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Abstract  
 
 
 
The topic of Artificial Intelligence (AI) in construction has sparked a lot of interest in recent years, with the 
emergence of new techniques, algorithms, and tools that have enhanced the way machines learn, reason, and 
interact with the real world. As a result, AI has moved from a largely theoretical field to a practical one, with a 
wide range of applications across industries.  

Despite an increasing interest in AI in the construction industry, a gap remains between the potential the 
technology holds and its actual implementation at scale; there appears to be more hype than practical application.  

Previous research has extensively explored the technical development of AI systems for specific areas of 
application, but more research is needed on the application of these systems in the construction context. More 
research on system design is necessary, and roadmaps and methodologies on how this can be done in practice are 
needed. This thesis explores the thematic intersection between the topics of project management, sustainability, 
and AI – an intersection that, until now, has remained relatively unexplored. Bridging the research gap is believed 
to help unlock the potential that AI holds for the construction industry.  

The thesis addresses the following Research Questions (RQs):  
 

 RQ1: What is the current state of the field, and what are the main challenges the field is facing?  
 RQ2: What are the main dimensions of AI development and deployment in a construction context? 
 RQ3: How can industry actors move from ambition to practice – starting today?  

 
The work presented in this thesis is an extended summary of the research activities carried out throughout 

the PhD project period. The thesis is built on six studies and the resulting papers.  
Paper I found that the biggest knowledge gap in the field is related to the practical implementation of AI 

technologies, and the implications related to the scalability and robustness of these technologies. Paper II proposed 
a set of effective AI-powered measures for waste reduction on construction sites and outlined relevant practical 
implications. The study defined a possible approach for developing a holistic implementation framework. Paper 
III illustrated how meaningful AI-based analyses can be conducted for low-resolution construction data. In Paper 
IV, the main barriers related to effective data management in the construction context were identified. Paper V 
explored how AI systems can be implemented as an integral part of existing processes, rather than an add-on. In 
Paper VI, AI proficiency and maturity among AI system developers, users, and implementers were assessed, and 
a system level implementation framework proposed.  

 
Current state and main challenges  

 
The construction industry is widely considered less digitalised compared to other industries. Still, progress is 
demonstrated for construction by both researchers and industry actors. 

On the system level, a wide range of tools have been developed and successfully applied. However, few 
report on the use of AI beyond pilots and Proof of Concepts (PoCs); most research is focused on the potential use 
or technical development of AI models. On the project level, in-house or commercially available tools have been 
applied to one or more activities and processes. Findings indicate that this is generally done in isolation, meaning 
that next to no changes are made to how the project is planned or executed. This, in turn, means that the AI system 
simply becomes an add-on. On the organisational level, many actors are talking about digitalisation and utilisation 
of AI. Yet, similarly to on the project level, required infrastructure is rarely established outside the group or 
department responsible for the development.  

Challenges found across the system, project, and organisation levels are uneven application of resources to 
problems; lack of data and metadata; lack of anchoring in strategy; application work becoming too resource 
intensive; gaps between the academic field and the industry; limited transferability; lack of contextualisation; and 
fragmentation.  

 
Main dimensions of implementation and integration  

 
Findings and discussions uncovered seven main dimensions of implementation and integration of AI systems and 
tools in the construction context. The dimensions are strongly interrelated and interdependent. The dimensions 
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are identified as data management; characteristics of the AI model; deployment; monitoring and maintenance; the 
human factor; organisational structures, roles, and responsibilities; and ethical considerations.  

 
Proposed frameworks  
 
The proposed system level framework is built to facilitate streamlined integration with existing processes and 
activities. The framework consists of seven steps: (S1) identifying the problem, (S2) assessment of feasibility, 
(S3) data collection, (S4) data pre-processing, (S5) model development, (S6) integration, and (S7) maintenance 
and monitoring. Fifteen sub-steps are defined, to guide the development and implementation process.   

The framework for the project level is based on the NS 3467:2023 Stages and deliverables in the life cycle 
of construction works (Standard Norge, 2023) and outlines relevant areas of application, stakeholder management 
activities, and elements of infrastructure for each of the defined project phases.  

On the organisation level, establishing data warehouses is identified as the most effective way to facilitate 
sustainable development and deployment of AI – both on the system and project level. Data fetched from the data 
warehouse can be used for analytics, data mining, reports, and system development. 

The main contributions of the thesis can be summarised as follows:  
 

 Bridging a gap between the fields of project management, AI, and sustainability.  
 Empirical validation and detailed descriptions of practical implications as a supplement to conceptual 

theory.  
 Providing a comprehensive and practically oriented overview of the current state of the field and 

identify the eight perceived main challenges to hinder effective and efficient application. 
 Identifying the main dimensions of AI system development and implementation.  
 Proposing standardised frameworks for the system, project, and organisation level. The frameworks are 

expected to contribute to increasing transparency, collaboration between stakeholders and to ultimately 
increase the sustainability of the process of development and implementation.  

 
For academics, the thesis provides a well-defined starting point with many opportunities for future research. The 
thesis provides empirical validation of findings in a field that has previously been lacking empirical data and 
research on implementation and performance beyond small-scale testing and PoCs.  

Practitioners can gain a deeper understanding of the potential and limitations within their own practices to 
take the first of many steps towards effective application of AI.   
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1 Introduction  
 
 
 
This chapter presents the background, context, and purpose of the research; an outline of the research process; the 
resulting papers; and the structure of the thesis.  
 
1.1 Background  
 
Recent years have witnessed a significant shift in the field of Artificial Intelligence (AI), with the emergence of 
new techniques, algorithms, and tools that have enhanced the way machines learn, reason, and interact with the 
real world (Boje et al., 2020; Darko et al., 2020). Rapid advances have led to breakthroughs in speech recognition, 
computer vision, Natural Language Processing (NLP), Natural Language Generation (NLG), and cognitive 
computing. As a result, AI has moved from a largely theoretical field (Pylyshyn, 1980; Russell, 1997; Russel and 
Norvig, 2010) to a practical one, with a wide range of applications across industries, including healthcare (Amann 
et al., 2020; Qadri et al., 2020), finance (Mhlanga, 2020; Goodell et al., 2021), transportation (Ai et al., 2020; 
Singh et al., 2021), education (Chen et al., 2020; Zhang and Aslan, 2021) manufacturing (Kamble et al., 2020; 
Çinar et al., 2020), and construction (Xiao et al., 2018; Pan and Zhang, 2021).  

Data science is a field where no single component is new, but combinations of components are new. The 
same holds true for AI. Due to a change in the underlying economics that enable technological advances, data 
storage has become cheaper, and processing power has increased exponentially in the last decade (Kuniavsky, 
2010). At the same time, the cost of older technology decreases drastically as new technology develops without 
losing its ability to process information. This development is illustrated in Figure 1-1. More recently, rapid 
developments in and expansion of theoretical foundations and empirical knowledge have contributed to the 
advancement of the field (Burgess, 2018; Zuhang et al., 2020). Theoretical breakthroughs in one domain have 
helped to inform subsequent breakthroughs in other domains. Advances have facilitated the generation, 
availability, and accessibility of new data that were previously unattainable (Burgess, 2018; Duan et al., 2019), 
supported by the concepts of Big Data and the Internet of Things (IoT) (Yaqoob et al., 2016; Allam and Dhunny, 
2019). This is especially significant for the construction context, as data access is identified as a key resource for 
driving the transformation of construction management methodology (Xu et al., 2022).  

 

 
Figure 1-1. Per transistor cost of CPUs, 1968-2002 (Kuniavsky, 2010). 

 
The concept of AI is broad, but it can be defined as a system or structure with ‘the ability to perform tasks 

in complex environments without constant guidance by a user’ (University of Helsinki, 2018). AI is a highly 
interdisciplinary field comprising elements from computer science, logic, mathematics, psychology, and 
neuroscience (Tørresen, 2013; Tidemann, 2023). In the construction context, AI systems can be grouped into four 
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categories: Machine Learning (ML) techniques, Knowledge-Based Techniques (KBTs), Evolutionary Algorithms 
(EAs), and hybrid systems (Akinade, 2017).  

In recent years, AI has played an increasingly important role in the construction industry among academics 
and practitioners (Xiao et al., 2018; Darko et al., 2020). Areas of application include estimation and cost control 
(Juszczyk, 2017); logistics, planning, and scheduling (de Soto et al., 2017; Cheng and Hoang, 2018); and project 
performance and success estimation (Mirahadi and Zayed, 2016; Jaber et al., 2019). AI has demonstrated the 
ability to increase sustainability in the construction industry by improving resource efficiency and optimising the 
use of materials and resources (Camacho et al., 2018; Bilal et al., 2019); facilitating resource-effective off-site 
construction (Wang et al., 2020); optimisation of building and construction design (Hsu et al., 2020); and 
improving on-site safety (Poh et al., 2018).  

Despite an increasing interest in AI in the construction industry, the adoption of the technology is still in 
early stages (Momade et al., 2021), and the industry is widely considered among the least digitised industries in 
the world (Abioye et al., 2021).  

The construction industry has a significant impact on both the environment and society. Today, the industry 
accounts for nearly 40% of worldwide energy consumption and energy-related gas emissions (Global Alliance for 
Buildings and Construction, 2017), and the need for more environmentally sustainable solutions is growing 
rapidly. Furthermore, construction activities contribute substantially to the social economy (Pan and Zhang, 2021). 
Despite its economic importance, the industry is traditionally considered less productive (Todsen, 2018; Abioye 
et al., 2021), leading to a waste of human, material, and financial resources (Pan and Zhang, 2021). Construction 
projects struggle to maintain productivity and, consequently, struggle to deliver on time, cost, and quality 
(Goralski and Tan, 2020; Abioye et al., 2021; Pan and Zhang, 2021).  

Project management is the main tool for implementing the goals of an organisation and a project, and good 
project management is therefore vital for project success (Pinto and Prescott, 1988). Achieving project success in 
the construction context requires specialised skills and expertise due to the dynamic environments the projects 
operate within, increasing complexity and uncertainty (Pan and Zhang, 2021).  

A significant potential to increase productivity and sustainability in projects lies in the utilisation of AI 
(Becqué et al., 2016; Mejlænder-Larsen, 2019; Goralski and Tan, 2020; Nishant et al., 2020; Feroz et al., 2021; 
Pan and Zhang, 2021). To fully utilise the potential that AI systems hold, and to do so sustainably, organisations 
need a strategic approach beyond simply applying a tool (Goralski and Tan, 2020). This means that careful 
planning and collaboration will be necessary. Establishing and maintaining public trust in AI technologies will 
depend on inclusive, transparent, and agile governance (Abioye et al., 2021). The infrastructure surrounding AI 
tools is generally perceived as an ‘add-on’ (Hagendorff, 2020). AI on its own is not a strategy, and an AI system 
should be integrated with existing organisation and project infrastructure. AI can contribute to increasing 
sustainability; however, it is crucial that the development and implementation of AI-based systems and tools are 
also sustainable (Hagendorff, 2020; Vinuesa et al., 2020). There is an important distinction between AI for 
sustainability, and AI being sustainable.  

This thesis is important because it contributes to bridging a research gap in the thematic intersection of AI, 
project management, and sustainability in the construction context. Further exploration of this intersection is 
believed to enable actors to move effectively from ambition to practice.  

This thesis addresses a research gap that can unlock the potential that AI holds for the construction industry, 
and ultimately increase social, environmental, and economic sustainability (Nishant et al., 2020; Pan and Zhang, 
2021). Research focusing on the practical application of AI is scarce, and research in this area could lead to 
valuable contributions on both organisation and project levels – and for society in its entirety, due to significant 
savings for society through improved project performance.  

Although the topic of AI in construction has received significant attention, the majority of existing literature 
is concerned with the technical development of AI systems for specific areas of application (Ilter and Dikbas, 
2009; Martínez and Fernández-Rodríguez, 2015; Juszczyk, 2017; Basaif and Alashwal, 2018), and more 
systematic and systemic research is needed on the application of these tools in the construction management 
context (Darko et al., 2020; Nishant et al., 2020; Xu et al., 2022). Previous research has indicated the potential for 
AI systems throughout the entire project lifecycle (Pan and Zhang, 2021). More research on system design is 
needed (Xu et al., 2022), and roadmaps and methodologies should be developed to determine how this can be 
done in practice (Darko et al., 2020). Holistic frameworks facilitating collaboration between stakeholders must be 
established to fully benefit from AI and minimise its associated risks (Goralski and Tan, 2020), and more research 
is needed.  
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The research findings of this thesis should be of interest to both researchers and practitioners who are 
contemplating a shift from traditional project management methods to methods supported by AI-based tools, so 
that they can not only achieve increased sustainability, but also to do so in a sustainable way.  
 
1.2 Purpose and research questions 
 
The research conducted in this thesis aims to facilitate the utilisation of AI in construction projects, by obtaining 
insights into the practical implications of implementation and integration. The purpose of the thesis is to help 
move the use of AI in the construction industry from ambition and theory into practice. Thus, the overarching 
objective is to bridge the gap between the theoretical potential of the development and deployment of AI systems 
in construction, and the practical implementation.  

To achieve this, the research objectives (ROs) of this dissertation are as follows:  
 

 RO1: Map previous and current uses of AI in construction projects, and map the main challenges 
related to effective use. 

 RO2: Assess key dimensions of the development and deployment of AI systems in construction.  
 RO3: Provide a framework for industry actors to move from ambition to practice, on a system, 

project, and organisation level.  
  

To provide a holistic overview of the opportunities and challenges that lie within the increased use of AI-
based tools, the thesis maps and assesses previous and ongoing initiatives in research and industry, both nationally 
and internationally. Furthermore, by examining the lessons learned in previous industry initiatives, as well as the 
conceptual state-of-the-art, the thesis provides an understanding of practical implications.   

The thesis addresses the following research questions (RQs):  
 

 RQ1: What is the current state of the field, and what are the main challenges the field is facing?  
 RQ2: What are the distinct stages and components involved in the development and deployment of 

AI systems in the construction context? 
 RQ3: How can identified challenges and dimensions be translated into actionable strategies on the 

system, project, and organization level?   
 
1.3 Research scope   
 
The objective of this thesis was to explore the intersection between the domains of AI, project management, and 
sustainability in the construction context. The scope is illustrated in Figure 1-2.  

In essence, the thesis wants to explore how effective use of AI from a project management perspective can 
be done sustainably, to improve sustainability in construction projects. Importantly, the emphasis on project 
management functions did not exclude other aspects of construction projects in their entirety; rather, the thesis 
has intended to adopt a project management perspective on construction project delivery and outcomes. To limit 
the scope, strictly technical aspects traditionally related to construction engineering functions were omitted; 
however, due to the inherent mutual interdependence of construction functions it is essential to provide 
contextualised insights. The topic is explored on the system level; on the project level, for the entire project, 
through all phases; and on the organisation level. To study the practical application of AI, theoretical findings are 
applied to relevant use cases.  

The thesis touches upon three very broad topics, so it became necessary to limit the scope of the studies and 
the whole thesis by defining a set of criteria for limitations and exclusions. It was decided to focus on the 
intersections between the three defined topics; more specifically it was decided to focus on the intersection 
between technology, process, and people (for the AI dimension) and the three pillars of environmental, economic, 
and social sustainability (for the sustainability dimension). As one touches upon one dimension, one does usually 
touch upon one or several other dimensions, and to exclude the other topics entirely was not considered necessary 
or desirable – but the three domains were chosen as the main focal points for the study.  
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Figure 1-2. Theoretical framework for the thesis. 

 
Investigating each dimension in the context of the other two is expected to provide an enhanced understanding of 
the thematic intersection between the three for both academics and practitioners.  

Each selected area of application was chosen based on an assessment of the following four dimensions:  
 

 Availability of literature  
 Previous research  
 Ongoing initiatives in the industry  
 Available experts in the field  

 
The thesis is expected to reach a diverse audience due to the multi-disciplinary relevance of the work carried 

out. For instance, the methodological elements developed, and the findings of the studies, may be relevant to 
individuals working with computer-aided tools, whether from an architecture or an engineering perspective, but 
also to people working in the research and development of specific technologies.  

The limitations of the individual studies are elaborated upon in respective papers. Another limitation of this 
thesis is the access to relevant data and relevant informants; the novelty of the topic reduced the number of relevant 
case projects and experts in the specific intersection. The delimitations of this thesis include all studies being built 
on data and insights from experts working in the Norwegian construction industry, mainly, and Norwegian 
companies. However, the methodology developed for each study, and the whole thesis, is generalisable for other 
countries and industries.  
 
1.4 Process and papers  
 
The work presented in this thesis is an extended summary of the research activity carried out.  

The research questions have been modified since the beginning of the process, as the continuous literature 
review and the findings of the individual studies have emerged, providing a better understanding of the topic. The 
overarching aim and objectives remained the same over the course of the process.   
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The thesis is built on six studies and the resulting papers, submitted to scientific journals and conferences. 
As such, the aim of this thesis is to provide a comprehensive summary of the research conducted in each of the 
studies, as well as the work and conducted research that binds the six individual studies together. This thesis 
connects and elaborates on the contribution of each of the studies in answering the overall aim and purpose. The 
studies illustrate the potential and limitations of AI systems and tools to ultimately enhance construction activities 
effectively and sustainably.  

All six papers were submitted to internationally recognised journals or conferences with refereeing schemes.  
Figure 1-3 illustrates how the individual papers inform the defined research questions.  

 

 
Figure 1-3. Connections between papers and research questions. 

 
1.5 Structure of the thesis  
 
The structure of the thesis is described in Table 1-1.  

Chapter 1 provides the introduction to the thesis and the research, describing the background and context of 
the research. Chapter 2 presents a literature review of relevant research areas resulting from the initial and 
continuous literature review. Chapter 3 describes the research methods and design according to the research onion 
framework and reflects on research quality and limitations. In Chapter 4, the research findings of each of the 
individual studies are presented and discussed. Chapter 5 connects the findings from each of the individual studies 
and the theoretical foundation. Chapter 6 provides the final conclusions and reflections, answers the research 
questions as defined, contributions to theory and practice, and potentials for future research.  

The finalised papers are attached in the Appendix.  
 

Table 1-1. Overview of thesis structure. 
Chapter Description 

Chapter 1: Introduction   Background  
 Purpose and research questions  
 Research scope  
 Process and papers  
 Structure of the thesis 

Chapter 2: Theoretical framework  Literature review and presentation of state-
of-the-art 

 Research gap  
Chapter 3: Research design   Description of research design according to 

the research onion taxonomy 
 Assessment of design  

Chapter 4: Findings from individual papers   Presentation and discussion of findings from 
individual studies  

 Structured according to individual papers  
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Chapter 5: Discussion   Presentation and discussion of thesis main 
findings  

 Structured according to emerging themes 
Chapter 6: Conclusion  Answers to research questions  

 Main contributions  
 Limitations and opportunities for future 

research  
 Personal reflections  

References   List of cited literature  
Appendices  Papers I through VI  
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2 Theoretical framework  
 
 
 
This chapter will present the theoretical framework resulting from an initial and continuous literature review of 
the main thesis topics. Considerations related to the theory and practice of the main topics are presented. The main 
topics are, as described in the introduction: project management, AI, and sustainability.  

Research is lacking in the intersection between the three, but each of the three fields are thoroughly explored. 
Figure 2-1 describes the basis of the theoretical framework. Some main characteristics from the field of project 
management that are of importance for the research conducted in this thesis are presented. Concepts related to 
change management on the organisational level and construction management on the project level are explored. 
The concept of AI and a categorisation framework for different types of AI in the construction context are 
introduced, categorising AI-based techniques and systems as ML, Knowledge-Based Systems (KBSs), 
evolutionary systems, or hybrid systems. The chapter further discusses some key considerations and practical 
implications of utilising AI according to the technology, process, and people perspectives. Some implications of 
economic, environmental, and social sustainability in projects and for the use of AI are discussed.  

In the final section of the chapter, a research gap is identified based on the findings from the literature review. 
 

 
Figure 2-1. Basis for the theoretical framework. 

 
2.1 Project management  
 
The Project Management Institute (PMI) defines a project as ‘a temporary endeavour undertaken to create a unique 
product, service, or result’ (PMI, 2021). For the purpose of this thesis, ‘project management’ will refer to the 
management of projects both on the organisational level, and on the construction project level.  

Every project is undertaken for a specific purpose, and the ultimate goal of every project is value creation 
(Johansen et al., 2019). The primary objective in project management is to deliver a product or service that meets 
or exceeds a set of predefined requirements and expectations within time, cost, and quality constraints. The three 
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dimensions of time, cost, and quality are traditionally used to measure and indicate project success, and these are 
commonly referred to as ‘the iron triangle’ (Rezvani and Khosravi, 2018).  

Projects are normally divided into phases. PMI (2021) outlines five phases of a project: definition (initiation), 
design (planning), development (execution), deployment (monitoring and controlling), and departure (closing). 
The five phases are illustrated in Figure 2-2.  More specific frameworks are developed, tailored to certain national 
industries. Among these are The Royal Institute of British Architects (RIBA) Plan of Work in the UK construction 
industry, and the NS 3467:2023 Stages and deliverables in the life cycle of construction works in the Norwegian 
construction industry (Standard Norge, 2023).  

 

 
Figure 2-2. Five phases of a project (PMI, 2021). 

 
The field of project management has evolved significantly over the years, with new methodologies, tools, 

and technologies emerging. The approach to project management can strongly depend on the characteristics of 
the project in question (Hussein, 2016).  

 
2.1.1 Organisation level  
 
For effective digital transformation, innovation on the organisation level is equally important as technological 
innovation (Xiahou et al., 2022). 

Project management is a key component in change management. Change management refers to the tools, 
processes, and techniques used to manage and facilitate change within an organisation (Cameron and Green, 
2015). Technologies, requirements, and industries are changing rapidly, meaning that organisations must be able 
to utilise these new technologies (Burgess, 2018). In a ‘change team’, team members should be gathered from 
representative parts of the organisation (Cameron and Green, 2015).  

The Lewin Model of Change (Lewin, 1951) is widely used in the change management context, and involves 
three stages: unfreeze, move (or change), and refreeze (Cameron and Green, 2015), and is intended to facilitate 
an iterative change process (Burnes, 2019). The first stage, unfreezing, involves preparing for the desired change; 
the second stage implements the desired change; lastly, the refreezing stage solidifies the desired change as new 
behaviours are reinforced and integrated. Figure 2-3 shows the iterative Lewin Model of Change.  

Hao et al. (2008) propose a modified model specifically for the construction context: (1) identify changes, 
(2) evaluate and propose changes, (3) approve changes, (4) implement changes, (5) analyse changes.   
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Figure 2-3. Lewin model of change (Lewin, 1951). 

 
2.1.2 Project level 
 
Construction management is a subfield of project management, which focuses on the planning and execution of 
construction projects. The construction industry is one of the largest sectors, nationally and internationally, and 
has a significant impact on environment and economy (Abioye, 2021). Construction projects are susceptible to 
change due to their complexity, duration, magnitude, number of stakeholders, and reliance on external factors. 
Changes in design, scope, materials, and regulations are common, and can have a significant impact on cost, 
schedule, and quality (Hao et al., 2008; Pan and Zhang, 2021). 

Specific frameworks are developed from the PMI framework and tailored to certain national industries. For 
instance, the RIBA Plan of Work in the UK construction industry, or the NS 3467:2023 Stages and deliverables 
in the life cycle of construction works in the Norwegian construction industry. Figure 2-4 shows the relationship 
between the three frameworks.  
 

 
Figure 2-4. Project phase frameworks. 

 
According to the NS 3467:2023 2023 Stages and deliverables in the life cycle of construction works, phase 

one (P1) Strategic definition includes identifying needs, goals, ambitions, and business constraints (Standard 
Norge, 2023). The phase consists of prioritisation of markets, projects, and implementation capabilities, as well 
as market assessments and evaluations. Deliverables from this phase are market assessments and evaluations to 
identify potential opportunities and challenges. Phase two (P2) Program and concept development includes the 
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development of initial project plans and frameworks and the establishment of project requirements and objectives. 
At the conclusion of this phase, preliminary management documents describing the project objectives and 
requirements are developed. In phase three (P3) Development of selected concept, project plans and frameworks 
are refined and verified, and the development of detailed construction plans and specifications is initiated. 
Deliverables are preliminary construction plans, specifications, and design documents. Phase four (P4) Detailed 
design includes necessary detailing and concretisation of the project, clarification of project requirements and 
construction methods. It also includes the mobilisation of construction teams and resources. At the end of the 
phase, the work is summarised in construction and production documents. Phase five (P5) Production and delivery 
may be the most compound phase of the framework, comprising a wide range of activities, including: management 
of construction, production, and delivery teams; control of physical construction and installation; delivery of 
project outcomes according to defined objectives and frameworks; and systematic completion and closeout of the 
project. Deliverables include the physical construction and installation outcomes, along with documentation and 
performance measures. The main goal of phase six (P6) Handover and commissioning is to ensure that the project 
has been completed according to the order. This involves the implementation of necessary corrective actions for 
defects or deficiencies, and the finalisation of contracts and agreements. The phase concludes with final process 
evaluations and settlements. Phase seven (P7) Use and management involves optimisation of project operations 
and maintenance, alongside testing and evaluation of project performance according to contracts. The main 
deliverable from this phase is completion of warranty responsibilities. In the final phase, (P8) Termination, the 
main objective is to ensure that the building is terminated in the most sustainable way. This can include the 
disposal of property or assets and the conclusion of contractual obligations. At the end of the phase, complete 
documentation for the disposal or transfer of assets is compiled.  

Recent developments show a trend towards larger and more complex construction projects (Whyte et al., 
2016; Fischer et al., 2017). This is likely to increase the need for building and defining more effective, efficient, 
and sustainable processes and frameworks, increasing interaction between project actors across the value chain 
and enabling productive and constructive exchange of information. Previous research indicates the potential for 
AI systems throughout the entire project lifecycle (Pan and Zhang, 2021). 

The construction industry is under pressure to reduce project delivery time and costs, while maintaining 
quality in an environment that is becoming increasingly complex. For a long time, the industry has been considered 
less digitally mature compared to other industries, such as manufacturing, finance, and healthcare; however, the 
maturity level is now seen to indicate the progression towards an increased capability to evaluate and implement 
digital technologies (Wernicke et al., 2021).  

 
2.1.3 Digital maturity 
 
Adeptly managing digitalisation in projects is becoming increasingly important in order to improve efficiency and 
sustainability, ensure project success, and stay competitive (Aliu et al., 2023).  

The Adoption Innovation Curve is a model used to represent the rate at which new technologies are adopted 
by a given population over time (Rogers, 1995). The Adoption Innovation Curve places adopters into one of five 
categories: (1) innovators, (2) early adopters, (3) early majority, (4) late majority, and (5) laggards. The Adoption 
Innovation Curve is illustrated in Figure 2-5. Rogers (1995) notes that those who adopt early, groups (1) through 
(3) can be characterised as more ‘venturesome’ and are less risk averse. Late adopters are risk averse, possibly 
due to being less able to financially withstand a failure (Rogers, 1995).  

 

 
Figure 2-5. Adoption Innovation Curve (Rogers, 1995). 
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Actors in the construction industry are often thought to be ‘late majority’ and ‘laggards’ in the adoption of 

digital tools (Ayinla and Aadamu, 2018). Bosch-Sijtsema et al. (2021) assessed 11 digital technologies portrayed 
in future trend reports and hype curves for the construction industry, and this assessment found that the 
construction industry is currently behind the traditional Gartner Hype Cycle of emerging technologies, when 
compared with other industries. The Gartner Hype Cycle (Fenn, 1995) is a graphical representation of maturity, 
adoption, and application of emerging technologies in any given environment or industry. The Hype Cycle is 
illustrated in Figure 2-6.  

 

 
Figure 2-6. The Gartner Hype Cycle (Fenn, 1995). 

 
Bosch-Sijtsema et al. (2021) note that the construction industry is currently behind the traditional Gartner 

Hype Curves, and they define four ‘zones’ for digital technologies in the construction industry: confusion, 
excitement, experimentation, and integration. In the 2022 Gartner Hype Cycle, accelerated automation of AI was 
identified as one of three main emerging themes (Gartner, 2023).  

The adoption of digital technologies, and specifically AI-powered tools, is believed to hold the potential to 
enhance the construction industry, and how the industry approaches challenges related to sustainability, health 
and safety, risk assessment, planning and scheduling, strategy, project performance, cost control, and calculations 
for operations and lifecycles (Hossain and Nadeem, 2019). However, assessments of the construction industry 
status suggest that the industry has yet to achieve the desired level of maturity.  
 
2.2 Artificial intelligence  
 
The concept of AI is broad; a wide range of definitions exist and have evolved over time.  

The term AI was originally coined by Stanford Professor John McCarthy in 1955, as ‘the science and 
engineering of making intelligent machines’ (Stanford University, 2020). McCarthy (2007) elaborated on this 
definition, describing AI as ‘the science and engineering of making intelligent machines, especially intelligent 
computer programs’ noting that ‘it is related to the similar task of using computers to understand human 
intelligence, but AI does not have to confine itself to methods that are biologically observable’. Winston (1992) 
defines AI as ‘the study of the computations that make it possible to perceive, reason, and act’. Similarly, Russell 
and Norvig (2010) present four categories of AI definitions. The four categories base the definition of AI on the 
ability of a system to think humanly, think rationally, act humanly, or act rationally, noting that ‘historically, all 
four approaches to AI have been followed’. Recent definitions also emphasise the ability of machines themselves 
to learn, rather than just mimicking human behaviour (Stanford University, 2020). The University of Helsinki 
published the course Elements of AI in 2018 in an effort to make AI more accessible and comprehensible for the 
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general public, defining AI as a system or a structure that has ‘the ability to perform tasks in complex environments 
without constant guidance by a user’ (University of Helsinki, 2018).  

One single definition of AI is currently lacking. The field of AI is constantly evolving, and different 
industries and environments refer to different sets of definitions. As the boundaries of AI technologies continues 
to expand, so does the diversity of its applications.  

The field is highly interdisciplinary and is comprised of elements from a wide range of fields, including 
computer science, logic, mathematics, psychology, and neuroscience (Tørresen, 2013; Tidemann, 2023).  

As mentioned in the introduction, the technology-process-people framework was used as the basis for the 
AI dimension. The framework is widely used for analysing and improving organisation and project performance, 
especially in the context of technology-driven initiatives (Gu and London, 2010; Forbes and Ahmed, 2020). The 
three perspectives of the framework and the intersections between them are illustrated in Figure 2-7.  

 

 
Figure 2-7. The three perspectives of the technology-process-people framework. 

 
2.2.1 Technology  
 
The technology perspective is related to the tools, systems, and technical infrastructure used within a project or 
organisation. Technology should be designed with the user in mind (Barlett-Bragg, 2017), and to enable 
streamlined integration with existing processes.  

AI technology is believed to facilitate an increase in productivity throughout the entire construction project 
lifecycle, ultimately improving the sustainability of environmental, economic, and social factors (Blanco et al., 
2018; Oprach et al., 2019; Wang et al., 2020). The use of AI has increased in the field of construction engineering 
and management in recent years (Xiao et al., 2018), mainly due to the potential it holds for the industry.  

AI is a part of a bigger digital shift reaching construction sites, more commonly referred to as Construction 
4.0. Technologies contained within the framework of Construction 4.0 include a wide range of areas of application 
and groups (Forcael et al., 2020; Perrier et al., 2020; Sawhney et al., 2020), such as cloud-based systems, Building 
Information Modelling (BIM), sensors, robotics and automation, smart equipment, IoT, Big Data and analytics, 
blockchain, additive manufacturing, etcetera.  

IoT refers to the interconnection of physical objects through embedded sensors and network connectivity, 
allowing for real-time data collection, analysis, and control (Al-Fuqaha et al., 2015). IoT is expected to contribute 
to bridge diverse technologies to ultimately enable new applications. Big Data refers to the vast amounts of both 
structured and unstructured data that are generated by various sources (Chen et al., 2014). Compared to traditional 
datasets, Big Data is typically mainly constituted by masses of unstructured data. It is believed that Big Data will 
have large social and economic impacts and contribute to cross fusion of science (Chen et al., 2014).   

AI already has, and has had, multiple areas of application in the construction industry, including estimation 
and cost control (Cheng et al., 2009; Cheng et al., 2015; Shin, 2015; Juszczyk, 2017; Elmousalami, 2019; Yaqubi 
and Salhotra, 2019; Juszczyk et al., 2019; Juszczyk and Lesniak, 2019; Bilal and Oyedele, 2020; Cheng et al., 
2020; Juszczyk, 2020); logistics, planning, and scheduling (Golparvar-Fard et al., 2015; Podolski, 2016; Xing et 
al., 2016; de Soto et al., 2017; Camacho et al., 2018; Cheng and Hoang, 2018; Dawood et al., 2019; Hu and Castro-
Lacouture, 2019); strategy (Mousavi et al., 2015; Kog and Yaman, 2016; Sharafi et al., 2018; Taherdoost and 
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Brard, 2019; Fallahpour et al., 2020); health and safety (Ayhan and Tokdemir, 2018; Goh et al., 2018; Poh et al., 
2018; Han et al., 2020; Nnaji and Karakhan, 2020; Xu et al., 2020); project performance and success estimation 
(Gudauskas et al., 2015; Hajdasz, 2015; Mirahadi and Zayed, 2016; Hanna et al., 2018; Jaber et al., 2019; 
Vickranth et al., 2019; Nguyen et al., 2020); design optimisation (Liu et al., 2015; Rodriguez-Trejo et al., 2017); 
and risk and safety monitoring and management (Pruvost and Scherer, 2017; Samantra et al., 2017; Zou et al., 
2017; Goh et al., 2018; Poh et al., 2018; Basaif et al., 2020; Han et al., 2020; Xu et al., 2020), among others.  

In the construction context, AI systems can be grouped into four categories (Akinade, 2017): ML, KBTs, 
EAs, and hybrid systems.  

 
Machine learning  

 
ML algorithms can learn from data (Tidemann, 2023). ML is a term that is used for a range of techniques, deducing 
rules from the datasets the system is trained on. The techniques are based on statistical models, and the aim of the 
systems is to find patterns in large amounts of data, so that the machine can learn (Tidemann and Elster, 2022). 
ML techniques are commonly divided in three subcategories: supervised learning, unsupervised learning, and 
reinforcement learning (Russell and Norvig, 2010).  

Supervised learning teaches the system, the machine, to understand that a certain input can predict a certain 
output (Russell and Norvig, 2010). It is the most common form of ML (Tidemann, 2023). In supervised learning, 
labelled datasets are used to train algorithms; the input data is labelled with corresponding outputs or target 
variables (Russell and Norvig, 2010). The goal is to predict the output for new, unseen data, after learning to 
identify patterns and relationships between input and output variables. Tidemann and Elster (2022) use the 
example of distinguishing dogs from birds. Dogs have four legs, while birds have just two. In addition, birds have 
wings, and dogs do not. When presented with a picture of a four-legged animal, the model identifies this as a dog. 
If the animal in the picture has only one pair of legs and a pair of wings, it is likely to be a bird. This is an example 
of a classification challenge (Tidemann and Elster, 2022). If the aim of the model is to estimate the size of the 
animal, it would be a regression challenge.  

In unsupervised learning, there are no defined labels or outputs. The task is for the algorithm itself to identify 
patterns or structures in the input data (Tidemann and Elster, 2022). Clustering is the detection of potentially 
useful clusters of input examples and is the most common unsupervised learning task (Russell and Norvig, 2010). 
From this, the algorithm learns to identify anomalies or outliers. This ability makes the unsupervised approach 
good for anomaly detection or dimensionality reduction. Data visualisation can be considered as a form of 
unsupervised learning.  

Reinforcement learning is commonly used in cases where a system is required to operate in an environment 
that provides feedback about good or bad choices, with some delay (University of Helsinki, 2018). The model 
interacts with the environment and receives feedback in the form of rewards or penalties. The form these might 
take depends on the environment. Russell and Norvig (2010) use the example of a system playing chess. A win is 
rewarded with two points, indicating that the system made good choices. It is up to the system itself to determine 
the actions that ultimately led to this reinforcement (Tidemann and Elster, 2022). The strength of reinforcement 
learning lies within scenarios where there are many ways to reach a desired goal.  

In practice, the three types might not be as easy to distinguish (Russell and Norvig, 2010); an example of 
this is semi-supervised learning (University of Helsinki, 2018), that is partly supervised and partly unsupervised.  

Artificial Neural Networks (ANNs) are a type of algorithm that can be used for ML. ANNs mimic the human 
brain, and are a collection of units, or neurons, that receive and transmit signals (University of Helsinki, 2018). 
The properties of the neural network are determined by the characteristics and topology of these neurons (Russell 
and Norvig, 2010). Deep Learning (DL) is a subset of ML based on ANNs with multiple layers (Tidemann, 2023). 
With every layer, the computational capabilities of the system increase. The increased capabilities allow the 
network to learn more complex structures with realistic amounts of data (University of Helsinki, 2018). DL can 
be supervised, unsupervised, or reinforced.  

The main limitation of ML techniques is the lack of technical justification for results and decisions (Akinade, 
2017), as ML algorithms can act like ‘black boxes’ (Abioye et al., 2021).  

Figure 2-8 summarises the relationship between the concepts of AI, ML and DL.  
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Figure 2-8. The relationship between AI, ML, and DL. 

 
In the construction industry, ANNs, support vector machines, and fuzzy logic seem to be the most widely 

used ML techniques (Irani and Kamal, 2014; Akinade, 2017).  
In the construction context, ML algorithms have been used for profit margin estimation (Bilal and Oyedele, 

2020), construction site accident classification (Cheng et al., 2020), building life cycle assessments (Hong et al., 
2020), clash relevance prediction (Hu and Castro-Lacouture, 2019), automated progress monitoring (Golparvar-
Fard et al., 2015), on-demand site monitoring (Rahimian et al., 2020), automated classification of documents 
(Caldas et al., 2002; Fang et al., 2020; Hassan and Le, 2020), estimation of construction cost (Cheng and Hoang, 
2014), and delay risk reduction (Gondia et al., 2020), among others.  

 
Knowledge-based systems  

 
KBSs mimic the problem-solving expertise of humans to identify solutions to complex problems in very specific 
domains (Sowa, 2000). Frequently utilised KBS approaches include expert systems, Rule-Based Systems (RBSs), 
case-based reasoning, and semantic networks (Akinade, 2017).  

Expert systems mainly exhibit pre-programmed behaviour (Tidemann, 2023). Expert systems thrive in 
standardised and predictable environments, such as chess. Rule-based approaches are built on logical RBSs, with 
an added ‘fudge factor’ to accommodate uncertainty (Russell and Norvig, 2010). Case-based reasoning involves 
solving new problems by applying solutions to previously encountered problems; this logic is based on the idea 
that similar problems will have similar solutions.  

The strength of KBS lies within the strong explanation abilities they hold (Akinade, 2017; Abioye et al., 
2021). Still, they lack the ability to learn and discover knowledge over time.  

 
Evolutionary algorithms  

 
EAs are based on the concept of biological evolution (Russell and Norvig, 2010), and are a form of optimisation 
algorithm inspired by the process of natural selection. EA techniques optimise factors and possible scenarios to 
find the most suitable outcome, by generating new solutions over multiple ‘generations’ (Dasgupta and 
Michalewicz, 1997). EA can cover broad territory, from Genetic Algorithms (GAs) to ant colony optimisation, 
particle swarm optimisation, and artificial bee colonies (Akinade, 2017).  

In the construction context, EA are commonly used for optimisation problems, such as scheduling, resource 
allocation, and layout design.  

Compared to the other groups of techniques, these algorithms require relatively little domain-specific 
information, and are easy to implement (Akinade, 2017); however, the heuristics are difficult to generalise.  

 
Hybrid systems  

 
Hybrid systems combine two or more AI approaches to maximise the strengths and overcome the weaknesses of 
individual approaches (Russell and Norvig, 2010). Hybrid systems can be categorised according to architecture 
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as stand-alone, transformational, hierarchical, or integrated (Akinade, 2017). Hybrid systems could be complex 
to design and implement but allow the construction of synergetic solutions to specific problems.  

There appears to be an increase in the application of hybrid models in construction in recent years (Xiao et 
al., 2018; Momade et al., 2021). This could suggest increased use of more compound systems as the technology 
and the industry develop, as hybrid systems can solve more complex tasks than any single system (Akinade, 2017).  

 
2.2.2 Process 
 
In the context of AI, the process perspective is related to the way AI systems are implemented and integrated into 
existing procedures, protocols, and workflows established within an organisation or project. Organisation or 
project infrastructure must facilitate the effective use of AI to be sustainable long-term (Burgess, 2018; Vinuesa 
et al., 2020; Xu et al., 2022). There is no doubt that AI in recent years has created massive hype, demonstrated 
impressive potential, and generated an even more impressive interest in the topic. In practice, there is a wide range 
of practical implications associated with the implementation of AI-based tools from the process perspective 
(Wooldridge and Jennings, 1995; Burgess, 2018; Dwivedi et al., 2021).  

Some key challenges in the sustainable process perspective are related to data management and governance, 
and cyber security (Agrafiotis et al., 2018; Al-Ruithe et al., 2018; Burgess, 2018; Ghosh et al., 2018; Abraham et 
al., 2019; Vinuesa et al., 2020). 

In the construction management context, data collection and sharing are among the central process-oriented 
challenges associated with the increased use of AI (Burgess, 2018; Xu et al., 2022); data is identified as one of 
the key resources for driving the transformation of construction management methodology (Xu et al., 2022).  

Data governance refers to the roles, policies, and frameworks that are put in place to manage the collection, 
storage, and utilisation of data (Ladley, 2020). In the context of AI, governance refers to the roles, policies, and 
frameworks that are put in place to manage the development, deployment, and continued use of AI systems. The 
aim is for AI systems to be utilised ethically, responsibly, and sustainably. AI needs to be supported by the 
necessary regulatory insight and oversight for AI-based technologies to enable effective and sustainable 
development and deployment (Burgess, 2018; Vinuesa et al., 2020).  

Data governance includes exercising authority and control over the management of data to increase its value 
and minimise associated costs and risks (Abraham et al., 2019). Al-Ruithe et al. (2018) argue that more disruptive 
technologies will require more extensive data governance strategies and programs. Abraham et al. (2019) define 
six dimensions of data governance: governance mechanisms, organisational scope, data scope, domain scope, 
antecedents, and consequences of data governance.  

Al-Ruithe et al. (2018) classify the challenges associated with the implementation of cloud data governance 
as mainly technological, legal, and business related. Technological challenges include security, privacy and data 
protection, availability, performance, data classification (caused by the lack of classification frameworks for data 
based on sensitivity), and data migration (between systems). Legal challenges are related to compliance with 
regulations, and statutory, regulatory, and legal requirements between industries and jurisdictions. Organisational 
challenges are related to the characteristics of an organisation, such as top management support, organisation size, 
and digital maturity (Al-Ruithe et al., 2018; Abraham et al., 2019).  

Cyber security measures should be related to all three categories. As technology is rapidly advancing, the 
threat landscape of cyber-attacks is changing (Agrafiotis et al., 2018). Cyber security aims to protect both devices 
and services of unauthorised access from within the devices and externally; and to protect the services, hardware 
resources, information, and data – both in transition and storage (Ghosh et al., 2018). By extension, cyber security 
can refer both to the security of a system itself and the people involved in the development or deployment of a 
system. Li (2018) notes that, on one hand, AI technologies and tools can be used to improve cyber security, by 
constructing smart models for implementing malware classification and intrusion detection. On the other hand, 
AI systems are likely to face cyber threats themselves. In a field that is ever-changing, new threats emerge just as 
quickly; cyber security is a field that requires ongoing attention and investment.  

A range of technologies exists to improve security, including cryptographic systems, firewalls, intrusion 
detection systems, anti-malware software and scanners, and secure socket layers (Ghosh et al., 2018). Successful 
cyber security relies not only on technology and technical tools, but on well-defined risk management strategies, 
with well-trained and well-informed personnel, policies, and procedures. 
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2.2.3 People 
 
The perspective of people is related to the human resources of the organisation, their skills, knowledge, attitudes, 
and behaviours. Recruiting, training, and building talent and competence are key.  

In the context of AI, the people perspective is associated with challenges related to collaboration, lack of 
trust and transparency, and ethical considerations (Dignum, 2017; Burgess, 2018; Dignum, 2018; Politou et al., 
2018; Sjåstad, 2019; Abioye et al., 2021; Xu et al., 2022).  

More collaboration is needed for the continued progress of AI in construction management (Xu et al., 2022). 
There is a talent shortage in the contextual intersection between AI and construction (Abioye et al., 2021), and 
interdisciplinary collaboration between construction experts and AI experts is considered necessary to continue 
to drive the field forward. Collaboration is needed to generate solutions that can effectively meet the demands of 
the construction industry. Involvement is essential to establish a sense of ownership.  

Explainability of AI systems is another challenge (Abioye et al., 2021). Many AI systems, and especially 
ML models, are largely black-box systems. This means that the input and output of the system is observable to a 
user, but the process within the system is not transparent. This can lead to a lack of trust in the system (Sjåstad, 
2019; Abioye et al., 2021), and ultimately, aversion. Aversion refers to the negative attitudes or perceptions that 
individuals or groups hold. Sjåstad (2019) defines the topic of ‘algorithm aversion’ as the tendency to prefer a 
human decision despite knowing that data-driven algorithms hold a higher degree of accuracy. Sjåstad (2019) 
presents four possible psychological explanations: (1) exaggerated trust in human experts, (2) different weighting 
of machine-made errors versus human errors, (3) social needs and (4) the fear of lost individuality. When 
measuring the perceived success of a system, the perception seems to be that the machine performance is 
compared to zero mistakes – rather than the human number of mistakes (Sjåstad, 2019).  

Understanding the sources and nature of aversion against AI is important for developing strategies to address 
the underlying concerns and build long-term trust in the technology. Among the factors that can improve trust in 
AI systems are transparency, verifiability, and robustness of a solution (Belle, 2023). These factors are closely 
related to ethical challenges that are encountered.  

As the capabilities for autonomous and AI-based decision-making evolve, an important issue to consider is 
the ethical impact caused by these systems. Dignum (2018) notes that ethical considerations and implications of 
AI systems have several levels: Ethics by design (the integration of ethical reasoning capabilities when the system 
is built); ethics in design (regulatory and engineering methods that support the analysis and evaluation of ethical 
implications as AI systems replace traditional social structures); and ethics for design (the standards that ensure 
the integrity of developers and users in research, design, construct, employment and management of AI systems).  

Some key considerations related to ethics in design are privacy, bias, accountability, and transparency 
(Dignum, 2017; Burgess, 2018; Dignum, 2018; Politou et al., 2018).  

In 2015, the European Union (EU) voted to implement the General Data Protection Regulation (GDPR) to 
replace the Data Protection Directive (DPD) from 1995. The aim was to give the people of the EU better control 
over their own personal data. The main data protection principles in the GDPR are revised but are based on the 
principles set out in DPD: fairness, lawfulness, and transparency (Article 5(1)(a)); purpose limitation (Article 
5(1)(b)); data minimisation (Article 5(1)(c)); accuracy (Article 5(1)(d)); storage limitation (Article 5(1)(e)); 
accountability (Article 5(2)); integrity and confidentiality (Article 5(1)(f)) (Politou et al., 2018).  

Informed consent can be said to have been given based on an understanding of the facts, implications, and 
consequences of the consent (Politou et al., 2018). Privacy by design principles include concepts such as data 
minimisation, purpose limitation, control, and transparency (Politou et al., 2018). Data minimisation is the practice 
of collecting and processing only the minimum amount of data necessary for a specific purpose. Purpose limitation 
is a principle that requires personal data to be collected and processed only for specific purposes, and it requires 
that the data is not used for any purpose that is incompatible with the purpose for which it was originally collected 
(Politou et al., 2018).  

As AI is becoming more widely used for decision-making in many industries, the concept of algorithmic 
bias becomes increasingly important. Bias in the context of AI refers to the potential for algorithms to produce 
unfair or discriminatory results. This can occur when the data used to train the system is biased, or certain 
characteristics of the algorithm promote bias. The main reason for algorithmic bias is human bias in the data the 
algorithm is built upon (University of Helsinki, 2018). Bias can manifest in a variety of ways, including inaccurate 
or discriminatory predictions, underrepresentation, or overrepresentation (Belle, 2023).  

Accountability can refer to the responsibility of individuals and organisations for the decisions and actions 
of the AI systems they develop and deploy. Accountability can be guaranteed, at least to some extent, through 
ensuring explainable, ethical, and transparent processes and systems. Dignum (2018) argues that responsibility 
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should be considered one of the fundamental stances underlying AI research and autonomy. Transparency means 
openness regarding data collection and processing practices; in the context of GDPR, this includes the types of 
personal data that are collected, the purposes for which the data is processed, and any third parties with whom the 
data might be shared.  

Loukides et al. (2018) define five framing guidelines to help maintain an ethical approach when building 
data products: consent, clarity, consistency (for trust), control (and transparency), and consequences (and harm). 
The guidelines should not only dictate the work of the designer but the entire organisation (Loukides et al., 2018). 
For the development and deployment of AI systems to be sustainable long-term and short-term, each consideration 
needs to be addressed.  
 
2.3 Sustainability  
 
The goal is not only for a process to produce a sustainable outcome – but also for the process to be sustainable. 

Sustainability is defined along three dimensions: environmental sustainability, economic sustainability, and 
social sustainability; the three pillars are illustrated in Figure 2-9. Sustainable development refers to a development 
meeting the needs of the present generations, without compromising the ability of future generations to meet theirs 
(Tjernshaugen, 2022). Goralski and Tan (2020) argue that the academic community has an important role in 
preparing future management to address the opportunities and challenges AI represents.  

 

 
Figure 2-9. The three pillars of sustainability. 

  
2.3.1 Economic sustainability  
 
The economic pillar, in short, emphasises the importance of profitability for a company or organisation to maintain 
its sustainability. Economic sustainability is concerned with the stability of economic systems and the creation of 
systems that promote sustainable development and inclusive growth. The economic pillar is not to be seen as 
advocating profitability at any cost, but rather as a practical approach that serves as a counterbalance to potentially 
unrealistic measures represented in the context of the two remaining pillars. For the construction industry, 
maintaining economic sustainability could mean an increase in margins, making choices that ensure a long-term 
return on investments, and measuring short-term effects against long-term effects upon investment (Akadiri et al., 
2012). The construction industry represents a significant contributor to national and international economies and 
is therefore able to affect the long-term viability and stability of economic systems; ultimately, it can help create 
economic and social systems that promote sustainable development and inclusive growth.  

The construction industry is a significant contributor to the overall economy (Akadiri et al., 2012; Pan and 
Zhang, 2021). In the construction context, economic sustainability can relate to improved project delivery and 
increased profitability and productivity (Halliday, 2007; Shen et al., 2010). Despite the perceived attention to 
environmental sustainability, previous research shows that economic factors are more considered than social and 
environmental factors in construction project feasibility studies (Shen et al., 2010). Holistic frameworks should 
incorporate all three pillars of sustainability in equal measure.  
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AI can contribute to producing economically sustainable outcomes, through estimation and cost control, and 
increasing productivity in logistics, planning, and scheduling. For the development and deployment of AI to be 
sustainable, more work is needed. High initial costs are identified as one of the key areas affecting the adoption 
of AI in construction (Abioye et al., 2021). However, not all AI applications require large additional costs 
(Golvarparvar-Fard et al., 2015). This indicates a need for frameworks facilitating a more economically viable 
approach to the use of AI to enable the scaling of systems.   

 
2.3.2 Environmental sustainability  

 
The environmental pillar is currently receiving the most attention in the construction context (Shen et al., 2010; 
Lima et al., 2021). A growing number of companies and organisations are working to maintain a so-called ‘green 
profile’ and to ultimately reduce their carbon footprints. Thus, environmental sustainability is concerned with the 
long-term viability and health of natural systems, as well as the development and implementation of policies and 
practices that promote sustainable resource use and conservation.  

The United Nations (UN) Department of Economic and Social Affairs has defined Sustainable Development 
Goals (SDGs) (United Nations Department of Economic and Social Affairs, 2023) aimed at ending poverty, 
reducing inequality, spurring economic growth, and halting climate change by 2030. During this work towards 
the SDGs, numerous agreements have been formed, including the Paris Agreement, aiming to provide a 
framework to avoid dangerous climate change, and to equip nations worldwide with the ability to deal with the 
impacts of climate change (United Nations Department of Economic and Social Affairs, 2023). Nationally, The 
Norwegian Ministry of Climate and Environment has defined 23 environmental goals, six of which relate to 
emission reduction and climate neutrality. Despite the ongoing green shift, reports indicate that the transition must 
happen faster if Norway is to achieve its climate goals. 

In 2021, 48.9 million tons of CO2 equivalents were emitted from Norwegian territory, and the construction 
sector is a significant contributor to both direct and indirect emissions (SSB, 2022). The construction industry 
purchasing power has a major impact on emissions from industry, transport, energy production, and waste. 
Transport to and from the construction site is identified as one of the key sources of direct emissions in the sector, 
with estimates suggesting that greenhouse gas emissions from the construction site can be reduced by almost 99% 
(Energi Norge, Norsk Fjernvarme, Bellona and Enova SF, 2017). 

The construction industry plays a critical role in shaping the built environment and driving economic growth, 
nationally and internationally. The complexity of each project creates challenges for effective communication and 
coordination, and ultimately for creating sustainable and safe construction projects (Pan and Zhang, 2021). The 
industry has a significant impact on the environment and society; today, construction is accountable for nearly 
40% of worldwide energy consumption and energy-related gas emissions (Global Alliance for Buildings and 
Construction, 2017) and the need for more sustainable solutions is growing swiftly. 

For the construction industry, maintaining environmental sustainability could mean contributing to waste 
reduction, reduced consumption of natural resources, reduced emissions, and definition of requirements and 
certifications that support SDGs nationally and internationally. AI has been shown to hold potential within these 
areas and can help expand traditional environmental governance (Nishant et al., 2020).  

 
2.3.3 Social sustainability 

 
The pillar of social sustainability can refer to the people inside and outside an organisation (Akadiri et al., 2012). 
Internally, for the project organisation, sustainability can mean a safe workplace with a good working environment 
that systematically works to prevent and avert health and safety issues among employees (Halliday, 2007; Shen 
et al., 2010; Akadiri et al., 2012). A good working environment on the construction site can contribute to ensuring 
the health of employees and promoting a better quality of life. Externally, social sustainability can mean 
maintaining support from stakeholders outside the organisation, such as clients, other partners, or society in 
general. Social sustainability is thus concerned with the resilience of social systems, as well as the development 
of policies and practices that promote social well-being and human flourishing.  

