𝒦) is always a bijection.

In fact, this conjecture admits a purely point-set topological reformulation without reference to 
the triangular spectrum, as we show in Proposition 4.5:

Theorem A. The comparison map ϕ is a bijection if and only if Spch(𝒦) is a T0-space; and if that 
is the case, then ϕ is a homeomorphism.

However, the comparison between the homological and triangular perspectives on tensor triangu-
lar geometry runs deeper, since even in the case that ϕ is a homeomorphism, they in general afford 
different support theories, as we discuss next.

Indeed, in many contexts the tt-category 𝒦 arises as the full subcategory of compact objects in a 
rigidly-compactly generated tt-category 𝒯. This leads to the problem of finding a suitable construc-
tion of support for ‘big’ objects in 𝒯, which extends the universal notion of support for compact 
objects. A primary motivation is to use such a notion of big support to stratify the category 𝒯, that 
is, to classify the localizing tensor-ideals of 𝒯, much as Balmer’s universal notion of support clas-
sifies the thick tensor-ideals of 𝒦 = 𝒯c. Different approaches have been proposed. In a seminal 
series of papers [15–17] building on [27], Benson, Iyengar and Krause have developed a theory of 
‘big’ support in terms of a suitable ring action on 𝒯, which led to important applications in modular 
representation theory. On the other hand, Balmer and Favi [6] give a construction of big support 
(Spc(𝒯c),Supp𝒯) in the setting of tensor triangular geometry. Both approaches admit a uniform 
generalization through the work of Stevenson [37]; see also [11].

These approaches to big support fundamentally depend on some noetherian hypothesis. For exam-
ple, the Balmer–Favi notion of support Supp𝒯 does not provide an extension of the universal support 
on 𝒯c to the whole of 𝒯 without some such hypothesis. Recently, Balmer [4] has extended homo-
logical support to big objects. The resulting notion of support (Spch(𝒯c),Supph

𝒯) does not require 
any noetherian hypotheses and extends the pullback supph

𝒯c = ϕ−1(supp𝒯c) of the universal support 
to the whole of 𝒯.

In this paper, we study the relationship between the homological spectrum Spch(𝒯c) and the 
Balmer spectrum Spc(𝒯c) via the comparison map ϕ as well as the relation between the notions of 
big support, Supph

𝒯 and Supp𝒯, which inhabit these spaces. Our main result is Theorem 4.7:

Theorem B. Let 𝒯 be a rigidly-compactly generated tt-category whose spectrum Spc(𝒯c) is weakly 
noetherian. If 𝒯 is stratified, then the following statements hold:

(a) the comparison map ϕ : Spch(𝒯c) → Spc(𝒯c) is a homeomorphism;
(b) Supph

𝒯(t) = ϕ−1(Supp𝒯(t)) for all t ∈𝒯 and

(c) both Supp and Supph detect trivial objects and satisfy the tensor product property.
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HOMOLOGICAL AND TENSOR TRIANGULAR SUPPORT 749

This adds several new examples to the list of tt-categories for which the comparison map ϕ is 
known to be a homeomorphism and to which the techniques of [3] do not readily apply. (See the 
examples in Section 5.) En route to proving the theorem, we establish a series of partial comparison 
results. These establish a hierarchy among different properties of support, as follows:

Theorem C. Let 𝒯 be a rigidly-compactly generated tt-category whose spectrum Spc(𝒯c) is weakly 
noetherian.

(a) For any t ∈𝒯, we have ϕ(Supph
𝒯(t)) ⊆ Supp𝒯(t). In particular, if Supph

𝒯 detects trivial objects, 
then so does Supp𝒯.

(b) Consider the following three statements:
(1) Supph

𝒯(t) = ϕ−1(Supp𝒯(t)) for all t ∈𝒯.
(2) Supp𝒯(s⊗ t) = Supp𝒯(s)∩Supp𝒯(t) for all s, t ∈𝒯.

(3) The comparison map ϕ : Spch(𝒯c) → Spc(𝒯c) is a bijection.
Then (1) ⇒ (2) ⇒ (3). If Supph

𝒯 detects trivial objects, then (3) ⇒ (1).

The proof of Theorem C will be assembled at the end of Section 3. In Section 5, we turn to specific 
applications. In particular, we show that the converse of (a) as well as the implication (3) ⇒ (1) in 
Theorem C fail in general if Supph

𝒯 does not detect trivial objects. In fact, based on work of Neeman 
[34], we exhibit an example of a tt-category 𝒯 for which the homological and the tensor triangular 
spectrum coincide, but which contains objects t ∈𝒯 with Supph

𝒯(t) ⊊ Supp𝒯(t). Furthermore, we 
use our results to clarify the relation between different notions of support for derived categories of 
non-noetherian commutative rings, in derived algebra and in chromatic homotopy theory.

Balmer’s conjecture remains open in full generality. Either answer would be interesting. A 
counter-example would provide the possibility that the homological spectrum could serve as a home 
for theories of support, which have a better chance of classifying localizing tensor-ideals—at least 
in some non-noetherian settings. A positive answer would unify the two kinds of ‘spectra’ for tensor 
triangulated categories introduced by Balmer and establish in full generality the equality of two quite 
different approaches to defining support. Our results demonstrate that a counter-example to Balmer’s 
conjecture must necessarily come from non-stratified categories.

2. Support for rigidly-compactly generated tt-categories

In this section, we introduce an abstract notion of support function for arbitrary objects in a rigidly-
compactly generated tt-category and give several known examples.

Definition 2.1 A support function for a rigidly-compactly generated tt-category 𝒯 is a pair (X,𝔖)
consisting of a set X and a function 𝔖 : Ob(𝒯) →𝒫(X) assigning a subset of X to every object of 𝒯, 
subject to the following conditions:

(a) 𝔖(0) = ∅ and 𝔖(𝟙) = X;
(b) 𝔖(Σt) = 𝔖(t) for all t ∈𝒯;
(c) 𝔖(t3) ⊆ 𝔖(t1)∪𝔖(t2) for any exact triangle t1 → t2 → t3 → Σt1 in 𝒯;
(d) 𝔖(∐

i∈I
ti) = ⋃

i∈I
𝔖(ti) for any family {ti}i∈I  of objects in 𝒯; and

(e) 𝔖(t1 ⊗ t2) ⊆ 𝔖(t1)∩𝔖(t2) for any t1, t2 ∈𝒯.
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Remark 2.2 This notion of support function is inspired by Balmer’s definition of support data for 
an essentially small tt-category [1]. However, the restriction of a support function (X,𝔖) in the sense 
of Definition 2.1 to the full subcategory 𝒯c of compact objects in 𝒯 is not a support datum in the 
sense of [1, Definition 3.1]. In order for this to be the case, we would need to additionally demand 
that the set X is equipped with a topology such that the restriction 𝔖|𝒯c  satisfies:

(f) 𝔖|𝒯c : 𝒯c →𝒫(X) takes values in closed subsets of X; and
(g) 𝔖(s⊗ t) = 𝔖(s)∩𝔖(t) for all s, t ∈𝒯c.

