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ABSTRACT

We describe, implement and show results of a localized ensemble-based approach

for seismic AVO inversion with uncertainty quantification. Ensembles are simulated

from prior probability distributions for fluid saturations and clay content. Starting

with continuous saturations and clay content variables, we use depth-varying models

for cementation and grain contact theory, Gassmann fluid substitution with mixed

saturations, and approximations to the Zoeppritz equations for the AVO attributes at

the top-reservoir. The local conditioning to seismic AVO observations relies on i) the

misfit between ensemble simulated seismic AVO data and the field observations in a

local partition of the grid/local patch, of inlines/crosslines around the locations where

we aim to predict, ii) correlations between the simulated reservoir properties and the

data in local patches, and iii) local assessment to avoid unrealistic updates based on

spurious correlations in the ensembles. Data from the Alvheim field in the North

Sea are used to demonstrate the approach. The influence of the prior information

from the well logs in combination with the seismic reflection data indicates presence

of higher oil and gas saturation in the lobe structures of the field and increased clay

content at their edges.
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INTRODUCTION

Stochastic reservoir characterization from seismic data is commonly done today, see

e.g. Bosch et al. (2010), Azevedo and Soares (2017), Grana et al. (2021) or Grana

et al. (2022) for an overview of this field. Following the Bayesian approach, one

specifies i) a prior model for the reservoir variables of interest based on geological

knowledge and well log data in the area of interest, ii) a likelihood model based

on rock physics relations between the reservoir properties and the seismic data as

well as a specification of the seismic observation noise. The goal is then to assess

the posterior distribution of the reservoir variables, conditional on the seismic data.

Bayesian inversion of seismic amplitude data to predict density, P- and S-velocity is

one example of this situation. Probabilistic lithology and fluid prediction from seismic

amplitude data is another example.

Our focus in this paper is the prediction of reservoir properties from seismic ampli-

tude versus offset (AVO) data. Unlike discrete facies and saturation models, see e.g.

Larsen et al. (2006), Buland et al. (2008) and Grana et al. (2017), we represent the

fluid saturations and clay content properties in the reservoir as continuous variables

(Bachrach, 2006; Shahraeeni and Curtis, 2011). In doing so, we enable shaly sands

or sand-clay mixtures and partial saturations in the sample space. A motivation for

using continuous reservoir properties, is insight gained from the Alvheim field in the

North Sea, which is used as a case study throughout this paper. Parts of the Alvheim

field is dominantly oil saturated while other parts at similar depths are gas saturated.

Yet, the seismic response at top-reservoir for different fluid scenarios can be similar.
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This could be an effect of geological burial history, with laterally varying cementation

volume within the reservoir sandstones associated with Miocene tectonic tilting as the

East Shetland Platform was uplifted and a subsequent tectonic tilting process, see e.g.

Rimstad et al. (2012) and Avseth and Lehocki (2016). The varying elastic stiffness

could also be driven by shaly sands because the sands at Alvheim show a varying

degree of clay content (Avseth et al., 2008), or there could be partial saturations

which are seen in well log data from the Alvheim field. In this paper we gain further

insight related to ambiguities and competing effects at Alvheim, showing results from

our suggested model. Moreover, we argue that a continuous reservoir model repre-

sentation avoids unrealistically strong classification tendencies and accuracies which

can occur in discretized facies solutions.

We use data from four wells at Alvheim to build the prior model for oil and

gas saturations and clay content. We also use these logs along with established

rock physics models to train the likelihood model for the seismic AVO data, see

e.g. Avseth et al. (2010). The seismic AVO inversion is focused on the top-reservoir

horizon, extracted from a 3D seismic data volume that has been pre-processed for

AVO analysis, see Rimstad et al. (2012). Eidsvik et al. (2004) similarly study the

top-reservoir properties at the Glitne field, using a discrete Markov random field

representation for the lithology and fluid saturation.

