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Abstract

The topic of Artificial Intelligence (AI) in construction has sparked a lot of interest in recent years, with the
emergence of new techniques, algorithms, and tools that have enhanced the way machines learn, reason, and
interact with the real world. As a result, Al has moved from a largely theoretical field to a practical one, with a
wide range of applications across industries.

Despite an increasing interest in Al in the construction industry, a gap remains between the potential the
technology holds and its actual implementation at scale; there appears to be more hype than practical application.

Previous research has extensively explored the technical development of Al systems for specific areas of
application, but more research is needed on the application of these systems in the construction context. More
research on system design is necessary, and roadmaps and methodologies on how this can be done in practice are
needed. This thesis explores the thematic intersection between the topics of project management, sustainability,
and Al — an intersection that, until now, has remained relatively unexplored. Bridging the research gap is believed
to help unlock the potential that AI holds for the construction industry.

The thesis addresses the following Research Questions (RQs):

e RQI: What is the current state of the field, and what are the main challenges the field is facing?
e RQ2: What are the main dimensions of Al development and deployment in a construction context?
e RQ3: How can industry actors move from ambition to practice — starting today?

The work presented in this thesis is an extended summary of the research activities carried out throughout
the PhD project period. The thesis is built on six studies and the resulting papers.

Paper I found that the biggest knowledge gap in the field is related to the practical implementation of Al
technologies, and the implications related to the scalability and robustness of these technologies. Paper II proposed
a set of effective Al-powered measures for waste reduction on construction sites and outlined relevant practical
implications. The study defined a possible approach for developing a holistic implementation framework. Paper
11T illustrated how meaningful Al-based analyses can be conducted for low-resolution construction data. In Paper
IV, the main barriers related to effective data management in the construction context were identified. Paper V
explored how Al systems can be implemented as an integral part of existing processes, rather than an add-on. In
Paper VI, Al proficiency and maturity among Al system developers, users, and implementers were assessed, and
a system level implementation framework proposed.

Current state and main challenges

The construction industry is widely considered less digitalised compared to other industries. Still, progress is
demonstrated for construction by both researchers and industry actors.

On the system level, a wide range of tools have been developed and successfully applied. However, few
report on the use of Al beyond pilots and Proof of Concepts (PoCs); most research is focused on the potential use
or technical development of AT models. On the project level, in-house or commercially available tools have been
applied to one or more activities and processes. Findings indicate that this is generally done in isolation, meaning
that next to no changes are made to how the project is planned or executed. This, in turn, means that the Al system
simply becomes an add-on. On the organisational level, many actors are talking about digitalisation and utilisation
of Al Yet, similarly to on the project level, required infrastructure is rarely established outside the group or
department responsible for the development.

Challenges found across the system, project, and organisation levels are uneven application of resources to
problems; lack of data and metadata; lack of anchoring in strategy; application work becoming too resource
intensive; gaps between the academic field and the industry; limited transferability; lack of contextualisation; and
fragmentation.

Main dimensions of implementation and integration

Findings and discussions uncovered seven main dimensions of implementation and integration of Al systems and
tools in the construction context. The dimensions are strongly interrelated and interdependent. The dimensions



are identified as data management; characteristics of the Al model; deployment; monitoring and maintenance; the
human factor; organisational structures, roles, and responsibilities; and ethical considerations.

Proposed frameworks

The proposed system level framework is built to facilitate streamlined integration with existing processes and
activities. The framework consists of seven steps: (S1) identifying the problem, (S2) assessment of feasibility,
(S3) data collection, (S4) data pre-processing, (S5) model development, (S6) integration, and (S7) maintenance
and monitoring. Fifteen sub-steps are defined, to guide the development and implementation process.

The framework for the project level is based on the NS 3467:2023 Stages and deliverables in the life cycle
of construction works (Standard Norge, 2023) and outlines relevant areas of application, stakeholder management
activities, and elements of infrastructure for each of the defined project phases.

On the organisation level, establishing data warehouses is identified as the most effective way to facilitate
sustainable development and deployment of AI — both on the system and project level. Data fetched from the data
warehouse can be used for analytics, data mining, reports, and system development.

The main contributions of the thesis can be summarised as follows:

e Bridging a gap between the fields of project management, Al, and sustainability.

e  Empirical validation and detailed descriptions of practical implications as a supplement to conceptual
theory.

e Providing a comprehensive and practically oriented overview of the current state of the field and
identify the eight perceived main challenges to hinder effective and efficient application.

e Identifying the main dimensions of Al system development and implementation.

e Proposing standardised frameworks for the system, project, and organisation level. The frameworks are
expected to contribute to increasing transparency, collaboration between stakeholders and to ultimately
increase the sustainability of the process of development and implementation.

For academics, the thesis provides a well-defined starting point with many opportunities for future research. The
thesis provides empirical validation of findings in a field that has previously been lacking empirical data and
research on implementation and performance beyond small-scale testing and PoCs.

Practitioners can gain a deeper understanding of the potential and limitations within their own practices to
take the first of many steps towards effective application of Al
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1 Introduction

This chapter presents the background, context, and purpose of the research; an outline of the research process; the
resulting papers; and the structure of the thesis.

1.1  Background

Recent years have witnessed a significant shift in the field of Artificial Intelligence (AI), with the emergence of
new techniques, algorithms, and tools that have enhanced the way machines learn, reason, and interact with the
real world (Boje et al., 2020; Darko et al., 2020). Rapid advances have led to breakthroughs in speech recognition,
computer vision, Natural Language Processing (NLP), Natural Language Generation (NLG), and cognitive
computing. As a result, Al has moved from a largely theoretical field (Pylyshyn, 1980; Russell, 1997; Russel and
Norvig, 2010) to a practical one, with a wide range of applications across industries, including healthcare (Amann
et al., 2020; Qadri et al., 2020), finance (Mhlanga, 2020; Goodell et al., 2021), transportation (Ai et al., 2020;
Singh et al., 2021), education (Chen et al., 2020; Zhang and Aslan, 2021) manufacturing (Kamble et al., 2020;
Cinar et al., 2020), and construction (Xiao et al., 2018; Pan and Zhang, 2021).

Data science is a field where no single component is new, but combinations of components are new. The
same holds true for AL Due to a change in the underlying economics that enable technological advances, data
storage has become cheaper, and processing power has increased exponentially in the last decade (Kuniavsky,
2010). At the same time, the cost of older technology decreases drastically as new technology develops without
losing its ability to process information. This development is illustrated in Figure 1-1. More recently, rapid
developments in and expansion of theoretical foundations and empirical knowledge have contributed to the
advancement of the field (Burgess, 2018; Zuhang et al., 2020). Theoretical breakthroughs in one domain have
helped to inform subsequent breakthroughs in other domains. Advances have facilitated the generation,
availability, and accessibility of new data that were previously unattainable (Burgess, 2018; Duan et al., 2019),
supported by the concepts of Big Data and the Internet of Things (IoT) (Yaqoob et al., 2016; Allam and Dhunny,
2019). This is especially significant for the construction context, as data access is identified as a key resource for
driving the transformation of construction management methodology (Xu et al., 2022).

Price per transistor

0.01
0.001
0.0001 —
0.00001 —
0.000001
Year released
0.0000001 >
1968 1970 1975 1980 1985 1990 1995 2000 2002

Figure 1-1. Per transistor cost of CPUs, 1968-2002 (Kuniavsky, 2010).

The concept of Al is broad, but it can be defined as a system or structure with ‘the ability to perform tasks
in complex environments without constant guidance by a user’ (University of Helsinki, 2018). Al is a highly
interdisciplinary field comprising elements from computer science, logic, mathematics, psychology, and
neuroscience (Torresen, 2013; Tidemann, 2023). In the construction context, Al systems can be grouped into four



categories: Machine Learning (ML) techniques, Knowledge-Based Techniques (KBTs), Evolutionary Algorithms
(EAs), and hybrid systems (Akinade, 2017).

In recent years, Al has played an increasingly important role in the construction industry among academics
and practitioners (Xiao et al., 2018; Darko et al., 2020). Areas of application include estimation and cost control
(Juszezyk, 2017); logistics, planning, and scheduling (de Soto et al., 2017; Cheng and Hoang, 2018); and project
performance and success estimation (Mirahadi and Zayed, 2016; Jaber et al., 2019). Al has demonstrated the
ability to increase sustainability in the construction industry by improving resource efficiency and optimising the
use of materials and resources (Camacho et al., 2018; Bilal et al., 2019); facilitating resource-effective off-site
construction (Wang et al., 2020); optimisation of building and construction design (Hsu et al., 2020); and
improving on-site safety (Poh et al., 2018).

Despite an increasing interest in Al in the construction industry, the adoption of the technology is still in
early stages (Momade et al., 2021), and the industry is widely considered among the least digitised industries in
the world (Abioye et al., 2021).

The construction industry has a significant impact on both the environment and society. Today, the industry
accounts for nearly 40% of worldwide energy consumption and energy-related gas emissions (Global Alliance for
Buildings and Construction, 2017), and the need for more environmentally sustainable solutions is growing
rapidly. Furthermore, construction activities contribute substantially to the social economy (Pan and Zhang, 2021).
Despite its economic importance, the industry is traditionally considered less productive (Todsen, 2018; Abioye
et al., 2021), leading to a waste of human, material, and financial resources (Pan and Zhang, 2021). Construction
projects struggle to maintain productivity and, consequently, struggle to deliver on time, cost, and quality
(Goralski and Tan, 2020; Abioye et al., 2021; Pan and Zhang, 2021).

Project management is the main tool for implementing the goals of an organisation and a project, and good
project management is therefore vital for project success (Pinto and Prescott, 1988). Achieving project success in
the construction context requires specialised skills and expertise due to the dynamic environments the projects
operate within, increasing complexity and uncertainty (Pan and Zhang, 2021).

A significant potential to increase productivity and sustainability in projects lies in the utilisation of Al
(Becqué et al., 2016; Mejlender-Larsen, 2019; Goralski and Tan, 2020; Nishant et al., 2020; Feroz et al., 2021;
Pan and Zhang, 2021). To fully utilise the potential that AI systems hold, and to do so sustainably, organisations
need a strategic approach beyond simply applying a tool (Goralski and Tan, 2020). This means that careful
planning and collaboration will be necessary. Establishing and maintaining public trust in Al technologies will
depend on inclusive, transparent, and agile governance (Abioye et al., 2021). The infrastructure surrounding Al
tools is generally perceived as an ‘add-on’ (Hagendorff, 2020). Al on its own is not a strategy, and an Al system
should be integrated with existing organisation and project infrastructure. Al can contribute to increasing
sustainability; however, it is crucial that the development and implementation of Al-based systems and tools are
also sustainable (Hagendorff, 2020; Vinuesa et al., 2020). There is an important distinction between Al for
sustainability, and Al being sustainable.

This thesis is important because it contributes to bridging a research gap in the thematic intersection of Al,
project management, and sustainability in the construction context. Further exploration of this intersection is
believed to enable actors to move effectively from ambition to practice.

This thesis addresses a research gap that can unlock the potential that Al holds for the construction industry,
and ultimately increase social, environmental, and economic sustainability (Nishant et al., 2020; Pan and Zhang,
2021). Research focusing on the practical application of Al is scarce, and research in this area could lead to
valuable contributions on both organisation and project levels — and for society in its entirety, due to significant
savings for society through improved project performance.

Although the topic of Al in construction has received significant attention, the majority of existing literature
is concerned with the technical development of Al systems for specific areas of application (Ilter and Dikbas,
2009; Martinez and Fernandez-Rodriguez, 2015; Juszczyk, 2017; Basaif and Alashwal, 2018), and more
systematic and systemic research is needed on the application of these tools in the construction management
context (Darko et al., 2020; Nishant et al., 2020; Xu et al., 2022). Previous research has indicated the potential for
Al systems throughout the entire project lifecycle (Pan and Zhang, 2021). More research on system design is
needed (Xu et al., 2022), and roadmaps and methodologies should be developed to determine how this can be
done in practice (Darko et al., 2020). Holistic frameworks facilitating collaboration between stakeholders must be
established to fully benefit from Al and minimise its associated risks (Goralski and Tan, 2020), and more research
is needed.



The research findings of this thesis should be of interest to both researchers and practitioners who are
contemplating a shift from traditional project management methods to methods supported by Al-based tools, so
that they can not only achieve increased sustainability, but also to do so in a sustainable way.

1.2 Purpose and research questions

The research conducted in this thesis aims to facilitate the utilisation of Al in construction projects, by obtaining
insights into the practical implications of implementation and integration. The purpose of the thesis is to help
move the use of Al in the construction industry from ambition and theory into practice. Thus, the overarching
objective is to bridge the gap between the theoretical potential of the development and deployment of Al systems
in construction, and the practical implementation.

To achieve this, the research objectives (ROs) of this dissertation are as follows:

e ROI1: Map previous and current uses of Al in construction projects, and map the main challenges
related to effective use.

e RO2: Assess key dimensions of the development and deployment of Al systems in construction.

e RO3: Provide a framework for industry actors to move from ambition to practice, on a system,
project, and organisation level.

To provide a holistic overview of the opportunities and challenges that lie within the increased use of Al-
based tools, the thesis maps and assesses previous and ongoing initiatives in research and industry, both nationally
and internationally. Furthermore, by examining the lessons learned in previous industry initiatives, as well as the
conceptual state-of-the-art, the thesis provides an understanding of practical implications.

The thesis addresses the following research questions (RQs):

e RQI1: What is the current state of the field, and what are the main challenges the field is facing?

e RQ2: What are the distinct stages and components involved in the development and deployment of
Al systems in the construction context?

e RQ3: How can identified challenges and dimensions be translated into actionable strategies on the
system, project, and organization level?

1.3 Research scope

The objective of this thesis was to explore the intersection between the domains of Al, project management, and
sustainability in the construction context. The scope is illustrated in Figure 1-2.

In essence, the thesis wants to explore how effective use of Al from a project management perspective can
be done sustainably, to improve sustainability in construction projects. Importantly, the emphasis on project
management functions did not exclude other aspects of construction projects in their entirety; rather, the thesis
has intended to adopt a project management perspective on construction project delivery and outcomes. To limit
the scope, strictly technical aspects traditionally related to construction engineering functions were omitted;
however, due to the inherent mutual interdependence of construction functions it is essential to provide
contextualised insights. The topic is explored on the system level; on the project level, for the entire project,
through all phases; and on the organisation level. To study the practical application of Al, theoretical findings are
applied to relevant use cases.

The thesis touches upon three very broad topics, so it became necessary to limit the scope of the studies and
the whole thesis by defining a set of criteria for limitations and exclusions. It was decided to focus on the
intersections between the three defined topics; more specifically it was decided to focus on the intersection
between technology, process, and people (for the Al dimension) and the three pillars of environmental, economic,
and social sustainability (for the sustainability dimension). As one touches upon one dimension, one does usually
touch upon one or several other dimensions, and to exclude the other topics entirely was not considered necessary
or desirable — but the three domains were chosen as the main focal points for the study.
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Figure 1-2. Trl-lgo_rretical framework for the thesis.

Investigating each dimension in the context of the other two is expected to provide an enhanced understanding of
the thematic intersection between the three for both academics and practitioners.
Each selected area of application was chosen based on an assessment of the following four dimensions:

e Availability of literature

e  Previous research

e Ongoing initiatives in the industry
e Available experts in the field

The thesis is expected to reach a diverse audience due to the multi-disciplinary relevance of the work carried
out. For instance, the methodological elements developed, and the findings of the studies, may be relevant to
individuals working with computer-aided tools, whether from an architecture or an engineering perspective, but
also to people working in the research and development of specific technologies.

The limitations of the individual studies are elaborated upon in respective papers. Another limitation of this
thesis is the access to relevant data and relevant informants; the novelty of the topic reduced the number of relevant
case projects and experts in the specific intersection. The delimitations of this thesis include all studies being built
on data and insights from experts working in the Norwegian construction industry, mainly, and Norwegian
companies. However, the methodology developed for each study, and the whole thesis, is generalisable for other
countries and industries.

1.4  Process and papers

The work presented in this thesis is an extended summary of the research activity carried out.

The research questions have been modified since the beginning of the process, as the continuous literature
review and the findings of the individual studies have emerged, providing a better understanding of the topic. The
overarching aim and objectives remained the same over the course of the process.



The thesis is built on six studies and the resulting papers, submitted to scientific journals and conferences.
As such, the aim of this thesis is to provide a comprehensive summary of the research conducted in each of the
studies, as well as the work and conducted research that binds the six individual studies together. This thesis
connects and elaborates on the contribution of each of the studies in answering the overall aim and purpose. The
studies illustrate the potential and limitations of Al systems and tools to ultimately enhance construction activities
effectively and sustainably.

All six papers were submitted to internationally recognised journals or conferences with refereeing schemes.

Figure 1-3 illustrates how the individual papers inform the defined research questions.

RQ2 ¥ Paper II :l
|: Paper III :’
[: Paper V
Paper VI ::|

RQ3
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Figure 1-3. Connections between papers and research questions.
1.5  Structure of the thesis

The structure of the thesis is described in Table 1-1.

Chapter 1 provides the introduction to the thesis and the research, describing the background and context of
the research. Chapter 2 presents a literature review of relevant research areas resulting from the initial and
continuous literature review. Chapter 3 describes the research methods and design according to the research onion
framework and reflects on research quality and limitations. In Chapter 4, the research findings of each of the
individual studies are presented and discussed. Chapter 5 connects the findings from each of the individual studies
and the theoretical foundation. Chapter 6 provides the final conclusions and reflections, answers the research
questions as defined, contributions to theory and practice, and potentials for future research.

The finalised papers are attached in the Appendix.

Table 1-1. Overview of thesis structure.
Chapter Description
Chapter 1: Introduction e Background
e  Purpose and research questions
e Research scope
e Process and papers
e Structure of the thesis

Chapter 2: Theoretical framework e Literature review and presentation of state-
of-the-art
e Research gap
Chapter 3: Research design e Description of research design according to

the research onion taxonomy

e Assessment of design

Chapter 4: Findings from individual papers e Presentation and discussion of findings from
individual studies

e  Structured according to individual papers




Chapter 5: Discussion

Presentation and discussion of thesis main
findings
Structured according to emerging themes

Chapter 6: Conclusion

Answers to research questions

Main contributions

Limitations and opportunities for future
research

Personal reflections

References

List of cited literature

Appendices

Papers I through VI




2 Theoretical framework

This chapter will present the theoretical framework resulting from an initial and continuous literature review of
the main thesis topics. Considerations related to the theory and practice of the main topics are presented. The main
topics are, as described in the introduction: project management, Al, and sustainability.

Research is lacking in the intersection between the three, but each of the three fields are thoroughly explored.
Figure 2-1 describes the basis of the theoretical framework. Some main characteristics from the field of project
management that are of importance for the research conducted in this thesis are presented. Concepts related to
change management on the organisational level and construction management on the project level are explored.
The concept of Al and a categorisation framework for different types of Al in the construction context are
introduced, categorising Al-based techniques and systems as ML, Knowledge-Based Systems (KBSs),
evolutionary systems, or hybrid systems. The chapter further discusses some key considerations and practical
implications of utilising AI according to the technology, process, and people perspectives. Some implications of
economic, environmental, and social sustainability in projects and for the use of Al are discussed.

In the final section of the chapter, a research gap is identified based on the findings from the literature review.

Artificial intelligence Project management

Technology

People Organisation
level

Figure 2-1. Basis for the theoretical framework.
2.1  Project management

The Project Management Institute (PMI) defines a project as ‘a temporary endeavour undertaken to create a unique
product, service, or result” (PMI, 2021). For the purpose of this thesis, ‘project management’ will refer to the
management of projects both on the organisational level, and on the construction project level.

Every project is undertaken for a specific purpose, and the ultimate goal of every project is value creation
(Johansen et al., 2019). The primary objective in project management is to deliver a product or service that meets
or exceeds a set of predefined requirements and expectations within time, cost, and quality constraints. The three



dimensions of time, cost, and quality are traditionally used to measure and indicate project success, and these are
commonly referred to as ‘the iron triangle’ (Rezvani and Khosravi, 2018).

Projects are normally divided into phases. PMI (2021) outlines five phases of a project: definition (initiation),
design (planning), development (execution), deployment (monitoring and controlling), and departure (closing).
The five phases are illustrated in Figure 2-2. More specific frameworks are developed, tailored to certain national
industries. Among these are The Royal Institute of British Architects (RIBA) Plan of Work in the UK construction
industry, and the NS 3467:2023 Stages and deliverables in the life cycle of construction works in the Norwegian
construction industry (Standard Norge, 2023).

Level of activity

A

\ Closing

T t f
Definition Design Development Deployment Departure Finish

Figure 2-2. Five phases of a project (PMI, 2021).

The field of project management has evolved significantly over the years, with new methodologies, tools,
and technologies emerging. The approach to project management can strongly depend on the characteristics of
the project in question (Hussein, 2016).

2.1.1  Organisation level

For effective digital transformation, innovation on the organisation level is equally important as technological
innovation (Xiahou et al., 2022).

Project management is a key component in change management. Change management refers to the tools,
processes, and techniques used to manage and facilitate change within an organisation (Cameron and Green,
2015). Technologies, requirements, and industries are changing rapidly, meaning that organisations must be able
to utilise these new technologies (Burgess, 2018). In a ‘change team’, team members should be gathered from
representative parts of the organisation (Cameron and Green, 2015).

The Lewin Model of Change (Lewin, 1951) is widely used in the change management context, and involves
three stages: unfreeze, move (or change), and refreeze (Cameron and Green, 2015), and is intended to facilitate
an iterative change process (Burnes, 2019). The first stage, unfreezing, involves preparing for the desired change;
the second stage implements the desired change; lastly, the refreezing stage solidifies the desired change as new
behaviours are reinforced and integrated. Figure 2-3 shows the iterative Lewin Model of Change.

Hao et al. (2008) propose a modified model specifically for the construction context: (1) identify changes,
(2) evaluate and propose changes, (3) approve changes, (4) implement changes, (5) analyse changes.
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Solidifying the desired change
Figure 2-3. Lewin model of change (Lewin, 1951).

2.1.2  Project level

Construction management is a subfield of project management, which focuses on the planning and execution of
construction projects. The construction industry is one of the largest sectors, nationally and internationally, and
has a significant impact on environment and economy (Abioye, 2021). Construction projects are susceptible to
change due to their complexity, duration, magnitude, number of stakeholders, and reliance on external factors.
Changes in design, scope, materials, and regulations are common, and can have a significant impact on cost,
schedule, and quality (Hao et al., 2008; Pan and Zhang, 2021).

Specific frameworks are developed from the PMI framework and tailored to certain national industries. For
instance, the RIBA Plan of Work in the UK construction industry, or the NS 3467:2023 Stages and deliverables
in the life cycle of construction works in the Norwegian construction industry. Figure 2-4 shows the relationship
between the three frameworks.
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Figure 2-4. Project phase frameworks.

According to the NS 3467:2023 2023 Stages and deliverables in the life cycle of construction works, phase
one (P1) Strategic definition includes identifying needs, goals, ambitions, and business constraints (Standard
Norge, 2023). The phase consists of prioritisation of markets, projects, and implementation capabilities, as well
as market assessments and evaluations. Deliverables from this phase are market assessments and evaluations to
identify potential opportunities and challenges. Phase two (P2) Program and concept development includes the



development of initial project plans and frameworks and the establishment of project requirements and objectives.
At the conclusion of this phase, preliminary management documents describing the project objectives and
requirements are developed. In phase three (P3) Development of selected concept, project plans and frameworks
are refined and verified, and the development of detailed construction plans and specifications is initiated.
Deliverables are preliminary construction plans, specifications, and design documents. Phase four (P4) Detailed
design includes necessary detailing and concretisation of the project, clarification of project requirements and
construction methods. It also includes the mobilisation of construction teams and resources. At the end of the
phase, the work is summarised in construction and production documents. Phase five (P5) Production and delivery
may be the most compound phase of the framework, comprising a wide range of activities, including: management
of construction, production, and delivery teams; control of physical construction and installation; delivery of
project outcomes according to defined objectives and frameworks; and systematic completion and closeout of the
project. Deliverables include the physical construction and installation outcomes, along with documentation and
performance measures. The main goal of phase six (P6) Handover and commissioning is to ensure that the project
has been completed according to the order. This involves the implementation of necessary corrective actions for
defects or deficiencies, and the finalisation of contracts and agreements. The phase concludes with final process
evaluations and settlements. Phase seven (P7) Use and management involves optimisation of project operations
and maintenance, alongside testing and evaluation of project performance according to contracts. The main
deliverable from this phase is completion of warranty responsibilities. In the final phase, (P8) Termination, the
main objective is to ensure that the building is terminated in the most sustainable way. This can include the
disposal of property or assets and the conclusion of contractual obligations. At the end of the phase, complete
documentation for the disposal or transfer of assets is compiled.

Recent developments show a trend towards larger and more complex construction projects (Whyte et al.,
2016; Fischer et al., 2017). This is likely to increase the need for building and defining more effective, efficient,
and sustainable processes and frameworks, increasing interaction between project actors across the value chain
and enabling productive and constructive exchange of information. Previous research indicates the potential for
Al systems throughout the entire project lifecycle (Pan and Zhang, 2021).

The construction industry is under pressure to reduce project delivery time and costs, while maintaining
quality in an environment that is becoming increasingly complex. For a long time, the industry has been considered
less digitally mature compared to other industries, such as manufacturing, finance, and healthcare; however, the
maturity level is now seen to indicate the progression towards an increased capability to evaluate and implement
digital technologies (Wernicke et al., 2021).

2.1.3  Digital maturity

Adeptly managing digitalisation in projects is becoming increasingly important in order to improve efficiency and
sustainability, ensure project success, and stay competitive (Aliu et al., 2023).

The Adoption Innovation Curve is a model used to represent the rate at which new technologies are adopted
by a given population over time (Rogers, 1995). The Adoption Innovation Curve places adopters into one of five
categories: (1) innovators, (2) early adopters, (3) early majority, (4) late majority, and (5) laggards. The Adoption
Innovation Curve is illustrated in Figure 2-5. Rogers (1995) notes that those who adopt early, groups (1) through
(3) can be characterised as more ‘venturesome’ and are less risk averse. Late adopters are risk averse, possibly
due to being less able to financially withstand a failure (Rogers, 1995).

Proportion of adopters

Innovators.
Early Early Late

adopters majority majority Laggards

Time

Figure 2-5. Adoption Innovation Curve (Rogers, 1995).
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Actors in the construction industry are often thought to be ‘late majority’ and ‘laggards’ in the adoption of
digital tools (Ayinla and Aadamu, 2018). Bosch-Sijtsema et al. (2021) assessed 11 digital technologies portrayed
in future trend reports and hype curves for the construction industry, and this assessment found that the
construction industry is currently behind the traditional Gartner Hype Cycle of emerging technologies, when
compared with other industries. The Gartner Hype Cycle (Fenn, 1995) is a graphical representation of maturity,
adoption, and application of emerging technologies in any given environment or industry. The Hype Cycle is
illustrated in Figure 2-6.
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Figure 2-6. The Gartner Hype Cycle (Fenn, 1995).

Bosch-Sijtsema et al. (2021) note that the construction industry is currently behind the traditional Gartner
Hype Curves, and they define four ‘zones’ for digital technologies in the construction industry: confusion,
excitement, experimentation, and integration. In the 2022 Gartner Hype Cycle, accelerated automation of Al was
identified as one of three main emerging themes (Gartner, 2023).

The adoption of digital technologies, and specifically Al-powered tools, is believed to hold the potential to
enhance the construction industry, and how the industry approaches challenges related to sustainability, health
and safety, risk assessment, planning and scheduling, strategy, project performance, cost control, and calculations
for operations and lifecycles (Hossain and Nadeem, 2019). However, assessments of the construction industry
status suggest that the industry has yet to achieve the desired level of maturity.

2.2 Artificial intelligence

The concept of Al is broad; a wide range of definitions exist and have evolved over time.

The term Al was originally coined by Stanford Professor John McCarthy in 1955, as ‘the science and
engineering of making intelligent machines’ (Stanford University, 2020). McCarthy (2007) elaborated on this
definition, describing Al as ‘the science and engineering of making intelligent machines, especially intelligent
computer programs’ noting that ‘it is related to the similar task of using computers to understand human
intelligence, but Al does not have to confine itself to methods that are biologically observable’. Winston (1992)
defines Al as ‘the study of the computations that make it possible to perceive, reason, and act’. Similarly, Russell
and Norvig (2010) present four categories of Al definitions. The four categories base the definition of Al on the
ability of a system to think humanly, think rationally, act humanly, or act rationally, noting that ‘historically, all
Jfour approaches to AI have been followed’. Recent definitions also emphasise the ability of machines themselves
to learn, rather than just mimicking human behaviour (Stanford University, 2020). The University of Helsinki
published the course Elements of Al in 2018 in an effort to make AI more accessible and comprehensible for the
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general public, defining Al as a system or a structure that has “the ability to perform tasks in complex environments
without constant guidance by a user’ (University of Helsinki, 2018).

One single definition of Al is currently lacking. The field of Al is constantly evolving, and different
industries and environments refer to different sets of definitions. As the boundaries of Al technologies continues
to expand, so does the diversity of its applications.

The field is highly interdisciplinary and is comprised of elements from a wide range of fields, including
computer science, logic, mathematics, psychology, and neuroscience (Terresen, 2013; Tidemann, 2023).

As mentioned in the introduction, the technology-process-people framework was used as the basis for the
Al dimension. The framework is widely used for analysing and improving organisation and project performance,
especially in the context of technology-driven initiatives (Gu and London, 2010; Forbes and Ahmed, 2020). The
three perspectives of the framework and the intersections between them are illustrated in Figure 2-7.

Technology

Automation Analysis

Collaboration I > Synergy

Figure 2-7. The three perspectives of the technology-process-people framework.
2.2.1  Technology

The technology perspective is related to the tools, systems, and technical infrastructure used within a project or
organisation. Technology should be designed with the user in mind (Barlett-Bragg, 2017), and to enable
streamlined integration with existing processes.

Al technology is believed to facilitate an increase in productivity throughout the entire construction project
lifecycle, ultimately improving the sustainability of environmental, economic, and social factors (Blanco et al.,
2018; Oprach et al., 2019; Wang et al., 2020). The use of AI has increased in the field of construction engineering
and management in recent years (Xiao et al., 2018), mainly due to the potential it holds for the industry.

Al is a part of a bigger digital shift reaching construction sites, more commonly referred to as Construction
4.0. Technologies contained within the framework of Construction 4.0 include a wide range of areas of application
and groups (Forcael et al., 2020; Perrier et al., 2020; Sawhney et al., 2020), such as cloud-based systems, Building
Information Modelling (BIM), sensors, robotics and automation, smart equipment, IoT, Big Data and analytics,
blockchain, additive manufacturing, etcetera.