In the construction context, maintaining social sustainability, in summary, could mean protecting the health 
and safety of workers, risk management, choosing projects that long-term will create value for society as a whole, 
and conducting projects in a manner that does not harm or limit the proximate community in any way, short-term 
or long-term (Halliday, 2007; Shen et al., 2010; Akadiri et al., 2012).   

AI systems and tools can contribute to the proactive support of health and safety measures on-site, and risk 
management. For AI to be sustainable from the social perspective, AI ethics should focus on both technical details 
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and social aspects (Dignum, 2017; Dignum, 2018; Hagendorff, 2020). This could mean creating connections 
between abstract ethical principles and the practical application of AI. Systematically increasing explainability 
and transparency in AI systems can contribute to increased trust in the tools and the potential they represent 
(Abioye et al., 2021).  

 
2.3.4 Recent developments 
 
More and more companies are putting the SDGs on their agendas, and an increased focus on sustainability can 
bring benefits in the form of increased competitiveness. An investigation conducted by Grønn Byggallianse and 
Høgskolen i Østfold (2019) deals with the perceived added value of green buildings among owners, tenants, and 
investors in construction projects. In the survey, over 80% of respondents considered the increased focus on 
sustainability to add value to projects. The following indicators of perceived value were used: increased turnover; 
increased rental income; increased interest from potential tenants; reduced operating costs; reduced risk of meeting 
future regulatory and user requirements; reduced risk of technical quality; and improved reputation. 

Actors that best adapt to the climate challenge are expected to do best in competition in the coming decades. 
By participating in the transition to a low-emission society, companies can create a competitive advantage. 

Digital technology is widely accepted as a valuable tool to increase sustainability in construction and has 
been proven to contribute to timely delivery, improved information flows, improved efficiency of operations, and 
improved return on investments (Kineber et al., 2023a). Similarly, a significant potential is seen in the utilisation 
of AI-based tools and techniques (Goralski and Tan, 2020; Nishant et al., 2020; Feroz et al., 2021; Pan and Zhang, 
2021). However, the construction industry has yet to see the same shift as other industries.  

As the use of AI systems is becoming more prominent in the construction industry, there is a need for more 
research on how AI can be developed and deployed sustainably.  
 
2.4 Summary and research gap  
 
This chapter has explored the existing theoretical foundation of the main topics of this thesis: project management, 
AI, and sustainability. All three topics have an extensive body of knowledge on their specifics.  

Extensive research has been conducted in the domain of making construction processes and projects more 
effective, productive, and sustainable, and concepts related to adoption and innovation are thoroughly explored 
(Fenn, 1995; Rogers, 1995; Ayinla and Adamu, 2018; Bosch-Sijtsema et al., 2021; Wernicke et al., 2021). A range 
of frameworks and methodologies exist and have evolved over the years (Lewin, 1951; Hao et al., 2008; Cameron 
and Green, 2015; Burnes, 2019). Despite this, specifics related to the implementation and integration of AI 
solutions, particularly in the context of sustainability, are currently lacking. To map and understand the extent of 
the challenges that are encountered in developing and deploying AI, and what they mean for the dimensions of 
people, process, and technology, more research is needed. 

Extensive research has also been conducted in the domain of computer science, developing algorithms and 
tools to solve specific problems in the construction industry, including estimation and cost control; logistics, 
planning, and scheduling; strategy; health and safety; project performance and success estimation; and risk, among 
others. Although the topic of AI in construction has received significant attention, the majority of the existing 
literature is concerned with the technical development of AI systems for specific areas of application (Ilter and 
Dikbas, 2009; Martínez and Fernández-Rodríguez, 2015; Juszczyk, 2017; Basaif and Alashwal, 2018), and more 
research is needed on the application of these tools in the construction management context (Darko et al., 2020; 
Xu et al., 2022). More research on system design is needed (Xu et al., 2022), and roadmaps and methodologies 
should be developed on how this can be done in practice (Darko et al., 2020; Wang et al., 2020).  

Research has also provided detailed insights into the necessary elements of infrastructure required to support 
such technologies and solutions (Agrafiotis et al., 2018; Dignum, 2018; Ghosh et al., 2018; Loukides et al., 2018; 
Politou et al., 2018; Abraham et al., 2019; Belle, 2023), but frameworks encompassing these factors appear to be 
lacking. Research seems to have focused mainly on pilots, tests, Proofs-of-Concepts (PoCs) or conceptualisations, 
and less on robustness, scalability, and standardisation frameworks; this research is currently lacking. Studies 
demonstrate great results when applying developed algorithms to specific use cases, projects, or pilots. However, 
the evidence of successful large-scale implementation seems to be lacking. Since studies show successful 
implementation on a small scale, it seems reasonable to assume that a challenge lies within the infrastructure for 
successful integration and scaling. To explore the implications of scaling and standardising in this context, more 
research is needed.  
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Digital tools and solutions, including AI, are shown to hold the potential to increase sustainability in the 
process output (Goralski and Tan, 2020; Nishant et al., 2020; Feroz et al., 2021; Pan and Zhang, 2021; Kineber et 
al., 2023a). However, more research is needed into how the implementation and integration process itself can 
become more sustainable, and how all three dimensions can be maintained moving forward. High initial costs are 
identified as one of the key areas affecting the adoption of AI in construction (Abioye et al., 2021); this suggests 
a need for frameworks that allows for a more financially viable development and implementation.  

In conclusion, a gap exists in the research on the contextual intersection between construction, AI, practical 
implementation, and implications thereof. In addition, a substantial amount of the existing research is first and 
foremost grounded in conceptual theory rather than practical implications and empirical validations; the thematic 
intersection between the three topics, project management, AI, and sustainability, remains relatively unexplored.  

This thesis aims to fill this gap in the literature, choosing a holistic approach to the complex task of building 
systems and solutions resulting in sustainable deliveries and deliverables. Bridging the gap between the fields 
could provide valuable contributions in all three fields and improve a greater understanding of each field in the 
context of the others. The aim is to provide a framework for the actors who want to get started, who want to start 
now, and who, ultimately, want to move from ambition to practice.   
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3 Research design  
 
 
 
This chapter will present the research design of the thesis within the framework of the research onion taxonomy 
(Saunders et al., 2019). Each of the six layers of the research onion is assessed, discussing in detail how the 
perspectives of each layer contributed to the final research design, and how they impacted the research and the 
thesis. The characteristics of the quantitative and qualitative data analyses are presented, followed by an 
assessment of the research design including reliability, validity, generalisability, and ethical considerations.  

Figure 3-1 illustrates an overview of the research process over the course of the PhD project and the main 
deliverables leading forward to the completion of the thesis.  
 

 
Figure 3-1. Research process for the PhD project. 

 
The research process was highly iterative, and data collected for one study often informed multiple studies.  
Continuous monitoring of literature was done parallel to the work on the individual studies over the entire 

duration of the PhD project. This was done to monitor the state-of-the-art and identify any relevant literature 
published after the initial exploratory literature review was conducted. In addition, more specific literature reviews 
were conducted for each paper; these are further described in following subsections. Continuous presentation of 
preliminary findings and subsequent discussion with selected peers was also conducted in parallel throughout the 
entire process, with experts from industry and academia. This helped position previous and ongoing studies in the 
industry and the academic field and further informed the research design of upcoming studies. 

The first deliverable was the project description. The project description contained a preliminary outline of 
deliverables and delivery, including the overall goal and purpose of the project and the intended contribution from 
the thesis. The description also included a plan of how the work would be conducted in the allotted time. 
Considerations related to the delivery and the project work were described, including ethical considerations and 
proposed research methods.  

Following the approval of the project description, the work with Paper I and Paper II was initiated in parallel 
with the finalisation of my master thesis. Findings from the early papers helped inform upcoming research and 
papers, including the definition of research questions, selection of thematic areas, and research design.  

Figure 3-2 shows the research onion (Saunders et al., 2019). The following sections of the chapter will 
address each of the six layers in the research onion framework. The philosophical position, approach to theory 
development, methodological choice, strategies, time horizon, techniques and procedures will be presented, and 
the rationale and implications will each be elaborated upon in turn.  
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Figure 3-2. The research onion (Saunders et al., 2019). 

 
3.1 Research philosophy  
 
The philosophical worldview of a researcher influences the assumptions brought to a study, the research practice, 
and the applied strategy (Creswell, 2009). The philosophical worldview of a researcher also influences the shaping 
of research questions, chosen methodology, and interpretation of data (Saunders et al., 2019).  

Three assumptions influencing the research process can be defined (Holden and Lynch, 2004; Saunders et 
al., 2019). The three are, to some extent, consequential to each other: ontology (nature of reality or being), 
epistemology (what constitutes acceptable knowledge), and axiology (how the values of the researcher might 
influence the research). Saunders et al. (2019) define five management philosophies: positivism, critical realism, 
interpretivism, postmodernism and pragmatism.  

Table 3-1 summarises some key characteristics of these philosophical positions and how they relate to each 
of the three assumptions.  
 

Table 3-1. Comparison of five philosophical positions (Saunders et al., 2019). 
 Ontology Epistemology Axiology Typical methods 

Positivism Real, external, 
independent; 

One true reality 
(universalism); 

Granular (things); 
Ordered 

Scientific method; 
Observable and 

measurable facts; 
Law-like 

generalisations; 
Numbers; 

Casual explanation 
and prediction as 

contribution 

Value-free 
research; 

Researcher is 
detached, neutral, 

and independent of 
what is researched; 

Researcher 
maintains an 

objective stance 

Typically 
deductive, highly 
structured, large 

samples, 
measurement, 

typically 
quantitative 
methods of 

analysis, but a 
range of data can 

be analysed 
Critical realism Stratified/layered 

(the empirical, the 
actual and the real); 

External, 
independent;  
Intransient; 
Objective 
structures; 

Casual mechanisms 

Epistemological 
relativism; 

Knowledge is 
historically situated 

and transient; 
Facts are social 
constructions; 

Historical causal 
explanation as 
contribution 

Value-laden 
research; 

Researcher 
acknowledges bias 

by world views, 
cultural experience, 

and upbringing; 
Researcher tries to 
minimise bias and 

errors; 

Retroductive, in-
depth historically 

situated analysis of 
pre-existing 

structures and 
emerging agency; 
Range of methods 

and data types to fit 
subject matter 
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Researcher is as 
objective as 

possible 
Interpretivism Complex, rich: 

Socially 
constructed 

through culture and 
language 

Multiple meanings, 
interpretations, 

realities; 
Flux of processes, 

experiences, 
practices 

Theories and 
concepts too 
simplistic; 
Focus on 

narratives, stories, 
perceptions, and 
interpretations; 

New 
understandings and 

worldviews as 
contribution 

Value-bound 
research; 

Researchers are 
part of what is 

researched, 
subjective; 
Researcher 

interpretations key 
to contribution; 

Researcher 
reflexive 

Typically, 
inductive. Small 
samples, in-depth 

investigations, 
qualitative 
methods of 

analysis, but 
a range of data can 

be interpreted 

Postmodernism Nominal; 
Complex, rich 

Socially 
constructed 

through power 
relations; 

Some meanings, 
interpretations, 

realities are 
dominated and 

silenced by others; 
Flux of processes, 

experiences, 
practices 

What counts as 
‘truth’ and 

‘knowledge’ is 
decided by 
dominant 

ideologies; 
Focus on absences, 

silences, and 
oppressed/repressed 

meanings, 
interpretation, and 

voices; 
Exposure of power 

relations and 
challenge of 

dominant views as 
contribution 

Value-constituted 
research; 

Researcher and 
research embedded 
in power relations; 

Some research 
narratives are 
repressed and 
silenced at the 

expense of others; 
Researcher 

radically reflexive 

Typically, 
deconstructive – 
reading texts and 
realities against 

themselves; 
In-depth 

investigations of 
anomalies, 

silences, and 
absences; 

Range of data 
types, typically 

qualitative methods 
of analysis 

Pragmatism Complex, rich, 
external; 

‘Reality’ is the 
practical 

consequences of 
ideas; 

Flux of processes, 
experiences, and 

practices 

Practical meaning 
of knowledge in 
specific contexts; 

‘True’ theories and 
knowledge are 

those that enable 
successful action; 

Focus on problems, 
practices, and 

relevance; 
Problem solving 

and informed future 
practice as 

contribution 

Value-driven 
research; 

Research initiated 
and sustained by 

researcher’s doubts 
and beliefs; 
Researcher 
reflexive 

Following research 
problem and 

research 
Question; 

Range of methods: 
mixed, multiple, 

qualitative, 
quantitative, action 

research; 
Emphasis on 

practical solutions 
and outcomes 

 
Saunders et al. (2019) present the reflexive tool, HARP (Heightening your Awareness of your Research 

Philosophy), to provide the researcher with insights into their philosophical position. The questionnaire is built to 
score each of the philosophical positions against the views of the researcher. A higher score indicates a higher 
preference for the position. My results from the HARP test are presented in Table 3-2.  
 

Table 3-2. Results from HARP test (Saunders et al., 2019). 
Philosophical position Score 

Pragmatism 15 
Postmodernism 11 
Critical realism 10 
Interpretivism 10 

Positivism 7 
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Naturally, the HARP test is only intended as a starting point for further reflection. However, as this thesis 
aimed to obtain insights into the practical implications of implementing AI-based tools, a pragmatic worldview 
concerned with the practical consequences of ideas seems like a natural starting point.  

This thesis aimed to obtain insights to support the practical implementation of AI in a construction context, 
and to enable actors who want to move from ambition to practice. Therefore, this thesis mainly takes a pragmatic 
philosophical worldview and approach; this is a pluralistic and real-world practice-oriented worldview which 
allows available approaches to relate to the practical implications of the findings.  
 
3.2 Approach to theory development  
 
Generally, a research approach can be categorised as deductive, inductive, or abductive (Saunders et al., 2019).  

In short, an inductive approach can be described to generalise existing ideas, whereas a deductive approach 
aims to narrow down existing choices. An abductive approach, rather than moving from theory to data (as in 
deduction) or data to theory (as in induction), moves back and forth, essentially combining a deductive and 
inductive approach (Suddaby, 2006, cited by Saunders et al., 2019).  

The dominant philosophical position of the researcher will influence their choice of approach to theory 
development. Saunders et al. (2019) note that an abductive approach is typical for postmodernists, critical realists, 
and pragmatists. Interpretivists tend to use inductive approaches, and positivists deductive approaches. 

The research approach applied in this thesis utilises all three of these approaches.  
Deductive approaches start by assessing theory, often developed from studying existing literature on the 

topic and then designing a research strategy to test the theory (Saunders et al., 2019). A deductive approach can 
be used when building a theoretical framework based on prior theoretical knowledge or testing hypotheses to 
create new knowledge (Spens and Kovács, 2006). Inductive approaches start by collecting data to explore a 
phenomenon, and the researcher can then generate or build a theory from this foundation (Saunders et al., 2019). 
Inductive approaches can be used when empirically validating prior theoretical knowledge by making real-life 
observations or suggesting hypotheses based on these observations (Spens and Kovács, 2006). Creswell (2009) 
suggests that qualitative research, by nature, tends to build inductively from particulars to general themes. 
Induction builds on empirical data and can be described as exploratory research (Tjora, 2017).  

Abductive approaches collect data to explore a phenomenon, identify themes, and explain emerging patterns, 
to generate a new or modify existing theory which is subsequently tested by additional data collection (Saunders 
et al., 2019). An abductive approach can be used when suggesting hypotheses based on real-life observations, 
applying and testing hypotheses or propositions, generating new knowledge, or building theoretical frameworks 
from real-life observations (Spens and Kovács, 2006).  

Figure 3-3 illustrates the different approaches to theory development (Spens and Kovács, 2006).  
 

 
Figure 3-3. Approaches to theory development (based on Spens and Kovács, 2006). 

 
As illustrated in Figure 3-3, different approaches to theory development can be utilised in different stages of 

a study or a project. Saunders et al. (2019) suggest that a completely inductive design, for instance, is less likely 
in many situations, and suggests employing a hybrid approach. 

Five of the six studies in this thesis utilised a hybrid approach.  
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The aim of the scoping review in Paper I was to identify research gaps in the literature, so that new ideas 
and hypotheses for future research could be generated. The three research questions can be categorised as 
inductive, inductive, and abductive, respectively. Paper I identified patterns and themes within the existing 
literature on AI in construction projects, ultimately assessing the characteristics of the publications on the 
dimensions of descriptive features, methodology, areas of application, and the technology used. Paper I can be 
categorised as abductive.  

Paper II focused on identifying specific measures that can be used for waste reduction, and explored how AI 
can contribute to the effective implementation of these measures. The three research questions can be categorised 
as deductive, deductive, and abductive, respectively. Paper II can be categorised as deductive because it starts 
with a specific hypothesis (that AI can help reduce waste on construction sites) and abductive because it seeks to 
generate hypotheses on how AI can contribute to waste reductions.  

Similarly, Paper III starts with a specific hypothesis (that AI can be used to analyse project data and identify 
success factors in projects); the hypothesis is tested by building an ML algorithm to accomplish this. Hence, there 
are clear deductive elements to the research design of Paper III. However, the first research question is mainly 
centred around how this can be done, implying elements of inductive reasoning (seeking to develop a hypothesis 
based on specific observations – the potential of AI for success prediction). The Paper also utilised a method that 
had not previously been used for construction project success prediction, requiring a certain degree of abductive 
reasoning. Paper III, therefore, holds deductive, inductive, and abductive elements.  

Paper IV identified and explored the existing barriers related to mapping, collecting, and storing data about 
materials and products in existing buildings, holding mostly deductive and abductive elements.  

The research objectives of Paper V can be categorised as deductive, inductive, abductive, and abductive, 
respectively. The study can be described as deductive, as the rationale of the study is built with the aim of testing 
a hypothesis by collecting and analysing data from conducted projects. However, Paper V also incorporates 
elements of inductive and abductive reasoning, as it draws on existing literature and theories (inductive) while 
also exploring new insights and further formulating recommendations (abductive).  

Similarly, the research questions of Paper VI can be categorised as inductive and abductive; the paper seeks 
to gather information about the current state of the field and the challenges it faces while also exploring a potential 
solution to overcome the identified challenges.  

As an extensive summary of the conducted studies, the thesis holds deductive, inductive, and abductive 
elements. In addition, the three overarching research questions defined for the thesis as a whole can be categorised 
as deductive, inductive, and abductive, respectively.  
 
3.3 Methodological choice  
 
Croom (2010) argues that there is no clear link between epistemology and the choice of method in social science 
studies. These methods are typically categorised as either qualitative or quantitative. Despite this, Creswell (2009) 
argues that these approaches should not be viewed as complete opposites, but as representing different areas on a 
continuum. Both qualitative and quantitative approaches have strengths and weaknesses. Therefore, using mixed 
methods and combining qualitative and quantitative aspects in a research design can help to improve the quality 
of the research by overcoming weaknesses related to the individual methods, thus functioning as a means of 
triangulation (Flick et al., 2004).  

Saunders et al. (2019) define the two categories of mono-method research, meaning the use of a single data 
collection technique and corresponding analysis procedures, and multiple methods. In contrast to mono-method, 
multiple-method approaches involve using more than one data collection technique and analysis procedure. This 
could be done by using more than one data collection technique but restricted within either a qualitative or 
quantitative worldview (multi-method), or by using both qualitative and quantitative methods (mixed methods). 
Mixed method research can use qualitative and quantitative data collection techniques and analysis procedures at 
the same time (parallel) or one after the other (sequential), but does not combine them (Saunders et al., 2019). In 
contrast, mixed model research combines quantitative and qualitative methods; quantitative data can be qualitised, 
and qualitative data quantised.  

The use of mixed methodologies has gained popularity among researchers over the years, especially in social 
sciences (Creswell, 2009). Multiple methods are useful in the sense that they provide the opportunity for the 
researcher to evaluate the extent to which the findings from the individual method can be trusted (Saunders et al., 
2019) and enable triangulation of findings (Flick, 2004; Denzin, 2012). Different methods can be used for different 
purposes or stages in the same study (Saunders et al., 2019).  

This thesis mainly utilised a mixed research methodology, but with some exceptions.  
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Paper I is a mono-method study, basing the entire research design on the scoping review framework.  
The research design of Paper II is a mixed model design, utilising both qualitative (interviews, document 

studies, literature review, and site visits) and quantitative methods (quantitative assessment of waste data from 
construction projects and a questionnaire). The techniques were employed in parallel, and the coding stage of the 
research included converting qualitative data into quantitative, and vice versa.  

Paper III employed a sequential mixed method research design. The study started by conducting a literature 
review to map previous research conducted on the topic of construction project success, and to explore previous 
use cases of ML to assess and predict project success. After an extensive data analysis and preparation process, 
the ML algorithm was built, assessed, and applied.  

An initial literature review, followed by a series of interviews, constituted the research design of Paper IV; 
thus, the study can be categorised as multi-method.  

Paper V utilised a wide range of qualitative (interviews, a multiple-case study, document studies, and a 
literature review) and quantitative (quantitative assessments of case project data) methods. The coding stage of 
the research included a detailed assessment of the findings across both categories – a mixed model approach.  

A range of qualitative methods was chosen for Paper VI, including interviews, a document study, a literature 
review, and a site visit. The study can be categorised as a multi-method, utilising strictly qualitative methods.  
 
3.4 Strategies  
 
Strategies utilising quantitative methods include experiments and surveys; archival research and case studies can 
be used in quantitative methods, but also qualitative (Saunders et al., 2019). Ethnography, action research, and 
grounded theory are most relevant in the use of qualitative methods. Saunders et al. (2019) note that the strategies 
are not to be thought of as being mutually exclusive. Surveys, case studies, and grounded theory were used in this 
thesis. Table 3-3 summarises some key characteristics of the three.  

Several types of research exist (Fellows and Lui, 2003); among these are descriptive, exploratory, 
explanatory, and interpretive research methods.  

A descriptive research design is used to systematically identify all elements of a phenomenon, process, or 
system and the relationships between them. Fellows and Lui (2003) recommend that descriptive research is done 
as objectively and comprehensively as possible. The research can be undertaken in the form of a survey, archival 
research, or case study work (Saunders et al., 2019). Exploratory research is undertaken to test or explore aspects 
of existing theory; a central feature is the discovery of processes (Fellows and Lui, 2003). Often, an array of 
constructs and variables is identified by the research, and further hypotheses are produced to be tested in future 
research. Exploratory design is generally recommended when previous knowledge is limited, or the problem 
description is unclear. Case studies, archival research, surveys, and experiments are often employed in exploratory 
research (Saunders et al., 2019). Explanatory research aims to answer a particular question or explain a specific 
issue and is often centred around cause-and-effect relationships (Fellows and Lui, 2003). Hypotheses are used 
similarly to those used in exploratory research. Explanatory research can employ experiments, case studies, and 
archival research. An interpretive research design fits findings, observations, and experience into a theoretical 
framework or model (Fellows and Lui, 2003).  

 
Table 3-3. Research sample strategies (from Saunders et al., 2019). 

Sampling strategy Description Associated with 
Survey A common strategy in 

management research.  
 

Data collected using a survey 
strategy allows the researcher to 

suggest possible reasons for 
relationships between variables 
and to produce models of these 

relationships.  
 

Data collection methods include 
questionnaires, structured 

observations, or interviews.  

Quantitative methods 
  

Exploratory or descriptive 
research 

 
 Deductive approaches 

 
Frequently used to answer  

‘who’ 
‘what’ 

‘where’  
and ‘how’ questions 
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Case study Provides rich understanding of the 
context of the research.  

 
Single or multiple cases.  

 
Data collection methods include 

interviews, observations, 
documentary analysis, and 

questionnaires.  

Qualitative or quantitative 
methods 

 
Explanatory or exploratory 

research  
 

Frequently used to answer  
‘why’ 
‘what’  

and ‘how’ questions 
Grounded theory Emphasis on developing and 

building theory.  
 

Data collection starts without the 
formation of an initial theoretical 
framework; theory is developed 

from generated data.  
 

Coding of results can be done by 
open coding, axial coding, or 

selective coding. Data is 
continuously analysed against 
coding concepts and categories 

until theoretical saturation.  

Qualitative methods  
 

Inductive or deductive approaches 
 

Frequently used to answer ‘how’ 
or ‘why’ questions 

 
Paper I utilises both a survey strategy (in assessing the existing body of publications) and a grounded theory 

strategy (in building theory based on the findings of assessments). The study can be categorised as descriptive, 
aiming to provide an overview of recent and current uses of AI; in addition, the identification of research gaps 
and formulation of recommendations for future research both hold exploratory elements.  

Similarly, Paper II holds components of both survey strategy (in assessing current challenges and problem 
areas) and grounded theory (in presenting a framework of recommendations related to the use of AI for waste 
reduction). The study is exploratory, examining how AI can help to reduce waste on construction sites, and 
explanatory, in providing an overview of problem areas and recommendations related to practical implications.  

The ML algorithm developed in Paper III is based on data collected through a survey strategy. The study 
itself also employs grounded theory, in building and advancing theory on the topic of construction project success 
estimation. The study holds both exploratory and explanatory elements, both employing quantitative assessments 
to explore how AI and ML can be used to assess and predict project success and, in doing so, they can establish a 
relationship between the analysis variables.  

Paper IV also employs a strategy both in the form of a survey (in collecting data on perceived challenges 
related to data management) and a grounded theory (in extrapolating how the challenges relate to the hindering 
of circular economy). The extrapolation of findings to position the perceived barriers in the context of circular 
economy categorises the study mainly as exploratory.  

In examining the potential of using 3D laser scanning, BIM, and AI for Quality Assurance (QA) in 
construction projects, Paper V utilises both survey, case study, and grounded theory strategies. A survey strategy 
was employed in the early stages of the research when identifying relevant use cases and case projects. The case 
study strategy was a large part of the research design, as the case projects constituted a significant portion of the 
findings. The study had an emphasis on building theory and presenting recommendations for actors seeking to 
utilise the technology, thus employing a grounded theory strategy. The whole study is exploratory in nature, 
seeking to provide empirical validation of previous theoretical findings. The study holds elements of several 
research types, and the four research questions can be described as exploratory, descriptive, descriptive, and 
explanatory, respectively.  

Paper VI holds elements of both survey strategy and grounded theory. The study is exploratory, in mapping 
the current status in the industry and challenges related to the implementation of AI systems, with an emphasis on 
the development of theory regarding how development and implementation can be done sustainably.  
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3.5 Perspective (Time horizon)  
 
Studies can be considered cross-sectional or longitudinal (Saunders et al., 2019). Fellows and Lui (2003) argue 
that quantitative studies tend to be more cross-sectional by nature, but that qualitative analyses can provide a more 
longitudinal perspective, introducing longitudinal elements into what originally was cross-sectional findings or 
data. Both cross-sectional and longitudinal perspectives can represent valuable contributions.  

The whole thesis, including the continuous monitoring of literature as indicated in Figure 3-1, can be argued 
to hold a longitudinal perspective; however, individual studies and papers are mainly cross-sectional. Information 
acquired from interviewees holds a longitudinal perspective in the sense that the interviewees themselves have 
acquired the knowledge and experience after a longer time in the industry. Still, the data collected from the 
interviewees is, per se, cross-sectional. The field of AI is rapidly developing, meaning that a smaller time horizon 
could be considered longitudinal; meanwhile, the field of project management is, relatively speaking, moving at 
a much slower pace.  

For Papers I through V, the main data collection was conducted over the course of 9-12 months, implying a 
cross-sectional perspective. This is considered a relatively short span of time in the project management context. 
Paper I holds a more longitudinal perspective, as the review itself included publications from a span of five years, 
and part of the objective of the study was exploring the development in the field over time. Similarly, the dataset 
used for Paper III is the sum of data accumulated by the Nordic 10-10 organisations over several years. However, 
unlike Paper I, the element of development over time was not crucial for the research objective in Paper III. For 
Paper VI, the main data collection process was conducted over the course of 18 months. However, like for Paper 
III, the element of development over time was not of particular interest for the research objectives in Paper VI. 
 
3.6 Techniques and procedures  
 
Techniques and procedures include data collection and analysis (Melnikovas, 2018), meaning the use of primary 
or secondary data and sources, the crafting of samples, developing content for interview guides and questionnaires, 
etcetera. All previous layers affect the choice of techniques and procedures, and most of all, as highlighted by 
Saunders et al. (2019) – the research questions.  

This thesis employed literature reviews, interviews, case studies and document studies, among others.  
 
3.6.1 Literature reviews  
 
Literature reviews were conducted for each individual study, in addition to the overall continuous review.  

Literature reviews are critical to ensure that research is being conducted on topics that are of relevance, and 
to confirm that the research questions have not already been answered (Dorussen et al., 2005). An understanding 
and overview of previously conducted research is essential to make sense of new findings in the context of the 
field (Tjora, 2017). Literature reviews ensured a relevant and comprehensive foundation for the research 
conducted in each of the studies.  

The literature review in Paper I was conducted according to the scoping review methodology (Arksey and 
O’Malley, 2005). Reviews within the field of management are often comprised of a process of exploration, 
discovery, and development (Tranfield et al., 2003); therefore, it was desirable to choose a flexible approach that 
could be modified throughout the study. The scoping review enables a flexible but systematic approach and is 
based on five steps: (1) identifying research questions, (2) identifying relevant studies, (3) selecting relevant 
studies according to formulated criteria, (4) charting the data, and (5) collating, summarising, and reporting results. 
An additional, parallel element is also described regarding the use of a ‘consultation exercise’ to inform and 
validate findings from the main scoping review (Arksey and O’Malley, 2005). For Paper I, the five steps were 
conducted and presented in the final paper, as the purpose of this paper was the literature review itself. In Papers 
II through VI, one or more steps were conducted within the research group as a part of the study to improve the 
context of the research, but not provided in the finalised paper, as this was judged to be out of scope for the studies. 
Figure 3-4 illustrates the modified scoping review methodology of Paper V.  
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Figure 3-4. Modified scoping review methodology. 

 
To clarify and further evolve the scoping literature review framework, Levac et al. (2010) present specific 

recommendations for each step. Both in individual studies and for the thesis, the recommendations of choice 
included linking the purpose of the study to the research questions in the early stages of the process, to facilitate 
decision-making regarding the inclusion and exclusion of relevant publications as the scoping review proceeded. 
The nature of the scoping review provides for an emergent and iterative process, meaning that such criteria might 
not become fully clear until the later stages of the review (Gough, 2007a). The criteria were updated throughout 
the process to sustain the systematic manner of the review. A more systematic approach helps to provide 
trustworthiness and accountability for the literature review itself (Gough, 2007b). These criteria were explicitly 
stated in Paper I, but, as per Figure 3-4, a part of the internal process in the remaining papers.  

Since some intersections of the thesis topics are relatively unexplored, field-specific databases gave few hits 
for certain combinations of keywords. Therefore, Google was used as a supplement to academic databases. Google 
provides the broadest selection of literature among all search engines. The literature found through Google can 
provide inspiration or contribute to the discovery of other quality-assured and peer-reviewed sources, but it should 
not be used uncritically. Whenever possible, original sources were always used.  

The continuous literature review was conducted in parallel with the individual studies’ respective literature 
reviews, to monitor the state-of-the-art in the field. This contributed to ensuring the relevance of the individual 
studies and positioning any preliminary findings both in the context of the thesis and the whole field.  

For Papers II through VI, the literature review mainly contributed to the positioning of the respective study, 
and to supplement any insights provided by interviews or other data sources.  

 
Review process  

 
Levac et al. (2010) recommend measuring the perceived feasibility of the study against the comprehensiveness of 
the scoping process. This was done through an initial, unstructured literature search.  

The purpose of the preliminary search was to produce a literary warrant, establishing a suitable foundation 
for contextualisation and further definition and indexing of terms and classes during the review. Step 1 in the 
scoping methodology framework (identifying research questions) was informed by the initial, unstructured search.  

To ensure the replicability of the research, Steps 2 (identifying relevant studies) and 3 (selection of relevant 
studies by formulated criteria) were structured according to the preferred reporting items for systematic reviews 
and meta-analyses (PRISMA) framework (Moher et al., 2009). Step 2 began by a manual search within selected 
databases to identify relevant records. Tranfield et al. (2003) emphasise the importance of a well-defined search 
string to create a replicable and transparent search strategy, ultimately contributing to higher reliability of a study. 
The definition of search strings was therefore also based on the initial literature search. Searches were filtered on 
year of publication, publication channels, and so on. Additionally, publications were identified from citation 
chaining, backward snowballing, or recommendations from personnel involved in other aspects of the study. 
Citation chaining refers to the use of a central source with multiple citations as a starting point to identify 
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additional sources. Backward snowballing involves the discovery of relevant sources by exploring the references 
of relevant articles (Wohlin, 2014). 

The records were then screened by judging the relevance of titles, keywords, abstracts, and conclusions. The 
full article was assessed in cases where the initial screening did not provide a sufficient insight into the study. A 
set of inclusion and exclusion criteria were defined for filtering, to help ensure the relevance and quality of the 
identified records. AI is rapidly developing; therefore, one inclusion criterion was that the record had to be 
publicised after 2000. Furthermore, only peer-reviewed articles were included to ensure the inherent quality of 
the studies. The scoping methodology does not include a formal application of quality assessment criteria, but 
only selecting peer-reviewed publications contributes to an implicit quality in the chosen records.  

A full-text assessment of the remaining records was then conducted, to ensure their eligibility and consider 
the contribution of each record beyond the initial evaluation. During this process, nine records were deemed out 
of scope, and five did not provide sufficient detail to provide new insights into the study.  

Steps 4 (charting the data) and 5 (collating, summarising, and reporting results) were conducted as part of 
the coding and triangulation of results. Charting, collating, and summarising were done as a part of the overall 
coding process of respective studies, where findings were compared against other findings within the same data 
collection method and across methods. The same approach was chosen to validate the literature review findings, 
which consisted of validation against the full body of publications and the other utilised methods.  
 
3.6.2 Interviews  
 
Interviews were originally conducted for individual studies, but each interview contributed to broadening the 
knowledge and perspective on the field, which ultimately informed not only the respective individual studies but 
the whole thesis. The number of interviews for each study is summarised in Table 3-4. 
 

Table 3-4. Number of interviews in each study. 
Paper number Number of interviews  

Paper I 0 
Paper II 32 
Paper III 0 
Paper IV 18 
Paper V 9 + 4 case study interviews  
Paper VI 36  

 
The novelty of the topics reduced the number of relevant interviewees for each of the studies.  
The interdisciplinary nature of the topic meant involving experts from different fields, both in the industry 

and academia. For the industry interviewees, the aim was to include personnel from all parts of the construction 
project value chain.  

Different sampling strategies were used to recruit interviewees. Paper II, Paper IV, and Paper VI employed 
a purposive sampling strategy to identify the most relevant interviewees for each study (Robinson, 2014; Saunders 
et al., 2019). The purposive strategy is traditionally associated with grounded theory (Saunders et al., 2019). Paper 
V, due to the limited number of available case projects, employed a sampling strategy based on convenience and 
judgement (Robinson, 2014; Saunders et al., 2019). This meant recruiting interviewees partly based on personal 
networks and publicly available documents. For each of the sampling strategies, a set of criteria for inclusion and 
exclusion were defined, to help craft a suitable sample. Additionally, for all studies, a snowball sampling strategy 
(Bryman, 2016; Tjora, 2017) was used through gathering suggestions from previous interviewees. This was done 
by including a request for potential future interviewees in the interview guides. 

For all four studies collecting data from interviews, one or more pilot interviews(s) were conducted before 
the initiation of the main interviews, as per the recommendations of Kallio et al (2016).  

The interviews followed respective interview guides that were developed after initial literature reviews and 
(the) pilot interview(s). The interview guides were targeted towards each interviewee to tailor towards their 
experiences and background and to accommodate the collection of data relevant to their perspective. Over the 
research period, the interview guides were updated as preliminary findings informed the understanding of the 
topic further. Interviews were mainly semi-structured in-depth interviews, as this is considered to provide broad 
and contextual results (Bell and Bryman, 2016). The semi-structured approach allowed the interviewees to 
elaborate beyond the pre-defined questions, contributing to a more comprehensive understanding of the 
knowledge and experience of the interviewee, the industry and its dynamics in relation to the topic (Ryen, 2002).  
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Each interview lasted between 60 and 90 minutes. When possible, two researchers were present during the 
interview to ensure a higher degree of understanding and reliability in the subsequent coding of the results. Where 
this was not possible, other researchers or key personnel were involved to a larger extent in the coding stage, and 
in the presentation of preliminary and final findings. Open-ended questions provided flexibility in the interview 
approach (Saunders et al., 2019), which gave the interviewees the opportunity to answer in-depth when needed 
(Tjora, 2017). All interviews were recorded, and transcripts were sent to the interviewees for QA before analysing 
the data. Follow-up questions were asked where necessary. 

All interviewees received written information regarding the study and its focus before the interview. This 
allowed them to prepare by gathering appropriate documentation and reflecting on any relevant experience or 
knowledge. Giving the interviewees this opportunity can contribute to increasing the reliability and validity of a 
study (Saunders et al., 2019). 

Thaagard (2013) suggests that the researcher strives to find a selection of interviewees that meets a 
theoretical saturation point, beyond which adding a new informant would no longer contribute significantly to the 
research. Saturation was identified in the studies by conducting the coding process iteratively in parallel with the 
interviews, as recommended by Bell and Bryman (2016). Certain topics reached saturation earlier than others; 
when this happened, an emphasis was put on the remaining topics in later interviews. 
 
3.6.3 Multiple-case study   
 
Paper V employed a multiple-case study as part of the research design.  

Six case projects from two actors constituted the foundation of the case study. The researchers gained access 
to the QA systems and databases used in the projects, including registers of errors and deviations in the projects. 
The case study design was chosen as it represented a sound empirical approach to studying lessons learned from 
3D laser scanning and BIM for QA. According to Yin (2009), a case study approach is beneficial when the aim is 
to conduct an in-depth examination of a contemporary phenomenon and explain ‘how’. Explorative case studies 
are appropriate for providing in-depth insights into a phenomenon not previously vigorously examined (Ellram, 
1996). The explorative approach was chosen due to the novelty of the intersection between the three topics. Even 
though previous research recognises the involved tools and their potential, current knowledge of how they can 
and should be utilised in conjunction is not systematically structured nor developed in large detail.  

The case study was a cross-sectional theory-building multi-case study (Dul and Hak, 2008) holding elements 
from the case study survey framework (Farquhar, 2012). Employing a multiple-case design, the case study set out 
to explore experiences using 3D laser scanning for QA in six selected case projects. Thus, the study can be 
described as ‘an empirical inquiry that investigates a contemporary phenomenon within its real-life context’ where 
‘the boundaries between the object of study and context are not clearly evident’ (Yin, 2009).  

Yin (2009) describes six sources of evidence commonly used in case studies, including archival records, 
direct observation, participant observations, physical artefacts, documentation, and interviews. This study built its 
multiple-case study upon three main pillars: case documentation, interviews with involved personnel, and 
presentations provided by involved personnel. The data collection involved a qualitative research approach using 
semi-structured in-depth interviews to collect primary data. The choice to use semi-structured interviews is 
attributed to the flexibility this method provides, as previously described. Four semi-structured in-depth interviews 
were conducted with personnel who had been working on the case projects. Yin (2009) recommends that case 
study interviews are performed as guided conversations rather than structured interviews. The semi-structured 
approach was chosen to ensure a certain degree of replicability and increase reliability and validity.  

Secondary data were collected from all six projects, including existing plans, project data, and registrations 
of deviations and errors. Additionally, a document study was conducted to collect secondary data and support and 
verify the findings from the interviews. With permission from management, several documents of importance 
were studied, including registers of deviations and errors in the case projects and project-based data such as 
presentations of key data and characteristics in the projects.  
 
3.6.4 Document studies  
 
Document studies are often found as part of a case study research (Yin, 2009), but can also be used as sources of 
their own (Bowen, 2009). Document studies involve the analysis of documents created for other use than the 
research itself (Tjora, 2017) and can be used to verify the data collected through other sources or to acquire new 
or additional information (Yin, 2009). Documents can provide data on the context within which research 
participants operate, suggest questions that need to be asked or situations that need to be observed or provide 
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supplementary research data (Bowen, 2009). They can also serve as a means of tracking change and development 
over time, to verify findings, or corroborate evidence from other sources.  

In this thesis, Papers II, V and VI were, partly, built on document studies.  
 
3.6.5 Additional activities   
 
Beyond the four main sources of data, a range of additional activities were performed to add further perspective 
and increase the understanding of the convoluted dynamics of the topic. Additional activities included courses on 
the topic of AI, participation in seminars and focus groups, and site visits.  

The course Elements of AI was completed over six weeks in the spring of 2020, to obtain a foundational 
understanding of the concept of AI; this was followed by the course Building AI in the autumn of 2020. The 
courses are built by Reaktor, MinnaLearn and the University of Helsinki with an aim to make AI knowledge more 
universally available. They contain a range of modules that provide learners with an understanding of the 
theoretical and practical aspects of AI (University of Helsinki, 2018). Completion of the courses qualifies the 
learner for 2 ECTS (European Credit Transfer System) for each course.  

Attendance in a wide range of seminars was prioritised throughout the entire duration of the project. The 
seminars ranged from academically focused seminars with fellow PhD candidates and professors, to seminars 
targeted towards industry actors, gathering industry experts to showcase successes and lessons learned from 
industry initiatives and pilots. The latter provided an opportunity to stay in touch with the industry and to follow 
the development as the project progressed. The seminars also served as an arena to present preliminary and final 
findings, to open discussions and receive feedback; this proved to be an invaluable contribution to building 
networks, and maintaining strong ties to the industry throughout, and an important supplement to the interviews. 
Academic networks included national and international focus groups, working at the intersection between project 
management and AI. Organised data collection in the form of focus groups, where a group of experts are gathered 
to discuss one or more topics, is especially effective for the researcher (Tjora, 2017). This is because they allow 
the researcher to gather a range of insights effectively, and they serve as a form of validation of results upon 
collection.  

As a more practically oriented supplement to other methods, site visits were conducted on three occasions: 
a construction site visit in the spring of 2020, and two plant site visits hosted by a Construction City member, 
once in the spring of 2020, and a second time in the spring of 2023. The site visits were combined with interviews 
of personnel on the sites and planned focus group meetings. The visits aimed to gather in-depth data through 
observation and interaction with informants in the environment they operate within. Relevant experts conducted 
tours of the sites based on materials exchanged in advance, and the tours served as a starting ground for subsequent 
questions and discussions. The construction site tour was mainly related to the inspection of waste stations, while 
the plant tour was mainly related to the implementation of new and digitalised solutions on the site. The site visits 
informed the research but were initially conducted for Paper II and VI, respectively.  

For Papers II, III, and V, the research design also encompassed continuous management of selected, relevant 
databases as a part of the quantitative analyses.  
 
3.7 Data analysis and coding  
 
3.7.1 Quantitative analysis  
 
Papers II, III, and V included quantitative analyses, based on data from selected databases.  

The quantitative analysis in Paper II was based on a quantitative assessment of waste data in 161 projects. 
An analysis of the waste disposal in 161 construction projects was conducted to identify any problematic waste 
fractions, with respect to total volume, environmental impact or impact on project progress, management, or 
activities. The analysis utilised the tool Grønt Ansvar from Norsk Gjenvinning to provide an overview of disposed 
waste in terms of volume, weight, degree of sorting, and cost associated with waste management in selected 
projects (Norsk Gjenvinning, c. 2018). The waste reports are dynamic, and the system allows the user to single 
out selected fractions, amounts, costs, or projects on-demand. The projects were deemed relevant for inclusion 
using the following criteria: used Norsk Gjenvinning for waste disposal through the entire production phase; did 
not use any other providers for waste disposal; and sufficient availability of further documentation, in case of any 
follow-up questions for the project or its team members. After the initial assessment, all projects meeting the 
criteria were included, as a bigger sample would make the data foundation more representative. For the analysis, 
the waste fractions were classified and categorised according to the guidelines provided by Norsk Gjenvinning. 
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In addition, a distribution analysis was conducted according to Holme and Solvang (1996), to assess both total 
waste amounts, amounts for each of the registered fractions, and amounts per project phase. The biggest fractions 
were selected for further assessment.   

The ML model in Paper III was built on data from 160 projects in the Nordic 10-10 database. CII 10-10 is a 
tool for project benchmarking to develop and enhance processes continuously. The database is developed and 
provided by the Construction Industry Institute at the University of Texas and has later been translated to fit the 
Norwegian construction industry, resulting in the Nordic 10-10 initiative. Several major construction clients and 
contractors have since implemented the Nordic 10-10 program in their project organisations. The tool provides 
the users with a report that evaluates their project and compares it to relevant projects in the database (Nordic 10-
10, c. 2020). It is ultimately providing a report serving as a foundation for further discussion and improvements, 
for individual projects, for a whole organisation, and for the entire body of projects. The questionnaire used to 
obtain the data constituting the 10-10 datasets is upon input specified by sector (construction, industry, or 
infrastructure) and project phase (phases 0 through 4). The 10-10 dataset contains several different features, 
including the four categories of General descriptive data (G), Output ratings (O), Question scores (Q), and Project 
ratings (I). The Q-attributes are distinct, and closely related to the project sector and phase. Furthermore, they are 
divided into two categories, those under 40 and those over 100. The sub-40 questions are binary, while the above 
100 questions are ranked on a scale from 1 to 5. For each given Q-attribute, they may only relate to one specific 
sector or phase. However, as there is more than one respondent for each project, the sub-40 Q-attributes will 
appear in the database as the average of the respondents’ answers, resulting in a scale from 0 to 1. The dataset was 
then loaded into a Python script, where the libraries Pandas, SKLearn, and NumPy were used. When a dataset is 
loaded into Pandas, it is called a Data Frame (DF). The dataset was processed through an Exploratory Data 
Analysis (EDA) and preliminary cleaning, resulting in an initial DF. The DF was then split into nine purposed 
DFs before the next steps were carried out in order: main cleaning, labelling, train-test split, scale, train and fit, 
classification, and lastly analysis and plot of the results.  

For Paper V, the quantitative aspect mainly consisted of data collected in the case studies. Data related to 
the registration of deviations and errors in the case projects were collected, and the potentially saved risk was 
assessed based on the three factors: the expected frequency of a given category of deviation or error, the average 
effect on progress/schedule and cost in the project, and how difficult it would be to discover the deviation or error 
using traditional methods. Each factor was assigned a number based on available data in case documents and 
insights from involved personnel. Ultimately the quantified magnitude of the individual factors was based on both 
qualitative and quantitative factors (Cramer, 2003). Each category of errors and deviations was based on images 
and data from scans, BIM models, and project data. When the three factors were assessed, the potential risk was 
evaluated based on (a) these numbers and (b) insights provided through interviews. For instance, findings from 
the interviews suggested that a higher frequency or more significant consequence should be weighted higher than 
the difficulty of detection, as this, empirically, had been found to affect the project to a larger extent. The 
quantitative analysis provided insights into the potential savings related to the implementation of highly effective 
digital tools to avoid errors and deviations before they arise. The quantitative analysis also provided a greater 
understanding of which factors would affect the profitability and, therefore, the sustainability of the solution.  

 
3.7.2 Qualitative analysis  
 
The purpose of a qualitative analysis is to concretise each aspect of the collected data to compare the findings 
against each other (Jacobsen, 2015). All studies utilising qualitative data sources followed the same procedure. 

The transcripts of all interviews were stored in a database accessible only by the researchers in in the relevant 
study, according to requirements from the Norwegian Centre for Research Data (Norsk Senter for Forskningsdata, 
NSD). Similarly, all written summaries from seminars, focus groups, project and site visits, and courses were 
stored in corresponding databases. Each study was assigned one database.  

Caution was displayed as the data between the sources were analysed, first individually, iteratively, and then 
against the other sources to ensure high awareness of the context when analysing the data, as per Bryman (2016). 
The first stage of the coding process was coding by topic. Then, the data were assessed for patterns, and group 
codes across the interviews were identified and clustered. The emergent patterns and codes generally varied 
between studies, but some overarching concepts were reoccurring. When new codes emerged, previously coded 
transcripts were re-analysed with considerations towards the new codes. Assessment of the codes often revealed 
that some were interrelated; this was seen as a separate finding, informing the research beyond the initial findings.  

Case study data were collected in a case study protocol. The protocol included collected documentation, 
transcriptions from interviews, and codification of the results to enable the comparison to other findings.  
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As described, literature review findings were coded based on the scoping review framework. Charting, 
collating, and summarising results were done by collecting all relevant records in the established database. The 
format of the database varied according to the aim of the review. The contribution of each record to the study was 
noted in the database, and additional notes concerning the relevance in the context of other findings were made. 
All records included in the final selection of the literature review were thoroughly assessed according to four 
criteria: credibility (i.e., authority of author and publication channel), objectivity, accuracy (including currency), 
and relevance to the study in question.  
 
3.8 Assessment of research design  
 
Table 3-5 summarises the methodological choices for this thesis for each of the layers in the research onion.  
 

Table 3-5. Assessment of research design. 
Paper number I II III IV V VI 

Philosophy Pragmatism 
Approach Abductive Hybrid  

 
Deductive 
Abductive 

Hybrid  
 

Deductive 
Inductive 
Abductive 

Hybrid  
 

Deductive 
Abductive 

Hybrid  
 

Deductive 
Inductive 
Abductive 

Hybrid 
 

Inductive 
Abductive 

Methodological 
choice 

Mono 
method  

Mixed 
model  

Mixed 
method  

Multi 
method 

Mixed 
model  

Multi 
method 

Strategy Survey 
 

Grounded 
theory 

Survey 
 

Grounded 
theory 

Survey 
 

Grounded 
theory 

Survey 
 

Grounded 
theory 

Survey 
 

Case study 
 

Grounded 
theory 

Survey 
 

Grounded 
theory 

Perspective Longitudinal Cross-
sectional 

Cross-
sectional 

Cross-
sectional 

Cross-
sectional 

Cross-
sectional 

Techniques and 
procedures 

Scoping 
review 

analysing 86 
peer-

reviewed 
articles 

18 semi-
structured 
in-depth 

interviews 
 

14 
structured 
interviews 

 
Question-
naire with 

21 
respondents 

 
Document 

study 
 

Quantitative 
assessment 

of waste 
data in 161 

projects 
 

Literature 
review 

 
Project and 

site visit 

Data from 
160 project 

cases in 
Nordic 10-
10 database 

 
Literature 

review 

18 semi-
structured 
in-depth 

interviews 
 

Literature 
review 

9 semi-
structured 
in-depth 

interviews 
 

Multiple-
case study 
including 6 
projects and 

4 case-
specific 

interviews 
 

Document 
study 

 
Quantitative 
assessment 

of data from 
6 case 

projects 
 

Literature 
review 

36 semi-
structured 
in-depth 

interviews 
 

Document 
study 

 
Literature 

review 
 

Site visit 
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In qualitative studies, criteria for reliability, validity, and generalisability can be used as indicators for the 
quality of a study (Jacobsen, 2015; Tjora, 2017). The reliability of a study is related to verifiability; reliability can 
relate to the accuracy of the data being used, how the data is collected and how they are assessed after collection 
(Johannesen, 2016). Reliability and validity in a study are essential to ensure verifiability and relevance, 
respectively. For a literature review, this could include both the sources that are being used, and the data collected 
from the sources that are deemed to be relevant. In an interview, this could include the researcher selecting the 
right informants and the right questions to ask the informants. Possible sources of errors can lie within the ability 
of the researcher to validate literary sources, the assessment of relevance in the background and experience of the 
informants, the formulation of research questions that could be misunderstood or miscommunicated, or the 
analysis of the data from informants. The selection of interviewees and resources in the study assumes that the 
experts in the field will have first-hand experience with these tools. The novelty of the topic limits the existing 
theoretical foundation as well as the number of relevant interviewees for the study. To provide a holistic 
understanding and ensure sufficient reliability, validity, and generalisability in the study, a compound and 
comparative research design was developed on the principles of triangulation (Flick, 2004). The generalisability 
could be restricted, as both qualitative and quantitative considerations are based on a limited number of case 
projects and interviewees.  

The research design utilised a combination of structured and unstructured data collection, primary and 
secondary data sources, and qualitative and quantitative methods to help overcome limitations associated with the 
individual methods and sources, thus improving the reliability, validity, and generalisability of the whole study 
(Love et al., 2002; Flick, 2004).  

An abductive research design was employed for theory generation and modification and to incorporate 
existing theory where appropriate to build and modify the theoretical framework (Saunders et al., 2019). The 
intention was to include existing theory where applicable, build new theory and modify existing theory, and build 
upon real-life observations. Therefore, the approach was based on a combination of reviewing previous theoretical 
knowledge to build a theoretical framework (deductive), constructing hypotheses from real-life observation 
(inductive, abductive), and theory-matching of real-life observations and theoretical frameworks (abductive). The 
initial, unstructured literature search, with continuous validation of the findings as previously described, provided 
a framework and template for the coding, ultimately employing both theory-driven and data-driven codes.  

A potential source of inaccuracy lies in the fact that the findings from the interviews were analysed within a 
framework that had not been presented to the interviewees at the time of the interview. On the other hand, the 
responses from the interviewees could have become biased if constrained by a previously defined framework. To 
mitigate the potential source of error stemming from the subjectivity in the data coding and decoding, the results 
were presented to, and discussed with, a separate group of selected informants, peer academics and practitioners. 

The use of primary data sources ensures the quality and relevance of the data (Jacobsen, 2015). Secondary 
sources can provide a useful addition and extension of the primary sources. However, the use of secondary data 
sources requires the researchers to be more mindful of how the purpose of collection, methods used, and the focus 
of the source might differ from the researchers’ own work. This became part of the validation process.  

In addition to ensuring reliability, validity, and generalisability in the individual studies, the continuous 
presentation of preliminary findings and following discussions with selected informants, peer academics, and 
practitioners was done to receive input from relevant actors in academia and the industry and further ensure the 
validity and reliability of the research and the findings.  

Throughout the work with the thesis, selected parts of the research have been presented in a wide range of 
settings and situations, including two guest lectures at Universidad Politécnica de Madrid, a presentation at the 
University of Salford Built Environments Summer School Programme, as well as multiple presentations for 
industry leaders and industry experts, and members of Construction City Cluster. As a result, the research has 
already been partially applied and evaluated in both academic and industry settings.  

In the spring of 2022, a six-month exchange to a research group at the University of Salford in Greater 
Manchester, United Kingdom, contributed another dimension to the triangulation of methods. The new research 
groups provided new insights and perspectives into the conducted research and the context it was to be assessed 
within and provided further direction and perspective for the studies planned through the spring.  
 
3.8.1 Reliability  
 
The reliability of a study is related to the verifiability and replicability of a study (Olsson, 2011).  