The Bayesian inversion is done by an ensemble-based approach. In particular, we

use a local ensemble transform Kalman filter that predicts the reservoir properties

at a location from a (local) patch of seismic AVO data surrounding it. Monte Carlo
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realizations (ensembles) of reservoir variables and data are used to find the correlations

going into the Kalman filter equations. In each patch, posterior samples are obtained

as a linear predictor from the data in and around the patch.

Others have tried related ensemble-based approaches to seismic inversion: Liu

and Grana (2018) apply an ensemble-based methods to seismic AVO inversion, but

they do not use the local approach outlined here. Thurin et al. (2019) and Gineste

et al. (2020) use the ensemble subspace version that we rely on here for ensemble-

based iterative inversion of seismic waveform data in a layer-based depth section. The

problem of full waveform inversion is a much more non-linear problem than that of

AVO inversion. Since the problem is close to linear, a natural question is whether the

forward model associated with the seismic likelihood model could instead be linearized

analytically, see e.g. Buland and Omre (2003); Eidsvik et al. (2008); Grana (2016);

Lang and Grana (2018). Nevertheless, the ensemble-based version avoids massive-

size matrix calculations, which are instead performed at the size of the ensemble in

our approach. Further, analytical linearization could be cumbersome only with a

slight model change requiring tedious efforts to get derivatives, unless an automatic

differentiation approach can be used in the calculations.

The paper is structured as follows: We start by presenting the Alvheim case

as our motivation for implementing the models and methods of this paper. The

approach used in the paper is exemplified in the context of this particular case. We

next outline the Bayesian framework, including the prior modeling with multivariate

geostatistical assumptions and the rock physics relations linking reservoir properties
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to the seismic AVO data. We then describe the ensemble-based method that is used

for approximate Bayesian inversion. We show results on the Alvheim field, and discuss

the performance of this approach via skill scores, sensitivity analysis and comparison

with other methods. In the end we conclude and point to further research.

CASE: ALVHEIM FIELD

Background description

The Alvheim field is a turbiditic oil and gas field of Paleocene age in the North

Sea, offshore Norway (Figure 1a). The sand distribution and hydrocarbon trapping

in this field is complex, with multiple submarine fan lobes and large variation in

depositional facies, net-to-gross and sand texture, ranging from massive, thick-bedded

sands to more heterogeneous, inter-bedded sand-shale intervals. The depositional

pattern has been controlled by structural topography associated with deeper faults

and salt tectonics.

The reservoir sands represent the Heimdal Formation, and are capped by Lista

Formation shales. The rock physics properties of the Heimdal Formation sands are

also affected by the compaction history, as the Alvheim field is buried approximately

2 km below the seafloor, corresponding to a temperature of around 70◦C. This is

around the temperature at which we expect transition from mechanical to chemical

compaction, as smectite-rich shales start to transform to illite, and quartzose sands

begin to cement with quartz overgrowths on grain surfaces. These diagenetic processes
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result in significant elastic stiffening of the rock frame. It has been documented

that both unconsolidated sands and cemented sandstones occur in the Alvheim field

(Avseth et al., 2008). The presence of just a few percent of quartz cement at grain

contacts will have a large effect on fluid sensitivity of the seismic signal, and it is

challenging to predict the correct pore fluid from seismic amplitudes without taking

into account these diagenetic changes.

The distribution of hydrocarbons is also quite complex in the Alvheim field, with

both gas and oil present. The hydrocarbon migration and trapping history in the

area is poorly understood, but is likely to have happened during different episodes,

and strongly affected by the regional tectonics, including structural tilting and uplift

events in Miocene and Quaternary. Hence, some of the lobes are filled predominantly

with gas, whereas others are filled with only oil. The complex distribution of lithology

and fluids makes it quite challenging to perform seismic reservoir characterization in

the Alvheim field.