10T refers to the interconnection of physical objects through embedded sensors and network connectivity,
allowing for real-time data collection, analysis, and control (Al-Fuqaha et al., 2015). IoT is expected to contribute
to bridge diverse technologies to ultimately enable new applications. Big Data refers to the vast amounts of both
structured and unstructured data that are generated by various sources (Chen et al., 2014). Compared to traditional
datasets, Big Data is typically mainly constituted by masses of unstructured data. It is believed that Big Data will
have large social and economic impacts and contribute to cross fusion of science (Chen et al., 2014).

Al already has, and has had, multiple areas of application in the construction industry, including estimation
and cost control (Cheng et al., 2009; Cheng et al., 2015; Shin, 2015; Juszczyk, 2017; Elmousalami, 2019; Yaqubi
and Salhotra, 2019; Juszczyk et al., 2019; Juszczyk and Lesniak, 2019; Bilal and Oyedele, 2020; Cheng et al.,
2020; Juszezyk, 2020); logistics, planning, and scheduling (Golparvar-Fard et al., 2015; Podolski, 2016; Xing et
al., 2016; de Soto et al., 2017; Camacho et al., 2018; Cheng and Hoang, 2018; Dawood et al., 2019; Hu and Castro-
Lacouture, 2019); strategy (Mousavi et al., 2015; Kog and Yaman, 2016; Sharafi et al., 2018; Taherdoost and
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Brard, 2019; Fallahpour et al., 2020); health and safety (Ayhan and Tokdemir, 2018; Goh et al., 2018; Poh et al.,
2018; Han et al., 2020; Nnaji and Karakhan, 2020; Xu et al., 2020); project performance and success estimation
(Gudauskas et al., 2015; Hajdasz, 2015; Mirahadi and Zayed, 2016; Hanna et al., 2018; Jaber et al., 2019;
Vickranth et al., 2019; Nguyen et al., 2020); design optimisation (Liu et al., 2015; Rodriguez-Trejo et al., 2017);
and risk and safety monitoring and management (Pruvost and Scherer, 2017; Samantra et al., 2017; Zou et al.,
2017; Goh et al., 2018; Poh et al., 2018; Basaif et al., 2020; Han et al., 2020; Xu et al., 2020), among others.

In the construction context, Al systems can be grouped into four categories (Akinade, 2017): ML, KBTs,
EAs, and hybrid systems.

Machine learning

ML algorithms can learn from data (Tidemann, 2023). ML is a term that is used for a range of techniques, deducing
rules from the datasets the system is trained on. The techniques are based on statistical models, and the aim of the
systems is to find patterns in large amounts of data, so that the machine can learn (Tidemann and Elster, 2022).
ML techniques are commonly divided in three subcategories: supervised learning, unsupervised learning, and
reinforcement learning (Russell and Norvig, 2010).

Supervised learning teaches the system, the machine, to understand that a certain input can predict a certain
output (Russell and Norvig, 2010). It is the most common form of ML (Tidemann, 2023). In supervised learning,
labelled datasets are used to train algorithms; the input data is labelled with corresponding outputs or target
variables (Russell and Norvig, 2010). The goal is to predict the output for new, unseen data, after learning to
identify patterns and relationships between input and output variables. Tidemann and Elster (2022) use the
example of distinguishing dogs from birds. Dogs have four legs, while birds have just two. In addition, birds have
wings, and dogs do not. When presented with a picture of a four-legged animal, the model identifies this as a dog.
If the animal in the picture has only one pair of legs and a pair of wings, it is likely to be a bird. This is an example
of a classification challenge (Tidemann and Elster, 2022). If the aim of the model is to estimate the size of the
animal, it would be a regression challenge.

In unsupervised learning, there are no defined labels or outputs. The task is for the algorithm itself to identify
patterns or structures in the input data (Tidemann and Elster, 2022). Clustering is the detection of potentially
useful clusters of input examples and is the most common unsupervised learning task (Russell and Norvig, 2010).
From this, the algorithm learns to identify anomalies or outliers. This ability makes the unsupervised approach
good for anomaly detection or dimensionality reduction. Data visualisation can be considered as a form of
unsupervised learning.

Reinforcement learning is commonly used in cases where a system is required to operate in an environment
that provides feedback about good or bad choices, with some delay (University of Helsinki, 2018). The model
interacts with the environment and receives feedback in the form of rewards or penalties. The form these might
take depends on the environment. Russell and Norvig (2010) use the example of a system playing chess. A win is
rewarded with two points, indicating that the system made good choices. It is up to the system itself to determine
the actions that ultimately led to this reinforcement (Tidemann and Elster, 2022). The strength of reinforcement
learning lies within scenarios where there are many ways to reach a desired goal.

In practice, the three types might not be as easy to distinguish (Russell and Norvig, 2010); an example of
this is semi-supervised learning (University of Helsinki, 2018), that is partly supervised and partly unsupervised.

Artificial Neural Networks (ANNs) are a type of algorithm that can be used for ML. ANNs mimic the human
brain, and are a collection of units, or neurons, that receive and transmit signals (University of Helsinki, 2018).
The properties of the neural network are determined by the characteristics and topology of these neurons (Russell
and Norvig, 2010). Deep Learning (DL) is a subset of ML based on ANNs with multiple layers (Tidemann, 2023).
With every layer, the computational capabilities of the system increase. The increased capabilities allow the
network to learn more complex structures with realistic amounts of data (University of Helsinki, 2018). DL can
be supervised, unsupervised, or reinforced.

The main limitation of ML techniques is the lack of technical justification for results and decisions (Akinade,
2017), as ML algorithms can act like ‘black boxes’ (Abioye et al., 2021).

Figure 2-8 summarises the relationship between the concepts of Al, ML and DL.
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Figure 2-8. The relationship between Al, ML, and DL.

In the construction industry, ANNs, support vector machines, and fuzzy logic seem to be the most widely
used ML techniques (Irani and Kamal, 2014; Akinade, 2017).

In the construction context, ML algorithms have been used for profit margin estimation (Bilal and Oyedele,
2020), construction site accident classification (Cheng et al., 2020), building life cycle assessments (Hong et al.,
2020), clash relevance prediction (Hu and Castro-Lacouture, 2019), automated progress monitoring (Golparvar-
Fard et al., 2015), on-demand site monitoring (Rahimian et al., 2020), automated classification of documents
(Caldas et al., 2002; Fang et al., 2020; Hassan and Le, 2020), estimation of construction cost (Cheng and Hoang,
2014), and delay risk reduction (Gondia et al., 2020), among others.

Knowledge-based systems

KBSs mimic the problem-solving expertise of humans to identify solutions to complex problems in very specific
domains (Sowa, 2000). Frequently utilised KBS approaches include expert systems, Rule-Based Systems (RBSs),
case-based reasoning, and semantic networks (Akinade, 2017).

Expert systems mainly exhibit pre-programmed behaviour (Tidemann, 2023). Expert systems thrive in
standardised and predictable environments, such as chess. Rule-based approaches are built on logical RBSs, with
an added ‘fudge factor’ to accommodate uncertainty (Russell and Norvig, 2010). Case-based reasoning involves
solving new problems by applying solutions to previously encountered problems; this logic is based on the idea
that similar problems will have similar solutions.

The strength of KBS lies within the strong explanation abilities they hold (Akinade, 2017; Abioye et al.,
2021). Still, they lack the ability to learn and discover knowledge over time.

Evolutionary algorithms

EAs are based on the concept of biological evolution (Russell and Norvig, 2010), and are a form of optimisation
algorithm inspired by the process of natural selection. EA techniques optimise factors and possible scenarios to
find the most suitable outcome, by generating new solutions over multiple ‘generations’ (Dasgupta and
Michalewicz, 1997). EA can cover broad territory, from Genetic Algorithms (GAs) to ant colony optimisation,
particle swarm optimisation, and artificial bee colonies (Akinade, 2017).

In the construction context, EA are commonly used for optimisation problems, such as scheduling, resource
allocation, and layout design.

Compared to the other groups of techniques, these algorithms require relatively little domain-specific
information, and are easy to implement (Akinade, 2017); however, the heuristics are difficult to generalise.

Hybrid systems

Hybrid systems combine two or more Al approaches to maximise the strengths and overcome the weaknesses of
individual approaches (Russell and Norvig, 2010). Hybrid systems can be categorised according to architecture
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as stand-alone, transformational, hierarchical, or integrated (Akinade, 2017). Hybrid systems could be complex
to design and implement but allow the construction of synergetic solutions to specific problems.

There appears to be an increase in the application of hybrid models in construction in recent years (Xiao et
al., 2018; Momade et al., 2021). This could suggest increased use of more compound systems as the technology
and the industry develop, as hybrid systems can solve more complex tasks than any single system (Akinade, 2017).

2.2.2  Process

In the context of Al, the process perspective is related to the way Al systems are implemented and integrated into
existing procedures, protocols, and workflows established within an organisation or project. Organisation or
project infrastructure must facilitate the effective use of Al to be sustainable long-term (Burgess, 2018; Vinuesa
et al., 2020; Xu et al., 2022). There is no doubt that Al in recent years has created massive hype, demonstrated
impressive potential, and generated an even more impressive interest in the topic. In practice, there is a wide range
of practical implications associated with the implementation of Al-based tools from the process perspective
(Wooldridge and Jennings, 1995; Burgess, 2018; Dwivedi et al., 2021).

Some key challenges in the sustainable process perspective are related to data management and governance,
and cyber security (Agrafiotis et al., 2018; Al-Ruithe et al., 2018; Burgess, 2018; Ghosh et al., 2018; Abraham et
al., 2019; Vinuesa et al., 2020).

In the construction management context, data collection and sharing are among the central process-oriented
challenges associated with the increased use of AI (Burgess, 2018; Xu et al., 2022); data is identified as one of
the key resources for driving the transformation of construction management methodology (Xu et al., 2022).

Data governance refers to the roles, policies, and frameworks that are put in place to manage the collection,
storage, and utilisation of data (Ladley, 2020). In the context of Al, governance refers to the roles, policies, and
frameworks that are put in place to manage the development, deployment, and continued use of Al systems. The
aim is for Al systems to be utilised ethically, responsibly, and sustainably. Al needs to be supported by the
necessary regulatory insight and oversight for Al-based technologies to enable effective and sustainable
development and deployment (Burgess, 2018; Vinuesa et al., 2020).

Data governance includes exercising authority and control over the management of data to increase its value
and minimise associated costs and risks (Abraham et al., 2019). Al-Ruithe et al. (2018) argue that more disruptive
technologies will require more extensive data governance strategies and programs. Abraham et al. (2019) define
six dimensions of data governance: governance mechanisms, organisational scope, data scope, domain scope,
antecedents, and consequences of data governance.

Al-Ruithe et al. (2018) classify the challenges associated with the implementation of cloud data governance
as mainly technological, legal, and business related. Technological challenges include security, privacy and data
protection, availability, performance, data classification (caused by the lack of classification frameworks for data
based on sensitivity), and data migration (between systems). Legal challenges are related to compliance with
regulations, and statutory, regulatory, and legal requirements between industries and jurisdictions. Organisational
challenges are related to the characteristics of an organisation, such as top management support, organisation size,
and digital maturity (Al-Ruithe et al., 2018; Abraham et al., 2019).

Cyber security measures should be related to all three categories. As technology is rapidly advancing, the
threat landscape of cyber-attacks is changing (Agrafiotis et al., 2018). Cyber security aims to protect both devices
and services of unauthorised access from within the devices and externally; and to protect the services, hardware
resources, information, and data — both in transition and storage (Ghosh et al., 2018). By extension, cyber security
can refer both to the security of a system itself and the people involved in the development or deployment of a
system. Li (2018) notes that, on one hand, Al technologies and tools can be used to improve cyber security, by
constructing smart models for implementing malware classification and intrusion detection. On the other hand,
Al systems are likely to face cyber threats themselves. In a field that is ever-changing, new threats emerge just as
quickly; cyber security is a field that requires ongoing attention and investment.

A range of technologies exists to improve security, including cryptographic systems, firewalls, intrusion
detection systems, anti-malware software and scanners, and secure socket layers (Ghosh et al., 2018). Successful
cyber security relies not only on technology and technical tools, but on well-defined risk management strategies,
with well-trained and well-informed personnel, policies, and procedures.



2.2.3  People

The perspective of people is related to the human resources of the organisation, their skills, knowledge, attitudes,
and behaviours. Recruiting, training, and building talent and competence are key.

In the context of Al, the people perspective is associated with challenges related to collaboration, lack of
trust and transparency, and ethical considerations (Dignum, 2017; Burgess, 2018; Dignum, 2018; Politou et al.,
2018; Sjastad, 2019; Abioye et al., 2021; Xu et al., 2022).

More collaboration is needed for the continued progress of Al in construction management (Xu et al., 2022).
There is a talent shortage in the contextual intersection between Al and construction (Abioye et al., 2021), and
interdisciplinary collaboration between construction experts and Al experts is considered necessary to continue
to drive the field forward. Collaboration is needed to generate solutions that can effectively meet the demands of
the construction industry. Involvement is essential to establish a sense of ownership.

Explainability of Al systems is another challenge (Abioye et al., 2021). Many Al systems, and especially
ML models, are largely black-box systems. This means that the input and output of the system is observable to a
user, but the process within the system is not transparent. This can lead to a lack of trust in the system (Sjastad,
2019; Abioye et al., 2021), and ultimately, aversion. Aversion refers to the negative attitudes or perceptions that
individuals or groups hold. Sjastad (2019) defines the topic of ‘algorithm aversion’ as the tendency to prefer a
human decision despite knowing that data-driven algorithms hold a higher degree of accuracy. Sjastad (2019)
presents four possible psychological explanations: (1) exaggerated trust in human experts, (2) different weighting
of machine-made errors versus human errors, (3) social needs and (4) the fear of lost individuality. When
measuring the perceived success of a system, the perception seems to be that the machine performance is
compared to zero mistakes — rather than the human number of mistakes (Sjéstad, 2019).

Understanding the sources and nature of aversion against Al is important for developing strategies to address
the underlying concerns and build long-term trust in the technology. Among the factors that can improve trust in
Al systems are transparency, verifiability, and robustness of a solution (Belle, 2023). These factors are closely
related to ethical challenges that are encountered.

As the capabilities for autonomous and Al-based decision-making evolve, an important issue to consider is
the ethical impact caused by these systems. Dignum (2018) notes that ethical considerations and implications of
Al systems have several levels: Ethics by design (the integration of ethical reasoning capabilities when the system
is built); ethics in design (regulatory and engineering methods that support the analysis and evaluation of ethical
implications as Al systems replace traditional social structures); and ethics for design (the standards that ensure
the integrity of developers and users in research, design, construct, employment and management of Al systems).

Some key considerations related to ethics in design are privacy, bias, accountability, and transparency
(Dignum, 2017; Burgess, 2018; Dignum, 2018; Politou et al., 2018).

In 2015, the European Union (EU) voted to implement the General Data Protection Regulation (GDPR) to
replace the Data Protection Directive (DPD) from 1995. The aim was to give the people of the EU better control
over their own personal data. The main data protection principles in the GDPR are revised but are based on the
principles set out in DPD: fairness, lawfulness, and transparency (Article 5(1)(a)); purpose limitation (Article
5(1)(b)); data minimisation (Article 5(1)(c)); accuracy (Article 5(1)(d)); storage limitation (Article 5(1)(e));
accountability (Article 5(2)); integrity and confidentiality (Article 5(1)(f)) (Politou et al., 2018).

Informed consent can be said to have been given based on an understanding of the facts, implications, and
consequences of the consent (Politou et al., 2018). Privacy by design principles include concepts such as data
minimisation, purpose limitation, control, and transparency (Politou et al., 2018). Data minimisation is the practice
of collecting and processing only the minimum amount of data necessary for a specific purpose. Purpose limitation
is a principle that requires personal data to be collected and processed only for specific purposes, and it requires
that the data is not used for any purpose that is incompatible with the purpose for which it was originally collected
(Politou et al., 2018).

As Al is becoming more widely used for decision-making in many industries, the concept of algorithmic
bias becomes increasingly important. Bias in the context of Al refers to the potential for algorithms to produce
unfair or discriminatory results. This can occur when the data used to train the system is biased, or certain
characteristics of the algorithm promote bias. The main reason for algorithmic bias is human bias in the data the
algorithm is built upon (University of Helsinki, 2018). Bias can manifest in a variety of ways, including inaccurate
or discriminatory predictions, underrepresentation, or overrepresentation (Belle, 2023).

Accountability can refer to the responsibility of individuals and organisations for the decisions and actions
of the Al systems they develop and deploy. Accountability can be guaranteed, at least to some extent, through
ensuring explainable, ethical, and transparent processes and systems. Dignum (2018) argues that responsibility
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should be considered one of the fundamental stances underlying Al research and autonomy. Transparency means
openness regarding data collection and processing practices; in the context of GDPR, this includes the types of
personal data that are collected, the purposes for which the data is processed, and any third parties with whom the
data might be shared.

Loukides et al. (2018) define five framing guidelines to help maintain an ethical approach when building
data products: consent, clarity, consistency (for trust), control (and transparency), and consequences (and harm).
The guidelines should not only dictate the work of the designer but the entire organisation (Loukides et al., 2018).
For the development and deployment of Al systems to be sustainable long-term and short-term, each consideration
needs to be addressed.

2.3 Sustainability

The goal is not only for a process to produce a sustainable outcome — but also for the process to be sustainable.

Sustainability is defined along three dimensions: environmental sustainability, economic sustainability, and
social sustainability; the three pillars are illustrated in Figure 2-9. Sustainable development refers to a development
meeting the needs of the present generations, without compromising the ability of future generations to meet theirs
(Tjernshaugen, 2022). Goralski and Tan (2020) argue that the academic community has an important role in
preparing future management to address the opportunities and challenges Al represents.

Environmental

Bearable Viable

Equitable S > Sustainable

Figure 2-9. The three pillars of sustainability.
2.3.1  Economic sustainability

The economic pillar, in short, emphasises the importance of profitability for a company or organisation to maintain
its sustainability. Economic sustainability is concerned with the stability of economic systems and the creation of
systems that promote sustainable development and inclusive growth. The economic pillar is not to be seen as
advocating profitability at any cost, but rather as a practical approach that serves as a counterbalance to potentially
unrealistic measures represented in the context of the two remaining pillars. For the construction industry,
maintaining economic sustainability could mean an increase in margins, making choices that ensure a long-term
return on investments, and measuring short-term effects against long-term effects upon investment (Akadiri et al.,
2012). The construction industry represents a significant contributor to national and international economies and
is therefore able to affect the long-term viability and stability of economic systems; ultimately, it can help create
economic and social systems that promote sustainable development and inclusive growth.

The construction industry is a significant contributor to the overall economy (Akadiri et al., 2012; Pan and
Zhang, 2021). In the construction context, economic sustainability can relate to improved project delivery and
increased profitability and productivity (Halliday, 2007; Shen et al., 2010). Despite the perceived attention to
environmental sustainability, previous research shows that economic factors are more considered than social and
environmental factors in construction project feasibility studies (Shen et al., 2010). Holistic frameworks should
incorporate all three pillars of sustainability in equal measure.



Al can contribute to producing economically sustainable outcomes, through estimation and cost control, and
increasing productivity in logistics, planning, and scheduling. For the development and deployment of Al to be
sustainable, more work is needed. High initial costs are identified as one of the key areas affecting the adoption
of Al in construction (Abioye et al., 2021). However, not all Al applications require large additional costs
(Golvarparvar-Fard et al., 2015). This indicates a need for frameworks facilitating a more economically viable
approach to the use of Al to enable the scaling of systems.

2.3.2  Environmental sustainability

The environmental pillar is currently receiving the most attention in the construction context (Shen et al., 2010;
Lima et al., 2021). A growing number of companies and organisations are working to maintain a so-called ‘green
profile’ and to ultimately reduce their carbon footprints. Thus, environmental sustainability is concerned with the
long-term viability and health of natural systems, as well as the development and implementation of policies and
practices that promote sustainable resource use and conservation.

The United Nations (UN) Department of Economic and Social Affairs has defined Sustainable Development
Goals (SDGs) (United Nations Department of Economic and Social Affairs, 2023) aimed at ending poverty,
reducing inequality, spurring economic growth, and halting climate change by 2030. During this work towards
the SDGs, numerous agreements have been formed, including the Paris Agreement, aiming to provide a
framework to avoid dangerous climate change, and to equip nations worldwide with the ability to deal with the
impacts of climate change (United Nations Department of Economic and Social Affairs, 2023). Nationally, The
Norwegian Ministry of Climate and Environment has defined 23 environmental goals, six of which relate to
emission reduction and climate neutrality. Despite the ongoing green shift, reports indicate that the transition must
happen faster if Norway is to achieve its climate goals.

In 2021, 48.9 million tons of CO2 equivalents were emitted from Norwegian territory, and the construction
sector is a significant contributor to both direct and indirect emissions (SSB, 2022). The construction industry
purchasing power has a major impact on emissions from industry, transport, energy production, and waste.
Transport to and from the construction site is identified as one of the key sources of direct emissions in the sector,
with estimates suggesting that greenhouse gas emissions from the construction site can be reduced by almost 99%
(Energi Norge, Norsk Fjernvarme, Bellona and Enova SF, 2017).

The construction industry plays a critical role in shaping the built environment and driving economic growth,
nationally and internationally. The complexity of each project creates challenges for effective communication and
coordination, and ultimately for creating sustainable and safe construction projects (Pan and Zhang, 2021). The
industry has a significant impact on the environment and society; today, construction is accountable for nearly
40% of worldwide energy consumption and energy-related gas emissions (Global Alliance for Buildings and
Construction, 2017) and the need for more sustainable solutions is growing swiftly.

For the construction industry, maintaining environmental sustainability could mean contributing to waste
reduction, reduced consumption of natural resources, reduced emissions, and definition of requirements and
certifications that support SDGs nationally and internationally. Al has been shown to hold potential within these
areas and can help expand traditional environmental governance (Nishant et al., 2020).

2.3.3  Social sustainability

The pillar of social sustainability can refer to the people inside and outside an organisation (Akadiri et al., 2012).
Internally, for the project organisation, sustainability can mean a safe workplace with a good working environment
that systematically works to prevent and avert health and safety issues among employees (Halliday, 2007; Shen
etal., 2010; Akadiri et al., 2012). A good working environment on the construction site can contribute to ensuring
the health of employees and promoting a better quality of life. Externally, social sustainability can mean
maintaining support from stakeholders outside the organisation, such as clients, other partners, or society in
general. Social sustainability is thus concerned with the resilience of social systems, as well as the development
of policies and practices that promote social well-being and human flourishing.

In the construction context, maintaining social sustainability, in summary, could mean protecting the health
and safety of workers, risk management, choosing projects that long-term will create value for society as a whole,
and conducting projects in a manner that does not harm or limit the proximate community in any way, short-term
or long-term (Halliday, 2007; Shen et al., 2010; Akadiri et al., 2012).

Al systems and tools can contribute to the proactive support of health and safety measures on-site, and risk
management. For Al to be sustainable from the social perspective, Al ethics should focus on both technical details
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and social aspects (Dignum, 2017; Dignum, 2018; Hagendorff, 2020). This could mean creating connections
between abstract ethical principles and the practical application of Al. Systematically increasing explainability
and transparency in Al systems can contribute to increased trust in the tools and the potential they represent
(Abioye et al., 2021).

2.34  Recent developments

More and more companies are putting the SDGs on their agendas, and an increased focus on sustainability can
bring benefits in the form of increased competitiveness. An investigation conducted by Grenn Byggallianse and
Hegskolen i Ostfold (2019) deals with the perceived added value of green buildings among owners, tenants, and
investors in construction projects. In the survey, over 80% of respondents considered the increased focus on
sustainability to add value to projects. The following indicators of perceived value were used: increased turnover;
increased rental income; increased interest from potential tenants; reduced operating costs; reduced risk of meeting
future regulatory and user requirements; reduced risk of technical quality; and improved reputation.

Actors that best adapt to the climate challenge are expected to do best in competition in the coming decades.
By participating in the transition to a low-emission society, companies can create a competitive advantage.

Digital technology is widely accepted as a valuable tool to increase sustainability in construction and has
been proven to contribute to timely delivery, improved information flows, improved efficiency of operations, and
improved return on investments (Kineber et al., 2023a). Similarly, a significant potential is seen in the utilisation
of Al-based tools and techniques (Goralski and Tan, 2020; Nishant et al., 2020; Feroz et al., 2021; Pan and Zhang,
2021). However, the construction industry has yet to see the same shift as other industries.

As the use of Al systems is becoming more prominent in the construction industry, there is a need for more
research on how Al can be developed and deployed sustainably.

2.4  Summary and research gap

This chapter has explored the existing theoretical foundation of the main topics of this thesis: project management,
Al and sustainability. All three topics have an extensive body of knowledge on their specifics.

Extensive research has been conducted in the domain of making construction processes and projects more
effective, productive, and sustainable, and concepts related to adoption and innovation are thoroughly explored
(Fenn, 1995; Rogers, 1995; Ayinla and Adamu, 2018; Bosch-Sijtsema et al., 2021; Wernicke et al., 2021). A range
of frameworks and methodologies exist and have evolved over the years (Lewin, 1951; Hao et al., 2008; Cameron
and Green, 2015; Burnes, 2019). Despite this, specifics related to the implementation and integration of Al
solutions, particularly in the context of sustainability, are currently lacking. To map and understand the extent of
the challenges that are encountered in developing and deploying Al, and what they mean for the dimensions of
people, process, and technology, more research is needed.

Extensive research has also been conducted in the domain of computer science, developing algorithms and
tools to solve specific problems in the construction industry, including estimation and cost control; logistics,
planning, and scheduling; strategy; health and safety; project performance and success estimation; and risk, among
others. Although the topic of Al in construction has received significant attention, the majority of the existing
literature is concerned with the technical development of Al systems for specific areas of application (Ilter and
Dikbas, 2009; Martinez and Fernandez-Rodriguez, 2015; Juszczyk, 2017; Basaif and Alashwal, 2018), and more
research is needed on the application of these tools in the construction management context (Darko et al., 2020;
Xu et al., 2022). More research on system design is needed (Xu et al., 2022), and roadmaps and methodologies
should be developed on how this can be done in practice (Darko et al., 2020; Wang et al., 2020).

Research has also provided detailed insights into the necessary elements of infrastructure required to support
such technologies and solutions (Agrafiotis et al., 2018; Dignum, 2018; Ghosh et al., 2018; Loukides et al., 2018;
Politou et al., 2018; Abraham et al., 2019; Belle, 2023), but frameworks encompassing these factors appear to be
lacking. Research seems to have focused mainly on pilots, tests, Proofs-of-Concepts (PoCs) or conceptualisations,
and less on robustness, scalability, and standardisation frameworks; this research is currently lacking. Studies
demonstrate great results when applying developed algorithms to specific use cases, projects, or pilots. However,
the evidence of successful large-scale implementation seems to be lacking. Since studies show successful
implementation on a small scale, it seems reasonable to assume that a challenge lies within the infrastructure for
successful integration and scaling. To explore the implications of scaling and standardising in this context, more
research is needed.



Digital tools and solutions, including Al, are shown to hold the potential to increase sustainability in the
process output (Goralski and Tan, 2020; Nishant et al., 2020; Feroz et al., 2021; Pan and Zhang, 2021; Kineber et
al., 2023a). However, more research is needed into how the implementation and integration process itself can
become more sustainable, and how all three dimensions can be maintained moving forward. High initial costs are
identified as one of the key areas affecting the adoption of Al in construction (Abioye et al., 2021); this suggests
a need for frameworks that allows for a more financially viable development and implementation.

In conclusion, a gap exists in the research on the contextual intersection between construction, Al, practical
implementation, and implications thereof. In addition, a substantial amount of the existing research is first and
foremost grounded in conceptual theory rather than practical implications and empirical validations; the thematic
intersection between the three topics, project management, Al, and sustainability, remains relatively unexplored.

This thesis aims to fill this gap in the literature, choosing a holistic approach to the complex task of building
systems and solutions resulting in sustainable deliveries and deliverables. Bridging the gap between the fields
could provide valuable contributions in all three fields and improve a greater understanding of each field in the
context of the others. The aim is to provide a framework for the actors who want to get started, who want to start
now, and who, ultimately, want to move from ambition to practice.
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3 Research design

This chapter will present the research design of the thesis within the framework of the research onion taxonomy
(Saunders et al., 2019). Each of the six layers of the research onion is assessed, discussing in detail how the
perspectives of each layer contributed to the final research design, and how they impacted the research and the
thesis. The characteristics of the quantitative and qualitative data analyses are presented, followed by an
assessment of the research design including reliability, validity, generalisability, and ethical considerations.

Figure 3-1 illustrates an overview of the research process over the course of the PhD project and the main
deliverables leading forward to the completion of the thesis.
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Figure 3-1. Research process for the PhD project.

The research process was highly iterative, and data collected for one study often informed multiple studies.

Continuous monitoring of literature was done parallel to the work on the individual studies over the entire
duration of the PhD project. This was done to monitor the state-of-the-art and identify any relevant literature
published after the initial exploratory literature review was conducted. In addition, more specific literature reviews
were conducted for each paper; these are further described in following subsections. Continuous presentation of
preliminary findings and subsequent discussion with selected peers was also conducted in parallel throughout the
entire process, with experts from industry and academia. This helped position previous and ongoing studies in the
industry and the academic field and further informed the research design of upcoming studies.

The first deliverable was the project description. The project description contained a preliminary outline of
deliverables and delivery, including the overall goal and purpose of the project and the intended contribution from
the thesis. The description also included a plan of how the work would be conducted in the allotted time.
Considerations related to the delivery and the project work were described, including ethical considerations and
proposed research methods.

Following the approval of the project description, the work with Paper I and Paper II was initiated in parallel
with the finalisation of my master thesis. Findings from the early papers helped inform upcoming research and
papers, including the definition of research questions, selection of thematic areas, and research design.

Figure 3-2 shows the research onion (Saunders et al., 2019). The following sections of the chapter will
address each of the six layers in the research onion framework. The philosophical position, approach to theory
development, methodological choice, strategies, time horizon, techniques and procedures will be presented, and
the rationale and implications will each be elaborated upon in turn.
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Figure 3-2. The research onion (Saunders et al., 2019).

3.1  Research philosophy

The philosophical worldview of a researcher influences the assumptions brought to a study, the research practice,
and the applied strategy (Creswell, 2009). The philosophical worldview of a researcher also influences the shaping
of research questions, chosen methodology, and interpretation of data (Saunders et al., 2019).