If that is the case, then by the universal property of the Balmer spectrum [1, Theorem 3.2], there 
is a unique morphism of support data (X,𝔖) → (Spc(𝒯c),supp𝒯c). In other words, there is a unique 
continuous map f : X → Spc(𝒯c) such that 

f −1(supp𝒯c(x)) = 𝔖(x)

for all compact objects x ∈𝒯c.

Remark 2.3 We now recall the Balmer–Favi support function which (under some noetherian 
hypotheses) extends the universal notion of support supp𝒯c  from 𝒯c to all of 𝒯. A more extensive 
discussion can be found in [11].

Definition 2.4 A point x in a spectral space X is said to be visible if its closure {x} is a Thomason 
subset of X and is said to be weakly visible if there exist two Thomason subsets Y1,Y2 ⊆ X such that 
{x} = Y1 ∩Y c

2 . A space X is said to be weakly noetherian if every point of X is weakly visible.

Remark 2.5 This terminology is justified because a visible point is weakly visible and a spectral 
space is noetherian if and only if each of its points is visible ([6, Corollary 7.14]). An example of 
a spectral space which is not weakly noetherian is the Balmer spectrum of the category of finite 
p-local spectra. On the other hand, the Balmer spectrum of the category of finite rational G-spectra 
is always weakly noetherian but it is not noetherian in general when the compact Lie group G is 
not finite. Another example of a weakly noetherian space which is not noetherian is the spectrum 
Spec(R) of a non-noetherian absolutely flat ring R (such as an infinite product of fields). See [38, 
Remark 4.3] and [11, Example 2.5].

Example 2.6 (Balmer–Favi support) Let 𝒯 be a rigidly-compactly generated tt-category whose 
spectrum Spc(𝒯c) is weakly noetherian. Under the latter hypothesis, Balmer’s universal notion of 
support supp𝒯c  for 𝒯c admits an extension to a support function on all of 𝒯. This notion of support 
for big objects was introduced by Balmer–Favi in [6, Section 7]. They construct for every (weakly 
visible) point 𝒫 ∈ Spc(𝒯c) a ⊗-idempotent g(𝒫) ∈𝒯 and then define 

Supp𝒯(t) := {𝒫 ∈ Spc(𝒯c) ∣ g(𝒫)⊗ t ≠ 0}

for any t ∈𝒯. See [11, Section 2] for details. This defines a support function Supp𝒯 for 𝒯 taking 
values in Spc(𝒯c) with the property that Supp𝒯 |𝒯c = supp𝒯c . This was shown in [6, Proposi-
tion 7.17] under the hypothesis that Spc(𝒯c) is noetherian, while the general case was established 
in Remark 2.12 and Lemma 2.13 of [11].
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HOMOLOGICAL AND TENSOR TRIANGULAR SUPPORT 751

Remark 2.7 For our purposes, the next most significant example is the homological support func-
tion introduced by Balmer [4]. We briefly recall the construction; more details can be found in [4]
and [7].

Example 2.8 (Homological support) Let 𝒯 be a rigidly-compactly generated tt-category. No 
assumptions on Spc(𝒯c) are required. Let h : 𝒯→Mod-𝒯c denote the restricted Yoneda functor 
from 𝒯 to the Grothendieck abelian category 𝒜 := Mod-𝒯c of right 𝒯c-modules, that is, addi-
tive functors M : (𝒯c)op → Ab. Let 𝒜fp denote the full subcategory of 𝒜 consisting of the finitely 
presented modules. Every Serre ⊗-ideal ℬ ⊆𝒜fp generates a localizing Serre ⊗-ideal ⟨ℬ⟩ of 𝒜, 
and we can consider the Gabriel quotient 𝒜/⟨ℬ⟩. We let hℬ : 𝒯→𝒜/⟨ℬ⟩ denote the composite 
𝒯→𝒜↠𝒜/⟨ℬ⟩. As explained in [7, Sections 2–3], there is a corresponding pure-injective object 
Eℬ ∈𝒯 such that 

⟨ℬ⟩ = Ker(h(Eℬ)⊗−).

Moreover, for t ∈𝒯, we have t⊗Eℬ = 0 if and only if hℬ(t) = 0. The homological spectrum
Spch(𝒯c) is the set of maximal Serre ⊗-ideals ℬ ⊂𝒜fp. Its points are the homological primes of 
𝒯c. The homological support Supph

𝒯(𝒯) ⊆ Spch(𝒯c) of an object t ∈𝒯 is defined by 

Supph
𝒯(t) := {ℬ ∈ Spch(𝒯c) || [t,Eℬ] ≠ 0},

where [−,−] denotes the internal hom. By [4, Theorem 2.1], the homological support Supph
𝒯 defines 

a support function for 𝒯. We also equip Spch(𝒯c) with a topology by taking the homological supports 
of compact objects as a basis of closed sets (see [3, Remark 3.4]).

Remark 2.9 There is also a notion of ‘naive’ homological support (see [3, Remark 4.6]) defined by 
testing with −⊗Eℬ rather than with [−,Eℬ]. By [4, Proposition 3.10], [t,Eℬ] ≠ 0 implies t⊗Eℬ ≠
0 for any t ∈𝒯, so the ‘naive’ homological support contains the homological support. It is an open 
question whether these two notions of homological support coincide in general (but see Remark 4.8 
below).

Example 2.10 (BIK support) Another prominent class of support functions arise from the action of 
a (graded) commutative noetherian ring R on a compactly generated tt-category. In the presence of 
such an action, Benson, Iyengar and Krause [15] have constructed a support function Supp

R
 for 𝒯, 

which takes values in the (homogeneous) Zariski spectrum Spec(R) or rather the subset Supp
R
(𝟙) ⊆

Spec(R). We refer to [15] for the details. If 𝒯 is stratified by the action of R in the sense of [17] 
then Supp

R
(𝟙) ≅ Spc(𝒯c) and under this identification the BIK notion of support coincides with the 

Balmer–Favi notion of support: Supp
R

= Supp𝒯. This is established in [11, Corollary 7.11].

Example 2.11 (Bousfield lattice support). In [29], Iyengar and Krause use the Bousfield lattice 
of a rigidly-compactly generated tt-category 𝒯 to construct another support function Supp

BL
: 𝒯→

Sp(𝒯). The target Sp(𝒯) is the space corresponding via Stone duality to the distributive lattice of 
idempotent Bousfield classes of 𝒯. The verification that Supp

BL
 defines a support function is [29, 

Prop. 6.3]. Since the Bousfield class of any compact object is idempotent, Supp
BL

 satisfies Condi-
tion (f) of Remark 2.2 as well. It follows that, up to passage to the opposite topology on Sp(𝒯), the 
restriction of Supp

BL
 to 𝒯c is a support datum in the sense of Balmer; cf. [29, Proposition 7.9].
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752 T. BARTHEL et al.