Seismic AVO data

Seismic AVO data are available for this study, including angle stacks from near (12◦),

mid (22◦) and far (31◦) angle ranges. The data have been processed and precondi-

tioned to obtain seismic data quality suitable for quantitative analysis. The processing

sequence is summarized by Rimstad et al. (2012). AVO attributes, including zero-

offset reflectivity (R0) and AVO gradient (G) have been extracted and calibrated

using scalars estimated from the upscaled well log data (Avseth and Lehocki, 2016).
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At each inline and crossline in addition to having two data points (R0 and G), we

have the associated traveltimes, shown in Figure 1b, which are later converted to

the depth. The focus of this case study is on the top-reservoir horizon, as shown

in Figure 1b, where we, in addition to having spatial dependence in inline-crossline

domain, have depth of the 2D slice at each available inline-crossline location. Because

we focus on this top-reservoir horizon and include depth information, we refer to this

as a 2.5D inverse problem.

The AVO data from the Alvheim field are shown in Figure 2, where R0 and

G, are available for each inline and crossline of the top-reservoir. The available

AVO data covers, in total, a region of approximately 12.35 km× 8.85 km. We use

measurements from every 4 inlines and crosslines compared to the original acquisition.

This corresponds to 50 m in crossline direction and 50 m in the inline direction. The

spatial grid we study is represented through inlines and crosslines, meaning the unit

conversion to distance metrics is not performed and all the modeling is done on a grid

representation of the inline and crossline domain, as shown in Figure 3.

Well log data

Four wells are used in this study, their locations and outcomes at the top-reservoir

are shown in Figure 3, and when relevant will be shown in figures throughout the

paper, but the legends will be dropped. The wells include 24/6–2, 24/6–4, 25/4–7

and 25/4–8, which are all within the domain spanned by the seismic inline-crossline

∗Map from https://factmaps.npd.no, accessed 20.12.22.
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ranges. These wells are drilled on structural highs, in the shallower sections of the

top-reservoir. The well log data include sonic velocities (Vp and Vs), densities, and

petrophysical logs, see e.g. Rimstad et al. (2012). The latter comprise fluid satu-

rations (oil, gas and brine) and clay content for each of the wells and are shown in

Figure 4.

In well 24/6–2 there is commercial gas in the Heimdal Formation with a gas

column of 52 m down to the gas-oil contact at 2151 m. There is also a thin oil column

of 17 m down to the oil-water contact at 2168 m. Well 25/4–7 encountered commercial

oil saturation, with an oil column of 48 m down to the oil–water contact at 2133 m.

Hydrocarbon saturations are mostly within commercial ranges (0.6–0.9), but lower

values are seen in heterolithic zones as presence of clay affects the transport properties

of the reservoir. Thin clay laminations can also cause patchy saturations at the log

scale. Wells 24/6–4 and 25/4–8 are interpreted as constant for different zones, due to

missing saturation logs estimated from the resistivity logs.

MODEL

Bayesian model

To perform seismic AVO inversion, we define the problem in a Bayesian framework.

This requires a prior model or prior probability density function (pdf) denoted by

p(x), a probabilistic representation of the continuous reservoir variables of interest x.

We use an informed type of prior, building on the expert knowledge of the domain
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regarding geological trends, spatial smoothness and fluid sorting along with well data.

The Bayesian framework further requires a likelihood model denoted by pdf p(y|x)

for the seismic AVO data y, given the reservoir variables x. This pdf includes a

forward model, that often just goes into the expectation term of p(y|x). In our

setting, the forward model builds on rock physics relations between the rock and

fluid properties of interest and the seismic AVO reflection data.

The goal of Bayesian inversion is then to obtain the posterior pdf of the reservoir

variables given the data,

p(x|y) ∝ p(y|x)p(x). (1)

Most often, in the case of inversion problems, we are facing weakly or highly non-linear

forward models which entails complicated likelihood models, leading to posterior pdfs

which are not analytically tractable. We assess the posterior in equation 1 by multiple

realizations obtained by Monte Carlo sampling. Here, we choose to apply an ensemble

based method to conduct approximate posterior sampling, which is further explained

in the next section.