Three assumptions influencing the research process can be defined (Holden and Lynch, 2004; Saunders et
al.,, 2019). The three are, to some extent, consequential to each other: ontology (nature of reality or being),
epistemology (what constitutes acceptable knowledge), and axiology (how the values of the researcher might
influence the research). Saunders et al. (2019) define five management philosophies: positivism, critical realism,
interpretivism, postmodernism and pragmatism.

Table 3-1 summarises some key characteristics of these philosophical positions and how they relate to each

of the three assumptions.

Table 3-1. Comparison of five philosophical positions (Saunders et al., 2019).

Ontology Epistemology Axiology Typical methods
Positivism Real, external, Scientific method, Value-free Typically
independent; Observable and research; deductive, highly
One true reality measurable facts; Researcher is structured, large
(universalism); Law-like detached, neutral, samples,
Granular (things); generalisations; and independent of measurement,
Ordered Numbers; what is researched; typically
Casual explanation Researcher quantitative
and prediction as maintains an methods of
contribution objective stance analysis, but a
range of data can
be analysed
Critical realism Stratified/layered Epistemological Value-laden Retroductive, in-
(the empirical, the relativism; research; depth historically
actual and the real); Knowledge is Researcher situated analysis of
External, historically situated | acknowledges bias pre-existing
independent; and transient; by world views, structures and
Intransient; Facts are social cultural experience, | emerging agency;
Objective constructions; and upbringing; Range of methods
structures; Historical causal Researcher tries to | and data types to fit
Casual mechanisms explanation as minimise bias and subject matter
contribution errors;
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Researcher is as
objective as
possible
Interpretivism Complex, rich: Theories and Value-bound Typically,
Socially concepts too research; inductive. Small
constructed simplistic; Researchers are samples, in-depth
through culture and Focus on part of what is investigations,
language narratives, stories, researched, qualitative
Multiple meanings, perceptions, and subjective; methods of
interpretations, interpretations; Researcher analysis, but
realities; New interpretations key | arange of data can
Flux of processes, | understandings and to contribution; be interpreted
experiences, worldviews as Researcher
practices contribution reflexive
Postmodernism Nominal; What counts as Value-constituted Typically,
Complex, rich ‘truth’ and research; deconstructive —
Socially ‘knowledge’ is Researcher and reading texts and
constructed decided by research embedded realities against
through power dominant in power relations; themselves;
relations; ideologies; Some research In-depth
Some meanings, Focus on absences, narratives are investigations of
interpretations, silences, and repressed and anomalies,
realities are oppressed/repressed silenced at the silences, and
dominated and meanings, expense of others; absences;
silenced by others; | interpretation, and Researcher Range of data
Flux of processes, voices; radically reflexive types, typically
experiences, Exposure of power qualitative methods
practices relations and of analysis
challenge of
dominant views as
contribution
Pragmatism Complex, rich, Practical meaning Value-driven Following research
external; of knowledge in research; problem and
‘Reality’ is the specific contexts; Research initiated research
practical ‘True’ theories and and sustained by Question;
consequences of knowledge are researcher’s doubts | Range of methods:
ideas; those that enable and beliefs; mixed, multiple,
Flux of processes, successful action; Researcher qualitative,
experiences, and Focus on problems, reflexive quantitative, action
practices practices, and research;
relevance; Emphasis on
Problem solving practical solutions
and informed future and outcomes
practice as
contribution

Saunders et al. (2019) present the reflexive tool, HARP (Heightening your Awareness of your Research
Philosophy), to provide the researcher with insights into their philosophical position. The questionnaire is built to
score each of the philosophical positions against the views of the researcher. A higher score indicates a higher
preference for the position. My results from the HARP test are presented in Table 3-2.

Table 3-2. Results from HARP test (Saunders et al., 2019).

Philosophical position Score
Pragmatism 15
Postmodernism 11
Critical realism 10
Interpretivism 10
Positivism 7
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Naturally, the HARP test is only intended as a starting point for further reflection. However, as this thesis
aimed to obtain insights into the practical implications of implementing Al-based tools, a pragmatic worldview
concerned with the practical consequences of ideas seems like a natural starting point.

This thesis aimed to obtain insights to support the practical implementation of Al in a construction context,
and to enable actors who want to move from ambition to practice. Therefore, this thesis mainly takes a pragmatic
philosophical worldview and approach; this is a pluralistic and real-world practice-oriented worldview which
allows available approaches to relate to the practical implications of the findings.

3.2  Approach to theory development

Generally, a research approach can be categorised as deductive, inductive, or abductive (Saunders et al., 2019).

In short, an inductive approach can be described to generalise existing ideas, whereas a deductive approach
aims to narrow down existing choices. An abductive approach, rather than moving from theory to data (as in
deduction) or data to theory (as in induction), moves back and forth, essentially combining a deductive and
inductive approach (Suddaby, 2006, cited by Saunders et al., 2019).

The dominant philosophical position of the researcher will influence their choice of approach to theory
development. Saunders et al. (2019) note that an abductive approach is typical for postmodernists, critical realists,
and pragmatists. Interpretivists tend to use inductive approaches, and positivists deductive approaches.

The research approach applied in this thesis utilises all three of these approaches.

Deductive approaches start by assessing theory, often developed from studying existing literature on the
topic and then designing a research strategy to test the theory (Saunders et al., 2019). A deductive approach can
be used when building a theoretical framework based on prior theoretical knowledge or testing hypotheses to
create new knowledge (Spens and Kovacs, 2006). Inductive approaches start by collecting data to explore a
phenomenon, and the researcher can then generate or build a theory from this foundation (Saunders et al., 2019).
Inductive approaches can be used when empirically validating prior theoretical knowledge by making real-life
observations or suggesting hypotheses based on these observations (Spens and Kovacs, 2006). Creswell (2009)
suggests that qualitative research, by nature, tends to build inductively from particulars to general themes.
Induction builds on empirical data and can be described as exploratory research (Tjora, 2017).

Abductive approaches collect data to explore a phenomenon, identify themes, and explain emerging patterns,
to generate a new or modify existing theory which is subsequently tested by additional data collection (Saunders
et al., 2019). An abductive approach can be used when suggesting hypotheses based on real-life observations,
applying and testing hypotheses or propositions, generating new knowledge, or building theoretical frameworks
from real-life observations (Spens and Kovacs, 2006).

Figure 3-3 illustrates the different approaches to theory development (Spens and Kovacs, 2006).

Review prior Build theoretical

Create new knowledge

theoretical knowledge framework
« [ )
) |
&
SF i
v
Make real-life S Suggesthypothesesor Apply or testhypotheses
observations T propositions T or propositions
‘ — Deductive | ------ # Inductive | - Abductive ‘

Figure 3-3. Approaches to theory development (based on Spens and Kovacs, 2006).

As illustrated in Figure 3-3, different approaches to theory development can be utilised in different stages of
a study or a project. Saunders et al. (2019) suggest that a completely inductive design, for instance, is less likely
in many situations, and suggests employing a hybrid approach.

Five of the six studies in this thesis utilised a hybrid approach.
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The aim of the scoping review in Paper I was to identify research gaps in the literature, so that new ideas
and hypotheses for future research could be generated. The three research questions can be categorised as
inductive, inductive, and abductive, respectively. Paper I identified patterns and themes within the existing
literature on Al in construction projects, ultimately assessing the characteristics of the publications on the
dimensions of descriptive features, methodology, areas of application, and the technology used. Paper I can be
categorised as abductive.

Paper II focused on identifying specific measures that can be used for waste reduction, and explored how Al
can contribute to the effective implementation of these measures. The three research questions can be categorised
as deductive, deductive, and abductive, respectively. Paper II can be categorised as deductive because it starts
with a specific hypothesis (that Al can help reduce waste on construction sites) and abductive because it seeks to
generate hypotheses on how Al can contribute to waste reductions.

Similarly, Paper III starts with a specific hypothesis (that Al can be used to analyse project data and identify
success factors in projects); the hypothesis is tested by building an ML algorithm to accomplish this. Hence, there
are clear deductive elements to the research design of Paper III. However, the first research question is mainly
centred around how this can be done, implying elements of inductive reasoning (seeking to develop a hypothesis
based on specific observations — the potential of AI for success prediction). The Paper also utilised a method that
had not previously been used for construction project success prediction, requiring a certain degree of abductive
reasoning. Paper I11, therefore, holds deductive, inductive, and abductive elements.

Paper IV identified and explored the existing barriers related to mapping, collecting, and storing data about
materials and products in existing buildings, holding mostly deductive and abductive elements.

The research objectives of Paper V can be categorised as deductive, inductive, abductive, and abductive,
respectively. The study can be described as deductive, as the rationale of the study is built with the aim of testing
a hypothesis by collecting and analysing data from conducted projects. However, Paper V also incorporates
elements of inductive and abductive reasoning, as it draws on existing literature and theories (inductive) while
also exploring new insights and further formulating recommendations (abductive).

Similarly, the research questions of Paper VI can be categorised as inductive and abductive; the paper seeks
to gather information about the current state of the field and the challenges it faces while also exploring a potential
solution to overcome the identified challenges.

As an extensive summary of the conducted studies, the thesis holds deductive, inductive, and abductive
elements. In addition, the three overarching research questions defined for the thesis as a whole can be categorised
as deductive, inductive, and abductive, respectively.

3.3  Methodological choice

Croom (2010) argues that there is no clear link between epistemology and the choice of method in social science
studies. These methods are typically categorised as either qualitative or quantitative. Despite this, Creswell (2009)
argues that these approaches should not be viewed as complete opposites, but as representing different areas on a
continuum. Both qualitative and quantitative approaches have strengths and weaknesses. Therefore, using mixed
methods and combining qualitative and quantitative aspects in a research design can help to improve the quality
of the research by overcoming weaknesses related to the individual methods, thus functioning as a means of
triangulation (Flick et al., 2004).

Saunders et al. (2019) define the two categories of mono-method research, meaning the use of a single data
collection technique and corresponding analysis procedures, and multiple methods. In contrast to mono-method,
multiple-method approaches involve using more than one data collection technique and analysis procedure. This
could be done by using more than one data collection technique but restricted within either a qualitative or
quantitative worldview (multi-method), or by using both qualitative and quantitative methods (mixed methods).
Mixed method research can use qualitative and quantitative data collection techniques and analysis procedures at
the same time (parallel) or one after the other (sequential), but does not combine them (Saunders et al., 2019). In
contrast, mixed model research combines quantitative and qualitative methods; quantitative data can be qualitised,
and qualitative data quantised.

The use of mixed methodologies has gained popularity among researchers over the years, especially in social
sciences (Creswell, 2009). Multiple methods are useful in the sense that they provide the opportunity for the
researcher to evaluate the extent to which the findings from the individual method can be trusted (Saunders et al.,
2019) and enable triangulation of findings (Flick, 2004; Denzin, 2012). Different methods can be used for different
purposes or stages in the same study (Saunders et al., 2019).

This thesis mainly utilised a mixed research methodology, but with some exceptions.
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Paper I is a mono-method study, basing the entire research design on the scoping review framework.

The research design of Paper II is a mixed model design, utilising both qualitative (interviews, document
studies, literature review, and site visits) and quantitative methods (quantitative assessment of waste data from
construction projects and a questionnaire). The techniques were employed in parallel, and the coding stage of the
research included converting qualitative data into quantitative, and vice versa.

Paper 111 employed a sequential mixed method research design. The study started by conducting a literature
review to map previous research conducted on the topic of construction project success, and to explore previous
use cases of ML to assess and predict project success. After an extensive data analysis and preparation process,
the ML algorithm was built, assessed, and applied.

An initial literature review, followed by a series of interviews, constituted the research design of Paper IV;
thus, the study can be categorised as multi-method.

Paper V utilised a wide range of qualitative (interviews, a multiple-case study, document studies, and a
literature review) and quantitative (quantitative assessments of case project data) methods. The coding stage of
the research included a detailed assessment of the findings across both categories — a mixed model approach.

A range of qualitative methods was chosen for Paper VI, including interviews, a document study, a literature
review, and a site visit. The study can be categorised as a multi-method, utilising strictly qualitative methods.

3.4  Strategies

Strategies utilising quantitative methods include experiments and surveys; archival research and case studies can
be used in quantitative methods, but also qualitative (Saunders et al., 2019). Ethnography, action research, and
grounded theory are most relevant in the use of qualitative methods. Saunders et al. (2019) note that the strategies
are not to be thought of as being mutually exclusive. Surveys, case studies, and grounded theory were used in this
thesis. Table 3-3 summarises some key characteristics of the three.

Several types of research exist (Fellows and Lui, 2003); among these are descriptive, exploratory,
explanatory, and interpretive research methods.

A descriptive research design is used to systematically identify all elements of a phenomenon, process, or
system and the relationships between them. Fellows and Lui (2003) recommend that descriptive research is done
as objectively and comprehensively as possible. The research can be undertaken in the form of a survey, archival
research, or case study work (Saunders et al., 2019). Exploratory research is undertaken to test or explore aspects
of existing theory; a central feature is the discovery of processes (Fellows and Lui, 2003). Often, an array of
constructs and variables is identified by the research, and further hypotheses are produced to be tested in future
research. Exploratory design is generally recommended when previous knowledge is limited, or the problem
description is unclear. Case studies, archival research, surveys, and experiments are often employed in exploratory
research (Saunders et al., 2019). Explanatory research aims to answer a particular question or explain a specific
issue and is often centred around cause-and-effect relationships (Fellows and Lui, 2003). Hypotheses are used
similarly to those used in exploratory research. Explanatory research can employ experiments, case studies, and
archival research. An interpretive research design fits findings, observations, and experience into a theoretical
framework or model (Fellows and Lui, 2003).

Table 3-3. Research sample strategies (from Saunders et al., 2019).

Sampling strategy Description Associated with
Survey A common strategy in Quantitative methods
management research.
Exploratory or descriptive
Data collected using a survey research
strategy allows the researcher to
suggest possible reasons for Deductive approaches
relationships between variables
and to produce models of these Frequently used to answer
relationships. ‘who’
‘what’
Data collection methods include ‘where’
questionnaires, structured and ‘how’ questions
observations, or interviews.
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Case study

Provides rich understanding of the
context of the research.

Single or multiple cases.

Data collection methods include
interviews, observations,
documentary analysis, and
questionnaires.

Qualitative or quantitative
methods

Explanatory or exploratory
research

Frequently used to answer
‘why’
‘what’
and ‘how’ questions

Grounded theory

Emphasis on developing and

Qualitative methods

building theory.

Inductive or deductive approaches

Data collection starts without the

formation of an initial theoretical

framework; theory is developed
from generated data.

Frequently used to answer ‘how’
or ‘why’ questions

Coding of results can be done by
open coding, axial coding, or
selective coding. Data is
continuously analysed against
coding concepts and categories
until theoretical saturation.

Paper I utilises both a survey strategy (in assessing the existing body of publications) and a grounded theory
strategy (in building theory based on the findings of assessments). The study can be categorised as descriptive,
aiming to provide an overview of recent and current uses of Al; in addition, the identification of research gaps
and formulation of recommendations for future research both hold exploratory elements.

Similarly, Paper IT holds components of both survey strategy (in assessing current challenges and problem
areas) and grounded theory (in presenting a framework of recommendations related to the use of Al for waste
reduction). The study is exploratory, examining how Al can help to reduce waste on construction sites, and
explanatory, in providing an overview of problem areas and recommendations related to practical implications.

The ML algorithm developed in Paper I1I is based on data collected through a survey strategy. The study
itself also employs grounded theory, in building and advancing theory on the topic of construction project success
estimation. The study holds both exploratory and explanatory elements, both employing quantitative assessments
to explore how Al and ML can be used to assess and predict project success and, in doing so, they can establish a
relationship between the analysis variables.

Paper IV also employs a strategy both in the form of a survey (in collecting data on perceived challenges
related to data management) and a grounded theory (in extrapolating how the challenges relate to the hindering
of circular economy). The extrapolation of findings to position the perceived barriers in the context of circular
economy categorises the study mainly as exploratory.

In examining the potential of using 3D laser scanning, BIM, and AI for Quality Assurance (QA) in
construction projects, Paper V utilises both survey, case study, and grounded theory strategies. A survey strategy
was employed in the early stages of the research when identifying relevant use cases and case projects. The case
study strategy was a large part of the research design, as the case projects constituted a significant portion of the
findings. The study had an emphasis on building theory and presenting recommendations for actors seeking to
utilise the technology, thus employing a grounded theory strategy. The whole study is exploratory in nature,
seeking to provide empirical validation of previous theoretical findings. The study holds elements of several
research types, and the four research questions can be described as exploratory, descriptive, descriptive, and
explanatory, respectively.

Paper VI holds elements of both survey strategy and grounded theory. The study is exploratory, in mapping
the current status in the industry and challenges related to the implementation of Al systems, with an emphasis on
the development of theory regarding how development and implementation can be done sustainably.
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3.5  Perspective (Time horizon)

Studies can be considered cross-sectional or longitudinal (Saunders et al., 2019). Fellows and Lui (2003) argue
that quantitative studies tend to be more cross-sectional by nature, but that qualitative analyses can provide a more
longitudinal perspective, introducing longitudinal elements into what originally was cross-sectional findings or
data. Both cross-sectional and longitudinal perspectives can represent valuable contributions.

The whole thesis, including the continuous monitoring of literature as indicated in Figure 3-1, can be argued
to hold a longitudinal perspective; however, individual studies and papers are mainly cross-sectional. Information
acquired from interviewees holds a longitudinal perspective in the sense that the interviewees themselves have
acquired the knowledge and experience after a longer time in the industry. Still, the data collected from the
interviewees is, per se, cross-sectional. The field of Al is rapidly developing, meaning that a smaller time horizon
could be considered longitudinal; meanwhile, the field of project management is, relatively speaking, moving at
a much slower pace.

For Papers I through V, the main data collection was conducted over the course of 9-12 months, implying a
cross-sectional perspective. This is considered a relatively short span of time in the project management context.
Paper I holds a more longitudinal perspective, as the review itself included publications from a span of five years,
and part of the objective of the study was exploring the development in the field over time. Similarly, the dataset
used for Paper III is the sum of data accumulated by the Nordic 10-10 organisations over several years. However,
unlike Paper I, the element of development over time was not crucial for the research objective in Paper III. For
Paper VI, the main data collection process was conducted over the course of 18 months. However, like for Paper
111, the element of development over time was not of particular interest for the research objectives in Paper VI.

3.6  Techniques and procedures

Techniques and procedures include data collection and analysis (Melnikovas, 2018), meaning the use of primary
or secondary data and sources, the crafting of samples, developing content for interview guides and questionnaires,
etcetera. All previous layers affect the choice of techniques and procedures, and most of all, as highlighted by
Saunders et al. (2019) — the research questions.

This thesis employed literature reviews, interviews, case studies and document studies, among others.

3.6.1 Literature reviews

Literature reviews were conducted for each individual study, in addition to the overall continuous review.

Literature reviews are critical to ensure that research is being conducted on topics that are of relevance, and
to confirm that the research questions have not already been answered (Dorussen et al., 2005). An understanding
and overview of previously conducted research is essential to make sense of new findings in the context of the
field (Tjora, 2017). Literature reviews ensured a relevant and comprehensive foundation for the research
conducted in each of the studies.

The literature review in Paper I was conducted according to the scoping review methodology (Arksey and
O’Malley, 2005). Reviews within the field of management are often comprised of a process of exploration,
discovery, and development (Tranfield et al., 2003); therefore, it was desirable to choose a flexible approach that
could be modified throughout the study. The scoping review enables a flexible but systematic approach and is
based on five steps: (1) identifying research questions, (2) identifying relevant studies, (3) selecting relevant
studies according to formulated criteria, (4) charting the data, and (5) collating, summarising, and reporting results.
An additional, parallel element is also described regarding the use of a ‘consultation exercise’ to inform and
validate findings from the main scoping review (Arksey and O’Malley, 2005). For Paper I, the five steps were
conducted and presented in the final paper, as the purpose of this paper was the literature review itself. In Papers
II through VI, one or more steps were conducted within the research group as a part of the study to improve the
context of the research, but not provided in the finalised paper, as this was judged to be out of scope for the studies.
Figure 3-4 illustrates the modified scoping review methodology of Paper V.
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Figure 3-4. Modified scoping review methodology.

To clarify and further evolve the scoping literature review framework, Levac et al. (2010) present specific
recommendations for each step. Both in individual studies and for the thesis, the recommendations of choice
included linking the purpose of the study to the research questions in the early stages of the process, to facilitate
decision-making regarding the inclusion and exclusion of relevant publications as the scoping review proceeded.
The nature of the scoping review provides for an emergent and iterative process, meaning that such criteria might
not become fully clear until the later stages of the review (Gough, 2007a). The criteria were updated throughout
the process to sustain the systematic manner of the review. A more systematic approach helps to provide
trustworthiness and accountability for the literature review itself (Gough, 2007b). These criteria were explicitly
stated in Paper I, but, as per Figure 3-4, a part of the internal process in the remaining papers.

Since some intersections of the thesis topics are relatively unexplored, field-specific databases gave few hits
for certain combinations of keywords. Therefore, Google was used as a supplement to academic databases. Google
provides the broadest selection of literature among all search engines. The literature found through Google can
provide inspiration or contribute to the discovery of other quality-assured and peer-reviewed sources, but it should
not be used uncritically. Whenever possible, original sources were always used.

The continuous literature review was conducted in parallel with the individual studies’ respective literature
reviews, to monitor the state-of-the-art in the field. This contributed to ensuring the relevance of the individual
studies and positioning any preliminary findings both in the context of the thesis and the whole field.

For Papers II through VI, the literature review mainly contributed to the positioning of the respective study,
and to supplement any insights provided by interviews or other data sources.

Review process

Levac et al. (2010) recommend measuring the perceived feasibility of the study against the comprehensiveness of
the scoping process. This was done through an initial, unstructured literature search.

The purpose of the preliminary search was to produce a literary warrant, establishing a suitable foundation
for contextualisation and further definition and indexing of terms and classes during the review. Step 1 in the
scoping methodology framework (identifying research questions) was informed by the initial, unstructured search.

To ensure the replicability of the research, Steps 2 (identifying relevant studies) and 3 (selection of relevant
studies by formulated criteria) were structured according to the preferred reporting items for systematic reviews
and meta-analyses (PRISMA) framework (Moher et al., 2009). Step 2 began by a manual search within selected
databases to identify relevant records. Tranfield et al. (2003) emphasise the importance of a well-defined search
string to create a replicable and transparent search strategy, ultimately contributing to higher reliability of a study.
The definition of search strings was therefore also based on the initial literature search. Searches were filtered on
year of publication, publication channels, and so on. Additionally, publications were identified from citation
chaining, backward snowballing, or recommendations from personnel involved in other aspects of the study.
Citation chaining refers to the use of a central source with multiple citations as a starting point to identify
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additional sources. Backward snowballing involves the discovery of relevant sources by exploring the references
of relevant articles (Wohlin, 2014).

The records were then screened by judging the relevance of titles, keywords, abstracts, and conclusions. The
full article was assessed in cases where the initial screening did not provide a sufficient insight into the study. A
set of inclusion and exclusion criteria were defined for filtering, to help ensure the relevance and quality of the
identified records. Al is rapidly developing; therefore, one inclusion criterion was that the record had to be
publicised after 2000. Furthermore, only peer-reviewed articles were included to ensure the inherent quality of
the studies. The scoping methodology does not include a formal application of quality assessment criteria, but
only selecting peer-reviewed publications contributes to an implicit quality in the chosen records.

A full-text assessment of the remaining records was then conducted, to ensure their eligibility and consider
the contribution of each record beyond the initial evaluation. During this process, nine records were deemed out
of scope, and five did not provide sufficient detail to provide new insights into the study.

Steps 4 (charting the data) and 5 (collating, summarising, and reporting results) were conducted as part of
the coding and triangulation of results. Charting, collating, and summarising were done as a part of the overall
coding process of respective studies, where findings were compared against other findings within the same data
collection method and across methods. The same approach was chosen to validate the literature review findings,
which consisted of validation against the full body of publications and the other utilised methods.

3.6.2 Interviews
Interviews were originally conducted for individual studies, but each interview contributed to broadening the
knowledge and perspective on the field, which ultimately informed not only the respective individual studies but

the whole thesis. The number of interviews for each study is summarised in Table 3-4.

Table 3-4. Number of interviews in each study.

Paper number Number of interviews
Paper [ 0
Paper 11 32
Paper 111 0
Paper IV 18
Paper V 9 + 4 case study interviews
Paper VI 36

The novelty of the topics reduced the number of relevant interviewees for each of the studies.

The interdisciplinary nature of the topic meant involving experts from different fields, both in the industry
and academia. For the industry interviewees, the aim was to include personnel from all parts of the construction
project value chain.

Different sampling strategies were used to recruit interviewees. Paper II, Paper IV, and Paper VI employed
a purposive sampling strategy to identify the most relevant interviewees for each study (Robinson, 2014; Saunders
etal., 2019). The purposive strategy is traditionally associated with grounded theory (Saunders et al., 2019). Paper
V, due to the limited number of available case projects, employed a sampling strategy based on convenience and
judgement (Robinson, 2014; Saunders et al., 2019). This meant recruiting interviewees partly based on personal
networks and publicly available documents. For each of the sampling strategies, a set of criteria for inclusion and
exclusion were defined, to help craft a suitable sample. Additionally, for all studies, a snowball sampling strategy
(Bryman, 2016; Tjora, 2017) was used through gathering suggestions from previous interviewees. This was done
by including a request for potential future interviewees in the interview guides.

For all four studies collecting data from interviews, one or more pilot interviews(s) were conducted before
the initiation of the main interviews, as per the recommendations of Kallio et al (2016).

The interviews followed respective interview guides that were developed after initial literature reviews and
(the) pilot interview(s). The interview guides were targeted towards each interviewee to tailor towards their
experiences and background and to accommodate the collection of data relevant to their perspective. Over the
research period, the interview guides were updated as preliminary findings informed the understanding of the
topic further. Interviews were mainly semi-structured in-depth interviews, as this is considered to provide broad
and contextual results (Bell and Bryman, 2016). The semi-structured approach allowed the interviewees to
elaborate beyond the pre-defined questions, contributing to a more comprehensive understanding of the
knowledge and experience of the interviewee, the industry and its dynamics in relation to the topic (Ryen, 2002).
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Each interview lasted between 60 and 90 minutes. When possible, two researchers were present during the
interview to ensure a higher degree of understanding and reliability in the subsequent coding of the results. Where
this was not possible, other researchers or key personnel were involved to a larger extent in the coding stage, and
in the presentation of preliminary and final findings. Open-ended questions provided flexibility in the interview
approach (Saunders et al., 2019), which gave the interviewees the opportunity to answer in-depth when needed
(Tjora, 2017). All interviews were recorded, and transcripts were sent to the interviewees for QA before analysing
the data. Follow-up questions were asked where necessary.

All interviewees received written information regarding the study and its focus before the interview. This
allowed them to prepare by gathering appropriate documentation and reflecting on any relevant experience or
knowledge. Giving the interviewees this opportunity can contribute to increasing the reliability and validity of a
study (Saunders et al., 2019).

Thaagard (2013) suggests that the researcher strives to find a selection of interviewees that meets a
theoretical saturation point, beyond which adding a new informant would no longer contribute significantly to the
research. Saturation was identified in the studies by conducting the coding process iteratively in parallel with the
interviews, as recommended by Bell and Bryman (2016). Certain topics reached saturation earlier than others;
when this happened, an emphasis was put on the remaining topics in later interviews.

3.6.3  Multiple-case study

Paper V employed a multiple-case study as part of the research design.

Six case projects from two actors constituted the foundation of the case study. The researchers gained access
to the QA systems and databases used in the projects, including registers of errors and deviations in the projects.
The case study design was chosen as it represented a sound empirical approach to studying lessons learned from
3D laser scanning and BIM for QA. According to Yin (2009), a case study approach is beneficial when the aim is
to conduct an in-depth examination of a contemporary phenomenon and explain ‘how’. Explorative case studies
are appropriate for providing in-depth insights into a phenomenon not previously vigorously examined (Ellram,
1996). The explorative approach was chosen due to the novelty of the intersection between the three topics. Even
though previous research recognises the involved tools and their potential, current knowledge of how they can
and should be utilised in conjunction is not systematically structured nor developed in large detail.

The case study was a cross-sectional theory-building multi-case study (Dul and Hak, 2008) holding elements
from the case study survey framework (Farquhar, 2012). Employing a multiple-case design, the case study set out
to explore experiences using 3D laser scanning for QA in six selected case projects. Thus, the study can be
described as ‘an empirical inquiry that investigates a contemporary phenomenon within its real-life context” where
‘the boundaries between the object of study and context are not clearly evident’ (Yin, 2009).

Yin (2009) describes six sources of evidence commonly used in case studies, including archival records,
direct observation, participant observations, physical artefacts, documentation, and interviews. This study built its
multiple-case study upon three main pillars: case documentation, interviews with involved personnel, and
presentations provided by involved personnel. The data collection involved a qualitative research approach using
semi-structured in-depth interviews to collect primary data. The choice to use semi-structured interviews is
attributed to the flexibility this method provides, as previously described. Four semi-structured in-depth interviews
were conducted with personnel who had been working on the case projects. Yin (2009) recommends that case
study interviews are performed as guided conversations rather than structured interviews. The semi-structured
approach was chosen to ensure a certain degree of replicability and increase reliability and validity.

Secondary data were collected from all six projects, including existing plans, project data, and registrations
of deviations and errors. Additionally, a document study was conducted to collect secondary data and support and
verify the findings from the interviews. With permission from management, several documents of importance
were studied, including registers of deviations and errors in the case projects and project-based data such as
presentations of key data and characteristics in the projects.

3.64 Document studies

Document studies are often found as part of a case study research (Yin, 2009), but can also be used as sources of
their own (Bowen, 2009). Document studies involve the analysis of documents created for other use than the
research itself (Tjora, 2017) and can be used to verify the data collected through other sources or to acquire new
or additional information (Yin, 2009). Documents can provide data on the context within which research
participants operate, suggest questions that need to be asked or situations that need to be observed or provide
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supplementary research data (Bowen, 2009). They can also serve as a means of tracking change and development
over time, to verify findings, or corroborate evidence from other sources.
In this thesis, Papers II, V and VI were, partly, built on document studies.

3.6.5 Additional activities

Beyond the four main sources of data, a range of additional activities were performed to add further perspective
and increase the understanding of the convoluted dynamics of the topic. Additional activities included courses on
the topic of Al, participation in seminars and focus groups, and site visits.