3. Comparison with homological support

In this section we study the relationship between the Balmer–Favi notion of support (Example 2.6) 
and Balmer’s homological support (Example 2.8) for big objects in a rigidly-compactly generated 
tt-category 𝒯. In the next section, we will show that the two notions agree whenever 𝒯 is stratified 
(see Theorem 4.7). Our approach to this result is not geodesic, however, as we include some partial 
comparison results along the way.

Hypothesis 3.1 Throughout this section we assume that 𝒯 is a rigidly-compactly generated 
tt-category whose spectrum Spc(𝒯c) is weakly noetherian (Definition 2.4).

Definition 3.2 We say that a support datum (X,𝔖) for 𝒯

(a) has the detection property if, for any t ∈𝒯, 𝔖(t) = ∅ implies t = 0;
(b) satisfies the tensor product formula if 𝔖(s⊗ t) = 𝔖(s)∩𝔖(t) for any s, t ∈𝒯.

Remark 3.3 In the presence of non-trivial ⊗-nilpotent objects in 𝒯, a support function cannot satisfy 
both the detection property and the tensor product formula, because 

∅ = 𝔖(t⊗n) = 𝔖(t)

forces t = 0 for any t ∈𝒯 and all n ≥ 1.

Remark 3.4 By [4, Theorem 1.2], the homological support (Example 2.8) always satisfies the tensor 
product formula.

Remark 3.5 Recall from [6] that smashing localizations of 𝒯 correspond to idempotent triangles in 
𝒯; that is, exact triangles 

e → 𝟙→ f → Σe

with the property that e⊗ f = 0. It follows that the objects e and f  are tensor-idempotents (e⊗ e ≅ e
and f ⊗ f ≅ f ) and that the functor f ⊗− : 𝒯→𝒯 is a smashing localization. For example, given a 
Thomason subset Y ⊆ Spc(𝒯c), with corresponding thick ⊗-ideal 𝒯c

Y = {x ∈𝒯c || supp𝒯c(x) ⊆ Y }, 
there is an associated idempotent triangle 

eY → 𝟙→ fY → ΣeY

in 𝒯 such that Ker( fY ⊗−) = eY ⊗𝒯 = Loc⊗⟨eY ⟩ = Loc⟨𝒯c
Y ⟩.

Remark 3.6 There is a continuous map 

ϕ : Spch(𝒯c) → Spc(𝒯c)
ℬ↦ h−1(ℬ)

constructed in [3, Remark 3.4]. Since 𝒯c is rigid, the map ϕ is surjective by [3, Corollary 3.9]. Given 
the evidence collected in [3, Section 5], it took Balmer ‘nerves of steel not to conjecture’ that ϕ is in 
fact a bijection [3, Remark 5.15].
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HOMOLOGICAL AND TENSOR TRIANGULAR SUPPORT 753

Lemma 3.7 If ℬ ∈ Spch(𝒯c) then Supp𝒯(Eℬ) = {ϕ(ℬ)}.

Proof. Let 𝒫 := ϕ(ℬ) ∈ Spc(𝒯c). We claim that g(𝒫)⊗Eℬ ≠ 0 and g(𝒬)⊗Eℬ = 0 for 𝒬 ≠𝒫. 
Equivalently (by the discussion in Example 2.8), hℬ(g(𝒫)) ≠ 0 and hℬ(g(𝒬)) = 0 for 𝒬 ≠𝒫.

We first show that hℬ(g(𝒫)) ≠ 0. By [3, Corollary 3.6] (applied with 𝒥 = 𝒫) and [11, Proposi-
tion 3.11(a)] we can assume that 𝒯 is local and that 𝒫 = 𝔪 is the unique closed point of Spc(𝒯c). 
In this case, g(𝔪) ≃ e𝔪. Moreover, hℬ(e𝔪) ≠ 0 follows from hℬ( f𝔪) = 0, which is shown in
[7, Corollary 4.14].

Now consider 𝒬 ∈ gen(𝒫) ⧵ {𝒫}, where gen(𝒫) denotes the set of generalizations of 𝒫. We 
claim that hℬ(g(𝒬)) = 0. Again using [3, Corollary 3.6] and [11, Proposition 3.11(a)] we can assume 
that 𝒯 is local and that 𝒬 ≠𝔪. In this case, g(𝒬) = eY1

⊗ fY2
 for Thomason subsets Y1,Y2 such that 

{𝒬} = Y1 ∩Y c
2 , and moreover Y2 ≠∅. In particular, applying [7, Corollary 4.14] we have hℬ( fY2

) =

0. Because hℬ is a monoidal functor, we therefore have hℬ(g(𝒬)) = 0 as well, as required.
Finally, we prove that if 𝒬 ∈ Supp𝒯(Eℬ) then 𝒬 ∈ gen(𝒫). To this end, consider 𝒬 ∉ gen(𝒫), 

that is, a prime ideal 𝒬 with 𝒫 ⊈𝒬. Let x ∈𝒫 ⧵𝒬 a compact object of 𝒯, so that 𝒫 ∉ supp𝒯(x)
and 𝒬 ∈ supp𝒯(x). Since ϕ−1(supp𝒯(x)) = Supph

𝒯(x) for compact objects, we deduce that ℬ ∉
Supph

𝒯(x) and therefore Eℬ⊗ x = 0. (Here we use that the ‘naive’ homological support and the homo-
logical support agree on compact objects [4, Proposition 4.4].) Since Supp𝒯 satisfies the half-tensor 
product formula (see [6, Theorem 7.22] for the noetherian case and [11, Lemma 2.18] in general), 
we then have 

∅ = Supp𝒯(Eℬ⊗ x) = Supp𝒯(Eℬ)∩Supp𝒯(x).

Because 𝒬 ∈ supp𝒯(x) = Supp𝒯(x) by assumption, this gives 𝒬 ∉ Supp𝒯(Eℬ), which finishes the 
proof.

Lemma 3.8 For any Thomason subset Y ⊆ Spc(𝒯c), we have 

Supph
𝒯(eY ) = ϕ−1(Y) and Supph

𝒯( fY ) = ϕ−1(Y c).