The research should be transparent enough for it to be replicated. Reliability refers to the accuracy of the 
data that is being used, how the data is collected and how they are processed (Johannessen et al., 2016). Tjora 
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(2017) emphasises that qualitative methods often involve a certain degree of subjectivity, which requires the 
researcher to be mindful of how this might affect the collection and analysis of the data. If many different methods 
give the same findings, the findings are likely to hold high reliability.  

Tjora (2017) emphasises the importance of understanding how the position of the researcher can affect the 
research itself. To increase the reliability of a study, it is therefore recommended that the researcher reflects on 
their point of view and expectations for the collection, analysis, and interpretation of data early in the process. In 
the context of this thesis, earlier experience from the construction industry and previous work with topics related 
to sustainability in the industry could have led to certain expectations and assumptions related to the topic, but 
could also lead to a deeper understanding of the findings and the context they should be seen in. Lower levels of 
previous knowledge in the field of AI contributed to an open and neutral approach to this topic.  

For this thesis, triangulation was used to explore if the findings from different sources of data would coincide. 
Triangulation of methods means combining different methods and is used to compensate for limitations related to 
the individual methods (Olsson, 2011). Triangulation can contribute to a deeper understanding of a topic and the 
reliability and validity of a study (Halvorsen, 2008; Denzin, 2012).  
 
3.8.2 Validity  
 
The validity of a study is related to the relevance of the study and whether the study answers the research questions 
and objectives as defined or not (Olsson, 2011). This means that the chosen method must be relevant to what the 
researcher intends to measure. For a qualitative study, the validity can be related to the selection of informants 
and the collection of data from the informants (Dorussen et al., 2005). For a quantitative study, it can be related 
to selection of projects for monitoring. The literature distinguishes between internal and external validity.  

Internal validity is related to whether the collected data provides a good image of reality or not (Jacobsen, 
2015). Among the factors that can affect internal validity in a study is, for instance, a lack of common 
understanding of terminology, which in an interview situation can lead to misunderstandings, and in the worst 
case, lead to the interviewer and interviewee talking (about) entirely different things. To avoid this, during the 
data collection process, any terminology and concepts were continuously and continually defined and compared 
and related to the field of the interviewee to ensure accord. After the interviews, follow-up questions were used 
to ensure a common understanding between the interviewer and interviewee, for instance, if any uncertainties 
showed up during the coding of the results.  

External validity is related to whether the findings of a study can be generalised or not (Jacobsen, 2015). A 
factor that could affect external validity is a limited data foundation, as this, in turn, could hinder a representative 
description of the phenomenon that is being studied. To avoid this, a broad range of methods was used, and actors 
from all parts of the value chain were involved. This will not guarantee generalisability but can contribute.  
 
3.8.3 Generalisability  
 
Generalisability and external validity are closely related terms.  

In this thesis, mostly projects and informants in the Norwegian construction industry are assessed. Some 
organisations represent a larger portion of the informants in interviews and questionnaires. This means that the 
contextual quantitative and qualitative findings might not be transferrable to other industries, other countries, other 
organisations, or other projects.  

Jacobsen (2015) distinguishes between intensive and extensive research design. This is related to whether 
the research is done in depth or breadth, respectively. The qualitative design of the thesis can mainly be categorised 
as intensive; many variables are examined, with relatively few units. The strength of an intensive research design 
is linked to generalisation at a theoretical level, where the theory emerges through what the researcher has been 
told, read, or heard (Jacobsen, 2015). The empirical findings are detailed and nuanced but based on a few units; 
therefore, the generalisability is generally lower. By using triangulation, different designs can be combined; for 
instance, in-depth interviews, intensive by nature, can be combined with questionnaires, extensive by nature 
(Dalen, 2004). Jacobsen (2015) recommends an initial extensive research strategy before starting intensive work. 
For this thesis, this was done by performing an initial, unstructured literature search and introductory talks with 
relevant personnel in the early stages of each study. The scoping review presented in Paper I contributed to this. 
In later stages, in-depth interviews and analyses of data were conducted, built on the initial extensive design. 
According to Jacobsen (2015), this can increase to increasing generalisability and relevance of a study.  

A comparative approach can further contribute to the generalisability of a study (Flick, 2004; Jacobsen, 
2015). This can be done by comparing the findings across units, for instance, by ‘testing’ the findings from one 
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unit by applying the emerging theory from another unit. A comparative approach was implemented in this thesis 
by utilising a broad selection of informants. Informants were selected from the entire project value chain, from 
different companies, with different backgrounds and current employers. This has been important to achieve a 
broad perspective of the study and the findings.  

As described in Chapter 3.5, even if the entire thesis can to some extent be considered longitudinal, the 
individual studies are, first and foremost, cross-sectional studies. This can reduce the generalisability of the study. 
In the overarching discussions of the topic in Chapter 5, no single finding of any single study is considered an 
absolute truth; rather, the overarching, emerging themes from the research is examined in detail.  

Close collaboration with international research environments (namely the University of Salford in England, 
and Philadelphia University in Jordan) as well as continuous participation in international expert groups with 
members from a range of industries and countries, including Switzerland, USA, Spain, Romania, Israel, England, 
and Norway contributed to increasing generalisability in the research.    
 
3.8.4 Ethical considerations  
 
Access and ethical issues implied by the selected research design should always be considered in preliminary 
stages of the research (Saunders et al., 2019).  

The research conducted in this project is regulated by privacy data acts, and the undertaken studies were 
submitted to the NSD. Jacobsen (2015) emphasises that the choices that shape the research process must be made 
based on research ethical principles. Ethical issues can arise when the research directly affects people, and a 
researcher must therefore tread carefully in an interview situation (Johannessen et al, 2016).  

Jacobsen (2015) presents three basic requirements for research ethics, which deal with the relationship 
between researcher and informant:  
 

 Informed consent 
 Requirements for privacy  
 Claim to be correctly reproduced  

 
The NSD (2022) also emphasises that the researcher must respect the requirement for free and informed 

consent and ensure the privacy of the participants. To carry out the research according to these principles, a 
transparent process was important. Before the informants agreed to participate, a project description was issued, 
together with a description of how their information would be processed and how the whole study would be carried 
out. A consent agreement was then signed in accordance with regulations from the NSD. In all published materials, 
the informant is kept anonymous, and specific statements or experiences are not linked to specific informants; no 
directly identifiable information is given.  

Tjora (2017) recommends communicating the research results back to the informants after completing the 
study; this is a nice gesture, a thank you for the help, and can, at the same time, give the researcher constructive 
feedback and reflections beyond the initial contribution and ultimately support in further research.  

Respondents who participate in interviews must be treated fairly (Bryman, 2016). The NSD ensures that 
conducted research is organised in a way that protects the rights of the participants, including confidentiality and 
privacy. This study was submitted to NSD in the early stages of the research, and data collection was initiated 
following formal approval.  

Documents containing information on the interview process and interview questions were sent to each 
interviewee prior to the interview itself. The documents described the purpose of the study, the expected 
contribution from the interviewees, data collection methods, and how anonymity would be ensured in the 
published version of the script. Each interviewee provided their written consent to participate in the study based 
on this information. Their identity and organisational affiliation were anonymised to protect the confidentiality 
and privacy of the interviewees and their participation in the study. Similarly, if the interviewees named specific 
partners, names, organisations, or in other ways shared confidential information during the interviews, this 
information was anonymised during the coding stages of the research.  

In addition to the anonymisation of involved interviewees and informants, all data collection, processing, 
analysis, and coding has been conducted neutrally and as transparently as possible to ensure replicability.  
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4 Findings from Individual Papers  
 
 
 
The thesis is built upon the findings from six scientific papers. This chapter presents the findings from each of the 
individual studies, as summarised in Table 4-1.  
 

Table 4-1. Main findings from each paper. 
Paper Main finding 

Paper I The biggest knowledge gap in the field is related to the practical 
implementation of the technology, and the implications related to the 
scalability and robustness of these technologies.  

Paper II Effective measures for waste reduction on construction sites with AI-
powered tools, and related practical implications. Defines a possible 
process and approach for developing a holistic framework, enabling 
effective use of developed tools and techniques.  

Paper III Meaningful, AI-based analyses can be conducted for low-resolution 
data. However, more standardisation frameworks for data management 
in construction projects can enable continuous comparison and tracking 
between projects, greatly improve project-based benchmarking, support 
project success prediction, and serve as early warning systems.  

Paper IV The main barriers related to the effective data management for materials 
and products in existing buildings were identified as lack of data 
operability, lack of competence, unwillingness to share data, lack of 
financial incentives, and lack of harmonisation.   

Paper V AI-powered systems can be used to enhance the QA process on the 
construction site. A five-step standardised process framework is 
defined, with five main areas affecting the effectiveness and efficiency 
of the system. Thirteen factors affecting profitability are identified, 
along with the main challenges perceived to hinder productivity and 
sustainability in the process.  

Paper VI Developers display more maturity and proficiency in AI than users and 
implementers. Users are not as proficient as they would like to be. Five 
factors are central for increasing proficiency and ensuring sustainable 
implementation of AI: collaboration and stakeholder involvement; 
access to specialised expertise; sufficient financial support; trust and 
transparency; awareness and training. A four-step framework is defined. 

 
4.1 Paper I 
 
The purpose of this study was to map the research in the field of AI-based tools in the construction industry. The 
study focused on the range of applications in the construction context rather than one specific area of application, 
and thus elaborated on the findings from previous reviews such as Ilter and Dikbas (2009), Martinez and 
Fernández-Rodriguez (2015), Juszczyk (2017) and Basaif and Alashwal (2018).  

The study investigated the current and potential future use of AI in construction projects, and the paper 
provided an overview of the current state of the field, ultimately giving a sense of direction in a time when 
academics and practitioners alike are eager to move forward and innovate in the field. Available technology, data 
access, quality of data, and availability of data are rapidly increasing, while the cost of data processing tools is 
decreasing equally fast. This creates the possibility for new technologies and applications that were not feasible 
even a few years ago. 

The paper utilised a scoping review methodology and provided an overview of the recent and current uses 
of AI in construction projects through a descriptive analysis of the characteristics and contents of 86 peer-reviewed 
articles from 2015 to 2020. The classification framework included descriptive features (year of publication, 
source, author(s), location, and keywords), method (conceptual, qualitative, quantitative, or mixed methods), areas 
of application, and technology. Mapping the descriptive features of the publications enabled an extensive analysis 
of development over time, and the inclusion of bibliometric elements to the analysis.  
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Publications were categorised according to methodology as either conceptual (40%), qualitative (21%), 
quantitative (12%), or mixed method (28%), as summarised in Figure 4-1.  

The review saw a tendency towards conceptual methodologies. Strictly developmental studies in terms of 
specific terminology, technical systems, or framework were categorised as conceptual. More than half of the 
conceptual studies included some qualitative or quantitative testing and validation in the development of the 
system or algorithm; this was still considered part of the development process, and the studies were therefore still 
categorised as conceptual. Most developed systems were tested on a PoC scale, and the research did not address 
whether the systems were further developed or implemented in larger scale or not.  

 

 
Figure 4-1. Distribution of chosen methodologies. 

 
Publications categorised as qualitative typically addressed aspects surrounding the technology, including 

potential future areas of application, possibilities, and barriers to the technology itself, related to the soft factors. 
Notably few studies discussed the use of AI-based systems in the context of people and processes, focusing on 
technology awareness and digital maturity with an emphasis on AI. This discussion largely appears to be lacking 
in studies with a focus on more specific solutions and tools – this is also found in previous reviews (Basaif and 
Alashwal, 2018), and suggests that a gap exists between the potential that the technology constitutes and the 
evidence of how it is utilised in both practical and academic context. Publications categorised as quantitative 
involved the testing of previously developed techniques and algorithms and were usually applied to rather limited 
datasets. This could suggest a low degree of research-based AI implementation, constituting a great potential for 
future implementation and pilots.  Publications were categorised as mixed method when the research design used 
two of the three aforementioned methodologies equally. Most studies categorised as mixed method were rooted 
in a conceptual base, but in combination with traditionally qualitative or quantitative methods.  

The number of studies conducted within each methodological approach appeared to change between 2015 
and 2020, indicating a rapidly developing field. Earlier publications showed a tendency towards mixed or purely 
quantitative or qualitative studies, whereas later publications were often purely conceptual. An increasing interest 
in AI within the construction industry becomes apparent; this is confirmed both by the body of publications as a 
whole and individual studies. However, a higher concentration of conceptual studies could suggest a gap between 
theory and practice. Many studies seemingly remain in a development phase, and few studies address the practical 
adoption of AI-based technology in the industry and among practitioners at a larger scale. 

To elaborate, most studies illustrate how certain technology can be utilised in different parts of construction 
projects, for example exploring site layout design (Amiri et al., 2017), or predicting project performance (Mirahadi 
and Zayed, 2016). However, most studies lack a larger context for the technology – a framework for the 
technology to operate within. The studies do not discuss organisational or process-oriented considerations in the 
adaption and adoption of AI in projects. This could, naturally, have many explanations.  

For example, a few studies discuss the lack of access to sufficient amounts of quality data. Another possible 
explanation could lie in the lack of transferability in the developed models and frameworks, meaning that new 
studies are not necessarily able to build on previous research. This, in turn, could suggest a need for a more 
standardised framework of technologies and terminology for researchers to operate within when exploring the 
topic of AI in construction. Challenges concerning transferability could ultimately prevent a model built in one 
environment from being useful in another environment, due to differences in requirements and prerequisites; it 
could also prevent one study from effectively building upon the foundational work of another.  
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This can be understood as a sign that the field itself remains at an emergent stage; at the same time, this 
provides an understanding of the great potential the field demonstrates. Existing case-based research can, and 
should, be used as a foundation for developing larger-scale studies.  

In terms of areas of application, the research seems to be relatively evenly distributed. There appears to be a 
predominance of estimation and cost control (22%) and logistics, planning, and scheduling (19%); the two 
together account for almost half of the body of publications. As mentioned, the availability of a sufficient quantity 
and quality of data is a challenge in the construction industry. The two predominant areas both lean towards the 
quantitative and more easily measurable area of the industry; time and money are easily quantifiable. Other areas 
of application include strategy (12%), health and safety (10%), project performance and success estimation (10%), 
risk management (8%), reviews and overviews (7%), sustainability (7%), and material properties (5%). Notably, 
even if a lot of the studies address a certain area of application conceptually or in general terms, relatively few of 
these studies report on actual implementation and practical use beyond pilots and PoCs. Most focus on the 
potential use or the development of techniques for future use. No significant links were found in the body of 
publications between the chosen areas of application and the chosen methodologies.  

Figure 4-2 illustrates the distribution of areas of application.  
 

 
Figure 4-2. Distribution of areas of application. 

 
The framework presented by Akinade (2017) was used for classification of AI systems, meaning systems 

were categorised as either ML, KBSs, EAs, or hybrid systems. The classification was based upon the description 
of the techniques provided by the authors themselves. More than a third of the publications (38%) did not explicitly 
state the nature or class of the technology in question. Some explanations for this were identified during the search. 
Studies lacking a technical description seemed to mainly focus on implications and effects, or potentials and 
barriers, rather than the development or use of specific technologies. Hybrid systems (26%) and ML (26%) were 
the main techniques studied in more than half of the publications. KBSs constituted 6% of the reviewed studies, 
while EAs constituted 2%. The majority of the hybrid-classed studies describing technology and techniques also 
utilised ML, mostly supervised ML; a notable number were also based on EAs. Among the publications discussing 
ML, half of these specifically discussed neural networks. The remainder of the publications showed no significant 
trend or preferred technique within the category.  There appears to be an increase in the application of hybrid 
models in the later years compared to earlier years (Xiao et al., 2018). This could suggest increased use of more 
compound systems as technology and industry develop because hybrid systems are able to solve more complex 
tasks than any single system (Akinade, 2017).  

As part of the screening process of the review, a significant number of studies using the terms AI or ML 
without addressing specific techniques or approaches were discarded; this implies that many use the terminology 
somewhat loosely. One explanation could be a lack of unambiguously defined terminology and vocabulary in the 
field, especially in the context of the construction industry. Another explanation could be that these are ‘buzz 
words’ popularised by the media; this can contribute to the confusion of definitions. Most of the exclusions were 
caused by the high number of papers discussing technology not explicitly defined as AI. 

Figure 4-3 illustrates the distribution of discussed technologies.  
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Figure 4-3. Distribution of discussed technologies. 

 
Ultimately, the findings from the literature review became pivotal for the thesis as a whole, making it clear 

that the biggest knowledge gaps in the field, both in academia and in the industry, were related to the practical 
implementation of the technology and, by extension, implications related to the scalability and robustness of AI-
based technologies.  

The field is rapidly evolving, with new technologies, techniques, and tools being developed both inside and 
outside of the construction context. A visible change in preferred methods, as well as a change in keywords over 
time, imply that the field is indeed developing. The conceptual methodology seems to be the preferred approach 
in the field of study. The extensive use of conceptual methodology suggests that this method works in a research 
context but could, at the same time, suggest a need for other, more practically focused methods to develop the 
field further. The wide thematic range of previous studies provided a valuable foundation for future research, but 
the field is assumed to benefit from a shift towards more interdisciplinary studies. Many studies focused purely 
on the development of algorithms and tools, whereas others focused purely on the expected effects.  

It became apparent that AI holds significant potential for increasing productivity and sustainability in 
construction projects, but the construction industry seems to lack the progress seen in other industries.  

The study contributed to the current state of research on AI in construction projects by presenting a state-of-
the-art view of the research done in the field from 2015 to 2020. It provided an overview of methodologies used, 
areas of application, and technologies, ultimately providing a direction for future research. It illustrated possible 
areas of innovation and application of AI-powered tools and could, in that sense, serve as a tool for benchmarking.  

Findings showed a need for future research to focus on developing holistic frameworks to improve scalability 
and robustness. For this thesis, it meant remaining studies would mainly be centred around systemic, process-
oriented, and organisational aspects rather than the technical development of specific tools or algorithms. Through 
understanding the current status and the main challenges the industry is facing, and mapping the main dimensions 
of the implementation process, a framework could be developed to help actors move from ambition to practice.   
 
4.2 Paper II 
 
The purpose of this study was to examine and explore through exemplification how AI-based tools, in practice, 
can be utilised in construction projects. As the findings in Paper I suggested, more research was needed on the 
practical implications of implementation, and this study sought to contribute to the filling of this gap. To exemplify 
this, the study explored how AI-based tools can help reduce waste on construction sites.  

The construction industry accounts for nearly 40% of worldwide energy consumption and energy-related 
gas emissions (Global Alliance for Buildings and Construction, 2017). Reduction of waste on construction sites 
plays an important role in the usage and development of sustainable solutions, and in the ongoing development of 
a sustainable industry (United Nations, 2021). Studies show that certain waste fractions have very high waste 
percentages (Hjellnes Consult, 2015; SSB, 2019), meaning that large amounts of such materials pass through the 
value chain without adding any practical value to a project.  

An explorative, mixed method research design was deployed. Qualitative methods were utilised, including 
a literature review, 32 interviews, a project visit, a site visit, and participation in chosen seminars. In addition, 
quantitative methods included an analysis of waste quantities in 161 construction projects, selected based on 
criteria for availability of data, as well as a targeted questionnaire with 21 respondents.  
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Previous research identifies timber and wood, plaster, cardboard and paper, plastics, and mixed waste as the 
most significant waste fractions (Rønningen, 2000; Kartam et al., 2004; Osmani, 2012; SSB, 2019). Evaluating 
the generation of waste in 161 new building projects confirmed previous findings: the most problematic fractions 
were identified as timber (34.6% of total waste); mixed waste (27.3%); plaster (17.8%); paper and cardboard 
(2.7%); and plastic (2.3%). The same fractions were confirmed and highlighted by informants in the questionnaire 
and interviews. Informants identified the activities and processes producing the most waste for each fraction. A 
range of tools are already established as suitable for construction site waste reduction, including Lean Construction 
(Womack et al., 1991; Koskela et al., 2002). Other tools include sustainable design choices (Innes, 2004; Zero 
Waste Scotland, 2016); industrialisation (Tam et al., 2005), and digitalisation (Charef et al., 2018).  

The study concluded with 18 proposed measures.  Conceptually, the recommendations were constructed by 
first identifying the main sources of waste, what waste fractions were the largest, and what activities and processes 
in the project contributed to the generation of waste. Following this analysis, existing measures for waste reduction 
were assessed, including concepts related to specific frameworks such as Lean Construction, along with concepts 
related to more general developments in the industry such as industrialisation and digitalisation. Then, AI-based 
tools and technologies considered relevant were assessed in the context of the identified waste fractions and 
processes, and the established tools. This conceptual framework is illustrated in Figure 4-4.  

Areas that hold potential to be enhanced using AI-based tools should be identified first, and solutions second. 
This was later confirmed by the findings in Paper VI.   

 

 
Figure 4-4. Conceptual framework for waste reduction powered by AI. 

 
From this assessment, the study uncovered several possibilities and concluded with the 18 measures for the 

reduction of waste on construction sites, along with a set of recommendations for practical implementation. The 
recommended measures were related to the most relevant project phases for implementation, and included 
definition of appropriate targets for waste production, optimisation of resources, continuous tracking, reporting, 
and presenting of waste quantities, training, conducting inspections, and implementation of specific routines for 
warehousing; the recommendations included development and deployment of ML, KBS, and ES systems. It was 
assumed that most complete AI techniques and tools would comprise more than one form of AI and thus be hybrid 
models, and so the dominant system or technique was denoted in the recommendations. Recommendations related 
to the timing of the implementation were proposed based on NS 3467:2023 framework (Standard Norge, 2023).  

The recommendations are summarised in Table 4-2.  
 

Table 4-2. Recommendations for implementation of waste reduction measures. 
# Recommended measures for waste reduction Technique Phase  
1 Early and explicit definition of targets for waste reduction ML (regression) 4 
2 Early and explicit plan for resource optimisation ML (ANN), EA (GA) 4 
3 Continuous tracking of waste quantities ML (ANN) 5 (3,4) 
4 Continuous reporting of waste quantities ML (ANN) 5 (3,4) 
5 Continuous and visual presentation of waste quantities  ML (ANN) 5 (3,4) 
6 Defining routines for warehousing on-site ML (ANN), EA (GA) 4,5 
7 Defining routines for ordering materials ML (ANN), EA (GA) 4,5 
8 Training of all involved personnel  ML 3,4 
9 Contractual arrangements based on bonus-malus ML (regression)  3 
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10 Establishing a digital platform for all actors in the project ES (RBS)  1,2,3,4,5 
11 Establishing a digital platform for experience sharing ES (RBS)  1,2,3,4,5 
12 Inspections during all production phases  ML (ANN), EA (GA) 5 
13 Layout planning during all production phases ML (ANN), EA (GA) 5 
14 Increased use of digital tools for ordering accurate quantities  ES (RBS) 5 
15 Marking orders and materials arriving on-site ES (RBS)  5 
16 Design for standardised elements EA (GA)  2 
17 Design for the use of cut-offs EA (GA) 2 
18 Design for shared geometry  EA (GA)  2 

   
The study helped to bridge the gap between ambition and practice by highlighting relevant considerations 

related to the practical implementation of measures for waste management, and by providing an understanding of 
which AI-based tools and measures are considered effective for waste reduction in construction projects. A range 
of practical implications were discussed. The increased use of AI in construction projects is expected to require 
investment, especially during the early phases of implementation and integration. As the cost of data processing 
continues to decrease and the interest within the field continues to increase – ultimately bringing more available 
and commercialised solutions – it is reasonable to assume the cost will decrease accordingly.  

The findings suggested that, to utilise the potential of AI-based techniques fully, the construction industry 
should build upon existing methodologies and strategies; however, it is likely that the industry as a whole would 
need to eventually reinvent and redefine traditional project models, contracts, business models, and enterprises. 
This is a comprehensive task and should involve key actors in all parts of the value chain.  

In the concluding remarks of the study, it was noted that a useful undertaking would be to study in closer 
detail how data of sufficient quantity and quality can be collected, structured, and utilised to enable effective use 
of AI; this, in part, inspired the initiation of the two studies resulting in Paper IV and VI. To validate the findings 
related to the conceptual development of a framework to utilise AI-based tools, it was necessary to explore more 
than one area of application; later papers explored QA (Paper V) and project success (Paper III). 

 
4.3 Paper III 
 
The purpose of this study was to exemplify an ML application on a limited dataset, as datasets are often limited 
in a construction context, relatively speaking. In addition, the study gave an opportunity to gain first-hand 
experience with the process of developing and deploying an AI-based tool in a construction context.  

No single definition of project success exists (Bannerman, 2008). One direction of project success research 
aims to identify the factors that can contribute to project success, project failure, or project risk. Previous research 
has explored the use of AI to predict project success and examine and identify critical success factors. Several 
techniques are utilised in previous research (Magaña and Fernández Rodríguez, 2015), including ANNs (Chua et 
al., 1997; Dvir et al., 2006; Ko and Cheng, 2007; Wang, Yu and Chan, 2012; Jacobsen and Teizer, 2022), EAs 
(Ko and Cheng, 2007; Cheng et al., 2009), and regression analysis (Dvir et al., 2006).  

The study conducted a quantitative analysis on a sample of 160 Norwegian construction projects, building 
the algorithm with data obtained from a detailed questionnaire delivered to relevant project team members through 
the Nordic 10-10 initiative. The method utilised ML through a Random Forest Classifier (RFC). The original 
dataset was loaded into a Python script, where selected libraries were used. One of the selected libraries was 
Pandas. A dataset loaded into Pandas is a DF. The original datasets were processed through an EDA and 
preliminary cleaning, resulting in an initial DF. This DF was then split into nine purposed DFs before the next 
steps were carried out in order: main cleaning, labelling, train-test split, scale, train and fit, classification, and 
lastly analysis and plot of the results. The process is summarised in Figure 4-5. To keep a low number of DFs and 
filter out the least relevant, only some combinations were explored further. For instance, if a DF had too few 
projects, or only either successes or failures, they were dropped. After initial simulations, three DFs yielded more 
precise results than the remaining six; the main analysis therefore focused on these three.  
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Figure 4-5. Development pipeline.  

 
The findings obtained from the analysis show that it is possible to use AI and ML on a limited, low-resolution 

dataset. The data in the Nordic 10-10 program are not collected specifically for the utilisation of AI, and therefore 
the development required a lot of preparatory work. Construction project data can be of high resolution and 
domain-specific, such as plans for large projects. Low-resolution data, such as the data this study was built upon, 
are based on qualitative evaluations done by the project organisations themselves. This has advantages; the data 
describe first-hand experiences from the project team members. Disadvantages include a risk of bias by the staff 
reporting the scores. The 10-10 database is based on reports from members of the project team in respective 
projects. This means that there is a possibility of bias or imprecision; consequently, a value could have been put 
in the wrong place or provide an inaccurate or biased image of the actual situation.  

Future analyses would benefit from more consistent registrations of questions and parameters, which is a 
common issue in ML and other quantitative analyses.  

A model or approximation will only ever be as reliable as the data it is based upon. Currently, no standards 
exist for collection and utilisation of data in construction projects. To a certain extent, this is understandable 
because all projects are unique. However, it would greatly benefit this type of analysis if some standardisation of 
data structures would emerge. Some industry-specific standards exist for structuring of data, such as for BIM and 
standards for data coding such as NORSOK in the Norwegian oil and gas industry. Data that can be consistently 
compared and tracked between projects has the potential to improve project-based benchmarking, support project 
success prediction, and perhaps most importantly, serve as early warning systems that can identify potential issues 
in time for action to be taken.  

The findings from the study also demonstrate that it is possible to identify the most important success factors 
for the projects in question with the developed model. Ultimately, the ML model demonstrated the ability to 
discover important factors for project success from a limited dataset. Such analyses can be used in early phases 
of a project to predict project success in later phases, or in the whole project, and could prove to be a useful tool 
to eventually achieve more project success. 

Specifically, the findings suggest that a group of selected processes is more important than others in 
achieving project success. The identified success factors support the theoretically (and empirically) acknowledged 
importance of early planning and analysis, managing complexity throughout the project, leadership involvement, 
and processes supporting project success. The top features (factors) from the best performing DFs with their 
conceptual meaning is summarised in Table 4-3.   

 
Table 4-3. Top features from the best performing DFs. 

Feature Concept 
The complexity was very high due to the progression plan Complexity 

The project had a large quantity of changes in the list of main components  Changes 
The project had a large quantity of deviation reports  Deviations 

All relevant project members were involved in the uncertainty analysis Uncertainty 
The involvements from project owner were appropriate Leadership involvement 

The project’s processes and systems support project success Project owner process 
The project team participated in adequate engineering work training Training 

Suggestions for improved constructability were evaluated and integrated Planning 
Costs to fix potential faults were considered during the engineering phase Cost of quality 

 
Simultaneously, certain previously acknowledged factors were expected to be among the identified factors; 

ultimately, these did not appear in any of the algorithm results. These included communication with key personnel 
and stakeholders, early involvement of key personnel, communication of strategic goals and project goals from 
the leadership team, among others. Although the factors are not emphasised by the model, they appeared to be 
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important for success in the sample projects. One explanation for this is that the features that are not present are 
represented and reflected in other features. For instance, the concept of process support success was reflected in 
three separate features in the analysis, but only one of them was categorised by the algorithm as an important 
success factor. Therefore, the low occurrence of certain features does not necessarily indicate a lower importance 
of the feature.  

Beyond the findings related to the assessment of project success, several findings could be derived from the 
development process itself, and the metadata collected during this process.  

In developing the algorithm, much of the time was spent on preparing the dataset, meaning splitting, 
processing, cleaning, and labelling. The data used were originally collected to be read and understood by humans; 
inevitably, for an algorithm to make sense of the same data when only appraising information as numbers, time 
and resources must be spent to prepare the dataset. Furthermore, certain entries lacked one or more datapoints, 
ultimately rendering the whole entry ineffective.  

Throughout the process, several decisions were made regarding handling missing values, weighting of DFs, 
tuning of hyper parameters, and definition of classes. These are all decisions that can, and likely will, affect how 
the algorithm works. To help both academics and practitioners to continue to build on developed systems and 
tools, a certain degree of transparency is needed to provide an understanding of how the development can affect 
the outcome, and how the outcome is to be understood in a larger context.  

The overall assessment once again highlighted the importance of an extensive data management strategy, 
ensuring a high-level collection and storage of relevant data; this was further investigated in Paper IV and VI.  
 
4.4 Paper IV 
 
The purpose of this study was to explore barriers related to mapping, collecting, and storing data about materials 
and products in existing buildings; in essence, discovering data management as an enabler for circular economy.   

A transition to a circular economy is considered essential to sustainable development in the built environment 
by reducing resource consumption and carbon emissions, and moving away from the traditional, linear economic 
model (Pomponi and Moncaster, 2016; Cheshire, 2019). The reuse of existing materials is a circular economy 
practice that can significantly decrease resource consumption and carbon emissions, but one that requires adopting 
a systemic approach and value chain integration on a large scale (Pomponi and Moncaster, 2016; Munaro and 
Tavares, 2021; Knoth et al., 2022). Effective data management can enable the utilisation of new tools and 
technologies and, ultimately, the creation of circular business models in the building industry. To accomplish this, 
a targeted mapping and collection of data must take place. However, several challenges hinder the exchange of 
information in a seamless digital flow through the value chain and building life cycle. 

This study aimed to bridge the gap in the research on data management, providing an empirically validated 
and comprehensive overview of existing barriers and prospects related to mapping, collecting, and storing data 
about materials and products in existing buildings. To provide a construction-relevant context, the topic of circular 
economy set the basis for the study. An initial literature review confirmed the research gap indicated in previous 
research and set the basis for two interview cycles, which contained 12 and 6 interviews, respectively.  

The insights collected through the interviews acquire both technical and practical connotations, seemingly 
coinciding with the findings of other studies investigating the link between digitalisation and circular economy, 
focusing on specific aspects or technologies. Six barriers were identified through 18 semi-structured interviews 
with industry experts working within the fields of circular economy and digitalisation. Through coding and 
interpretation of the emerging concepts, the identified barriers were:  
 

 Lack of data availability  
 Lack of data interoperability  
 Lack of competence  
 Unwillingness to share data  
 Lack of financial incentives 
 Lack of harmonisation  

 
In the circular economy context, lack of data availability is related to data about building materials and 

products being missing, incomplete, inaccessible, or not digitised. Findings argue that the information should be 
dynamic, possibly connected in a digital model or a material passport.  
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Lack of technical interoperability can impede effective data management, and a robust digital infrastructure 
is highlighted as crucial for effective scaling. Data are often stored in different repositories, in different formats, 
with varying levels of ownership and accessibility; this is ultimately hindering effective exchange of information 
between stakeholders through the value chain. Integration with digital tools, such as BIM or material passports, 
are perceived to simplify this process, given that the platform of choice allows exchange of data in an open format. 
Transparency and openness of data is considered essential for enabling interoperability. Another vital aspect of 
improving data interoperability is the collection and storage of data and information in a standardised format. 
Industry actors noted that regulation standards are still missing, adding another layer to the challenge of 
coordination. Digital technologies and tools are expected to contribute to the sharing and connection of data 
between stakeholders in an open, transparent, and standardised way.  

Lack of competence is related to collecting, handling, sharing, and managing of data. Some actors note that 
the competencies adapt over time in an organisation, helped by pilot projects and industry initiatives. 

Unwillingness to share data is another challenge, as the perception in the industry today is that actors are not 
willing to share their information openly across the value chain and between industry actors. Informants note that 
this unwillingness can ultimately hinder the overcoming of other barriers, such as the lack of interoperability.  

A few challenges are associated first and foremost with structural considerations, such as lack of financial 
incentives. Actors argue that it is difficult to establish a business model for reuse of building materials on a larger 
scale without financial incentives originating from the market or the authorities. Stricter requirements from project 
owners and authorities could potentially contribute to solving this barrier and making it financially viable.  

Lack of harmonisation across the value chain is mainly related to the lack of cohesion in procedures and 
processes for data management. This, in turn, can contribute to hindering the exchange of information between 
stakeholders, making it difficult to achieve circular economy and material reuse. Standardising the processes 
related to data exchange and management through connecting the value chain and defining the responsibilities 
and roles of the different stakeholders could help to mitigate these issues. This is expected to also improve the 
lack of interoperability.  

Some identified barriers, such as the lack of data availability and interoperability, lack of competencies and 
unwillingness to share data, are strongly interrelated. A collaborative approach is required to achieve effective 
data management, and to ultimately enable a circular economy in the built environment. According to the findings, 
measures that could contribute to overcoming these barriers include the adoption of a public database to ensure 
openness and transparency of the data. In addition, to ensure the effective management of large amounts of data, 
standardised and harmonised procedures and processes for data management and a financially viable model will 
be necessary. To overcome the barriers, it is essential to strengthen collaboration and trust among key 
stakeholders.  

The study acknowledges the position of AI-based technologies as not the goal itself but a part of a bigger 
system and picture. It illustrates how the utilisation of AI-based tools extends far beyond developing and building 
algorithms and how the technology itself is only one part of a much bigger framework that needs to be in place to 
make use of the technology effectively.  

Through exploring previous and ongoing endeavours among academics and practitioners, the research set 
the basis for developing a holistic framework for data management. This was further explored in Paper VI.  
 
4.5 Paper V  
 
The purpose of this study was to examine how AI can help improve QA on the construction site, specifically used 
in conjunction with BIM and 3D laser scanning.  

Quality in the delivery and deliverables of construction projects has been, and continues to be, identified 
among the most central factors for project success (Arditi and Gunaydin, 1997; Chan et al., 2004; Bang et al., 
2022). Thus, QA plays a vital role in project management (Nguyen et al., 2018). Construction projects often 
involve complex processes and tasks requiring high levels of accuracy and precision; therefore, QA is critical to 
ensure that the project can deliver according to the required specifications and standards. Construction projects 
significantly impact the environment in all stages of their life cycle. Ensuring quality in delivery and deliverables 
is essential for maintaining social sustainability, reducing costs, and minimising environmental impact. 

Laser scanning is identified as a tool to reduce errors and improve the promptness and accuracy of QA 
processes (Anil et al., 2011; Safa et al., 2013). Previous research demonstrated the strengths of using BIM and 3D 
laser scanning in conjunction (Kaylan et al., 2016; Liu et al., 2021). As the advances in digital technologies are 
rapidly increasing, experts argue that the evolution of BIM should be categorised within frameworks factoring in 
people, processes, and emerging technologies (Kubicki et al., 2019; Boje et al., 2020). Wang et al. (2020) suggest 
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that more case-based research on the implementation and use of new digital technology with BIM can contribute 
to empirical validation of previously theoretical findings. 

This study explored the QA process, how it can be standardised, how it can be advanced by increasing 
effectiveness and efficiency, and how AI-powered tools can help enhance the process.  

A mixed method research design was employed. This was done through nine semi-structured in-depth 
interviews, where the interviewees had experience from 15 different projects utilising 3D laser scanning for QA; 
a multiple-case study, investigating case documents and records from six case projects, an additional four 
interviews with personnel involved in the 6 case projects, as well as presentations from involved personnel; and 
a literature review, exploring the topic of AI in a BIM and QA context. An initial, unstructured literature search 
informed the interview guide, and the conducted interviews informed the case study, which again informed the 
literature review. Since the case projects had not utilised AI in their work, the additional nine interviews, as well 
as a scoping literature review, were conducted to inform how AI can be used in the BIM and QA context.   

A five-step standardised process facilitating the use of AI tools was defined, namely: planning; scanning; 
data processing; error detection; and distribution and improvement. The framework provided a set of guidelines 
for the actors in a previously fragmented area of application, to inform future work in academia and industry.  

The seven challenges perceived to be the biggest ones hindering productivity and sustainability in the process 
were identified: 

 
 Time-consuming scanning  
 Time-consuming processing  
 Time-consuming detection of deviations  
 Time-consuming communication of deviations  
 Noise in scan 
 Lack of interoperability  
 Time-consuming updating of BIM model  
 
 Recommendations related to how these challenges could be overcome by utilising digital technologies and 

AI were proposed. The findings from all three research questions informed a proposed system for QA, utilising 
the potential of 3D laser scanning and AI-based tools, both commercially available or tailored to the project and 
organisation, built on proposed established data warehouses.  

The research discovered five main areas impacting the effectiveness and efficiency of the process:  
 
 The BIM model,  
 Competence 
 Involvement of subcontractors 
 Integration in the company QA system  
 Project-specific plans  
 
A series of prerequisite factors were defined for each of the five areas to provide a guideline for validation 

for the QA system. Thirteen factors affecting the profitability of the system were identified, along with the 
perceived certainty for cost estimates. The thirteen factors were related to equipment, company-specific factors, 
project-specific factors, process-specific factors, and factors related to errors.  

For academics, the study provided empirical validation of previously identified theoretical findings, and a 
detailed description of the practical implications related to the use of 3D laser scanning with BIM and AI for QA 
in construction projects. The study provided a foundation for future research to develop and test AI-based tools 
to empirically map the effects of these technologies on the QA process. For practitioners, the study provided a set 
of extensive guidelines to better understand, and more effectively use, 3D laser scanning with BIM and AI for QA 
in construction projects by proposing a framework for standardisation, along with a set of recommendations for 
further advancing and enhancing the process.  

 
4.6 Paper VI 
 
The purpose of this study was twofold. Firstly, the study aimed to assess the AI maturity and proficiency among 
industry actors, namely developers, users, and implementers of digital tools and AI systems. Secondly, the study 
defined a framework acknowledging challenges related to the development and deployment of AI systems, with 
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recommendations and practical implications for the three groups for each stage of the framework. The framework 
is intended to facilitate sustainable implementation of digital tools and AI in the construction context and help 
take the use of AI from an add-on to an integral part of construction projects.  
The purpose of this study was twofold. Firstly, the study aimed to assess the AI maturity and proficiency among 
industry actors, namely developers, users, and implementers of digital tools and AI systems. Secondly, the study 
defined a framework acknowledging challenges related to the development and deployment of AI systems, with 
recommendations and practical implications for the three groups for each stage of the framework. The framework 
is intended to facilitate sustainable implementation of digital tools and AI in the construction context, and help 
take the use of AI from an add-on to an integral part of construction projects.  

Identified barriers for the digital transformation in construction are related to the lack of organisational 
capabilities (Aghimien et al., 2022; Rajabi et al., 2022; Zhang et al., 2023), collaboration and communication 
between stakeholders (Bosch-Sijtsema et al., 2021; Xu et al., 2022), availability of expertise (Aghimien et al., 
2022; Rajabi et al., 2022), and data collection, storage and sharing (Shahzad et al., 2022; Xu et al., 2022). 
Construction digitalisation goes beyond acquisition of necessary hardware and software (Akinosho et al., 2020; 
Adekunle et al., 2021), and there is a need for frameworks facilitating this transition. Data management is 
identified as a key barrier for scaling and increasing robustness in AI systems in the construction context (Burgess, 
2018; Xu et al., 2022). Therefore, this study took on a data management perspective on implementation.  

The Pringle and Zoller (2018) maturity model categorise adopters of AI technologies, from ‘novice’ through 
‘ready’ and ‘proficient’ to ‘advanced’. The model is summarised in Table 4-4. 
 

Table 4-4. AI maturity model (Pringle and Zoller, 2018). 
AI Novice AI Ready AI Proficient AI Advanced 

Has not taken proactive 
steps on the AI journey 

and at best is in 
assessment mode 

Sufficiently prepared in 
terms of strategy, 

organisational setup, and 
data availability to 

implement AI 

A reasonable degree of 
practical experience and 
understanding of how to 
move forward with AI, 
but there are still gaps 

and limitations 

A good level of AI 
expertise and experience, 

with a proven track 
record across a range of 

application cases 

 
An initial literature review confirmed the research gap indicated in previous research and set the basis for 

empirical data collection through 36 semi-structured in-depth interviews, out of which 14 were developers, 15 
were users, and 7 were implementers; a document study; a site visit; and 14 demos, out of which 9 were provided 
from a developer perspective, while the remaining 5 were provided from the user perspective.  

Interviewees were asked to assess themselves and their organisation according to the Pringle and Zoller 
(2018) maturity model. Only one developer described themselves as ‘novice’ level, while two developers 
categorised themselves as ‘advanced’, holding experience from application of AI across a range of industries and 
areas of application. Twelve out of fifteen users categorised themselves as ‘novice’ or ‘ready’, and three as 
‘proficient’. Most implementers described themselves as ‘ready’ and only one as ‘proficient’. The final appraisal, 
as presented in Table 4-5, is based on a qualitative assessment of the interviewees’ descriptions of themselves and 
their organisation, provided throughout interviews, available documentation, and notes made throughout demos.  
 

Table 4-5. Interviewee assessments according to the AI maturity model. 
 AI Novice AI Ready AI Proficient AI Advanced Total 

Developers 1 (7.1%) 3 (21.4%) 8 (57.1%) 2 (14.3%) 14 
Users 5 (33.3%) 7 (46.7%) 3 (20.0%)  15 

Implementers  6 (85.7%) 1 (14.3%)  7 
Total 6 (16.7%) 16 (44.4%) 12 (33.3%) 2 (5.6%) 36 

 
When asked to assess their counterparts, users consistently described developers as more mature, while 

developers consistently described users as less. Implementers generally described the two other parties closer to 
their self-assessments. Users acknowledge that they generally do not consider themselves as proficient as they 
would like to be. Describing proficiency among users, a developer states that there is a very varying degree of 
proficiency while another developer notes that users do not necessarily need to understand the technology behind 
a solution to use the system effectively. The consensus among the developers seemed to be that the goal is to 
develop a tool users can operate with minimal technical knowledge.  
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Previous research identified the lack of awareness, education, training, and trust as barriers to sustainable 
construction project implementation (Rajabi et al., 2022; Almakayeel et al., 2023; Kineber et al., 2023b); notably, 
the same barriers are identified in as barriers for the increased use of digital tools and AI (Burgess, 2018; Darko 
et al., 2020; Delgado et al., 2020; Goralski and Tan, 2020; Aghimien et al., 2022; Rajabi et al., 2022; Shahzad et 
al., 2022; Xu et al., 2022; Zhang et al., 2023). This implies that a framework facilitating effective use of digital 
tools could contain elements that facilitate sustainable construction project implementation. From the findings of 
the maturity assessment, an implementation framework was developed.  

No two interviewees described the same implementation process. However, a common emerging theme was 
the description of iterative and constantly evolving processes. Every stage of the process provides an opportunity 
to learn and to generate data and metadata.   

The implementation process model is illustrated in Figure 4-6.  
 

 
Figure 4-6. Implementation process model. 

 
The first step is problem identification; essentially, identifying areas where AI can add value. Understanding 

the problem at hand will be essential in making AI a more integral part of a construction project or organisation, 
rather than an add-on. All users, when asked, expressed an interest to use AI. However, using AI for the sake of 
AI appears to be one reason why systems are unable to move past the pilot stage. Issues surrounding AI systems 
and models do not seem to be related to the mathematics of statistics of a model, but rather to the heuristics. 
Understanding the problem is essential to move past the PoC stage and ensuring sufficient contextualisation. 

The second step is system design. This can involve the selection of appropriate AI techniques and models, 
and plans for integration of the AI system into existing processes. Designing a system that is scalable and robust 
is identified as one of the most important characteristics of a system. As noted in Paper VI, development and 
deployment are often done in traditionally academic languages, such as Python or MATLAB. This could 
contribute to creating a gap between the work done in academia and in the industry, which could, in turn, 
contribute to further fragmentation in the field. The findings suggest that the fanciest mathematics and most 
complex models do not necessarily have the biggest impact. Explainable models are seen as easier to deploy and 
maintain and are generally better received in a project or organisation. The developers emphasise that some 
problems do not require the use of ML and can be solved or supported by the use of methods that typically require 
less data, for instance KBS.  

The third step is training and validation. While system design focuses on the structure and architecture of a 
model, the training and validation stage typically involves feeding large amounts of data to the model to learn 
patterns, make predictions, and perform specific tasks. Availability of data is identified by the interviewees as a 
central challenge. Construction projects often have fragmented, incomplete, or inaccurate data; a lack of 
interoperability contributes for complicating data sharing between actors. Developers emphasise the importance 
of high-quality data and metadata to build high-quality AI systems. Users note that it is necessary to collect data 
from multiple sources, as there currently exists no single database containing all the necessary data. A potential 
to improve this could be establishing data warehouses on the organisation level. Similarly, establishing metadata 
repositories can enable users to easily search, locate, and retrieve relevant data. Data exists in a wide – and 

Step 1: Problem 
identification 

Step 2: System 
design 

Step 3: Training 
and validation 

Step 4: Monitoring 
and maintenance 
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unstructured – range of formats, including PDF, JPG, MOV, GIS, CAD, DOC, and, perhaps even more commonly, 
XLSX format. Data can be summarised in multidimensional data formats, such as NetCDF, JSON, or HDF5. 
Multidimensional formats allow data to be related to other existing data and metadata, and enables convenient 
searching, filtering, and extraction of data, and can ensure data quality. One way to increase transferability through 
the implementation process is standardisation. Standardisation can include systematic alignment of construction 
or data management processes, and can promote consistency, and interoperability.  

The fourth step is monitoring and maintenance. As emphasised in the empirical findings, the final step is to 
be considered as a continuously ongoing process, rather than a step that is to be finalised upon delivery. The goal 
is to deliver, and to continue to deliver, a system that works safely and continuously, and works with the user 
infrastructure. Maintenance can include, but is not limited to, updating the model as new data becomes available, 
or otherwise adjusting the model after assessment of preliminary available data. It is recommended that users 
remain an active part throughout the development and implementation process, to ensure an understanding of how 
this process might affect the system and the output it provides. The findings indicate that involvement, over time, 
can contribute to increasing trust, competence, and ultimately, proficiency. All actors being experts in all fields is 
not a goal; experts should continue to foster their core competence, but involvement will be essential to cultivate 
specialists in the thematic intersection. The implementation process model is illustrated in Figure 4-7.  

Figure 4-7 summarises the main contribution and purpose of each of the studies, and how the resulting papers 
informed subsequent studies.  

 

 
Figure 4-7. Connection between papers. 
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5 Discussion 
 
 
 
The topic of AI in construction has sparked a lot of interest in recent years. Despite the obvious potential for AI 
systems and models in the industry, a gap remains between the potential the technology holds and its actual 
implementation at scale; there appears to be more hype than practical application. The six conducted studies saw 
a range of themes emerge through the research. The following chapter will discuss some main emerging themes 
in the implementation and integration of AI-based tools in a construction context.  

The themes will be discussed in the context of four dimensions. The people, process and technology 
framework is well established. On the topic of AI, another perspective emerges as equally important: data. The 
topic of data is often addressed in the context of the technology perspective; however, to utilise AI effectively and 
efficiently in construction projects, high-quality data and metadata are needed. Data is not only needed in the 
development of a system or model but on and about the process to understand how the context of the data might 
affect the output and how the output can be understood. The modified framework is presented in Figure 5-1.  
 

 
Figure 5-1. Framework for discussion (1). 

 
The construction industry as a whole is generally considered less digitalised when compared with other 

industries. Still, both research and industry initiatives showcase great results. This thesis aims to enable actors in 
the industry, with a focus on practical implications contributing to the field. Therefore, the focus of the discussion 
will be on systems, projects, and organisations, rather than the industry as a whole. 

Findings suggest that the industry could benefit from building upon existing methodologies and strategies, 
but it would eventually need to reinvent and redefine traditional project models, contracts, business models and 
enterprises. It is believed that change can also be driven by the industry actors themselves.  

To enable the use of AI systems in construction projects, relevant infrastructure must be established on the 
organisation and system levels. Therefore, the following discussion will focus on, and distinguish between, the 
system, project, and organisation level (Figure 5-2). 
 

 
Figure 5-2. Framework for discussion (2).  
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Based on the two frameworks, the discussion will explore the current state, main challenges, practical implications 
of implementation and integration, and how actors can work on a system, project, and organisation level to move 
from ambition to practice. The discussion will be structured according to the frameworks. 
 
5.1 System level  
 
On the system level, a wide range of tools have been developed and successfully applied to estimation and cost 
control; logistics, planning, and scheduling; strategy; health and safety; project performance and success 
estimation; risk management; sustainability assessments; and material properties. However, few report on the use 
of these tools beyond pilots and PoCs; most focus on potential use or the development of techniques.  

As illustrated in Paper I, the majority of the research is done on the system level. Consequently, the body of 
research is lacking on the project level, the organisation level, and on the intersections between the levels.  
 
5.1.1 Technology  
 
The body of research as a whole implies an uneven application of resources to problems as of today, and there is 
a predominance of applications related to traditionally quantitative areas such as estimation and cost control 
(Cheng et al., 2009; Shin, 2015; Juszczyk, 2017; Elmousalami, 2019; Yaqubi and Salhotra, 2019; Juszczyk et al., 
2019; Juszczyk and Lesniak, 2019; Bilal and Oyedele, 2020; Cheng et al., 2020; Juszczyk, 2020) and logistics, 
planning, and scheduling (Golparvar-Fard et al., 2015; Podolski, 2016; Xing et al., 2016; de Soto et al., 2017; 
Camacho et al., 2018; Cheng and Hoang, 2018; Dawood et al., 2019; Hu and Castro-Lacouture, 2019), as noted 
in Paper I. In this sense, there appears to be a drifting apart between the academic field and the industry.  

One explanation could be that some areas of application can more easily yield quantifiable results, meaning 
these areas gain more attention. Another explanation could be that some areas are still waiting for data. If an area 
is lacking data of sufficient quality and quantity, the development and employment of an AI system in that area 
could simply become too resource intensive. Lacking infrastructure could be another contributing factor to this. 
Different cloud-based systems and applications do not necessarily communicate well – if at all. For any system 
to work effectively, it should be integrated with other existing infrastructure. This provides a familiar platform for 
the users and ensures a certain degree of interoperability. 

The industry is not currently lacking PoCs, tests, or pilots. This is widely documented in previous research 
(Golparvar-Fard et al., 2015; Gudauskas et al., 2015; Hajdasz, 2015; Mousavi et al., 2015; Shin, 2015; Kog and 
Yaman, 2016; Mirahadi and Zayed, 2016; de Soto et al., 2017; Juszczyk, 2017; Pruvost and Scherer, 2017; 
Samantra et al., 2017; Zou et al., 2017; Ayhan and Tokdemir, 2018; Cheng and Hoang, 2018; Goh et al., 2018; 
Hanna et al., 2018; Poh et al., 2018; Sharafi et al., 2018; Taherdoost and Brard, 2019; Elmousalami, 2019; Hu and 
Castro-Lacouture, 2019; Jaber et al., 2019; Juszczyk et al., 2019; Juszczyk and Lesniak, 2019; Vickranth et al., 
2019; Yaqubi and Salhotra, 2019; Basaif et al., 2020; Fallahpour et al., 2020; Han et al., 2020; Juszczyk, 2020; 
Nnaji and Karakhan, 2020; Xu et al., 2020), and confirmed by the findings in Paper I. What appears to be lacking 
is evidence of scalable and robust systems, of infrastructure that facilitates effective use of the systems, and of 
organisation structures that preserve the new functions required to operate the systems. 

Technology should be designed with the user in mind (Barlett-Bragg, 2017), and to enable streamlined 
integration with existing processes. Paper II and Paper III illustrated how, on a system level, a process can be 
deconstructed to identify and understand the problem at hand.  

Selecting appropriate models, and further developing these to suit the context that they will operate within, 
is a central and critical part of the successful utilisation of AI (Russell and Norvig, 2010; University of Helsinki, 
2018). Different models will be fit for different types of data, different activities, or different phases in the same 
construction project. Understanding the problem and the driving forces behind it is essential, and data management 
plays an important part in this process. As noted in Paper VI, developed models need to be scalable and robust. 
The AI model must be able to handle potentially large volumes of unstructured data and account for the complex 
interdependencies between different aspects of a construction project. The model must be capable of adapting to 
dynamic and rapidly changing environments, and able to identify relevant features and patterns – sometimes from 
minimal input. Following implementation, the AI model must be monitored and maintained, to ensure continued 
accuracy and effectiveness. Maintenance can include updating the model as new data becomes available, or 
otherwise adjusting the model after assessment of preliminary available metadata from the implementation 
process. To facilitate effective maintenance, maintenance protocols can be established. This can be done on a 
system level, but it is assumed that an overall organisation level protocol can help reduce the costs and resources 
needed for maintenance.  
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5.1.2 Process  
 
On the system level, the process perspective is mainly concerned with the development and implementation 
process, meaning the development and implementation of the AI system or model.  