The course Elements of Al was completed over six weeks in the spring of 2020, to obtain a foundational
understanding of the concept of AI; this was followed by the course Building Al in the autumn of 2020. The
courses are built by Reaktor, MinnaLearn and the University of Helsinki with an aim to make Al knowledge more
universally available. They contain a range of modules that provide learners with an understanding of the
theoretical and practical aspects of Al (University of Helsinki, 2018). Completion of the courses qualifies the
learner for 2 ECTS (European Credit Transfer System) for each course.

Attendance in a wide range of seminars was prioritised throughout the entire duration of the project. The
seminars ranged from academically focused seminars with fellow PhD candidates and professors, to seminars
targeted towards industry actors, gathering industry experts to showcase successes and lessons learned from
industry initiatives and pilots. The latter provided an opportunity to stay in touch with the industry and to follow
the development as the project progressed. The seminars also served as an arena to present preliminary and final
findings, to open discussions and receive feedback; this proved to be an invaluable contribution to building
networks, and maintaining strong ties to the industry throughout, and an important supplement to the interviews.
Academic networks included national and international focus groups, working at the intersection between project
management and Al Organised data collection in the form of focus groups, where a group of experts are gathered
to discuss one or more topics, is especially effective for the researcher (Tjora, 2017). This is because they allow
the researcher to gather a range of insights effectively, and they serve as a form of validation of results upon
collection.

As a more practically oriented supplement to other methods, site visits were conducted on three occasions:
a construction site visit in the spring of 2020, and two plant site visits hosted by a Construction City member,
once in the spring of 2020, and a second time in the spring of 2023. The site visits were combined with interviews
of personnel on the sites and planned focus group meetings. The visits aimed to gather in-depth data through
observation and interaction with informants in the environment they operate within. Relevant experts conducted
tours of the sites based on materials exchanged in advance, and the tours served as a starting ground for subsequent
questions and discussions. The construction site tour was mainly related to the inspection of waste stations, while
the plant tour was mainly related to the implementation of new and digitalised solutions on the site. The site visits
informed the research but were initially conducted for Paper II and VI, respectively.

For Papers II, I1I, and V, the research design also encompassed continuous management of selected, relevant
databases as a part of the quantitative analyses.

3.7  Data analysis and coding
3.7.1  Quantitative analysis

Papers II, III, and V included quantitative analyses, based on data from selected databases.

The quantitative analysis in Paper II was based on a quantitative assessment of waste data in 161 projects.
An analysis of the waste disposal in 161 construction projects was conducted to identify any problematic waste
fractions, with respect to total volume, environmental impact or impact on project progress, management, or
activities. The analysis utilised the tool Grent Ansvar from Norsk Gjenvinning to provide an overview of disposed
waste in terms of volume, weight, degree of sorting, and cost associated with waste management in selected
projects (Norsk Gjenvinning, c. 2018). The waste reports are dynamic, and the system allows the user to single
out selected fractions, amounts, costs, or projects on-demand. The projects were deemed relevant for inclusion
using the following criteria: used Norsk Gjenvinning for waste disposal through the entire production phase; did
not use any other providers for waste disposal; and sufficient availability of further documentation, in case of any
follow-up questions for the project or its team members. After the initial assessment, all projects meeting the
criteria were included, as a bigger sample would make the data foundation more representative. For the analysis,
the waste fractions were classified and categorised according to the guidelines provided by Norsk Gjenvinning.
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In addition, a distribution analysis was conducted according to Holme and Solvang (1996), to assess both total
waste amounts, amounts for each of the registered fractions, and amounts per project phase. The biggest fractions
were selected for further assessment.

The ML model in Paper III was built on data from 160 projects in the Nordic 10-10 database. CII 10-10 is a
tool for project benchmarking to develop and enhance processes continuously. The database is developed and
provided by the Construction Industry Institute at the University of Texas and has later been translated to fit the
Norwegian construction industry, resulting in the Nordic 10-10 initiative. Several major construction clients and
contractors have since implemented the Nordic 10-10 program in their project organisations. The tool provides
the users with a report that evaluates their project and compares it to relevant projects in the database (Nordic 10-
10, c. 2020). It is ultimately providing a report serving as a foundation for further discussion and improvements,
for individual projects, for a whole organisation, and for the entire body of projects. The questionnaire used to
obtain the data constituting the 10-10 datasets is upon input specified by sector (construction, industry, or
infrastructure) and project phase (phases 0 through 4). The 10-10 dataset contains several different features,
including the four categories of General descriptive data (G), Output ratings (O), Question scores (Q), and Project
ratings (I). The Q-attributes are distinct, and closely related to the project sector and phase. Furthermore, they are
divided into two categories, those under 40 and those over 100. The sub-40 questions are binary, while the above
100 questions are ranked on a scale from 1 to 5. For each given Q-attribute, they may only relate to one specific
sector or phase. However, as there is more than one respondent for each project, the sub-40 Q-attributes will
appear in the database as the average of the respondents’ answers, resulting in a scale from 0 to 1. The dataset was
then loaded into a Python script, where the libraries Pandas, SKLearn, and NumPy were used. When a dataset is
loaded into Pandas, it is called a Data Frame (DF). The dataset was processed through an Exploratory Data
Analysis (EDA) and preliminary cleaning, resulting in an initial DF. The DF was then split into nine purposed
DFs before the next steps were carried out in order: main cleaning, labelling, train-test split, scale, train and fit,
classification, and lastly analysis and plot of the results.

For Paper V, the quantitative aspect mainly consisted of data collected in the case studies. Data related to
the registration of deviations and errors in the case projects were collected, and the potentially saved risk was
assessed based on the three factors: the expected frequency of a given category of deviation or error, the average
effect on progress/schedule and cost in the project, and how difficult it would be to discover the deviation or error
using traditional methods. Each factor was assigned a number based on available data in case documents and
insights from involved personnel. Ultimately the quantified magnitude of the individual factors was based on both
qualitative and quantitative factors (Cramer, 2003). Each category of errors and deviations was based on images
and data from scans, BIM models, and project data. When the three factors were assessed, the potential risk was
evaluated based on (a) these numbers and (b) insights provided through interviews. For instance, findings from
the interviews suggested that a higher frequency or more significant consequence should be weighted higher than
the difficulty of detection, as this, empirically, had been found to affect the project to a larger extent. The
quantitative analysis provided insights into the potential savings related to the implementation of highly effective
digital tools to avoid errors and deviations before they arise. The quantitative analysis also provided a greater
understanding of which factors would affect the profitability and, therefore, the sustainability of the solution.

3.7.2  Qualitative analysis

The purpose of a qualitative analysis is to concretise each aspect of the collected data to compare the findings
against each other (Jacobsen, 2015). All studies utilising qualitative data sources followed the same procedure.

The transcripts of all interviews were stored in a database accessible only by the researchers in in the relevant
study, according to requirements from the Norwegian Centre for Research Data (Norsk Senter for Forskningsdata,
NSD). Similarly, all written summaries from seminars, focus groups, project and site visits, and courses were
stored in corresponding databases. Each study was assigned one database.

Caution was displayed as the data between the sources were analysed, first individually, iteratively, and then
against the other sources to ensure high awareness of the context when analysing the data, as per Bryman (2016).
The first stage of the coding process was coding by topic. Then, the data were assessed for patterns, and group
codes across the interviews were identified and clustered. The emergent patterns and codes generally varied
between studies, but some overarching concepts were reoccurring. When new codes emerged, previously coded
transcripts were re-analysed with considerations towards the new codes. Assessment of the codes often revealed
that some were interrelated; this was seen as a separate finding, informing the research beyond the initial findings.

Case study data were collected in a case study protocol. The protocol included collected documentation,
transcriptions from interviews, and codification of the results to enable the comparison to other findings.
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As described, literature review findings were coded based on the scoping review framework. Charting,
collating, and summarising results were done by collecting all relevant records in the established database. The
format of the database varied according to the aim of the review. The contribution of each record to the study was
noted in the database, and additional notes concerning the relevance in the context of other findings were made.
All records included in the final selection of the literature review were thoroughly assessed according to four
criteria: credibility (i.e., authority of author and publication channel), objectivity, accuracy (including currency),
and relevance to the study in question.

3.8  Assessment of research design
Table 3-5 summarises the methodological choices for this thesis for each of the layers in the research onion.

Table 3-5. Assessment of research design.

Paper number i [ 11 | 111 [ v | v [ VI
Philosophy Pragmatism
Approach Abductive Hybrid Hybrid Hybrid Hybrid Hybrid
Deductive Deductive Deductive Deductive Inductive
Abductive Inductive Abductive Inductive Abductive
Abductive Abductive
Methodological Mono Mixed Mixed Multi Mixed Multi
choice method model method method model method
Strategy Survey Survey Survey Survey Survey Survey
Grounded Grounded Grounded Grounded Case study Grounded
theory theory theory theory theory
Grounded
theory
Perspective Longitudinal Cross- Cross- Cross- Cross- Cross-
sectional sectional sectional sectional sectional
Techniques and Scoping 18 semi- Data from 18 semi- 9 semi- 36 semi-
procedures review structured 160 project structured structured structured
analysing 86 in-depth cases in in-depth in-depth in-depth
peer- interviews Nordic 10- interviews interviews interviews
reviewed 10 database
articles 14 Literature Multiple- Document
structured Literature review case study study
interviews review including 6
projects and Literature
Question- 4 case- review
naire with specific
21 interviews Site visit
respondents
Document
Document study
study
Quantitative
Quantitative assessment
assessment of data from
of waste 6 case
data in 161 projects
projects
Literature
Literature review
review
Project and
site visit
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In qualitative studies, criteria for reliability, validity, and generalisability can be used as indicators for the
quality of a study (Jacobsen, 2015; Tjora, 2017). The reliability of a study is related to verifiability; reliability can
relate to the accuracy of the data being used, how the data is collected and how they are assessed after collection
(Johannesen, 2016). Reliability and validity in a study are essential to ensure verifiability and relevance,
respectively. For a literature review, this could include both the sources that are being used, and the data collected
from the sources that are deemed to be relevant. In an interview, this could include the researcher selecting the
right informants and the right questions to ask the informants. Possible sources of errors can lie within the ability
of the researcher to validate literary sources, the assessment of relevance in the background and experience of the
informants, the formulation of research questions that could be misunderstood or miscommunicated, or the
analysis of the data from informants. The selection of interviewees and resources in the study assumes that the
experts in the field will have first-hand experience with these tools. The novelty of the topic limits the existing
theoretical foundation as well as the number of relevant interviewees for the study. To provide a holistic
understanding and ensure sufficient reliability, validity, and generalisability in the study, a compound and
comparative research design was developed on the principles of triangulation (Flick, 2004). The generalisability
could be restricted, as both qualitative and quantitative considerations are based on a limited number of case
projects and interviewees.

The research design utilised a combination of structured and unstructured data collection, primary and
secondary data sources, and qualitative and quantitative methods to help overcome limitations associated with the
individual methods and sources, thus improving the reliability, validity, and generalisability of the whole study
(Love et al., 2002; Flick, 2004).

An abductive research design was employed for theory generation and modification and to incorporate
existing theory where appropriate to build and modify the theoretical framework (Saunders et al., 2019). The
intention was to include existing theory where applicable, build new theory and modify existing theory, and build
upon real-life observations. Therefore, the approach was based on a combination of reviewing previous theoretical
knowledge to build a theoretical framework (deductive), constructing hypotheses from real-life observation
(inductive, abductive), and theory-matching of real-life observations and theoretical frameworks (abductive). The
initial, unstructured literature search, with continuous validation of the findings as previously described, provided
a framework and template for the coding, ultimately employing both theory-driven and data-driven codes.

A potential source of inaccuracy lies in the fact that the findings from the interviews were analysed within a
framework that had not been presented to the interviewees at the time of the interview. On the other hand, the
responses from the interviewees could have become biased if constrained by a previously defined framework. To
mitigate the potential source of error stemming from the subjectivity in the data coding and decoding, the results
were presented to, and discussed with, a separate group of selected informants, peer academics and practitioners.

The use of primary data sources ensures the quality and relevance of the data (Jacobsen, 2015). Secondary
sources can provide a useful addition and extension of the primary sources. However, the use of secondary data
sources requires the researchers to be more mindful of how the purpose of collection, methods used, and the focus
of the source might differ from the researchers” own work. This became part of the validation process.

In addition to ensuring reliability, validity, and generalisability in the individual studies, the continuous
presentation of preliminary findings and following discussions with selected informants, peer academics, and
practitioners was done to receive input from relevant actors in academia and the industry and further ensure the
validity and reliability of the research and the findings.

Throughout the work with the thesis, selected parts of the research have been presented in a wide range of
settings and situations, including two guest lectures at Universidad Politécnica de Madrid, a presentation at the
University of Salford Built Environments Summer School Programme, as well as multiple presentations for
industry leaders and industry experts, and members of Construction City Cluster. As a result, the research has
already been partially applied and evaluated in both academic and industry settings.

In the spring of 2022, a six-month exchange to a research group at the University of Salford in Greater
Manchester, United Kingdom, contributed another dimension to the triangulation of methods. The new research
groups provided new insights and perspectives into the conducted research and the context it was to be assessed
within and provided further direction and perspective for the studies planned through the spring.

3.8.1 Reliability
The reliability of a study is related to the verifiability and replicability of a study (Olsson, 2011).

The research should be transparent enough for it to be replicated. Reliability refers to the accuracy of the
data that is being used, how the data is collected and how they are processed (Johannessen et al., 2016). Tjora
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(2017) emphasises that qualitative methods often involve a certain degree of subjectivity, which requires the
researcher to be mindful of how this might affect the collection and analysis of the data. If many different methods
give the same findings, the findings are likely to hold high reliability.

Tjora (2017) emphasises the importance of understanding how the position of the researcher can affect the
research itself. To increase the reliability of a study, it is therefore recommended that the researcher reflects on
their point of view and expectations for the collection, analysis, and interpretation of data early in the process. In
the context of this thesis, earlier experience from the construction industry and previous work with topics related
to sustainability in the industry could have led to certain expectations and assumptions related to the topic, but
could also lead to a deeper understanding of the findings and the context they should be seen in. Lower levels of
previous knowledge in the field of Al contributed to an open and neutral approach to this topic.

For this thesis, triangulation was used to explore if the findings from different sources of data would coincide.
Triangulation of methods means combining different methods and is used to compensate for limitations related to
the individual methods (Olsson, 2011). Triangulation can contribute to a deeper understanding of a topic and the
reliability and validity of a study (Halvorsen, 2008; Denzin, 2012).

3.8.2  Validity

The validity of a study is related to the relevance of the study and whether the study answers the research questions
and objectives as defined or not (Olsson, 2011). This means that the chosen method must be relevant to what the
researcher intends to measure. For a qualitative study, the validity can be related to the selection of informants
and the collection of data from the informants (Dorussen et al., 2005). For a quantitative study, it can be related
to selection of projects for monitoring. The literature distinguishes between internal and external validity.

Internal validity is related to whether the collected data provides a good image of reality or not (Jacobsen,
2015). Among the factors that can affect internal validity in a study is, for instance, a lack of common
understanding of terminology, which in an interview situation can lead to misunderstandings, and in the worst
case, lead to the interviewer and interviewee talking (about) entirely different things. To avoid this, during the
data collection process, any terminology and concepts were continuously and continually defined and compared
and related to the field of the interviewee to ensure accord. After the interviews, follow-up questions were used
to ensure a common understanding between the interviewer and interviewee, for instance, if any uncertainties
showed up during the coding of the results.

External validity is related to whether the findings of a study can be generalised or not (Jacobsen, 2015). A
factor that could affect external validity is a limited data foundation, as this, in turn, could hinder a representative
description of the phenomenon that is being studied. To avoid this, a broad range of methods was used, and actors
from all parts of the value chain were involved. This will not guarantee generalisability but can contribute.

3.8.3  Generalisability

Generalisability and external validity are closely related terms.

In this thesis, mostly projects and informants in the Norwegian construction industry are assessed. Some
organisations represent a larger portion of the informants in interviews and questionnaires. This means that the
contextual quantitative and qualitative findings might not be transferrable to other industries, other countries, other
organisations, or other projects.

Jacobsen (2015) distinguishes between intensive and extensive research design. This is related to whether
the research is done in depth or breadth, respectively. The qualitative design of the thesis can mainly be categorised
as intensive; many variables are examined, with relatively few units. The strength of an intensive research design
is linked to generalisation at a theoretical level, where the theory emerges through what the researcher has been
told, read, or heard (Jacobsen, 2015). The empirical findings are detailed and nuanced but based on a few units;
therefore, the generalisability is generally lower. By using triangulation, different designs can be combined; for
instance, in-depth interviews, intensive by nature, can be combined with questionnaires, extensive by nature
(Dalen, 2004). Jacobsen (2015) recommends an initial extensive research strategy before starting intensive work.
For this thesis, this was done by performing an initial, unstructured literature search and introductory talks with
relevant personnel in the early stages of each study. The scoping review presented in Paper I contributed to this.
In later stages, in-depth interviews and analyses of data were conducted, built on the initial extensive design.
According to Jacobsen (2015), this can increase to increasing generalisability and relevance of a study.

A comparative approach can further contribute to the generalisability of a study (Flick, 2004; Jacobsen,
2015). This can be done by comparing the findings across units, for instance, by ‘testing’ the findings from one
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unit by applying the emerging theory from another unit. A comparative approach was implemented in this thesis
by utilising a broad selection of informants. Informants were selected from the entire project value chain, from
different companies, with different backgrounds and current employers. This has been important to achieve a
broad perspective of the study and the findings.

As described in Chapter 3.5, even if the entire thesis can to some extent be considered longitudinal, the
individual studies are, first and foremost, cross-sectional studies. This can reduce the generalisability of the study.
In the overarching discussions of the topic in Chapter 5, no single finding of any single study is considered an
absolute truth; rather, the overarching, emerging themes from the research is examined in detail.

Close collaboration with international research environments (namely the University of Salford in England,
and Philadelphia University in Jordan) as well as continuous participation in international expert groups with
members from a range of industries and countries, including Switzerland, USA, Spain, Romania, Israel, England,
and Norway contributed to increasing generalisability in the research.

3.8.4  Ethical considerations

Access and ethical issues implied by the selected research design should always be considered in preliminary
stages of the research (Saunders et al., 2019).

The research conducted in this project is regulated by privacy data acts, and the undertaken studies were
submitted to the NSD. Jacobsen (2015) emphasises that the choices that shape the research process must be made
based on research ethical principles. Ethical issues can arise when the research directly affects people, and a
researcher must therefore tread carefully in an interview situation (Johannessen et al, 2016).

Jacobsen (2015) presents three basic requirements for research ethics, which deal with the relationship
between researcher and informant:

e Informed consent
e  Requirements for privacy
e Claim to be correctly reproduced

The NSD (2022) also emphasises that the researcher must respect the requirement for free and informed
consent and ensure the privacy of the participants. To carry out the research according to these principles, a
transparent process was important. Before the informants agreed to participate, a project description was issued,
together with a description of how their information would be processed and how the whole study would be carried
out. A consent agreement was then signed in accordance with regulations from the NSD. In all published materials,
the informant is kept anonymous, and specific statements or experiences are not linked to specific informants; no
directly identifiable information is given.

Tjora (2017) recommends communicating the research results back to the informants after completing the
study; this is a nice gesture, a thank you for the help, and can, at the same time, give the researcher constructive
feedback and reflections beyond the initial contribution and ultimately support in further research.

Respondents who participate in interviews must be treated fairly (Bryman, 2016). The NSD ensures that
conducted research is organised in a way that protects the rights of the participants, including confidentiality and
privacy. This study was submitted to NSD in the early stages of the research, and data collection was initiated
following formal approval.

Documents containing information on the interview process and interview questions were sent to each
interviewee prior to the interview itself. The documents described the purpose of the study, the expected
contribution from the interviewees, data collection methods, and how anonymity would be ensured in the
published version of the script. Each interviewee provided their written consent to participate in the study based
on this information. Their identity and organisational affiliation were anonymised to protect the confidentiality
and privacy of the interviewees and their participation in the study. Similarly, if the interviewees named specific
partners, names, organisations, or in other ways shared confidential information during the interviews, this
information was anonymised during the coding stages of the research.

In addition to the anonymisation of involved interviewees and informants, all data collection, processing,
analysis, and coding has been conducted neutrally and as transparently as possible to ensure replicability.
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4 Findings from Individual Papers

The thesis is built upon the findings from six scientific papers. This chapter presents the findings from each of the
individual studies, as summarised in Table 4-1.

Table 4-1. Main findings from each paper.

Paper Main finding
Paper I The biggest knowledge gap in the field is related to the practical
implementation of the technology, and the implications related to the
scalability and robustness of these technologies.
Paper 11 Effective measures for waste reduction on construction sites with Al-
powered tools, and related practical implications. Defines a possible
process and approach for developing a holistic framework, enabling
effective use of developed tools and techniques.
Paper 11T Meaningful, Al-based analyses can be conducted for low-resolution
data. However, more standardisation frameworks for data management
in construction projects can enable continuous comparison and tracking
between projects, greatly improve project-based benchmarking, support
project success prediction, and serve as early warning systems.
Paper IV The main barriers related to the effective data management for materials
and products in existing buildings were identified as lack of data
operability, lack of competence, unwillingness to share data, lack of
financial incentives, and lack of harmonisation.
Paper V Al-powered systems can be used to enhance the QA process on the
construction site. A five-step standardised process framework is
defined, with five main areas affecting the effectiveness and efficiency
of the system. Thirteen factors affecting profitability are identified,
along with the main challenges perceived to hinder productivity and
sustainability in the process.
Paper VI Developers display more maturity and proficiency in Al than users and
implementers. Users are not as proficient as they would like to be. Five
factors are central for increasing proficiency and ensuring sustainable
implementation of Al: collaboration and stakeholder involvement;
access to specialised expertise; sufficient financial support; trust and
transparency; awareness and training. A four-step framework is defined.

4.1  Paperl

The purpose of this study was to map the research in the field of Al-based tools in the construction industry. The
study focused on the range of applications in the construction context rather than one specific area of application,
and thus elaborated on the findings from previous reviews such as Ilter and Dikbas (2009), Martinez and
Fernandez-Rodriguez (2015), Juszczyk (2017) and Basaif and Alashwal (2018).

The study investigated the current and potential future use of Al in construction projects, and the paper
provided an overview of the current state of the field, ultimately giving a sense of direction in a time when
academics and practitioners alike are eager to move forward and innovate in the field. Available technology, data
access, quality of data, and availability of data are rapidly increasing, while the cost of data processing tools is
decreasing equally fast. This creates the possibility for new technologies and applications that were not feasible
even a few years ago.

The paper utilised a scoping review methodology and provided an overview of the recent and current uses
of Al in construction projects through a descriptive analysis of the characteristics and contents of 86 peer-reviewed
articles from 2015 to 2020. The classification framework included descriptive features (year of publication,
source, author(s), location, and keywords), method (conceptual, qualitative, quantitative, or mixed methods), areas
of application, and technology. Mapping the descriptive features of the publications enabled an extensive analysis
of development over time, and the inclusion of bibliometric elements to the analysis.
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Publications were categorised according to methodology as either conceptual (40%), qualitative (21%),
quantitative (12%), or mixed method (28%), as summarised in Figure 4-1.

The review saw a tendency towards conceptual methodologies. Strictly developmental studies in terms of
specific terminology, technical systems, or framework were categorised as conceptual. More than half of the
conceptual studies included some qualitative or quantitative testing and validation in the development of the
system or algorithm; this was still considered part of the development process, and the studies were therefore still
categorised as conceptual. Most developed systems were tested on a PoC scale, and the research did not address
whether the systems were further developed or implemented in larger scale or not.

Quantitative, 12%
Conceptual,
40%

Qualitative,
21%

Mixed,
28%

Figure 4-1. Distribution of chosen methodologies.

Publications categorised as qualitative typically addressed aspects surrounding the technology, including
potential future areas of application, possibilities, and barriers to the technology itself, related to the soft factors.
Notably few studies discussed the use of Al-based systems in the context of people and processes, focusing on
technology awareness and digital maturity with an emphasis on Al. This discussion largely appears to be lacking
in studies with a focus on more specific solutions and tools — this is also found in previous reviews (Basaif and
Alashwal, 2018), and suggests that a gap exists between the potential that the technology constitutes and the
evidence of how it is utilised in both practical and academic context. Publications categorised as quantitative
involved the testing of previously developed techniques and algorithms and were usually applied to rather limited
datasets. This could suggest a low degree of research-based Al implementation, constituting a great potential for
future implementation and pilots. Publications were categorised as mixed method when the research design used
two of the three aforementioned methodologies equally. Most studies categorised as mixed method were rooted
in a conceptual base, but in combination with traditionally qualitative or quantitative methods.

The number of studies conducted within each methodological approach appeared to change between 2015
and 2020, indicating a rapidly developing field. Earlier publications showed a tendency towards mixed or purely
quantitative or qualitative studies, whereas later publications were often purely conceptual. An increasing interest
in Al within the construction industry becomes apparent; this is confirmed both by the body of publications as a
whole and individual studies. However, a higher concentration of conceptual studies could suggest a gap between
theory and practice. Many studies seemingly remain in a development phase, and few studies address the practical
adoption of Al-based technology in the industry and among practitioners at a larger scale.

To elaborate, most studies illustrate how certain technology can be utilised in different parts of construction
projects, for example exploring site layout design (Amiri et al., 2017), or predicting project performance (Mirahadi
and Zayed, 2016). However, most studies lack a larger context for the technology — a framework for the
technology to operate within. The studies do not discuss organisational or process-oriented considerations in the
adaption and adoption of Al in projects. This could, naturally, have many explanations.

For example, a few studies discuss the lack of access to sufficient amounts of quality data. Another possible
explanation could lie in the lack of transferability in the developed models and frameworks, meaning that new
studies are not necessarily able to build on previous research. This, in turn, could suggest a need for a more
standardised framework of technologies and terminology for researchers to operate within when exploring the
topic of Al in construction. Challenges concerning transferability could ultimately prevent a model built in one
environment from being useful in another environment, due to differences in requirements and prerequisites; it
could also prevent one study from effectively building upon the foundational work of another.
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This can be understood as a sign that the field itself remains at an emergent stage; at the same time, this
provides an understanding of the great potential the field demonstrates. Existing case-based research can, and
should, be used as a foundation for developing larger-scale studies.

In terms of areas of application, the research seems to be relatively evenly distributed. There appears to be a
predominance of estimation and cost control (22%) and logistics, planning, and scheduling (19%); the two
together account for almost half of the body of publications. As mentioned, the availability of a sufficient quantity
and quality of data is a challenge in the construction industry. The two predominant areas both lean towards the
quantitative and more easily measurable area of the industry; time and money are easily quantifiable. Other areas
of application include strategy (12%), health and safety (10%), project performance and success estimation (10%),
risk management (8%), reviews and overviews (7%), sustainability (7%), and material properties (5%). Notably,
even if a lot of the studies address a certain area of application conceptually or in general terms, relatively few of
these studies report on actual implementation and practical use beyond pilots and PoCs. Most focus on the
potential use or the development of techniques for future use. No significant links were found in the body of
publications between the chosen areas of application and the chosen methodologies.

Figure 4-2 illustrates the distribution of areas of application.

Materials properties; 5%

Sustainability , 7%
Review and overview , 7%
Risk management , 8%

Project performance and
success estimation , 10%

Estimation and cost
control , 22%

Logistics, planning and
scheduling , 19%

Health and safety , 10%
Strategy , 12%

Figure 4-2. Distribution of areas of application.

The framework presented by Akinade (2017) was used for classification of Al systems, meaning systems
were categorised as either ML, KBSs, EAs, or hybrid systems. The classification was based upon the description
of the techniques provided by the authors themselves. More than a third of the publications (38%) did not explicitly
state the nature or class of the technology in question. Some explanations for this were identified during the search.
Studies lacking a technical description seemed to mainly focus on implications and effects, or potentials and
barriers, rather than the development or use of specific technologies. Hybrid systems (26%) and ML (26%) were
the main techniques studied in more than half of the publications. KBSs constituted 6% of the reviewed studies,
while EAs constituted 2%. The majority of the hybrid-classed studies describing technology and techniques also
utilised ML, mostly supervised ML; a notable number were also based on EAs. Among the publications discussing
ML, half of these specifically discussed neural networks. The remainder of the publications showed no significant
trend or preferred technique within the category. There appears to be an increase in the application of hybrid
models in the later years compared to earlier years (Xiao et al., 2018). This could suggest increased use of more
compound systems as technology and industry develop because hybrid systems are able to solve more complex
tasks than any single system (Akinade, 2017).

As part of the screening process of the review, a significant number of studies using the terms AI or ML
without addressing specific techniques or approaches were discarded; this implies that many use the terminology
somewhat loosely. One explanation could be a lack of unambiguously defined terminology and vocabulary in the
field, especially in the context of the construction industry. Another explanation could be that these are ‘buzz
words’ popularised by the media; this can contribute to the confusion of definitions. Most of the exclusions were
caused by the high number of papers discussing technology not explicitly defined as AL

Figure 4-3 illustrates the distribution of discussed technologies.
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Hybrid; 26 % Knowledge based systems; 6 %

Evolutionary algorithms; 2 % Others; 50 %

Machine
learning; 26 %

N/A; 38 % Neural networks; 50 %
Figure 4-3. Distribution of discussed technologies.

Ultimately, the findings from the literature review became pivotal for the thesis as a whole, making it clear
that the biggest knowledge gaps in the field, both in academia and in the industry, were related to the practical
implementation of the technology and, by extension, implications related to the scalability and robustness of Al-
based technologies.

The field is rapidly evolving, with new technologies, techniques, and tools being developed both inside and
outside of the construction context. A visible change in preferred methods, as well as a change in keywords over
time, imply that the field is indeed developing. The conceptual methodology seems to be the preferred approach
in the field of study. The extensive use of conceptual methodology suggests that this method works in a research
context but could, at the same time, suggest a need for other, more practically focused methods to develop the
field further. The wide thematic range of previous studies provided a valuable foundation for future research, but
the field is assumed to benefit from a shift towards more interdisciplinary studies. Many studies focused purely
on the development of algorithms and tools, whereas others focused purely on the expected effects.

It became apparent that Al holds significant potential for increasing productivity and sustainability in
construction projects, but the construction industry seems to lack the progress seen in other industries.

The study contributed to the current state of research on Al in construction projects by presenting a state-of-
the-art view of the research done in the field from 2015 to 2020. It provided an overview of methodologies used,
areas of application, and technologies, ultimately providing a direction for future research. It illustrated possible
areas of innovation and application of Al-powered tools and could, in that sense, serve as a tool for benchmarking.