Proof. Recall that Supph(x) = ϕ−1(supp(x)) for any compact object x ∈𝒯c (see [4, Proposi-
tion 4.4]). Also recall that Y = ⋃

x∈𝒯c
Y
supp(x) where 

𝒯c
Y = {x ∈𝒯c || supp(x) ⊆ Y }

and Loc⊗⟨eY ⟩ = Loc⊗⟨𝒯c
Y ⟩. The formal properties of homological support ([4, Proposition 4.3 and 

Theorem 4.5]) then imply 

Supph
𝒯(eY ) = Supph

𝒯(Loc⊗⟨eY ⟩) = ⋃
x∈𝒯c

Y

Supph
𝒯(x) = ϕ−1(Y).

Moreover, since ϕ is surjective, Spch(𝒯c) = ϕ−1(supp(𝟙)) = Supph
𝒯(𝟙). Hence Spch(𝒯c) =

Supph
𝒯(eY )∪Supph

𝒯( fY ). By the tensor-product theorem (Remark 3.4), Supph
𝒯(eY )∩Supph

𝒯( fY ) =

Supph
𝒯(eY ⊗ fY ) = ∅ so that Supph

𝒯( fY ) = Supph
𝒯(eY )c = ϕ−1(Y)c = ϕ−1(Y c). 
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754 T. BARTHEL et al.

Corollary 3.9 For any 𝒫 ∈ Spc(𝒯c), we have ϕ−1({𝒫}) = Supph
𝒯(g(𝒫)).

Proof. If {𝒫} = Y1 ∩Y c
2  then g(𝒫) = eY1

⊗ fY2
 and hence 

Supph
𝒯(g(𝒫)) = Supph

𝒯(eY1
)∩Supph

𝒯( fY2
) = ϕ−1(Y1)∩ϕ−1(Y c

2 ) = ϕ−1({𝒫})

by the tensor-product theorem (Remark 3.4) and Lemma 3.8. 

Proposition 3.10 For any t ∈𝒯, we have 

ϕ(Supph
𝒯(t)) ⊆ Supp𝒯(t).

In particular, if Supph
𝒯 has the detection property then Supp𝒯 also has the detection property.

Proof. For any ℬ ∈ Spch(𝒯c), we have ℬ ∈ ϕ−1({ϕ(ℬ)}) = Supph
𝒯(g(ϕ(ℬ))) by Corollary 3.9. In 

particular, if ℬ ∈ Supph
𝒯(t) then 

ℬ ∈ Supph
𝒯(g(ϕ(ℬ)))∩Supph

𝒯(t) = Supph
𝒯(g(ϕ(ℬ))⊗ t)

by the tensor-product theorem (Remark 3.4). In particular, g(ϕ(ℬ))⊗ t ≠ 0 so that ϕ(ℬ) ∈ Supp(t). 
Finally, the established inclusion implies that if Supp𝒯(t) = ∅ for some t ∈𝒯, then Supph

𝒯(t) = ∅ as 

well. The detection property for Supph
𝒯 would then imply that t = 0. 

Remark 3.11 As demonstrated in Example 5.5 below, the inclusion established in Proposition 3.10 
is not always an equality. Moreover, the same example shows that the detection property for Supp𝒯
is not sufficient to guarantee the detection property for Supph

𝒯.

Corollary 3.12 The following conditions are equivalent:

(a) The detection property holds for Supph
𝒯.

(b) The detection property holds for Supp𝒯 and 

ϕ(Supph
𝒯(t)) = Supp𝒯(t)

for all t ∈𝒯.

Proof. (a)⇒(b): The detection property for Supp𝒯 follows from the detection property for Supph
𝒯, as 

shown in Proposition 3.10. Moreover, in order to establish the equality in (b) we only need to verify 
the inclusion Supp𝒯(t) ⊆ ϕ(Supph

𝒯(t)), again by Proposition 3.10. To this end, let 𝒫 ∈ Supp𝒯(t), so 

that g(𝒫)⊗ t ≠ 0. By the assumed detection property for Supph
𝒯 we then have 

∅≠ Supph
𝒯(g(𝒫)⊗ t) = Supph

𝒯(g(𝒫))∩Supph
𝒯(t) = ϕ−1({𝒫})∩Supph

𝒯(t)

by the tensor product theorem (Remark 3.4) and Corollary 3.9. In other words, we have 𝒫 ∈
ϕ(Supph

𝒯(t)), as desired.
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(b)⇒(a): If Supph
𝒯(t) = ∅ then Supp𝒯(t) = ϕ(Supph

𝒯(t)) = ∅ as well, hence t = 0 by the detection 
property for Supp𝒯. 

Proposition 3.13 If Supp𝒯 satisfies the tensor product formula then the comparison map 

ϕ : Spch(𝒯c) → Spc(𝒯c) is a bijection. If Supph
𝒯 has the detection property then the converse holds.

Proof. (⇒) The map ϕ is always surjective (Remark 3.6) so it suffices to show that it is injective. 
Assume by way of contradiction that we have maximal Serre ⊗-ideals ℬ,ℬ′ with ℬ ≠ℬ′ and 
ϕ(ℬ) = ϕ(ℬ′). By [3, Proposition 5.3] we must have Eℬ⊗Eℬ′ = 0. By Lemma 3.7 and the assumed 
tensor product formula this gives 

∅ = Supp𝒯(Eℬ⊗Eℬ′) = Supp𝒯(Eℬ)∩Supp𝒯(Eℬ′) ∋ ϕ(ℬ) = ϕ(ℬ′),

which is absurd.
We will now prove the converse assuming that Supph

𝒯 has the detection property. Since the inclu-
sion Supp𝒯(x⊗ y) ⊆ Supp𝒯(x)∩Supp𝒯(y) holds for any x,y ∈𝒯, it suffices to check the reverse 
inclusion. To this end, let 𝒫 ∈ Supp𝒯(x)∩Supp𝒯(y) and write ℬ := ϕ−1(𝒫). In particular, we have 

x⊗ g(𝒫) ≠ 0, so combining the detection property for Supph
𝒯 with Proposition 3.10 we get 

∅≠ ϕ(Supph
𝒯(x⊗ g(𝒫))) ⊆ Supp𝒯(x⊗ g(𝒫))) ⊆ {𝒫}

and hence ϕ(Supph
𝒯(x⊗ g(𝒫))) = {𝒫}. The same argument also works for y. Because g(𝒫) is 

idempotent and Supph
𝒯 satisfies the tensor product formula, this implies 

Supph
𝒯(x⊗ y⊗ g(𝒫)) = Supph

𝒯(x⊗ g(𝒫))∩Supph
𝒯(y⊗ g(𝒫)) = {ℬ}.

In particular, x⊗ y⊗ g(𝒫) ≠ 0 and therefore 𝒫 ∈ Supp𝒯(x⊗ y), as desired.

Remark 3.14 The tensor product formula is not a necessary condition for ϕ to be bijective. For 
example, the comparison map is bijective for the derived category of any commutative ring [3, Corol-
lary 5.11], but there are examples of commutative rings for which the tensor product formula does 
not hold; see Example 5.5.