The findings in Paper VI indicate that fanciest mathematics and most complex models or statistics do not 
necessarily have the biggest impact. Explainable models will be easier to deploy and maintain and are generally 
better received in a project or organisation. Advanced ML models might perform better in an isolated context, but 
a system that is perceived to be more transparent and representative of the actual process can yield better results 
in a real-life project situation, will long-term build more trust (Sjåstad, 2019; Belle, 2023), and thus, be more 
sustainable.  

 
Contextualisation  
 
An important first step is to map and understand the construction process that is to be enhanced.  

AI systems built and used just for the sake of AI appear to be more likely to be left at a pilot or PoC stage, 
as noted in Paper VI. This is also indicated from the lack of evidence of scaling (Golparvar-Fard et al., 2015; 
Gudauskas et al., 2015; Hajdasz, 2015; Mousavi et al., 2015; Kog and Yaman, 2016; Mirahadi and Zayed, 2016; 
de Soto et al., 2017; Juszczyk, 2017; Pruvost and Scherer, 2017; Samantra et al., 2017; Zou et al., 2017; Ayhan 
and Tokdemir, 2018; Cheng and Hoang, 2018; Goh et al., 2018; Hanna et al., 2018; Poh et al., 2018; Sharafi et 
al., 2018; Elmousalami, 2019; Hu and Castro-Lacouture, 2019; Jaber et al., 2019; Juszczyk et al., 2019; Juszczyk 
and Lesniak, 2019; Taherdoost and Brard, 2019; Vickranth et al., 2019; Yaqubi and Salhotra, 2019; Basaif et al., 
2020; Fallahpour et al., 2020; Han et al., 2020; Juszczyk, 2020; Nnaji and Karakhan, 2020; Xu et al., 2020); 
findings highlighting the need for more system and application-oriented research (Darko et al., 2020; Wang et al., 
2020; Xu et al., 2022), and was further indicated by the findings in Paper VI. 

Inevitably, this means that time and resources are spent without providing the expected profits and savings. 
To effectively identify and understand the problem at hand, it is recommended to define the issue and to break 
complex issues into smaller, more manageable, and comprehensible problems. In Paper II, this was exemplified 
for construction project waste reduction. Conceptually, the recommendations were constructed by identifying the 
main sources of waste, and which activities and processes within the project contributed to the generation of waste. 
Following this analysis, existing measures for waste reduction were assessed, along with concepts related to more 
general developments in the industry, such as industrialisation and digitalisation. Then, AI-based tools and 
technologies considered relevant were assessed in the context of the identified waste fractions and processes, and 
the established tools. When the problem is defined, the goal of the development and deployment of the given tool 
should be specified. A similar approach was illustrated in Paper III, for the prediction of project success. This type 
of contextualisation is essential to ensure the relevance of the tool that is developed, and crucial in the next step 
of the development process, which should be to assess the feasibility of the process.  

Given the constraints and available resources in terms of time, personnel, and data, is the development 
feasible at this stage? If not, can the system boundaries of the defined problem be adjusted to reframe the issue at 
hand (as discussed in Paper II), or can the goal be modified? Feasibility should be evaluated based on factors such 
as available data, technical requirements, and organisational readiness.  

When the project is deemed to be feasible given the defined scope, data collection should be initiated. The 
process of data collection can be guided by any existing data management plans and should start by identifying 
relevant and available data sources. Data could be collected from construction plans, project schedules, equipment 
usage data, or other relevant documents. Then, the data should be assessed. The data should be assessed according 
to predefined quality metrics and validation schemes. Based on this data assessment, another assessment of 
process feasibility is recommended.  

After an initial assessment of data (and feasibility), data pre-processing should be initiated. This includes all 
preparatory activities, such as preliminary cleaning, formatting, filling of missing values, reduction, normalisation, 
or feature selection. The goal is to prepare the data for model development and ensure accuracy and consistency.  
 
Model development 
 
The model development stage might be considered the most ‘technical’ stage of the development, and includes 
model selection, model training, and model validation (Russell and Norvig, 2010). Paper III illustrated how this 
development stage can look in the construction context.  It could be necessary to involve external competence for 
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this stage; however, if the development is outsourced, it becomes crucial to ensure a certain degree of 
contextualisation for the developing party. Findings in Paper VI imply that most issues surrounding AI systems 
and models are not related to the mathematics or statistics of a model, but rather to the heuristics. This becomes 
evident by the number of mathematically successful models that are yet to be scaled and create value in real 
construction projects.  

To fully understand the implications of the output of the model, contextualisation is crucial. The AI model 
is trained using the pre-processed data. Training will look different for each model. For an ML algorithm, the 
training stage is where the algorithm learns to identify patterns and relationships in the data that will enable it to 
make accurate predictions or classifications. The algorithm is then tuned to improve model performance. 
Validation of the model can, and should, be done in numerous ways. Technical validation of the model can for 
instance be done through cross-validation, like in Paper III. Validation can also be done based on feedback from 
stakeholders and results from preliminary testing in a project context.  

The findings of Paper VI show that smaller-scale implementation is often done using academic tools, such 
as Python or MATLAB; this can contribute to creating a gap between the work done in academia and in the 
industry, and cause fragmentation.  

When the model is selected, trained, and validated, a natural next step is prototyping. Developing a prototype 
using a smaller subset of data allows for testing and refining of the tool before investing in larger-scale 
implementation. Validation of the prototype can, once again, be based on feedback from stakeholders and results 
from preliminary testing. Once the prototype has been refined, the model can be scaled up. This should be done 
by using more data and deploying the model in more than one setting (meaning in more than one project or 
organisation function), if possible. Including metadata from the initial implementation of the prototype can further 
help with contextualisation, as noted in Paper VI.  

Stakeholder management activities should be prevalent throughout the entire process of development and 
implementation to facilitate interdisciplinary collaboration (Abioye et al., 2021; Xu et al., 2022) and should be 
emphasised in the earliest stages of the development. During the identification of the problem, all stakeholders 
who might affect, or become affected by, the development and implementation should be involved. They can 
provide insights into opportunities and limitations related to the specific construction process, or how activities in 
other parts of the project might impact the development and implementation.  

On the system level, implementation is more likely to succeed if the groundwork is done in the development 
process. After refining and scaling the prototype, the next step is integration with existing systems. This could 
mean assessing the technical compatibility of the AI model with existing technology and infrastructure. The 
assessment can inform potential modifications of the system to ensure that it can communicate and work 
seamlessly with other tools and systems already in use in the organisation or project. The model should also be 
integrated into existing workflows – this could involve modifying existing processes, though, for instance, 
defining new roles and responsibilities, adjusting timelines, and training staff on the use of the new tool. Based 
on initial integration, the model can be refined and revalidated.  

When the system is integrated, maintenance and continuous monitoring of the system is essential. To do this 
effectively, performance metrics should be established, and effects of the implementation should be mapped. 
Based on these findings, the system can be optimised. Maintenance could involve updating the model with new 
data or upgrading any software or hardware in adjacent infrastructure.  

As discussed in Paper VI, it is recommended that users remain an active part throughout all stages of 
development and implementation. The findings indicate that involvement, over time, can contribute to increasing 
trust, competence, and ultimately, proficiency.  

Much like other relevant stakeholder management activities, actively learning from the development and 
implementation of the tool is essential throughout the entire process. There is no need to invent the wheel twice, 
or a hundred times. Learning from best practices is equally as important as learning from missteps.  
 
5.1.3 People  
 
Personnel involved in the implementation and integration of AI-based tools might need training related to the 
technical use of any new tools or systems; assessment and interpretation of input data, output data, or metadata; 
or how the system is to be understood in the context of the activity or the whole project.  

Implementation and integration might require redefining roles and responsibilities, establishing training 
programs, mentor-programs, and developing new communication channels to support the use of AI. This is closely 
linked to the organisational dimension. The element of collaboration will be vital to develop and deploy effective 
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and sustainable systems; this was also indicated by the findings of Paper V, where involvement of subcontractors 
emerged as one of the main factors impacting effectiveness and efficiency on a digitalised process.  

Personnel might be resistant to change. It will be necessary to prioritise building trust in all interactions that 
are affected by the implementation: human-machine, human-data, and human-human, meaning across the value 
chain, interdisciplinary fields (such as developer and user, for instance) or organisational silos.  

Loukides et al. (2018) define five framing guidelines to help maintain an ethical approach when building 
data products: consent, clarity, consistency (for trust), control (and transparency), and consequences (and harm). 
In the construction context, the collection of private data might not be as prevalent as it is in other industries. 
However, consent can also apply to other aspects of the AI system operations, for instance in a system that uses 
speech recognition; the user might have to consent before the system can process the voice commands. Clarity in 
a system could mean ensuring a certain degree of transparency and explainability for users, involved stakeholders, 
and regulators. Explainability is a central challenge in the development of AI systems, and especially in ML 
(Abioye et al., 2021). This can lead to a lack of trust in the system (Sjåstad, 2019; Abioye et al., 2021; Belle, 
2023), and ultimately aversion. Therefore, a central proactive measure to ensure trust and willingness to use a tool 
is to build systems that hold a high degree of explainability. Consistency is important to build trust and could 
mean making sure that the system operates reliably and consistently over time and in different environments. This 
requires a robust system. Control refers both to the user and stakeholder control over the system, but also to the 
system operating in accordance with ethical and legal norms. The consequences dimension refers to the potential 
impact of the AI system on users, stakeholders, and the environment it operates within. Managing this dimension 
could mean monitoring for deviations or bias in the model. The main reason for algorithmic bias is human bias in 
the data the algorithm is built upon (University of Helsinki, 2018); therefore, mitigating bias is, to a large extent, 
data management. Loukides et al. (2018) note that the guidelines should not only dictate the work of the developer, 
but the entire organisation. For the development and deployment of AI systems to be sustainable long-term and 
short-term, each of these considerations need to be addressed – on all levels.  

There is a talent shortage in the contextual intersection between AI and construction (Abioye et al., 2021), 
and interdisciplinary collaboration between construction experts and AI experts will be necessary to continue to 
drive the field forward. Collaboration is needed to generate solutions that can effectively meet the demands of the 
construction industry. Long-term, interdisciplinary collaboration will contribute to building competence, and 
ultimately a greater contextual understanding of the potential and limitations of the two fields.  

Providing sufficient training in the use of specific systems, software, and in general data management will 
be of essence. This will provide the personnel interacting with the systems with insights into how systems and 
algorithm works, beyond the user interface. This is essential to understand the implications of the results the 
system might produce, and how the input can affect the output from a system. Training should be done for all 
stages of development and use and extend from data management (how data should be collected and stored), data 
analytics, and understanding how the context of the input might affect the implications of the output.  

The risk of AI systems perpetuating biases and discrimination might not be the most prevalent in the 
construction context, but development and implementation should still be done with care, and with guidance from 
ethical principles to ensure fairness and avoid negative consequences.  
 
5.1.4 Data  
 
To defend the investment costs of data collection, storage, and processing, an organisation or project might need 
results to show – but to achieve results, data is needed. Papers IV and VI noted the importance of holistic 
frameworks for data management and confirmed the findings from previous research ruling data management 
among central process-oriented challenges associated with the use of AI (Burgess, 2018; Xu et al., 2022).   

A vast amount of data already exists in and on construction projects, as illustrated in Paper II, Paper III, and 
Paper V. However, metadata providing insights into the quality and characteristics of the data beyond just what 
they measure is generally lacking. This hinders effective QA and contextualisation and could ultimately render 
the available data unsuitable for the intended use case. As noted in the concluding discussion of Paper III, data 
that are not collected specifically for the utilisation of AI require a lot of preparatory work.  

Metadata repositories and data warehouses should be established on the organisational level, so data can be 
traced back to respective projects or actors, and to enable the identification of limitations the data might hold. 

As addressed in Paper III, if data is collected to be read by humans, inevitably, for an algorithm to make 
sense of the same data, time and resources must be invested in preparing the dataset. In an ideal situation, the data 
would be collected in a way that translates any textual input into numerical data, and relating the data that is input 
to already existing data. This way, data can be retrieved, read, and understood in the context of other data.  
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Based on the extensive body of literature on AI development in the construction context (Golparvar-Fard et 
al., 2015; Gudauskas et al., 2015; Hajdasz, 2015; Mousavi et al., 2015; Shin, 2015; Kog and Yaman, 2016; 
Mirahadi and Zayed, 2016; de Soto et al., 2017; Juszczyk, 2017; Pruvost and Scherer, 2017; Samantra et al., 2017; 
Zou et al., 2017; Ayhan and Tokdemir, 2018; Cheng and Hoang, 2018; Goh et al., 2018; Hanna et al., 2018; Poh 
et al., 2018; Sharafi et al., 2018; Elmousalami, 2019; Hu and Castro-Lacouture, 2019; Jaber et al., 2019; Juszczyk 
et al., 2019; Juszczyk and Lesniak, 2019; Taherdoost and Brard, 2019; Vickranth et al., 2019; Yaqubi and Salhotra, 
2019; Basaif et al., 2020; Fallahpour et al., 2020; Han et al., 2020; Juszczyk, 2020; Nnaji and Karakhan, 2020; 
Xu et al., 2020) and the findings of Paper VI, three types of data emerge as necessary in the development of a 
system. Firstly, data on the activity or process being enhanced. This is essential to understand the characteristics 
of the problem, such as in the case of construction project waste reduction in Paper II, or project success in Paper 
III. Secondly, data needed for training and validation of the AI model. This can be part of the first group of data. 
Thirdly, metadata related to the initial data collection, and, eventually, on the implementation process – for 
instance from PoCs – and related to the mapping of effects after implementation.  

A data management plan should be constructed on the organisational level, project level, and system level, 
as recommended in Paper VI. The plan should contain a detailed overview of the process of data collection and 
data storage, but also data sharing, and data analysis. The components of the data management plan should be 
similar at all levels, but the implications of the plans will look different for each level.  

At the system level, a data management plan should focus on the specific requirements for the development 
and deployment of a particular system, and on collecting the three types of data. The plan may include information 
on the types of data that will be used by the system, how it will be collected and processed, how the system will 
be tested and validated, and how it will be monitored, maintained, and updated over time. 

 
Data management indicators  

 
A holistic approach to data management is critical to the success of AI implementation in construction (Burgess, 
2018; Xu et al., 2022). Prioritising, contextualising, and standardising data management is found to be essential. 
Emerging from the findings of Paper III, Paper IV, and Paper VI are three key indicators for data management as 
data quantity, data quality, and data access or availability.  

Certain AI techniques, such as ML, require large datasets. The Nordic 10-10 dataset that was used in Paper 
III was considered very limited in the ML context – despite the underlying data being collected over the course 
of multiple years, and from multiple companies. If the dataset is too small, users and developers will encounter 
challenges related to the reliability, validity, and the generalisability of the data. If the reliability, validity, and 
generalisability can not be guaranteed for the data itself, it therefore can not be guaranteed for the system or model 
that is being developed, or the results that the system provides. If the output of a tool can not be trusted, the tool 
can essentially not be used. As noted in the discussion of Paper III, an algorithm and a system will only ever be 
as good as the data it is built upon. Numerous algorithms, both in research and industry contexts, have provided 
good results on limited datasets, but neither context have seemingly been successful in scaling these.  

AI models require high-quality data to produce high-quality results. As discussed in Paper III, Paper IV, and 
Paper VI, construction projects often have fragmented, incomplete, or inaccurate data, which makes it hard to 
build effective AI systems. Data quality can be related to a wide range of indicators, depending on the intended 
use of the data. To understand what solution will best accommodate the problem, data are needed. Possible tools 
to help ensure data quality are quality metrics, validation checklists, and quality audits. The validation checklists 
should be developed based on the quality metrics, and the quality audits should be performed according to the 
developed validation checklists. The tools can be applied to relevant metadata as well. Relevant quality metrics 
could be related to the availability of the data; the completeness of the dataset as a whole; the consistency of the 
data, including data formats, units, and available metadata; and relevance for the system or project in question, 
and in relation to other existing data. Relevant and applicable metrics and validation criteria will vary depending 
on project characteristics. Based on the checklist, quality audits should be conducted at a frequency that fits into 
the data management plan.  

The question of data access can be split into two. Firstly, the question is related to the availability of the data 
for the actor. If the actor does not have access, the data could be produced, or acquired from another industry 
actor, or projects. Are other actors interested in sharing the data? If yes, are they open to sharing the data material 
in full, so the reliability, validity, and generalisability of the data can be verified? As discussed in Paper IV, both 
data availability and willingness to share data can be central enablers – or barriers – for effective data management. 
Secondly, if the data is accessible for the actor, the question is related to interoperability and cohesion (Paper IV): 
Can both actors effectively read and utilise the data? This can be related to the availability of necessary software 
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and hardware, and whether the actor will be able to read and display the data effectively or not. Data access is 
also related to the access to data between software: can the data be transferred between software? If yes, will this 
be a manual job – and are the necessary resources for such a job available? Paper VI identified the lack of data 
interoperability as a contributing factor to complicating data sharing between actors.  

Software from different suppliers is not always meant to be compatible or allow for seamless integration 
with other software, or the existing infrastructure of the project or organisation looking to use it. 
 
5.2 Project level  
 
On the project level, in-house and commercially available tools have been applied across a wide range of areas 
of application. However, this is seemingly done in isolation, meaning that next to no changes are made to how 
the project is planned or executed. This, in turn, means that the AI system simply becomes an add-on.  

As illustrated in Paper V, if a digital tool becomes an add-on, activities related to the active use of the system 
can become time-consuming, and ultimately hinder productivity in a project.  

Recent developments show a trend towards larger and more complex construction projects (Whyte et al., 
2016; Fischer et al., 2017), and integration is essential to decrease complexity and increase sustainability. 
 
5.2.1 Technology  
 
On the project level, a wide range of areas of application is displayed in previous research (Ilter and Dikbas, 2009; 
Martínez and Fernández-Rodríguez, 2015; Juszczyk, 2017; Basaif and Alashwal, 2018; Xiao et al., 2018); this 
was further illustrated by the findings in Paper I. Paper II indicated a potential for application throughout a project, 
thus strengthening the findings of previous research, and highlighting the potential that lies within the entire 
project life cycle (Hossain and Nadeem, 2019; Pan and Zhang, 2021). Paper II also indicated the potential for one 
area of application to yield benefits across multiple stages of a project. 

Taking on the executive perspective from the NS 3467:2023 Stages and deliverables in the life cycle of 
construction works (Standard Norge, 2023); for Phase 1 (P1) Strategic definition, AI-based tools can be used to 
evaluate project feasibility; prediction of costs and profitability (Cheng et al., 2009; Bilal and Oyedele, 2020), 
cash flow prediction (Cheng et al., 2015; Cheng et al., 2020), or profit margin estimation (Bilal and Oyedele, 
2020); supply chain management and supplier selection (Taherdoost and Brard, 2019); and contractor pre-
qualification (Kog and Yaman, 2016). Systems can be built based on internal and external historical project data 
from similar projects. To enable this type of assessment, a data warehouse should be established prior to the 
initiation of the analyses.  

Possible areas of application for AI systems in (P2) Program and concept development include design 
optimisation (Liu et al., 2015; Rodriguez-Trejo et al., 2017) to optimise for factors such as cost, energy efficiency, 
and environmental impact; resource management (Podolski, 2016; Xing et al., 2016; Camacho et al., 2018); utilise 
AI-based virtual reality to enable stakeholders to experience and provide feedback on preliminary designs and 
plans; cost prediction and estimation; and tender price evaluations (Bilal and Oyedele, 2020).  

For (P3) Development of selected concept and (P4) Detailed design, many AI-related activities coincide. In 
these phases, relevant use cases include optimisation of construction design and resource allocation (Liu et al., 
2015; Xing et al., 2016; Podolski, 2016; Rodriguez-Trejo et al., 2017); validation of change requests (Dawood et 
al., 2019); assessment of contracts and other legal documents to identify potential risks or issues. As production 
documentation is established, AI systems can be used for automated clash detection between disciplines (Hu and 
Castro-Lacouture, 2019). Virtual testing can be used to allow comprehensive testing at an early stage when 
information and knowledge traditionally is limited.  

In (P5) Production and delivery, AI systems can be used for predictive maintenance, to analyse sensor data 
and predict when equipment is likely to fail, ultimately reducing downtime; quality control (as illustrated in Paper 
V); quantity control (Nguyen et al., 2020); to predict project success based on preliminary project data (as 
illustrated in Paper III); for on-site and off-site logistics; to optimise scheduling (de Soto et al., 2017); to reduce 
waste on-site (as illustrated in Paper II); in automation of robots, for on-site or off-site construction; or for risk 
and safety monitoring and assessment (Goh et al., 2018; Poh et al., 2018; Han et al., 2020; Xu et al., 2020). 

(P6) Handover and commissioning does not hold any obvious potentials for increasing productivity or 
sustainability using AI systems and has not received significant attention in previous research. However, 
establishing and maintaining easily accessible systems in early phases of the project can simplify this stage. The 
focus of this stage should be to transfer any relevant data to the users, the facility manager, and to the organisation 
database; this can be achieved by AI-based tools, but it might not be the most effective way to do so.  
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For (P7) Use and management, the main area of application for AI-based systems and tools is facility 
management, which includes, but is not limited to predictive maintenance; energy management and optimisation; 
indoor air quality monitoring and correction; security; space planning and optimisation; and cleaning and 
maintenance. The goal would be to improve the overall efficiency and sustainability of the operation phase.  

Like the previous seven phases, (P8) Termination rarely looks the same for two projects. Relevant areas of 
application could include identification of materials that can be recycled and reused; finalisation of the project 
database, comparison of available data to previous project data, and identification of opportunities for potential 
areas of improvement; and ensuring that all documentation related to the termination is complete and accurate.  

Figure 5-3 summarises the relevant areas of application per project phase.  
 

 
Figure 5-3. Relevant areas of application per project phase. 

 
AI systems and models have demonstrated promising results in construction projects, through all phases of 

projects. However, the industry has yet to see the larger-scale implementations. For an effective and sustainable 
scale-up – both on the organisation and industry level – robust infrastructure is needed.  
 
5.2.2 Process  
 
Organisation or project infrastructure must facilitate the effective use of AI for the use of AI to be sustainable 
long-term (Burgess, 2018; Vinuesa et al., 2020; Xu et al., 2022). 

On the project level, infrastructure elements that could be established in (P1) Strategic definition include a 
centralised project-specific database to store existing internal and external data relevant to the project; an intuitive 
and easily accessible communication channel for stakeholders; and relevant policies and procedures to ensure 
quality and accuracy in the data management process and data that will be used to develop and deploy the AI 
system. This will help facilitate communication and collaboration throughout the project, and ultimately facilitate 
more effective application of AI systems and tools (Abioye et al., 2021; Xu et al., 2022). If relevant policies and 
procedures already exist in the organisational context, these should set the basis for project-specific policies and 
procedures. When a decision is made on a system, available software should be integrated with existing systems 
and processes. Establishing training programs for involved personnel can be useful to build both trust and technical 
competence needed to work with the AI systems in later phases. Paper V identified competence as one of the main 
areas impacting effectiveness and efficiency in a digitalised process, emphasising the importance of sufficient 
training. In the concluding discussion of Paper II, it was noted that to fully utilise the potential of AI systems, 
infrastructure should be built upon existing methodologies and frameworks. To utilise existing infrastructure, an 
existing project BIM model or digital twin can be a good starting point for a project-specific database and 
communication channel. 

Activities in (P2) Program and concept development could include establishing a centralised platform to 
collect data and metadata on early decisions, and for real-time stakeholder collaboration; decision-making for 
project-specific software and hardware acquisition to support planned AI systems; and building or otherwise 
acquiring any additional necessary software. Data and metadata management is an important part of the effective 
data governance in the project (and organisation) (Al-Ruithe et al., 2018; Burgess, 2018). Established databases 
and communication-collaboration channels must be maintained throughout (P5) Production and delivery.  

In (P3) Development of selected concept and (P4) Detailed design, protocols and procedures for processing 
and analysis of real-time data generated in the project should be established, along with protocols and procedures 
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for integration with existing systems. In later stages of (P4) Detailed design, the physical software and hardware 
acquisition should take place.  

The focus of (P6) Handover and commissioning should be the transfer of any relevant data to the users, the 
facility manager, and to the organisation database. Previous research has identified data sharing among the central 
process-oriented challenges associated with the increased use of AI (Burgess, 2018; Xu et al., 2022). Paper IV 
confirmed this and identified lack of data interoperability as a central challenge for effective data management in 
the construction context. Similarly, Paper V identified the lack of data interoperability as a barrier for productivity 
and sustainability in a digitalised process. Therefore, to ensure effective transfer of data in this phase, the data 
transfer could be based on the previously established centralised databased.  

To utilise AI to improve the aforementioned facility management functions throughout (P7) Use, a range of 
sensors should be installed to provide data for development prior to deployment, and for feedback post 
deployment. To protect the devices and the data they produce, an extensive security system should be established.  

To facilitate the transfer of knowledge in (P8) Termination, a subsection of the existing project database 
should be dedicated to the summary of relevant data. This could provide a foundation for future training schemes. 

Figure 5-4 summarises relevant elements of infrastructure per project phase.  
 

 
Figure 5-4. Relevant elements of infrastructure per project phase. 

 
Most infrastructure elements will require the involvement of more than one stakeholder.  

 
5.2.3 People  
 
More collaboration is needed for the continued progress of AI in construction management (Xu et al., 2022). On 
the project level, stakeholders should be followed closely through all project phases.  

An activity that should be prioritised in (P1) Strategic definition is the education of stakeholders on potential 
benefits and limitations associated with the system. Collaborating with stakeholders to identify areas where AI 
systems might improve the construction process, and involving stakeholders in the decision-making process, can 
help build trust and knowledge across the value chain. Long-term, this could help increase the willingness to share 
data (as illustrated in Paper IV) and help keep stakeholders involved. Continuously interacting with stakeholders 
to understand their needs and preferences throughout the process of development and deployment will contribute 
to building this further.  

To keep stakeholders involved, informed, and inspired, throughout (P2) Program and concept development, 
activities should include collaborating with relevant stakeholders to ensure that any AI design choices align with 
the overall project goals and objectives. For governing bodies in particular, the communication should be centred 
around the degree to which any AI-based design choices comply with relevant standards and regulations. Clearly 
establishing roles and responsibilities among stakeholders, related to the management of the AI systems 
themselves and the output they provide, will be essential.  

Throughout (P3) Development of selected concept and (P4) Detailed design it will be essential to continue 
any conversations with relevant stakeholders regarding the degree to which the chosen AI system does or does 
not align with the overall project goals and activities, as well as the individual goals and activities of the involved 
actors. When final decisions are made regarding the involvement of AI-based systems and tools, training should 
commence. In Paper V, both the involvement of stakeholders and the competence among stakeholders were 
identified among the main areas impacting effectiveness and efficiency in a project. As discussed in Paper VI, all 
actors being experts in all fields is not a goal in itself; experts should continue to foster their core competence, but 
interdisciplinary involvement will be essential to cultivate specialists in the thematic intersection. 

In (P5) Production and delivery, the main activities are maintaining a dialogue with actors who affect, and 
are affected by, the active use of the AI system. This could be due to the chosen methods of data collection or 
having to adjust their schedules due to waiting for assessments. By extension, it is essential to ensure compliance 
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with other actors on-site. If the use of the system is effectively hindering the work of other actors, any savings 
made for one actor might not lead to a net positive for the whole project.  

The focus of (P6) Handover and commissioning should be to transfer any relevant data to the users, the 
facility manager, and to the organisation database. 

Training of involved and responsible personnel in (P7) Use and management should ideally be conducted 
prior to the initiation of the phase; however, the phase can provide a good opportunity for ‘learning by doing’, 
which some interviewees in Paper VI noted to be an effective approach. Engaging with users can prove useful, 
both as a part of early design phases, or to understand how the facility management is currently affecting them.  

The most important stakeholder activity in (P8) Termination is the transfer of knowledge. Upon completion 
of the project, efforts should be made to ensure all available information and data is transferred to relevant internal 
and external stakeholders for future projects. Lack of competence was identified as a key barrier to effective data 
management in Paper IV, and a structured transfer of knowledge can help minimise this. To facilitate this process, 
a subsection of the existing project database should be dedicated to the summary of data for this transfer.  

Figure 5-5 summarises relevant stakeholder management activities per project phase.  
 

 
Figure 5-5. Relevant stakeholder management activities per project phase. 

 
5.2.4 Data  
 
At the project level, a data management plan focuses on the specific data management requirements of a particular 
project. The plan may include information on the types of data that will be collected, how it will be collected and 
stored, who will have access to it, and how it will be preserved for long-term use in the organisation. 

As discussed in Paper III, no standards currently exist for collection and utilisation of data in construction 
projects. To a certain extent, this is understandable, because all projects are unique. However, it would greatly 
benefit the effective development and deployment of AI if some standardisation of data structures would emerge. 
Some industry-specific standards exist for structuring of data, such as for BIM and standards for data coding such 
as NORSOK in the Norwegian oil and gas industry. As noted in Paper VI, data currently exists in a very wide 
range of formats, and these are rarely the same in two projects. Data that can be consistently compared and tracked 
between projects has the potential to improve project-based benchmarking, support project success prediction, 
and serve as early warning systems that can identify potential issues in time for action to be taken.  

Beyond the aforementioned components for the data management plan, a certain degree of detail is expected 
and necessary for an effective data management plan. Table 5-1 provides a starting point for a data management 
plan, including examples of what the plan can contain, and noting how critical components can be included.  

The example is not intended to be an ideal data management plan; rather, it is intended to illustrate what a 
data management plan can look like. In addition to defining the details related to the practical execution of the 
plan, each post should include an overview of the involved and responsible actors and parties.  
 

Table 5-1. Data management plan. 
Project Title: Office Complex 

Project Number: 325061 
 

1. Data collection 
Data types Project schedule Gantt charts detailing the project 

timeline with milestones, critical 
paths, and allocation of resources. 

Budget Spreadsheets tracking project 
expenses, including labour, 

materials, and equipment costs. 
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Design documents Architectural and engineering 
drawings in PDF or CAD format, 
including floor plans, elevations, 

sections, and details. 
Construction drawings Detailed construction drawings in 

PDF format, including structural, 
mechanical, electrical, and 

plumbing drawings. 
Material specifications Specifications for all materials 

used in the construction, including 
manufacturer, model number, and 

performance requirements. 
Site survey data Survey reports and maps showing 

site topography, soil conditions, 
and other relevant information. 

Photographs, videos, and scans Digital photographs, videos and 
scans documenting construction 

progress and site conditions. 
Metadata Metadata will be included with all 

data to provide context and 
facilitate effective and sustainable 
data management. Metadata fields 

will include date of creation, 
responsible actor, project phase, 
project location, discipline, file 
format, file size, keywords, and 

any additional descriptions.  
Data sources Project team members Project manager, architects, 

engineers, and consultants. 
Subcontractors and suppliers Material suppliers, equipment 

vendors, and service providers. 
Other external stakeholders Environmental consultants, 

geotechnical engineers, and 
regulatory agencies. 

Data collection methods Existing data Transferring of existing data from 
respective software and storage. 

Cameras and drones Photographs and videos will be 
taken periodically by project team 

members and drones for aerial 
views of the construction site.  

Handheld devices Field data collection will be done 
using handheld scanners to record 

site observations and other 
relevant information. 

Quality control Quality metrics The following are defined as main 
quality metrics: availability, 

completeness, consistency, and 
relevance.  

Validation checklist The quality metrics will be 
assessed and ensured as per the 
attached validation checklist.  

Quality audits To monitor the state and 
development of the quality 

metrics, quality audits will be 
performed regularly. The audits 

will be conducted every two 
weeks, or more often if necessary. 

2. Data storage 
Data storage location  All project data will be stored in the project cloud-based storage system.  
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Data storage format The preferred format for data storage is a BIM-based digital twin, to 
enable effective data exchange between relevant stakeholders. The 

contractor will be responsible for maintaining the model. 
Project schedule  Gantt chart from Microsoft Project  

Budget Spreadsheet from Microsoft Excel  
Design documents CAD files in AutoCAD  

Construction drawings PDF files in Adobe Acrobat  
Material specifications PDF files in Adobe Acrobat  

Site survey data Digital files and GIS formats 
Photographs and videos Digital files in JPEG and MP4 or 

MOV formats 
Data preservation Data retention  All project data will be retained 

for a minimum of 10 years after 
project completion. The defined 
retention period complies with 

legal and regulatory requirements 
at the time of the project. At the 
end of the retention period, data 

will be securely deleted or moved 
to the permanent organisation data 
storage. Data that does not require 
immediate access can be moved to 

permanent data storage sooner.   
Backup and recovery plan All project data will be treated 

according to the organisation data 
backup and recovery plan.  

3. Data sharing 
Data access controls  Project team members will have full access to project data, while 

external stakeholders will have restricted access based on a role and 
need-to-know basis. Project team members will have access to relevant 

data from the organisation data warehouse.  
Data sharing methods  Main data storage The preferred format for data 

sharing is the project BIM-based 
digital twin. 

Project management software Project data not fit for distribution 
through the digital twin will be 

shared and managed through the 
established project management 

software, accessible by all project 
team members. 

Commercial file sharing platforms Larger files will be shared through 
secure file sharing platforms, such 

as Dropbox or Google Drive. 
Email Smaller files and communications 

will be shared through email. 
4. Data analysis  

Data analysis tools  Statistical software  Project schedule and budget data 
will be analysed using statistical 

software, such as R or SPSS. 
Visualisation tools  Project data will be visualised 

using tools, such as Tableau or 
Power BI. 

BIM software  Construction data will be analysed 
using BIM software, such as 

Autodesk Revit or Navisworks.  
Data analysis methods Schedule and budget analysis Actual project progress will be 

compared against the planned 
schedule and budget to identify 

potential variances and deviations. 
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Resource utilisation analysis Resource utilisation will be 
analysed to identify areas of 

potential optimisation or 
improvement. 

 
Any project-specific data management plan should be based in the organisation policies and procedures.  

 
5.3 Organisation level  
 
Implementing AI-based tools could require changes in multiple areas of the organisational structures, roles, and 
responsibilities. Implementation and integration would require training of individuals and personnel involved but 
could also mean new roles might have to be defined and filled. Whether the responsibility falls on a set role in the 
project or organisation, or an extended team, this should be clearly defined in the organisational structure.  
 
5.3.1 Technology  
 
Thesis findings indicate that there is a large benefit in approaching new technologies and tools by first initiating 
tests and pilots. Problems related to scaling seem to, in part, be caused due to a lack of anchoring in strategy and 
lack of systemic thinking (Darko et al., 2020; Nishant et al., 2020; Xu et al., 2022). This was confirmed by the 
findings of Paper IV; it is important to think big but start small. Actors should establish an overarching strategy 
for the development and deployment of technology, and the collection, storage, sharing, and analysis of data. A 
strategy should include a plan of any data that is needed, what format the data is needed on, and what quantities 
the data is needed in, among other things.  

To some extent, PoCs will be needed to verify the work that is being done. The findings of Paper I suggested 
that the majority of tools are not currently developed beyond a testing or pilot stage. In Paper VI, both developers 
and users reported benefits from piloting. However, it is essential for actors to first have a strategy in place, so the 
pilot does not just become another tombstone in the graveyard of PoCs. Actors should indubitably pilot, but they 
should pilot with a purpose. An overarching strategy should encompass all dimensions of implementation and 
integration 

As discussed in Paper VI, there are significant costs associated with the implementation of AI systems and 
digital tools. Paper V identified thirteen factors affecting the profitability of digital systems. The findings showed 
that equipment costs, company-specific factors, project-specific factors, and process-specific factors all impact 
the overall profitability. Therefore, it is unlikely that any two systems will have the same cost profile. Thus, to 
reduce the resource intensity of the implementation process, it can be useful to conduct a profitability analysis 
prior to implementation and integration. Nevertheless, it seems reasonable to assume that scaling will reduce the 
cost per use, regardless of any specific characteristics of a system. 
 
5.3.2 Process  
 
Implementing AI-based tools could require changes in multiple areas of the organisational structures, roles, and 
responsibilities. Change teams should involve team members from the entire organisation (Cameron and Green, 
2015). As discussed in Paper VI, interdisciplinary collaboration could contribute to building specialised expertise 
over time. Implementation and integration would require training of involved individuals and personnel but could 
also mean that entirely new roles might have to be defined and filled. Whether the responsibility falls on a set role 
in the project or organisation, or an extended team, this should be clearly defined in the organisational structure – 
and in an overarching strategy.  

Organisational hierarchies and decision-making structures might need to be adjusted to accommodate the 
development and deployment of AI-based tools and the supporting infrastructure. An arena should be established 
to keep all relevant actors involved, informed, and inspired throughout the entire process of implementation and 
integration and beyond.  

Certain AI technologies appear to currently have reached the Peak of Inflated Expectation according to the 
Hype Cycle framework (Fenn, 1995). At this stage, a technology is widely known in an industry, and hype is built 
around the potential the technology holds. The stage is often characterised of generous media attention, and big 
expectations are built (Fenn, 1995). However, at this stage, the practical implication of the tool is generally less 
known. At one point, the market starts to realise that the technology might not meet the initial hype and the 
perceived potential; at least not in the way it was expected. The field of AI ethics can be argued to have reached 



 

64 
 

this Through of Disillusionment (Fenn, 1995; Dignum, 2017; Dignum, 2018; Hagendorff, 2020). This 
development indicates a need for more transparency both in AI systems and in the surrounding infrastructure, 
including procedures and policies. Systematically increasing explainability and transparency can contribute to 
increased trust in the AI systems and the potential they represent (Abioye et al., 2021).  

Using the taxonomy defined by Bosch-Sjitsema et al. (2021), most AI applications in the construction 
industry appear to have moved past the confusion stage. The majority is still considered to be in the stages of 
excitement and experimentation, while very few, if any, have reached the integration stage.  

Organisation infrastructure must facilitate the effective use of AI for it to be sustainable long-term (Burgess, 
2018; Vinuesa et al., 2020; Xu et al., 2022). As the adoption of AI can still be considered at an early stage, a 
certain degree of organisational change is to be expected. The Lewin Model of Change (Lewin, 1951) is widely 
used for managing organisational change, and the unfreeze approach is intended to facilitate an iterative change 
process (Burnes, 2019). The framework is also recognised in the construction context (Hao et al., 2008). In 
establishing relevant infrastructure to accommodate the implementation and integration of AI systems and models, 
the change model provides a good starting point. Taking the example of establishing a data warehouse. The 
unfreeze stage should be used to create awareness to the problem, and to the perceived solution. If the organisation 
has been purposefully piloting, the unfreeze stage can provide an arena to showcase the results, to provide a deeper 
understanding of associated benefits or limitations. At the change stage, the data warehouse must be established. 
This could involve the acquisition of relevant software and hardware, and data. If an external provider is involved 
in the establishment of the warehouse, they would be involved in the change stage. In the refreeze stage, the 
warehouse is integrated as a permanent part of the organisation. Relevant personnel receive training, and policies 
and procedures for governance are established. Involvement is essential to establish ownership. New processes 
can be stabilised through regular feedback sessions for relevant personnel. New behaviours can be reinforced 
through recognition programs and celebration of achieved successes. Providing involved personnel with a sense 
of trust and autonomy will be essential. Over time, this can contribute to embedding the technical and cultural 
shift as an integral part of the organisation. 

Implementation and integration with existing systems in the organisation or project, or the creation of new 
systems that fit within the existing infrastructure is challenging but important (Xu et al., 2022). Deployment 
requires careful planning and execution and could mean involving one or more stakeholders to ensure that all 
needs are being met during and after deployment. The increased efficiency of one actor should not compromise 
the efficiency of another actor – or the project as a whole. Implementation and integration might require significant 
changes to the workflow and workforce. As indicated in Paper V and Paper VI, implementation frameworks 
should provide an overview of practical implications for all actors who might affect or be affected by the process. 
This way, the frameworks can provide an opportunity to reduce fragmentation.  

From a technical perspective, it is essential to ensure interoperability with various software and hardware 
systems on and off-site, to manage data security concerns, and to deal with any potential physical constraints on 
the construction site. From a process perspective, implementation and integration might require significant 
changes to the workflow and workforce. From a people perspective, this means that the personnel working with 
and around the new system must receive appropriate training prior to implementation, appropriate support during 
the implementation, and appropriate checks after the implementation. This could, and should, be an integral part 
of the data mapping of the effects of the implementation, or the continuous monitoring following implementation.  
 
5.3.3 People  
 
According to the Adoption Innovation Curve, actors in the construction industry are often considered to be ‘late 
majority’ and ‘laggards’ in the adoption of digital tools (Rogers, 1995; Ayinla and Aadamu, 2018).  

Construction organisations are large and complex, and they can involve many stakeholders. It is likely that 
different stakeholders will find themselves at different stages on the Adoption Innovation Curve (Rogers, 1995), 
as indicated by the difference in maturity levels between the groups in Paper VI. It is recommended to involve the 
entire organisation in development and deployment of new tools. This will make it easier to involve the 
appropriate knowledge and resources for the issue at hand and is an important starting point to mapping available 
resources. Active involvement of stakeholders can contribute to closing the adaptation maturity gap, improving 
AI proficiency among stakeholders, and building trust long-term.  

On the organisational level, it is important to map and build knowledge among personnel. As noted in Paper 
VI, it is not necessarily a goal for everyone to know everything, but rather for each member to have some level of 
understanding and awareness related to areas where they may require further comprehension. Mapping of 
knowledge can reveal if the necessary skills and knowledge are available in-house, if a certain process or activity 
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might have to be outsourced, and how necessary knowledge and skills can be built over time. Larger scale 
implementation of data-based tools and AI systems strongly depends on the human factor. As discussed for the 
system level, the elements of consent, clarity, consistency, control, and consequences are essential to ensure the 
scalability and robustness of a solution.  
 
5.3.4 Data  
 
At the organisational level, a data management plan should focus on the overarching policies and procedures for 
data management that are implemented across the organisation. The plan may include information on the overall 
approach for the organisation to data management, the roles, and responsibilities of those involved, and how data 
is collected, stored, shared, and analysed.  

It is essential to allocate sufficient resources to ensure the successful development and implementation of 
the data management plan (Burgess, 2018; Xu et al., 2022). Resources include personnel, equipment, and any 
required infrastructure that is not already present on the system, project, or organisation level. Lack of competence 
was identified as a main barrier for effective data management in Paper IV. It is essential that involved personnel 
receive sufficient training on procedures, policies, and tools used in the data management process.  

As an extension of the data management plan, overall data management policies and procedures should be 
outlined to set the basis for all data activities, to ensure alignment with industry best practices and regulatory 
requirements. Roles and responsibilities should be defined, identifying individuals and departments responsible 
for the process of data management, including data collection, storage, sharing, and analysis. A data management 
plan should ensure at least three types of data: data on the activity or process being enhanced, to provide context; 
data needed to develop the model, to ensure that the technical requirements are not limiting the system; and 
metadata, to ease navigation in the human-machine interaction and provide further context.  

Currently, no standard exists for data collection, storage, and sharing in the construction context, as found 
in Paper IV. Standardisation should not necessarily be a goal in itself, seeing as it might not be useful to standardise 
across all possible processes and activities. However, a certain degree of standardisation can contribute to building 
systems and tools that require minimal adjustments for good effects. This way, it is not necessary to build one 
system or interface from scratch for every single construction activity. As suggested by the findings in Paper VI, 
a system or model will only ever be as good and trustworthy as the data it is built upon; therefore, high-quality 
data is essential. Standardisation can be related to a wide range of factors, which can be summarised in a data 
management plan. Some important starting points are related to readability (whether the data is collected to be 
read and understood by a human or a machine), ownership (who owns the data), and quality.  

Ethical considerations must be at the core of any phase or stage of the implementation process (Dignum, 
2017; Dignum, 2018; Loukides et al., 2018; Politou et al., 2018), and should therefore be established on the 
organisation level. Development and deployment of AI models and tools must be done in a responsible and ethical 
manner, considering privacy concerns and biases. This can mean establishing clear policies and procedures for 
data collection, storage, use, governance, audits, and ensuring the involvement of relevant stakeholders in all 
decision-making processes. Systems must be transparent, accountable, and fair to ultimately be sustainable. 
Developing ethical frameworks, establishing clear policies and procedures, and creating mechanisms for 
accountability and oversight are some ways to build and increase transparency and trust. Bias is a challenge, 
especially when AI systems rely on historical data – as they often must. The data foundation needs to be 
representative. Automated systems such as ML algorithms, which often act as black boxes, must be thoroughly 
evaluated to ensure that they meet ethical standards; this work starts at the development stage.  

Activities related to the development and deployment of AI systems and tools on the organisational level 
will vary heavily on the area of application and the characteristics of the system in question (Hao et al., 2008; Pan 
and Zhang, 2021). Therefore, it is challenging, and not necessarily desirable, to define one standardised framework 
for all activities. However, the organisation could and would benefit from establishing a data warehouse for the 
management and structuring of data. Data from the data warehouse can be used for analytics, data mining, reports, 
and development of AI systems. A centralised organisation-wide data storage system integrating data and 
metadata from all projects and project phases can contribute to increasing productivity and sustainability, not only 
in the output but in the process of development and use. Ensuring the compatibility of data with AI systems and 
models is essential. One possible way to structure and systemise data storage is through building a data warehouse.  
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Data warehouse   
 
Systems and projects depend on data of a certain quality and quantity. As findings indicate that establishing 
independent databases on every system and project level would be too resource intensive, it is recommended to 
establish a central system on the organisation level.  

To establish the storage system, data should be imported from existing operational systems. This could be 
operational databases, such as platforms for waste management, deviation reports, project schedules, project 
design portals, health and safety report systems, or others. Data can also be fetched from so-called flat files, 
meaning databases storing data in a two-dimensional plain text format. Existing documents, drawings, PDFs, and 
spreadsheets can also be used, although these often require manual transfer of data, which is time consuming. 
External data, from subcontractors, suppliers, or other industry-wide initiatives or organisations can also be used, 
as illustrated in Paper III.  

Today, data that are collected in the construction context are rarely collected for the purpose of building and 
using AI systems and models. Therefore, a certain degree of cleaning will be necessary. Cleaning can involve 
identifying and removing duplicate data, correcting errors, standardising data and file formats, converting data 
types, adjusting the resolution of the data, and or filling in any missing data values.  

After cleaning, the data can be stored in the data warehouse. The data warehouse should distinguish between 
at least three types, or levels, of data: raw data, summary data, and metadata. Raw data is the data as it is collected 
and cleaned. Summary data is aggregated data that allows for quick analysis of relatively large volumes of data 
and can enable users to identify trends or patterns that might not be apparent in the raw, unstructured data. The 
metadata provides a broader understanding of the context of the data. Relevant metadata include date of creation, 
responsible actor, project phase, project location, frequency, discipline, file format, file size, keywords, or any 
additional descriptions. Metadata repositories can enable users to easily search, locate, and retrieve relevant data, 
as discussed in Paper VI. Data should be linked to a multidimensional format that allows data to be connected 
between actors and across project phases, and to metadata. Relevant multidimensional formats identified in Paper 
VI include NetCDF, JSON, and HDF5. To utilise existing infrastructure, an existing BIM model or digital twin 
can be a good starting point. As a part of the data management plan, procedures for data preservation and retention 
should be defined for the data warehouse; this ensures that data is preserved for an appropriate length of time. 
After the set amount of time, data can be moved from an interface to a permanent data storage. A data backup 
plan should be developed, to ensure that data is recoverable in the event of data loss. The more actors that are 
involved and have access to the warehouse, the more important this is.  

To retrieve data more effectively from the data warehouse, data marts should be established. A data mart is 
a substructure that contains the specific data that is relevant for a specific department or team within an 
organisation or project. Data marts can provide pre-defined data structures and queries, ultimately making data 
analysis and reporting quicker and more convenient for the end user.  

The user interface serves as the primary means for end users to access and interact with the data. The user 
interface provides access without the need for technical competence beyond standard platforms and portals. 
Through the user interface, the data can be used for analytics, data mining, or reporting – on project or organisation 
level. Through this, data could also be accessed for development and deployment of AI systems and models.  

The system level, project level, and organisation level are very strongly interlinked, and to fully unlock the 
potential of effective AI application, the work on all three levels needs to be structured and systemised.  
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6 Conclusion  
 
 
 
The aim of the thesis was to explore the implementation and integration of AI in the construction context and 
discover how actors can successfully move from ambition to practice. The research questions were as follows:  
 

 RQ1: What is the current state of the field, and what are the main challenges the field is facing?  
 RQ2: What are the main dimensions of AI development and deployment in a construction context? 
 RQ3: How can industry actors move from ambition to practice – starting today?  

 
This chapter presents the main conclusion of the research conducted in this thesis and answers the research 

questions as defined. The current state of the field is summarised and identified main challenges are outlined. 
Seven main dimensions of implementation and integration are defined, and based on these, frameworks are 
defined on the organisation, project, and system levels.  

The research questions are addressed, followed by a brief discussion of the contribution of the thesis for 
research and practice. Lastly, limitations of the thesis are noted, and opportunities for future research are proposed.  
 
6.1 Current state and main challenges (RQ1)  
 
AI has been around for decades, but recent advances have completely transformed what we can achieve with 
technology – and advances have enabled areas of application that were not possible before. However, in a rapidly 
developing field, actors must establish a robust infrastructure to be able to scale and adapt at the same pace.  
 
6.1.1 Current state 
 
There is a lot of talk about the potential that AI holds, and we see impressive, small-scale pilots and examples of 
the potential it inhibits, but in the construction industry, big-scale implementations are yet to be demonstrated and 
put into an economically viable and sustainable situation.  

The construction industry tends to be considered less digitalised compared to other industries. Still, progress 
is demonstrated both by researchers and industry actors. There appears to be a divide between the construction 
industry as a whole, the organisation level, the project level, and the system level. Another divide is found between 
actors in different parts of the value chain,  

The industry could benefit from building upon existing methodologies and strategies but would eventually 
need to reinvent and redefine traditional project models, contracts, business models, and enterprises to enable 
room for actors to innovate and create real change, economically and otherwise. This thesis aims to enable actors 
in the industry, with a focus on practical implications contributing to the field. Therefore, the focus is on 
organisations, projects, and systems, rather than the industry as a whole. Building on the advances already made 
in organisations and projects, the thesis provides a framework to continue a pragmatic but ambitious approach to 
bringing the use of AI-based systems and tools into practice.  

On the system level, a wide range of tools have been developed and successfully applied to estimation and 
cost control; logistics, planning, and scheduling; strategy; health and safety; project performance and success 
estimation; risk management; sustainability assessments; and material properties. However, few report on the use 
of these tools beyond pilots and PoCs; most focus on potential use or the development of techniques.  

On the project level, in-house and commercially available tools have been applied to one or more activities 
and processes. However, this is generally done in isolation, meaning that next to no changes are made to how the 
project is planned or executed, meaning that the AI system simply becomes an add-on. This is hindering effective 
scaling, and ultimately, effective results for productivity and sustainability.  

On the organisational level, many actors are talking about digitalisation and utilisation of AI. Yet, similarly 
to on the project level, the infrastructure is rarely widely established outside the group or department responsible, 
this being the IT department or other groups of especially competent personnel. These further decrease scalability 
and robustness of the system.  
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6.1.2 Main challenges  
 
A few challenges stand out, both on the system, project, and organisation level, when it comes to explaining why 
the whole industry is currently lagging. Some main challenges are:  

 
 Uneven application of resources to problems. The problems that gain attention are the ones considered 

to be high value; essentially, for academics, areas that can showcase results and result in publication in 
the shortest time, and for practitioners, the problems that yield the largest monetary value in the shortest 
time span. These are not necessarily the areas that can make the greatest difference long-term on 
efficiency, productivity, or sustainability.  

 This is one of a few reasons that some areas are still waiting for data – the value of the data collection 
for these areas might be less apparent, so it is delayed further. The lack of data is considered a major 
barrier for effective application of AI systems. If you can not measure something, you can not understand 
it, and, ultimately, you can not build an AI tool to change it.  

 Lack of anchoring in strategy. This is essential for AI systems to become an integral part of the project 
or organisation rather than just an add-on, ultimately avoiding graveyards of PoCs.  

o Findings suggest that the responsibility of development and deployment tends to be allocated 
to one single (relatively small) group; these naturally have limited capacity. If the continuation 
of the projects falls on a small selection of people, the probability that it can not be continued 
for practical reasons increases.  

o Projects and organisations should avoid keeping old processes and procedures and simply add 
the AI system or tool on top; rather, they should aim to rethink and restructure the process to 
include the system more organically. Adjacent processes directly affecting the system should 
be adjusted to, for instance, accommodate changes in organisational structure or responsibilities.  

 The work becomes too resource intensive. A lot of time and effort is spent on activities related to data 
management, training, follow-ups; when each pilot or PoC is conducted by different actors and 
personnel, in different departments, a lot of work is, inevitably, done twice. Efforts are currently too 
fragmented. Conducted tests might not see the greatest effects – which is natural, as the scaling is seen 
to hold the largest gains. Subsequently, it can be difficult to argue for coverage in the next test.   

 There is a drifting apart between the academic field, and the industry. A lot of the work conducted 
in an academic context is centred around smaller use cases, rather than developing scalable and robust 
tools. Furthermore, many studies utilise traditionally academic ML-development tools. Practitioners may 
be hesitant to explore areas of application that lack sufficient research, and academics might be hesitant 
to spend resources on areas that lack commercial interest or immediate effects.  

 Limited transferability. A model that is developed in one environment, or on one specific dataset can 
not necessarily be operated in another environment or applied to another dataset; there is a lack of 
standardisation in both construction and data management activities. This can complicate the collection 
and sharing of data across the value chain and limit effective development and application of AI tools. 

 Lack of contextualisation, in data, model, and deployment. There seems to be a lack of understanding 
of the construction processes themselves; in essence, what the problem really is, what the goal actually 
is, and how an AI-based tool can actually contribute. Digitalisation and implementation of AI systems 
and tools should never be the goal, but the means to reach another goal (such as cutting costs, increasing 
productivity, ensuring safety, or reducing emissions) – AI is only the solution if it is the most effective 
way to reach this goal.  

 Fragmentation. Fragmentation is seen both between organisations in the industry, between projects in 
an organisation, and between actors in a project. It is recommended to involve the entire organisation in 
the development and deployment; this will make it easier to acquire the appropriate knowledge and 
resources for the project at hand and is an important starting point for mapping available resources. 
Reducing fragmentation is essential to overcome challenges related to intersectional talent shortages.  

 
6.2 Main dimensions of implementation and integration (RQ2)  
 
Findings and discussions uncovered seven main dimensions of implementation and integration of AI systems and 
tools in the construction context.  
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The identified dimensions are strongly interrelated, and interdependent, and successful implementation and 
integration of AI systems will require a coordinated effort across all dimensions. However, here, they are defined 
individually. For academics, this is intended to provide an overview, and a well-defined starting point for future 
research; for practitioners, this is intended to provide a deeper understanding of the extent of each dimension.  