Before elaborating on the models mentioned above, we introduce the necessary

notation. Reservoir variables are represented at locations u ∈ D, where D denotes

the inline and crossline grid used to represent the seismic data at the top-reservoir.

The grid size is 248×178 which gives about N = 44144 grid cells with inline-crossline

locations u1, . . . ,uN . Seismic AVO data at locations u ∈ D are y(u) = [R0(u), G(u)].

The main interest lies in the oil and gas saturation, and clay content at each of the
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inline-crossline locations, which we denote by r(u) = [Sg(u),So(u),V clay(u)].

Results will be displayed for the reservoir variables of interest r(u). However, in

the suggested methodology and algorithm, for the purpose of efficient computations,

we work with transformed saturations and clay content. Variables are transformed

back and forth by applying logistic functions at all locations u ∈ D,

Sl(u) =
exp [xl(u)]

1 + exp [xg(u)] + exp [xo(u)]
, l = o,g(oil,gas)

Sb(u) =
1

1 + exp [xg(u)] + exp [xo(u)]
, (2)

where xo(u) ∈ (−∞,∞) and xg(u) ∈ (−∞,∞). From equation 2, we then have that

Sg(u) + So(u) + Sb(u) = 1 for every location u. In doing so, we keep brine as a

reference or background saturation. Similar for clay content Vclay(u),

Vclay(u) =
exp [xclay(u)]

1 + exp [xclay(u)]
, (3)

where xclay(u) ∈ (−∞,∞). Altogether, we then get the reservoir variables of interest

from a logistic function, compactly denoted by

r(u) = f 0 [x(u)] , u ∈ D. (4)

In Figure 5 we show a graphical illustration of the reservoir variables and their

connection to the seismic AVO data. The overview of the remaining notation used in

the paper is provided in Table 2 in Appendix A.

Next, we describe the building blocks of this model. We start with the geostatis-

tical prior model elements relevant for the Alvheim case, and provide the likelihood

model elements which are using geophysical theory. Finally, we present the posterior
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model and the chosen way of approximating it for this case. Note that our Bayesian

model is using fixed hyperparameters in the prior and likelihood. An alternative fully

Bayesian formulation would put prior distributions on these parameters, see e.g. Ma-

linverno and Briggs (2004). In our setting we instead conduct sensitivity analysis to

the most relevant input parameters.

Prior model

The prior model is based on spatial random field models for the reservoir variables

r(u), defined in equation 4. The prior pdfs for the transformed saturation variables

xg = [xg(u1), . . . , xg(uN)], xo = [xo(u1), . . . , xo(uN)] and xclay = [xclay(u1), . . . , xclay(uN)]

are here represented by independent Gaussian random fields. With the spatial dis-

cretization of locations, we get a Gaussian multivariate model so that,

xg ∼ N(µg,Σg), xo ∼ N(µo,Σo), xclay ∼ N(µclay,Σclay). (5)

Here, the length N prior mean vectors µg, µo, and µclay, and the N ×N covariance

matrices Σg, Σo and Σclay are set from well log information at various depths.

Figure 6 illustrates the well log data for transformed clay content, gas and oil

saturations, along with the fitted mean (background models) and the associated un-

certainty levels (90%).

The mean values induce a smooth background model with depth. High gas satu-

ration is most likely at the very shallow inline-crossline locations, high oil saturation

is most likely at quite shallow locations, while brine is very likely to be high at the
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deeper locations. For each variable, the standard deviation is assumed not to be

varying with depth.

As for the covariance matrix, we further include spatial correlation in the form

of the Gaussian correlation function with effective correlation length of 15 grid cells.

This is used for xo, xg and xclay, and specified from the prior assumptions about the

geological depositional environment with geographically separated lobe structures.