Proposition 3.15 The following two conditions are equivalent:

(a) The comparison map is bijective and ϕ(Supph
𝒯(t)) = Supp𝒯(t) for all t ∈𝒯.

(b) Supph
𝒯(t) = ϕ−1(Supp𝒯(t)) for all t ∈𝒯.

Both conditions imply:

(c) Supp𝒯 satisfies the tensor product formula.

The converse holds, that is, (c) implies (a) and (b), if Supph
𝒯 has the detection property.

Proof. (a)⇒(b): Applying ϕ−1 to the formula in (a) yields the claim.
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(b)⇒(a): The comparison map is surjective, hence 

ϕ(Supph
𝒯(t)) = ϕ(ϕ−1(Supp𝒯(t))) = Supp𝒯(t)

for all t ∈𝒯. It thus remains to show that ϕ is also injective. To this end, let ℬ ∈ Spch(𝒯c) and 
compute using Lemma 3.7: 

ϕ−1({ϕ(ℬ)}) = ϕ−1(Supp𝒯(Eℬ)) = Supph
𝒯(Eℬ) = {ℬ}.

Hence ϕ is injective.
(a)⇒(c): This follows from the tensor product formula for Supph

𝒯, which was established in [4, 
Theorem 1.2(d)].

(c)⇒(a): Assume now that Supph
𝒯 detects trivial objects. The comparison map is a bijection by 

Proposition 3.13, so Statement (a) is a consequence of Corollary 3.12 and Proposition 3.13. 

We can now assemble the proof of Theorem C stated in the Introduction.

Proof of Theorem C. Statement (a) is the content of Proposition 3.10. The implications (1) ⇒ (2)
and (2) ⇒ (3) are part of Proposition 3.15 and Proposition 3.13, which also establish the respective 
converses assuming the detection property for Supph

𝒯. 

4. The main theorem

In this section we prove our main theorem (Theorem B in the Introduction), which establishes that the 
homological spectrum and Balmer spectrum coincide and that the homological support and Balmer–
Favi support coincide, when the category is stratified. We refer the reader to [11, Definition 4.4] 
for our terminology regarding stratification; in a nutshell, a category is stratified if the Balmer–Favi 
notion of support provides a correspondence between the localizing tensor-ideals and the subsets of 
the Balmer spectrum. Along the way, we establish a point-set topological criterion on Spch(𝒯c) for 
the comparison map ϕ to be a homeomorphism.

Remark 4.1 Recall that the Kolmogorov quotient KQ(X) of a topological space X is its reflection 
into the category of T0-spaces (a.k.a. Kolmogorov spaces). In other words, KQ(X) is the initial 
T0-space equipped with a continuous map from X. It can be constructed explicitly as follows. Two 
points x,y ∈ X are said to be topologically indistinguishable if {x} = {y}. We denote the resulting 
equivalence relation on X by ≡. The Kolmogorov quotient KQ(X) is then the quotient space of X
under ≡: 

X → KQ(X) := X/ ≡ .

In particular, if X is already T0, then the quotient map X → KQ(X) is a homeomorphism.
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Lemma 4.2 The comparison map ϕ of Remark 3.6 exhibits Spc(𝒯c) as the Kolmogorov quotient of 
Spch(𝒯c). In particular, for any ℬ1,ℬ2 ∈ Spch(𝒯c) we have 

ϕ(ℬ1) = ϕ(ℬ2) ⟺ {ℬ1} = {ℬ2}. (4.3)

Proof. We first verify (4.3), which identifies the equivalence relation ≡ of topological indistinguisha-
bility on Spch(𝒯c) with the equivalence relation induced by the function ϕ. To this end, we observe 
that 

{ℬ} = ϕ−1({ϕ(ℬ)}) (4.4)

for any ℬ ∈ Spch(𝒯c). This is a routine verification from the definitions. Indeed, the topology 
on Spch(𝒯c) is defined by taking a basis of closed sets to be those sets of the form supph(x) =
ϕ−1(supp(x)) for x ∈𝒯c. Hence 

{ℬ} = ⋂
x∈𝒯c :

ℬ∈supph(x)

supph(x) = ⋂
x∈𝒯c :

ϕ(ℬ)∈supp(x)

ϕ−1(supp(x)) = ϕ−1({ϕ(ℬ)}).

The (⇒) direction of (4.3) is then immediate from (4.4). For the converse, observe that if x ∉ ϕ(ℬ1)
then ϕ(ℬ1) ∈ supp(x) so that {ϕ(ℬ1)} ⊆ supp(x). Thus, if {ℬ1} = {ℬ2}, we have 

ϕ−1({ϕ(ℬ2)}) = ϕ−1({ϕ(ℬ1)}) ⊆ ϕ−1(supp(x))

by (4.4), and it follows that x ∉ ϕ(ℬ2). This establishes the (⇐) direction of (4.3).
Since ϕ determines the same equivalence relation on Spch(𝒯c) as the Kolmogorov quotient, it 

remains to prove that ϕ is a quotient map. It is continuous by construction and is surjective by
[3, Corollary 3.9]. All that remains is to show that Spc(𝒯c) has the finest topology for which ϕ
is continuous. As noted above, every basic closed set of Spch(𝒯c) is the preimage of a basic closed 
set of Spc(𝒯c). Hence if Y ⊆ Spc(𝒯c) is a subset such that ϕ−1(Y) is closed, then we can write 

ϕ−1(Y) = ⋂ϕ−1(Ai) = ϕ−1(⋂Ai)

for basic closed sets Ai ⊆ Spc(𝒯c). Since ϕ is surjective, this implies Y = ⋂Ai is closed, as
desired.

Proposition 4.5 The following are equivalent:

(a) The comparison map ϕ is a bijection.
(b) The comparison map ϕ is a homeomorphism.
(c) The homological spectrum Spch(𝒯c) is a spectral space.
(d) The homological spectrum Spch(𝒯c) is T0.

Proof. The topology on Spch(𝒯c) is defined by taking a basis of closed sets to be those sets of the 
form Supph(x) = ϕ−1(supp(x)) for x ∈𝒯c. That is, we pull back the usual basis of the topology on 
the Balmer spectrum. From this observation, (a)⇒(b) is immediate. Moreover, we have (b)⇒(c)⇒(d) 

D
ow

nloaded from
 https://academ

ic.oup.com
/qjm

ath/article/74/2/747/6961598 by guest on 28 N
ovem

ber 2023



758 T. BARTHEL et al.

simply because the Balmer spectrum Spc(𝒯c) is a spectral space. Finally, (d)⇒(a) follows from 
Lemma 4.2, so the proof is complete.