The main dimensions relate to the four previously discussed pillars of technology, process, people, and data; 
often, multiple at the same time. 
 
6.2.1 Data management 
 
A holistic approach to data management is critical for successful AI implementation. Prioritising, contextualising, 
and standardising data management is found to be essential. Three key indicators for data management are data 
quantity, data quality, and data access.  

It will be necessary to systemise data collection (such as sources and collection methods), data storage (such 
as locations and formats), data sharing, data analysis, and standards for how data is used in the development and 
deployment of AI-based tools. Comprehensive data management plans and infrastructures should be established.  

A vast amount of data already exists in and on construction projects; however, metadata providing insights 
into the quality and characteristics of the data beyond just what they measure is generally lacking. This hinders 
effective QA of data, and successful contextualisation, and could ultimately render the available data useless. 
Metadata repositories and data warehouses should be established, so data can be traced back to respective projects 
or actors, and to enable the identification of limitations the data might hold.  

Data should be accurate, relevant, and consistent, to improve the quality of the outcome, and reduce the time 
and resources needed for processing, cleaning, and transforming in preparation for development. In order to ensure 
a holistic approach, three types of data are needed:  
 

 Data on the activity or process being enhanced. This is essential to understand the characteristics of the 
problem, to understand what tool might be useful, how a tool might be useful, and what tool or approach 
might bring the greatest effects and improvements.  

 Data needed to develop the model. Resulting from an initial assessment of the data associated with the 
process, the developer should get an understanding of what potential an AI-based tool might hold. From 
this, the developer can decide what data is needed for development. For an ML-based tool, this includes 
ensuring sufficient quality and quantity of data for development, training, validation, and testing.  

 Metadata related to the initial data collection (such as project number, project phase, project location, 
discipline, file format, file size, or additional characteristics), the implementation process (such as 
possible downtime, time spent on training), and possible mapping of effects after implementation.  

 
6.2.2 Model  
 
A tool built on AI will use one or more AI models to perform a specific function.  

Selecting appropriate models and developing them to suit the construction context is a central and critical 
part of the successful utilisation of AI. Different models will be fit for different types of data, different activities, 
or different phases in the same project. Understanding the problem and the driving forces behind it is essential, 
and data management plays an important part in this process.  

Developed models need to be robust and scalable. The AI models must be able to handle potentially large 
volumes of unstructured data and account for the complex interdependencies between different aspects of a 
construction project. The models must be capable of adapting to dynamic and rapidly changing environments, and 
to identify relevant features and patterns. Transferability, trust, transparency, and adaptability are key challenges.  
 
6.2.3 Deployment 
 
Implementation and integration with existing systems in the organisation or project, or the creation of new systems 
that fit within the existing infrastructure is challenging but important.  

Deployment requires careful planning and execution and could mean involving one or more stakeholders to 
ensure that all needs are being met during and after deployment. The increased efficiency of one actor should not 
compromise the efficiency of another actor – or the project as a whole. Implementation and integration might 
require significant changes to the workflow and workforce.  
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From a technical perspective, it is essential to ensure interoperability with various software and hardware 
systems on and off-site, to manage data security concerns, and to deal with any potential physical constraints on 
the construction site. From a process perspective, implementation and integration might require significant 
changes to the workflow and workforce. From a people perspective, this means that the personnel working with 
and around the new system must receive appropriate training prior to implementation, appropriate support during 
the implementation, and appropriate checks after the implementation. This could, and should, be an integral part 
of the data mapping of the effects of the implementation, or the continuous monitoring following implementation.  
 
6.2.4 Monitoring and maintenance  
 
Following implementation, the AI model needs to be monitored and maintained, to ensure continued accuracy 
and effectiveness. The performance should, preferably, be monitored in real-time, or close to real-time.  

Maintenance can include, but is not limited to, updating the model as new data becomes available, or 
otherwise adjusting the model after assessment of preliminary available data. To facilitate effective maintenance, 
maintenance protocols can be established. These can include defining roles and responsibilities, frequency, and 
key performance indicators. Robust models might be able to, to some extent, autonomously continuously adapt 
over time; however, the dynamic nature of construction projects might increase the need for manual maintenance, 
especially at early stages.  
 
6.2.5 The human factor  
 
Personnel involved in the implementation and integration of AI-based tools might need training related to the 
technical use of any new tools or systems; assessment and interpretation of input data, output data, or metadata; 
or how the system is to be understood in the context of the activity or the entire project.  

Implementation and integration might require redefining roles and responsibilities, establishing training 
programs, mentor-programs, and developing new communication channels to support the use of AI. This is closely 
linked to the organisational dimension. The element of collaboration will be vital to develop and deploy effective 
and sustainable systems. The intersection of fields is currently seeing a talent shortage, and the most important 
tool in overcoming this will be training of personnel.  

Some might be resistant to change. It will be necessary to prioritise building trust in all interactions that are 
affected by the implementation: human-machine, human-data, and human-human, meaning across the value chain, 
interdisciplinary fields (such as developer and user, for instance) or organisational silos.  

Considering the human factor might require an increased focus on human resources in the organisation.   
 
6.2.6 Organisation 
 
Implementing AI-based tools could require changes in multiple areas of the organisational structures, roles, and 
responsibilities. Implementation and integration would require training of individuals and personnel involved but 
could also mean new roles might have to be defined and filled. Whether the responsibility falls on a set role in the 
project or organisation, or an extended team, this should be clearly defined in the organisational structure.  

It is important that the organisational structure facilitates collaboration across the value chain and across 
different functions in the project or organisation. Organisational hierarchies and decision-making structures might 
need to be adjusted to accommodate the development and deployment of AI-based tools and the supporting 
infrastructure.  

An arena should be established to keep all relevant actors involved, informed, and inspired throughout the 
entire process of implementation and integration – and beyond.  
 
6.2.7 Ethical considerations 
 
Ethical considerations must be at the core of any phase or stage of implementation and integration.  

Development and deployment of AI models and tools must be done in a responsible and ethical manner, 
considering privacy concerns and biases. This means establishing clear policies and procedures for data collection, 
storage, use, governance, audits, and ensuring the involvement of relevant stakeholders in decision-making 
processes. Systems must be transparent, accountable, fair, and, ultimately, sustainable.  

Transparency and trust are two of the major challenges. Developing ethical frameworks, establishing clear 
policies and procedures, and creating mechanisms for accountability and oversight are some of the possible 
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solutions. Another big challenge is bias, especially when AI systems rely on historical data – as they often must. 
The data foundation needs to be representative. Automated systems, for instance, ML algorithms which often act 
as black boxes, must be thoroughly evaluated to ensure that they meet ethical standards.  
 
6.3 Proposed frameworks (RQ3)  
 
Considering the current state of the field, identified challenges for further advancement, and the seven dimensions 
of implementation and integration, frameworks are defined for the system, project, and organisation levels. The 
frameworks are expected to improve transferability and contextualisation in development and deployment, and to 
reduce fragmentation across the value chain, across processes, and in data.  
 
6.3.1 System level 
 
To accommodate the seven dimensions in all stages of development and deployment, the framework illustrated in 
Figure 6-1 is defined for the system level.  

The framework consists of (S1) identifying the problem, (S2) assessment of feasibility, (S3) data collection, 
(S4) data pre-processing, (S5) model development, (S6) integration, and (S7) maintenance and monitoring. The 
framework is meant to facilitate a need-based approach to development and deployment, rather than deploying an 
AI system just for the sake of using AI. Utilising AI should not necessarily be a goal of its own; the goal should 
be to carry out a process in a more productive and sustainable way – AI systems might offer valuable contributions 
towards achieving this goal. For certain use cases, employing AI involves reviewing AI-generated examples, 
providing input, and using the AI system as a platform for experimentation and decision support; a system does 
not have to be entirely autonomous to create great value. 

Each phase of the defined framework is intended as a decision gate, guiding the developer and user through 
the entire process. Ultimately, the framework provides a standardised process that eases incorporation in 
overarching strategic plans and goals upon completion of the development process.  

The framework aims to facilitate a streamlined integration with established processes and activities, and 
ultimately ensure that the AI system becomes more than simply an add-on.  
 

 
Figure 6-1. System level framework. 

 
6.3.2 Project level 
 
The framework for the project level is based on the NS 3467:2023 Stages and deliverables in the life cycle of 
construction works (Standard Norge, 2023) and outlines relevant AI-related activities for each of the defined 
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project phases. Development and deployment must be an integral part of all phases, rather than an afterthought in 
the production phase; this will drastically increase scalability and robustness.  

A project level framework from the executive perspective is illustrated in Figure 6-2. ‘Areas of application’ 
refers to possible areas of application that are relevant for the use of AI systems in the given phase. ‘Stakeholder 
management’ refers to recommended activities for stakeholder management in the given phase, and 
‘Infrastructure’ refers to recommended activities for establishing relevant infrastructure to support the use of AI 
systems in the current and upcoming phases – and projects.  

By highlighting potential use cases throughout all project phases, the framework aims to achieve effective 
distribution of resources to a range of problems. The framework indicates that stakeholder management extends 
far beyond assigning responsibilities, and outlines relevant activities to contribute to building expertise and trust. 
Relevant infrastructure must be established to accommodate changes on both the system and organisation levels.  

 

 
Figure 6-2. Project level framework. 

 
6.3.3 Organisation level 
 
Activities related to the development and deployment of AI systems and tools on the organisational level will vary 
heavily on the area of application and the characteristics of the system in question. Therefore, it is challenging, 
and not necessarily desirable, to define one standardised framework for all activities.  

However, regardless of any area of application or characteristics of a given system, the organisation could 
and would benefit from establishing a data warehouse for the structuring of data. One such model is illustrated in 
Figure 6-3. Data from the data warehouse can be used for analytics, data mining, reports, and development.  

Data warehouses are expected to be useful on the system and project levels; however, it is considered most 
resource effective to establish this on the organisation level. This way, the data used on system and project level 
can be elevated and related to other relevant data. Certain traditionally qualitative areas are still waiting for data. 
However, this data might already exist in unstructured formats, or exist in databases currently not available to the 
actor who wishes to access them. This can, in part, be solved by establishing a data warehouse. Ultimately, a data 
warehouse is expected to contribute to less resource intensive data preparation pipelines.  
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Figure 6-3. Organisation level framework. 

 
6.4 Main contributions  
 
The thesis has outlined the current state of the field, providing a comprehensive and practically oriented overview 
of recent advances, both from the perspective of academics and practitioners. Key challenges are identified for 
theory and application in attempts to move the use of AI-based systems and tools from ambition to practice. Based 
on this, the implementation and integration processes were assessed, and seven main emerging dimensions were 
mapped. From the seven dimensions, three frameworks were defined for the system, project, and organisation 
levels. The work is based on insights from previous research and from leading industry actors and experts.  

Research mapped experiences and lessons learned from numerous projects to understand how the practical 
implications of development and implementation actually affect, and are affected by, actors on the system, project, 
and organisation levels. The thesis helps expand the knowledge within the contextual intersection between project 
management, AI, and sustainability in the construction context.  

The findings provide a sense of direction and highlight current potential and gaps in the research at a time 
when academics and practitioners alike are eager to move forward. Previous research has emphasised the need for 
application-oriented research and frameworks (Darko et al., 2020; Wang et al., 2020), and what these might mean 
for the dimensions of people, processes, and technology (Shen et al., 2010; Nishant et al., 2020; Xu et al., 2022). 
The frameworks defined in this thesis will contribute to increasing transparency throughout the process, with 
recommendations related to the standardisation of activities in all three dimensions – and for the dimension of 
data. Improved standardisation can contribute to comparability and transferability between studies in the academic 
field, and pilots and PoCs in the industry, and reduce fragmentation.  

The thesis provides an application-focused approach to the topic of AI in the construction context, expanding 
on a people and process-oriented complement to previously technology-focused advances (Ilter and Dikbas, 2009; 
Martínez and Fernández-Rodríguez, 2015; Juszczyk, 2017; Basaif and Alashwal, 2018). The frameworks address 
the needs expressed by prior research to facilitate collaboration between stakeholders (Goralski and Tan, 2020), 
leverage the potential AI systems hold for the entire construction project lifecycle (Pan and Zhang, 2021), and 
incorporate elements of infrastructure required to support AI technologies and solutions (Agrafiotis et al., 2018; 
Abraham et al., 2019). As indicated by previous research (Goralski and Tan, 2020; Nishant et al., 2020; Feroz et 
al., 2021; Pan and Zhang, 2021; Kineber et al., 2023a), the standardised framework is believed to enable increased 
sustainability in the process output, as well as in the process itself.  

Preliminary analyses of existing literature indicated that most of the research in the intersections between 
the defined topics was primarily grounded in conceptual theory, rather than practical implications. Therefore, the 
methodology for the studies conducted within this thesis was developed to provide empirical validations.  

For academics, the thesis provides a well-defined starting point with many opportunities for future research. 
The thesis provides empirical validation of findings in a field that has previously been lacking empirical data and 
research on implementation and performance beyond small-scale testing and PoCs. Previous research in the field 
was often limited to one specific area of application, or one specific system, and therefore not focused on holistic 
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frameworks (Darko et al., 2020; Wang et al., 2020). Findings are presented with detailed descriptions of practical 
implications. A significant theoretical contribution is connecting the fields of AI, project management, and 
sustainability in the context of the implications of technology, process, people, and data. By connecting the fields, 
the findings identify factors affecting the four dimensions, and how factors in one dimension can affect the 
remaining three. Consequently, the thesis helps contributes to bridging the research gap existing at the intersection 
between the topics of AI, project management, and sustainability in the construction context.  

For practitioners, the thesis provides a starting point for starting the process of moving from ambition to 
practice. The frameworks can help enable the shift from small-scale testing to larger scale implementation and 
integration. For individual actors, establishing frameworks contributes to anchoring in strategy, and a long-term 
reduction in required resources for effective and sustainable development and deployment of AI tools. The thesis 
has introduced three frameworks and illustrated the importance of taking a holistic approach, and not only focusing 
on activities and processes in one dimension, as changes in one dimension affect the three remaining dimensions.  

A set of extensive guidelines is defined to help actors understand and more effectively and sustainably 
develop and deploy AI-based systems and tools. The defined frameworks offer a comprehensive approach for 
practitioners who want to get started – and want to get started now. Actors do not need to wait for the industry to 
change to bring ambition into practice, and the thesis provides some of the tools required to start the change. The 
insights provided can help practitioners identify and overcome some of the key challenges associated with the 
development and deployment of AI-based systems and tools, to understand the potential it holds and how to 
effectively unlock it. The findings can help practitioners identify areas of improvement in their own practices.  

Actors in the construction industry should be able to apply the findings presented in this thesis by 
implementing the developed frameworks. Independently, the seven identified dimensions for implementation and 
integration can serve as a framework of their own right for actors to evaluate their own structures and systems, to 
ultimately gain insights and perspective into their own practices.   

Throughout the work with the thesis, selected parts of the research have been presented in a wide range of 
settings and situations, including two guest lectures at Universidad Politécnica de Madrid, a presentation at the 
University of Salford Built Environments Summer School Programme, as well as multiple presentations for 
industry leaders, industry experts, and members of Construction City Cluster. As a result, the research has already 
been partially applied and evaluated in both academic and industry settings. Thus, certain aspects of the study 
have already had the opportunity to be assessed among experts in the fields, and in educational contexts.  
 
6.5 Limitations and opportunities for future research  
 
This thesis provides an enhanced understanding of how the use of AI in construction projects can be taken from 
ambition to practice. However, the findings presented and discussed in this thesis represent only the beginning of 
the research in this specific intersection of the field, and thus it provides a starting point for future research.  
 
6.5.1 Empirical context and generalisability  
 
The Norwegian construction industry constituted the main foundation for the conducted studies; the case studies 
were conducted on Norwegian projects, and most of the interviewees had their experience from the Norwegian 
setting. Thus, the research can be limited by cultural biases, regional characteristics, or unique circumstances that 
might not be applicable to other countries or contexts.  

Close collaboration with international research environments (namely the University of Salford in England, 
and Philadelphia University in Jordan) and continuous participation in international expert groups with members 
from Switzerland, USA, Spain, Romania, Israel, England, and Norway contributed to increasing reliability, 
validity, and generalisability in the research.  All findings were analysed in the context of available international 
literature exploring adjacent topics. This could improve the generalisability of the study and suggests that the 
findings can be applicable also outside the empirical context. To empirically validate this, more research is needed.  

Future research could further expand the research beyond the Norwegian context and use this thesis as a 
starting point to strengthen or challenge the findings in the context of other countries and industries. Despite 
international collaboration providing the opportunity to share insights and findings across countries and industries, 
conducting research with data and insights predominantly from another country, could be a valuable contribution. 
It can provide a broader perspective, and allow for a more diverse range of experiences, insights, and practices to 
be included. Identifying similarities and differences between different countries can help improve generalisability.   
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By conducting research in an international context, cross-cultural similarities and differences can be 
identified, which, in turn, can help strengthen the findings. Elements from the defined frameworks could also be 
extended to facilitate activities in other industries; this could be another opportunity for future research.  

Only articles written in English were included in the final literature review samples. This can be addressed 
in future research by including articles written in other languages, to broaden the scope of the study and potentially 
provide a more diverse perspective on the topic.  
 
6.5.2 Validation of findings with increasing maturity  

 
Due to the novelty of the topic, the studies conducted within the thesis had a limited number of case projects and 
informants available. The limited number of relevant informants and experts yielded quantitative methods such 
as questionnaires inapplicable for parts of the research.  

A smaller sample size can reduce the generalisability of the findings. The sample size (and generalisability) 
was increased by involving informants across the value chain, and with backgrounds from other industries than 
the construction industry; however, future research can involve an even broader sample of projects and informants. 
Involving a larger sample of informants for each of the roles in the value chain can help gain a more in-depth 
understanding of the topic. As the field continues to develop, it seems reasonable to assume that a larger number 
of relevant projects and informants will become available for future research.  

The novelty of the technologies and methods addressed and assessed in the thesis means it might be too early 
to assess their potential and limitations confidently, this could be confirmed or challenged by future research.  
 
6.5.3 Industry actor perspectives   

 
The project level framework was developed for the executive perspective, in essence, contractors. A valuable 
contribution for future research could therefore be to develop similar frameworks for owners, subcontractors, 
advisors, architects, suppliers, and other parts of the value chain. Throughout the research process, actors from 
across the value chain were interviewed and helped in the validation of findings, but the framework, especially 
on the project level, was ultimately mainly targeted towards the executive perspective.  

 
6.5.4 Practical implementation of frameworks  

 
Future research could implement the frameworks of this thesis, or elements from the frameworks, and set out to 
map and quantify the resulting effects on the system, project, and organisation levels. Empirical studies could then 
see, in practice, how the frameworks affect and are affected by real-life situations. By building on the findings of 
this thesis, future research could explore identifying even more dimensions of the implementation and integration 
process and assess how these might affect and be affected by the dimensions identified in this thesis.  

The field of AI is developing rapidly, and the state of the field is drastically different upon completion of the 
thesis (2023) compared to the initiation of the thesis (2020). Therefore, each of the studies can be argued to hold 
only a cross-sectional view of the topic and the state of the topic. The whole thesis can still be argued to hold 
elements of a more longitudinal perspective, which can improve the reliability of the research. However, future 
research can aim to conduct a series of identical studies, to map the changes to a specific dimension or context 
over time. This will provide an even more longitudinal perspective. Further triangulation of research methods and 
approaches – especially case-based research – could also strengthen the validity of the findings and provides 
another opportunity for future research to expand on the preliminary findings of this study.  
 
6.6 Personal reflections  
 
In such a rapidly developing field, it can be hard not to get lost in the jungle of buzzwords and hype.  

In order to make real progress, actors need to be pragmatic and put practical considerations and implications 
first, fancy tools second. Still, there is every reason to be optimistic. The technology, to a large extent, is already 
here. Tools that are now generating massive hype, and creating significant value, are built on technology that has 
been around for a while. We are now seeing new combinations of technologies, we have got access to more data 
than ever before, allowing us to create value for many, many people – that being entertainment value, or value in 
a construction project or organisation. So, we must be pragmatic, but we also have every reason to be optimistic. 
There is undoubtedly a big potential, and the industry might soon be ready to move from ambition to practice.   
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Abstract: The use of artificial intelligence (AI) in construction projects has surged in recent years and is believed to 
represent a significant potential for increasing productivity and efficiency in the industry. The purpose of this paper is to 
present a state-of-the-art view of the field by conducting a review of publications concerning the topic of AI in construction 
and comparing the findings to previously conducted reviews. This paper provides an overview of the recent and current 
uses of AI in construction projects, through a descriptive analysis of the characteristics and contents of 86 peer-reviewed 
articles from 2015 to 2020. Although the application of AI in the industry is not entirely new, construction appears to 
currently be behind other industries in terms of adopting and adapting to AI. The results show that a wide range of research 
is conducted on AI in construction projects. A limited number of publication channels and authors stand behind a significant 
part of the reviewed publications. Most studies are conceptual or use a mixed-methods research design. The research 
addresses several areas of application, but there is a predominance of quantitatively based subfields of construction, such 
as estimation and cost control, logistics, planning, and scheduling. Future research should focus on developing holistic and 
process-oriented frameworks for projects to move from ambition to practice. Findings can inform the future development 
and implementation of AI in the construction industry context. For researchers, this study identifies areas in need of further 
attention and examines possibilities for future exploration of multidisciplinary approaches that combine construction 
engineering, project management, AI, and social science. For practitioners, the study highlights current trends and work 
within the field, providing an overview of the potential for pilot studies, tests, and innovations. 
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1. Introduction

The construction industry is complex; conflicting 
objectives contribute to this complexity, as demands for 
productivity, resource efficiency, sustainability, and 
advances in technology continue to develop rapidly (Wood 
and Gidado, 2008; Luo et al., 2017). In the past, the 
construction industry has been considered rather 
traditional and, although it is currently experiencing a 
digital shift, it remains behind the curve compared to other 
sectors in implementing AI-based solutions (McKinsey 
Global Institute, 2015). Thus, the practical implementation 
of artificial intelligence (AI) in construction is still 
considered a rather unexplored topic. 

The concept of AI is broad, but it can be defined as a 
system or a structure that has ‘the ability to perform tasks 
in complex environments without constant guidance by a 
user’ (University of Helsinki, 2018). AI is believed to 
enable an increase in productivity throughout the entire 

construction project lifecycle chain, ultimately improving 
the sustainability of environmental, economic, and social 
factors (Blanco et al., 2018; Oprach et al., 2019). Benefits 
are expected at the project level, the organisational level, 
and for the industry as a whole. The construction industry 
remains a significant contributor to the gross domestic 
product of many countries. However, it also heavily 
contributes to resource usage, energy consumption, and 
waste production, and the sector suffers several 
occupational fatalities every year (Barker et al., 2007; 
Becqué et al., 2016; Dong et al., 2019). AI is believed to 
impact how the industry approaches sustainability, policies 
on health and safety, risk assessment, planning and 
scheduling, strategy, project performance, cost control, 
and calculations for operations and lifecycles (Hossain and 
Nadeem, 2019). 

AI is a highly interdisciplinary field, comprising 
elements from computer science, logic, mathematics, 
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psychology, and neuroscience (Tidemann, 2020; Tørresen, 
2013). In the construction context, AI systems can be 
grouped into four categories: machine learning techniques, 
knowledge-based techniques, evolutionary algorithms, and 
hybrid systems (Akinade, 2017). Machine learning 
algorithms have the ability to learn from data (Tidemann, 
2019); in the construction industry, neural networks, 
support vector machines, and fuzzy logic seem to be the 
most widely used machine learning techniques (Akinade, 
2017). Knowledge-based systems mimic the problem-
solving expertise of humans to identify solutions for 
complex problems (Sowa, 2000). Frequently utilised 
knowledge-based approaches include expert systems, rule-
based systems, case-based reasoning, and semantic 
networks (Akinade, 2017). Evolutionary algorithms are 
based on biological evolution (Russel and Norvig, 2010); 
evolutionary AI techniques optimise factors and possible 
scenarios to find the most suitable outcome (Dasgupta and 
Michalewicz, 1997) – such algorithms can cover broad 
territory, from genetic algorithms to ant colony 
optimisation, particle swarm optimisation, and artificial 
bee colonies (Akinade, 2017). Hybrid systems combine 
two or more AI approaches to maximise the strengths and 
overcome the weaknesses of individual approaches 
(Russel and Norvig, 2010).  

This study investigates the current and potential use of 
AI in construction projects, through a scoping review of 86 
articles from peer-reviewed journals. Providing an 
overview of the available research will indicate which 
knowledge exists in the field, and where further research is 
required. Specifically, the study addresses the following 
research questions (RQs):  

 RQ1: What research has been carried out on AI in 
construction projects?   

 RQ2: What research approaches have been used in 
studies on AI in construction projects?   

 RQ3: What gaps exist in the research? 

The first research question will be answered through a 
descriptive analysis of the selected publications. For this 
purpose, the following data will be collected: title; 
author(s); year of publication; study location; and 
keywords. The second research question will be answered 
through a more extensive analysis of the research design of 
each study, assessing and classifying the chosen 
methodology as conceptual, qualitative, quantitative, or 
mixed. Last, the third research question will be answered 
by assessing the overall purpose of each study, its focus of 
attention, significant results, and conclusions; this stage 
also includes assessing the answers to the two previous 
research questions.  

Several literature reviews on the topic of AI in 
construction projects have previously been conducted. For 
example, Ilter and Dikbas (2009) reviewed AI applications 
in construction dispute resolution; Martínez and 
Fernández-Rodríguez (2015) reviewed AI as a tool for 
estimating project success and identifying critical success 
factors; Juszczyk (2017) reviewed the use of AI for cost 
estimation in construction projects; Basaif and Alashwal 
(2018) reviewed AI applications for risk analysis in 
construction projects; Xiao et al. (2018) conducted a 
bibliometric review of AI in construction engineering and 
management, providing an overview of the most 
influential studies of AI in construction between 2007 and 

2017; and Darko et al. (2020) conducted a scientometric 
analysis of research activities related to the use of AI in the 
architecture, engineering, and construction (AEC) industry. 

This review examines a range of relevant articles 
published between 2015 and 2020 to provide a state-of-
the-art perspective of the available technology and its 
current areas of application in construction projects. 
Reviews conducted by Ilter and Dikbas (2009), Martínez 
and Fernández-Rodríguez (2015), Juszczyk (2017), and 
Basaif and Alashwal (2018) considered AI applications in 
specific areas. Xiao et al. (2018) conducted a bibliometric 
review on publications up to 2017. Darko et al. (2020) 
mapped research interests and themes in the AEC industry, 
identifying topics such as optimisation, simulation, and 
decision-making. This study will contribute to the 
research field by examining and assessing the body of 
literature dating from 2015 to 2020, focusing on the 
variety of practical applications of AI in construction 
projects. The study targets use cases and applications as 
well as the research activity itself. Ultimately, this study 
provides a state-of-the-art overview for reference to future 
research endeavours, highlighting relevant resources, 
potential collaborators, and areas in need of more work. 
For practitioners who wish to implement AI-powered 
tools in their projects, it provides a sense of direction for 
AI-powered innovation, a resource for identifying 
potential AI solutions for their problems, and an 
opportunity to benchmark their work against previous 
undertakings in the field.  

The remainder of the study is organised as follows: the 
next section explains the methodology of the review 
process; the Results section presents and discusses the 
main findings of the review; the Conclusion section 
answers the research questions as defined and summarises 
the qualitative characteristics of the body of publications, 
the research approaches used, and the gaps identified 
within the field. The last section reflects upon the 
possibilities this study provides for future research, as well 
as the limitations of the conducted review.  

2. Method 

2.1. Unstructured Literature Search  

The perceived feasibility of the study was measured 
against the comprehensiveness of the scoping process, 
following the recommendations by Levac et al. (2010). 
This provided the main motivation for an initial, 
unstructured literature search. Conducting this initial 
search in an explorative manner provided a broad 
knowledge of the field, and ultimately created a foundation 
for the literature review. The purpose of the preliminary 
search was to produce a literary warrant, thereby 
establishing a suitable foundation for further definition and 
indexing of terms and classes during the review. The 
search provided an overview of the topic and contributed 
to an initial understanding of the development of the field 
and related key concepts.  

2.2. Systematic Scoping Review  

To answer the research questions, a scoping review was 
conducted according to the preferred reporting items for 
systematic reviews and meta-analyses (PRISMA) 
framework (Moher et al., 2009) and the scoping 
methodology framework presented by Arksey and 
O’Malley (2005). Reviews within the field of management 
are often considered to be comprised of a process of 
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exploration, discovery, and development (Tranfield et al., 
2003); therefore, it is desirable to choose a flexible 
approach that can be modified throughout the study. The 
scoping review enables such a flexible but systematic 
approach and comprises five steps:  

1. Identifying research questions 

2. Identifying relevant studies  

3. Selection of relevant studies by formulated criteria  

4. Charting the data 

5. Collating, summarising, and reporting results  

To clarify and further evolve the framework, Levac et 
al. (2010) present some specific recommendations for each 
step. For the methodological approach of this review, the 
recommendations employed included linking the purpose 
of the study to the research questions early in the process, 
in order to facilitate decision-making regarding the 
inclusion and exclusion of relevant publications as the 
scoping review proceeds. The nature of the scoping review 
provides for an emergent and iterative process, meaning 
that such criteria might not become fully clear until the 
later stages of the review (Gough, 2007a). In this review, 
the inclusion and exclusion criteria as presented produced 
the final selection of publications. The criteria were 
updated throughout the process to sustain the systematic 
manner of the review; a more systematic approach helps to 
provide trustworthiness and accountability for the 
literature review (Gough, 2007b).   

The next step was to initiate a manual search of selected 
databases. The databases were chosen as they were known 
to include significant topics and authors, as identified 
through the preliminary search. Additionally, the selected 
databases were deemed especially suitable due to their 
interdisciplinary nature, and their position as well-
recognised databases for academic articles and 
publications. The selected databases were Scopus, 
ScienceDirect, and Web of Science, each of which 
provides an advanced search function that allows the user 
to customise their search preferences. Identification and 
selection of relevant studies – steps two and three of the 
scoping review framework – were structured according to 
the PRISMA framework (Moher et al., 2009), as illustrated 
in Fig. 1. 

Tranfield et al. (2003) emphasise the importance of a 
well-defined search string in order to create a replicable 
and transparent search strategy. During the first, 
unstructured search, several search strings were explored. 
For example, TITLE-ABS-KEY (construction and 
artificial intelligence). This search resulted in 60,398 hits 
across the three databases. Even after further restrictions, 
such as year, language, and document types, this search 
string yielded an unmanageable number of publications. 
Moreover, the initial search proved that several terms, 
including expert systems, knowledge engineering, and 
even artificial intelligence, seem to lack a single definition 
within the field. Therefore, the final search string needed 
to be open enough to include possible variations of such 
words but narrow enough to exclude the most peripheral 
subjects. For the scoping search, the string was modified to 
TITLE-ABS-KEY (‘construction project*’ AND ‘artificial 
intelligence*’), which resulted in a far more relevant 
selection of publications and 1,608 hits. An additional 21 

publications were reviewed upon request from scholars 
involved in the study. 

A set of inclusion and exclusion criteria were defined 
for filtering, to help ensure the relevance and credibility of 
the sources for the review. Decisions regarding inclusion 
and exclusion criteria remain relatively subjective 
(Tranfield et al., 2003); this strengthens the need for a 
transparent and verifiable process of inclusion and 
exclusion. Thus, one criterion used was that the inspected 
studies must deal with technology that could be considered 
AI. For example, studies were excluded that simply 
discussed challenges of construction projects, or the 
construction industry, without any explicit mention of 
specific solutions. The field and definitions of AI are 
rapidly changing; the availability and accessibility of data 
and technology are rapidly increasing, while the cost of 
data processing tools is rapidly decreasing. This enables 
applications that were not possible just a few years ago. 
Therefore, in order to ensure and capture a state-of-the-art 
view of the topic, this review only included literature from 
2015 to 2020. Furthermore, the document type was limited 
to include only peer-reviewed articles. As the scoping 
methodology itself does not include a formal application 
of quality assessment criteria, strictly including 
publications from peer-reviewed sources contributes to an 
implicit quality in the chosen body of publications.  

The main targets of this analysis were studies of 
conceptual or practical cases of AI in construction projects; 
however, studies discussing AI in the construction industry 
in a more general fashion were also included, as long as the 
technology was not explicitly targeted toward 
infrastructure or industrial construction – such articles 
were excluded. Studies without mention of any specific 
technologies or techniques were also excluded. If a 
publication discussed a specific technology with an 
explicit functionality but did not name the technology, it 
was included. Finally, the search was limited to only 
include publications written in English; any duplicates 
were also removed during this process. Following this, 
manual screening of titles, abstracts, and keywords was 
conducted to assess the relevance of the remaining 
publications in the selection; 481 records were screened, 
and 374 were excluded. A full-text assessment of the 
remaining 107 records was then conducted, to ensure their 
eligibility and to evaluate the contribution of each study 
beyond its title, abstract, and keywords. Twenty-one 
articles were found to be out of scope, and seven lacked 
sufficient detail to provide an accurate assessment. Eighty-
six articles remained to be included in the review.  

2.3. Classification Framework  

To answer the research questions, several dimensions were 
defined along which the selected articles were analysed; 
together these constituted the assessment framework and 
provided a foundation for the fourth and fifth steps of the 
scoping review framework. The classification framework 
was structured to enable a holistic and comprehensive 
analysis of the field of AI in the context of construction 
projects and provide a descriptive presentation of the body 
of publications, according to the recommendations by 
Arksey and O’Malley (2005). The descriptive features of 
each publication were collected directly from each 
database and included the year of publication, source 
journal, author(s), location, and keywords. Table 1 
describes the classification framework.  
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Fig 1. PRISMA flow diagram describing the review process

The publication methodology was classified as either 
conceptual, qualitative, quantitative, or mixed-method. 
Some publications did not offer a definitive description of 
their research methodology; in these cases, the chosen 
methodological approach needed to be interpreted from 
any direct or indirect descriptions provided by the author(s) 
themselves. Where the approach of the publication was 
strictly developmental in terms of, for example, a specific 
terminology, system, or framework, the methodology was 
considered to be conceptual. A publication was considered 
to be qualitative if it addressed the subject in a qualitative 
manner, such as by discussing certain soft factors 
regarding the implementation of AI, its potential or non-
quantifiable implications, or the effects of its 
implementation. Meanwhile, publications considered 
quantitative addressed the more quantifiable effects of 
implementation, or the applications of the tools themselves; 
use of specific algorithms, for example. Publications were 
assessed to be using mixed methods when the research 
design appeared to use two of the three aforementioned 
methodologies equally. 

The categorisation of areas of applications comprised 
four steps: 

1. Identifying common applications  

2. Clustering similar applications  

3. Filtering out rarely mentioned applications  

4. Sorting applications by categories  

This procedure resulted in nine categories that summarised 
the grouped findings of the literature search: logistics and 
scheduling, estimation and cost control, health and safety; 
project performance and success estimation, strategic 
design, risk management, material properties, reviews, and 

implementation, and sustainability. The contents of the 
publications in each of these categories are further 
addressed in Section 3.3.  

The initial search uncovered countless definitions and 
descriptions of AI-powered technologies and techniques. 
Thus, the framework defined by Akinade (2017), as 
described in the introduction, was used for classification 
and categorisation: machine learning, knowledge-based 
systems, evolutionary algorithms, or hybrid systems. The 
classification presented in Section 3 was based upon the 
description of the techniques provided by the authors 
themselves and how these compared to the categories in 
the chosen framework. Where the authors did not provide 
a sufficient description of the technique being used or 
discussed, the technology was labelled N/A.  

3. Results 

3.1. Descriptive Analysis  

Fig. 2 shows the number of publications in each year for the 
review selection. Although the sample is small, the trend 
line indicates a steady increase in publications from 2015 to 
2020; Xiao et al. (2018) noted a gradual increase in 
publications on AI in construction up to 2017, and the 
increase seems to hold for later years. The years 2016 and 
2017 appear to show dips in development; during the 
review, it was noted that many of the publications from 
2016 and 2017 were related to infrastructure, roads, and 
tunnels. The differences in this sample of publications and 
the full body of publications from the same years could be 
due to several reasons. One explanation is that the focus 
could have shifted over the years; whereas a certain area of 
the industry was more concerned with the use of AI in 
earlier years, other areas seem to have experienced an 
increased interest in AI as time progressed. Another 
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possible explanation lies in the selection of studies provided 
by the chosen databases – using other databases could 
potentially have yielded additional or different results.  

The most frequent publication channels are charted in 
Fig. 3. A significant portion (15%) of the publications were 
published in the Automation in Construction, followed by 
procedia engineering (8%) and the Journal of Building 
Engineering (6%). The findings of Xiao et al. (2018) and 
Darko et al. (2020) confirm that the Automation in 
Construction has been the leading publisher in 
construction-related research in AI for a significant period. 
This observation is of interest to anyone involved in the 

field, as it provides a suggestion of both where to read and 
where to submit research. There is a clear tendency for the 
conceptual and technically focused studies to be published 
in journals such as the Automation in Construction and the 
Journal of Computing in Civil Engineering, whereas 
qualitative studies, assessing the potential, barriers, and 
effects of the implementation of AI are more common in 
such journals as the Journal of Civil Engineering and 
Management and the Journal of Construction Engineering 
and Management. Certain journals, such as Safety Science 
and Energy and Buildings, are more targeted toward 
specific areas of AI application.  

Table 1. Literature classification framework 

Grouping Collected data Purpose 

Descriptive features 1.1 Year of publication 

1.2 Source 

1.3 Author(s) 

1.4 Location 

1.5 Keywords 

Describe the characteristics of 
the selected articles. 

Method 2.1 Conceptual 

2.2 Qualitative 

2.3 Quantitative 

2.4 Mixed methods 

Classify the chosen 
methodology in the field of 
study. 

Area of application 3.1 Estimation and cost control 

3.2 Health and safety 

3.3 Logistics and scheduling 

3.4 Material properties 

3.5 Project performance and success estimation 

3.6 Reviews and implementation 

3.7 Risk management 

3.8 Strategic design 

3.9 Sustainability 

Explore the area of application 
and utilisation of the 
technology or technique at 
issue. 

Technology 4.1 Machine learning 

4.2 Knowledge-based systems 

4.3 Evolutionary algorithms 

4.4 Hybrid systems 

4.5 N/A 

Explore which specific 
technology or technique is 
being utilised or discussed. 

Based on the framework 
presented by Akinade (2017). 

 

 

Fig. 2. The number of publications per year 
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Fig. 4 shows the most prolific researchers within the 
field. It appears that a limited number of researchers and 
authors are involved in a significant amount of the research 
conducted. 

As Fig. 5 shows, the main contribution to the body of 
publications comes from the United Kingdom, followed by 
China, Taiwan, the United States, and Australia. This 
could be explained by a higher concentration of 
researchers within the field in these countries, but it seems 
reasonable to assume that this could also be due to the fact 
that this review only included publications written in 
English. Other countries could be publishing research 
within the field but in their languages. In total, 21 countries 
were represented. A low representation of countries can 
imply that the field is somewhat immature. However, the 
field appears to be evolving, as additional scientific 
environments seem to be emerging.  

All keywords, meaning not only author keywords, were 
assessed, as author keywords are largely reliant on authors’ 

experience, interests, and knowledge. In total, 441 
keywords were defined, out of which 354 were distinct. 
However, certain keywords were found to be used more 
frequently (Fig. 6). To provide a better understanding of 
keyword frequency, interchangeable keywords were 
grouped. For instance, ‘artificial intelligence’ and ‘AI’ 
were simply grouped into ‘artificial intelligence’, as were 
‘construction project’ and ‘construction projects’, and 
‘building information model’ and ‘building information 
modelling’. ‘Artificial intelligence’ appearing as the most 
frequent keyword seems reasonable, as does ‘construction 
project(s)’ as the second most frequent keyword. 
‘Construction management’ and ‘decision support systems’ 
as the third and fourth most often used reflect, to some 
extent, the focus of the current research. The high 
frequency of ‘machine learning’ and ‘neural networks’ 
reflects what appears to be the rather predominant position 
of these techniques.  

 

 Fig. 3. Most frequent publication channels 

Fig. 4. Most frequent authors with two or more publications 
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Fig. 5. Most frequent countries of main authors  

Fig. 6. Most frequent keywords  

3.2. Methods  

Since not all the studies explicitly described their 
chosen methodology, it is possible that this data may 
contain errors. To elaborate, certain publications do not 
label their own methods within the framework defined for 
this study. Here, the descriptions of the method provided 
by the authors of the individual studies are used as the 
reference when categorising each study. There seems to be 
a slight tendency towards a conceptual methodology (40%), 
as Fig. 7 illustrates, which can also be seen in previous 
literature reviews (Juszczyk, 2017). Most of the studies 
based on a conceptual methodology are concerned with 
developing specific AI-powered tools and techniques. 
More than half of the conceptual studies include some 
quantitative testing and validation in the development of 
the technique; this is still to be considered part of the 
development process itself and thus accounted for as 
conceptual. Several of the conceptual studies provide 
specific solutions or algorithms tailored toward certain 
areas of application. Most were tested on a proof-of-
concept scale, and the research does not explicitly state 
whether or not it was developed further or implemented on 
a bigger scale.   

The mixed method is the second most frequently used 
methodology (28%). Most of the studies classified as 
mixed methods are rooted in a conceptual base, but in 
combination with traditionally qualitative or quantitative 
methods, for example, the observation of specific case 
projects or the use of questionnaires. Purely qualitative 
studies account for a slightly smaller proportion (21%) of 
the body of publications. These studies are mainly 
concerned with the prospects surrounding the technology, 
which include potential future areas of application, 
possibilities, and barriers to the technology itself, related 
to soft factors, people, and processes. Very few discuss the 
use of AI in the context of people and processes, focusing 
on technology awareness and digital maturity with an 
emphasis on AI. However, this discussion seems to be 
lacking in the studies that discuss more specific solutions 
and tools. This synthesis is supported by previous reviews, 
such as the one undertaken by Basaif and Alashwal (2018), 
which suggests that a gap exists between the potential that 
the technology constitutes and the evidence of how it is 
utilised both in practical and academic contexts. Other 
studies compare different techniques and tools in a 
qualitative frame of reference. Purely quantitative studies 
account for only 12% of the body of publications. These 
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studies involve the testing of previously developed 
techniques and algorithms and are usually applied to rather 
limited datasets. This could suggest a relatively low degree 
of research-based AI implementation, constituting a great 
potential for future implementation and pilots.  

Another observation is that to some extent, the number 
of studies conducted within each methodological approach 
can be observed to change over the years; this suggests a 
shift not only in the focal area, as already mentioned, but 
possibly also in the methodological stance. Earlier 
publications show a tendency towards mixed or purely 
quantitative or qualitative studies, whereas later 
publications are more often purely conceptual. This could 
further suggest a field undergoing change. An increasing 
interest in AI within the construction industry becomes 
apparent; this is confirmed both by the body of 
publications as a whole and individual studies. However, 
the high concentration of conceptual studies could suggest 
a gap between theory and practice.  

 

Fig. 7. Distribution of chosen methodology  

Many studies appear to remain in a development phase 
while very few address the practical adoption of AI-based 
technology in the industry and among practitioners at a 
larger scale. To elaborate, most studies illustrate how 
certain technology can be utilised in different parts of 
construction projects, for example exploring site layout 
design (Amiri et al., 2017), or predicting project 
performance (Mirahadi and Zayed, 2016). However, the 
majority of studies lack a larger context for the technology 
– a framework for the technology to operate within. The 
studies do not discuss organisational or process-oriented 
considerations in the adaption and adoption of AI in 
projects. This could, naturally, have many explanations. 
For example, a few studies discuss the lack of access to 
sufficient amounts of quality data. Another possible 
explanation could lie in the lack of transferability in the 
developed models and frameworks, meaning that new 
studies are not necessarily able to build on previous 
research. This could suggest a need for a more standardised 
framework of technologies and terminology for 
researchers to operate within when exploring the topic of 
AI in construction. Challenges concerning transferability 
could ultimately prevent a model built in one environment 
from being useful in another environment, due to 
differences in requirements and prerequisites; it could also 
prevent one researcher from effectively building upon the 
work of another. There is no simple solution to such a 
complex problem, but it seems reasonable to assume that 

an increased degree of transparency and communication, 
both in the research field as a whole and in individual 
studies, would be beneficial.  

3.3. Areas of Application  

In terms of areas of application, the research seems to be 
relatively evenly distributed, as Fig. 8 shows. There 
appears to be a predominance of estimation and cost 
control (22%) and logistics, planning, and scheduling 
(19%); the two together account for almost half of the body 
of publications. As mentioned, the availability of a 
sufficient quantity and quality of data is a challenge in the 
construction industry. The two predominant areas both 
lean towards the quantitative and more easily measurable 
area of the industry; time and money are easily 
quantifiable.   

 A third of the studies categorised under estimation 
and cost control examine the application of AI to cost 
prediction and estimation (Shin, 2015; Juszczyk, 2017; 
Elmousalami, 2019; Yaqubi and Salhotra, 2019; Juszczyk 
et al., 2019; Juszczyk, 2020). Other applications in the 
category include tender price evaluations (Zhang et al., 
2015; Bilal and Oyedele, 2020a; Mehrabani et al., 2020), 
cash flow prediction and mapping (Cheng et al., 2015; 
Cheng et al., 2020a), and cost-effectiveness analysis 
(Wang et al., 2019). Furthermore, publications categorised 
as estimation and cost control include assessment of 
profitability (Oyedele et al., 2019), profit margin 
estimation (Bilal and Oyedele, 2020b), and prediction of 
project award price (Chou et al., 2015). Similarly, studies 
explore the selection of optimal construction bid price 
(Aboelmagd, 2018), the setting of baseline rates 
(Shahtaheri et al., 2015), and the calculation of the 
construction site cost index (Juszczyk and Leśniak, 2019). 

 The category of logistics, planning, and scheduling 
includes publications discussing applications of AI to 
improve construction project schedules (de Soto et al., 
2017), estimation of construction project schedules (Cheng 
and Hoang, 2018; Cheng et al., 2020b) progress 
monitoring (Golparvar-Fard et al., 2015), and prediction of 
risk delay (Yaseen et al., 2020). Other studies discuss the 
topic of clash relevance prediction (Hu and Castro-
Lacouture, 2019), resolving design clashes (Hsu et al., 
2020), and validation of change requests (Dawood et al., 
2019). Publications focused on logistics include the 
utilisation of AI in resource management (Xing et al., 2016; 
Podolski, 2016; Camacho et al., 2018), resource-
constrained scheduling (Li and Womer, 2015; Zheng and 
Wang, 2015), and the resource-levelling optimisation (Iyer 
et al., 2015). For the physical construction site, material 
layout planning (Cheng and Chang, 2019), and site layout 
design (Amiri et al., 2017) are explored. 

 In the category of strategy strategic matters such as 
project selection (Mousavi et al., 2015; Fallahpour et al., 
2020), contractor pre-qualification (Kog and Yaman, 
2016), and strategic supply chain management & supplier 
selection (Taherdoost and Brard, 2019) are examined. 
More specific endeavours are also found, in publications 
studying the utilisation of AI in relating organisational 
characteristics and project delivery methods (Gazder et al., 
2018) and enhancing communication between actors 
(Khosrowshahi, 2015). Appraisal of decision support 
systems for modularisation (Sharafi et al., 2018) and 
prefabrication (Arashpour et al., 2017; Li et al., 2018; Zhou 
and Ren 2020) are also seen from a strategic perspective. 

Conceptual, 
40%

Mixed, 
28%

Qualitative, 
21%

Quantitative, 12%
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 In the category of health and safety (10%) all studies 
explore AI utilisation in safety, while two focus specifically 
on the interaction between health and safety (Ayhan and 
Tokdemir, 2018; Nnaji and Karakhan, 2020). Safety 
applications include the identification of factors indicating 
and influencing safety on the construction site (Poh et al., 
2018; Goh et al., 2018; Xu et al., 2020, Han et al., 2020), 
safety planning of temporary structures (Kim et al., 2018), 
planning of safe construction site layouts (Ning et al., 2018) 
and safety assessment (Ayhan and Tokdemir, 2019). 

 Publications examining project performance and 
success estimation (10%) are generally targeted toward 
project management, the majority focusing on decision 
support for the project manager, or the discipline and 
process of project management itself (Hajdasz, 2015; 
Gudauskas et al., 2015; Hanna et al., 2018; Mahfouz et al., 
2018; Vickranth et al., 2019). Other studies focus on 
predicting and optimizing project performance, time, and 
cost (Mirahadi and Zayed, 2016; Jaber et al., 2019) or 
project evaluation (Erzaij et al., 2020). 

 Topics related to risk management (8%) include risk 
analysis (Pruvost and Scherer, 2017; Basaif et al., 2020), risk 
assessment (Samantra et al., 2017) and risk prediction (Zou 
et al., 2017). Other publications categorised as risk 
management include studies examining the identification of 
critical risks in projects (Qazi et al., 2016), forecasting of 
project status based on threats-opportunities and strength-
weaknesses (Boughaba and Bouabaz, 2020), and 
construction site accident classification (Cheng et al., 2020c).  

 One group of articles provides an overview of the 
current situation in the construction industry and maps 
possibilities, barriers, and implications within the field 
through reviewing the existing body of publications. 
Identified reviews explore the use of relevant technology 
in construction projects: machine learning (Hong et al. 
2020), deep learning (Akinosho et al., 2020) and 
automation (Faghihi et al., 2015). Eber (2020) investigates 
the potential of AI, and Delgado et al. (2019) investigate 
industry-specific challenges in the implementation of AI; 
both in the context of the construction industry. Chen et al. 
(2015) investigate the use of BIM in conjunction with AI. 

 Only one of the publications assessed in the category 
of sustainability (7%) is concerned with social sustainability, 
specifically dispute resolution (Elziny et al., 2016). The 
remaining studies mainly explore environmental 
sustainability, while a few are centred around sustainability 
in broader terms. These publications examine design 
optimization for sustainability (Liu et al., 2015; Rodriguez-
Trejo et al., 2017), assessing and classifying sustainability in 
a project (Akbari et al., 2018), or waste reduction 
(Banihashemi et al., 2017; Bilal et al., 2019). 

 Publications categorised in materials properties 
(5%) are related to the quantitative assessment of 
construction materials, predicting properties of concrete 
(Vakhshouri and Nejadi, 2015; Zhang et al., 2020), 
specific construction elements (Qi et al., 2018) and using 
remote electron microscope technology to monitor the 
composition of materials (Xu et al., 2020). 

Notably, even if a lot of the studies address a certain 
area of application conceptually or in general terms, 
relatively few studies report on actual implementation and 
practical use beyond pilots and proofs-of-concept. Most 
focus on the potential use or the development of techniques 
for future use. No significant links were found in the body 
of publications between the chosen areas of application 
and the chosen methodologies.  

An overwhelming majority of the studies examine the 
use of AI first and foremost as a decision support tool, 
implying that the human decision-maker is still seen as an 
essential part of the project, the project processes and 
activities; this could suggest a low degree of maturity in 
the implementation of AI in the industry. 

3.4. Technology   

Fig. 9 shows the distribution of technology discussed 
in the publications, based on the authors’ own descriptions, 
categorised by the framework presented by Akinade 
(2017); the distribution shows a clear tendency. More than 
a third of the publications (38%) do not explicitly state the 
nature or class of the technology in question. Some 
explanations for this were identified during the search. 
Studies lacking a technical description seem to mainly 
focus on implications and effects, or potentials and barriers, 
rather than the development or use of specific technologies. 
Hybrid systems (26%) and machine learning (26%) were 
the main techniques studied in more than half of the 
publications. Knowledge-based systems constituted 6% of 
the reviewed studies, despite case-based reasoning, a type 
of knowledge-based system (Akinade, 2017) being 
identified as one of the most frequently used tools in 
dispute resolution in projects (Ilter and Dikbas, 2009). 
However, the limited use of case-based reasoning is also 
seen in previous reviews (Xiao et al., 2018). Similarly, 
evolutionary algorithms only constituted 2% of the studies, 
despite previously being identified as one of the most 
frequently used tools in AEC (Darko et al., 2020). 
However, Darko et al. (2020) suggest that genetic 
algorithms might be more widely utilised as a part of 
hybrid systems. Akinade (2017) suggests that the strength 
of hybrid systems lies in their capability to overcome 
weaknesses related to single AI techniques or algorithms, 
which makes them a useful option in complex and dynamic 
construction projects. The majority of the hybrid-classed 
studies describing technology and techniques also utilised 
machine learning, mostly supervised machine learning; a 
notable number were also based on evolutionary 
algorithms. Among the publications discussing machine 
learning, half specifically discussed neural networks. The 
frequent use of neural networks is also confirmed in 
previous reviews (Ilter and Dikbas, 2009; Martínez and 
Fernández-Rodríguez, 2015; Juszczyk, 2017; Darko et al., 
2020). The remainder of the publications showed no 
significant trend or preferred technique within the 
category.  There appears to be an increase in the 
application of hybrid models in the later years compared to 
the earlier years (Xiao et al., 2018). This could suggest 
increased use of more compound systems as technology 
and industry development because hybrid systems are able 
to solve more complex tasks than any single system 
(Akinade, 2017).  
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Fig. 8. Distribution of areas of application  

 

Fig. 9. Distribution of discussed technology 

As part of the screening process, studies using the term 
AI without addressing specific techniques or technology 
were discarded. This was warranted for a significant 
number of studies, which implies that many authors use 
‘AI’ somewhat loosely; the same can be said for machine 
learning. One explanation could be a lack of 
unambiguously defined terminology and vocabulary in the 
academic field, especially in the context of the construction 
industry. Another explanation could lie in the fact that 
these are ‘buzz words’, popularised by the media; this can 
contribute to the confusion of definitions. This observation 
is to some extent validated by the high number of 
exclusions required during the screening process (Fig. 1); 
a majority of the exclusions were caused by the high 
number of papers discussing technology not explicitly 
defined as AI.4. conclusion  

This paper contributes to the current state of research 
on AI in construction projects by presenting a state-of-the-
art view of the field of AI in construction. For researchers, 
it provides an overview of the most influential publication 
channels, authors, methodologies used, and areas of 
application, ultimately providing a direction for future 
research. For practitioners, it illustrates possible areas of 
innovation and application of AI-powered techniques and 
serves as a tool for benchmarking.   