The suggested methodology requires Monte Carlo samples from the prior distri-

bution. For this task, we use the Fast Fourier transform (FFT) routine as described

by e.g. Davies and Bryant (2013), presented in Appendix B. Such approaches were

previously applied to rapid 3D elastic inversion in Buland et al. (2003). The FFT

routine, which includes embedding the covariance matrix onto a torus, allows for cir-

cumventing the construction of the full prior covariance matrix for the whole domain.

The realizations are generated in the Fourier domain, making it an efficient method.

Each of the realizations is conditioned on the well outcomes at the top-reservoir, and

the realizations of the field are denoted by xi, i = 1, . . . , ne.

Figures 7 and 8 show prior ensemble means for the reservoir parameters r(u)

for all locations u on the inline-crossline grid and the associated uncertainty. In

Figures 7a–7c, one recognizes the regions of high oil or gas saturation, resulting from

the well conditioning. In Figures 7d–7f we can see that the uncertainty is barely

noticeable in the area around the wells, while it increases dramatically as we go away

from these well locations. The ensemble members cover a wider range and have higher

uncertainty in the remaining regions, where the prior ensemble mean has values in
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the range between 0.3–0.5.

The well conditioning is done using information from the well logs (Figure 4) at

top reservoir and at their respective inline-crossline locations. Because of the modeled

spatial dependence, data tends to be informative in the vicinity of the well locations.

Well conditioning has a substantial influence on the fluid saturation variables which

are rather accurately observed at the top reservoir. The well log data for the clay

content varies too much near the top reservoir to provide useful information for the

clay content in well conditioning. Hence the mean and uncertainty for clay content

in Figure 8 show less extreme values, and the uncertainty is overall quite high.

Figure 9 shows a ternary plot of realizations of oil, gas and brine saturation at two

selected locations on the inline-crossline grid. The shallow point in Figure 9a contains

a mixture of mostly gas and brine with a larger spread of realizations, while the deeper

point in Figure9b contains predominantly brine and variation in realizations is rather

small.

Likelihood model

Likelihood model is defined as Gaussian, with mean value coming from the nonlinear

geophysical forward model and a spatially independent variance. Relations in the

geophysical forward model are assumed valid for each inline and crossline, but depend

on the known depth of the top-reservoir at each grid location. In this likelihood

model we assume conditional independence, meaning that data at different locations
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are independent, given the rock properties. This is reasonable given that the top

reservoir reflection processing induces no coupling between the zero-offset reflectivity

or AVO gradient information at different locations. At a location u, we let y(u)

denote the zero-offset coefficient R0 and gradient G at that location. The model can

be written in an additive manner,

y(u) = h0 [x(u)] + ε(u), ε(u) ∼ N(0,Ω0), (6)

where h0 [x(u)] = g0 {f 0 [x(u)]}, and g0[r(u)] is the rock physics forward model

function working on the reservoir variables r(u) of main interest. The 2 × 2 matrix

Ω0 captures the variances in R0 and G and the correlation between the two. Based on

seismic reflection data near the four wells and associated well log data in the reservoir

zones, we specify parameters Var(R0) = 0.003, Var(G) = 0.03 and Corr(R0, G) =

−0.6. These are quite similar to those used in Eidsvik et al. (2004).

By concatenating data at all inline-crossline locations into a length 2N vector y =

[yt(u1), . . . ,y
t(uN)]t, we have probability density function p(y|x) equal to that of a

Gaussian distribution N(h(x),Ω). With the assumption of conditional independence

between the AVO data at different inline-crossline grid locations, the size N × N

covariance matrix Ω is block diagonal with the 2× 2 matrix Ω0 repeating along the

block diagonal elements. The function h(x) = (ht
0[x(u1)], . . . ,h

t
0[x(uN)])t is built on

the same rock physics relations working on different spatially varying input reservoir

variables.