Remark 4.6 Lemma 4.2 and Proposition 4.5 have nothing to do with the big tt-category 𝒯. They 
hold with 𝒯c replaced by any essentially small rigid tt-category 𝒦. The rigid hypothesis ensures that 
the comparison map ϕ : Spch(𝒦) → Spc(𝒦) is surjective (as proved in [3, Corollary 3.9]).

Theorem 4.7 Let 𝒯 be a rigidly-compactly generated tt-category with Spc(𝒯c) weakly noetherian 
(Definition 2.4). If 𝒯 is stratified, then 𝒯 satisfies the equivalent statements of Proposition 3.15. In 
particular, the comparison map 

ϕ : Spch(𝒯c) → Spc(𝒯c)

is a bijection (hence a homeomorphism), Supph
𝒯(t) = ϕ−1(Supp𝒯(t)) for all t ∈𝒯, and both Supp

and Supph have the tensor product property and the detection property (Definition 3.2).

Proof. For any ℬ ∈ Supph
𝒯 we have Supp𝒯(Eℬ) ≃ {ϕ(ℬ)} by Lemma 3.7. If we can show that 

Supph
𝒯 has the detection property, then the claim will follow from Proposition 3.15, Proposi-

tion 4.5 and Remark 3.4. To this end, let t ∈𝒯 be a non-zero object. Since 𝒯 is stratified and 
Supp𝒯 detects trivial objects, there exists 𝒫 ∈ Spc(𝒯c) with g(𝒫)⊗ t ≠ 0. Since ϕ is surjec-
tive, we can choose some ℬ ∈ ϕ−1({𝒫}). Minimality at 𝒫 and {𝒫} = Supp𝒯(Eℬ) implies that 

Eℬ ∈ Loc⊗⟨g(𝒫)⊗ t⟩. If ℬ ∉ Supph
𝒯(g(𝒫)⊗ t) then [g(𝒫)⊗ t,Eℬ] = 0 and hence [Eℬ,Eℬ] = 0, a 

contradiction. Therefore, we have ℬ ∈ Supph
𝒯(g(𝒫)⊗ t). This implies 

ℬ ∈ Supph
𝒯(t⊗ g(𝒫)) = supph

𝒯(t)∩Supph
𝒯(g(𝒫)).

In particular, we have ℬ ∈ Supph
𝒯(t), as desired.

Remark 4.8 The proof of Theorem 4.7 also shows that, assuming stratification, homological support 
coincides with the ‘naive’ notion of homological support (see Remark 2.9).

Remark 4.9 As explained in [11, Section 7], the Balmer–Favi notion of support is—in weakly 
noetherian contexts—the universal notion of support for the purposes of stratification. For example, 
if 𝒯 is stratified in the sense of Benson–Iyengar–Krause by the action of a graded noetherian ring 
(Example 2.10), then 𝒯 is stratified in our sense (that is, by the Balmer–Favi notion of support). 
Moreover, the original notion of support can be identified with the Balmer–Favi notion of support. 
This invocation of [11, Theorem 7.6] and its corollaries will be used repeatedly without further 
comment in the examples below.

5. Applications and examples

We now turn to applications of the above results concerning the relationship between the Balmer–
Favi support and the homological support.
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Examples from commutative algebra

Remark 5.1 If 𝒯 = D(R) is the derived category of a commutative ring then Spch(𝒯c) ≅ Spc(𝒯c)
via the comparison map ϕ (see [3, Corollary 5.11]), which in turn is homeomorphic to Spec(R) by 
Thomason’s theorem [39]. Under these identifications, we claim that the homological support of an 
object X ∈ D(R) is given by 

Supph(X) = {𝔭 ∈ Spec(R) ∣ X ⊗ κ(𝔭) ≠ 0},

where κ(𝔭) denotes the residue field of R at the prime ideal 𝔭. Indeed, Balmer and Cameron [5] prove 
that Eℬ ≃ κ(𝔭) for all ℬ ∈ Spch(D(R)c) where 𝔭 is the prime ideal corresponding to ℬ. Because 
HomR(M,κ(𝔭)) ≃ Homκ(𝔭)(M ⊗ κ(𝔭),κ(𝔭)) vanishes if and only if M ⊗ κ(𝔭) ≃ 0, the claim follows.

For comparison, the Balmer–Favi support can be given in terms of Koszul complexes. Indeed, for 
a finite sequence x = x1,… ,xr ∈ R, we define 

K∞(x) := (R → R[1/x1])⊗⋯⊗ (R → R[1/xr ])

and more generally K∞(x;M) := K∞(x)⊗M. Then 

Supp(X) = {𝔭 ∈ Spec(R) ∣ K∞(x;X𝔭) ≠ 0 for every finite sequence x ∈ 𝔭},

see [36, Lemma 5.2]. If 𝔭 = (x1,… ,xn) is finitely generated (for example, if R is noetherian), then it 
suffices to check this for the sequence (x1,… ,xn).

Example 5.2 If R is noetherian, then D(R) is stratified (as established by Neeman [33]; see [11, 
Example 5.7]). Hence Theorem 4.7 applies and we conclude that Supph(X) and Supp(X) agree for 
all X ∈ D(R). This can also be deduced from work of Foxby and Iyengar [22, Theorem 2.1 and 
Theorem 4.1]; see also [15, Remark 9.2].

Example 5.3 The previous example can be extended in a number of ways. For example, let R be 
a G-graded ring, where G is an abelian group. Then if R is an ϵ-commutative noetherian ring (see 
[20, Definition 2.4]), the derived category of graded R-modules D(R) is stratified by Spc(D(R)c) ≅
Spec(R) (see [20, Theorem 5.7]). In particular, the homological spectrum and the Balmer spectrum 
can both be identified with Spec(R). The argument in the non-graded case ([5, Corollary 3.3]) goes 
through verbatim to identify the pure-injective Eℬ corresponding to the prime 𝔭 with the residue 
field κ(𝔭) := R𝔭/𝔭R𝔭 (which is a field in the graded sense; see [20, Lemma 4.2]). By Theorem 4.7, 
the Balmer–Favi support agrees with the homological support 

Supph(X) = {𝔭 ∈ Spec(R) ∣ X ⊗ κ(𝔭) ≠ 0}.

This has also been proved directly by Dell’Ambrogio and Stevenson [20, Corollary 5.6].

Example 5.4 In another direction, one can instead assume that R is a commutative dg-algebra 
with H*(R) noetherian, such that R is formal. In this case, D(R) is stratified by Spc(D(R)c) ≅
Spec(H*(R)) (see [17, Theorem 8.1]). Similarly to Example 5.2, one identifies the Balmer–Favi 
support with that defined by Koszul complexes and the homological support with that defined via 
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residue fields. Theorem 4.7 implies that these two approaches define equivalent theories of support. 
We leave the details to the interested reader.