Findings showed a need for future research to focus on developing holistic frameworks to improve scalability
and robustness. For this thesis, it meant remaining studies would mainly be centred around systemic, process-
oriented, and organisational aspects rather than the technical development of specific tools or algorithms. Through
understanding the current status and the main challenges the industry is facing, and mapping the main dimensions
of the implementation process, a framework could be developed to help actors move from ambition to practice.

4.2  Paper Il

The purpose of this study was to examine and explore through exemplification how Al-based tools, in practice,
can be utilised in construction projects. As the findings in Paper I suggested, more research was needed on the
practical implications of implementation, and this study sought to contribute to the filling of this gap. To exemplify
this, the study explored how Al-based tools can help reduce waste on construction sites.

The construction industry accounts for nearly 40% of worldwide energy consumption and energy-related
gas emissions (Global Alliance for Buildings and Construction, 2017). Reduction of waste on construction sites
plays an important role in the usage and development of sustainable solutions, and in the ongoing development of
a sustainable industry (United Nations, 2021). Studies show that certain waste fractions have very high waste
percentages (Hjellnes Consult, 2015; SSB, 2019), meaning that large amounts of such materials pass through the
value chain without adding any practical value to a project.

An explorative, mixed method research design was deployed. Qualitative methods were utilised, including
a literature review, 32 interviews, a project visit, a site visit, and participation in chosen seminars. In addition,
quantitative methods included an analysis of waste quantities in 161 construction projects, selected based on
criteria for availability of data, as well as a targeted questionnaire with 21 respondents.
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Previous research identifies timber and wood, plaster, cardboard and paper, plastics, and mixed waste as the
most significant waste fractions (Renningen, 2000; Kartam et al., 2004; Osmani, 2012; SSB, 2019). Evaluating
the generation of waste in 161 new building projects confirmed previous findings: the most problematic fractions
were identified as timber (34.6% of total waste); mixed waste (27.3%); plaster (17.8%); paper and cardboard
(2.7%); and plastic (2.3%). The same fractions were confirmed and highlighted by informants in the questionnaire
and interviews. Informants identified the activities and processes producing the most waste for each fraction. A
range of tools are already established as suitable for construction site waste reduction, including Lean Construction
(Womack et al., 1991; Koskela et al., 2002). Other tools include sustainable design choices (Innes, 2004; Zero
Waste Scotland, 2016); industrialisation (Tam et al., 2005), and digitalisation (Charef et al., 2018).

The study concluded with 18 proposed measures. Conceptually, the recommendations were constructed by
first identifying the main sources of waste, what waste fractions were the largest, and what activities and processes
in the project contributed to the generation of waste. Following this analysis, existing measures for waste reduction
were assessed, including concepts related to specific frameworks such as Lean Construction, along with concepts
related to more general developments in the industry such as industrialisation and digitalisation. Then, Al-based
tools and technologies considered relevant were assessed in the context of the identified waste fractions and
processes, and the established tools. This conceptual framework is illustrated in Figure 4-4.

Areas that hold potential to be enhanced using Al-based tools should be identified first, and solutions second.
This was later confirmed by the findings in Paper VI.

Development Mapping
[ Measures for waste reduction } [ Tooblematic }
waste fractions
[ Implementation of measures ] [ Al ased }
tools

Established
tools

Waste reduction

Benefits of waste reduction

Figure 4-4. Conceptual framework for waste reduction powered by Al

From this assessment, the study uncovered several possibilities and concluded with the 18 measures for the
reduction of waste on construction sites, along with a set of recommendations for practical implementation. The
recommended measures were related to the most relevant project phases for implementation, and included
definition of appropriate targets for waste production, optimisation of resources, continuous tracking, reporting,
and presenting of waste quantities, training, conducting inspections, and implementation of specific routines for
warehousing; the recommendations included development and deployment of ML, KBS, and ES systems. It was
assumed that most complete Al techniques and tools would comprise more than one form of Al and thus be hybrid
models, and so the dominant system or technique was denoted in the recommendations. Recommendations related
to the timing of the implementation were proposed based on NS 3467:2023 framework (Standard Norge, 2023).

The recommendations are summarised in Table 4-2.

Table 4-2. Recommendations for implementation of waste reduction measures.

# Recommended measures for waste reduction Technique Phase
1 Early and explicit definition of targets for waste reduction ML (regression) 4

2 Early and explicit plan for resource optimisation ML (ANN), EA (GA) 4

3 Continuous tracking of waste quantities ML (ANN) 534
4 Continuous reporting of waste quantities ML (ANN) 534
5 Continuous and visual presentation of waste quantities ML (ANN) 534
6 Defining routines for warehousing on-site ML (ANN), EA (GA) 4,5
7 Defining routines for ordering materials ML (ANN), EA (GA) 4,5

8 Training of all involved personnel ML 3,4
9 Contractual arrangements based on bonus-malus ML (regression) 3
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10 Establishing a digital platform for all actors in the project ES (RBS) 1,2,3.4,5
11 Establishing a digital platform for experience sharing ES (RBS) 1,2,3,4,5
12 Inspections during all production phases ML (ANN), EA (GA) 5
13 Layout planning during all production phases ML (ANN), EA (GA) 5
14 Increased use of digital tools for ordering accurate quantities ES (RBS) 5
15 Marking orders and materials arriving on-site ES (RBS) 5
16 Design for standardised elements EA (GA) 2
17 Design for the use of cut-offs EA (GA) 2
18 Design for shared geometry EA (GA) 2

The study helped to bridge the gap between ambition and practice by highlighting relevant considerations
related to the practical implementation of measures for waste management, and by providing an understanding of
which Al-based tools and measures are considered effective for waste reduction in construction projects. A range
of practical implications were discussed. The increased use of Al in construction projects is expected to require
investment, especially during the early phases of implementation and integration. As the cost of data processing
continues to decrease and the interest within the field continues to increase — ultimately bringing more available
and commercialised solutions — it is reasonable to assume the cost will decrease accordingly.

The findings suggested that, to utilise the potential of Al-based techniques fully, the construction industry
should build upon existing methodologies and strategies; however, it is likely that the industry as a whole would
need to eventually reinvent and redefine traditional project models, contracts, business models, and enterprises.
This is a comprehensive task and should involve key actors in all parts of the value chain.

In the concluding remarks of the study, it was noted that a useful undertaking would be to study in closer
detail how data of sufficient quantity and quality can be collected, structured, and utilised to enable effective use
of Al this, in part, inspired the initiation of the two studies resulting in Paper IV and VI. To validate the findings
related to the conceptual development of a framework to utilise Al-based tools, it was necessary to explore more
than one area of application; later papers explored QA (Paper V) and project success (Paper III).

4.3  Paper III

The purpose of this study was to exemplify an ML application on a limited dataset, as datasets are often limited
in a construction context, relatively speaking. In addition, the study gave an opportunity to gain first-hand
experience with the process of developing and deploying an Al-based tool in a construction context.

No single definition of project success exists (Bannerman, 2008). One direction of project success research
aims to identify the factors that can contribute to project success, project failure, or project risk. Previous research
has explored the use of Al to predict project success and examine and identify critical success factors. Several
techniques are utilised in previous research (Magafia and Fernandez Rodriguez, 2015), including ANNs (Chua et
al., 1997; Dvir et al., 2006; Ko and Cheng, 2007, Wang, Yu and Chan, 2012; Jacobsen and Teizer, 2022), EAs
(Ko and Cheng, 2007; Cheng et al., 2009), and regression analysis (Dvir et al., 2006).

The study conducted a quantitative analysis on a sample of 160 Norwegian construction projects, building
the algorithm with data obtained from a detailed questionnaire delivered to relevant project team members through
the Nordic 10-10 initiative. The method utilised ML through a Random Forest Classifier (RFC). The original
dataset was loaded into a Python script, where selected libraries were used. One of the selected libraries was
Pandas. A dataset loaded into Pandas is a DF. The original datasets were processed through an EDA and
preliminary cleaning, resulting in an initial DF. This DF was then split into nine purposed DFs before the next
steps were carried out in order: main cleaning, labelling, train-test split, scale, train and fit, classification, and
lastly analysis and plot of the results. The process is summarised in Figure 4-5. To keep a low number of DFs and
filter out the least relevant, only some combinations were explored further. For instance, if a DF had too few
projects, or only either successes or failures, they were dropped. After initial simulations, three DFs yielded more
precise results than the remaining six; the main analysis therefore focused on these three.
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Figure 4-5. Development pipeline.

The findings obtained from the analysis show that it is possible to use Al and ML on a limited, low-resolution
dataset. The data in the Nordic 10-10 program are not collected specifically for the utilisation of Al, and therefore
the development required a lot of preparatory work. Construction project data can be of high resolution and
domain-specific, such as plans for large projects. Low-resolution data, such as the data this study was built upon,
are based on qualitative evaluations done by the project organisations themselves. This has advantages; the data
describe first-hand experiences from the project team members. Disadvantages include a risk of bias by the staff
reporting the scores. The 10-10 database is based on reports from members of the project team in respective
projects. This means that there is a possibility of bias or imprecision; consequently, a value could have been put
in the wrong place or provide an inaccurate or biased image of the actual situation.

Future analyses would benefit from more consistent registrations of questions and parameters, which is a
common issue in ML and other quantitative analyses.

A model or approximation will only ever be as reliable as the data it is based upon. Currently, no standards
exist for collection and utilisation of data in construction projects. To a certain extent, this is understandable
because all projects are unique. However, it would greatly benefit this type of analysis if some standardisation of
data structures would emerge. Some industry-specific standards exist for structuring of data, such as for BIM and
standards for data coding such as NORSOK in the Norwegian oil and gas industry. Data that can be consistently
compared and tracked between projects has the potential to improve project-based benchmarking, support project
success prediction, and perhaps most importantly, serve as early warning systems that can identify potential issues
in time for action to be taken.

The findings from the study also demonstrate that it is possible to identify the most important success factors
for the projects in question with the developed model. Ultimately, the ML model demonstrated the ability to
discover important factors for project success from a limited dataset. Such analyses can be used in early phases
of a project to predict project success in later phases, or in the whole project, and could prove to be a useful tool
to eventually achieve more project success.

Specifically, the findings suggest that a group of selected processes is more important than others in
achieving project success. The identified success factors support the theoretically (and empirically) acknowledged
importance of early planning and analysis, managing complexity throughout the project, leadership involvement,
and processes supporting project success. The top features (factors) from the best performing DFs with their
conceptual meaning is summarised in Table 4-3.

Table 4-3. Top features from the best performing DFs.

Feature Concept
The complexity was very high due to the progression plan Complexity
The project had a large quantity of changes in the list of main components Changes
The project had a large quantity of deviation reports Deviations
All relevant project members were involved in the uncertainty analysis Uncertainty
The involvements from project owner were appropriate Leadership involvement
The project’s processes and systems support project success Project owner process
The project team participated in adequate engineering work training Training
Suggestions for improved constructability were evaluated and integrated Planning
Costs to fix potential faults were considered during the engineering phase Cost of quality

Simultaneously, certain previously acknowledged factors were expected to be among the identified factors;
ultimately, these did not appear in any of the algorithm results. These included communication with key personnel
and stakeholders, early involvement of key personnel, communication of strategic goals and project goals from
the leadership team, among others. Although the factors are not emphasised by the model, they appeared to be
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important for success in the sample projects. One explanation for this is that the features that are not present are
represented and reflected in other features. For instance, the concept of process support success was reflected in
three separate features in the analysis, but only one of them was categorised by the algorithm as an important
success factor. Therefore, the low occurrence of certain features does not necessarily indicate a lower importance
of the feature.

Beyond the findings related to the assessment of project success, several findings could be derived from the
development process itself, and the metadata collected during this process.

In developing the algorithm, much of the time was spent on preparing the dataset, meaning splitting,
processing, cleaning, and labelling. The data used were originally collected to be read and understood by humans;
inevitably, for an algorithm to make sense of the same data when only appraising information as numbers, time
and resources must be spent to prepare the dataset. Furthermore, certain entries lacked one or more datapoints,
ultimately rendering the whole entry ineffective.

Throughout the process, several decisions were made regarding handling missing values, weighting of DFs,
tuning of hyper parameters, and definition of classes. These are all decisions that can, and likely will, affect how
the algorithm works. To help both academics and practitioners to continue to build on developed systems and
tools, a certain degree of transparency is needed to provide an understanding of how the development can affect
the outcome, and how the outcome is to be understood in a larger context.

The overall assessment once again highlighted the importance of an extensive data management strategy,
ensuring a high-level collection and storage of relevant data; this was further investigated in Paper IV and VI.

44  Paper 1V

The purpose of this study was to explore barriers related to mapping, collecting, and storing data about materials
and products in existing buildings; in essence, discovering data management as an enabler for circular economy.

A transition to a circular economy is considered essential to sustainable development in the built environment
by reducing resource consumption and carbon emissions, and moving away from the traditional, linear economic
model (Pomponi and Moncaster, 2016; Cheshire, 2019). The reuse of existing materials is a circular economy
practice that can significantly decrease resource consumption and carbon emissions, but one that requires adopting
a systemic approach and value chain integration on a large scale (Pomponi and Moncaster, 2016; Munaro and
Tavares, 2021; Knoth et al., 2022). Effective data management can enable the utilisation of new tools and
technologies and, ultimately, the creation of circular business models in the building industry. To accomplish this,
a targeted mapping and collection of data must take place. However, several challenges hinder the exchange of
information in a seamless digital flow through the value chain and building life cycle.

This study aimed to bridge the gap in the research on data management, providing an empirically validated
and comprehensive overview of existing barriers and prospects related to mapping, collecting, and storing data
about materials and products in existing buildings. To provide a construction-relevant context, the topic of circular
economy set the basis for the study. An initial literature review confirmed the research gap indicated in previous
research and set the basis for two interview cycles, which contained 12 and 6 interviews, respectively.

The insights collected through the interviews acquire both technical and practical connotations, seemingly
coinciding with the findings of other studies investigating the link between digitalisation and circular economy,
focusing on specific aspects or technologies. Six barriers were identified through 18 semi-structured interviews
with industry experts working within the fields of circular economy and digitalisation. Through coding and
interpretation of the emerging concepts, the identified barriers were:

e Lack of data availability

e Lack of data interoperability
e Lack of competence

e Unwillingness to share data

e Lack of financial incentives

e Lack of harmonisation

In the circular economy context, lack of data availability is related to data about building materials and

products being missing, incomplete, inaccessible, or not digitised. Findings argue that the information should be
dynamic, possibly connected in a digital model or a material passport.
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Lack of technical interoperability can impede effective data management, and a robust digital infrastructure
is highlighted as crucial for effective scaling. Data are often stored in different repositories, in different formats,
with varying levels of ownership and accessibility; this is ultimately hindering effective exchange of information
between stakeholders through the value chain. Integration with digital tools, such as BIM or material passports,
are perceived to simplify this process, given that the platform of choice allows exchange of data in an open format.
Transparency and openness of data is considered essential for enabling interoperability. Another vital aspect of
improving data interoperability is the collection and storage of data and information in a standardised format.
Industry actors noted that regulation standards are still missing, adding another layer to the challenge of
coordination. Digital technologies and tools are expected to contribute to the sharing and connection of data
between stakeholders in an open, transparent, and standardised way.

Lack of competence is related to collecting, handling, sharing, and managing of data. Some actors note that
the competencies adapt over time in an organisation, helped by pilot projects and industry initiatives.

Unwillingness to share data is another challenge, as the perception in the industry today is that actors are not
willing to share their information openly across the value chain and between industry actors. Informants note that
this unwillingness can ultimately hinder the overcoming of other barriers, such as the lack of interoperability.

A few challenges are associated first and foremost with structural considerations, such as lack of financial
incentives. Actors argue that it is difficult to establish a business model for reuse of building materials on a larger
scale without financial incentives originating from the market or the authorities. Stricter requirements from project
owners and authorities could potentially contribute to solving this barrier and making it financially viable.

Lack of harmonisation across the value chain is mainly related to the lack of cohesion in procedures and
processes for data management. This, in turn, can contribute to hindering the exchange of information between
stakeholders, making it difficult to achieve circular economy and material reuse. Standardising the processes
related to data exchange and management through connecting the value chain and defining the responsibilities
and roles of the different stakeholders could help to mitigate these issues. This is expected to also improve the
lack of interoperability.

Some identified barriers, such as the lack of data availability and interoperability, lack of competencies and
unwillingness to share data, are strongly interrelated. A collaborative approach is required to achieve effective
data management, and to ultimately enable a circular economy in the built environment. According to the findings,
measures that could contribute to overcoming these barriers include the adoption of a public database to ensure
openness and transparency of the data. In addition, to ensure the effective management of large amounts of data,
standardised and harmonised procedures and processes for data management and a financially viable model will
be necessary. To overcome the barriers, it is essential to strengthen collaboration and trust among key
stakeholders.

The study acknowledges the position of Al-based technologies as not the goal itself but a part of a bigger
system and picture. It illustrates how the utilisation of Al-based tools extends far beyond developing and building
algorithms and how the technology itself is only one part of a much bigger framework that needs to be in place to
make use of the technology effectively.

Through exploring previous and ongoing endeavours among academics and practitioners, the research set
the basis for developing a holistic framework for data management. This was further explored in Paper VI.

45 PaperV

The purpose of this study was to examine how Al can help improve QA on the construction site, specifically used
in conjunction with BIM and 3D laser scanning.

Quality in the delivery and deliverables of construction projects has been, and continues to be, identified
among the most central factors for project success (Arditi and Gunaydin, 1997; Chan et al., 2004; Bang et al.,
2022). Thus, QA plays a vital role in project management (Nguyen et al., 2018). Construction projects often
involve complex processes and tasks requiring high levels of accuracy and precision; therefore, QA is critical to
ensure that the project can deliver according to the required specifications and standards. Construction projects
significantly impact the environment in all stages of their life cycle. Ensuring quality in delivery and deliverables
is essential for maintaining social sustainability, reducing costs, and minimising environmental impact.

Laser scanning is identified as a tool to reduce errors and improve the promptness and accuracy of QA
processes (Anil et al., 2011; Safa et al., 2013). Previous research demonstrated the strengths of using BIM and 3D
laser scanning in conjunction (Kaylan et al., 2016; Liu et al., 2021). As the advances in digital technologies are
rapidly increasing, experts argue that the evolution of BIM should be categorised within frameworks factoring in
people, processes, and emerging technologies (Kubicki et al., 2019; Boje et al., 2020). Wang et al. (2020) suggest
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that more case-based research on the implementation and use of new digital technology with BIM can contribute
to empirical validation of previously theoretical findings.

This study explored the QA process, how it can be standardised, how it can be advanced by increasing
effectiveness and efficiency, and how Al-powered tools can help enhance the process.

A mixed method research design was employed. This was done through nine semi-structured in-depth
interviews, where the interviewees had experience from 15 different projects utilising 3D laser scanning for QA;
a multiple-case study, investigating case documents and records from six case projects, an additional four
interviews with personnel involved in the 6 case projects, as well as presentations from involved personnel; and
a literature review, exploring the topic of Al in a BIM and QA context. An initial, unstructured literature search
informed the interview guide, and the conducted interviews informed the case study, which again informed the
literature review. Since the case projects had not utilised Al in their work, the additional nine interviews, as well
as a scoping literature review, were conducted to inform how Al can be used in the BIM and QA context.

A five-step standardised process facilitating the use of Al tools was defined, namely: planning; scanning;
data processing; error detection; and distribution and improvement. The framework provided a set of guidelines
for the actors in a previously fragmented area of application, to inform future work in academia and industry.

The seven challenges perceived to be the biggest ones hindering productivity and sustainability in the process
were identified:

e Time-consuming scanning

e Time-consuming processing

e  Time-consuming detection of deviations

e Time-consuming communication of deviations
e Noise in scan

e Lack of interoperability

e  Time-consuming updating of BIM model

Recommendations related to how these challenges could be overcome by utilising digital technologies and
Al were proposed. The findings from all three research questions informed a proposed system for QA, utilising
the potential of 3D laser scanning and Al-based tools, both commercially available or tailored to the project and
organisation, built on proposed established data warehouses.

The research discovered five main areas impacting the effectiveness and efficiency of the process:

e The BIM model,

e Competence

e Involvement of subcontractors

e Integration in the company QA system
e Project-specific plans

A series of prerequisite factors were defined for each of the five areas to provide a guideline for validation
for the QA system. Thirteen factors affecting the profitability of the system were identified, along with the
perceived certainty for cost estimates. The thirteen factors were related to equipment, company-specific factors,
project-specific factors, process-specific factors, and factors related to errors.

For academics, the study provided empirical validation of previously identified theoretical findings, and a
detailed description of the practical implications related to the use of 3D laser scanning with BIM and AI for QA
in construction projects. The study provided a foundation for future research to develop and test Al-based tools
to empirically map the effects of these technologies on the QA process. For practitioners, the study provided a set
of extensive guidelines to better understand, and more effectively use, 3D laser scanning with BIM and Al for QA
in construction projects by proposing a framework for standardisation, along with a set of recommendations for
further advancing and enhancing the process.

4.6  Paper VI
The purpose of this study was twofold. Firstly, the study aimed to assess the Al maturity and proficiency among

industry actors, namely developers, users, and implementers of digital tools and Al systems. Secondly, the study
defined a framework acknowledging challenges related to the development and deployment of Al systems, with
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recommendations and practical implications for the three groups for each stage of the framework. The framework
is intended to facilitate sustainable implementation of digital tools and Al in the construction context and help
take the use of Al from an add-on to an integral part of construction projects.

The purpose of this study was twofold. Firstly, the study aimed to assess the Al maturity and proficiency among
industry actors, namely developers, users, and implementers of digital tools and Al systems. Secondly, the study
defined a framework acknowledging challenges related to the development and deployment of Al systems, with
recommendations and practical implications for the three groups for each stage of the framework. The framework
is intended to facilitate sustainable implementation of digital tools and Al in the construction context, and help
take the use of Al from an add-on to an integral part of construction projects.

Identified barriers for the digital transformation in construction are related to the lack of organisational
capabilities (Aghimien et al., 2022; Rajabi et al., 2022; Zhang et al., 2023), collaboration and communication
between stakeholders (Bosch-Sijtsema et al., 2021; Xu et al., 2022), availability of expertise (Aghimien et al.,
2022; Rajabi et al., 2022), and data collection, storage and sharing (Shahzad et al., 2022; Xu et al., 2022).
Construction digitalisation goes beyond acquisition of necessary hardware and software (Akinosho et al., 2020;
Adekunle et al., 2021), and there is a need for frameworks facilitating this transition. Data management is
identified as a key barrier for scaling and increasing robustness in Al systems in the construction context (Burgess,
2018; Xu et al., 2022). Therefore, this study took on a data management perspective on implementation.

The Pringle and Zoller (2018) maturity model categorise adopters of Al technologies, from ‘novice’ through
‘ready’ and ‘proficient’ to ‘advanced’. The model is summarised in Table 4-4.

Table 4-4. Al maturity model (Pringle and Zoller, 2018).
Al Ready Al Proficient

Al Novice Al Advanced

Has not taken proactive
steps on the Al journey
and at best is in
assessment mode

Sufficiently prepared in
terms of strategy,
organisational setup, and
data availability to

A reasonable degree of
practical experience and
understanding of how to

move forward with Al,

A good level of Al
expertise and experience,
with a proven track
record across a range of

implement Al but there are still gaps

and limitations

application cases

An initial literature review confirmed the research gap indicated in previous research and set the basis for
empirical data collection through 36 semi-structured in-depth interviews, out of which 14 were developers, 15
were users, and 7 were implementers; a document study; a site visit; and 14 demos, out of which 9 were provided
from a developer perspective, while the remaining 5 were provided from the user perspective.

Interviewees were asked to assess themselves and their organisation according to the Pringle and Zoller
(2018) maturity model. Only one developer described themselves as ‘novice’ level, while two developers
categorised themselves as ‘advanced’, holding experience from application of AI across a range of industries and
areas of application. Twelve out of fifteen users categorised themselves as ‘novice’ or ‘ready’, and three as
‘proficient’. Most implementers described themselves as ‘ready’ and only one as ‘proficient’. The final appraisal,
as presented in Table 4-5, is based on a qualitative assessment of the interviewees’ descriptions of themselves and
their organisation, provided throughout interviews, available documentation, and notes made throughout demos.

Table 4-5. Interviewee assessments according to the AI maturity model.

Al Novice Al Ready Al Proficient AI Advanced Total
Developers 1 (7.1%) 3 (21.4%) 8 (57.1%) 2 (14.3%) 14
Users 5 (33.3%) 7 (46.7%) 3 (20.0%) 15
Implementers 6 (85.7%) 1 (14.3%) 7
Total 6 (16.7%) 16 (44.4%) 12 (33.3%) 2 (5.6%) 36

When asked to assess their counterparts, users consistently described developers as more mature, while
developers consistently described users as less. Implementers generally described the two other parties closer to
their self-assessments. Users acknowledge that they generally do not consider themselves as proficient as they
would like to be. Describing proficiency among users, a developer states that there is a very varying degree of
proficiency while another developer notes that users do not necessarily need to understand the technology behind
a solution to use the system effectively. The consensus among the developers seemed to be that the goal is to
develop a tool users can operate with minimal technical knowledge.
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Previous research identified the lack of awareness, education, training, and trust as barriers to sustainable
construction project implementation (Rajabi et al., 2022; Almakayeel et al., 2023; Kineber et al., 2023b); notably,
the same barriers are identified in as barriers for the increased use of digital tools and Al (Burgess, 2018; Darko
et al., 2020; Delgado et al., 2020; Goralski and Tan, 2020; Aghimien et al., 2022; Rajabi et al., 2022; Shahzad et
al., 2022; Xu et al., 2022; Zhang et al., 2023). This implies that a framework facilitating effective use of digital
tools could contain elements that facilitate sustainable construction project implementation. From the findings of
the maturity assessment, an implementation framework was developed.

No two interviewees described the same implementation process. However, a common emerging theme was
the description of iterative and constantly evolving processes. Every stage of the process provides an opportunity
to learn and to generate data and metadata.

The implementation process model is illustrated in Figure 4-6.

Step 1: Problem
identification

Step 2: System
design

Step 4: Monitoring
and maintenance

A

Step 3: Training
and validation

Figure 4-6. Implementation process model.

The first step is problem identification; essentially, identifying areas where Al can add value. Understanding
the problem at hand will be essential in making Al a more integral part of a construction project or organisation,
rather than an add-on. All users, when asked, expressed an interest to use Al. However, using Al for the sake of
Al appears to be one reason why systems are unable to move past the pilot stage. Issues surrounding Al systems
and models do not seem to be related to the mathematics of statistics of a model, but rather to the heuristics.
Understanding the problem is essential to move past the PoC stage and ensuring sufficient contextualisation.

The second step is system design. This can involve the selection of appropriate Al techniques and models,
and plans for integration of the Al system into existing processes. Designing a system that is scalable and robust
is identified as one of the most important characteristics of a system. As noted in Paper VI, development and
deployment are often done in traditionally academic languages, such as Python or MATLAB. This could
contribute to creating a gap between the work done in academia and in the industry, which could, in turn,
contribute to further fragmentation in the field. The findings suggest that the fanciest mathematics and most
complex models do not necessarily have the biggest impact. Explainable models are seen as easier to deploy and
maintain and are generally better received in a project or organisation. The developers emphasise that some
problems do not require the use of ML and can be solved or supported by the use of methods that typically require
less data, for instance KBS.

The third step is training and validation. While system design focuses on the structure and architecture of a
model, the training and validation stage typically involves feeding large amounts of data to the model to learn
patterns, make predictions, and perform specific tasks. Availability of data is identified by the interviewees as a
central challenge. Construction projects often have fragmented, incomplete, or inaccurate data; a lack of
interoperability contributes for complicating data sharing between actors. Developers emphasise the importance
of high-quality data and metadata to build high-quality Al systems. Users note that it is necessary to collect data
from multiple sources, as there currently exists no single database containing all the necessary data. A potential
to improve this could be establishing data warehouses on the organisation level. Similarly, establishing metadata
repositories can enable users to easily search, locate, and retrieve relevant data. Data exists in a wide — and
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unstructured — range of formats, including PDF, JPG, MOV, GIS, CAD, DOC, and, perhaps even more commonly,
XLSX format. Data can be summarised in multidimensional data formats, such as NetCDF, JSON, or HDFS5.
Multidimensional formats allow data to be related to other existing data and metadata, and enables convenient
searching, filtering, and extraction of data, and can ensure data quality. One way to increase transferability through
the implementation process is standardisation. Standardisation can include systematic alignment of construction
or data management processes, and can promote consistency, and interoperability.

The fourth step is monitoring and maintenance. As emphasised in the empirical findings, the final step is to
be considered as a continuously ongoing process, rather than a step that is to be finalised upon delivery. The goal
is to deliver, and to continue to deliver, a system that works safely and continuously, and works with the user
infrastructure. Maintenance can include, but is not limited to, updating the model as new data becomes available,
or otherwise adjusting the model after assessment of preliminary available data. It is recommended that users
remain an active part throughout the development and implementation process, to ensure an understanding of how
this process might affect the system and the output it provides. The findings indicate that involvement, over time,
can contribute to increasing trust, competence, and ultimately, proficiency. All actors being experts in all fields is
not a goal; experts should continue to foster their core competence, but involvement will be essential to cultivate
specialists in the thematic intersection. The implementation process model is illustrated in Figure 4-7.

Figure 4-7 summarises the main contribution and purpose of each of the studies, and how the resulting papers
informed subsequent studies.

R Practical
Faperll i implications
Paper I _ Paper I1I
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Implementation
PaperV b} framework
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Data > Paper IV > Paper VI
management

Figure 4-7. Connection between papers.
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5 Discussion

The topic of Al in construction has sparked a lot of interest in recent years. Despite the obvious potential for Al
systems and models in the industry, a gap remains between the potential the technology holds and its actual
implementation at scale; there appears to be more hype than practical application. The six conducted studies saw
a range of themes emerge through the research. The following chapter will discuss some main emerging themes
in the implementation and integration of Al-based tools in a construction context.

The themes will be discussed in the context of four dimensions. The people, process and technology
framework is well established. On the topic of Al another perspective emerges as equally important: data. The
topic of data is often addressed in the context of the technology perspective; however, to utilise Al effectively and
efficiently in construction projects, high-quality data and metadata are needed. Data is not only needed in the
development of a system or model but on and about the process to understand how the context of the data might
affect the output and how the output can be understood. The modified framework is presented in Figure 5-1.

Technology

Process [

Figure 5-1. Framework for discussion (1).

The construction industry as a whole is generally considered less digitalised when compared with other
industries. Still, both research and industry initiatives showcase great results. This thesis aims to enable actors in
the industry, with a focus on practical implications contributing to the field. Therefore, the focus of the discussion
will be on systems, projects, and organisations, rather than the industry as a whole.