The findings of this study indicate a versatile body of 
literature, with a few characteristics that stand out. There 
seems to be a steady increase in the number of publications 
from the years 2015 to 2020. Three journals, Automation 
in Construction, Procedia Engineering, and the Journal of 
Building Engineering amount account for a quarter of the 
publications, with the rest of the articles being distributed 
evenly among the remaining 48 publication channels. A 
limited number of authors produced the majority of the 
publications; correspondingly, a limited number of 
countries are also far more prominent than others.   

The preferred approaches in the field have changed 
during the last few years, indicating a rapidly developing 
field. Studies are often descriptive in nature, due to the lack 
of empirical evidence. Purely conceptual studies constitute 
almost half of the reviewed publications, suggesting a 
theoretical foundation, but a lack of practical 
implementation beyond small-scale testing and proofs-of-
concept. This can be taken as a sign that the field itself 
remains at an emergent stage, but at the same time, this 
provides an understanding of the great potential the field 
demonstrates. Existing case-based research can and should 
be used as a foundation for larger-scale studies.  

The field is rapidly evolving, together with new 
technologies, techniques, and tools being developed both 

Estimation and cost 
control , 22%

Logistics, planning and 
scheduling , 19%

Strategy , 12%

Health and safety , 10%

Project performance and 
success estimation , 10%

Risk management , 8%

Review and overview , 7%
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in and out of the construction context. A visible change in 
preferred methods, as well as a change in keywords over 
time, implies that the field is indeed developing. The 
conceptual methodology seems to be the preferred 
approach in the field of study. The extensive use of 
conceptual methodology suggests that this method works 
in a research context but could at the same time suggest a 
need for other, more practically focused methods to further 
develop the field. The wide thematic range of previous 
studies has provided a valuable foundation for future 
research, but the field is assumed to benefit from a shift 
toward more interdisciplinary based studies. Among the 
barriers to practical implementation is the lack of sufficient 
quantity and quality of data, as well as transferability 
among developed models and frameworks. This could be 
due to the immaturity of certain technologies within the 
industry context, posing problems in practical 
implementation, testing and surveying. This is supported 
by the findings, specifically the limited extent of big-scale 
experimental and practical implementations. It has been 
shown that AI has been applied to several areas, and the 
body of evidence is relatively evenly distributed 
thematically, with a slight predominance of more 
quantitatively focused areas of application. This highlights 
the need for a degree of standardisation and structure in the 
field, allowing researchers to assess and compute both the 
qualitative and quantitative areas of the industry. 
Standardisation of collected data, process-oriented 
frameworks, industry wide definitions of terminology and 
technology are believed to enable a greater degree of 
transparency and interdisciplinary collaboration in the 
field, ultimately contributing to the research field evolving. 
The identified research appears to have focused mostly on 
the technology itself, and less on the context the 
technology would be operating within; this suggests that 
the field could benefit from an increased focus on 
organisational and process-oriented research in the context 
of AI and construction 

5. Limitations and Future Research 

For future research, this study provides a sense of direction 
and highlights where current gaps in the research are to be 
found. It becomes apparent that AI holds significant 
potential for increased productivity and sustainability in 
construction projects, but the construction industry seems 
to lack the progress seen in other industries. For the future 
of the field, transparency and explicit definitions across all 
sub-fields will be of particular importance for the field as 
a whole to mature and develop – and to a greater extent to 
ensure comparability and transferability among studies and 
findings. The research currently lacks empirical data and 
research on implementation and performance beyond 
small-scale testing and proof-of-concepts. Research 
mapping the effects of the increased use of AI also seems 
to be lacking. Pilots and testing are important first steps in 
a developing field; however, in order to truly change 
deliveries and deliverables through the use of AI future 
research must focus on developing holistic frameworks for 
projects to move from ambition to practice.  

A few limitations can be associated with this study. 
First, the research may be limited by deficiencies in data 
collection and analysis, as a limited number of sources 
were reviewed. Second, limitations could be associated 
with the chosen framework for the review. For example, 
only articles written in English were included in the final 
sample; therefore, the chosen publications are not 

necessarily conclusively representative of the field of AI in 
construction projects. Another possible limitation is the 
organisation of the search as a manual search of chosen 
databases. This may have led to some relevant studies 
being missed, thereby possibly under-estimating or 
wrongly assessing the extent of research regarding AI in 
construction projects.  

Furthermore, limitations are associated specifically 
with the scoping review methodology itself: the scoping 
review does not formally evaluate the quality of the 
publications reviewed and relies on the implicit quality of 
the publication sources. The descriptive nature of the 
methodology can result in broader, less defined searches; 
however, it also ensures flexibility and resilience in the 
study and allows for more rapid mapping which is 
beneficial for an expanding research field.  

References 

Aboelmagd, Y. M. R. (2018). Decision support system for 
selecting optimal construction bid price. Alexandria 
Engineering Journal, 57(4), 4189-4205. doi: 
10.1016/j.aej.2018.11.007 

Akbari, S., Khanzadi, M., and Gholamian, M. (2018). 
Building a rough sets-based prediction model for 
classifying large-scale construction projects based on 
sustainable success index. Engineering, Construction 
and Architectural Management, 25(4), 00-00. doi: 
10.1108/ECAM-05-2016-0110 

Akinade, O. O., (2017). BIM-based software for 
construction waste analytics using artificial 
intelligence hybrid models. Doctoral dissertation. 
University of the West of England.  

Akinosho, T. D., Oyedele, L. O., Bilal, M., Ajayi, A. O., 
Delgado, M. D., Akinade, O. O., and Ahmed, A. A. 
(2020). Deep learning in the construction industry: A 
review of present status and future innovations. Journal 
of Building Engineering. 32, 101827. doi: 
10.1016/j.jobe.2020.101827 

Amiri, R., Sardroud, J. M., and de Soto, B. G. (2017). BIM-
based Applications of Metaheuristic Algorithms to 
Support the Decision-making Process: Uses in the 
Planning of Construction Site Layout. Procedia 
Engineering. 196, 558-564. doi: 
10.1016/j.proeng.2017.08.030 

Arashpour M., Bai Y., Aranda-mena G., Bab-Hadiashar A., 
Hosseini R., and Kalutara P. (2017). Optimizing 
decisions in advanced manufacturing of prefabricated 
products: Theorizing supply chain configurations in 
off-site construction. Automation in Construction,84, 
146-153. doi: 10.1016/j.autcon.2017.08.032 

Arksey, H. and O’Malley, L. (2005) Scoping studies: 
towards a methodological framework. International 
Journal of Social Research Methodology, 8(1), 19-32. 
doi: 10.1080/1364557032000119616 

Ayhan, B. U. and Tokdemir, O. (2018). Predicting the 
outcome of construction incidents. Safety Science, 113, 
91-104. doi: 10.1016/j.ssci.2018.11.001 

Ayhan, B. U. and Tokdemir, O. (2019). Safety assessment 
in megaprojects using artificial intelligence. Safety 
Science, 118, 273-287. doi: 10.1016/j.ssci.2019.05.027 

Banihashemi, S., Tabadkani, A., and Hosseini, M. R. 
(2017). Modular Coordination-based Generative 
Algorithm to Optimize Construction Waste. Procedia 
Engineering, 180, 631-639. doi: 
10.1016/j.proeng.2017.04.222 

Journal of Engineering, Project, and Production Management, 2022, 12(3), 224-238 

234    Bang, S. and Olsson, N. 



 

 

Barker, T., Bashmakov I., Alharthi, A., Amann, M., 
Cifuentes, L., Drexhage, J., Duan, M., Edenhofer, O., 
Flannery, B., Grubb, M., Hoogwijk, M., Ibitoye, F. I., 
Jepma, C. J., Pizer, W. A., and Yamaji, K. (2007). 
Mitigation from a cross-sectoral perspective. 
Proceedings of the Climate Change 2007: Mitigation. 
Contribution of Working Group III to the Fourth 
Assessment Report of the Intergovernmental Panel on 
Climate Change, Cambridge University Press, 
Cambridge, United Kingdom and New York, NY, 
USA.   

Basaif, A. A., Al-Ashwal, A. M., Rahim, F. A., Karim, S. 
B., and Loo, S. C. (2020). Technology awareness of 
artificial intelligence (AI) application for risk analysis 
in construction projects. Malaysian Construction 
Research Journal, 1, 182-195. 

Basaif, A. A. and Alashwal, A. M. (2018). A review of the 
application of artificial intelligence for risk analysis in 
construction projects. Book of Abstracts: ASEAN Post 
Graduate Conference: Inclusive Built Environment 
Towards Realising New Urban Agenda, Kuala Lumpur, 
Malaysia, 9-9.  

Becqué, R., Mackres, E., Layke, J., Aden, N., Liu, S., 
Managan, K., Nesler, C., Mazur-Stommen, S., 
Petrichenko, K., and Graham, P. (2016). Accelerating 
Building Efficiency. Eight Actions for Urban Leaders. 
World Resources Institute. WRI Ross Center for 
Sustainable Cities.   

Bilal, M. and Oyedele, L. O. (2020a). Big Data with deep 
learning for benchmarking profitability performance in 
project tendering. Expert Systems with Applications, 
147, 113194. doi: 10.1016/j.eswa.2020.113194 

Bilal, M. and Oyedele, L. O. (2020b). Guidelines for 
applied machine learning in construction industry—A 
case of profit margins estimation. Advanced 
Engineering Informatics, 43(C), 101013. doi: 
10.1016/j.aei.2019.101013 

Bilal, M., Oyedele, L. O., Akinade, O. O., Delgado, J. M. 
D., Akanbi, L. A., Ajayi, A. O., and Younis, M. S. 
(2019). Design optimisation using convex 
programming: Towards waste-efficient building 
designs. Journal of Building Engineering, 23, 231-240. 
doi: 10.1016/j.jobe.2019.01.022 

Blanco, J. L., Fuchs, S., Parsons, M., and Ribeirinho, M. J. 
(2018). Artificial intelligence: Construction 
technology’s next frontier. The Building Economist, 7-
13. doi: 10.3316/informit.048712291685521  

Boughaba, A. and Bouabaz, M. (2020). Identification and 
risk management related to construction projects. 
Advances in Computational Design, 5(4), 445-465. doi: 
10.12989/acd.2020.5.4.445 

Camacho, A., Canizares, P.C., Estevez, S., and Nunez, M. 
(2018). A tool-supported framework for work planning 
on construction sites based on constraint programming. 
Automation in Construction, 2(86), 190-198. doi: 
10.1016/j.autcon.2017.11.008 

Chen K., Lu W., Peng Y., Rowlinson S., and Huang G. Q. 
(2015). Bridging BIM and building: From a literature 
review to an integrated conceptual framework. 
International Journal of Project Management, 33(6), 
1405-1416. doi: 10.1016/j.ijproman.2015.03.006 

Cheng, M. Y. and Chang, N. W. (2019). Dynamic 
construction material layout planning optimization 
model by integrating 4D BIM. Engineering with 
Computers, 35(3), 703-720. doi: 10.1007/s00366-018-
0628-0 

Cheng, M. Y., Kusoemo, D., and Gosno, R. (2020a). Text 
mining-based construction site accident classification 
using hybrid supervised machine learning. Automation 
in Construction, 118(1), 103265. 
10.1016/j.autcon.2020.103265 

Cheng, M. Y., Cao, M. T., and Herianto, J. G. (2020b). 
Symbiotic organisms search-optimized deep learning 
technique for mapping construction cash flow 
considering complexity of project. Chaos, Solitons & 
Fractals, 138, 109869. doi: 
10.1016/j.chaos.2020.109869 

Cheng, M. Y., Chang, Y.-H., and Korir, D. (2020c). Novel 
Approach to Estimating Schedule to Completion in 
Construction Projects Using Sequence and 
Nonsequence Learning. Journal of Construction 
Engineering and Management, 145(11), 04019072. doi: 
10.1061/(ASCE)CO.1943-7862.0001697 

Cheng, M. Y. and Hoang, N. D. (2018). Estimating 
Construction Duration of Diaphragm Wall Using 
Firefly-Tuned Least Squares Support Vector Machine. 
Neural Computing and Applications, 30, 2489-2497. 
doi: 10.1007/s00521-017-2840-z 

Cheng, M. Y., Hoang, N.-D., and Wu, Y.-W. (2015). Cash 
Flow Prediction for Construction Project Using a 
Novel Adaptive Time-Dependent Least Squares 
Support Vector Machine Inference Model. Journal of 
Civil Engineering and Management, 21(6), 679-688. 
doi: 10.3846/13923730.2014.893906. 

Chou, J., Lin, C. W., Pham, A.-D., and Shao, J.-Y. (2015). 
Optimized artificial intelligence models for predicting 
project award price. Automation in Construction, 54, 
106-115. doi: 10.1016/j.autcon.2015.02.006 

Darko, A., Chan, A. P. C., Adabre, M. A., Edwards, D. J., 
Hosseini, M. R., and Ameyaw, E. E. (2020). Artificial 
intelligence in the AEC industry: Scientometric 
analysis and visualization of research activities. 
Automation in Construction, 122, 103081. doi: 
10.1016/j.autcon.2020.103081 

Dasgupta, D. and Michalewicz, Z. (1997). Evolutionary 
Algorithms in Engineering Applications. Springer, 
New York.   

Dawood, H., Siddle, J., and Dawood, N. (2019). 
Integrating IFC and NLP for automating change 
request validations. Journal of Information Technology 
in Construction. 24, special issue, 540-552. doi: 
10.36680/j.itcon.2019.030 

de Soto, B. G., Rosarious, A., Rieger, J., Chen, Q., and 
Adey, B. T. (2017). Using a Tabu-search Algorithm 
and 4D Models to Improve Construction Project 
Schedules. Procedia Engineering, 196, 698-705. doi: 
10.1016/j.proeng.2017.07.236 

Delgado, J. M. D., Oyedele, L., Ajayi, A., Akanbi, L., 
Akinade, O., Bilal, M., and Owolabi, H. (2019). 
Robotics and automated systems in construction: 
Understanding industry-specific challenges for 
adoption. Journal of Building Engineering, 26, 100868. 
doi: 10.1016/j.jobe.2019.100868 

Dong, X. S., Jackson, R., Varda, D., Betit, E., and Bunting, 
J. (2019). Trends of Fall Injuries and Prevention in the 
Construction Industry. The Center for Construction 
Research and Training (CPWR). Data report.   

Eber, W. (2020). Potentials of artificial intelligence in 
construction management. Organization, Technology 
and Management in Construction: An International 
Journal, 12, 2053-2063. doi: 10.2478/otmcj-2020-
0002 

Journal of Engineering, Project, and Production Management, 2022, 12(3), 224-238 

Artificial Intelligence in Construction Projects: A Systematic Scoping Review    235 



 

 

Elmousalami, H. (2019). Intelligent methodology for 
project conceptual cost prediction. Heliyon, 5(5), 
e01625. doi: 10.1016/j.heliyon.2019.e01625 

Elziny, A. A., Mohamadien, M. A., Ibrahim, H., and Fattah, 
M. K. (2016). An expert system to manage dispute 
resolutions in construction projects in Egypt. Ain 
Shams Engineering Journal, 7(1), 57-71. doi: 
10.1016/j.asej.2015.05.002 

Erzaij, K. R., Rashid, H. A., Naji, H. I., and Ali, R. H. 
(2020). Projects evaluation in construction industry. 
Periodicals of Engineering and Natural Sciences, 8(3), 
1808-1816.  

Faghihi, V., Nejat, A., Reinschmidt, K., and Kang, J. 
(2015). Automation in construction scheduling: a 
review of the literature. The International Journal of 
Advanced Manufacturing Technology, 81(9), 1845-
1856. doi: 10.1007/s00170-015-7339-0 

Fallahpour, A., Wong, K., Rajoo, S., Olugu, E., Nilashi, M., 
and Turskis, Z. (2020). A fuzzy decision support 
system for sustainable construction project selection: 
an integrated FPP-FIS model. Journal of Civil 
Engineering and Management, 26(3), 247-258. doi: 
10.3846/jcem.2020.12183. 

Gazder, U., Shakshuki, E., Adnan, M., and Yasar, A.-U.-
H. (2018). Artificial Neural Network Model to relate 
Organization Characteristics and Construction Project 
Delivery Methods. Procedia Computer Science, 134, 
59-66. doi: 10.1016/j.procs.2018.07.144 

Goh, Y. M., Ubeynarayana C.U., Wong K. L. X., and Guo 
B. H. W. (2018). Factors influencing unsafe behaviors: 
A supervised learning approach. Accident Analysis & 
Prevention, 188, 77-85. doi: 
10.1016/j.aap.2018.06.002 

Golparvar-Fard, M., Peña-Mora, F., and Savarese, S. 
(2015). Automated Progress Monitoring Using 
Unordered Daily Construction Photographs and IFC-
Based Building Information Models. Journal of 
Computing in Civil Engineering, 29(1), 04014025. doi: 
10.1061/(ASCE)CP.1943-5487.0000205 

Gough, D. (2007a). Weight of Evidence: a framework for 
the appraisal of the quality and relevance of evidence. 
Research Papers in Education, 22(2), 213-228. doi: 
10.1080/02671520701296189 

Gough, D. (2007b). Giving voice: Evidence-informed 
policy and practice as a democratizing process. 
Marginality and difference in education and beyond. 
London: Trentham Books, 31-45.  

Gudauskas, R., Jokubauskiene, S., Zavadskas, E., 
Kaklauskas, A., Binkyte-Veliene, A., Peciure, L., 
Budryte, L., and Prialgauskas, D. (2015). Intelligent 
Decision Support System for Leadership Analysis. 
Procedia Engineering, 122, 172-180. doi: 
10.1016/j.proeng.2015.10.022 

Hajdasz, M. (2015). Managing repetitive construction in a 
dynamically changing project environment: 
Conceptualizing the system–model–simulator nexus. 
Automation in Construction, 57, 132-145. doi: 
10.1016/j.autcon.2015.05.005 

Han, Y., Yin, Z. Z., Zhang, J., Jin, R., and Yang, T. (2020). 
Eye-Tracking Experimental Study to Investigating the 
Influence Factors of Construction Safety Hazard 
Recognition. Journal of Construction Engineering and 
Management, 146(8), 04020091. doi: 
10.1061/(ASCE)CO.1943-7862.0001884 

Hanna, A., Iskandar, K., Lotfallah, W., Ibrahim, M., and 
Russell, J. (2018). A Data-driven Approach for 
Identifying Project Manager Competency Weights. 

Canadian Journal of Civil Engineering, 45, 1-8. doi: 
10.1139/cjce-2017-0237 

Hong, T., Wang, Z., Luo, X., and Zhang, W. (2020). State-
of-the-Art on Research and Applications of Machine 
Learning in the Building Life Cycle. Energy and 
Buildings212(3). doi: 10.1016/j.enbuild.2020.109831 

Hossain, M. A. and Nadeem, A. (2019). Towards 
digitizing the construction industry: State of the art of 
Construction 4.0. Proceedings of the International 
Structural Engineering and Construction, 6(1). doi: 
10.14455/ISEC.res.2019.184   

Hsu, H. C., Chang, S., Chen, C. C., and Wu, I C. (2020). 
Knowledge-based system for resolving design clashes 
in building information models. Automation in 
Construction, 110. doi: 10.1016/j.autcon.2019.103001 

Hu, Y. and Castro-Lacouture, D. (2019). Clash Relevance 
Prediction Based on Machine Learning. Journal of 
Computing in Civil Engineering, 33(2), 04018060. doi: 
10.1061/(ASCE)CP.1943-5487.0000810 

Ilter, D. and Dikbas, A. (2009). A review of the artificial 
intelligence applications in construction dispute 
resolution. Proceedings of the Managing IT in 
Construction. 26th International Conference, 41-50. 
doi: 10.1201/9781482266665-63   

Iyer, P., Liu, Y., Sadeghpour, F., and Brennan, R. W. 
(2015). A Fuzzy-Logic based Resource Levelling 
Optimisation Tool. IFAC-Papers OnLine, 48(3), 1942-
1947. doi: 10.1016/J.IFACOL.2015.06.371 

Jaber, F., Al-Zwainy, F. M., and Hachem, S. (2019). 
Optimizing of predictive performance for construction 
projects utilizing support vector machine technique. 
Cogent Engineering, 6(1), 1685860. doi: 
10.1080/23311916.2019.1685860 

Juszczyk, M. (2017). The Challenges of Nonparametric 
Cost Estimation of Construction Works with the use of 
Artificial Intelligence Tools. Procedia Engineering, 
196 (1), 415-422. doi: 10.1016/j.proeng.2017.07.218  

Juszczyk, M. (2020). Development of Cost Estimation 
Models Based on ANN Ensembles and the SVM 
Method. Civil and Environmental Engineering 
Reports,30(3), 48-67. doi: 10.2478/ceer-2020-0033 

Juszczyk, M. and Lesniak, A. (2019). Modelling 
Construction Site Cost Index Based on Neural Network 
Ensembles. Symmetry, 11(3), 411. doi: 
10.3390/sym11030411. 

Juszczyk, M., Zima, K., and Lelek, W. (2019). Forecasting 
of Sports Fields Construction Costs Aided by 
Ensembles of Neural Networks. Journal of Civil 
Engineering and Management, 25(7), 715-729. doi: 
10.3846/jcem.2019.10534 

Khosrowshahi, F. (2015). Enhanced project brief: 
Structured approach to client-designer interface. 
Engineering, Construction and Architectural 
Management, 22(5), 474-492. doi: 10.1108/ECAM-10-
2014-0128 

Kim, K., Cho, Y., and Kim, K. (2018). A BIM-Driven 
Automated Decision Support System for Safety 
Planning of Temporary Structures. Journal of 
Construction Engineering and Management, 144(8). 
doi: 10.1061/(asce)co.1943-7862.0001519 

Kog, F. and Yaman, H. (2016). A multi-agent systems-
based contractor pre-qualification model. Engineering, 
Construction and Architectural Management, 23(6), 
709-726. doi: 10.1108/ECAM-01-2016-0013 

Levac, D., Colquhoun, H., and O’Brien, K. K. (2010). 
Scoping studies: advancing the methodology. 

Journal of Engineering, Project, and Production Management, 2022, 12(3), 224-238 

236    Bang, S. and Olsson, N. 



 

 

Implementation Science, 5(69). doi: 10.1186/1748-
5908-5-69  

Li, H. and Womer, N. K. (2015). Solving stochastic 
resource-constrained project scheduling problems by 
closed-loop approximate dynamic programming. 
European Journal of Operational Research, 246(1), 
20-33. doi: 10.1016/j.ejor.2015.04.015 

Li, Y. S., Hwang, B. G., Shan, M., and Looi, K. Y. (2019). 
Developing a Knowledge-based Decision Support 
System for Prefabricated Prefinished Volumetric 
Construction. IOP Conference Series: Earth and 
Environmental Science, 385, 012002. doi: 
10.1088/1755-1315/385/1/012002 

Liu, S., Meng, X., and Tam, C. (2015). Building 
Information Modeling Based Building Design 
Optimization for Sustainability. Energy and Buildings, 
105, 139-153. doi: 105. 10.1016/j.enbuild.2015.06.037 

Luo, L., He, Q., Jaselskis, E. J., and Xie, J. (2017). 
Construction Project Complexity: Research Trends and 
Implications. Journal of Construction Engineering and 
Management, 143(7), 04017019. doi: 
10.1061/(ASCE)CO.1943-7862.0001306   

Mahfouz, T., Kandil, A., and Davlyatov, S. (2018). 
Identification of latent legal knowledge in differing site 
condition litigations. Automation in Construction, 
94(C), 104-111. doi: 10.1016/j.autcon.2018.06.011 

Martínez, D. M. and Fernández-Rodríguez, J. C. (2015). 
Artificial Intelligence Applied to Project Success: A 
Literature Review. International Journal of Interactive 
Multimedia and Artificial Intelligence, 3(5), 77-84. doi: 
10.9781/ijimai.2015.3510 

McKinsey Global Institute (2015). Digital America. 
McKinsey & Company. MGI Industry Digitization 
Index.   Retrieved from https://www.mckinsey.com/ on 
February 28, 2020 

Mehrabani, M. N., Golafshani, E. M., and Ravanshadnia, 
M. (2020). Scoring of Tenders in Construction Projects 
Using Group Method of Data Handling. KSCE Journal 
of Civil Engineering, 24(3), 1996–2008. doi: 
10.1007/s12205-020-1537-5 

Mirahadi, F. and Zayed, T. (2016). Simulation-based 
construction productivity forecast using Neural-
Network-Driven Fuzzy Reasoning. Automation in 
Construction, 65, 102-115. doi: 
10.1016/j.autcon.2015.12.021 

Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G., and 
The PRISMA Group (2009). Preferred Reporting Items 
for Systematic Reviews and Meta-Analyses: The 
PRISMA Statement. PLoS Medicine, 6(7), e1000097. 
doi: 10.1371/journal.pmed.1000097 

Mousavi, S., Vahdani, B., Hashemi, H., and Ebrahimnejad, 
S. (2015). An Artificial Intelligence Model-Based 
Locally Linear Neuro-Fuzzy for Construction Project 
Selection. Journal of multiple-valued logic and soft 
computing, 25(6), 589-604. 

Ning, X., Qi, J., Wu, C., and Wang, W. (2018). A tri-
objective ant colony optimization-based model for 
planning safe construction site layout. Automation in 
Construction, 89, 1-12. doi: 
10.1016/j.autcon.2018.01.007 

Nnaji, C. and Karakhan, A. A. (2020). Technologies for 
safety and health management in construction: Current 
use, implementation benefits and limitations, and 
adoption barriers. Journal of Building Engineering, 29, 
101212. doi: 10.1016/j.jobe.2020.101212 

Oprach, S., Bolduan, T., Steuer, D., Vössing, M., and 
Haghsheno, S. (2019). Building the Future of the 

Construction Industry through Artificial Intelligence 
and Platform Thinking. Digitale Welt, 3, 40-44. doi: 
10.1007/s42354-019-0211-x    

Oyedele, L. O., Kusimo, H. O., Owolabi, H. A., Akanbi, L. 
A., Ajayi, A. O., Akinade, O. O., and Delgado, J. M. D. 
(2019). Investigating profitability performance of 
construction projects using big data: A project analytics 
approach. Journal of Building Engineering, 26, 100850. 
doi: 10.1016/j.jobe.2019.100850 

Podolski, M. (2016). Management of resources in 
multiunit construction projects with the use of a tabu 
search algorithm. Journal of Civil Engineering and 
Management. 23(2), 1-10. doi: 
10.3846/13923730.2015.1073616 

Poh, C. Q. X., Ubeynarayana, C. U., and Goh, Y. M. 
(2018). Safety leading indicators for construction sites: 
A machine learning approach. Automation in 
Construction, 93. doi: 10.1016/j.autcon.2018.03.022 

Pruvost, H. and Scherer, R. (2017). Analysis of risk in 
building life cycle coupling BIM-based energy 
simulation and semantic modelling. Procedia 
Engineering, 196, 1106-1113. doi: 
10.1016/j.proeng.2017.08.068 

Qazi, A., Quigley, J., Dickson, A., and Kirytopoulos, K. 
(2016). Project Complexity and Risk Management: 
Towards modelling project complexity driven risk 
paths in construction projects. International Journal of 
Project Management, 34, 1183-1198. doi: 
10.1016/j.ijproman.2016.05.008 

Qi, C., Fourie, A., Ma, G., and Tang, X. (2018). A hybrid 
method for improved stability prediction in 
construction projects: A case study of stope 
hangingwall stability. Applied Soft Computing, 71, 
649-658. doi: 10.1016/j.asoc.2018.07.035 

Rodriguez-Trejo S., Ahmad A.M., Hafeez M.A., Dawood 
H., Vukovic V., Kassem M., Naji K.K., and Dawood N. 
(2017). Hierarchy based information requirements for 
sustainable operations of buildings in Qatar. 
Sustainable Cities and Society, 32, 435-448. doi: 
10.1016/j.scs.2017.03.005 

Russell, S. J. and Norvig, P. (2010). Artificial Intelligence. 
A Modern Approach. Third edition. Upper Saddle 
River, New Jersey: Pearson Education.  

Samantra, C., Datta, S., and Mahapatra, S.S. (2017). Fuzzy 
based risk assessment module for metropolitan 
construction project: An empirical study. Engineering 
Applications of Artificial Intelligence, 65(C), 449-464. 
doi: 10.1016/j.engappai.2017.04.019 

Shahtaheri M., Nasir H., and Haas C. T. (2015). Setting 
baseline rates for on-site work categories in the 
construction industry. Journal of Construction 
Engineering and Management, 141(5), doi: 
10.1061/(ASCE)CO.1943-7862.0000959 

Sharafi, P., Rashidi, M., Samali, B., Ronagh, H., and 
Mortazavi, M. (2018). Identification of Factors and 
Decision Analysis of the Level of Modularization in 
Building Construction. Journal of Architectural 
Engineering, 24(2). doi: 10.1061/(ASCE)AE.1943-
5568.0000313 

Shin, Y. (2015). Application of Boosting Regression Trees 
to Preliminary Cost Estimation in Building 
Construction Projects. Computational intelligence and 
neuroscience, 2015(4), 149702. doi: 
10.1155/2015/149702 

Sowa, J. F. (2000). Knowledge representation. First 
edition. Pacific Grove: Brooks.  

Journal of Engineering, Project, and Production Management, 2022, 12(3), 224-238 

Artificial Intelligence in Construction Projects: A Systematic Scoping Review    237 



 

 

Taherdoost, H. and Brard, A. (2019). Analyzing the 
Process of Supplier Selection Criteria and Methods. 
Procedia Manufacturing, 32, 1024-1034. doi: 
10.1016/j.promfg.2019.02.317 

Tidemann, A. (2020). Kunstig intelligens (Artificial 
Intelligence). Store Norske Leksikon (SNL). Great 
Norwegian Encyclopedia. Retrieved from 
https://snl.no/kunstig_intelligens on February 28, 2020.  

Tidemann, A. (2019). Maskinlæring (Machine learning). 
Store Norske Leksikon (SNL). Great Norwegian 
Encyclopedia. Retrieved from 
https://snl.no/kunstig_intelligens on February 28, 2020.   

Tranfield, D., Denyer, D., and Smart, P. (2003). Towards 
a Methodology for Developing Evidence-Informed 
Management Knowledge by Means of Systematic 
Review. British Journal of Management, 14(3), 207-
222. doi: 10.1111/1467-8551.00375  

Tørresen, J. (2013). Hva er kunstig intelligens? (What is 
Artificial Intelligence?) Oslo: Universitetsforlaget.   

University of Helsinki (2018). Introduction to AI. How 
should we define AI? Elements of AI. Retrieved from 
https://www.elementsofai.com/ on March 24, 2021 

Vakhshouri, B. and Nejadi, S. (2015). Predicition of 
Compressive Strength in Light-Weight Self-
Compacting Concrete by ANFIS Analytical Model. 
Archives of Civil Engineering, LXI(2), 53-72. doi: 
10.1515/ace-2015-0014 

Vickranth V., Bommareddy S. S. R., and Premalatha V. 
(2019). Application of lean techniques, enterprise 
resource planning and artificial intelligence in 
construction project management. International 
Journal of Recent Technology and Engineering, 7, 6C2. 

Wang D., Liu J., Wang X., and Chen Y. (2019). Cost-
effectiveness analysis and evaluation of a ‘three-old’ 
reconstruction project based on smart system. Cluster 
Computing, 22, 7895-7905. doi: 10.1007/s10586-017-
1490-3 

Wood, H. and Gidado, K. (2008). An Overview of 
Complexity Theory and its Application to the 
Construction Industry. Proceedings of 24th Annual 
Conference of the Association of Researchers in 
Construction Management, 677-787.   

Xiao, C., Liu, Y., and Akhnoukh, A. K. (2018). 
Bibliometric Review of Artificial Intelligence (AI) in 
Construction Engineering and Management. 
International Conference on Construction and Real 
Estate Management 2018, 32-41. doi: 
10.1061/9780784481721.004  

Xing Y., Song Z., and Deng X. (2016). Optimizing the 
schedule of dispatching construction machines through 
artificial intelligence. Chemical Engineering 
Transactions,51, 493-498. doi: 10.3303/CET1651083 

Xu, J., Zheng, J., Zhao, B., and Gong, D. (2020). 
Application of remote electron microscope technology 
in construction management of building engineering. 
Acta Microscopica, 29, 1. 328-337 

Yaseen, Z., Ali, Z., Salih, S., and Al-Ansari, N. (2020). 
Prediction of Risk Delay in Construction Projects 
Using a Hybrid Artificial Intelligence Model. 
Sustainability, 12(4), 1-14. doi: 10.3390/su12041514 

Yaqubi, M. K. and Salhotra S. (2019) The automated cost 
estimation in construction. International Journal of 
Innovative Technology and Exploring Engineering. 
8(7), 845-849. 

Zhang, J., Huang, Y., Ma, G., Sun, J., and Nener, B. (2020). 
A metaheuristic-optimized multi-output model for 
predicting multiple properties of pervious concrete. 
Construction and Building Materials, 249, 118803. doi: 
10.1016/j.conbuildmat.2020.118803 

Zhang, Y. and Luo, H. and He, Y. (2015). A System for 
Tender Price Evaluation of Construction Project Based 
on Big Data. Procedia Engineering, 123, 606-614. doi: 
10.1016/j.proeng.2015.10.114 

Zheng, X. L. and Wang, L. (2015). A multi-agent 
optimization algorithm for resource constrained project 
scheduling problem. Expert Systems with Applications. 
42(15-16). doi: 10.1016/j.eswa.2015.04.009 

Zhou, J. and Ren, D. (2020). A hybrid model of external 
environmental benefits compensation to practitioners 
for the application of prefabricated construction. 
Environmental Impact Assessment Review, 81, 106358. 
doi: 10.1016/j.eiar.2019.106358 

Zou, Y., Kiviniemi, A., and Jones, S. (2017). Retrieving 
similar cases for construction project risk management 
using Natural Language Processing techniques. 
Automation in Construction, 80. doi: 
10.1016/j.autcon.2017.04.003 

 
Sofie Bang is a Ph.D. Candidate at the 
Norwegian University of Science and 
Technology. The Ph.D. is conducted 
in collaboration with Construction 
City Cluster, and explores and maps 
the opportunities, challenges, and 
future outlooks associated with the 
increased use of artificial intelligence 
in construction projects. Bang holds 
an MSc in Mechanical Engineering, 

with a specialization in Project and Quality management. 
Her research interests include artificial intelligence, 
construction, project management and sustainability. 
 

With a Ph.D. from the Norwegian 
University of Science and Technology 
(NTNU) and an MSc from Chalmers 
in Sweden, Olsson is a full professor 
in project management at the 
department of production and quality 
engineering at NTNU in Trondheim, 
Norway. He has served as research 
coordinator for the Concept research 
programme on large governmental 

projects and has had a professorship in facilities 
management. Olsson has extensive experience as a 
consultant, research scientist and manager. His consulting 
experience includes Ernst & Young and DNV (Det Norske 
Veritas). Current research is focused on emerging aspects 
of project management and railway traffic management. 

 

Journal of Engineering, Project, and Production Management, 2022, 12(3), 224-238 

238    Bang, S. and Olsson, N. 





 

Appendix II 

 

 

 

Paper II 

 

 

 

«Utilising Artificial Intelligence in Construction Site Waste Reduction» 

 

 

 

Published in: Journal of Engineering, Project, and Production Management  

ISSN: 2223-8379 

 

 

 

 





Journal of Engineering, Project, and Production Management 
2022, 12(3), 239-249 

Utilising Artificial Intelligence in Construction Site Waste 
Reduction 

Sofie Bang1 and Bjørn Andersen2

1Ph.D. Candidate, Department of Mechanical and Industrial Engineering, Norwegian University of Science and 
Technology, Richard Birkelands vei 2B, 7034 Trondheim, Norway, E-mail: sofie.bang@ntnu.no (corresponding author). 

2Professor, Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology, 
Richard Birkelands vei 2B, 7034 Trondheim, Norway, E-mail: bjorn.andersen@ntnu.no 

Project Management 
Received December 6, 2021; revised March 3, 2022; accepted May 21, 2022 

Available online June 13, 2022 

_________________________________________________________________________________________ 

Abstract: The purpose of this study is to examine how artificial intelligence (AI) can help reduce waste on construction 
sites. An explorative, mixed-method research design is deployed. Qualitative methods were utilised, including an extensive 
literature search, 32 interviews, a project visit, and participation in chosen seminars. Additionally, quantitative methods 
included an analysis of waste quantities in 161 construction projects, selected based on criteria for availability of data, as 
well as a targeted questionnaire with 21 respondents. Several methods were employed as means of triangulation, to increase 
the validity and reliability of the data in a complex and rapidly developing field. The study uncovers several possibilities 
and concludes with 18 proposed measures for waste reduction on a construction site, along with a set of recommendations 
for practical implementation. The recommended measures include defining appropriate targets for waste production, 
optimising resources, tracking continuously, reporting and presenting waste quantities, training, conducting inspections, 
and implementing specific routines for warehousing. The study helps bridge the gap between ambition and practice by 
highlighting considerations related to the practical implementation of measures for waste management and providing an 
understanding of which AI-based tools and measures are considered effective for waste reduction in construction projects.  
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_________________________________________________________________________________________ 

1. Introduction

The ever-growing construction industry is accountable for 
nearly 40% of worldwide energy consumption and energy-
related gas emissions (Global Alliance for Buildings and 
Construction, 2017), while the need for more sustainable 
solutions is growing just as swiftly. Implementing circular 
thinking and optimal waste management will be among the 
most important courses of action to fulfil national and 
international ambitions to reduce emissions (Avfall Norge, 
2016; Olerud, 2019). A significant potential to increase 
productivity and sustainability is widely assumed to lie in 
the utilisation of new technology, digitalisation, and 
artificial intelligence (AI) (Becqué et al., 2016; Moen, 2017; 
Mejlænder-Larsen, 2019).   

Construction waste can be defined as ‘a material or 
product which needs to be transported elsewhere from the 
construction site or used on the site itself other than the 
intended specific purpose of the project’ (Skoyles and 
Skoyles, 1987 as cited in Osmani, 2011). Reduction of 
waste on construction sites plays an important role in the 
usage and development of more sustainable solutions, and 
in the ongoing development of a sustainable industry; 

therefore, waste reduction is an important means to reach 
the 13th sustainability goal related to climate action (United 
Nations, 2021). Studies show that certain waste fractions 
have very high waste percentages (Hjellnes Consult, 2015; 
SSB, 2019), meaning that large amounts of such materials 
pass through the value chain without adding any practical 
value to a project. Existing literature identifies wood, 
plaster, cardboard and paper, plastics, and mixed waste as 
problematic waste fractions (Rønningen, 2000; Kartam et 
al., 2004; Osmani, 2012). However, a recent development 
with practical implications for sustainability is the 
increased use of AI in the industry, as data become more 
available and data processing capacity grows more 
affordable.   

The purpose of this study was to examine how AI can 
help reduce waste on construction sites. An unambiguous 
definition of AI is currently lacking, especially in a 
construction context. Adio-Moses and Asaolu (2016) 
describes AI-based tools as tools capable of ‘reasoning, 
planning, learning, natural language processing 
(communication), perception, and the ability to move and 
manipulate objects.  

https://crossmark.crossref.org/dialog/?doi=10.32738/JEPPM-2022-0022&domain=pdf&date_stamp=2022-06-13


 

Three research questions are answered through a 
mixed-methods research design, providing quantitative 
data collected from the contractor and qualitative 
considerations from other parts of the value chain. 
Specifically, the study answers the following research 
questions:   

 RQ1: Which measures are suitable for waste 
reduction on the construction site?   

 RQ2: How can the identified measures be 
implemented?   

 RQ3: How can AI contribute to the 
implementation of the measures?   

The remainder of this article is organised as follows. 
The next section explains the review methodology. The 
results section presents findings from all described methods. 
These findings are further assessed, discussed, and 
summarised in 18 specific measures for utilising AI to 
improve waste reduction. The final section provides the 
conclusion, along with the implications of the study and 
avenues for future research. The conclusion also answers 
the research questions as defined, summarises the 
conducted research, and reflects upon the possibilities the 
study provides for future research, as well as the current 
study’s limitations.  

2. Method  

To answer the research questions, the explorative research 
design combines quantitative and qualitative methods; 
methodological triangulation contributes to the inherent 
quality of the findings of the study (Love et al., 2002). Table 
1 illustrates the research design, with its five phases of data 

collection and analysis. Each methodological technique is 
described and elaborated.   

Initial research comprised a thorough literature search 
on the topic of waste reduction and the use of AI in the 
construction industry. In parallel, a document analysis of 
available material was conducted, to ensure the relevance 
of theoretical findings. Other qualitative methods utilised 
were semi-structured in-depth interviews, structured 
interviews, a project visit, a tour of the Norsk Gjenvinning 
plant, as well as participation in chosen seminars and 
webinars. Quantitative methods utilised include an analysis 
of data on waste disposal in 161 construction projects and a 
questionnaire distributed among the personnel responsible 
for waste management of ongoing projects in Skanska 
Norway.  Further research was carried out by analysis and 
compilation of the collected data.    

Criteria such as validity, reliability, and generalisability 
can indicate the quality of a study (Tjora, 2017). Validity is 
related to the relevance of the study itself, as well as the 
relevance of collected data; reliability is related to 
verifiability (Denzin, 2012). The literature search included 
an assessment of the relevance of the sources themselves in 
addition to the collected data. Similarly, in interviews, the 
relevance of both the interviewees and the questions 
themselves was assessed. Generalisability could be 
restricted, as the quantitative aspects of the study are based 
on projects from one contractor, and on new construction 
projects specifically; the results are not necessarily 
transferable to other actors or projects. However, reduced 
generalisability can be compensated for via a comparative 
research approach. 

Table 1. The five phases of data collection and analysis.  

 
Phase 1: Framing 

the problem 

Phase 2: Mapping of 
waste, causes, and 

effects 

Phase 3: Mapping of 
techniques based on 

AI 

Phase 4: 
Triangulation of 

data 

Phase 5: 
Validation 

Performed 
activity 

Definition of 
purpose and aim; 
conceptualisation of 
problem statement 
in the context of the 
field 

Identification of 
problematic waste 
fractions, activities, and 
processes 

Identification of 
available techniques 
based on AI  

Assessment of 
findings and the 
intersection 
between the two 
areas  

Validation and 
refinement 

Methodological 
technique 

Review of previous 
research through 
literature search; 
document analysis; 
introductory 
conversations with 
relevant personnel 

Mapping and evaluation 
of waste in 161 
construction projects; 
questionnaire; targeted 
interviews; project visit; 
participation in chosen 
seminars  

Mapping literature 
and lessons learned 
in pilots and case 
studies; targeted 
interviews; 
participation in 
chosen webinars 

Combining 
evidence from the 
previous 
investigations, 
theoretical and 
practical findings; 
targeted 
interviews 

Consulting 
informants, 
peer 
academics, and 
practitioners 

Analysis Assessment of early 
findings  

Problematic waste 
fractions identified in 
quantitative analysis; 
cross-checked with 
existing literature and 
informants, summarised; 
causes of waste and 
effects of waste 
reduction mapped  

Estimation of 
available technology 
and techniques 
enabling potential 
measures for waste 
reduction; mapping 
was done with the 
help of informants  

Iterative 
assessment of 
findings in Phase 
2 and 3; 
discussions with 
selected 
informants  

Discussions 
with selected 
informants, 
peer 
academics, and 
practitioners; 
presentation of 
findings  

Contribution to 
paper 

Section 1  
Section 2  

Section 3 
Section 4 
RQ1 
RQ2 

Section 3  
Section 4 
RQ3 

Section 4 
Section 5  
Section 6 

All sections 
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For this study, this entailed using multiple methods and 
involving actors from various parts of the value chain in 
interviews and reviews throughout the process, as well as a 
validation of results in the final research phase.  

The literature search was conducted to obtain insights 
into current and previous studies on waste reduction in the 
construction industry, as well as AI in the construction 
industry. The search commenced by selecting databases 
considered appropriate for finding studies on waste 
reduction and AI in the construction industry. The Scopus 
and Oria databases were chosen, due to their coverage of 
engineering-based publications. Search strings such as 
[waste AND (reduction OR minimisation) AND 
construction AND (project* OR industry)] as well as 
[artificial intelligence OR machine learning AND 
construction AND (project* OR industry)] were used to 
identify relevant literature. To ensure the provision of a 
state-of-the-art view of the topics, publications from 2000 
or later were examined. Suggestions given by interviewees 
were also reviewed    

Over the course of a year, 18 semi-structured in-depth 
interviews were conducted in person and via computer; in 
addition, 14 structured interviews were conducted in 
written form. The interviewees were actors from every 
stage of the construction project supply chain. Selection of 
the interviewees was based on inclusivity of different roles 
and perspectives throughout a project and its value chain, 
as well as suggestions from previous interviewees, building 
a strategic selection according to the recommendations of 
Dalland (2012). Interviewees included personnel with 
experience from waste management and general interest in 
environmental initiatives, as well as those with experience 
in the use of AI both within and outside the construction 
industry. The semi-structured approach facilitates a set 
structure for the conversation but provides paths for input 
from the informants themselves (Johannessen et al., 2016).   

Where informants were unable to participate in the in-
depth interviews, or for various reasons preferred another 
format, an additional 14 structured interviews were 
conducted in a written format. Challenges associated with 
this approach include fewer reflections from the 
interviewees and the increased possibility of 
misunderstanding; this was accounted for largely by asking 
follow-up questions. An overview of the background and 
contributions of the interviewees is summarised in Table 2. 
The total of certain characteristics may be greater than 18 
or 14, respectively, as some informants fell into two or more 
of the defined categories.    

The interviews followed one of two interview guides, 
developed after the initial literature search and document 
analysis. The first guide was structured to gather 
perspectives on problematic waste fractions, the origin of 
the identified fractions, suggested solutions, and challenges 
related to the reduction of the identified fractions. The 
second guide was structured to gather perspectives on the 
role of AI in waste reduction on construction sites. The 
interviews were recorded, transcribed, and categorised for 
further analysis. Thaagard (2013) suggests that the 
researcher strives to find a selection of interviewees that 
meets a theoretical saturation point, beyond which adding a 
new informant would no longer add anything significantly 
new to the research. Saturation was identified in this study 
by continuously assessing and comparing responses from 
the conducted interviews. Certain topics reached saturation 
point earlier than others; in these cases, an emphasis was 

placed on the unsaturated topics in any follow-up questions 
and further choices of interviewees.  

Table 2. Interviewees.  

 Semi-structured 
interviews 

Structured 
interviews 

Characteristics N % N % 
Total  
 
Current title 
Architect 
Client 
Project manager 
Project engineer 
 
Purchasing 
Skilled worker 
Supplier 
Researcher 
 
Current field of 
work  
Academic 
Practitioner 
 
Previous 
experience 
Construction 
AI 
Both 
Other 

18 
 
 

2 
0 
4 
3 
2 
2 
1 
4 
 
 
 
 

4 
14 

 
 
 

10 
4 
4 
2 

100.0% 
 
 

11.1% 
0.0% 

22.2% 
16.7% 

 
11.1% 
11.1% 
0.06% 
22.2% 

 
 
 

22.2% 
77.8% 

 
 
 

55.6% 
22.2% 
22.2% 
11.1% 

14 
 
 

3 
3 
1 
3 
 

0 
0 
2 
2 
 
 
 

2 
12 

 
 
 

8 
6 
0 
0 

100.0% 
 
 

21.4% 
21.4% 
14.3% 
21.4% 

 
0.0% 
0.0% 

14.3% 
14.3% 

 
 
 

14.3% 
85.7% 

 
 
 

57.1% 
42.9% 
0.0% 
0.0% 

 

Additional observations were made during a project 
visit, a tour of the Norsk Gjenvinning plant, and 
participation in chosen seminars and webinars on the topic 
of waste reduction and/or AI. These further observations 
provided an additional understanding of the topic and 
contributed to the continuous validation of the results.   

An analysis of the waste disposal in 161 construction 
projects was conducted to identify any problematic waste 
fractions, with respect to total volume, environmental 
impact or impact on project progress, management, or 
activities. The analysis utilised the tool Grønt Ansvar from 
Norsk Gjenvinning to provide an overview of disposed 
waste in terms of volume, weight, degree of sorting, and 
cost associated with waste management in selected projects 
(Norsk Gjenvinning, c. 2018). The waste reports are 
dynamic, and the system can single out selected fractions, 
amounts, costs, or projects on demand. The projects were 
deemed relevant for inclusion using the following criteria: 
used Norsk Gjenvinning for waste disposal through the 
entire production phase; did not use any other providers for 
waste disposal; and sufficient availability of further 
documentation, in case of any follow-up questions for the 
project or its team members. After this assessment, all 
projects meeting the criteria were included, as a bigger 
sample would make the data foundation more 
representative. For the analysis, the waste fractions were 
classified and categorised according to the guidelines 
provided by Norsk Gjenvinning. In addition, a distribution 
analysis was conducted according to Holme and Solvang 
(1996), to assess both total waste amounts, and amounts for 
each of the registered fractions. The biggest fractions were 
selected for further assessment.   

The questionnaire distributed among those responsible 
for waste management and disposal in construction projects 
confirmed the findings from the waste-disposal analysis. 

Journal of Engineering, Project, and Production Management, 2022, 12(3), 239-249 

Utilising Artificial Intelligence in Construction Site Waste Reduction    241 



 

The questionnaire contained 25 questions in total, of which 
15 were considered open, and 10 closed. The questions 
were tested before the final distribution. Of the 105 
potential respondents who received the questionnaire, 21 of 
them answered, yielding a response rate of 20%.   

Finally, as the study continued to develop, presentation 
of findings and targeted discussions with selected 
informants and peer academics were conducted, in order to 
validate and refine the findings and place them within the 
context of the field as a whole.  

3. Results  

3.1 Construction Waste  

In many cases, production of waste is the result of 
inefficient use of materials. Waste production is also costly 
in terms of both financial concerns and environmental 
issues. The construction industry is affected by an inherent 
resistance to change, which could prove to be a significant 
challenge in the work towards waste reduction (Teo and 
Loosemore, 2001). The waste management hierarchy (Fig. 
1) illustrates the preferred means for reducing waste in the 
construction industry (NSW EPA, 2014). The hierarchy 
consists of five levels: prevent, reduce, reuse, recycle, and 
disposal. The hierarchy is designed to be read from the top 
down: a measure assigned higher in the hierarchy implies a 
more sustainable solution. Concepts of the waste hierarchy 
appear to represent a significant potential for sustainability 
in the industry.    

Several informants emphasise the importance of 
moving from a cradle-to-grave to a cradle-to-cradle 
approach and embracing concepts from circular economy 
in order to truly improve the handling of waste production 
in the construction industry.  

3.1.1 Problematic waste fractions  

The most significant waste fractions for the construction 
industry are cardboard and paper, plastic, and timber, 
plaster, and mixed waste (Kartam et al., 2004; SSB, 2019). 
Evaluating the generation of waste in the 161 new building 
projects confirmed previous findings: the largest or most 
problematic fractions were identified as timber (34.6% of 
total waste); mixed waste (27.3%); plaster (17.8%); paper 
and cardboard (2.7%); and plastic (2.3%). Paper, cardboard, 
and plastic do not account for large proportions of the total 
weight, but considering the low material densities of these 
fractions, it is reasonable to assume their volumes will be 
significant. The same fractions were also confirmed and 
highlighted by informants, in interviews and through the 
questionnaire.    

Different amounts and fractions of waste arise in 
different phases of a project (NHP Network, 2016; Nordby 
and Wærner, 2017). ‘Neste Steg’ is a Norwegian 
framework for construction projects defined by Bygg21 
(2015), similar to the RIBA Plan of Work (RIBA 
Architecture, 2020). Neste Steg specifies eight phases of a 
construction project: strategic definition; concept 
development; refining of concept; programming; 
production; delivery; operation and maintenance; and 
disposal of the facility. Furthermore, six sub-phases of the 
production phase can be defined (NHP Network, 2016): 
excavation; groundworks; framing; exterior finishing; 
internal finishing and fitting; and furnishing. The two 
classifications constitute the implementation framework of 
this study as summarised in Fig. 2.   

3.1.2 Perceived potential for waste reduction  

Interview informants were asked to identify the activities 
and processes producing timber waste. Some respondents 
reported answering the question based on their available 
statistics on a current project, while others answered based 
on their experience from previous projects. Carpentry, 
formwork, deliveries and rig work were identified as the 
activities that produce the largest amounts of timber waste. 
Similarly, informants were asked to identify perceived 
sources of plaster waste. The responses indicated that 
carpentry and the installation of inner and outer walls are 
the activities producing the largest amounts of plaster 
waste.  

Most of the waste fractions were reported as arising 
from large portions of the production phase of a project. 
The interviewees suggested that to effectively reduce waste, 
not only should there be a focus on each of the fractions, 
but also on entire projects. Respondents generally 
considered large amounts of waste to be unnecessary, and 
some suggested that the problem is due to a lack of will, 
motivation, or knowledge. 

  

Fig. 1. The waste management hierarchy. 

 

Fig 2. Phases of a construction project (Bygg21, 2015; NHP Network, 2016)  
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Most of the interviewees highlighted setting out clear 
objectives as important to create both engagement and a 
willingness to change. One interviewee believed that such 
objectives would be particularly valuable if combined with 
economic incentives, such as bonus-malus.  

Incentive schemes that reward good actors and fines 
that deter careless actors were another measure suggested 
by numerous interviewees. Economic incentives are seen to 
be important both in the selection and implementation of 
measures in all levels of the project organisation and are 
supported by research (Azizi et al., 2015). One interviewee 
suggested that such a scheme could be used to reward 
measures for innovation in waste reduction, while another 
suggested that bonus-malus in contracts be allocated 
according to predefined objectives for waste reduction on 
site. Both emphasised the importance of involving all actors 
in the development of such solutions and saw a transparent 
process as essential.  

A further general perception among the informants was 
that there is great value in establishing contact between all 
involved actors, and start-up meetings and joint reviews of 
the waste plans for the project or resource optimisation 
were mentioned as possible supplements to existing project 
waste plans. Strategically working towards a more 
collaborative project execution during the earliest project 
phases was also identified as of particular importance. 
Unfinished and imprecise contracts, as well as differing 
expectations between parties, were additionally highlighted 
as especially challenging with respect to waste reduction. 
The interviews further revealed that resistance to change is 
a major challenge on site.  

In addition, most respondents mentioned the use of pre-
cuts, prefabrications, and modular elements as possible 
measures. The resulting reduction of cut-offs was 
considered to be the greatest benefit, especially for timber 
and plaster. In this context, an interviewee stressed the 
importance of collaborative strategies in the early phases of 
a project to ensure it could meet the needs of all involved 
actors.  