Example 5.5 Let k be a field, and let R be the ring 

R =
k[x2,x3,…]
(x2

2 ,x3
3 ,…)

considered by Neeman in [34]. Even though R is non-noetherian, Spec(R) = Spc(D(R)c) is a point 
and so is a noetherian space. However, Neeman shows that D(R) has many localizing tensor-ideals 
and so D(R) cannot be stratified. To see this from the perspective of Theorem 4.7, we claim that there 
exists a non-zero complex I ∈ D(R) such that Supph(I) = ∅, so that Supph cannot have the detection 
property. Indeed, there exists a non-zero complex I ∈ D(R) with I ⊗ I = 0 (see [21, Theorem C]). 
Because Supph has the tensor product property, this means it cannot have the detection property (see 
Remark 3.3). Note that in this case Supp detects the triviality of a complex (see [11, Example 4.6]), 
so that there cannot be a tensor product formula for Supp. Consequently, the Balmer–Favi support 
and the homological support do not agree in this example.

Remark 5.6 The above example shows that the homological support and the Balmer–Favi support 
can differ even if the homological and tensor triangular spectra coincide.

Example 5.7 Let R be the ring denoted A by Keller in [30, Section 2]. It is a non-discrete valuation 
domain of rank 1 whose value group is ℤ[1/ℓ] ⊂ ℚ; see [23, Theorem II.3.8] and [12, Exam-
ple 5.24]. In particular, Spec(R) = {0,𝔪}. The residue fields for the two prime ideals are κ(0) = Q
and κ(𝔪) = R/𝔪, respectively. Inspired by [36, Example 5.7], consider X := Q/R⊗𝕃

R 𝔪∈ D(R). 
Since TorR

1 (Q/R,R/𝔪) = R/𝔪 ≠ 0, the exact sequence 

0 → TorR
1 (Q/R,R/𝔪) → Q/R⊗R 𝔪

implies that Q/R⊗R 𝔪≠ 0. Hence X ∈ D(R) is non-zero. On the other hand, X ⊗𝕃
R Q = 0 since 

Q/R⊗𝕃
R Q = 0. Moreover, the ideal 𝔪 is flat (since valuation domains have weak dimension at 

most one [23, Theorem 10.4]) and the nature of the value group ℤ[1/ℓ] implies that 𝔪2 = 𝔪. It 
follows that 𝔪⊗𝕃

R R/𝔪 = 0 in D(R) and hence X ⊗𝕃
R R/𝔪 = 0. This establishes, by Remark 5.1, that 

Supph(X) = ∅. Thus Supph does not have the detection property. By Theorem 4.7, D(R) cannot be 
stratified.

Stable homotopy theory

Let Sp denote the stable homotopy category of p-local spectra for a fixed prime p. We recall the 
description of Spc(Spc) due to Hopkins and Smith [25].

Notation 5.8 For each 0 ≤ h ≤∞, let 𝒞h := {x ∈ Spc ||K(h)*(x) = 0}.
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Remark 5.9 Here K(h)* is the Morava K-theory homology: 

K(h)* : Sp→𝔽p[v±1
h ] -grMod

with |vh| = 2(ph − 1), and we make the convention that the target is graded ℚ-modules when h = 0 
and graded 𝔽p-modules when h = ∞; that is, we take K(0) = Hℚ and K(∞) = H𝔽p. As interpreted by 
Balmer [2, Corollary 9.5], the 𝒞h are exactly the prime ideals of Spc.

Theorem 5.10 (Hopkins–Smith) The spectrum 

Spc(Spc) = 𝒞∞ −⋯−𝒞h+1 −𝒞h −⋯−𝒞1 −𝒞0

is an infinite tower of connected points, where closure goes to the left: {𝒞h} = {𝒞k ||h ≤ k ≤∞}. In 
particular, the space is irreducible with generic point 𝒞0 = Spc

tor
 and 𝒞∞ = (0) is the unique closed 

point.

Remark 5.11 By [3, Corollary 5.10], the comparison map 

ϕ : Spch(Spc) → Spc(Spc)

is a bijection. Moreover, if ℬ ∈ Spch(Spc) is the homological prime corresponding to 𝒞h, we have 
an isomorphism Eℬ ≃ K(h), see [5, Corollary 3.6]. In particular, the homological support is given 
by 

Supph(x) = {h ∈ ℕ∪∞|| [x,K(h)] ≠ 0}.

Because [x,K(h)] ≃ [K(h)⊗ x,K(h)]ModK(h)
 vanishes if and only if K(h)⊗ x = 0 since K(h)* is a 

graded field, we deduce that 

Supph(x) = {h ∈ ℕ∪∞||K(h)⊗ x ≠ 0}. (5.12)

Remark 5.13 The space Spc(Spc) is not weakly noetherian as the closed point 𝒞∞ is not weakly 
visible. This is because {𝒞∞} is not a Thomason closed subset. For 0 ≤ h <∞, we claim that 
the idempotent g(𝒞h) is isomorphic to M f

hS0, the fiber of the natural morphism Lf
hS0 → Lf

h−1S0. 
Indeed g(𝒞h) ≃ e{𝒞h} ⊗ fY𝒞h

 where e and f  denote the left and right tensor idempotents of the 

associated finite localizations (see Remark 3.5) and Y𝒞h
= supp(𝒞h). It follows from the defini-

tions that fY𝒞h
≃ Lf

hS0 (compare [8, Example 5.12], although note that our indexing differs by one) 

and e{𝒞h} ≃ Cf
h−1S0, the fiber of the finite localization S0 → Lf

h−1S0. Therefore, g(𝒞h) ≃ Cf
h−1S0 ⊗
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LhS0 ≃ Cf
h−1LhS0 ≃ M f

hS0. We deduce that 

Supp(x) = {h ∈ ℕ||M f
hS0 ⊗ x ≠ 0}.

An almost identical argument to [28, Proposition 5.3] shows that 

M f
hS0 ⊗ x ≠ 0 ⟺ T(h)⊗ x ≠ 0

where T(h) is the telescope of a finite type h spectrum. Hence 

Supp(x) = {h ∈ ℕ||T(h)⊗ x ≠ 0}.

Remark 5.14 The homological and triangular support as defined above can never agree, since 
Supph(H𝔽p) = {∞} and yet the point ∞ is not seen by Supp since the corresponding point 𝒞∞ ∈
Spc(Spc) is not weakly visible. However, if we set T(∞) := H𝔽p, we can define an extended theory 
of triangulated support by 

Supp≤∞(x) := {h ∈ ℕ∪∞||T(h)⊗ x ≠ 0}. (5.15)

This defines a support function for Sp taking values in ℕ∪∞≅ Spc(Spc). It simply completes the 
Balmer–Favi support Supp(x) by possibly including the point at infinity, that is, the closed point. 
Comparing the homological support (5.12) and extended triangular support (5.15), we see that they 
agree if and only if 

T(h)⊗ x ≠ 0 ⟺ K(h)⊗ x ≠ 0

for 0 ≤ h <∞. This is precisely the telescope conjecture; see [31, 1.13]. We thus obtain:

Proposition 5.16 The extended triangular support and the homological support on the p-local 
stable homotopy category Sp agree if and only if the telescope conjecture holds.