Rock physics and geophysical models, along with geological properties are form-

ing a realistic forward model h0(·). As illustrated in Figure 5, the forward model
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takes clay content and fluid saturation represented as random fields, as input. To

account for the cementation effect which is assumed to occur at a certain depth, we

impose rock physics models building on mechanical and chemical compaction. We

use either an unconsolidated sand model or contact cement model, see for example

Avseth et al. (2010), depending on the depth at which the input reservoir variables

are situated. The effect of the change in the rock physics model is illustrated in

Figure 10. Furthermore, the Gassmann fluid substitution is applied, followed by the

Shuey approximation to obtain the AVO attributes. Details on the forward model

are given in Appendix C.

LOCAL ENSEMBLE TRANSFORM KALMAN FILTER

Ensemble-based Kalman methods, first proposed by Evensen (1994), strive to ap-

proximate the posterior distribution with a limited set of realizations or ensembles.

There are many variants of ensemble Kalman filters and smoothers. The one used

in this paper is a square root approach called the local Ensemble transform Kalman

filter (LETKF), see e.g. Li (2007) and Hunt et al. (2007). In the current setting with

an inverse problem, one starts with an ensemble of realizations from the prior model

p(x), which we denote by E = (x1, . . . ,xne) for the ne ensemble members. In our ex-

amples we use ne = 100, which is a common number in these type of ensemble-based

approximations (Van Leeuwen et al., 2015; Asch et al., 2016). The goal is to update

the prior ensemble through conditioning, combining the information from the data

and the physical forward model.
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When updating the parameters, discretized on the grid of inlines and crosslines,

we split the parameter domain into J patches of fixed size. We denote the patches by

j, where j = 1, . . . , J . The total number of patches varies depending on the chosen

size of the patch. Each parameter patch has its corresponding and larger observation

patch, which includes relevant information for the update. Parameter patches are

centered in the middle of the observation patch, with some adjustment at the edges

of the domain. The division into patches is further illustrated in Figure 11. The

updating is hence local, honoring the data while avoiding spurious correlations which

would occur with very large patches. Within each local patch, the parameters are

updated using the LETKF method in Algorithm 1.

Note that the LETKF update is performed in the ensemble subspace of size ne <<

n. In the conditioning we first update the mean of the ensemble with the Kalman gain

Kj which is specified from ensemble perturbations and synthetic data perturbations.

The Kalman gain works on the deviation between the real data yobs
j and the mean of

the simulated data ȳj,

x̄a
j = x̄j +Kj(y

obs
j − ȳj), j = 1, . . . , J. (7)

Next, each of the ensemble members are set around the mean from equation 7, using

the scaled ensemble perturbations Xj for patch j, see Algorithm 1.

Extensions of the outlined approach add an iterative loop over the Kalman equa-

tions. One then updates the perturbations, covariance and Kalman gain iteratively to

improve the posterior approximation of the ensemble. This also involves adjustments

of the perturbation matrix and the square root of the ensemble error covariance at ev-
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ery iteration. This is referred to as the iterative ensemble Kalman smoother (IEnKS)

approach, see e.g. Asch et al. (2016).

Algorithm 1 Localized Ensemble Transform Kalman Filter. Subscripts j indicate a

subset of matrices associated with patch j = 1, . . . , J .

xi ∼ N(µ,Σ), i = 1, ..., ne . Prior ensemble

x̄ = 1
ne

∑ne

i=1 x
i

X = (x1 − x̄, ...,xne − x̄) . Prior ensemble perturbations

ȳ = 1
ne

∑ne

i=1 y
i, yi = h(xi), i = 1, ..., ne . Synthetic data ensemble

Y = (y1 − ȳ, ...,yne − ȳ) . Synthetic data perturbations

repeat for each patch j = 1, ..., J :

Hj = [Y T
j Ω−1j Y j + (ne − 1)I]−1

Kj = XjHjY
T
j Ω−1j . Kalman gain

x̄a
j = x̄j +Kj(y

obs
j − ȳj) . Updated mean

Xa
j = x̄a

j +Xj[(ne − 1)Hj]
1/2 . Updated ensemble

xa,i
j is column i of Xa

j , i = 1, . . . , ne

until

E = {(xa,i
1 , . . . ,x

a,i
J ), i = 1, . . . , ne}

PREDICTION, UNCERTAINTY AND VALIDATION

We now present ways of conducting prediction, uncertainty quantification and vali-

dation of the outlined LETKF methods.