One informant emphasised the difference between 
preventing the production of waste and taking measures to 
utilise construction site resources after waste had been 
produced. Other interviewees argued that certain measures 
could reduce the construction waste on individual sites but 
would not be effective at the industry level.  

Most respondents agreed on the importance of having a 
tidy, accessible waste station on site, with several 
interviewees mentioning the sufficient availability of 
containers as being especially important. The deterioration 
of materials on site because of weather, vandalism, or theft 
was also mentioned as a possible source of waste, while 
others considered the conscious or unconscious neglect of 
materials by workers to be of greater importance.  

The design of a building itself was considered 
especially important. One informant mentioned late 
changes in design as one main reason that processes and 
activities must be repeated, or materials and elements 
discarded. This can happen due to late availability of 
information, or late change requests from the customer. 
Another interviewee mentioned complexity in the design of 
the building. Furthermore, unclear instructions and 
specifications were highlighted as problematic.  

When asked which measures they believed to hold the 
most potential for waste reduction, interviewees responded 
that prefabrication, increased awareness, targeted building 
design, and contractual demands were among the greatest 
contributing factors to waste reduction on a construction 
site.  

The systematic shift towards a more sustainable 
industry has led to an increasing number of techniques, 
tools, and solutions with the potential for waste reduction.  

3.2 Established Tools for Waste Reduction  

Certain tools are already established in the industry as 
suitable for construction site waste reduction. Lean 
construction, which draws concepts from lean methodology 
(Koskela et al., 2002; Womack et al., 1991), is a system that 
aims to maximise value by enhancing quality, improving 
efficiency, and reducing waste.  

Conscious and sustainable design choices contribute to 
the reduction, and potentially, the avoidance, of waste – use 
of durable materials, standard sizes, and systems for 
increased adaptability, disassembly or reuse (Innes, 2004; 
Zero Waste Scotland, 2016). Measures built on the 
concepts of circular economy are seen to be an important 
factor also beyond specific design choices (NSW EPA, 
2014). Reuse can be done on site, or elsewhere.  

Research suggests a correlation between the level of 
collaboration in projects, and project performance in terms 
of cost, time, and quality, implying significant benefits in 
the use of collaborative strategies for waste reduction 
(Haaskjold et al., 2020). Increased industrialisation, for 
instance in the form of prefabrication has also proved to 
provide benefits in terms of reduced waste quantities on site 
(Tam et al., 2005).  

Digitalisation is considered an important piece in the 
waste reducing puzzle, especially when aiming to realise 
the increased use of AI. An important part of the digitization 
process is the continuous development of tools such as 
building information models, that can store and display big 
amounts of data, even beyond the three dimensional digital 
twin (Charef et al., 2018).  

3.3 AI in Construction Projects 

Four categories of AI tools in the construction industry can 
be defined: machine learning (ML), knowledge-based 
systems, evolutionary algorithms (EAs), and hybrid 
systems (Akinade, 2017).   

 ML describes AI techniques that can learn from data 
(Tidemann, 2019). In the construction field, the ML 
approaches of artificial neural networks (ANN), support 
vector machines (SVM), and fuzzy logic (FL) appear to be 
the most widely employed (Akinade, 2017). Their main 
strength lies within their ability to handle uncertainty, and 
work efficiently with incomplete data. Knowledge-based 
systems mimic human problem-solving expertise to find 
solutions to complex problems, and possess strong 
explanation abilities (Sowa, 2000; Akinade, 2017). 
Commonly employed techniques include expert systems 
(ES), rule-based systems (RBS), case-based reasoning, and 
semantic networks (Akinade, 2017). EAs are based on 
biological evolution (Russel and Norvig, 2010); the 
techniques utilise an optimisation approach to find the most 
suitable solution (Dasgupta and Michalewicz, 2013). 
Among EAs are genetic algorithms (GA), ant colony 
optimisation (ACO), particle swarm optimisation (PSO), 
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and artificial bee colonies (ABC) (Akinade, 2017). Hybrid 
systems combine two or more AI techniques to utilise the 
strengths and overcome the weaknesses of the individual 
techniques (Russel and Norvig, 2010). Robotics is a fifth, 
adjacent field. The techniques can all be employed for 
similar purposes, and can to some extent be said to, for 
instance, provide support for the human decision maker in 
design, scheduling, monitoring of progress, or assessing 
risks; the main difference lies within how the systems are 
developed, and the input they require.  

Previous studies have been conducted on the use of AI 
in several areas: analysing, forecasting, and managing 
waste; examining the use of AI supporting the selection of 
an optimal landfill site and a waste-flow-allocation pattern, 
to minimise the total system cost related to waste disposal 
(Cheng et al., 2003); forecasting the generation of 
municipal solid and mixed waste (Abbasi and Hanandeh, 
2016); developing a framework for an AI-based 
construction waste management system (Ali et al., 2019); 
and examining how the application of AI in the construction 
industry can be supported, highlighting the need for laying 
a sustainable foundation for advanced technologies in 
buildings (Adio-Moses and Asaolu, 2016).  

A recent surge of interest in the topic of AI in 
construction has also led to an increased number of pilots 
and proofs of concept in the industry, both on the national 
and international scales. Experience and lessons learned 
have been further mapped through interviews, seminars, 
and discussions.  

3.3.1 Waste reduction powered by AI  

The interviews conducted illustrate a lack of common 
understanding and terminology, especially relating to 
certain technologies and techniques regarding the field of 
construction and information technology in general, and AI 
in particular. This can be observed in the informants having 
highlighted the need to establish unified terminology for 
effective communication. A general perception among 
respondents was that there is considerable potential in 
utilising AI in construction projects and on construction 
sites, but only two interviewees could point to concrete 
examples of this being conducted in practice at a larger 
scale. The interviewees had expectations of increased 
productivity, increased quality, and savings in time and cost, 
as well as waste reduction.  

Problems with obtaining enough data, as well as data of 
sufficient quality, were identified as one of the barriers to 
increasing the use of AI. The relationship between the 
people involved and the technology was also considered to 
be critical for the successful implementation of AI-based 

techniques. One interviewee was especially interested in the 
potential of virtual reality and augmented reality. Relevant 
areas of use included tours and inspections; communication 
and cooperation among the actors in a project; preparation 
and training; and the possibility for consultants and 
specialists to visit a site before completion of the project. 
The majority of interviewees stated that the implementation 
process is particularly important, as it represents an 
important transition from traditional to more innovative 
methods. Fig. 3 illustrates the strategic framework 
developed for waste reduction powered by AI, drawn from 
all the findings of this study and validated through 
interviews, seminars, and discussions.  

4. Discussion  

The aforementioned techniques and tools can be utilised in 
new ways, enabling the reduction of previously challenging 
waste fractions. The following chapter will present the 
findings yielded from the methodological framework as 
described in the previous chapter, summarised in 18 
recommendations for practical implementation of AI-
focussed measures.    

Early and explicit definition of appropriate targets for 
waste production seems to represent significant potential 
for waste reduction. At present, projects often define targets 
for sorting degrees; therefore, defining targets should be 
attainable for waste quantity, by volume or weight. Such a 
defined target could, for instance, be based on the indicator 
of kilograms waste per square inch. The indicator could 
then be divided among the project phases, among 
construction stages, among buildings within the same site, 
or within the same building. Including all actors in the 
project is recommended, for example, by utilising 
partnering elements such as start-up meetings and physical 
co-location; these can contribute to the development of a 
common culture and ‘language’ among the members of a 
project team. The target could be measured against other 
targets within the organisations of the involved actors, or 
those of other actors within the industry, which would 
potentially contribute to improved motivation. Appropriate 
targets could be defined through the utilisation of ML, 
specifically techniques for regression. An ML algorithm 
could estimate an appropriate value based on data from 
previous, comparable projects. Ideally, the algorithm would 
have access to sufficient amounts of good quality data. In 
theory, this could be conducted in the very early stages of a 
project, or during the concept design phase; however, to 
ensure the greatest possible amount of data, it is 
recommended that it be implemented during the 
programming phase (4).  

 

Fig. 3. Strategic framework for waste reduction powered by AI.  
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Similarly, an early and explicit plan for resource 
optimisation could be an important step towards more 
sustainable waste management. A resource optimisation 
plan should include an overview of which materials each 
actor plans to work with, an appraisal of potential sources 
of surplus material, and the ways in which any surplus 
material could be utilised by other actors on site –and it 
should be formed in the early stages of the project. A 
resource optimisation plan would provide benefits in the 
form of both increased awareness on the topic, and savings 
of time and money due to the presence of a dynamic plan. 
Plan development could employ such techniques as 
generative design in the form of GA, supported by ML, or 
ANN specifically, to evaluate and choose between 
alternative plans. The simplest form of generative design is 
topology optimisation, but more advanced algorithms are 
built around the same framework. Designs generated by 
such algorithms have been found to be far more efficient 
than those created by humans (McKnight, 2017), and are 
produced in a fraction of the time it takes for humans to 
create them. Nevertheless, algorithms rely on the quality of 
the input provided by the user. Furthermore, such an 
approach would, again, require access to sufficient amounts 
and quality of data, and it is therefore recommended that the 
approach be implemented during the programming phase 
(4).  

In order to keep track of and create an understanding of, 
the full extent of a project’s on-site waste production, 
continuous tracking of waste quantities is desirable. 
Tracking of waste quantities produced allows on-site 
production to be adjusted along the way, as a project 
approaches the defined target for waste production. This 
would be an important element in a holistic and integral 
waste management system, as production often happens 
simultaneously and in parallel at different physical 
locations. If a project succeeds in the tracking of waste 
quantities, continuous reporting of waste quantities should 
be next. Reporting could happen internally to the project 
team, or externally to staff members in other parts of the 
business. Similarly, to fully utilise the potential of tracking 
waste quantities, a project should strive to render a 
continuous visual presentation of waste quantities on site. 
Such a presentation could be displayed near any safety, 
health, and environment boards, in common areas, or near 
the site entrance. The goal would be to display the numbers 
to every worker on site, to provide an understanding of the 
size and scope of the current waste production. Presenting 
these numbers would be an important step in raising 
awareness and developing knowledge among personnel on 
site. For the continuous tracking of waste quantities, ML 
could be employed to manage sensors and computer vision. 
These tools could be installed inside and close to any waste 
stations and containers on site, and could contribute by 
weighing the waste or visually estimating remaining space. 
The biggest perceived benefit from such a system would be 
its ability to communicate with other systems, such as the 
project schedule system. A hybrid system based on ML and 
EAs could help estimate the next necessary emptying of 
containers and alert the responsible parties. For obvious 
reasons, this would need to be performed during the 
production phase (5). However, the system reports could be 
used for reference in future projects, to enable the 
knowledge to be utilised in earlier project phases. Existing, 
established tools – fuelled by AI or not – could be used to 
generate the reports and presentations.   

To enable the reuse of materials and on site, defined 
routines for warehousing on site are recommended. The 
construction site needs sufficient capacity to maintain 
intermediate storage; tidy storage would also reduce the 
need for the placement of unnecessary orders, as it would 
be easier to track any already-available materials on site. 
Thus, defined routines for ordering materials would also be 
beneficial. A lean approach to the ordering of materials is 
one of many ways a lean mindset can be brought to 
construction sites. Maintaining such functions and routines 
may require significant resources. Similarly, increasing 
volumes and frequency of orders will increase transport 
emissions; therefore, such conditions should be considered 
for each project. Routines for warehousing on site could be 
designed based on information gathered by ML-supported 
sensors and computer vision. Moreover, routines could, 
again, be established based upon generative design 
techniques, such as utilising decision support in 
determining storage unit layout. The measure should be 
initiated during the programming phase (4) and continued 
through production (5). The ordering itself could 
technically be done by AI-powered tools, for example, 
based upon natural language processing. However, the 
results of this study suggest the more expedient option is 
likely utilising AI to estimate appropriate timing for the 
next order placement.   

Training of all involved personnel seems to represent a 
significant potential for waste reduction. Proper training 
could reduce wasted time and potential savings in materials. 
Tools such as virtual and augmented reality, combined with 
a digital twin, enable virtual visits to the finished building 
– and the construction site itself – in advance. This could, 
for example, be utilised to instruct skilled workers in 
specific processes that are known to produce waste. 
Combining virtual and augmented reality with ML allows 
visitors to interact with their surroundings when exploring 
a digital twin. Ideally, the training of actors on all levels 
would happen independently of the individual project; if 
this is not the case, it is desirable to start the training as soon 
as all subcontractors and suppliers are procured, in the 
concept design (3) or programming (4) phases.  

Several respondents pointed to the need for economic 
motivations, such as contractual arrangements based on 
bonus-malus, especially during the early stages of a waste 
reduction initiative. In such an arrangement, desirable 
performance and results are rewarded, whereas the actors 
who do not meet the required targets or expectations must 
pay. The biggest potential for AI utilisation would be using 
ML and generative design to identify fitting targets and 
prerequisites for such an arrangement. This would need to 
be implemented and established before contractual 
arrangements are finalised.  

To fully benefit from all the benefits expected of 
digitalisation, and facilitate the increased use of AI, it is 
recommended to establish a digital platform for all actors in 
a project. This could serve as a platform for communication 
among all involved actors, but also as a hub for assembling 
all available information. Every actor should have access to 
any information relevant to their field. Establishing a digital 
experience-sharing platform in the early stages of a project 
would enable increased use of previous information and 
experience; this could become an important tool for the 
assembly and assessment of data from previous projects. 
Such a digital platform should be linked to a digital twin, as 
established in the design phases of a project. Ideally, the 
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platform would be able to communicate with other systems, 
models, sensors, and programs within the project 
environment; this could make the platform an invaluable 
tool in the work towards a more sustainable operation. Such 
a platform would, naturally, be very complex, and built 
upon several tools; however, the foundational lines of 
communication could be built on a set of ES or RBS. The 
platform should be established as soon as all subcontractors 
and suppliers are procured, continued through the 
production phase—and brought into future projects, where 
it can be utilised as early as in the strategic definition (1) or 
concept development (2) phases.  

Carrying out inspections during all phases of production 
(5) is desirable, as some type of surveillance will be crucial 
in the implementation and auditing of any other 
recommended measure. Inspections could also prove 
critical, to avoid faults resulting from a lack of 
communication among involved actors. During the early 
phases of the project, inspections could be executed with 
virtual and augmented reality, supported by AI. This could 
prove especially valuable in the earliest phases, as concepts, 
design, and plans appear the most distant in these stages. 
Such environments can also be used during later phases, 
provided the digital twin is updated throughout the project. 
This could reduce, or even eliminate, the need for physical 
inspections on site, as could the use of autonomous robots, 
computer vision, and sensors.   

Functional layout planning of a construction site can 
increase efficiency and decrease faults, and can be achieved 
in numerous ways: defining areas for deliveries; 
establishing functional production lines for certain 
processes and activities; planning according to the 
availability of waste stations and containers; and planning 

according to the area covered by cranes. Layout planning 
should be powered by the use of generative design.   

Increased use of digital tools to order more accurate 
quantities of materials is especially relevant for such waste 
fractions as wood and plaster and should be implemented 
as part of the concept design (3). These fractions are 
dictated by the design and architectural choices, to a greater 
extent than fractions like plastic. This measure, once again, 
depends on the continuous revision and availability of the 
digital twin. By marking orders and materials arriving on 
site according to the digital twin, waste could, potentially, 
be reduced even more drastically. Marking could, for 
example, be performed using barcodes, perhaps in 
collaboration with relevant suppliers. Such a system could 
be built upon a set of ES or RBS. 

Several interviewees highlighted the potential of certain 
design choices during the early phases of project 
development. This is supported by the literature (Innes, 
2004; Zero Waste Scotland, 2016). One approach would be 
to design for standardised elements, in which the building 
itself is designed to fit standard sizes of materials, such as 
given lengths of wood, or given areas of plasterboards. 
Another approach would be to design for the use of cut-offs, 
in which the possibility to use cut-offs produced on site is 
examined in the design phase. A third approach would be 
to design for shared geometry, in which several areas or 
sections of buildings are designed according to the same 
geometrical properties; this could even reduce the risk of 
wrongly manufacturing materials and elements, even 
further decreasing the amount of waste produced. These 
design approaches are especially relevant for such fractions 
as wood and plaster, as these materials are often delivered 
in standard sizes.  

Table 3. Recommendations for implementation of waste reduction measures. 

# Recommended measures for waste reduction Technique Phase 

1 Early and explicit definition of appropriate targets for waste reduction ML (regression) 4 

2 Early and explicit plan for resource optimisation 
ML (ANN),  

EA (GA) 4 

3 Continuous tracking of waste quantities 

ML (ANN) 5 (3,4) 4 Continuous reporting of waste quantities  

5 Continuous and visual presentation of waste quantities on site 

6 Defining routines for warehousing on site  ML (ANN),  
EA (GA) 

4,5 
7 Defining routines for ordering materials 

8 Training of all involved personnel  ML 3,4 

9 Contractual arrangements based on bonus-malus ML (regression) 3 

10 Establishing a digital platform for all actors in the project  
ES (RBS) 1,2,3,4,5 

11 Establishing a digital platform for experience-sharing   

12 Inspections during all production phases  ML (ANN),  
EA (GA) 

5 
13 Layout planning during all production phases 

14 Increased use of digital tools for ordering more accurate quantities of materials  
ES (RBS) 5 

15 Marking orders and materials arriving on site  

16 Design for standardised elements 

EA (GA) 2 17 Design for the use of cut-offs 

18 Design for shared geometry 
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According to interviewees, generative design has 
proven efficient in the design phase. The field of design 
seems to be of particular interest, both among academics 
and practitioners. The traditional design process is 
described by the informants as linear, reliable, and robust 
but with several drawbacks; for practitioners, one of the 
more obvious shortcomings is the use of cost and time 
resources.  

A few interviewees suggested that time pressure in early 
project phases is problematic, as this often forces a project 
team to make decisions based on relatively little 
information. In this regard, techniques based on AI would 
be especially helpful, as, given the necessary input, they can 
swiftly generate hundreds of possible solutions. Some 
suggest that this could also help avoid certain late design 
changes that traditionally follow shifts in user demands. 
Decisions on the design of a building itself should be 
implemented as soon as all necessary information is 
available; this will naturally vary among individual projects, 
but concept development (2) could provide a basis.  

Table 3 summarises the 18 recommended measures and 
their implementation. The recommended phases are 
numbered as per the framework in Fig. 2. Because most 
complete AI techniques and tools would comprise more 
than one form of AI and thus be hybrid models, the 
dominant system or technique is denoted.  

An important topic of discussion when considering 
waste reduction is the definition of system boundaries for 
the analysis; for example, if the waste production is to be 
assessed for each project, or as a part of a bigger system and 
cycle. For a given analysis, certain measures will yield 
benefits depending on the system boundaries chosen for 
analysis. Such measures may reduce the amount of waste 
reduced on site, but not necessarily do so from a holistic 
perspective. One such measure is an increased degree of 
waste sorting on site, which will, naturally, reduce the 
amount of mixed waste, but not necessarily contribute to 
reducing the total amount of waste in the project. It will 
enable an increased degree of recycling, the second to last 
level in the waste hierarchy. Other examples include 
returning packaging to the respective suppliers following 
deliveries, and the increased use of prefabricated and pre-
cut elements. The volumes of waste fractions such as timber 
and plaster will benefit from such on-site measures, but the 
waste will simply be moved elsewhere – even if the 
evidence suggests that the total amounts of waste will be 
reduced compared to production by more traditional 
methods.  

Initially, the implementation of new measures and 
technology will require an investment cost. However, the 
consensus is that the savings provided by the same 
measures and techniques will exceed the costs within a 
relatively short timeframe. Implementation of such 
measures should be based on the assessment of expected 
benefits for each project. 

5. Conclusion 

The purpose of this study was to examine how AI can 
reduce waste on construction sites. The recommendations 
provide a practical approach to reducing waste, 
complementing the existing body of more theoretically 
based assessments. Through a broad research design based 
on analysis of existing literature, waste data, and 
involvement of actors from multiple parts of the value chain, 

the study identifies 18 recommended measures, presented 
in Table 3, for construction site waste reduction.  

Benefits regarding increased sustainability are expected. 
A decreased carbon footprint, and decreased consumption 
of resources, are direct consequences of reducing waste on 
site. To accurately assess and understand the benefits 
associated with specific measures or combinations thereof, 
a mapping of actual implementation is recommended.  

The increased use of AI in construction projects will 
require investment, especially during the early phases of 
implementation and introduction. As the cost of data 
processing continues to decrease and interest within the 
field continues to increase – bringing more available and 
commercialised solutions – it is reasonable to assume the 
cost will decrease dramatically.  

The findings suggest that to fully utilise the potential of 
AI-based techniques, the construction industry would need 
to build upon existing methodologies and strategies; 
however, it would need to eventually reinvent and redefine 
the most traditional project models, contracts, business 
models, and enterprises. This is a comprehensive task and 
should involve key actors in all parts of the value chain. 
Another useful undertaking would be to study in closer 
detail how data of sufficient quantity and quality should be 
collected and structured to enable AI to efficiently utilise it.  

A valuable option for further work could be to examine 
the implications that identified measures will have for other 
actors: for example, how certain design choices may affect 
other architectural principles and solutions. Another 
extension of the theoretical approach of this study could be 
a case study to further investigate the identified measures 
and test them in practice. Finally, the measures for certain 
processes or activities could also be selected for testing, 
providing an opportunity to vet any effects of each measure 
– or combinations of measures – before the measures are 
implemented on a larger scale.  

6. Acknowledgements 

The authors would like to thank Professor Nils Olsson at 
the Norwegian University of Science and Technology for 
support during this research. The authors are also grateful 
for the support provided by personnel from Skanska Norge 
and Construction City Cluster.   

References 

Abbasi, M. and Hanandeh, A. E. (2016). Forecasting 
municipal solid waste generation using artificial 
intelligence modelling approaches. Waste Management. 
56, 13-22. DOI: 10.1016/j.wasman.2016.05.018  

Adio-Moses, D. and Asaolu, O. S. (2016). Artificial 
Intelligence for Sustainable Development of 
Intelligence Buildings. 9th cidb Postgraduate 
Conference.   

Akinade, O. O. (2017). BIM-based software for 
construction waste analytics using artificial 
intelligence hybrid models. Doctoral thesis. University 
of the West of England.  

Ali, T. H., Akhund, M. A., Memon, N. A., Memon, A. H., 
Imad, H. U., and Khahro, S. H. (2019) Application of 
Artificial Intelligence in Construction Waste 
Management. 8th International Conference on 
Industrial Technology and Management, 50-55.  

Avfall Norge (2016). Avfalls- og gjenvinningsbransjens 
veikart for sirkulærøkonomi (The waste and recycling 

Journal of Engineering, Project, and Production Management, 2022, 12(3), 239-249 

Utilising Artificial Intelligence in Construction Site Waste Reduction    247 



 

roadmap to circular economy). Report. Retrieved from 
https://s3-eu-west-1.amazonaws.com/avfall-norge-
no/dokumenter/2016-XX-Avfalls-og-
gjenvinningsbransjens-veikart-for-en-sirkulaer-
okonomi_2021-01-25-
211229.pdf?mtime=20210125221229&focal=none on 
August 17, 2019. 

Azizi, N. Z. M., Abidin, N. Z., Raofuddin, A. (2015). 
Identification of soft cost elements in green projects: 
exploring expert’s experience. Procedia—Social and 
Behavioural Sciences. 170. 18-26. 
DOI:10.1016/j.sbspro.2015.01.009. 

Becqué, R., Mackres, E., Layke, J., Aden, N., Liu, S., 
Managan, K., Nesler, C., Mazur-Stommen, S., 
Petrichenko, K., and Graham, P. (2016). Accelerating 
Building Efficiency. Eight Actions for Urban Leaders. 
World Resources Institute: WRI Ross Center for 
Sustainable Cities. 

Bygg21. (2015). Veileder for fasenormen ‘Neste Steg’. Et 
felles rammeverk for norske byggeprosesser (Guide for 
the phase norm ‘Next Step’. A common framework for 
Norwegian construction processes).  

Charef, R., Alaka, H. and Emmitt, S. (2018). Beyond the 
third dimension of BIM: A systematic review of 
literature and assessment of professional views. 
Journal of Building Engineering. 19(1), 242-257. DOI: 
10.1016/j.jobe.2018.04.028   

Cheng, S., Chan, C. W., and Huang, G. H. (2003). An 
integrated multi-criteria decision analysis and inexact 
mixed integer linear programming approach for solid 
waste management. Engineering Applications of 
Artificial Intelligence. 16(5-6), 543-553. DOI: 
10.1016/S0952-1976(03)00069-1  

Dasgupta, D. and Michalewicz, Z. (2013). Evolutionary 
algorithms in engineering applications. Springer: 
Berlin.  

Dalland, O. (2012). Metode og oppgaveskriving (Method 
and assignment writing).  Oslo: Gyldendal akademisk. 

Denzin, N. K. (2012). The logic of naturalistic inquiry. 
Sociological methods: a sourcebook. Second edition. 
New York: McGraw-Hill.   

Global Alliance for Buildings and Construction (2017) 
Global Status Report 2017. UN Environment and 
International Energy Agency. ISBN: 978-92-807-
3686-1 

Haaskjold, H., Andersen, B., and Langlo, J. A. (2020). In 
search of Empirical Evidence for the Relationship 
Between Collaboration and Project Performance. The 
Journal of Modern Project Management. 22(7).  

Hjellnes Consult (2015). Plukkanalyser av 
restavfallskontainere fra byggeplasser (Analysis of 
mixed waste containers on construction sites). 

Holme, I. M. and Solvang, B. K. (1996). Metodevalg og 
metodebruk (Method selection and method use). Otta: 
Tano. 

Innes, S. (2004). Developing tools for designing out waste 
pre-site and on-site. Proceedings of Minimising 
Construction Waste Conference: Developing Resource 
Efficiency and Waste Minimisation in Design and 
Construction. DOI: 10.1016/j.sbspro.2012.03.158  

Johannessen, A., Tufte, P. A., and Christoffersen, L. 
(2016). Introduksjon til samfunnsvitenskapelig metode 
(Introduction to social science method). Fifth edition. 
Oslo: Abstrakt forlag. 

Kartam, N., Al-Mutairi, N., Al-Ghusain, I., and Al-
Humoud, J. (2004). Environmental management of 
construction and demolition waste in Kuwait. Waste 

Management. 24(10): 1049-1059. DOI: 
10.1016/j.wasman.2004.06.003 

Koskela, L. J., Ballard, G., Howell, G., and Tommelein, I. 
(2002). The foundations of lean construction. Design 
and Construction: Building in Value. 211-226. 

Love, P. E. D., Holt, G. D. and Li, H. (2002). Triangulation 
in construction management research. Engineering, 
Construction, and Architectural Management. 9(4). 
294-303. DOI: 10.1108/eb021224 

McKnight, M. (2017). Generative Design: What it is? How 
is it Being Used? DesTech Conference Proceedings. 
259-261. DOI: 10.18502/keg.v2i2.612 

Mejlænder-Larsen Ø. The use of project execution models 
and BIM in oil and gas projects: searching for relevant 
improvements for construction. Doctoral thesis. Norges 
teknisk-naturvitenskapelige universitet.  

Moen, J. R. (2017). Article: Avfallsfrie byggeplasser 
(Waste-free construction sites). Retrieved from 
http://www.bygg.no/article/1325023 on June 20, 2019.  

NHP Network. Nettverk for gjennomføring av Nasjonal 
handlingsplan for bygg- og anleggsavfall (Network for 
National Action Plan implementation for construction 
and demolition waste) (2016) Avfallshåndtering på 
byggeplass (Waste Management on Construction Site) 

Norsk Gjenvinning (c. 2018). Grønt Ansvar. Retrieved 
from 
https://www.norskgjenvinning.no/bedrift/pakkeloesni
nger/groent-ansvar/ on July 7, 2019.  

Nordby, A. S. and Wærner, E. R. (2017). Hvordan 
planlegge for mindre avfall. En veileder for å redusere 
avfallsgenerering i byggeprosjekter. 

New South Wales Environment Protection Authority 
(NSW EPA) (2014). EPA Waste Delivery Plan. 
Retrieved from https://www.epa.nsw.gov.au/-
/media/epa/corporate-
site/resources/wastestrategy/140876-warr-strategy-14-
21.pdf on February 22, 2022. 

Olerud, K. (2019). Grønt skifte. Store norske leksikon. 
Retrieved from https://snl.no/gr%C3%B8nt_skifte on 
September 15, 2019. 

Osmani, M. (2011). Waste. A Handbook for Management. 
Chapter 15. Construction Waste. DOI: 10.1016/B978-
0-12-381475-3.10015-4 

Osmani, M. (2012). Construction waste minimization in 
the UK: Current pressures for change and approaches. 
Social and Behavioral Sciences. 40. 37-40. DOI: 
10.1016/j.sbspro.2012.03.158 

RIBA Architecture. (2020). RIBA Plan of Work 2020 
Overview. RIBA: London.  

Russel, S. J. and Norvig, P. (2010) Artificial Intelligence. 
A modern approach. Third edition. Upper Saddle River, 
New Jersey: Pearson Education.  

Rønningen, O. (2000) Bygg- og anleggsavfall. Avfall fra 
nybygging, rehabilitering og rivning. Resultater og 
metoder. (Construction waste. Waste from new 
buildings, rehabilitation and demolition. Results and 
methods). Statistisk Sentralbyrå (Statistics Norway): 
Oslo.  

Skoyles, E. R. and Skoyles, J. R. (1987) Waste prevention 
on site. Mitchell: London.  

Sowa, J. F. (2000) Knowledge representation. First edition. 
Pacific Grove: Brooks.  

SSB. (2019). Avfall fra byggeaktivitet (Waste from 
construction activities). Retrieved from 
https://www.ssb.no/avfbygganl on June 14, 2019.  

Journal of Engineering, Project, and Production Management, 2022, 12(3), 239-249 

248    Bang, S. and Andersen, B. 



 

Sørnes, K., Nordby, A. S., Fjeldheim, H., Hashem, S. M. 
B, Mysen, M., and Schlanbusch R. D. (2014). 
Anbefalinger ved ombruk av byggematerialer. 

Tam C. M., Tam V. W. Y., Chan J. K. W., and Ng W. C. 
Y. (2005). Prefabrication to minimise construction 
waste—a case study approach. International Journal of 
Construction Management. 5(1): 19-101. 
doi:10.1080/15623599.2005.10773069. 

Teo, M. M. and Loosemore, M. (2001). A theory of waste 
behaviour in the construction industry. Construction 
Management and Economics. 19(7), 741-751. DOI: 
10.1080/01446190110067037  

Thaagard, T. (2013) Systematikk og innlevelse. En 
innføring i kvalitativ metode. (Systematics and 
empathy. An introduction to qualitative method). 
Fourth Edition. Fagbokforlaget: Bergen.   

Tidemann, A. (2019). Maskinlæring (Machine Learning). 
Retrieved from https://snl.no/maskinl%C3%A6ring on 
February 18, 2020. 

Tjora, A. (2017). Kvalitative forskningsmetoder i praksis 
(Qualitative research mehods in practice). 3rd edition. 
Oslo: Gyldendal Akademisk. 

United Nations. (2021). The Sustainable Development 
Goals Report 2021.  

Womack, J. P., Jones, D. T., and Roos, D. (1991). The 
Machine that Changed the World: The Story of Lean 
Production. New York: MacMillan Publishing. 

Zero Waste Scotland (2016) Designing out Construction 
Waste. Report. European Regional Development Fund. 
Retrieved from 
https://www.zerowastescotland.org.uk/sites/default/fil
es/Designing%20Out%20Construction%20Waste%20
Guide_0.pdf on February 22, 2022. 

 
Sofie Bang is a Ph.D. Candidate at the 
Norwegian University of Science and 
Technology. The Ph.D. is conducted 
in collaboration with Construction 
City Cluster and explores and maps 
the opportunities, challenges, and 
future outlooks associated with the 
increased use of artificial intelligence 
in construction projects. Bang holds 
an MSc in Mechanical Engineering, 

with a specialisation in Project and Quality management. 
Her research interests include artificial intelligence, 
construction, project management, and sustainability. 
 

Bjørn Andersen is a professor of 
quality and project management at the 
Norwegian University of Technology 
and Science. He has authored/co-
authored around 20 books and 
numerous papers for international 
journals and conferences, in total 
more than 300 publications. He has 
managed and been involved in several 
national and international research 

and implementation projects. He serves as Director of 
Project Norway, is an Academic in the International 
Academy of Quality, is co-editor of the journal Production 
Planning & Control and reviewer for several other journals 
and conferences and directs the NTNU master program in 
mechanical engineering. 
 
 

 

Journal of Engineering, Project, and Production Management, 2022, 12(3), 239-249 

Utilising Artificial Intelligence in Construction Site Waste Reduction    249 





 

Appendix III 

 

 

 

Paper III 

 

 

 

«Application of Machine Learning to Limited Datasets: Prediction of Project Success» 

 

 

 

Published in: Journal of Information Technology in Construction 

ISSN: 1874-4753 

 

 





 
www.itcon.org - Journal of Information Technology in Construction - ISSN 1874-4753 

 

 
ITcon Vol. 27 (2022), Bang et al., pg. 732 

APPLICATION OF MACHINE LEARNING TO LIMITED DATASETS: 
PREDICTION OF PROJECT SUCCESS 

SUBMITTED: February 2022 

REVISED: June 2022 

PUBLISHED: July 2022 

EDITOR: Žiga Turk 

DOI: 10.36680/j.itcon.2022.036 

Sofie Bang, PhD Candidate, 

Norwegian University of Science and Technology (NTNU); 

sofie.bang@ntnu.no (corresponding author)  

Magnus O. Aarvold, Researcher,  

Norwegian University of Science and Technology (NTNU) 

Wilhelm J. Hartvig, Researcher,  

Norwegian University of Science and Technology (NTNU) 

Nils O. E. Olsson, Professor,   

Norwegian University of Science and Technology (NTNU) 

Antoine Rauzy, Professor,  

Norwegian University of Science and Technology (NTNU) 

SUMMARY: Much research is conducted on the importance of success factors. This study contributes to the 

body of knowledge by using artificial intelligence (AI), specifically machine learning (ML), to analyse success 

factors through data from construction projects. Previously conducted studies have explored the use of AI to 

predict project success and identify important success factors in projects; however, to the extent of the authors’ 

knowledge, no studies have implemented the same method as this study. This study conducts quantitative 

analysis on a sample of 160 Norwegian construction projects, with data obtained from a detailed questionnaire 

delivered to relevant project team members. The method utilises ML through a Random Forest Classifier (RFC). 

The findings obtained from the analysis show that it is possible to use AI and ML on a limited dataset. 

Furthermore, the findings show that it is possible to identify the most important success factors for the projects 

in question with the developed model. The findings suggest that a group of selected processes is more important 

than others to achieve success. The identified success factors support the theoretically acknowledged importance 

of thorough and early planning and analysis, complexity throughout the project, leadership involvement, and 

processes supporting project success. 
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1. INTRODUCTION  

Over the recent years, AI has made a significant impact in the industries where it is applied; including 

manufacturing (Lee et al., 2018), energy (Sozontov, Ivanova and Gibadullin, 2019), agriculture (Misra et al., 

2020), and petroleum (Rahmanifard and Plaksina, 2019), among others. The construction industry has 

increasingly applied new technology to digitise and digitalise the workflow but remains in a nascent stage 

(Oliver Wyman, 2018). This study explores how AI can be utilised to analyse a selection of project data to 

identify important success factors in a project and addresses the following two research questions: 

• RQ1: How can AI, specifically ML, be applied to analyse limited datasets from project evaluations?  

• RQ2: Based on such an analysis, what are the most important factors for project success?  

 Project success is fundamental to the competitiveness of a company. Multiple definitions of project 

success exist, and there are different types of success within one project (Hussein, 2016). Despite the potential 

that is demonstrated to lie within AI, evidence shows that the construction industry lags behind other sectors, 

both in terms of productivity and the adoption of new technology (McKinsey Global Institute, 2017). New 

technology and tools, along with new areas of applications are constantly delivered to the market, and AI-based 

technology has recently regained momentum (Loureiro, Guerreiro and Tussyadiah, 2020). The industry operates 

with small margins, and the need to implement new, smart technology to accommodate the market is recognised 

(Deloitte AI Institute, 2020). Research suggests that technology and areas of applications becoming more 

common could contribute to the adoption in the industry, as well as increased digital maturity (Cubric, 2020). 

Success factors relate to different aspects of a project - certain success factors relate to organisational 

complexity, others to the experience level of the project manager, coordination, or productivity (Chua et al., 

1997; dos Santos et al., 2019). 

Both academics and practitioners are exploring the use of AI to predict project success and identify critical 

success factors. Several techniques are utilised in previous (Magaña and Fernández Rodríguez, 2015) including 

neural networks (Chua et al., 1997; Wang, Yu and Chan, 2012) and regression analysis (Dvir et al., 2006).The 

body of knowledge on project success and the use of AI in the construction industry is growing. This study will 

build on the existing body of knowledge to explore the application of ML to a limited dataset and how it can be 

used to identify critical success factors. 

The paper is divided into the following sections. First, the theoretical framework is presented, covering relevant 

aspects of the three topics of project management, project success and AI in construction. The following section 

describes the methodology of the study, including an analysis of the utilised dataset, insights, cleaning, splitting 

of data, and ultimately implementation of ML. Subsequently, the findings are presented, followed by a 

discussion of the model itself and its findings. Limitations of the study are evaluated, and suggestions for further 

research are presented. The last section concludes with an assessment of all previous sections. 

2. THEORY  

2.1 Project Management  

A Guide to the Project Management Body of Knowledge (PMBOK) defines a series of knowledge areas that 

should be inherent in a project (Project Management Institute, 2017): the management of integration, scope, 

time, cost, quality, human resources, communication, risk, procurement, and stakeholders. Hwang and Ng (2012) 

identify schedule management and planning, cost management, quality management, human resources 

management, and communication management as the most important areas. At the same time, the field is 

constantly developing, and the knowledge requirements for project managers are changing with it, along with 

fundamental roles and functions in the project team (Russel, Jaelskis and Lawrence, 1997; Edum-Fotwe and 

McCaffer, 2000). A shift can be seen from the traditional responsibility of technical content of the project, the 

reliability of the facility and within-cost performance to include additional responsibility in non-engineering 

knowledge to meet expectations and demands for professionalism and expertise. 

The majority of projects experience cost and time overruns to some extent, despite the availability of project 

control techniques and the increased utilisation of digital tools (KPMG, 2015; Project Management Institute, 

2018). A report from McKinsey Global Institute (2017) indicates that the rate of productivity in the construction 
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industry has been stagnant and thus remained at the same level for decades. Nationally, the Norwegian 

construction industry has seen a 10% decrease in productivity from 2000 to 2016, whereas the total productivity 

in mainland Norway has increased by 30% in the same period (Todsen, 2018). This evidence supports the need 

to elevate the efficiency of these sectors, and research suggests the field and the industry is ready for disruption 

(Agarwal et al., 2016; Assaad, El-Adaway and Abotaleb, 2020). 

Increased digitalisation and introductions of new technology are already making waves in the industry (Vikan, 

2018; Brekkhus, 2017). Adapting to new conditions and circumstances is crucial to maintaining a lasting and 

sustainable industry. 

2.2 Project Success  

According to Ika (2009), the research on project success can be divided into project success criteria or critical 

success factors (CSFs). The findings suggest that the definition of project success has evolved. Definitions have 

traditionally been based on the iron triangle, including time, cost, and quality. Later definitions are seen to 

include more dimensions of the projects, such as their relation to stakeholders, project team, and end-user, as 

well as strategic objectives. 

Hussein (2016) suggests a difference between the factors necessary to achieve project management success, 

project success, and long-term strategic success. The same distinction between project management success and 

strategic success seems to be supported by the literature in general, among others, Samset and Volden (2016). 

Project management success is generally seen to relate to the fulfilment of project objectives (de Wit, 1988) and 

traditional measurements of time, cost, and quality (Radujkovic and Sjekavica, 2017). These are easily 

quantifiable. Therefore, project management success (hereby referred to as ‘project success’) constitutes the 

foundation for this study. 

A success factor is, by definition, a condition, event, or circumstance that contributes to project success. Certain 

success factors are attributed to specific project characteristics (Hussein, 2016); for instance, if there is 

organisational complexity in the project structure, the project will need (1) a good flow of information, (2) clear 

roles and responsibilities, and (3) project manager authority in order to achieve success. Chua et al. (1997) 

identified eight significant success factors for predicting success, in descending order of significance: 

• Number of organisational levels between project manager and craftsmen 

• Percentage of the detailed design completed at construction start  

• Frequency of control meetings during the construction phase  

• Number of budget updates per year  

• Implementation of constructability program  

• Project-team-turnover rate  

• Control system budget  

• Project manager’s technical experience in a project with similar technology 

2.3 AI in Projects  

The concept of AI has been around for decades (Russell and Norvig, 2003), often associated with science fiction 

and human-like robots; this has created an inaccurate picture of what AI is. Numerous definitions exist, recent 

ones including ‘the science and engineering of making intelligent machines’ (ScienceDaily, 2020) and ‘the field 

of computer science dedicated to solving cognitive problems commonly associated with human intelligence, 

such as learning, problem-solving and pattern recognition (Marr, 2020). The field experienced a renaissance 

around 2000 and has since sparked the debate on whether the increased interest is a ‘hype’ or a necessary step 

for businesses to maintain a competitive advantage (Walch, 2020). In the construction context, AI systems can 

be grouped into four categories: machine learning, knowledge-based systems, evolutionary algorithms and 

hybrid systems (Akinade, 2017). 

Automated project management (APM) is the automation of software development tasks, typically organised as 

software projects (Campbell and Terwilliger, 1986). In general terms, APM contains all approaches for 
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automating project management tasks and activities (Auth, Jokisch and Dürk, 2019). The expectations of what 

AI can do still exceed the current possibilities that lie within the technology, and the broad and dynamic field of 

tasks of a project manager can currently only be automated in limited, clearly defined areas. Niu et al. (2019) 

highlight the potential of using AI for project managers to be more accurate, precise, and swift, and argue that 

smart construction objects can be effective tools for data collection, information processing, and decision 

support. In addition to characteristics that differ between individual projects, such as planning and reporting, the 

project manager relies on knowledge from previous projects. This information can be categorised as tacit 

knowledge. To utilise such knowledge in an AI context, the information contained needs to be made explicit. 

Kowalski et al. (2012) explore the use of AI as a tool for decision-making with input of know-how in the form of 

natural language. 

Among the major challenges seen in overrun construction projects is delay risk, the time overrun from the date 

agreed upon for delivery (Assaf and Al-Hejji, 2005). Yaseen, Salih and Al-Ansari (2005) analysed prediction of 

risk delay using a hybrid AI model, using genetic algorithms and a Random Forest model. The model was 

proved to handle the nonlinearity and complexity of data used and demonstrated that such models can be utilised 

in the construction industry. Another demonstration is provided by Worldsensing (2020), connecting civil 

infrastructures to the Internet of Things (IoT) to continuously monitor assets and analyse risks. Project managers 

and decision-makers can receive insights into local operations, track relevant key indicators and use gathered 

information for analyses. Ultimately, these insights can be used to detect anomalies or anticipate needs. GHD 

(2020) has successfully applied ML on information collected from projects, to provide a dashboard of key 

measures for the project manager. 

3. MATERIALS AND METHODS  

This study is based upon a quantitative analysis of data obtained from construction projects, through the tool CII 

10-10. The database is built through the project team members’ submission of a questionnaire after chosen 

project phases. The theoretical framework presented in the previous section formed the basis for the preparation 

of the dataset, to ensure that no data was lost in the process.  

The dataset was then loaded into a Python script, where the libraries Pandas, SKLearn, and NumPy were used. 

When a dataset is loaded into Pandas, it is called a data frame (DF). Figure 1 illustrates the steps of the analysis. 

First, the original dataset is processed through an exploratory data analysis (EDA) and preliminary cleaning, 

resulting in an initial DF. This DF is then split into nine purposed DFs before the next steps are carried out in 

order: main cleaning, labelling, train-test split, scale, train and fit, classification, and lastly analysis and plot of 

the results. 

FIG. 1: Flow chart of the utilised methods in this study.  

3.1 Dataset  

The model was built on data from the CII Nordic 10-10 database. CII 10-10 is a tool for project benchmarking to 

develop and enhance processes continuously. It is developed and provided by the Construction Industry Institute 

at the University of Texas and has later been translated to fit the Norwegian construction industry, resulting in 

the Nordic 10-10 initiative. The tool provides the users with a report that evaluates their project and compares it 

to relevant projects in the database (Nordic 10-10, 2020). It is ultimately providing a report serving as a 

foundation for further discussion and improvements, for individual projects, and for the organisation as a whole. 

It has been proven that participating companies perform better than the industry average (Prosjekt Norge, 2017). 

The questionnaire used to obtain the data constituting the 10-10 datasets is upon input specified by sector 
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(construction, industry, or infrastructure) and project phase (phases 0 through 4). Consequently, some data points 

are only relevant to certain sectors or phases. To maximise the number of useful columns within each DF, it was 

decided to split up the DF. 

The 10-10 dataset contains several different features, including the four categories of General descriptive data 

(G), Output ratings (O), Question scores (Q), and Project ratings (I). The Q-attributes are distinct, and closely 

related to the project sector and phase. Furthermore, they are divided into two categories, those under 40 and 

those over 100. The sub-40 questions are binary, while the above 100 questions are ranked on a scale from 1 to 

5. For each given Q-attribute, they may only relate to one specific sector or phase. However, as there is more 

than one respondent for each project, the sub-40 Q-attributes will appear in the database as the average of the 

respondents’ answers, resulting in a scale from 0 to 1. 

3.2 Exploratory Data Analysis  

A preliminary EDA confirms that the sample of projects comes from three sectors: construction, industry, and 

infrastructure. The EDA also shows that there were only two projects registered from the industry sector, 

illustrated in Figure 2(a). This is not enough data points for a meaningful analysis, and the projects contained in 

the category will consequently be discarded. What remains is the distribution of the remaining 160 projects and 

their phases, illustrated in Figure 2(b). 

FIG. 2: Count plots, aggregated on sector and phase.  

3.3 Preliminary Cleaning  

Algorithms for ML only appraise information as numbers. Consequently, columns and rows with a high 

percentage of missing data must be discarded. The dataset contains nominal numbering, for instance, the number 

corresponding to the respective phase and sector. In the original dataset, the construction sector is assigned the 

value ‘0’ and the infrastructure sector is assigned the value ‘2’ in the column called ‘G1_Project-Category’. To 

avoid the inherent sense of scale, being that ‘2’ is bigger than ‘0’, dummy variables were introduced. The 

mentioned column would be split, where all projects originally assigned ‘0’ would be assigned ‘1’ in a new 

column called ‘G1_Construction’; correspondingly, the projects originally assigned ‘2’ would be assigned ‘1’ in 

a column called ‘G1_Infrastructure’. This procedure is illustrated in Figure 3.  

 

FIG. 3: Illustration of one-hot-encoding. 

The two new columns will contain the same information, only in reverse. This allows for deleting the second of 

the two columns, while keeping the information contained; this process is called one-hot-encoding. The same 
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procedure is done on the columns corresponding to the phases of the project. As a part of the preliminary 

cleaning, a few columns were discarded for further analysis, this included columns with a particularly high 

percentage of missing data, columns containing nominal data types, or deemed irrelevant for the analysis. 

3.4 Splitting  

The dataset was split between sectors and phases. More precisely, the split first made a copy of the sector DF 

and split it into each of the project phases. This way, it was not necessary to fill in the missing values, not 

available (NA) or not a number (NaN). This produced 12 DFs, one for each sector, and one for each of the five 

phases of each sector. The process is illustrated in Figure 4. 

 

FIG. 4: Splitting and storing of the dataset illustrated. 

Subsequently, various combinations of the DFs were evaluated. For instance, one combination was that the same 

phase from different sectors was joined together, or that phases 1 and 3 within a sector were combined. To keep 

a low number of DF and sort out the least relevant, only some combinations were further assessed. For example, 

if a DF had too few projects, or only successes or failures, they were discarded. 

3.5 Main Cleaning  

Several values were still missing in the DFs, and the next step consisted of investigating the percentage of 

missing values in each column of each sub-DF. It became apparent that some DFs had one projects missing a 

substantial number of columns, ultimately polluting the whole DF. A clean DF is one where all cells of the table 

are filled with legal values. If one cell is missing, the cell can be filled or the whole row or column can be 

removed. Three options were considered. Firstly, discarding the occurrence that polluted the columns; secondly, 

discarding the polluted columns; thirdly, filling the gap with an educated guess for the missing value. The third 

option was undesirable, as it would mean to temper with the datapoint on a limited foundation. Since a big 

number of different DFs were to be generated from the dataset, the second option was chosen for this model. 

Then, a function was made to look for columns where all entries were of the same value. These columns would 

have provided no value to the estimator; thus, analysing these would mean wasting processing power and time. 

Therefore, if the function found one or more of these columns, it would remove these from the DF. The model 

approach to outliers is particularly important, especially for outliers classified as failures. The outliers represent 

projects that have gone far beyond budget or estimated time. 

3.6 Defining Success and Labelling  

A scoring system was established. Since project success is being predicted and evaluated, this feature must be 

explicitly quantified. The theoretical framework suggests that project success as defined in this study is three-
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fold and based upon the three dimensions of ‘the iron triangle’: time, budget and quality, or specifications. The 

dimensions reflect whether the project is delivered within the set time frame, and similarly within the set budget 

and agreed-upon project specifications. The time and cost dimensions are well documented in the 10-10 dataset, 

in the columns O_01 and O_02 respectively. The values correspond to the percentage increase in cost and time 

for the given project, summarised in Equations 1 and 2 respectively. 

 

[1] 

 

[2] 

 

The resulting output columns will be positive if the real value succeeds the estimated value, and negative 

otherwise. To quantify the specifications, and whether they were met, the column in the dataset ‘Q149’ was 

used. This column reflects the level of customer satisfaction regarding the deliveries of the specified phase on a 

scale from 1 to 5, as submitted by the questionnaire respondents. This feature was chosen based on the PMI 

definition of quality, which sees quality as ‘how the inherent characteristics actually fulfil the set requirements, 

and to which degree this occurs’ (Project Management Institute, 2017). Customer satisfaction is related to 

meeting specifications; however, it is not necessarily equivalent, as there could exist scenarios where the 

customer fails to specify exactly what they need.  

The dataset also contains a feature labelled ‘I7_Pr’, in the CII system denoted ‘Quality’, which is deducted from 

other available features. However, the resulting ‘Quality’ feature is a conglomeration and can therefore be seen 

as less precise than the ‘Q149’, as different projects might utilise different combinations of features to determine 

the ‘I7_Pr’, even within the same sector and phase. The reason for this choice is further elaborated on in Section 

3.7.  

To make the scoring of the customer satisfaction compatible with the other two dimensions, the scoring had to be 

standardised. Therefore, the mean of the column was subtracted from each row, and then divided by the 

maximum score, which was 5. Equation 3 was used for all rows, in which i represents a single row. 

 

[3] 

 

The next step was to decide how the three dimensions should be combined to reflect project management 

success. Three solutions were considered, labelled A, A_fillNA and B. 

3.6.1 Project success definition – Solution A  

Solution A would quite simply be a summation of the three dimensions. The values of the three dimensions 

would at this point be of the same magnitude and could therefore be summated. However, positive values of the 

first two dimensions would negatively impact project success, as they reflect overruns in time and cost. The 

summation approach stems from the idea that if a project lasted 15% longer than estimated, and the cost was 

15% less than estimated, the deviations would cancel each other out. Since positive cost and time dimensions 

imply longer and more costly projects than estimated, these were summed as a negative value. If the value for 

customer satisfaction was high, i.e., a value above 3 on the scale from 1 to 5, a good score would be positive 

after standardisation. Therefore, for the quality dimension, the value was kept positive for the summation. 

Solution A is illustrated in Equation 4.  

 

[4] 

 



 

 

 
ITcon Vol. 27 (2022), Bang et al., pg. 739 

The next step would be to make the score binary. If the score was higher than 0, the binary score would become 

1. Otherwise, it would become 0. A weakness of this method lies within the fact that if one of these features were 

missing from the dataset, the summation would become NaN, and thus useless. Consequently, many projects 

would have to be removed if one or more values were missing. One way to combat this would be by the use of 

the ‘fillNa’-function in Pandas. The ‘fillNa’ function replaces the NaN with a value, so the project does not have 

to be discarded. Possible values to replace the NaN with are the overall mean, the mean of similar projects, or 

simply 0. For this examination, the latter was chosen. The ‘fillNa’ was not taken any further in this study but 

constitutes a potential for future studies and research. For this model, another solution was chosen. 

3.6.2 Project success definition – Solution B  

Solution B was classifying the projects through a two out of three (2oo3) voting system. To do this, a function 

that takes in variables for voting had to be implemented. This function took three arguments: a DF, a list of 

wanted columns, and a limit. First, the columns of interest, the three aforementioned dimensions, were located in 

the DF. Second, the function counted the number of not-NaN values in each column. Then, the value of cost and 

time was compared to the limit value. Different values for the limit were tested and the resulting success and 

failure counts of each DF were inspected; ultimately, 0 was chosen as the most objective and balanced limit. 

Successful projects had values equal to or higher than the set value. For the last column, the customer 

satisfaction, the value was compared with the weighted mean, 3. In this column, the successful projects would 

have a value equal to or higher than the resulting limit. The next step was to identify the outliers. To do this, the 

‘empirical two-sigma rule’ was utilised, as illustrated in Equation 5. 

 

[5]  

 

In short, this rule says that an interval containing two standard deviations, σ, away from the mean, µ, covers 

approximately 95% of the distribution. Thus, the confidence interval will be X̄ ± 2 √σ n where n is the sample 

size which yield the average X̄. So, if either the cost or time dimensions value deviated more than 2σ over the 

mean, the project was classified as an ‘outlier - failure’. The second classification was is a 2oo3; if two or more 

of the dimensions have satisfactory values, the project is classified as a success. After this point, the unassigned 

projects either have two or more NaNs, or one NaN; this would lead to a tie. If two or more NaN values were 

found, the project was classified as a ‘2 or more nan’. These projects werediscarded, as they did not provide 

enough data points for a 2oo3 voting system to be implemented. 