Findings suggest that the industry could benefit from building upon existing methodologies and strategies,
but it would eventually need to reinvent and redefine traditional project models, contracts, business models and
enterprises. It is believed that change can also be driven by the industry actors themselves.

To enable the use of Al systems in construction projects, relevant infrastructure must be established on the
organisation and system levels. Therefore, the following discussion will focus on, and distinguish between, the
system, project, and organisation level (Figure 5-2).

System

Figure 5-2. Framework for discussion (2).
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Based on the two frameworks, the discussion will explore the current state, main challenges, practical implications
of implementation and integration, and how actors can work on a system, project, and organisation level to move
from ambition to practice. The discussion will be structured according to the frameworks.

5.1  System level

On the system level, a wide range of tools have been developed and successfully applied to estimation and cost
control; logistics, planning, and scheduling; strategy; health and safety; project performance and success
estimation; risk management; sustainability assessments; and material properties. However, few report on the use
of these tools beyond pilots and PoCs; most focus on potential use or the development of techniques.

As illustrated in Paper I, the majority of the research is done on the system level. Consequently, the body of
research is lacking on the project level, the organisation level, and on the intersections between the levels.

5.1.1  Technology

The body of research as a whole implies an uneven application of resources to problems as of today, and there is
a predominance of applications related to traditionally quantitative areas such as estimation and cost control
(Cheng et al., 2009; Shin, 2015; Juszczyk, 2017; Elmousalami, 2019; Yaqubi and Salhotra, 2019; Juszczyk et al.,
2019; Juszezyk and Lesniak, 2019; Bilal and Oyedele, 2020; Cheng et al., 2020; Juszczyk, 2020) and logistics,
planning, and scheduling (Golparvar-Fard et al., 2015; Podolski, 2016; Xing et al., 2016; de Soto et al., 2017;
Camacho et al., 2018; Cheng and Hoang, 2018; Dawood et al., 2019; Hu and Castro-Lacouture, 2019), as noted
in Paper I. In this sense, there appears to be a drifting apart between the academic field and the industry.

One explanation could be that some areas of application can more easily yield quantifiable results, meaning
these areas gain more attention. Another explanation could be that some areas are still waiting for data. If an area
is lacking data of sufficient quality and quantity, the development and employment of an Al system in that area
could simply become too resource intensive. Lacking infrastructure could be another contributing factor to this.
Different cloud-based systems and applications do not necessarily communicate well — if at all. For any system
to work effectively, it should be integrated with other existing infrastructure. This provides a familiar platform for
the users and ensures a certain degree of interoperability.

The industry is not currently lacking PoCs, tests, or pilots. This is widely documented in previous research
(Golparvar-Fard et al., 2015; Gudauskas et al., 2015; Hajdasz, 2015; Mousavi et al., 2015; Shin, 2015; Kog and
Yaman, 2016; Mirahadi and Zayed, 2016; de Soto et al., 2017; Juszczyk, 2017; Pruvost and Scherer, 2017;
Samantra et al., 2017; Zou et al., 2017; Ayhan and Tokdemir, 2018; Cheng and Hoang, 2018; Goh et al., 2018;
Hanna et al., 2018; Poh et al., 2018; Sharafi et al., 2018; Taherdoost and Brard, 2019; Elmousalami, 2019; Hu and
Castro-Lacouture, 2019; Jaber et al., 2019; Juszczyk et al., 2019; Juszczyk and Lesniak, 2019; Vickranth et al.,
2019; Yaqubi and Salhotra, 2019; Basaif et al., 2020; Fallahpour et al., 2020; Han et al., 2020; Juszczyk, 2020;
Nnaji and Karakhan, 2020; Xu et al., 2020), and confirmed by the findings in Paper I. What appears to be lacking
is evidence of scalable and robust systems, of infrastructure that facilitates effective use of the systems, and of
organisation structures that preserve the new functions required to operate the systems.

Technology should be designed with the user in mind (Barlett-Bragg, 2017), and to enable streamlined
integration with existing processes. Paper II and Paper III illustrated how, on a system level, a process can be
deconstructed to identify and understand the problem at hand.

Selecting appropriate models, and further developing these to suit the context that they will operate within,
is a central and critical part of the successful utilisation of AI (Russell and Norvig, 2010; University of Helsinki,
2018). Different models will be fit for different types of data, different activities, or different phases in the same
construction project. Understanding the problem and the driving forces behind it is essential, and data management
plays an important part in this process. As noted in Paper VI, developed models need to be scalable and robust.
The Al model must be able to handle potentially large volumes of unstructured data and account for the complex
interdependencies between different aspects of a construction project. The model must be capable of adapting to
dynamic and rapidly changing environments, and able to identify relevant features and patterns — sometimes from
minimal input. Following implementation, the Al model must be monitored and maintained, to ensure continued
accuracy and effectiveness. Maintenance can include updating the model as new data becomes available, or
otherwise adjusting the model after assessment of preliminary available metadata from the implementation
process. To facilitate effective maintenance, maintenance protocols can be established. This can be done on a
system level, but it is assumed that an overall organisation level protocol can help reduce the costs and resources
needed for maintenance.
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5.1.2  Process

On the system level, the process perspective is mainly concerned with the development and implementation
process, meaning the development and implementation of the Al system or model.

The findings in Paper VI indicate that fanciest mathematics and most complex models or statistics do not
necessarily have the biggest impact. Explainable models will be easier to deploy and maintain and are generally
better received in a project or organisation. Advanced ML models might perform better in an isolated context, but
a system that is perceived to be more transparent and representative of the actual process can yield better results
in a real-life project situation, will long-term build more trust (Sjastad, 2019; Belle, 2023), and thus, be more
sustainable.

Contextualisation

An important first step is to map and understand the construction process that is to be enhanced.

Al systems built and used just for the sake of Al appear to be more likely to be left at a pilot or PoC stage,
as noted in Paper VI. This is also indicated from the lack of evidence of scaling (Golparvar-Fard et al., 2015;
Gudauskas et al., 2015; Hajdasz, 2015; Mousavi et al., 2015; Kog and Yaman, 2016; Mirahadi and Zayed, 2016;
de Soto et al., 2017; Juszczyk, 2017; Pruvost and Scherer, 2017; Samantra et al., 2017; Zou et al., 2017; Ayhan
and Tokdemir, 2018; Cheng and Hoang, 2018; Goh et al., 2018; Hanna et al., 2018; Poh et al., 2018; Sharafi et
al., 2018; Elmousalami, 2019; Hu and Castro-Lacouture, 2019; Jaber et al., 2019; Juszczyk et al., 2019; Juszczyk
and Lesniak, 2019; Taherdoost and Brard, 2019; Vickranth et al., 2019; Yaqubi and Salhotra, 2019; Basaif et al.,
2020; Fallahpour et al., 2020; Han et al., 2020; Juszczyk, 2020; Nnaji and Karakhan, 2020; Xu et al., 2020);
findings highlighting the need for more system and application-oriented research (Darko et al., 2020; Wang et al.,
2020; Xu et al., 2022), and was further indicated by the findings in Paper VI.

Inevitably, this means that time and resources are spent without providing the expected profits and savings.
To effectively identify and understand the problem at hand, it is recommended to define the issue and to break
complex issues into smaller, more manageable, and comprehensible problems. In Paper II, this was exemplified
for construction project waste reduction. Conceptually, the recommendations were constructed by identifying the
main sources of waste, and which activities and processes within the project contributed to the generation of waste.
Following this analysis, existing measures for waste reduction were assessed, along with concepts related to more
general developments in the industry, such as industrialisation and digitalisation. Then, Al-based tools and
technologies considered relevant were assessed in the context of the identified waste fractions and processes, and
the established tools. When the problem is defined, the goal of the development and deployment of the given tool
should be specified. A similar approach was illustrated in Paper III, for the prediction of project success. This type
of contextualisation is essential to ensure the relevance of the tool that is developed, and crucial in the next step
of the development process, which should be to assess the feasibility of the process.

Given the constraints and available resources in terms of time, personnel, and data, is the development
feasible at this stage? If not, can the system boundaries of the defined problem be adjusted to reframe the issue at
hand (as discussed in Paper II), or can the goal be modified? Feasibility should be evaluated based on factors such
as available data, technical requirements, and organisational readiness.

When the project is deemed to be feasible given the defined scope, data collection should be initiated. The
process of data collection can be guided by any existing data management plans and should start by identifying
relevant and available data sources. Data could be collected from construction plans, project schedules, equipment
usage data, or other relevant documents. Then, the data should be assessed. The data should be assessed according
to predefined quality metrics and validation schemes. Based on this data assessment, another assessment of
process feasibility is recommended.

After an initial assessment of data (and feasibility), data pre-processing should be initiated. This includes all
preparatory activities, such as preliminary cleaning, formatting, filling of missing values, reduction, normalisation,
or feature selection. The goal is to prepare the data for model development and ensure accuracy and consistency.

Model development
The model development stage might be considered the most ‘technical’ stage of the development, and includes

model selection, model training, and model validation (Russell and Norvig, 2010). Paper III illustrated how this
development stage can look in the construction context. It could be necessary to involve external competence for
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this stage; however, if the development is outsourced, it becomes crucial to ensure a certain degree of
contextualisation for the developing party. Findings in Paper VI imply that most issues surrounding Al systems
and models are not related to the mathematics or statistics of a model, but rather to the heuristics. This becomes
evident by the number of mathematically successful models that are yet to be scaled and create value in real
construction projects.

To fully understand the implications of the output of the model, contextualisation is crucial. The Al model
is trained using the pre-processed data. Training will look different for each model. For an ML algorithm, the
training stage is where the algorithm learns to identify patterns and relationships in the data that will enable it to
make accurate predictions or classifications. The algorithm is then tuned to improve model performance.
Validation of the model can, and should, be done in numerous ways. Technical validation of the model can for
instance be done through cross-validation, like in Paper III. Validation can also be done based on feedback from
stakeholders and results from preliminary testing in a project context.

The findings of Paper VI show that smaller-scale implementation is often done using academic tools, such
as Python or MATLAB,; this can contribute to creating a gap between the work done in academia and in the
industry, and cause fragmentation.

‘When the model is selected, trained, and validated, a natural next step is prototyping. Developing a prototype
using a smaller subset of data allows for testing and refining of the tool before investing in larger-scale
implementation. Validation of the prototype can, once again, be based on feedback from stakeholders and results
from preliminary testing. Once the prototype has been refined, the model can be scaled up. This should be done
by using more data and deploying the model in more than one setting (meaning in more than one project or
organisation function), if possible. Including metadata from the initial implementation of the prototype can further
help with contextualisation, as noted in Paper V1.

Stakeholder management activities should be prevalent throughout the entire process of development and
implementation to facilitate interdisciplinary collaboration (Abioye et al., 2021; Xu et al., 2022) and should be
emphasised in the earliest stages of the development. During the identification of the problem, all stakeholders
who might affect, or become affected by, the development and implementation should be involved. They can
provide insights into opportunities and limitations related to the specific construction process, or how activities in
other parts of the project might impact the development and implementation.

On the system level, implementation is more likely to succeed if the groundwork is done in the development
process. After refining and scaling the prototype, the next step is integration with existing systems. This could
mean assessing the technical compatibility of the Al model with existing technology and infrastructure. The
assessment can inform potential modifications of the system to ensure that it can communicate and work
seamlessly with other tools and systems already in use in the organisation or project. The model should also be
integrated into existing workflows — this could involve modifying existing processes, though, for instance,
defining new roles and responsibilities, adjusting timelines, and training staff on the use of the new tool. Based
on initial integration, the model can be refined and revalidated.

When the system is integrated, maintenance and continuous monitoring of the system is essential. To do this
effectively, performance metrics should be established, and effects of the implementation should be mapped.
Based on these findings, the system can be optimised. Maintenance could involve updating the model with new
data or upgrading any software or hardware in adjacent infrastructure.

As discussed in Paper VI, it is recommended that users remain an active part throughout all stages of
development and implementation. The findings indicate that involvement, over time, can contribute to increasing
trust, competence, and ultimately, proficiency.

Much like other relevant stakeholder management activities, actively learning from the development and
implementation of the tool is essential throughout the entire process. There is no need to invent the wheel twice,
or a hundred times. Learning from best practices is equally as important as learning from missteps.

5.1.3  People

Personnel involved in the implementation and integration of Al-based tools might need training related to the
technical use of any new tools or systems; assessment and interpretation of input data, output data, or metadata;
or how the system is to be understood in the context of the activity or the whole project.

Implementation and integration might require redefining roles and responsibilities, establishing training
programs, mentor-programs, and developing new communication channels to support the use of AL This is closely
linked to the organisational dimension. The element of collaboration will be vital to develop and deploy effective
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and sustainable systems; this was also indicated by the findings of Paper V, where involvement of subcontractors
emerged as one of the main factors impacting effectiveness and efficiency on a digitalised process.

Personnel might be resistant to change. It will be necessary to prioritise building trust in all interactions that
are affected by the implementation: human-machine, human-data, and human-human, meaning across the value
chain, interdisciplinary fields (such as developer and user, for instance) or organisational silos.

Loukides et al. (2018) define five framing guidelines to help maintain an ethical approach when building
data products: consent, clarity, consistency (for trust), control (and transparency), and consequences (and harm).
In the construction context, the collection of private data might not be as prevalent as it is in other industries.
However, consent can also apply to other aspects of the Al system operations, for instance in a system that uses
speech recognition; the user might have to consent before the system can process the voice commands. Clarity in
a system could mean ensuring a certain degree of transparency and explainability for users, involved stakeholders,
and regulators. Explainability is a central challenge in the development of Al systems, and especially in ML
(Abioye et al., 2021). This can lead to a lack of trust in the system (Sjastad, 2019; Abioye et al., 2021; Belle,
2023), and ultimately aversion. Therefore, a central proactive measure to ensure trust and willingness to use a tool
is to build systems that hold a high degree of explainability. Consistency is important to build trust and could
mean making sure that the system operates reliably and consistently over time and in different environments. This
requires a robust system. Control refers both to the user and stakeholder control over the system, but also to the
system operating in accordance with ethical and legal norms. The consequences dimension refers to the potential
impact of the Al system on users, stakeholders, and the environment it operates within. Managing this dimension
could mean monitoring for deviations or bias in the model. The main reason for algorithmic bias is human bias in
the data the algorithm is built upon (University of Helsinki, 2018); therefore, mitigating bias is, to a large extent,
data management. Loukides et al. (2018) note that the guidelines should not only dictate the work of the developer,
but the entire organisation. For the development and deployment of Al systems to be sustainable long-term and
short-term, each of these considerations need to be addressed — on all levels.

There is a talent shortage in the contextual intersection between Al and construction (Abioye et al., 2021),
and interdisciplinary collaboration between construction experts and Al experts will be necessary to continue to
drive the field forward. Collaboration is needed to generate solutions that can effectively meet the demands of the
construction industry. Long-term, interdisciplinary collaboration will contribute to building competence, and
ultimately a greater contextual understanding of the potential and limitations of the two fields.

Providing sufficient training in the use of specific systems, software, and in general data management will
be of essence. This will provide the personnel interacting with the systems with insights into how systems and
algorithm works, beyond the user interface. This is essential to understand the implications of the results the
system might produce, and how the input can affect the output from a system. Training should be done for all
stages of development and use and extend from data management (how data should be collected and stored), data
analytics, and understanding how the context of the input might affect the implications of the output.

The risk of Al systems perpetuating biases and discrimination might not be the most prevalent in the
construction context, but development and implementation should still be done with care, and with guidance from
ethical principles to ensure fairness and avoid negative consequences.

5.14 Data

To defend the investment costs of data collection, storage, and processing, an organisation or project might need
results to show — but to achieve results, data is needed. Papers IV and VI noted the importance of holistic
frameworks for data management and confirmed the findings from previous research ruling data management
among central process-oriented challenges associated with the use of AI (Burgess, 2018; Xu et al., 2022).

A vast amount of data already exists in and on construction projects, as illustrated in Paper 11, Paper III, and
Paper V. However, metadata providing insights into the quality and characteristics of the data beyond just what
they measure is generally lacking. This hinders effective QA and contextualisation and could ultimately render
the available data unsuitable for the intended use case. As noted in the concluding discussion of Paper III, data
that are not collected specifically for the utilisation of Al require a lot of preparatory work.

Metadata repositories and data warehouses should be established on the organisational level, so data can be
traced back to respective projects or actors, and to enable the identification of limitations the data might hold.

As addressed in Paper III, if data is collected to be read by humans, inevitably, for an algorithm to make
sense of the same data, time and resources must be invested in preparing the dataset. In an ideal situation, the data
would be collected in a way that translates any textual input into numerical data, and relating the data that is input
to already existing data. This way, data can be retrieved, read, and understood in the context of other data.
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Based on the extensive body of literature on Al development in the construction context (Golparvar-Fard et
al., 2015; Gudauskas et al., 2015; Hajdasz, 2015; Mousavi et al., 2015; Shin, 2015; Kog and Yaman, 2016;
Mirahadi and Zayed, 2016; de Soto et al., 2017; Juszczyk, 2017; Pruvost and Scherer, 2017; Samantra et al., 2017,
Zou et al., 2017; Ayhan and Tokdemir, 2018; Cheng and Hoang, 2018; Goh et al., 2018; Hanna et al., 2018; Poh
etal., 2018; Sharafi et al., 2018; Elmousalami, 2019; Hu and Castro-Lacouture, 2019; Jaber et al., 2019; Juszczyk
etal., 2019; Juszczyk and Lesniak, 2019; Taherdoost and Brard, 2019; Vickranth et al.,2019; Yaqubi and Salhotra,
2019; Basaif et al., 2020; Fallahpour et al., 2020; Han et al., 2020; Juszczyk, 2020; Nnaji and Karakhan, 2020;
Xu et al., 2020) and the findings of Paper VI, three types of data emerge as necessary in the development of a
system. Firstly, data on the activity or process being enhanced. This is essential to understand the characteristics
of the problem, such as in the case of construction project waste reduction in Paper II, or project success in Paper
III. Secondly, data needed for training and validation of the AT model. This can be part of the first group of data.
Thirdly, metadata related to the initial data collection, and, eventually, on the implementation process — for
instance from PoCs — and related to the mapping of effects after implementation.

A data management plan should be constructed on the organisational level, project level, and system level,
as recommended in Paper VI. The plan should contain a detailed overview of the process of data collection and
data storage, but also data sharing, and data analysis. The components of the data management plan should be
similar at all levels, but the implications of the plans will look different for each level.

At the system level, a data management plan should focus on the specific requirements for the development
and deployment of a particular system, and on collecting the three types of data. The plan may include information
on the types of data that will be used by the system, how it will be collected and processed, how the system will
be tested and validated, and how it will be monitored, maintained, and updated over time.

Data management indicators

A holistic approach to data management is critical to the success of Al implementation in construction (Burgess,
2018; Xu et al., 2022). Prioritising, contextualising, and standardising data management is found to be essential.
Emerging from the findings of Paper III, Paper IV, and Paper VI are three key indicators for data management as
data quantity, data quality, and data access or availability.

Certain Al techniques, such as ML, require large datasets. The Nordic 10-10 dataset that was used in Paper
11T was considered very limited in the ML context — despite the underlying data being collected over the course
of multiple years, and from multiple companies. If the dataset is too small, users and developers will encounter
challenges related to the reliability, validity, and the generalisability of the data. If the reliability, validity, and
generalisability can not be guaranteed for the data itself, it therefore can not be guaranteed for the system or model
that is being developed, or the results that the system provides. If the output of a tool can not be trusted, the tool
can essentially not be used. As noted in the discussion of Paper 111, an algorithm and a system will only ever be
as good as the data it is built upon. Numerous algorithms, both in research and industry contexts, have provided
good results on limited datasets, but neither context have seemingly been successful in scaling these.

Al models require high-quality data to produce high-quality results. As discussed in Paper III, Paper IV, and
Paper VI, construction projects often have fragmented, incomplete, or inaccurate data, which makes it hard to
build effective Al systems. Data quality can be related to a wide range of indicators, depending on the intended
use of the data. To understand what solution will best accommodate the problem, data are needed. Possible tools
to help ensure data quality are quality metrics, validation checklists, and quality audits. The validation checklists
should be developed based on the quality metrics, and the quality audits should be performed according to the
developed validation checklists. The tools can be applied to relevant metadata as well. Relevant quality metrics
could be related to the availability of the data; the completeness of the dataset as a whole; the consistency of the
data, including data formats, units, and available metadata; and relevance for the system or project in question,
and in relation to other existing data. Relevant and applicable metrics and validation criteria will vary depending
on project characteristics. Based on the checklist, quality audits should be conducted at a frequency that fits into
the data management plan.

The question of data access can be split into two. Firstly, the question is related to the availability of the data
for the actor. If the actor does not have access, the data could be produced, or acquired from another industry
actor, or projects. Are other actors interested in sharing the data? If yes, are they open to sharing the data material
in full, so the reliability, validity, and generalisability of the data can be verified? As discussed in Paper IV, both
data availability and willingness to share data can be central enablers — or barriers — for effective data management.
Secondly, if the data is accessible for the actor, the question is related to interoperability and cohesion (Paper IV):
Can both actors effectively read and utilise the data? This can be related to the availability of necessary software

56



and hardware, and whether the actor will be able to read and display the data effectively or not. Data access is
also related to the access to data between software: can the data be transferred between software? If yes, will this
be a manual job — and are the necessary resources for such a job available? Paper VI identified the lack of data
interoperability as a contributing factor to complicating data sharing between actors.

Software from different suppliers is not always meant to be compatible or allow for seamless integration
with other software, or the existing infrastructure of the project or organisation looking to use it.

5.2 Project level

On the project level, in-house and commercially available tools have been applied across a wide range of areas
of application. However, this is seemingly done in isolation, meaning that next to no changes are made to how
the project is planned or executed. This, in turn, means that the Al system simply becomes an add-on.

As illustrated in Paper V, if a digital tool becomes an add-on, activities related to the active use of the system
can become time-consuming, and ultimately hinder productivity in a project.

Recent developments show a trend towards larger and more complex construction projects (Whyte et al.,
2016; Fischer et al., 2017), and integration is essential to decrease complexity and increase sustainability.

5.2.1  Technology

On the project level, a wide range of areas of application is displayed in previous research (Ilter and Dikbas, 2009;
Martinez and Fernandez-Rodriguez, 2015; Juszczyk, 2017; Basaif and Alashwal, 2018; Xiao et al., 2018); this
was further illustrated by the findings in Paper I. Paper II indicated a potential for application throughout a project,
thus strengthening the findings of previous research, and highlighting the potential that lies within the entire
project life cycle (Hossain and Nadeem, 2019; Pan and Zhang, 2021). Paper II also indicated the potential for one
area of application to yield benefits across multiple stages of a project.

Taking on the executive perspective from the NS 3467:2023 Stages and deliverables in the life cycle of
construction works (Standard Norge, 2023); for Phase 1 (P1) Strategic definition, Al-based tools can be used to
evaluate project feasibility; prediction of costs and profitability (Cheng et al., 2009; Bilal and Oyedele, 2020),
cash flow prediction (Cheng et al., 2015; Cheng et al., 2020), or profit margin estimation (Bilal and Oyedele,
2020); supply chain management and supplier selection (Taherdoost and Brard, 2019); and contractor pre-
qualification (Kog and Yaman, 2016). Systems can be built based on internal and external historical project data
from similar projects. To enable this type of assessment, a data warehouse should be established prior to the
initiation of the analyses.

Possible areas of application for Al systems in (P2) Program and concept development include design
optimisation (Liu et al., 2015; Rodriguez-Trejo et al., 2017) to optimise for factors such as cost, energy efficiency,
and environmental impact; resource management (Podolski, 2016; Xing et al., 2016; Camacho et al., 2018); utilise
Al-based virtual reality to enable stakeholders to experience and provide feedback on preliminary designs and
plans; cost prediction and estimation; and tender price evaluations (Bilal and Oyedele, 2020).

For (P3) Development of selected concept and (P4) Detailed design, many Al-related activities coincide. In
these phases, relevant use cases include optimisation of construction design and resource allocation (Liu et al.,
2015; Xing et al., 2016; Podolski, 2016; Rodriguez-Trejo et al., 2017); validation of change requests (Dawood et
al., 2019); assessment of contracts and other legal documents to identify potential risks or issues. As production
documentation is established, Al systems can be used for automated clash detection between disciplines (Hu and
Castro-Lacouture, 2019). Virtual testing can be used to allow comprehensive testing at an early stage when
information and knowledge traditionally is limited.

In (P5) Production and delivery, Al systems can be used for predictive maintenance, to analyse sensor data
and predict when equipment is likely to fail, ultimately reducing downtime; quality control (as illustrated in Paper
V); quantity control (Nguyen et al., 2020); to predict project success based on preliminary project data (as
illustrated in Paper III); for on-site and off-site logistics; to optimise scheduling (de Soto et al., 2017); to reduce
waste on-site (as illustrated in Paper II); in automation of robots, for on-site or off-site construction; or for risk
and safety monitoring and assessment (Goh et al., 2018; Poh et al., 2018; Han et al., 2020; Xu et al., 2020).

(P6) Handover and commissioning does not hold any obvious potentials for increasing productivity or
sustainability using AI systems and has not received significant attention in previous research. However,
establishing and maintaining easily accessible systems in early phases of the project can simplify this stage. The
focus of this stage should be to transfer any relevant data to the users, the facility manager, and to the organisation
database; this can be achieved by Al-based tools, but it might not be the most effective way to do so.
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For (P7) Use and management, the main area of application for Al-based systems and tools is facility
management, which includes, but is not limited to predictive maintenance; energy management and optimisation;
indoor air quality monitoring and correction; security; space planning and optimisation; and cleaning and
maintenance. The goal would be to improve the overall efficiency and sustainability of the operation phase.

Like the previous seven phases, (P8) Termination rarely looks the same for two projects. Relevant areas of
application could include identification of materials that can be recycled and reused; finalisation of the project
database, comparison of available data to previous project data, and identification of opportunities for potential
areas of improvement; and ensuring that all documentation related to the termination is complete and accurate.

Figure 5-3 summarises the relevant areas of application per project phase.
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Figure 5-3. Relevant areas of application per project phase.

Al systems and models have demonstrated promising results in construction projects, through all phases of
projects. However, the industry has yet to see the larger-scale implementations. For an effective and sustainable
scale-up — both on the organisation and industry level — robust infrastructure is needed.

5.2.2  Process

Organisation or project infrastructure must facilitate the effective use of Al for the use of Al to be sustainable
long-term (Burgess, 2018; Vinuesa et al., 2020; Xu et al., 2022).

On the project level, infrastructure elements that could be established in (P1) Strategic definition include a
centralised project-specific database to store existing internal and external data relevant to the project; an intuitive
and easily accessible communication channel for stakeholders; and relevant policies and procedures to ensure
quality and accuracy in the data management process and data that will be used to develop and deploy the Al
system. This will help facilitate communication and collaboration throughout the project, and ultimately facilitate
more effective application of Al systems and tools (Abioye et al., 2021; Xu et al., 2022). If relevant policies and
procedures already exist in the organisational context, these should set the basis for project-specific policies and
procedures. When a decision is made on a system, available software should be integrated with existing systems
and processes. Establishing training programs for involved personnel can be useful to build both trust and technical
competence needed to work with the Al systems in later phases. Paper V identified competence as one of the main
areas impacting effectiveness and efficiency in a digitalised process, emphasising the importance of sufficient
training. In the concluding discussion of Paper II, it was noted that to fully utilise the potential of Al systems,
infrastructure should be built upon existing methodologies and frameworks. To utilise existing infrastructure, an
existing project BIM model or digital twin can be a good starting point for a project-specific database and
communication channel.

Activities in (P2) Program and concept development could include establishing a centralised platform to
collect data and metadata on early decisions, and for real-time stakeholder collaboration; decision-making for
project-specific software and hardware acquisition to support planned Al systems; and building or otherwise
acquiring any additional necessary software. Data and metadata management is an important part of the effective
data governance in the project (and organisation) (Al-Ruithe et al., 2018; Burgess, 2018). Established databases
and communication-collaboration channels must be maintained throughout (P5) Production and delivery.

In (P3) Development of selected concept and (P4) Detailed design, protocols and procedures for processing
and analysis of real-time data generated in the project should be established, along with protocols and procedures
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for integration with existing systems. In later stages of (P4) Detailed design, the physical software and hardware
acquisition should take place.

The focus of (P6) Handover and commissioning should be the transfer of any relevant data to the users, the
facility manager, and to the organisation database. Previous research has identified data sharing among the central
process-oriented challenges associated with the increased use of AI (Burgess, 2018; Xu et al., 2022). Paper IV
confirmed this and identified lack of data interoperability as a central challenge for effective data management in
the construction context. Similarly, Paper V identified the lack of data interoperability as a barrier for productivity
and sustainability in a digitalised process. Therefore, to ensure effective transfer of data in this phase, the data
transfer could be based on the previously established centralised databased.

To utilise Al to improve the aforementioned facility management functions throughout (P7) Use, a range of
sensors should be installed to provide data for development prior to deployment, and for feedback post
deployment. To protect the devices and the data they produce, an extensive security system should be established.

To facilitate the transfer of knowledge in (P8) Termination, a subsection of the existing project database
should be dedicated to the summary of relevant data. This could provide a foundation for future training schemes.

Figure 5-4 summarises relevant elements of infrastructure per project phase.
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Figure 5-4. Relevant elements of infrastructure per project phase.
Most infrastructure elements will require the involvement of more than one stakeholder.
5.2.3  People

More collaboration is needed for the continued progress of Al in construction management (Xu et al., 2022). On
the project level, stakeholders should be followed closely through all project phases.

An activity that should be prioritised in (P1) Strategic definition is the education of stakeholders on potential
benefits and limitations associated with the system. Collaborating with stakeholders to identify areas where Al
systems might improve the construction process, and involving stakeholders in the decision-making process, can
help build trust and knowledge across the value chain. Long-term, this could help increase the willingness to share
data (as illustrated in Paper IV) and help keep stakeholders involved. Continuously interacting with stakeholders
to understand their needs and preferences throughout the process of development and deployment will contribute
to building this further.

To keep stakeholders involved, informed, and inspired, throughout (P2) Program and concept development,
activities should include collaborating with relevant stakeholders to ensure that any Al design choices align with
the overall project goals and objectives. For governing bodies in particular, the communication should be centred
around the degree to which any Al-based design choices comply with relevant standards and regulations. Clearly
establishing roles and responsibilities among stakeholders, related to the management of the AI systems
themselves and the output they provide, will be essential.