Prediction of reservoir variables is done using the sample mean x̂a = 1
ne

∑ne

i=1 x
a,i,
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and similarly for oil and gas saturation and clay content which are the variables of

primary interest. For such variables which are limited between 0 and 1, the sample

variance is not very informative. Instead, we quantify the uncertainty in predictions

by sorting variables. Say, for oil saturation xa,io (u), i = 1, . . . , ne at a location u,

we sort these from smallest to largest such that x
a,(1)
o < x

a,(2)
o < . . . < x

a,(ne)
o . From

this we compute the width between the 10th and the 90th percentile in the ensemble.

This is done separately for oil, gas and brine saturation and for the clay content.

We use leave-one-out cross validation to study the predictive properties of the

model. Doing so, one observation is excluded at the time, and its predictive distri-

bution is constructed from all other data. Spatial cross-validation leaving out larger

parts of the data was not attempted because it is difficult to combine with localised

methods. Also, as illustrated next, we use a computationally efficient way of adjusting

the ensemble that is easily implemented for the leave-one-out situation.

We construct the predictive leave-one-out distribution effectively by re-weighting

the posterior ensemble to account for exclusion of the particular observation. At site

u, the predictive pdf of the data, leaving-out the particular observations at u is given

by

p[y(u)|y(−u)] =
ne∑

i=1

wi(u)p[y(u)|xa,i(u)]. (8)

Here, y(−u) denotes all data except that at location u. The pdf in equation 8 is a

mixture of Gaussian pdfs p[y(u)|xa,i(u)], i = 1, . . . , ne where the weights are

wi(u) =
1/p[yobs(u)|xa,i(u)]∑ne

i=1 1/p[yobs(u)|xa,i(u)]
, i = 1, . . . , ne, (9)

which are evaluated at the particular observation yobs(u). These weights result from

19

Page 19 of 63 Geophysics Manuscript, Accepted Pending: For Review Not Production



re-adjusting the equal weights in the posterior approximation of p(x|y). The ad-

justment is based on the conditional independence of data y given x, which in this

Bayesian formulation entails

p[x(u),y(u)|y(−u)] = p[x(u)|y(−u)]p[y(u)|x(u)],

p[x(u)|y(−u)] =
p[x(u)|y]p(y)

p[y(u)|x(u)]p[y(−u)]
∝ p[x(u)|y]

p[y(u)|x(u)]
. (10)

The associated cumulative distribution function (cdf) of equation 8 for the ob-

served R0 or G at location u is denoted by F̂ (y) = F [y(u)|y(−u)], for R0(u) or

G(u). We compute the percentiles of the observed values yobs(u) in this distribution

from the mixture of Gaussian cdfs defined via equation 8. If the model is reason-

able, we expect the percentiles of the observed R0 or G in this cdf to be uniformly

distributed. Hence, when this leave-one-out procedure is conducted over many dif-

ferent inline-crossline grid locations, the summary results should be approximately

uniformly distributed. This approach is similar to that of rank histograms, where one

simply tracks the rank of the observations yobs(u) in the sorted ne ensemble members

of the simulated observations at that location. For effective local calculations not

involving the entire grid, we prefer the weighted form of the posterior ensemble in

equation 8.