Furthermore, if the function found a NaN value, it investigated how to rule the tie. It checked which dimension 

were NaN, and the values of the two remaining dimensions. If the NaN value was customer satisfaction, and the 

remaining two values were of different signs, i.e., ‘+’ and ‘-’ it was classified as a ‘tie - 1v1’. Since this is 

inconclusive, the project was discarded in further analysis. However, if the NaN value was only one of the 

dimensions, the function investigated the other dimension and compared this to the set limit. If the present 

dimension was considered satisfactory, meaning negative or 0, the project was classified as a success. If not, the 

project was classified as a ‘tie - 1v1 - failure’. This classification was regarded as a ‘failure’ later in the function. 

Lastly, if two or more dimensions are higher than the limit, the project will be classified as a ‘failure’. The count 

plots of all the categories are illustrated in Figure 5. 

 
FIG. 5: Before discarding categories ‘2 or more NaN’ and ‘tie - 1v1’. 
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Subsequently, another function inspected the columns produced by solution A, A_fillNA and B. The function 

translated the classifications into a binary system where ‘1’ denotes a successful project and ‘0’ a failed project. 

Binary classification was chosen, as the dataset was small and preliminary analysis using regression yielded less 

than wanted accuracy. Table 1 summarises the count of the remaining projects of each solution. Solution 

A_fillNA and Solution B has the most remaining projects. Figure 6 illustrates this, showing the 41 projects that 

are retained within Solution B, but discarded in Solution A due to NaN values. In a small dataset, every project 

matters, and contributes to providing the model a more stable foundation for training and testing. 

TAB. 1: Labels of the different solutions.  

Solution Success Failure Total 

A 51 30 81 

A_fillNA 75 49 124 

B 68 56 124 

 

FIG. 6: Count plot of the projects that were ‘saved’ by switching to Solution B. 

A confusion matrix (CM) is plotted in Figure 7. The matrix corresponds to a sensitivity analysis where the two 

different solutions of labelling are shown. On one axis, the labels from Solution A are plotted; on the other axis, 

Solution B is plotted. On the main diagonal are the number of projects the two solutions labelled the same. High 

numbers on the diagonal implies that the solutions agree, which strengthens the reliability and validity of the 

models. The top right square (1,2) shows the number of projects that are deemed a success by Solution A, and a 

failure by Solution B; a false positive. The bottom left (2,1) square shows the opposite, false negatives. Solution 

B appears to be stricter than Solution A and Solution A_fillNA. However, this may not be entirely true, as the 

matrix only displays the projects that Solution A actually did label. 

 

FIG. 7: CM of projects labelled by both solutions A and B.  

3.7 Train-Test Split  

Following the preceding steps, the DF was cleaned and ready for further analysis. First, the projects were 

shuffled to remove a possible bias in the original ordering. For the analysis itself, the Python library, SciKit 
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Learn (SKLearn), was utilised. The set of columns describing the DF labels were discarded, because they are 

mutually correlated, including the three success dimension columns, the resulting success column, all columns 

I1-I10 and the four columns on which O_01 (cost) and O_02 (time) are based on. 

Already having a small DF to base the model on, the split between train and test data is of even bigger 

importance. The split process divides the labelled data in two: training and testing. After preliminary testing, an 

80-20 split was chosen. It is desirable to retain as much data as possible to train the model, while leaving the 

model with enough data for testing, and scoring. 

There are more successes than failures in the dataset, making the DF unbalanced - it is therefore necessary to 

stratify the data split. Stratifying ensures that the split of each set is approximately the same as the split of the 

complete set; if the complete set contains 20% of class 0, both the training and test split will have about 20% 

samples of class 0. 

3.8 Estimator  

The choice of an estimator for the model depends on whether the issue at hand is considered a regression or 

classification problem. Determining if a project is a success or not is a classification problem. The argument 

could be made that success is a subjective and continuous characteristic, but this model defines success based on 

the iron triangle, and thus as a binary factor of fail or success. 

3.8.1 Scale, train and fit  

Since the columns of the data set were of different magnitudes, a scaler was used to scale all columns. For this 

model, the MinMaxScaler was utilised. The MinMaxScaler scales all features sequentially, to a number between 

0 and 1. The scaler was fit based on the training set, and subsequently transformed the test set.  

3.8.2 Classification  

For classification, several classifiers were tested, including LinearSVC, KNeighbors Classifier, MLPClassifier 

and Random Forest Classifier (RFC), which was ultimately chosen. A RF model uses multiple decision trees 

(DT) as the base learner. An inherent attribute of a DT is low bias but high variance. However, as the model 

aggregates over several DTs, and proceeds to calculate the mean of the DTs, the input variance decreases. The 

R2 score, the accuracy score, tends to overfit on the training data, yielding a score of 0.90 and higher. It is not 

desirable for the model to overfit, as this reduces the generalising properties of the model. RF is an ensemble 

method, meaning that the overfitting is reduced with a higher number of estimators. In this model, 100 DTs are 

used in each iteration. Additionally, the RFC provides an insight into the attributes of highest importance for the 

model to find the proposed label, increasing the transparency of the model. This enables an investigation of 

importance of the individual attribute, on a scale from 0 to 1. 

In modelling, the simulated results become more accurate to the true result if the model is run a high number of 

times (Schwarz, 2015). It was therefore decided to run Monte Carlo Simulations (MCS) on this classifier. MCS 

introduces randomness to the variables, as well as a high number of iterations to create a nominal distribution of 

results (Oberle, 2015). From this distribution, a mean can be calculated. A higher number of iterations yields 

higher quality in the results, ultimately resulting in a higher quality of the mean. The model iterated 10 000 times 

over each DF. The law of large numbers (Kent State University, 2021) then states that the measured accuracy 

trends toward a number that is sufficient to use as the true value. 

To balance the initially unbalanced datasets, selected functions in the SKLearn library were utilised. First, the 

built-in parameter called class_weight was set to ‘balanced’. Next, the code implemented the built-in function of 

random search and grid search with cross-validation to find the best hyper parameters, such as max depth and 

number of estimators. No random state was set since this would counterweigh the effect of the MCS. 

Then, the process of fitting was initiated. The fit function further contributed to decreasing the effects of an 

unbalanced dataset through sample weight. The argument for the sample weight of a function is another function 

using the training values; this is done to find a balanced class, and thus, sample weight. Upon completion of the 

fit process, the predicting could commence. 

Predictions were stored as the variable ‘y_pred’ for further analysis. Both the f1-scoring method as well as the 

CMs use this variable. The built-in method RFC.score() function does not; thus, it does not catch, for instance, 



 

 

 
ITcon Vol. 27 (2022), Bang et al., pg. 742 

true and false-positive predictions. RFC.feature_importances_ were utilised to retrieve the importance score of 

the features, and then stored in an appropriate format as a new DF. Consequently, this DF was sorted and sliced. 

Contributors with an importance score below 0.01 were discarded. Based on the f1-score of the prediction, the 

top five entries from this DF were stored in different tiers of lists. More precisely, if the f1-score was higher than 

0.5, it was appended to a specified list. Similarly, if the score was higher than 0.7, 0.8 and 0.9, it was appended 

to other, respectively specified lists. If the score was higher than 0.8, the CM was also appended , into a list 

called ‘cm_over_80’. When one MCS had reached its set number of iterations, all the lists were saved into 

another list as a list of top entries. This list, containing up to 10 000 entries, was stored as a single element in a 

new list; this originated the wording list of lists, as seen in Figure 8. Other lists were also established, 

summarised in Figure 8. 

 

FIG. 8: Illustration of how lists, and lists of lists, are made.  

Figure 9 outlines the method in its entirety. Every DF is simulated 10 000 times. In each of these 10 000 

iterations, 100 DTs were made. The most accurate tree was used for further analysis, to determine whether the 

f1-score, the predictive performance of the model, was sufficiently high. 

4. RESULTS  

Important findings and characteristics of the models are presented in Table 2.  

TAB. 2: DF splits and respective characteristics.  

DF# Split Shape 

(row,col) 

Shape after 

NaN 

discards 

(row,col) 

# success % success Mean 

accuracy 

Mean f1-

score 

Mean CM 

0 Whole construction 

sector 

(47,296) (47,51) 28 60 0.54 0.62 [[1.5 2.5] 

[2.1 3.9]] 

1 Whole 
infrastructure sector  

(77,296) (77,38) 41 53 0.7 0.72 [[4.8 2.2]  
[2.66 6.34]] 

2 Construction phase 

1 

(22,296) (22,86) 12 55 0.55 0.62 [[0.75 1.25]  

[1.01 1.99]] 

3 Construction phase 

3 

(16,296) (16,105) 12 75 0.69 0.8 [[0.01 0.99] 

[0.26 2.74]] 

4 Infrastructure phase 

1  

(32,296) (32,79) 14 44 0.73 0.64 [[3.32 0.68] 

[1.17 1.83]] 

5 Infrastructure phase 

3 

(28,296) (28,99) 20 71 0.73 0.81 [[0.83 1.17] 

[0.45 3.55]] 

6 Both sectors only 
phase 0 

(17,296) (17,80) 7 41 0.48 0.05 [[1.82 0.18] 
[1.92 0.08]] 

7 Both sectors only 

phase 1  

(54,296) (54,296) 26 48 0.67 0.64 [[3.93 2.07] 

[1.6 3.4]] 

8 Both sectors only 

phase 3 

(44,296) (44,92) 33 75 0.67 0.78 [[0.45 1.55] 

[1.44 5.56]] 



 

 

 
ITcon Vol. 27 (2022), Bang et al., pg. 743 

 

FIG. 9: Flow chart of the MCS and classifier. 
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The analysis will primarily focus on DFs 1, 4 and 7. These DFs were the ones that yielded the best results from 

the simulations, as described in the previous section, and are highlighted in Table 2. Since the dataset was 

limited, it is reasonable to assume not all DFs would be correctly predicted by the base model, even after 

implementing remedies such as built-in functions like sample weights, stratify and choice of classifier. 

As illustrated in Table 2, DF 1, 4 and 7 were the only DFs in which ‘Mean F1-score’ are relatively large as 

compared to ‘% success’. This is further illustrated in Figure 10, where the subtraction of ‘Mean F1-score’ and 

‘% success’ in decimal form is illustrated. The ‘% success’ column shows what a baseline classifier would get as 

accuracy, if the predictions were purely based on guesses; this means that the proficiency of the developed 

model will be implied by the Delta, the difference, between these two columns.  

Figure 10 illustrates the difference between ‘% success’ and ‘Mean f1-score’, the Delta. The Delta is the 

difference between the respective Mean f1-scores and %-success. Worth noting, the Delta score of DF 6 is -0.36, 

but is cropped out to illustrate the differences of the Delta scores more accurately in the remaining DFs. 

 

FIG. 10: Bar plot of Delta, converted to decimal value. 

The first metrics that were analysed further were the CMs. As mentioned, a high number in the main diagonal is 

desirable. Element (1,1) is the true negative location in the matrices, and element (2,2) is the true positive 

location. In the off-diagonal, an as-low-as-possible value is preferable. Only the matrices of DFs 1, 4 and 7 

showed a clear connection with this principle and were therefore selected for further analysis. The DFs are 

illustrated in Figures 11(a)-(c). 

 

FIG. 11: CMs for DFs 1, 4 and 7.  

Count- and density plots of the DFs are presented in Figure 12(a)-(c). It becomes apparent that the mean score is 

quite high. Moreover, the distribution of the bars looks to resemble a bell curve, referring to the inherent 

characteristics of an MCS (Oberle, 2015). From Table 2, we know that these DFs had a ‘% success’ score of 50 

± 6% as their base score. 
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FIG. 12: Count and density plot of DFs 1, 4 and 7.  

Figure 13(a)-(c) shows the top five most important features for the three DFs, only collected if the f1-score for 

the feature was above 80. The count along the x-axis provides an insight into how frequently this occurred 

during the iterations. For instance, Figure 13(b) shows that both features ‘Q146’ (planning) and ‘Q112’ 

(planning) was in the top five more than 2000 out of 10 000 times. Similarly, in Figure 14, the highest count is 

that of Figure 14(b). For these, the threshold for features to be appended is a f1-score of 90; this increase in the 

threshold limit results in a drastic decrease in the count, approximately five times as low as for DF 4. 

 

FIG. 13: Top occurring features from MCS, f1-score over 80 for DFs 1, 4 and 7. 

 

FIG. 14: Top occurring features from MCS, f1-score over 90 for DFs 1, 4 and 7. 
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For Figure 15, the top 10 features of all nine DFs were aggregated and plotted against the number of times the 

respective feature appeared in all the DFs. The blue bar indicates the number of times the feature appeared in the 

top 10, and the red bar how many possible times the same feature could have been chosen. The relationship 

between the two bars is of importance. For instance, the ratio between the bars of ‘Q001c’ (complexity) is the 

same as the ratio of ‘Q146’ (planning), ‘Q017a’ (measure progression) and ‘Q047’ (cost of quality). Therefore, 

one could argue that the better features are located on the left side of the plot. 

 
FIG. 15: Top features of top 10, sorted on the ratio between the bars. 

Figure 15 illustrates the correlation (Pearson’s r score) between the 24 most occurring features, meaning the 

features that occurred more than twice in the top 10 in all DFs. In this plot, red indicates a strong positive 

correlation, while blue indicates a strong negative correlation between the two. The dimmer the colour, the closer 

the absolute value is to 0, meaning no correlation in either direction. A small correlation is defined as an r score 

between 0.1 and 0.3 in absolute value. Similarly, a medium correlation is defined between 0.3 and 0.5, and a 

large correlation over 0.5. 

Figure 16 illustrates an example of a DT. This specific tree is collected from one of the many trees in the RF 

when trying to model DF 1. As the dataset is relatively small, the model can only produce a small tree before the 

gini value becomes 0. 

 

FIG. 16: A single decision tree from the RF for DF 1. Colours indicate which class is in majority of the leaf. 
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5. DISCUSSION  

5.1 ML Model Development  

As mentioned, DFs 1, 4 and 7 shows better results in terms of accuracy, representing the infrastructure sector, 

infrastructure phase 1, and both sectors in phase 1, respectively. Table 2 shows that these DFs are closest to an 

equilibrium between the number of successes and failures. Worth noting is that infrastructure phase 1 appears in 

all the top-performing DFs. Therefore, the two other DFs could possibly perform well because they also contain 

infrastructure 1. However, by inspecting Figure 13, it becomes evident that the most frequently appearing Q-

attributes have some differences. For instance, ‘Q146’ (constructability) is the single most appearing in 

infrastructure phase 1 but does not appear among the top 10 features in infrastructure as a whole. The same 

applies in reverse; the most occurring in infrastructure as a whole does not appear in infrastructure phase 1. The 

top feature for both sectors in phase 1 is ‘Q115’ (uncertainty analysis); this feature is not among the top 10 in 

infrastructure phase 1 but appears as the fourth feature for infrastructure as a whole. 

Choosing Solution B over Solution A_fillNA may have affected the results. Solution B labelled fewer projects as 

successful. This could mean that this was a stricter solution. At the same time, this solution labelled 12 projects 

that would have been discarded by Solution A_fillNA as failures. 

The CM of the two solutions A_fillNA and B has been plotted in Figure 17. Comparing this to the CM in Figure 

7, it becomes apparent that the two solutions A_fillNA and B share characteristics. Of the 41 gained projects by 

filling in the NaN, only five are labelled differently. This is found by subtracting the numbers in the off-diagonal, 

top-right to bottom-left, in the two CMs in question; (11-8) + (4-2) = 5. 

 

FIG. 17: CM of projects labelled by both solutions A_fillNA and B. 

5.2 Identified Success Factors  

5.2.1 Most occurring features  

Table 3 presents the top features – and by extension, success factors – from DFs 1, 4 and 7. Several features are 

appearing in two or more DFs. All DFs contain five features of the ten listed. This suggests that certain success 

factors are of importance both across different project phases and different sectors. For instance, the schedule 

(‘Q001c’) leads to high complexity in the engineering phase in both infrastructure and construction, and this 

appears to be a problem in the infrastructure as a whole. The results in Table 3 illustrates that the top features in 

DF 7, also appears in DF 1, 4 or in both - the exception is ‘Q147’ (cost of quality). This could be because the 

data points in DF 7, as mentioned, also appear in DF 1 and 4. DF 7 could therefore be argued to be a duplicate of 

the two others. Alternatively, it may indicate that the top features for the engineering phase across all sectors are 

the same as the top features for engineering in infrastructure, and for infrastructure as a whole. 

All features presented in Table 3 seem reasonable in regard to the theory presented in Section 2.2.2. Similarities 

can be seen in factors addressing involvement from leadership, early planning, structured risk-handling, and 

implementation of a constructability program. The similarities indicate that it is possible to use ML to obtain the 

most important success factors, and that the model is performing well. 

Multiple listed features relate to the early phases of the project, such as planning, analysis and engineering. This 

suggests that it could be possible to predict success at an early phase in the project by measuring, reporting, and 
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assessing these features at early stages. Choosing another definition for project success could have yielded 

different results – and the inability of an owner or a customer to specify their wants and needs explicitly and 

correctly poses a potential challenge. Additionally, it could be argued that the project quality is in fact the ex-

post value created (Haddadi and Johansen, 2019). 

TAB. 3: Top features from the best performing DFs with their conceptual meaning.  

Feature Description Concept DF 

Q001c The complexity was remarkably high due to the schedule Complexity 1,4,7 

Q016c The project had a large number of changes in the list of main components Changes 4 

Q112 The tender plan was developed and communicated to the project team during the 

engineering phase 

Planning 4,7 

Q115 All necessary and relevant members of the project team were involved in the process 

of uncertainty analysis 

Uncertainty 1,7 

Q120 Involvement from the project owner was appropriate  Leadership involvement 1,4 

Q122 The project processes and systems support project success Project owner’s process 1 

Q132 Members of the project team participated in adequate professional training directly 

associated with their engineering work  

Training 1 

Q146 A rich supply of suggestions for improved constructability was evaluated and 

integrated during the engineering phase  

Planning 4,7 

Q147 Cost to fix potential faults were considered during the engineering phase  Cost of quality 7 

5.2.2 Correlation matrix  

Upon inspection of the bivariate correlation matrix in Figure 18, a few observations can be made. The most 

important features can be compared with the correlation score r to determine if it is a positive or negative 

attribute, a ‘+’ or ‘-’ correlation. ‘Sol B’ in this plot is an abbreviation of ‘binary_success_score_2oo3_B’. 

Feature ‘Sol B’ is seen to have two medium correlations, with the remaining classified as small correlations, if 

numbers are rounded down (Kent State University, 2021). The features ‘Q001c’, ‘Q016c’ and ‘Q016e’ reflect 

complexity and uncertainty and are negatively correlated to the ‘Sol B’ label. This seems reasonable, as a high 

value of one of these features, like 1, usually means that the ‘Sol B’ is low, like 0, and therefore classified as a 

failure. Similarly, features ‘Q112’, ‘Q132’, ‘Q146’ and ‘Q147’ reflect adequate early analysis and processes and 

show a positive correlation with the label feature. The same holds true for ‘Q120’, reflecting leadership 

involvement, and ‘Q122’, relating to the extent to which the work processes in the project supports project 

success. 

Figure 18 further illustrates how ‘O_01’, known as the cost growth, is slightly positively correlated with ‘Q001c’ 

(complexity) and ‘Q016c’ (changes) respectively. Upon investigating ‘Q115’ (uncertainty) and ‘Q120’ 

(leadership involvement) there is a medium-large correlation with the cost growth and customer satisfaction 

score, ‘Q149’. Both are negatively correlated with the cost, which deducts that inclusion of key personnel and 

project owner aided the project to keep its budget. Furthermore, both features are positively correlated with the 

customer satisfaction score, suggesting that the customer was happier with the result if these inclusions were 

present.  

Similarly, both ‘Q122’ (project owner success) and ‘Q132’ (training) are correlated positively to both cost and 

customer satisfaction. ‘Q122’ (project owner success) only has a correlation score of 0.17 with ‘Sol B’. This 

could indicate that the extra cost this causes, deducted from the positive cost growth, does not do as much for the 

overall project success as defined for the framework of this study. However, it becomes apparent that this affects 

the customer satisfaction score, with a correlation score of 0.47. The same argument can be made for the ‘Q132’ 

feature, which relates to the training of the project team before the engineering phase. 
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FIG. 18: Correlation matrix of top three features from DFs 1, 4 and 7.  

5.2.3 Features between phases  

As there is some overlap in the DFs, it is interesting to compare infrastructure as a whole with the single, 

separate phases of 1 and 3, which infrastructure as a whole is based upon. The correlation of top features 

between the infrastructure DFs is presented in Table 4. 

TAB. 4: Correlation of top features between DFs.  

Feature Infrastructure Phase 1 Phase 3 Concept 

Q001 x x x Complexity 

Q122 x - x Project owner’s process 

Q132 x x - Training 

Q115 x - - Uncertainty 

Q120 x x - Leadership involvement 

Q016 - x x Changes 

Q154 - x x Deliver on time  

Q146 - x - Planning 

Q112 - x - Planning 

Some similarities are seen between phases 1 and 3. ‘Q154’, ‘Q001’ and ‘Q016’ are appearing in both top 

features; however, the dataset shows that they contain different aspects of ‘Q001’ and ‘Q016’. In phase 1, the 

high complexity is due to the progression plan and diversity in the project team. In phase 3, the complexity is 

mainly linked to the ability of the supplier to deliver on time. 

Five of the top 10 features in phase 3 mainly relate to three features but concern different aspects, namely 

‘Q016’, ‘Q001’ and ‘Q014’. Of these, ‘Q016’ (numerous deviation reports) occurs over 1000 more times than 

the runner up. This implies that the quantity of deviation reports is indubitably more important than other 

features during the building phase of infrastructure projects. Considering that phase 1 represents engineering, it 

seems reasonable that engineering to a bigger extent is more associated with complexity due to schedule, team 



 

 

 
ITcon Vol. 27 (2022), Bang et al., pg. 750 

diversity, and changes of main components. As phase 3 represents the building phase, it seems reasonable that it 

is associated with complexity due to the ability of the supplier to deliver on time, along with numerous deviation 

reports. 

As illustrated in Table 4, the top 10 features are mostly reflected in phases 1 and 3, but some are solely in the 

infrastructure as a whole. These features include ‘Q115’ (uncertainty), ‘Q116’ (changes), ‘Q001g’ (complex 

scope), ‘Q111’ (trust), ‘Q006b’ (effective meetings), and ‘Q127’ (team aware of goals). In short, these regard the 

uncertainty analysis, trust and respect across the team, and an adequate flow of information in the project. Even 

though these only appear in the infrastructure as a whole, they are more conceptual in nature, which is 

reasonable when analysing multiple project phases. Keeping in mind that 60 of 77 projects in infrastructure are 

from phases 1 and 3, one could expect more of the same features. However, four of the top five features in 

infrastructure as a whole also appear in phases 1 and 3. The three most occurring features in infrastructure as a 

whole are ‘Q122’, ‘Q001c’ and ‘Q120’, representing processes that support project success, complexity due to 

the schedule, and involvement of the project owner. 

Another observation that can be made is that certain top features in phases 1 and 3 do not appear in infrastructure 

as a whole. As explained, this could be due to the fact that infrastructure as a whole to a bigger degree contains 

features that are wider in scope.  

5.2.4 Theoretical features compared to model findings  

The 10-10 dataset contains more than 100 questions touching on the many aspects of project management. Based 

on the literature addressing project success and success factors, certain questions and features were expected to 

be among the factors identified as the most important for project success. Ultimately, some of these did not 

appear as success factors in any results, including: 

• Q013a-c: Did the main goal of the project change during engineering/procurement/construction? 

• Q103: The project team was aware of the project goals, requirements, and project owner expectations.  

• Q105: Communication with key personnel was handled in a satisfactory manner.  

• Q111: There was a high degree of trust, respect, and transparency between the actors in the project.  

• Q113: The execution plan supports the goal of the project. 

• Q114: Key members of the team understood the owner’s goal and scope of this project. 

• Q126: The leadership communicated strategic goals, project goals in an effective manner. 

• Q139: Key personnel were identified and adequately included in an early phase. 

Among the listed features, only ‘Q013’, ‘Q105’, ‘Q111’, ‘Q114’ and ‘Q126’ had a sufficiently low 

percentage of missing datapoints to be used in this analysis. Although these success factors are not emphasised 

by the model, they appear to be important for success in the sample projects. One possible explanation for this is 

that the concepts they represent are reflected in other, appearing features. For instance, ‘Q113’, ‘Q114’ and 

‘Q122’ (processes support success) all relate to project success, but only ‘Q122’ appears as an important success 

factor. The same holds true for ‘Q013’, ‘Q105’, ‘Q111’ and ‘Q126’, as they can be related – some more strongly 

than others – to the most important features. This means that the low occurrence of certain features not 

necessarily implies that the features are of smaller importance, but that they are reflected in other features that 

are seen to occur more frequently. 

5.3 Construction Project Datasets  

In construction projects, dimensions such as time, cost, quality, scope, benefits, and risk are all indicators of 

primary importance for classifying and quantifying project success. Construction projects data can be of high 

resolution and domain specific, such as plans for large projects. This study is based on what can be described as 

low-resolution data, as they are based on qualitative evaluations done by the project organisations themselves.  

This has advantages; the data describe what the projects experienced themselves, for instance. Disadvantages 

include a risk of bias by the staff reporting the scores. However, we believe that the 10-10 data are interesting. 

Future analyses would benefit from more consistent registrations of the questions and parameters, a common 

issue in machine learning and other quantitative analyses. 
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A model or approximation will only ever be as reliable as the data it is based upon. Currently, no standards exist 

for collection and utilisation of data in construction projects. To a certain extent, this is understandable, because 

all projects are unique. However, it would greatly benefit this type of analysis if some standardisation of data 

structures would emerge. Some industry-specific standards exist for structuring of data, such as for Building 

information Models (BIM) and standards for data coding such as NORSOK in the Norwegian oil and gas 

industry. 

Data that can be consistently compared and tracked between projects has the potential to improve project-based 

benchmarking, support project success prediction, and perhaps most importantly, serve as early warning systems 

that can identify potential issues in time when it still possible to do something about it. 

6. LIMITATIONS AND FUTURE RESEARCH  

The 10-10 data is based on reports from members of the project team in respective projects. This means that 

there is a possibility that some of the data points are biased or imprecise; consequently, a value can have been 

put in the wrong place or provide an inaccurate or biased image of the actual situation. 

6.1 Handling Missing Values  

When developing the model in this study, several solutions were tested. The model did not implement a function 

to remove dirty projects within a selected phase; in mixed phase DFs, this would not have worked, while it could 

have in single phase DFs. The idea is that a single-phase DF, in theory, should include all the same features. This 

means that no missing values unless all the projects in the DF are missing the same values. With the chosen 

method, if one project was missing a value in a column the entire column would be discarded. 

Analyses showed that if the DF has some missing values where it should not be, it is often one or two projects 

that are the cause of this. One method to keep more information in the DFs could be to fill missing values in the 

cleaning; this was deemed undesirable, as it would mean to temper with the available data, inserting values that 

could be wrong, and ultimately yield imprecise results. A complete DF is always preferred. 

Alternatively, a method to keep more information in the DFs could be to discard the projects with missing data, 

instead of discarding entire columns with missing data. 

An alternative sensitivity analysis was performed on DF 4 (infrastructure phase 1), by using a model that 

discarded the polluted projects. One project in particular had several missing data points. Originally, DF 4 had 

32 projects, and 79 non-NaN columns after cleaning and discarding. By discarding the project in question, 31 

projects and 109 non-NaN columns remained, leaving 30 more columns for the model to analyse. One project 

constitutes 3% of the DF, meaning one contaminated project would contaminate the entire DF. As illustrated in 

Figure 19, only one out of these 30 features show up among the most important features. This feature is ‘Q002b’, 

concerning the classification of the level of difficulty of the project. Also worth noting, is that none of the 

additional features regarding BIM, ‘Q031’ (BIM used), ‘Q032’ (who used BIM), and ‘Q033’ (reason BIM was 

used), is among the most important features; this is shown in Figure 19(a). 

 

FIG. 19: After discarding the polluted project. N = 5000, 100 estimators/trees for DF 4. 
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The same DF was tested with a higher value for the number of estimators, meaning DTs in the RF. However, no 

correlation between higher estimator count and f1-score was found. The result is illustrated in Figure 19 and can 

be compared with the CM in Figures 11 and 19. 

 

FIG. 20: After discarding the polluted project. N = 5000, 500 estimators/trees for DF 4. 

6.2 Weighting of DFs  

The weighting of DFs posed a challenge in constructing the model. Using Python built-in parameters and 

functions, such as stratify, class_weight, and sample_weight, the model became more equipped to handle the 

troubles of a small, unbalanced DF. Alternatively, the parameters could have been weighted manually and 

individually; this could have yielded a different result. Certain DFs could potentially have performed differently 

with a different split than the 80/20 split chosen in this model. 

6.3 Tuning of Hyper Parameters  

This study was intended as a pilot analysis of the Nordic 10-10 dataset, limiting the allocated time and scope for 

the development of the model. The tuning of DFs was done by searching for global best parameters; another 

potential approach for future studies would be to analyse one DF at a time and subsequently tune hyper 

parameters through RandomSearchCV or GridSearchCV functions in SK Learn. Recommended hyper 

parameters for further analysis and assessment are ccp_alpha, class_weight and sample_weight. This model only 

utilised the built-in ‘balanced’ arguments in the two latter. 

Furthermore, for a corresponding model, the test size for each DF can be explored further, along with the 

different paths in the cleaning procedure. Another potential lies within the assessment and comparison of the 

performance of different ML algorithms on the same dataset.  

6.4 Classes  

For this model, two classes were defined: success or failure. Further work could look into the possibility of using 

additional categories, for instance success, failure, and outlier failure. An outlier failure category could provide 

interesting insights into the identification of the most important features for these projects. Alternatively, classes 

such as success outliers, neutral projects and failure outliers could be defined. As previously discussed, choosing 

a non-binary approach would heighten the importance of an unambiguous definition of project success. 

Due to the small size of the dataset, manual inspection of the individual projects, specifically outliers, could be 

yet another option - such inspections could provide unique insights, and prove valuable for further categorisation 

and classification. 

7. CONCLUSIONS  

The first research question, regarding how AI, and ML specifically, can be applied to analyse limited datasets 

from project evaluation has been answered through the description and demonstration of the developed model. 

However, as the results indicate, only a few DFs display high enough accuracy to facilitate a constructive 

discussion of the identified features. This indicates that the dataset may have been too limited to provide high-
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quality statements. Results provided by the DFs displaying high accuracy suggests that the proposed method is 

indeed useful for limited datasets. 

The second research question was answered through the demonstration of the developed model. The model 

presented top features for each sector, and for each phase in the two sectors. Among the DFs displaying the 

highest accuracy, the top features identified align with established success factors in project management theory. 

Ten features appear more frequently than the others. These features relate to complexity, number of design 

changes, adequate training and knowledge in the project team, early planning including uncertainty analyses, 

involvement from top management, and whether or not the processes in the project are perceived to support 

project success. At the same time, success factors highlighted in literature did not appear as significant in this 

analysis, and the reasons for this have been discussed. 

Ultimately, the ML model demonstrates the ability to discover important factors for project success. Such 

analyses can be used in early phases of a project to predict project success in later phases, or in the project as a 

whole, and could prove to be a useful tool in order to eventually achieve more project success. 
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Abstract. Effective data management can enable the utilisation of new tools and technologies 

and, ultimately the creation of circular business models in the building industry. To accomplish 

this, a targeted mapping and collection of data must take place. However, several challenges 

hinder the exchange of information in a seamless digital flow through the value chain and 

building life cycle. This exploratory study contributes to bridging the gap in the research, 

providing an overview of existing barriers related to mapping, collecting, and storing data about 

materials and products in existing buildings. The findings are obtained through 18 semi-

structured interviews with experts working with circular economy and digitalisation in the 

Norwegian AEC-industry. Some of the identified barriers, such as the lack of data availability 

and interoperability, lack of competencies and unwillingness to share data, are strongly 

interrelated; a collaborative approach will be essential across the value chain. The research sets 

the basis for developing a framework for data management that can facilitate the reuse of 

materials and products from a building at the end of life to new construction or refurbishment 

projects. Ultimately, effective data management opens for developing and implementing 

innovative circular business models, enhancing strategic data-based asset management.  

1. Introduction

The construction industry is responsible for consuming almost 40% of the natural resources and

generating circa 40% of the total waste in Europe [1,2]. Therefore, a transition to a circular economy is

considered essential to sustainable development in the built environment by reducing resource

consumption and carbon emissions and moving away from the so-called linear economic model [2,3,4].

Reusing existing materials and products is an example of circular economy practices that can

significantly decrease resources consumption and carbon emissions but requires adopting a systemic

approach and value chain integration on a large scale [4,5,6].

Like other industries, the construction industry has seen a surge in digitalisation over the last years, 

despite remaining one of the least digitally advanced industries [7]. The sector has already been 

positively affected by some technologies, enhancing efficiency in processes and communication [8], but 

the rapid advancement in digital technologies, such as Building Information Modelling (BIM), digital 

twins, blockchain, Internet of Things (IoT), and Artificial Intelligence (AI), is an essential means to 

achieve the potential of a more sustainable and circular industry [9,10,11].  
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Digitally enabled solutions can support the implementation of circular economy strategies, like the 

reuse of building materials and products, by helping to map, trace, and provide information about the 

availability, location, condition, and durability of a product [12]. A standardized information exchange 

is one of the means for a more circular and sustainable sector [5] and implementing a seamless data flow 

can facilitate sharing information about reusable materials, from an existing building to a potential new 

construction or refurbishment project. However, the lack of information and data about the existing built 

environment is often one of the main challenges for material reuse [5,9,12]. Greater knowledge of 

existing buildings and materials, greater visibility and transparency of data, and improved construction 

products information management across the value chain are essential to enable business model 

opportunities and accelerate the circular transition [12,13,14]. 

Although several studies, like Knoth et al. [6], Nordby [15], Sandberg and Kvellheim [16], 

investigates the barriers for materials reuse in the AEC-industry, the research on digitalization connected 

with circular economy is relatively limited and it often fails to address the topic from a systemic point 

of view [11, 17,18]. Kovacic et al. [9] underlined that a framework for information management that 

supports a continuous and standardized data flow for a circular economy is still lacking. 

The research conducted by Çetin et al. [10] is one of the few contributions that investigates which 

digital technologies can potentially enable circular economy in the built environment, also presenting 

some of the challenges connected with these specific technologies. Similarly, Chan et al. [19] addresses 

the question of the digital potential in advancing circular economy in the construction industry. The 

results show how digital technologies (digital twins, BIM, material passport, and digital platforms), can 

help to create a viable digital marketplace for circular products and services. More specifically, 

Debacker [20] looks at the challenges for the implementation of material passports, underlying the need 

for a digital and centralized management of building and material information. A material passport can 

be defined as a tool that helps to document and track circular materials and products, providing accurate 

information for recovery and re-use [5]. 

Others research looks at the connection between digital technologies and circular economy but are 

not exclusively limited to the AEC-industry. De Felice and Petrillo [17] recognizes the lack of 

interoperable solutions and communication protocols as the main factor hindering innovation and 

circularity. The authors suggest an integrated approach, that combines technology, legislation, and 

cooperation among the value chain. Similarly, the research from Mulhall et al. [21] underlines that a 

standardized data format for storing product information is necessary for circular economy, both in the 

construction, textile, and batteries sector. Moreover, the newly published report by Ellen Mac Arthur 

Foundation underlines that data on materials and products are essential to promote circular business 

models and identifies the barriers that hinder data sharing, across different sectors [22].  

When it comes to specifically investigate the barriers for circular economy and reuse of materials in 

the AEC-industry, several studies have been conducted which do not necessarily focus on the 

digitalization perspective. Kirchherr and Piscicelli [23] and Munaro and Tavares [24] look at the cultural 

barriers, such as lack of awareness and holistic thinking, and they underline that the lack of information 

and the fragmentation of the value chain can hinder the introduction of circular practices and 

understanding of circular thinking. Norby [15] analysed the technical, legislative, environmental, and 

market barriers to reusing materials in Norway. Similarly, Sandberg and Kvellheim [16] conclude that 

the lack of economic incentives and requirements limits the reuse of materials on a bigger scale. Knoth 

and Fufa [6] analyse perceived challenges, barriers, and opportunities for material reuse from different 

stakeholders. Finally, it is worth mentioning how Moscati and Engström [25] and Redwood and 

Thelning [26] look at the barriers for digitalization in the AEC-industry in a general context and they 

underline how the most significant barriers lie in the organisational aspects rather than technical ones.  

The effective and sustainable utilisation of new digital technologies and tools requires effective data 

management, and this study contributes to bridging the current gap in the research, by providing a 

comprehensive overview of the existing barriers, related to mapping, collecting, and storing of data on 

materials and products in existing buildings. The results are obtained through a review of the existing 

literature and 18 semi-structured interviews with experts in circular economy and digitalisation in the 
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Norwegian AEC-industry. Specifically, the study will be answering the following research question: 

What are the existing barriers for digitalization of data management as an enabler of circular economy 

in the Norwegian AEC-industry?  

The remainder of this paper is organised as follows; first, the research method adopted in this study 

is described. Then, findings are presented and discussed. Finally, the last section summarises and 

concludes based on the previous results, providing an overview and recommendations for practitioners 

and researchers who wish to explore the topic further.  

2.  Research method 

The research design for this study is exploratory because the topic of digitalization and data management 

in the context of circular economy is relatively unexplored, and the intention is to clarify the 

understanding of the problem and seek for new insights [27]. The research started with an initial 

literature search in three chosen databases (Scopus, Web of Science, Science Direct). This revealed that 

a research gap exists in the nexus between the topic of data collection and management, and circular 

economy, as stated in the introduction. 

To support the search of the literature and to fully answer the research question, semi-structured 

interviews were identified as the preferred research method, following the recommendation by Bell and 

Bryman [27]. This method was seen to provide more broad and contextual results, as compared to more 

quantitively oriented methods such as questionnaire and surveys. The semi-structured approach allows 

the respondents to elaborate beyond pre-defined questions, contributing to a comprehensive 

understanding of the industry and its dynamics in relation to the topic [28].  

The interview guide was sent to the interviewees in advance to ensure the alignment of expectations 

and topics between interviewers and interviewees and it included a series of open-ended questions such 

as: ‘what is the role of data management for facilitating the implementation of circular economy?’; ‘how 

can the circular data flow for the reuse of materials be structured through the value chain and 

throughout the life cycle?’ and ‘what are the main barriers that hinder the digitalization of the materials 

data flow?’.  

In total, 18 semi-structured in-depth interviews were conducted, over the course of two interview 

cycles. The interviewees in the first cycle (12 interviews) were selected based on their experience and 

involvement in relevant projects and initiatives. Inclusion criteria included experience working with 

digitalization, digital technologies, and processes in the AEC industry in Norway, as well as the 

participation in pilot projects, workshops, and networks connected with circular economy and materials 

reuse. All the interviewees have more than five years of experience working within the AEC industry in 

major and well-known organizations in Norway, as well as software developers working with circular 

platforms and solutions. To ensure valid and relevant results, a broad sample of stakeholders, 

representing the different roles across the value chain was involved.  

The interviewees in the second cycle (6 interviews) were selected based on the specific 

recommendations from the first group of interviewees and from other practitioners and academics. The 

authors evaluated the suggestions to ensure that the respondents fit the inclusion criteria defined for the 

first cycle. The final selection of respondents and their role in the value chain is illustrated in Table 1.  

 

Table 1. Number of respondents by role in the value chain. 

Role Number of respondents  

Manufacturer 1  

Project owner (public & private) 3 

Architect 1 

Research institute and university 2 

Not-for-profit organisation and network 2 

Software provider 3 

Engineering & sustainability consultant 4 

Contractor 2 
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Each interview lasted for approximately one hour and was conducted as a video call over Microsoft 

Teams due to the current Covid-19 regulations in Norway. Both authors were attending during the 

interviews to ensure a higher degree of understanding and reliability in the subsequent coding of the 

results. The interviews were recorded, and the transcriptions were sent to the interviewees for quality 

assurance before analysing the data. The interviews were conducted in Norwegian and subsequently 

translated to English to ensure accuracy and avoid misinterpretation of the information.  

The coding process was done iteratively in parallel with the interviews, as recommended by Bell and 

Bryman [27]. Although interviewees used different terminology when asked to define existing barriers, 

emerging themes were identified and categorised. This was done through the utilisation of industry-

specific knowledge as well as common understanding and asking follow-up questions where necessary. 

The process resulted in the classification of six main barriers that represent the findings of this research. 

Both authors took part in coding and analysis, first individually and then comparing and discussing the 

results, to ensure increased validity and understanding of the findings. As the coding was conducted, it 

became evident that the interviewees’ answers and views on certain aspects of the topic seemed to be 

converging; this could suggest a higher degree of relevance of the findings.  

3.  Findings  

Six themes emerged from the interviews, resulting in six (6) explicitly defined barriers for data 

management as an enabler of a circular economy. The barriers are described in the following chapters 

and summarised in Table 2.  

 

Table 2. Identified barriers for each interviewee’s role 

 Interviewees roles 

 Manufactu

rer 

Project 

Owner 
Architect Research 

Org. / 

network 
Software Consultant Contractor 

Lack of data 

availability 
1/1 3/3 1/1 1/2 2/2 2/3 3/4 2/2 

Lack of data 

interoperability 
1/1 3/3 1/1 1/2 2/2 2/3 3/4 1/2 

Lack of 

competences 
1/1 2/3 1/1 2/2 1/2 3/3 2/4 1/2 

Unwillingness 

to share data 
1/1  1/1   2/3 2/4 1/2 

Lack of 

financial 

incentives 

1/1 2/3  2/2 1/2 3/3 2/4 2/2 

Lack of 

harmonisation 
 2/3  1/2 1/2 2/3 1/4 1/2 

3.1. Lack of data availability 

As several interviewees underlined, it will not be possible to enable circular economy and reuse of 

building materials unless the data is available or accessible. One of the main challenges today is that the 

data about building materials and products are often missing, not complete, not accessible, or not 

digitised. An interviewee highlighted: ‘if one looks ten years back, for example, there is very little 

documentation available [about buildings and materials]. And when available, it is often buried in 

archives at the manufacturers’ or project owners’ offices’. Another interviewee underlined that: ‘to 

decide to reuse a [building] product, you need certain information about that product’. It is necessary 

to collect information about the quantity, properties, characteristics, physical location in the building, 

quality and current maintenance state, how they can be reused, repaired, or disassembled, which 

certifications are required, etc. The interviewees recommend this information to be dynamic, possibly 

connected in a digital model or a material passport. The material passport is a digital register that follows 
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the building and products through all the life cycle, describing defined characteristics of materials – 

ultimately providing value for recovery and reuse [5]. Collecting and making information available and 

accessible increases the possibility to reuse existing materials on a larger scale: ‘to achieve a sort of 

industrialisation for materials reuse, then one needs enough information to evaluate if a product could 

be suitable for the [new] use’. 

3.2. Lack of data interoperability 

Lack of technical interoperability can, according to interviewees, impede effective data management 

and consequently slow down the practices of materials reuse in the construction industry. As an 

interviewee stated: ‘it is impossible to achieve a circular economy in the building industry without a 

robust digital infrastructure’. Data are often stored in different repositories, in different formats, with 

varying levels of ownership and accessibility. This hinders the exchange of information between the 

stakeholders through the value chain, so, ideally: ‘one should get a seamless data flow that can be 

triggered automatically because there are a lot of information and products in a building or construction 

project’.  

The integration with digital tools, such as Building Information Modelling (BIM) or material 

passports, can simplify this process, given that this platform can exchange information in an open 

format: ‘there are several digital solutions that can simplify data management, for example, only in 

Norway there are about 30 different software that are designed for the operation & maintenance phase, 

but none of them is [currently] communicating and none of them is connected with software for circular 

material reuse either’. The openness of data is considered essential for enabling interoperability, and 

some concerns emerged during the interviews: ‘what is an open solution [for data collection and 

sharing], actually? What does it mean to handle the data openly? We need a discussion about this 

concept’.  

Some interviewees expect governmental initiatives that could promote the adoption of a public 

database to ensure data openness and transparency on a higher level: ‘the access to information is a 

problem today. Establishing a central system, like a central database or marketplace, where you can 

gather and collect all the information would be great. Right now, everybody is developing a marketplace 

of their own, and everyone has their systems. A centralisation of the information is incredibly important’. 

One of the interviewees suggested that the requirements for data openness should be regulated at the 

European or global level to avoid the data being limited in proprietary systems: ‘we need guidelines 

about the requirements for [data] openness and this should be regulated with an EU Directive at least, 

or a global requirement’. 

Another vital aspect to improving data interoperability is to collect and store data and information 

about the products and materials in a standardised way: ‘when [one] has mapped the existing building 

materials then these data are updated in a [digital] system. But for this information to be exchanged 

with another stakeholder [that uses another digital system], they must be in the same format and mapped 

with the same purpose’. According to some interviewees, standards that regulate how circular properties 

for materials and products should be classified and described are still missing. It is challenging to 

coordinate data management to reuse materials without common standards; as one interviewee 

mentioned, ‘data will have little value if different actors do not use a common language when describing 

products and materials. With the support of digital technologies and tools, this data can be shared and 

connected between the different stakeholders in an open, transparent, and standardised way. 

3.3. Lack of competences 

Another barrier for data management as an enabler of circular economy in the AEC-industry is the lack 

of competencies among the different stakeholders. The interviewees refer to this as the competencies on 

collecting, handling, sharing, and managing the data about the building materials and a broader 

understanding of the value of this information to accommodate circular principles. As one interviewee 

mentioned: ‘what is missing is the common understanding of the value of data and information (…) in 

a life-cycle perspective’. According to some of the interviewees, data management competencies will 
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be acquired over time by gaining experience from projects and initiatives based on circular principles 

and thinking: ‘while we go through more mappings of building materials, we get a bigger understanding 

of which [data] is necessary (…)’.  

3.4. Unwillingness to share data 

Unwillingness to share data among the parties in the value chain is a barrier for data management and, 

consequently, hinder materials reuse in the AEC-industry. As one interviewee mentioned, the challenge 

is that ‘there are too few [actors] in the industry that are willing to share the information’. According 

to some of the interviewees, the unwillingness of stakeholders to share available data and information 

ultimately means that other barriers, such as the lack of interoperability, cannot be solved. This aspect 

impacts the collaboration between the stakeholders, who are unwilling to work together to enable the 

circular economy in the AEC-industry.  

3.5. Lack of financial incentives 

Collecting, digitising, and managing data from existing buildings and materials can be quite resource 

intensive. The interviewees underlined that the lack of financial incentives represents a significant 

barrier for enabling effective data management. A sustainable circular economy and effective reuse of 

building materials will require managing a large amount of data. Without financial incentives, 

originating from the market or the authorities, it is difficult to establish a business model for reuse of 

building materials on a larger scale, as one of the interviewees mentioned: ‘if we manage to collect more 

data for material reuse, then the market will be much bigger and so the volume of materials and products 

[available] for reuse’. Several interviewees claimed that stricter requirements from project owners and 

authorities could potentially contribute to solving this barrier and make the process financially viable.  

3.6. Lack of harmonisation across the value chain  

It emerges from the interviews that harmonized procedures and processes for data management across 

the value chain in a circular economy context are still missing. This represents a barrier to practical 

implementation because the lack of organizational processes and standardized data management 

procedures hinder the exchange of information between the different stakeholders, making it difficult to 

achieve circular economy and materials reuse. According to the interviewees, it is therefore relevant to 

structure the processes for data exchange and management, by connecting the value chain and defining 

the roles of the different stakeholders. Combined with the lack of data interoperability, as another barrier 

for data management (as underlined in Section 3.2), it is even more important to make data available 

through the life cycle and create mechanism to match the supply and demand of reusable existing 

products and materials, as one interviewee underlined: ‘in a reuse-project (…) you need actors and 

businesses that can collect information about existing products, re-test the materials etc. All the value 

chain should be connected’ 

4.  Discussion 

Creating a functional framework for information management, to support a continuous and standardised 

data flow for circular economy, will be essential to enable the implementation of big-scale circular 

principles. A comprehensive understanding of the barriers that hinder data management in the circular 

economy context is consequently a significant step for the definition of this framework. 

Previously conducted studies discover the barriers related to digitalisation in the construction 

industry [25,26] or to circular economy and reuse of materials [6,15,16], but not many studies address 

the intersection between these two, specifically digitalisation of data collection and management as an 

enabler of a circular model. Thus, this research contributes to empirical validation of the perceived 

barriers to this process of digitalisation in connection with circular economy in the AEC-industry. 

To enhance the reuse of materials and products from end-of-life buildings to new buildings or 

refurbishment projects and, in turn develop circular business models, it is decisive to exchange data and 

information about the reusable materials in a seamless and digital data flow through the entire value 
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chain and building life cycle; this perception was shared by most interviewees. Collaboration and 

sharing of data between the stakeholders during the building life cycle is perceived as a critical factor 

for enabling circular economy and it is also recognized in the literature, despite in connection with 

different contexts [10,22]. This seems to hold true for the process of digitalisation of data management 

in the same context, as seen in the identification of unwillingness to share data as one of the critical 

barriers to this.  

The findings show that the lack of interoperability, intended as the ability of different digital systems 

to coordinate and communicate with one another, still hinders effective data management as an enabler 

for the circular economy. To overcome this barrier, interviewees suggest that information about building 

materials could be collected through mapping, stored in a database, and available and accessible through 

the entire life cycle of the asset; this is in line with findings of studies exploring the barriers of more 

analogue circular concepts and principles [7,5,14]. The same can be said about the perceived opportunity 

for increased openness to enable interoperability [19,21,22].  

According to interviewees, most material mapping today takes place at the end-of-life phase before 

a building must be deconstructed or rehabilitated. The findings suggest that the prospect for a circular 

AEC industry depends on the availability of data and the adoption of material passports or digital 

inventories, both for new and existing buildings. This is in line with the literature that specifically 

investigate the implementation of materials passports in the AEC-industry [5,19,20]. As several 

interviewees emphasised, to make the process of reusing materials viable, the data should be accessible, 

preferably in an open public database, that could be centrally governed. Precise requirements for data 

openness and transparency should be regulated at the European level, to avoid data loss through the 

building life cycle, across borders and industries. In March 2022, the European Commission published 

the proposal for a revised Construction Products Regulation (CPR) which, among other aspects also 

suggest the adoption of a centralized database for product information management.  

The barriers identified in this study appear to be strongly interrelated. For example, the understanding 

and definition of the barrier lack of interoperability to some extent overlaps with the concept of data 

openness and standardisation. Some of the identified barriers, such as the lack of data availability and 

interoperability involve both technical and organisational connotations. While some barriers could be 

addressed by implementing new technologies and tools, organisational and managerial efforts are 

ultimately required to establish a seamless data flow across the value chain. This is particularly true for 

the barrier lack of harmonization, which entails the adoption of processes and procedures for data 

management to facilitate the exchange of information across the value chain. The idea is that harmonized 

and standardised processes for data management could be adopted in different projects, helping to 

achieve materials reuse and circular economy on a larger scale. In addition, competencies, collaboration, 

and willingness to share data are identified as crucial factors for the industry to move forward and 

overcome the barriers.  

The purpose of this study was to empirically validate and provide a comprehensive overview of the 

barriers for digitalisation of data management, as an enabler of circular economy in the AEC industry. 

The insights collected through the interviews acquire both technical and practical connotations, 

seemingly coinciding with the findings of other studies investigating the link between digitalization and 

circular economy, focusing on specific aspects or technologies [10,12,13,19]. Ultimately, this study 

provides also an organisational and procedural perspective to the barriers to data management; it 

represents a point of reference and perspective of what it entails to digitalize the information required 

to enable circular economy and material reuse. The interview-based research design was an essential 

tool to increase understanding of the problem. The findings illustrate how the topic is still in an emerging 

phase and it requires great engagement both from the industry and the academia.  

5.  Conclusion and recommendations  

This study is, to the best of the authors’ knowledge, the first empirical validation of previously 

theoretically based hypotheses related to the barriers to data collection and data management in a circular 

economy context. This exploratory study contributes to bridging the gap in the research by concretizing 
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existing barriers for digitalisation of data management as an enable for circular economy. Coding and 

evaluation of the emerging concepts identified the following barriers:  

 1. Lack of data availability 

 2. Lack of data interoperability 

 3. Lack of competences  

 4. Unwillingness to share data  

 5. Lack of financial incentives  

 6. Lack of harmonisation across the value chain  

Some of these barriers, such as lack of availability and interoperability, are deeply interrelated. A 

collaborative approach is required to achieve effective data management and ultimately enable a circular 

economy in the AEC industry. According to the findings, measures that could contribute to overcoming 

these barriers, include the adoption of a public database to ensure openness and transparency of the data. 

Regulations should set specific requirements for how data related to the circular properties of products 

and materials is stored and exchanged across the value chain. In addition, a sustainable circular economy 

requires effective management of a large amount of data, and this could not be achieved without 

standardised and harmonized procedures and processes for data management, and without a financially 

viable model. Finally, to overcome the barriers to data management, it is essential to strengthening 

collaboration and trust among the stakeholders.  

5.1. Limitations of the study  

To overcome the limitation of this study, a broader sample of interviewees could be involved, including 

respondents from several roles and positions across the value chain. The findings show that there is a 

general agreement among the practitioners in Norway regarding the challenges of data management in 

the context of a circular economy, and the research opens for further implementation and analysis on 

the topic.  

This study was conducted within a Norwegian context, providing insights from practitioners with 

expertise and experience from the Norwegian AEC industry. The local context in which the research 

developed could potentially influence the results, therefore it has been important to analyse the findings 

also with regards with the international literature that explore adjacent topics such as digitalisation or 

circular principles in general. This suggest that the findings can be applicable also outside the empirical 

context and will find a valid application in other countries, considering regional trends and opportunities 

for the circular economy. To empirically validate this, similar studies of the AEC industry in other 

countries should be undertaken.  

5.2. Future research 

In terms of research methodology and in order to validate the applicability of the results, it might be 

relevant to conduct a similar analysis in other contexts and countries. In addition, future studies could 

include a larger sample of respondents for each of the roles in the value chain, especially include several 

manufacturers, contractors, and architects.  

In terms of thematic, several potentials lie within this topic. This study identified the existing barriers 

for digitalisation of data management; future research could analyse each of these barriers, identifying 

how those can be overcome and concretizing prospects and plans.   

An organizational framework supporting a continuous and standardized data flow is still missing in 

the AEC context; this could be a central topic for future studies. The qualitative and empirical 

identification of perceived barriers for effective information management could and should be used as 

a foundation in the development of such a framework. Future research should analyse necessary data 

and information for the reuse of building materials, and how digital solutions can support the exchange 

of this information across the value chain. Effective data management can open for the creation of 

innovative circular business models, and it could enhance strategic data-driven asset management. 
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