Throughout (P3) Development of selected concept and (P4) Detailed design it will be essential to continue
any conversations with relevant stakeholders regarding the degree to which the chosen Al system does or does
not align with the overall project goals and activities, as well as the individual goals and activities of the involved
actors. When final decisions are made regarding the involvement of Al-based systems and tools, training should
commence. In Paper V, both the involvement of stakeholders and the competence among stakeholders were
identified among the main areas impacting effectiveness and efficiency in a project. As discussed in Paper VI, all
actors being experts in all fields is not a goal in itself; experts should continue to foster their core competence, but
interdisciplinary involvement will be essential to cultivate specialists in the thematic intersection.

In (P5) Production and delivery, the main activities are maintaining a dialogue with actors who affect, and
are affected by, the active use of the Al system. This could be due to the chosen methods of data collection or
having to adjust their schedules due to waiting for assessments. By extension, it is essential to ensure compliance
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with other actors on-site. If the use of the system is effectively hindering the work of other actors, any savings
made for one actor might not lead to a net positive for the whole project.

The focus of (P6) Handover and commissioning should be to transfer any relevant data to the users, the
facility manager, and to the organisation database.

Training of involved and responsible personnel in (P7) Use and management should ideally be conducted
prior to the initiation of the phase; however, the phase can provide a good opportunity for ‘learning by doing’,
which some interviewees in Paper VI noted to be an effective approach. Engaging with users can prove useful,
both as a part of early design phases, or to understand how the facility management is currently affecting them.

The most important stakeholder activity in (P8) Termination is the transfer of knowledge. Upon completion
of the project, efforts should be made to ensure all available information and data is transferred to relevant internal
and external stakeholders for future projects. Lack of competence was identified as a key barrier to effective data
management in Paper IV, and a structured transfer of knowledge can help minimise this. To facilitate this process,
a subsection of the existing project database should be dedicated to the summary of data for this transfer.

Figure 5-5 summarises relevant stakeholder management activities per project phase.
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Figure 5-5. Relevant stakeholder management activities per project phase.
524 Data

At the project level, a data management plan focuses on the specific data management requirements of a particular
project. The plan may include information on the types of data that will be collected, how it will be collected and
stored, who will have access to it, and how it will be preserved for long-term use in the organisation.

As discussed in Paper III, no standards currently exist for collection and utilisation of data in construction
projects. To a certain extent, this is understandable, because all projects are unique. However, it would greatly
benefit the effective development and deployment of Al if some standardisation of data structures would emerge.
Some industry-specific standards exist for structuring of data, such as for BIM and standards for data coding such
as NORSOK in the Norwegian oil and gas industry. As noted in Paper VI, data currently exists in a very wide
range of formats, and these are rarely the same in two projects. Data that can be consistently compared and tracked
between projects has the potential to improve project-based benchmarking, support project success prediction,
and serve as early warning systems that can identify potential issues in time for action to be taken.

Beyond the aforementioned components for the data management plan, a certain degree of detail is expected
and necessary for an effective data management plan. Table 5-1 provides a starting point for a data management
plan, including examples of what the plan can contain, and noting how critical components can be included.

The example is not intended to be an ideal data management plan; rather, it is intended to illustrate what a
data management plan can look like. In addition to defining the details related to the practical execution of the
plan, each post should include an overview of the involved and responsible actors and parties.

Table 5-1. Data management plan.
Project Title: Office Complex
Project Number: 325061

1. Data collection
Data types Project schedule Gantt charts detailing the project
timeline with milestones, critical
paths, and allocation of resources.
Budget Spreadsheets tracking project
expenses, including labour,
materials, and equipment costs.
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Design documents Architectural and engineering

drawings in PDF or CAD format,

including floor plans, elevations,
sections, and details.

Construction drawings Detailed construction drawings in
PDF format, including structural,
mechanical, electrical, and
plumbing drawings.

Material specifications Specifications for all materials

used in the construction, including

manufacturer, model number, and
performance requirements.

Site survey data Survey reports and maps showing
site topography, soil conditions,
and other relevant information.

Photographs, videos, and scans Digital photographs, videos and
scans documenting construction
progress and site conditions.

Metadata Metadata will be included with all
data to provide context and
facilitate effective and sustainable
data management. Metadata fields
will include date of creation,
responsible actor, project phase,
project location, discipline, file
format, file size, keywords, and
any additional descriptions.

Data sources Project team members Project manager, architects,
engineers, and consultants.

Subcontractors and suppliers Material suppliers, equipment

vendors, and service providers.
Other external stakeholders Environmental consultants,

geotechnical engineers, and
regulatory agencies.

Data collection methods Existing data Transferring of existing data from
respective software and storage.
Cameras and drones Photographs and videos will be

taken periodically by project team
members and drones for aerial
views of the construction site.

Handheld devices Field data collection will be done
using handheld scanners to record
site observations and other
relevant information.

Quality control Quality metrics The following are defined as main
quality metrics: availability,
completeness, consistency, and
relevance.

Validation checklist The quality metrics will be
assessed and ensured as per the
attached validation checklist.

Quality audits To monitor the state and
development of the quality
metrics, quality audits will be
performed regularly. The audits
will be conducted every two
weeks, or more often if necessary.

2. Data storage

Data storage location | All project data will be stored in the project cloud-based storage system.
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Data storage format

The preferred format for data storage is a BIM-based digital twin, to
enable effective data exchange between relevant stakeholders. The
contractor will be responsible for maintaining the model.

Project schedule

Gantt chart from Microsoft Project

Budget

Spreadsheet from Microsoft Excel

Design documents

CAD files in AutoCAD

Construction drawings

PDF files in Adobe Acrobat

Material specifications

PDF files in Adobe Acrobat

Site survey data

Digital files and GIS formats

Photographs and videos

Digital files in JPEG and MP4 or
MOV formats

Data preservation

Data retention

All project data will be retained
for a minimum of 10 years after
project completion. The defined
retention period complies with
legal and regulatory requirements
at the time of the project. At the
end of the retention period, data
will be securely deleted or moved
to the permanent organisation data
storage. Data that does not require
immediate access can be moved to
permanent data storage sooner.

Backup and recovery plan

All project data will be treated
according to the organisation data
backup and recovery plan.

3. Data sharing

Data access controls

Project team members will have full access to project data, while
external stakeholders will have restricted access based on a role and
need-to-know basis. Project team members will have access to relevant
data from the organisation data warehouse.

Data sharing methods

Main data storage

The preferred format for data
sharing is the project BIM-based
digital twin.

Project management software

Project data not fit for distribution
through the digital twin will be
shared and managed through the
established project management
software, accessible by all project
team members.

Commercial file sharing platforms

Larger files will be shared through
secure file sharing platforms, such
as Dropbox or Google Drive.

Email

Smaller files and communications
will be shared through email.

4. Data analysis

Data analysis tools

Statistical software

Project schedule and budget data
will be analysed using statistical
software, such as R or SPSS.

Visualisation tools

Project data will be visualised
using tools, such as Tableau or
Power BI.

BIM software

Construction data will be analysed
using BIM software, such as
Autodesk Revit or Navisworks.

Data analysis methods

Schedule and budget analysis

Actual project progress will be
compared against the planned
schedule and budget to identify
potential variances and deviations.
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Resource utilisation analysis Resource utilisation will be
analysed to identify areas of
potential optimisation or
improvement.

Any project-specific data management plan should be based in the organisation policies and procedures.
5.3  Organisation level

Implementing Al-based tools could require changes in multiple areas of the organisational structures, roles, and
responsibilities. Implementation and integration would require training of individuals and personnel involved but
could also mean new roles might have to be defined and filled. Whether the responsibility falls on a set role in the
project or organisation, or an extended team, this should be clearly defined in the organisational structure.

5.3.1  Technology

Thesis findings indicate that there is a large benefit in approaching new technologies and tools by first initiating
tests and pilots. Problems related to scaling seem to, in part, be caused due to a lack of anchoring in strategy and
lack of systemic thinking (Darko et al., 2020; Nishant et al., 2020; Xu et al., 2022). This was confirmed by the
findings of Paper IV; it is important to think big but start small. Actors should establish an overarching strategy
for the development and deployment of technology, and the collection, storage, sharing, and analysis of data. A
strategy should include a plan of any data that is needed, what format the data is needed on, and what quantities
the data is needed in, among other things.

To some extent, PoCs will be needed to verify the work that is being done. The findings of Paper I suggested
that the majority of tools are not currently developed beyond a testing or pilot stage. In Paper VI, both developers
and users reported benefits from piloting. However, it is essential for actors to first have a strategy in place, so the
pilot does not just become another tombstone in the graveyard of PoCs. Actors should indubitably pilot, but they
should pilot with a purpose. An overarching strategy should encompass all dimensions of implementation and
integration

As discussed in Paper VI, there are significant costs associated with the implementation of Al systems and
digital tools. Paper V identified thirteen factors affecting the profitability of digital systems. The findings showed
that equipment costs, company-specific factors, project-specific factors, and process-specific factors all impact
the overall profitability. Therefore, it is unlikely that any two systems will have the same cost profile. Thus, to
reduce the resource intensity of the implementation process, it can be useful to conduct a profitability analysis
prior to implementation and integration. Nevertheless, it seems reasonable to assume that scaling will reduce the
cost per use, regardless of any specific characteristics of a system.

5.3.2 Process

Implementing Al-based tools could require changes in multiple areas of the organisational structures, roles, and
responsibilities. Change teams should involve team members from the entire organisation (Cameron and Green,
2015). As discussed in Paper VI, interdisciplinary collaboration could contribute to building specialised expertise
over time. Implementation and integration would require training of involved individuals and personnel but could
also mean that entirely new roles might have to be defined and filled. Whether the responsibility falls on a set role
in the project or organisation, or an extended team, this should be clearly defined in the organisational structure —
and in an overarching strategy.

Organisational hierarchies and decision-making structures might need to be adjusted to accommodate the
development and deployment of Al-based tools and the supporting infrastructure. An arena should be established
to keep all relevant actors involved, informed, and inspired throughout the entire process of implementation and
integration and beyond.

Certain Al technologies appear to currently have reached the Peak of Inflated Expectation according to the
Hype Cycle framework (Fenn, 1995). At this stage, a technology is widely known in an industry, and hype is built
around the potential the technology holds. The stage is often characterised of generous media attention, and big
expectations are built (Fenn, 1995). However, at this stage, the practical implication of the tool is generally less
known. At one point, the market starts to realise that the technology might not meet the initial hype and the
perceived potential; at least not in the way it was expected. The field of Al ethics can be argued to have reached
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this Through of Disillusionment (Fenn, 1995; Dignum, 2017; Dignum, 2018; Hagendorff, 2020). This
development indicates a need for more transparency both in Al systems and in the surrounding infrastructure,
including procedures and policies. Systematically increasing explainability and transparency can contribute to
increased trust in the Al systems and the potential they represent (Abioye et al., 2021).

Using the taxonomy defined by Bosch-Sjitsema et al. (2021), most Al applications in the construction
industry appear to have moved past the confusion stage. The majority is still considered to be in the stages of
excitement and experimentation, while very few, if any, have reached the integration stage.

Organisation infrastructure must facilitate the effective use of Al for it to be sustainable long-term (Burgess,
2018; Vinuesa et al., 2020; Xu et al., 2022). As the adoption of Al can still be considered at an early stage, a
certain degree of organisational change is to be expected. The Lewin Model of Change (Lewin, 1951) is widely
used for managing organisational change, and the unfreeze approach is intended to facilitate an iterative change
process (Burnes, 2019). The framework is also recognised in the construction context (Hao et al., 2008). In
establishing relevant infrastructure to accommodate the implementation and integration of Al systems and models,
the change model provides a good starting point. Taking the example of establishing a data warehouse. The
unfreeze stage should be used to create awareness to the problem, and to the perceived solution. If the organisation
has been purposefully piloting, the unfreeze stage can provide an arena to showcase the results, to provide a deeper
understanding of associated benefits or limitations. At the change stage, the data warehouse must be established.
This could involve the acquisition of relevant software and hardware, and data. If an external provider is involved
in the establishment of the warehouse, they would be involved in the change stage. In the refreeze stage, the
warehouse is integrated as a permanent part of the organisation. Relevant personnel receive training, and policies
and procedures for governance are established. Involvement is essential to establish ownership. New processes
can be stabilised through regular feedback sessions for relevant personnel. New behaviours can be reinforced
through recognition programs and celebration of achieved successes. Providing involved personnel with a sense
of trust and autonomy will be essential. Over time, this can contribute to embedding the technical and cultural
shift as an integral part of the organisation.

Implementation and integration with existing systems in the organisation or project, or the creation of new
systems that fit within the existing infrastructure is challenging but important (Xu et al., 2022). Deployment
requires careful planning and execution and could mean involving one or more stakeholders to ensure that all
needs are being met during and after deployment. The increased efficiency of one actor should not compromise
the efficiency of another actor — or the project as a whole. Implementation and integration might require significant
changes to the workflow and workforce. As indicated in Paper V and Paper VI, implementation frameworks
should provide an overview of practical implications for all actors who might affect or be affected by the process.
This way, the frameworks can provide an opportunity to reduce fragmentation.

From a technical perspective, it is essential to ensure interoperability with various software and hardware
systems on and off-site, to manage data security concerns, and to deal with any potential physical constraints on
the construction site. From a process perspective, implementation and integration might require significant
changes to the workflow and workforce. From a people perspective, this means that the personnel working with
and around the new system must receive appropriate training prior to implementation, appropriate support during
the implementation, and appropriate checks after the implementation. This could, and should, be an integral part
of the data mapping of the effects of the implementation, or the continuous monitoring following implementation.

5.3.3  People

According to the Adoption Innovation Curve, actors in the construction industry are often considered to be ‘late
majority” and ‘laggards’ in the adoption of digital tools (Rogers, 1995; Ayinla and Aadamu, 2018).

Construction organisations are large and complex, and they can involve many stakeholders. It is likely that
different stakeholders will find themselves at different stages on the Adoption Innovation Curve (Rogers, 1995),
as indicated by the difference in maturity levels between the groups in Paper VI. It is recommended to involve the
entire organisation in development and deployment of new tools. This will make it easier to involve the
appropriate knowledge and resources for the issue at hand and is an important starting point to mapping available
resources. Active involvement of stakeholders can contribute to closing the adaptation maturity gap, improving
Al proficiency among stakeholders, and building trust long-term.

On the organisational level, it is important to map and build knowledge among personnel. As noted in Paper
VI, it is not necessarily a goal for everyone to know everything, but rather for each member to have some level of
understanding and awareness related to areas where they may require further comprehension. Mapping of
knowledge can reveal if the necessary skills and knowledge are available in-house, if a certain process or activity
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might have to be outsourced, and how necessary knowledge and skills can be built over time. Larger scale
implementation of data-based tools and Al systems strongly depends on the human factor. As discussed for the
system level, the elements of consent, clarity, consistency, control, and consequences are essential to ensure the
scalability and robustness of a solution.

5.34 Data

At the organisational level, a data management plan should focus on the overarching policies and procedures for
data management that are implemented across the organisation. The plan may include information on the overall
approach for the organisation to data management, the roles, and responsibilities of those involved, and how data
is collected, stored, shared, and analysed.

It is essential to allocate sufficient resources to ensure the successful development and implementation of
the data management plan (Burgess, 2018; Xu et al., 2022). Resources include personnel, equipment, and any
required infrastructure that is not already present on the system, project, or organisation level. Lack of competence
was identified as a main barrier for effective data management in Paper I'V. It is essential that involved personnel
receive sufficient training on procedures, policies, and tools used in the data management process.

As an extension of the data management plan, overall data management policies and procedures should be
outlined to set the basis for all data activities, to ensure alignment with industry best practices and regulatory
requirements. Roles and responsibilities should be defined, identifying individuals and departments responsible
for the process of data management, including data collection, storage, sharing, and analysis. A data management
plan should ensure at least three types of data: data on the activity or process being enhanced, to provide context;
data needed to develop the model, to ensure that the technical requirements are not limiting the system; and
metadata, to ease navigation in the human-machine interaction and provide further context.

Currently, no standard exists for data collection, storage, and sharing in the construction context, as found
in Paper IV. Standardisation should not necessarily be a goal in itself, seeing as it might not be useful to standardise
across all possible processes and activities. However, a certain degree of standardisation can contribute to building
systems and tools that require minimal adjustments for good effects. This way, it is not necessary to build one
system or interface from scratch for every single construction activity. As suggested by the findings in Paper VI,
a system or model will only ever be as good and trustworthy as the data it is built upon; therefore, high-quality
data is essential. Standardisation can be related to a wide range of factors, which can be summarised in a data
management plan. Some important starting points are related to readability (whether the data is collected to be
read and understood by a human or a machine), ownership (who owns the data), and quality.

Ethical considerations must be at the core of any phase or stage of the implementation process (Dignum,
2017; Dignum, 2018; Loukides et al., 2018; Politou et al., 2018), and should therefore be established on the
organisation level. Development and deployment of Al models and tools must be done in a responsible and ethical
manner, considering privacy concerns and biases. This can mean establishing clear policies and procedures for
data collection, storage, use, governance, audits, and ensuring the involvement of relevant stakeholders in all
decision-making processes. Systems must be transparent, accountable, and fair to ultimately be sustainable.
Developing ethical frameworks, establishing clear policies and procedures, and creating mechanisms for
accountability and oversight are some ways to build and increase transparency and trust. Bias is a challenge,
especially when AI systems rely on historical data — as they often must. The data foundation needs to be
representative. Automated systems such as ML algorithms, which often act as black boxes, must be thoroughly
evaluated to ensure that they meet ethical standards; this work starts at the development stage.

Activities related to the development and deployment of AI systems and tools on the organisational level
will vary heavily on the area of application and the characteristics of the system in question (Hao et al., 2008; Pan
and Zhang, 2021). Therefore, it is challenging, and not necessarily desirable, to define one standardised framework
for all activities. However, the organisation could and would benefit from establishing a data warehouse for the
management and structuring of data. Data from the data warehouse can be used for analytics, data mining, reports,
and development of Al systems. A centralised organisation-wide data storage system integrating data and
metadata from all projects and project phases can contribute to increasing productivity and sustainability, not only
in the output but in the process of development and use. Ensuring the compatibility of data with Al systems and
models is essential. One possible way to structure and systemise data storage is through building a data warehouse.
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Data warehouse

Systems and projects depend on data of a certain quality and quantity. As findings indicate that establishing
independent databases on every system and project level would be too resource intensive, it is recommended to
establish a central system on the organisation level.

To establish the storage system, data should be imported from existing operational systems. This could be
operational databases, such as platforms for waste management, deviation reports, project schedules, project
design portals, health and safety report systems, or others. Data can also be fetched from so-called flat files,
meaning databases storing data in a two-dimensional plain text format. Existing documents, drawings, PDFs, and
spreadsheets can also be used, although these often require manual transfer of data, which is time consuming.
External data, from subcontractors, suppliers, or other industry-wide initiatives or organisations can also be used,
as illustrated in Paper III.

Today, data that are collected in the construction context are rarely collected for the purpose of building and
using Al systems and models. Therefore, a certain degree of cleaning will be necessary. Cleaning can involve
identifying and removing duplicate data, correcting errors, standardising data and file formats, converting data
types, adjusting the resolution of the data, and or filling in any missing data values.

After cleaning, the data can be stored in the data warehouse. The data warehouse should distinguish between
at least three types, or levels, of data: raw data, summary data, and metadata. Raw data is the data as it is collected
and cleaned. Summary data is aggregated data that allows for quick analysis of relatively large volumes of data
and can enable users to identify trends or patterns that might not be apparent in the raw, unstructured data. The
metadata provides a broader understanding of the context of the data. Relevant metadata include date of creation,
responsible actor, project phase, project location, frequency, discipline, file format, file size, keywords, or any
additional descriptions. Metadata repositories can enable users to easily search, locate, and retrieve relevant data,
as discussed in Paper VI. Data should be linked to a multidimensional format that allows data to be connected
between actors and across project phases, and to metadata. Relevant multidimensional formats identified in Paper
VI include NetCDF, JSON, and HDF5. To utilise existing infrastructure, an existing BIM model or digital twin
can be a good starting point. As a part of the data management plan, procedures for data preservation and retention
should be defined for the data warehouse; this ensures that data is preserved for an appropriate length of time.
After the set amount of time, data can be moved from an interface to a permanent data storage. A data backup
plan should be developed, to ensure that data is recoverable in the event of data loss. The more actors that are
involved and have access to the warehouse, the more important this is.

To retrieve data more effectively from the data warehouse, data marts should be established. A data mart is
a substructure that contains the specific data that is relevant for a specific department or team within an
organisation or project. Data marts can provide pre-defined data structures and queries, ultimately making data
analysis and reporting quicker and more convenient for the end user.

The user interface serves as the primary means for end users to access and interact with the data. The user
interface provides access without the need for technical competence beyond standard platforms and portals.
Through the user interface, the data can be used for analytics, data mining, or reporting — on project or organisation
level. Through this, data could also be accessed for development and deployment of Al systems and models.

The system level, project level, and organisation level are very strongly interlinked, and to fully unlock the
potential of effective Al application, the work on all three levels needs to be structured and systemised.
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6 Conclusion

The aim of the thesis was to explore the implementation and integration of Al in the construction context and
discover how actors can successfully move from ambition to practice. The research questions were as follows:

e RQI: What is the current state of the field, and what are the main challenges the field is facing?
e RQ2: What are the main dimensions of Al development and deployment in a construction context?
e RQ3: How can industry actors move from ambition to practice — starting today?

This chapter presents the main conclusion of the research conducted in this thesis and answers the research
questions as defined. The current state of the field is summarised and identified main challenges are outlined.
Seven main dimensions of implementation and integration are defined, and based on these, frameworks are
defined on the organisation, project, and system levels.

The research questions are addressed, followed by a brief discussion of the contribution of the thesis for
research and practice. Lastly, limitations of the thesis are noted, and opportunities for future research are proposed.

6.1 Current state and main challenges (RQ1)

AT has been around for decades, but recent advances have completely transformed what we can achieve with
technology — and advances have enabled areas of application that were not possible before. However, in a rapidly
developing field, actors must establish a robust infrastructure to be able to scale and adapt at the same pace.

6.1.1 Current state

There is a lot of talk about the potential that AT holds, and we see impressive, small-scale pilots and examples of
the potential it inhibits, but in the construction industry, big-scale implementations are yet to be demonstrated and
put into an economically viable and sustainable situation.

The construction industry tends to be considered less digitalised compared to other industries. Still, progress
is demonstrated both by researchers and industry actors. There appears to be a divide between the construction
industry as a whole, the organisation level, the project level, and the system level. Another divide is found between
actors in different parts of the value chain,

The industry could benefit from building upon existing methodologies and strategies but would eventually
need to reinvent and redefine traditional project models, contracts, business models, and enterprises to enable
room for actors to innovate and create real change, economically and otherwise. This thesis aims to enable actors
in the industry, with a focus on practical implications contributing to the field. Therefore, the focus is on
organisations, projects, and systems, rather than the industry as a whole. Building on the advances already made
in organisations and projects, the thesis provides a framework to continue a pragmatic but ambitious approach to
bringing the use of Al-based systems and tools into practice.

On the system level, a wide range of tools have been developed and successfully applied to estimation and
cost control; logistics, planning, and scheduling; strategy; health and safety; project performance and success
estimation; risk management; sustainability assessments; and material properties. However, few report on the use
of these tools beyond pilots and PoCs; most focus on potential use or the development of techniques.

On the project level, in-house and commercially available tools have been applied to one or more activities
and processes. However, this is generally done in isolation, meaning that next to no changes are made to how the
project is planned or executed, meaning that the Al system simply becomes an add-on. This is hindering effective
scaling, and ultimately, effective results for productivity and sustainability.

On the organisational level, many actors are talking about digitalisation and utilisation of Al. Yet, similarly
to on the project level, the infrastructure is rarely widely established outside the group or department responsible,
this being the IT department or other groups of especially competent personnel. These further decrease scalability
and robustness of the system.
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6.1.2 Main challenges

A few challenges stand out, both on the system, project, and organisation level, when it comes to explaining why
the whole industry is currently lagging. Some main challenges are:

e Uneven application of resources to problems. The problems that gain attention are the ones considered
to be high value; essentially, for academics, areas that can showcase results and result in publication in
the shortest time, and for practitioners, the problems that yield the largest monetary value in the shortest
time span. These are not necessarily the areas that can make the greatest difference long-term on
efficiency, productivity, or sustainability.

e This is one of a few reasons that some areas are still waiting for data — the value of the data collection
for these areas might be less apparent, so it is delayed further. The lack of data is considered a major
barrier for effective application of AI systems. If you can not measure something, you can not understand
it, and, ultimately, you can not build an Al tool to change it.

e Lack of anchoring in strategy. This is essential for Al systems to become an integral part of the project
or organisation rather than just an add-on, ultimately avoiding graveyards of PoCs.

o Findings suggest that the responsibility of development and deployment tends to be allocated
to one single (relatively small) group; these naturally have limited capacity. If the continuation
of the projects falls on a small selection of people, the probability that it can not be continued
for practical reasons increases.

o Projects and organisations should avoid keeping old processes and procedures and simply add
the Al system or tool on top; rather, they should aim to rethink and restructure the process to
include the system more organically. Adjacent processes directly affecting the system should
be adjusted to, for instance, accommodate changes in organisational structure or responsibilities.

e The work becomes too resource intensive. A lot of time and effort is spent on activities related to data
management, training, follow-ups; when each pilot or PoC is conducted by different actors and
personnel, in different departments, a lot of work is, inevitably, done twice. Efforts are currently too
fragmented. Conducted tests might not see the greatest effects — which is natural, as the scaling is seen
to hold the largest gains. Subsequently, it can be difficult to argue for coverage in the next test.

e There is a drifting apart between the academic field, and the industry. A lot of the work conducted
in an academic context is centred around smaller use cases, rather than developing scalable and robust
tools. Furthermore, many studies utilise traditionally academic ML-development tools. Practitioners may
be hesitant to explore areas of application that lack sufficient research, and academics might be hesitant
to spend resources on areas that lack commercial interest or immediate effects.

e Limited transferability. A model that is developed in one environment, or on one specific dataset can
not necessarily be operated in another environment or applied to another dataset; there is a lack of
standardisation in both construction and data management activities. This can complicate the collection
and sharing of data across the value chain and limit effective development and application of Al tools.

e Lack of contextualisation, in data, model, and deployment. There seems to be a lack of understanding
of the construction processes themselves; in essence, what the problem really is, what the goal actually
is, and how an Al-based tool can actually contribute. Digitalisation and implementation of Al systems
and tools should never be the goal, but the means to reach another goal (such as cutting costs, increasing
productivity, ensuring safety, or reducing emissions) — Al is only the solution if it is the most effective
way to reach this goal.

e Fragmentation. Fragmentation is seen both between organisations in the industry, between projects in
an organisation, and between actors in a project. It is recommended to involve the entire organisation in
the development and deployment; this will make it easier to acquire the appropriate knowledge and
resources for the project at hand and is an important starting point for mapping available resources.
Reducing fragmentation is essential to overcome challenges related to intersectional talent shortages.

6.2  Main dimensions of implementation and integration (RQ2)

Findings and discussions uncovered seven main dimensions of implementation and integration of Al systems and
tools in the construction context.
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The identified dimensions are strongly interrelated, and interdependent, and successful implementation and
integration of Al systems will require a coordinated effort across all dimensions. However, here, they are defined
individually. For academics, this is intended to provide an overview, and a well-defined starting point for future
research; for practitioners, this is intended to provide a deeper understanding of the extent of each dimension.

The main dimensions relate to the four previously discussed pillars of technology, process, people, and data;
often, multiple at the same time.

6.2.1 Data management

A holistic approach to data management is critical for successful Al implementation. Prioritising, contextualising,
and standardising data management is found to be essential. Three key indicators for data management are data
quantity, data quality, and data access.

It will be necessary to systemise data collection (such as sources and collection methods), data storage (such
as locations and formats), data sharing, data analysis, and standards for how data is used in the development and
deployment of Al-based tools. Comprehensive data management plans and infrastructures should be established.

A vast amount of data already exists in and on construction projects; however, metadata providing insights
into the quality and characteristics of the data beyond just what they measure is generally lacking. This hinders
effective QA of data, and successful contextualisation, and could ultimately render the available data useless.
Metadata repositories and data warehouses should be established, so data can be traced back to respective projects
or actors, and to enable the identification of limitations the data might hold.

Data should be accurate, relevant, and consistent, to improve the quality of the outcome, and reduce the time
and resources needed for processing, cleaning, and transforming in preparation for development. In order to ensure
a holistic approach, three types of data are needed:

e Data on the activity or process being enhanced. This is essential to understand the characteristics of the
problem, to understand what tool might be useful, how a tool might be useful, and what tool or approach
might bring the greatest effects and improvements.

e Data needed to develop the model. Resulting from an initial assessment of the data associated with the
process, the developer should get an understanding of what potential an Al-based tool might hold. From
this, the developer can decide what data is needed for development. For an ML-based tool, this includes
ensuring sufficient quality and quantity of data for development, training, validation, and testing.

e Metadata related to the initial data collection (such as project number, project phase, project location,
discipline, file format, file size, or additional characteristics), the implementation process (such as
possible downtime, time spent on training), and possible mapping of effects after implementation.

6.2.2  Model

A tool built on AT will use one or more Al models to perform a specific function.

Selecting appropriate models and developing them to suit the construction context is a central and critical
part of the successful utilisation of Al. Different models will be fit for different types of data, different activities,
or different phases in the same project. Understanding the problem and the driving forces behind it is essential,
and data management plays an important part in this process.

Developed models need to be robust and scalable. The AI models must be able to handle potentially large
volumes of unstructured data and account for the complex interdependencies between different aspects of a
construction project. The models must be capable of adapting to dynamic and rapidly changing environments, and
to identify relevant features and patterns. Transferability, trust, transparency, and adaptability are key challenges.

6.2.3  Deployment

Implementation and integration with existing systems in the organisation or project, or the creation of new systems
that fit within the existing infrastructure is challenging but important.

Deployment requires careful planning and execution and could mean involving one or more stakeholders to
ensure that all needs are being met during and after deployment. The increased efficiency of one actor should not
compromise the efficiency of another actor — or the project as a whole. Implementation and integration might
require significant changes to the workflow and workforce.
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From a technical perspective, it is essential to ensure interoperability with various software and hardware
systems on and off-site, to manage data security concerns, and to deal with any potential physical constraints on
the construction site. From a process perspective, implementation and integration might require significant
changes to the workflow and workforce. From a people perspective, this means that the personnel working with
and around the new system must receive appropriate training prior to implementation, appropriate support during
the implementation, and appropriate checks after the implementation. This could, and should, be an integral part
of the data mapping of the effects of the implementation, or the continuous monitoring following implementation.