Remark 5.17 For any x ∈ Sp, we have T(h)⊗ x = 0 ⟹ K(h)⊗ x = 0, so that Supph(x) ⊆
Supp≤∞(x) always holds. However, neither support function has the detection property: the 
Brown–Comenetz dual of the sphere is a counter-example. Indeed, for the case of T(h), see
[26, Lemma 7.1(d)], while the cases of K(h),Hℚ and H𝔽p are given by [28, Corollary B.12].

Example 5.18 Suppose we localize and work instead with the category of E(n)-local spectra 𝒯 =
Sp

E(n). The telescope conjecture holds in this category by [28, Corollary 6.10] and an analysis similar 
to the above shows that 

Supph(x) = {h ∈ {0,…n} ||K(h)⊗ x ≠ 0}

while 

Supp(x) = {h ∈ {0,…n} ||MhS0 ⊗ x ≠ 0}.

These agree by [28, Proposition 5.3]. Alternatively, this follows from Theorem 4.7, as [11, 
Theorem 10.14] establishes that Sp

E(n) is stratified.
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Affine weakly regular tensor triangulated categories

Definition 5.19 (Dell’Ambrogio–Stanley [19]) A tensor triangulated category 𝒯 is said to be affine 
weakly regular if it satisfies the following two conditions:

(a) (affine) 𝒯 is compactly generated by its tensor unit 𝟙.
(b) (weakly regular) The graded endomorphism ring R := Hom*

𝒯(𝟙,𝟙) is a graded noetherian ring 
concentrated in even degrees, and for every homogeneous prime ideal 𝔭 of R, the maximal 
ideal of the local ring R𝔭 is generated by a (finite) regular sequence of homogeneous non-zero 
divisors.

Remark 5.20 The first axiom ensures that 𝒯 is a rigidly-compactly generated tt-category.

Remark 5.21 Given an affine weakly regular tt-category and a prime 𝔭 ∈ Spec(R), there is a residue 
field object K(𝔭) with the property that 

π*(K(𝔭)) := π* Hom𝒯(𝟙,K(𝔭)) ≅ κ(𝔭),

where κ(𝔭) := R𝔭/𝔭R𝔭 denotes the algebraic residue field. See [19, Section 3].

Theorem 5.22 (Dell’Ambrogio–Stanley [19, Theorem 1.3]) If 𝒯 is an affine weakly regular tt-
category, then 𝒯 is stratified by Spc(𝒯c) ≅ Spec(R).

Theorem 5.23 Let 𝒯 be an affine weakly regular tt-category. Then:

(a) The comparison map ϕ : Spch(𝒯c) → Spc(𝒯c) ≅ Spec(R) is a homeomorphism and Supph(t) =
ϕ−1(Supp(t)) for all t ∈𝒯.

(b) For the homological prime ℬ ∈ Spch(𝒯c) corresponding to 𝔭 ∈ Spec(R), we have an isomor-
phism Eℬ ≃ K(𝔭).

Proof. Part (a) is an immediate consequence of Theorem 5.22 and Theorem 4.7. For part (b), 
we apply [5, Lemma 2.2 and Theorem 3.1] to F : 𝒯→ModK(𝔭). This implies that the cor-
responding pure-injective object Eℬ is a summand of K(𝔭), but K(𝔭) is indecomposable by
[5, Lemma 3.2]. 

Remark 5.24 One can also prove a nilpotence theorem for affine weakly regular tt-categories using 
the residue fields K(𝔭). The bijectivity of the comparison map ϕ can therefore also be proved using 
[3, Theorem 5.4]. Alternatively, by [3, Theorem 1.1] and Theorem 5.23 there is a nilpotence theorem 
as follows:

Corollary 5.25 Let 𝒯 be an affine weakly regular tt-category and for 𝔭 ∈ Spec(R) write 

K(𝔭)*(x) := π*(K(𝔭)⊗ x).

If f : x → y a morphism in 𝒯c such that K(𝔭)*( f ) = 0 for all 𝔭 ∈ Spec(R), then there exists n ≫ 0
such that f⊗n = 0 in 𝒯.

Remark 5.26 This generalizes the nilpotence theorem of [32, Corollary 2.10].

D
ow

nloaded from
 https://academ

ic.oup.com
/qjm

ath/article/74/2/747/6961598 by guest on 28 N
ovem

ber 2023



764 T. BARTHEL et al.

Further examples

Example 5.27 (Cochain algebras) Let X be a connected space and let C*(X;𝔽p) := F(Σ∞+ X,H𝔽p)
denote the ring spectrum of 𝔽p-valued cochains on X. The question of when the homotopy category 
of ModC*(X;𝔽p) is stratified by H*(X;𝔽p) has been investigated in [9, 10]. For example, this holds in 
the following cases:

(a) X = BG is the classifying space of a compact Lie group, a p-local group, a Kac–Moody group 
or a connected p-compact group.

(b) X is a connected H-space with noetherian mod p cohomology.

Theorem 4.7 then applies to show that the comparison map ϕ is a bijection. By Balmer’s 
abstract nilpotence theorem [3, Theorem 1.1], this implies that for each 𝒫 ∈ Spc(Modc

C*(X;𝔽p)) ≅
Spec(H*(X;𝔽p)) there exists a unique homological tensor functor 

hℬ(𝒫) : ModC*(X;𝔽p) →𝒜𝒫

to some Grothendieck tensor category 𝒜𝒫 whose kernel when restricted to the category of compact 
objects Modc

C*(X;𝔽p) is exactly 𝒫 (compare [3, Remark 5.14]). Moreover, the family of homological 
tensor functors 

{hℬ(𝒫) ||𝒫 ∈ Spc(Modc
C*(X;𝔽p))}

detects tensor-nilpotence. This is of interest since in this example there is no obvious candidate for 
the construction of residue fields.

Example 5.28 (Spectral Mackey functors) Suppose 𝔼 is a commutative ring spectrum with the 
property that Spc(D(𝔼)c) is noetherian. It is established in [11, Theorem 15.1] that if D(𝔼) is strati-
fied then so is the category of 𝔼-valued spectral G-Mackey functors MackG(𝔼) for any finite group 
G. Consequently, there are various categories of spectral Mackey functors to which we can apply 
Theorem 4.7. See [35] and [11] for further discussion of these examples.
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