6.2.4  Monitoring and maintenance

Following implementation, the AI model needs to be monitored and maintained, to ensure continued accuracy
and effectiveness. The performance should, preferably, be monitored in real-time, or close to real-time.

Maintenance can include, but is not limited to, updating the model as new data becomes available, or
otherwise adjusting the model after assessment of preliminary available data. To facilitate effective maintenance,
maintenance protocols can be established. These can include defining roles and responsibilities, frequency, and
key performance indicators. Robust models might be able to, to some extent, autonomously continuously adapt
over time; however, the dynamic nature of construction projects might increase the need for manual maintenance,
especially at early stages.

6.2.5 The human factor

Personnel involved in the implementation and integration of Al-based tools might need training related to the
technical use of any new tools or systems; assessment and interpretation of input data, output data, or metadata;
or how the system is to be understood in the context of the activity or the entire project.

Implementation and integration might require redefining roles and responsibilities, establishing training
programs, mentor-programs, and developing new communication channels to support the use of AL This is closely
linked to the organisational dimension. The element of collaboration will be vital to develop and deploy effective
and sustainable systems. The intersection of fields is currently seeing a talent shortage, and the most important
tool in overcoming this will be training of personnel.

Some might be resistant to change. It will be necessary to prioritise building trust in all interactions that are
affected by the implementation: human-machine, human-data, and human-human, meaning across the value chain,
interdisciplinary fields (such as developer and user, for instance) or organisational silos.

Considering the human factor might require an increased focus on human resources in the organisation.

6.2.6  Organisation

Implementing Al-based tools could require changes in multiple areas of the organisational structures, roles, and
responsibilities. Implementation and integration would require training of individuals and personnel involved but
could also mean new roles might have to be defined and filled. Whether the responsibility falls on a set role in the
project or organisation, or an extended team, this should be clearly defined in the organisational structure.

It is important that the organisational structure facilitates collaboration across the value chain and across
different functions in the project or organisation. Organisational hierarchies and decision-making structures might
need to be adjusted to accommodate the development and deployment of Al-based tools and the supporting
infrastructure.

An arena should be established to keep all relevant actors involved, informed, and inspired throughout the
entire process of implementation and integration — and beyond.

6.2.7  Ethical considerations

Ethical considerations must be at the core of any phase or stage of implementation and integration.

Development and deployment of Al models and tools must be done in a responsible and ethical manner,
considering privacy concerns and biases. This means establishing clear policies and procedures for data collection,
storage, use, governance, audits, and ensuring the involvement of relevant stakeholders in decision-making
processes. Systems must be transparent, accountable, fair, and, ultimately, sustainable.

Transparency and trust are two of the major challenges. Developing ethical frameworks, establishing clear
policies and procedures, and creating mechanisms for accountability and oversight are some of the possible
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solutions. Another big challenge is bias, especially when Al systems rely on historical data — as they often must.
The data foundation needs to be representative. Automated systems, for instance, ML algorithms which often act
as black boxes, must be thoroughly evaluated to ensure that they meet ethical standards.

6.3  Proposed frameworks (RQ3)

Considering the current state of the field, identified challenges for further advancement, and the seven dimensions
of implementation and integration, frameworks are defined for the system, project, and organisation levels. The
frameworks are expected to improve transferability and contextualisation in development and deployment, and to
reduce fragmentation across the value chain, across processes, and in data.

6.3.1  System level

To accommodate the seven dimensions in all stages of development and deployment, the framework illustrated in
Figure 6-1 is defined for the system level.

The framework consists of (S1) identifying the problem, (S2) assessment of feasibility, (S3) data collection,
(S4) data pre-processing, (S5) model development, (S6) integration, and (S7) maintenance and monitoring. The
framework is meant to facilitate a need-based approach to development and deployment, rather than deploying an
Al system just for the sake of using Al Utilising AI should not necessarily be a goal of its own; the goal should
be to carry out a process in a more productive and sustainable way — Al systems might offer valuable contributions
towards achieving this goal. For certain use cases, employing Al involves reviewing Al-generated examples,
providing input, and using the Al system as a platform for experimentation and decision support; a system does
not have to be entirely autonomous to create great value.

Each phase of the defined framework is intended as a decision gate, guiding the developer and user through
the entire process. Ultimately, the framework provides a standardised process that eases incorporation in
overarching strategic plans and goals upon completion of the development process.

The framework aims to facilitate a streamlined integration with established processes and activities, and
ultimately ensure that the Al system becomes more than simply an add-on.
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Figure 6-1. System level framework.
6.3.2  Project level

The framework for the project level is based on the NS 3467:2023 Stages and deliverables in the life cycle of
construction works (Standard Norge, 2023) and outlines relevant Al-related activities for each of the defined
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project phases. Development and deployment must be an integral part of all phases, rather than an afterthought in
the production phase; this will drastically increase scalability and robustness.

A project level framework from the executive perspective is illustrated in Figure 6-2. ‘Areas of application’
refers to possible areas of application that are relevant for the use of Al systems in the given phase. ‘Stakeholder
management’ refers to recommended activities for stakeholder management in the given phase, and
‘Infrastructure’ refers to recommended activities for establishing relevant infrastructure to support the use of Al
systems in the current and upcoming phases — and projects.

By highlighting potential use cases throughout all project phases, the framework aims to achieve effective
distribution of resources to a range of problems. The framework indicates that stakeholder management extends
far beyond assigning responsibilities, and outlines relevant activities to contribute to building expertise and trust.
Relevant infrastructure must be established to accommodate changes on both the system and organisation levels.
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Figure 6-2. Project level framework.

6.3.3  Organisation level

Activities related to the development and deployment of Al systems and tools on the organisational level will vary
heavily on the area of application and the characteristics of the system in question. Therefore, it is challenging,
and not necessarily desirable, to define one standardised framework for all activities.

However, regardless of any area of application or characteristics of a given system, the organisation could
and would benefit from establishing a data warehouse for the structuring of data. One such model is illustrated in
Figure 6-3. Data from the data warehouse can be used for analytics, data mining, reports, and development.

Data warehouses are expected to be useful on the system and project levels; however, it is considered most
resource effective to establish this on the organisation level. This way, the data used on system and project level
can be elevated and related to other relevant data. Certain traditionally qualitative areas are still waiting for data.
However, this data might already exist in unstructured formats, or exist in databases currently not available to the
actor who wishes to access them. This can, in part, be solved by establishing a data warehouse. Ultimately, a data
warehouse is expected to contribute to less resource intensive data preparation pipelines.
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Figure 6-3. Organisation level framework.

6.4 Main contributions

The thesis has outlined the current state of the field, providing a comprehensive and practically oriented overview
of recent advances, both from the perspective of academics and practitioners. Key challenges are identified for
theory and application in attempts to move the use of Al-based systems and tools from ambition to practice. Based
on this, the implementation and integration processes were assessed, and seven main emerging dimensions were
mapped. From the seven dimensions, three frameworks were defined for the system, project, and organisation
levels. The work is based on insights from previous research and from leading industry actors and experts.

Research mapped experiences and lessons learned from numerous projects to understand how the practical
implications of development and implementation actually affect, and are affected by, actors on the system, project,
and organisation levels. The thesis helps expand the knowledge within the contextual intersection between project
management, Al, and sustainability in the construction context.

The findings provide a sense of direction and highlight current potential and gaps in the research at a time
when academics and practitioners alike are eager to move forward. Previous research has emphasised the need for
application-oriented research and frameworks (Darko et al., 2020; Wang et al., 2020), and what these might mean
for the dimensions of people, processes, and technology (Shen et al., 2010; Nishant et al., 2020; Xu et al., 2022).
The frameworks defined in this thesis will contribute to increasing transparency throughout the process, with
recommendations related to the standardisation of activities in all three dimensions — and for the dimension of
data. Improved standardisation can contribute to comparability and transferability between studies in the academic
field, and pilots and PoCs in the industry, and reduce fragmentation.

The thesis provides an application-focused approach to the topic of Al in the construction context, expanding
on a people and process-oriented complement to previously technology-focused advances (Ilter and Dikbas, 2009;
Martinez and Fernandez-Rodriguez, 2015; Juszczyk, 2017; Basaif and Alashwal, 2018). The frameworks address
the needs expressed by prior research to facilitate collaboration between stakeholders (Goralski and Tan, 2020),
leverage the potential Al systems hold for the entire construction project lifecycle (Pan and Zhang, 2021), and
incorporate elements of infrastructure required to support Al technologies and solutions (Agrafiotis et al., 2018;
Abraham et al., 2019). As indicated by previous research (Goralski and Tan, 2020; Nishant et al., 2020; Feroz et
al., 2021; Pan and Zhang, 2021; Kineber et al., 2023a), the standardised framework is believed to enable increased
sustainability in the process output, as well as in the process itself.

Preliminary analyses of existing literature indicated that most of the research in the intersections between
the defined topics was primarily grounded in conceptual theory, rather than practical implications. Therefore, the
methodology for the studies conducted within this thesis was developed to provide empirical validations.

For academics, the thesis provides a well-defined starting point with many opportunities for future research.
The thesis provides empirical validation of findings in a field that has previously been lacking empirical data and
research on implementation and performance beyond small-scale testing and PoCs. Previous research in the field
was often limited to one specific area of application, or one specific system, and therefore not focused on holistic
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frameworks (Darko et al., 2020; Wang et al., 2020). Findings are presented with detailed descriptions of practical
implications. A significant theoretical contribution is connecting the fields of Al, project management, and
sustainability in the context of the implications of technology, process, people, and data. By connecting the fields,
the findings identify factors affecting the four dimensions, and how factors in one dimension can affect the
remaining three. Consequently, the thesis helps contributes to bridging the research gap existing at the intersection
between the topics of Al, project management, and sustainability in the construction context.

For practitioners, the thesis provides a starting point for starting the process of moving from ambition to
practice. The frameworks can help enable the shift from small-scale testing to larger scale implementation and
integration. For individual actors, establishing frameworks contributes to anchoring in strategy, and a long-term
reduction in required resources for effective and sustainable development and deployment of Al tools. The thesis
has introduced three frameworks and illustrated the importance of taking a holistic approach, and not only focusing
on activities and processes in one dimension, as changes in one dimension affect the three remaining dimensions.

A set of extensive guidelines is defined to help actors understand and more effectively and sustainably
develop and deploy Al-based systems and tools. The defined frameworks offer a comprehensive approach for
practitioners who want to get started — and want to get started now. Actors do not need to wait for the industry to
change to bring ambition into practice, and the thesis provides some of the tools required to start the change. The
insights provided can help practitioners identify and overcome some of the key challenges associated with the
development and deployment of Al-based systems and tools, to understand the potential it holds and how to
effectively unlock it. The findings can help practitioners identify areas of improvement in their own practices.

Actors in the construction industry should be able to apply the findings presented in this thesis by
implementing the developed frameworks. Independently, the seven identified dimensions for implementation and
integration can serve as a framework of their own right for actors to evaluate their own structures and systems, to
ultimately gain insights and perspective into their own practices.

Throughout the work with the thesis, selected parts of the research have been presented in a wide range of
settings and situations, including two guest lectures at Universidad Politécnica de Madrid, a presentation at the
University of Salford Built Environments Summer School Programme, as well as multiple presentations for
industry leaders, industry experts, and members of Construction City Cluster. As a result, the research has already
been partially applied and evaluated in both academic and industry settings. Thus, certain aspects of the study
have already had the opportunity to be assessed among experts in the fields, and in educational contexts.

6.5 Limitations and opportunities for future research

This thesis provides an enhanced understanding of how the use of Al in construction projects can be taken from
ambition to practice. However, the findings presented and discussed in this thesis represent only the beginning of
the research in this specific intersection of the field, and thus it provides a starting point for future research.

6.5.1  Empirical context and generalisability

The Norwegian construction industry constituted the main foundation for the conducted studies; the case studies
were conducted on Norwegian projects, and most of the interviewees had their experience from the Norwegian
setting. Thus, the research can be limited by cultural biases, regional characteristics, or unique circumstances that
might not be applicable to other countries or contexts.

Close collaboration with international research environments (namely the University of Salford in England,
and Philadelphia University in Jordan) and continuous participation in international expert groups with members
from Switzerland, USA, Spain, Romania, Israel, England, and Norway contributed to increasing reliability,
validity, and generalisability in the research. All findings were analysed in the context of available international
literature exploring adjacent topics. This could improve the generalisability of the study and suggests that the
findings can be applicable also outside the empirical context. To empirically validate this, more research is needed.

Future research could further expand the research beyond the Norwegian context and use this thesis as a
starting point to strengthen or challenge the findings in the context of other countries and industries. Despite
international collaboration providing the opportunity to share insights and findings across countries and industries,
conducting research with data and insights predominantly from another country, could be a valuable contribution.
It can provide a broader perspective, and allow for a more diverse range of experiences, insights, and practices to
be included. Identifying similarities and differences between different countries can help improve generalisability.
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By conducting research in an international context, cross-cultural similarities and differences can be
identified, which, in turn, can help strengthen the findings. Elements from the defined frameworks could also be
extended to facilitate activities in other industries; this could be another opportunity for future research.

Only articles written in English were included in the final literature review samples. This can be addressed
in future research by including articles written in other languages, to broaden the scope of the study and potentially
provide a more diverse perspective on the topic.

6.5.2  Validation of findings with increasing maturity

Due to the novelty of the topic, the studies conducted within the thesis had a limited number of case projects and
informants available. The limited number of relevant informants and experts yielded quantitative methods such
as questionnaires inapplicable for parts of the research.

A smaller sample size can reduce the generalisability of the findings. The sample size (and generalisability)
was increased by involving informants across the value chain, and with backgrounds from other industries than
the construction industry; however, future research can involve an even broader sample of projects and informants.
Involving a larger sample of informants for each of the roles in the value chain can help gain a more in-depth
understanding of the topic. As the field continues to develop, it seems reasonable to assume that a larger number
of relevant projects and informants will become available for future research.

The novelty of the technologies and methods addressed and assessed in the thesis means it might be too early
to assess their potential and limitations confidently, this could be confirmed or challenged by future research.

6.5.3  Industry actor perspectives

The project level framework was developed for the executive perspective, in essence, contractors. A valuable
contribution for future research could therefore be to develop similar frameworks for owners, subcontractors,
advisors, architects, suppliers, and other parts of the value chain. Throughout the research process, actors from
across the value chain were interviewed and helped in the validation of findings, but the framework, especially
on the project level, was ultimately mainly targeted towards the executive perspective.

6.5.4  Practical implementation of frameworks

Future research could implement the frameworks of this thesis, or elements from the frameworks, and set out to
map and quantify the resulting effects on the system, project, and organisation levels. Empirical studies could then
see, in practice, how the frameworks affect and are affected by real-life situations. By building on the findings of
this thesis, future research could explore identifying even more dimensions of the implementation and integration
process and assess how these might affect and be affected by the dimensions identified in this thesis.

The field of Al is developing rapidly, and the state of the field is drastically different upon completion of the
thesis (2023) compared to the initiation of the thesis (2020). Therefore, each of the studies can be argued to hold
only a cross-sectional view of the topic and the state of the topic. The whole thesis can still be argued to hold
elements of a more longitudinal perspective, which can improve the reliability of the research. However, future
research can aim to conduct a series of identical studies, to map the changes to a specific dimension or context
over time. This will provide an even more longitudinal perspective. Further triangulation of research methods and
approaches — especially case-based research — could also strengthen the validity of the findings and provides
another opportunity for future research to expand on the preliminary findings of this study.

6.6 Personal reflections

In such a rapidly developing field, it can be hard not to get lost in the jungle of buzzwords and hype.

In order to make real progress, actors need to be pragmatic and put practical considerations and implications
first, fancy tools second. Still, there is every reason to be optimistic. The technology, to a large extent, is already
here. Tools that are now generating massive hype, and creating significant value, are built on technology that has
been around for a while. We are now seeing new combinations of technologies, we have got access to more data
than ever before, allowing us to create value for many, many people — that being entertainment value, or value in
a construction project or organisation. So, we must be pragmatic, but we also have every reason to be optimistic.
There is undoubtedly a big potential, and the industry might soon be ready to move from ambition to practice.
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Abstract: The use of artificial intelligence (Al) in construction projects has surged in recent years and is believed to
represent a significant potential for increasing productivity and efficiency in the industry. The purpose of this paper is to
present a state-of-the-art view of the field by conducting a review of publications concerning the topic of Al in construction
and comparing the findings to previously conducted reviews. This paper provides an overview of the recent and current
uses of Al in construction projects, through a descriptive analysis of the characteristics and contents of 86 peer-reviewed
articles from 2015 to 2020. Although the application of Al in the industry is not entirely new, construction appears to
currently be behind other industries in terms of adopting and adapting to Al. The results show that a wide range of research
is conducted on Al in construction projects. A limited number of publication channels and authors stand behind a significant
part of the reviewed publications. Most studies are conceptual or use a mixed-methods research design. The research
addresses several areas of application, but there is a predominance of quantitatively based subfields of construction, such
as estimation and cost control, logistics, planning, and scheduling. Future research should focus on developing holistic and
process-oriented frameworks for projects to move from ambition to practice. Findings can inform the future development
and implementation of Al in the construction industry context. For researchers, this study identifies areas in need of further
attention and examines possibilities for future exploration of multidisciplinary approaches that combine construction
engineering, project management, Al, and social science. For practitioners, the study highlights current trends and work
within the field, providing an overview of the potential for pilot studies, tests, and innovations.
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1. Introduction construction project lifecycle chain, ultimately improving
Th tructi industey i lex: ficti the sustainability of environmental, economic, and social
¢ construction Incusiry 1S complex; conticting factors (Blanco et al., 2018; Oprach et al., 2019). Benefits
objectives contribute to this complexity, as demands for ted at th ect level. th isational level
roductivity, resource efficiency, sustainability, and are expestet at t1e project ievel, Mie organisauona. eves,
p . . , T and for the industry as a whole. The construction industry
advances in technology continue to develop rapidly (Wood . Lo - -
. remains a significant contributor to the gross domestic

and Gidado, 2008; Luo et al., 2017). In the past, the . . .

. . . product of many countries. However, it also heavily
construction industry has been considered rather tributes t . d
traditional and, although it is currently experiencing a contributes o resource usage, energy consumption, an
disital shift. it > behind th dto ofh waste production, and the sector suffers several

1gital shull, it remains behind the curve compared to other occupational fatalities every year (Barker et al., 2007;

sectors in implementing Al-based solutions (McKinsey . . . .
Global Institute, 2015). Thus, the practical implementation Becqué et al,, 2016; Dong et al., 2019). Al is believed to

of artificial intelligence (AI) in construction is still
considered a rather unexplored topic.

impact how the industry approaches sustainability, policies
on health and safety, risk assessment, planning and
scheduling, strategy, project performance, cost control,
The concept of Al is broad, but it can be defined as a and calculations for operations and lifecycles (Hossain and
system or a structure that has ‘the ability to perform tasks Nadeem, 2019).
in complex environments without constant guidance by a
user’ (University of Helsinki, 2018). Al is believed to
enable an increase in productivity throughout the entire

Al is a highly interdisciplinary field, comprising
elements from computer science, logic, mathematics,
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psychology, and neuroscience (Tidemann, 2020; Terresen,
2013). In the construction context, Al systems can be
grouped into four categories: machine learning techniques,
knowledge-based techniques, evolutionary algorithms, and
hybrid systems (Akinade, 2017). Machine learning
algorithms have the ability to learn from data (Tidemann,
2019); in the construction industry, neural networks,
support vector machines, and fuzzy logic seem to be the
most widely used machine learning techniques (Akinade,
2017). Knowledge-based systems mimic the problem-
solving expertise of humans to identify solutions for
complex problems (Sowa, 2000). Frequently utilised
knowledge-based approaches include expert systems, rule-
based systems, case-based reasoning, and semantic
networks (Akinade, 2017). Evolutionary algorithms are
based on biological evolution (Russel and Norvig, 2010);
evolutionary Al techniques optimise factors and possible
scenarios to find the most suitable outcome (Dasgupta and
Michalewicz, 1997) — such algorithms can cover broad
territory, from genetic algorithms to ant colony
optimisation, particle swarm optimisation, and artificial
bee colonies (Akinade, 2017). Hybrid systems combine
two or more Al approaches to maximise the strengths and
overcome the weaknesses of individual approaches
(Russel and Norvig, 2010).

This study investigates the current and potential use of
Al in construction projects, through a scoping review of 86
articles from peer-reviewed journals. Providing an
overview of the available research will indicate which
knowledge exists in the field, and where further research is
required. Specifically, the study addresses the following
research questions (RQs):

e RQI: What research has been carried out on Al in
construction projects?

e RQ2: What research approaches have been used in
studies on Al in construction projects?

e RQ3: What gaps exist in the research?

The first research question will be answered through a
descriptive analysis of the selected publications. For this
purpose, the following data will be collected: title;
author(s); year of publication; study location; and
keywords. The second research question will be answered
through a more extensive analysis of the research design of
each study, assessing and classifying the chosen
methodology as conceptual, qualitative, quantitative, or
mixed. Last, the third research question will be answered
by assessing the overall purpose of each study, its focus of
attention, significant results, and conclusions; this stage
also includes assessing the answers to the two previous
research questions.

Several literature reviews on the topic of Al in
construction projects have previously been conducted. For
example, Ilter and Dikbas (2009) reviewed Al applications
in construction dispute resolution; Martinez and
Fernandez-Rodriguez (2015) reviewed Al as a tool for
estimating project success and identifying critical success
factors; Juszczyk (2017) reviewed the use of Al for cost
estimation in construction projects; Basaif and Alashwal
(2018) reviewed Al applications for risk analysis in
construction projects; Xiao et al. (2018) conducted a
bibliometric review of Al in construction engineering and
management, providing an overview of the most
influential studies of Al in construction between 2007 and

2017; and Darko et al. (2020) conducted a scientometric
analysis of research activities related to the use of Al in the
architecture, engineering, and construction (AEC) industry.

This review examines a range of relevant articles
published between 2015 and 2020 to provide a state-of-
the-art perspective of the available technology and its
current areas of application in construction projects.
Reviews conducted by Ilter and Dikbas (2009), Martinez
and Fernandez-Rodriguez (2015), Juszezyk (2017), and
Basaif and Alashwal (2018) considered Al applications in
specific areas. Xiao et al. (2018) conducted a bibliometric
review on publications up to 2017. Darko et al. (2020)
mapped research interests and themes in the AEC industry,
identifying topics such as optimisation, simulation, and
decision-making. This study will contribute to the
research field by examining and assessing the body of
literature dating from 2015 to 2020, focusing on the
variety of practical applications of Al in construction
projects. The study targets use cases and applications as
well as the research activity itself. Ultimately, this study
provides a state-of-the-art overview for reference to future
research endeavours, highlighting relevant resources,
potential collaborators, and areas in need of more work.
For practitioners who wish to implement Al-powered
tools in their projects, it provides a sense of direction for
Al-powered innovation, a resource for identifying
potential Al solutions for their problems, and an
opportunity to benchmark their work against previous
undertakings in the field.

The remainder of the study is organised as follows: the
next section explains the methodology of the review
process; the Results section presents and discusses the
main findings of the review; the Conclusion section
answers the research questions as defined and summarises
the qualitative characteristics of the body of publications,
the research approaches used, and the gaps identified
within the field. The last section reflects upon the
possibilities this study provides for future research, as well
as the limitations of the conducted review.

2. Method
2.1. Unstructured Literature Search

The perceived feasibility of the study was measured
against the comprehensiveness of the scoping process,
following the recommendations by Levac et al. (2010).
This provided the main motivation for an initial,
unstructured literature search. Conducting this initial
search in an explorative manner provided a broad
knowledge of the field, and ultimately created a foundation
for the literature review. The purpose of the preliminary
search was to produce a literary warrant, thereby
establishing a suitable foundation for further definition and
indexing of terms and classes during the review. The
search provided an overview of the topic and contributed
to an initial understanding of the development of the field
and related key concepts.

2.2. Systematic Scoping Review

To answer the research questions, a scoping review was
conducted according to the preferred reporting items for
systematic reviews and meta-analyses (PRISMA)
framework (Moher et al, 2009) and the scoping
methodology framework presented by Arksey and
O’Malley (2005). Reviews within the field of management
are often considered to be comprised of a process of
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exploration, discovery, and development (Tranfield et al.,
2003); therefore, it is desirable to choose a flexible
approach that can be modified throughout the study. The
scoping review enables such a flexible but systematic
approach and comprises five steps:

1. Identifying research questions

2. Identifying relevant studies

3. Selection of relevant studies by formulated criteria
4. Charting the data

5. Collating, summarising, and reporting results

To clarify and further evolve the framework, Levac et
al. (2010) present some specific recommendations for each
step. For the methodological approach of this review, the
recommendations employed included linking the purpose
of the study to the research questions early in the process,
in order to facilitate decision-making regarding the
inclusion and exclusion of relevant publications as the
scoping review proceeds. The nature of the scoping review
provides for an emergent and iterative process, meaning
that such criteria might not become fully clear until the
later stages of the review (Gough, 2007a). In this review,
the inclusion and exclusion criteria as presented produced
the final selection of publications. The criteria were
updated throughout the process to sustain the systematic
manner of the review; a more systematic approach helps to
provide trustworthiness and accountability for the
literature review (Gough, 2007b).

The next step was to initiate a manual search of selected
databases. The databases were chosen as they were known
to include significant topics and authors, as identified
through the preliminary search. Additionally, the selected
databases were deemed especially suitable due to their
interdisciplinary nature, and their position as well-
recognised databases for academic articles and
publications. The selected databases were Scopus,
ScienceDirect, and Web of Science, each of which
provides an advanced search function that allows the user
to customise their search preferences. Identification and
selection of relevant studies — steps two and three of the
scoping review framework — were structured according to
the PRISMA framework (Moher et al., 2009), as illustrated
in Fig. 1.

Tranfield et al. (2003) emphasise the importance of a
well-defined search string in order to create a replicable
and transparent search strategy. During the first,
unstructured search, several search strings were explored.
For example, TITLE-ABS-KEY (construction and
artificial intelligence). This search resulted in 60,398 hits
across the three databases. Even after further restrictions,
such as year, language, and document types, this search
string yielded an unmanageable number of publications.
Moreover, the initial search proved that several terms,
including expert systems, knowledge engineering, and
even artificial intelligence, seem to lack a single definition
within the field. Therefore, the final search string needed
to be open enough to include possible variations of such
words but narrow enough to exclude the most peripheral
subjects. For the scoping search, the string was modified to
TITLE-ABS-KEY (‘construction project*” AND ‘artificial
intelligence*’), which resulted in a far more relevant
selection of publications and 1,608 hits. An additional 21

publications were reviewed upon request from scholars
involved in the study.

A set of inclusion and exclusion criteria were defined
for filtering, to help ensure the relevance and credibility of
the sources for the review. Decisions regarding inclusion
and exclusion criteria remain relatively subjective
(Tranfield et al., 2003); this strengthens the need for a
transparent and verifiable process of inclusion and
exclusion. Thus, one criterion used was that the inspected
studies must deal with technology that could be considered
Al For example, studies were excluded that simply
discussed challenges of construction projects, or the
construction industry, without any explicit mention of
specific solutions. The field and definitions of Al are
rapidly changing; the availability and accessibility of data
and technology are rapidly increasing, while the cost of
data processing tools is rapidly decreasing. This enables
applications that were not possible just a few years ago.
Therefore, in order to ensure and capture a state-of-the-art
view of the topic, this review only included literature from
2015 to 2020. Furthermore, the document type was limited
to include only peer-reviewed articles. As the scoping
methodology itself does not include a formal application
of quality assessment criteria, strictly including
publications from peer-reviewed sources contributes to an
implicit quality in the chosen body of publications.

The main targets of this analysis were studies of
conceptual or practical cases of Al in construction projects;
however, studies discussing Al in the construction industry
in a more general fashion were also included, as long as the
technology was not explicitly targeted toward
infrastructure or industrial construction — such articles
were excluded. Studies without mention of any specific
technologies or techniques were also excluded. If a
publication discussed a specific technology with an
explicit functionality but did not name the technology, it
was included. Finally, the search was limited to only
include publications written in English; any duplicates
were also removed during this process. Following this,
manual screening of titles, abstracts, and keywords was
conducted to assess the relevance of the remaining
publications in the selection; 481 records were screened,
and 374 were excluded. A full-text assessment of the
remaining 107 records was then conducted, to ensure their
eligibility and to evaluate the contribution of each study
beyond its title, abstract, and keywords. Twenty-one
articles were found to be out of scope, and seven lacked
sufficient detail to provide an accurate assessment. Eighty-
six articles remained to be included in the review.

2.3. Classification Framework

To answer the research questions, several dimensions were
defined along which the selected articles were analysed;
together these constituted the assessment framework and
provided a foundation for the fourth and fifth steps of the
scoping review framework. The classification framework
was structured to enable a holistic and comprehensive
analysis of the field of Al in the context of construction
projects and provide a descriptive presentation of the body
of publications, according to the recommendations by
Arksey and O’Malley (2005). The descriptive features of
each publication were collected directly from each
database and included the year of publication, source
journal, author(s), location, and keywords. Table 1
describes the classification framework.
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Fig 1. PRISMA flow diagram describing the review process

The publication methodology was classified as either
conceptual, qualitative, quantitative, or mixed-method.
Some publications did not offer a definitive description of
their research methodology; in these cases, the chosen
methodological approach needed to be interpreted from
any direct or indirect descriptions provided by the author(s)
themselves. Where the approach of the publication was
strictly developmental in terms of, for example, a specific
terminology, system, or framework, the methodology was
considered to be conceptual. A publication was considered
to be qualitative if it addressed the subject in a qualitative
manner, such as by discussing certain soft factors
regarding the implementation of Al, its potential or non-
quantifiable implications, or the effects of its
implementation. Meanwhile, publications considered
quantitative addressed the more quantifiable effects of
implementation, or the applications of the tools themselves;
use of specific algorithms, for example. Publications were
assessed to be using mixed methods when the research
design appeared to use two of the three aforementioned
methodologies equally.

The categorisation of areas of applications comprised
four steps:

1. Identifying common applications

2. Clustering similar applications

3. Filtering out rarely mentioned applications
4. Sorting applications by categories

This procedure resulted in nine categories that summarised
the grouped findings of the literature search: logistics and
scheduling, estimation and cost control, health and safety;
project performance and success estimation, strategic
design, risk management, material properties, reviews, and

implementation, and sustainability. The contents of the
publications in each of these categories are further
addressed in Section 3.3.

The initial search uncovered countless definitions and
descriptions of Al-powered technologies and techniques.
Thus, the framework defined by Akinade (2017), as
described in the introduction, was used for classification
and categorisation: machine learning, knowled