In a similar way, the continuous ranked probability score (CRPS) measures the

integrated squared distance between the ensemble-based predictive cdf and the step

indicator function at the observation. With yobs either observed R0 or G, we have

CRPS(F̂ , yobs) =

∫

D
[F̂ (y)− 1(y ≥ yobs)]2dy. (11)
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In our setting, the integral in equation 11 is computed as a sum over the discretization

of the cdf formed by the ensemble members. By doing this for many observations

at many inline-crossline grid locations, we can compute the average CRPS. When

comparing different models, smaller CRPS means better predictive performance.

RESULTS

The reference case we focus on is covering most of area of the grid representing the

Alvheim field top-reservoir. The configuration of the reference case is as follows; The

observation patch of size 16×16 grid nodes, corresponding to 60 inlines and crosslines,

is used to update a smaller parameter patch of size 6×6 grid nodes. The cementation

depth chosen for the reference case is set to be at dc = 2110 m, similar to Rimstad

et al. (2012). Since we use larger patches of observations to update a smaller patch of

observed data, a thin frame around the domain is not updated in the inversion and

not visualized. However, we still show the location of one of the wells at the edge of

the domain, as it has some influence on the update.

Using the LETKF we get ne = 100 realizations of x(u) from the posterior on the

spatial grid. Before the results are visualized, the realizations are transformed back

to r(u), u ∈ D as described in the prior model section in equations 2 and 3.

Figure 12 shows the posterior

ensemble mean for gas, oil and brine saturation, in addition to the uncertainty

range shown as difference between 10th and 90th percentile, as described in the pre-
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vious section. Similarly, the posterior mean and range of clay content are shown in

Figure 13.

From Figures 12a–12c we see that oil and gas saturation are around zero for

deeper parts, as in the prior model (Figure 7), and the conditioning has provided no

significant update in these regions. In the lobes around the wells, there are clearly

effects of the seismic AVO data conditioning. The posterior has much more detail

about the oil and gas predictions than the prior (Figure 7). For the oil saturation,

there are small sections of higher saturation scattered in the field, and increased

saturation near the south-east well.

In the uncertainty plots in Figures 12d–12f, the uncertainty is reduced from the

prior model (Figure 7d–7f). There is still much uncertainty for the gas and oil sat-

uration at the edges of the lobes structures. For oil saturation, it is quite uncertain

whether the small zones contain higher saturation of oil or not. These uncertainties

near the gas and oil concentrations are mirrored in that for brine in Figure 7f.

The posterior for clay content in Figure 13 is changed from the prior (Figure 8)

which showed rather low values of clay content across the field. In particular, clay

content is higher at the edge of the shallower lobes. The increase in clay content

occurs near parts where we predict higher saturation of oil, especially east of the

oil discovery in the intra-lobe area. The prediction of the clay content mirrors the

deposition patterns, and these results seem geologically plausible and in line with

earlier works on Alvheim field, see for example Avseth et al. (2021).

In Figure 14 we show posterior ternary plots of oil, gas and brine saturations.
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This is done for the same locations as in the prior (Figure 9). For the shallow

location, seismic AVO data clearly indicate hydrocarbon presence. Also, the spread of

the ensemble members is much narrower than for the prior, illustrating the conditional

update performed through the LETKF. For the deeper location, we notice a more

concentrated ensemble of high brine saturation.

Figure 15 shows the spread of the ensemble members for prior and posterior when

we ignore the spatial correlation. For the shallow location, prior and posterior in

Figures 15a and 15c show that there is a change after the update. However, one data

point used in the update of the location is not giving so much information and the

ensemble members indicate that there is a bit of each of the fluids in the mixture

however more in the direction of gas, unlike from what we see in Figure 14a. For

the deeper location in Figures 15d and 15f there is not much spread in the ensemble

because there is strong prior information of brine and this is confirmed by the limited

data.

Figure 16 shows the spread of the ensembles of both the prior and posterior along

a chosen line in map view. This line is chosen because it crosses two of the wells,

where the well outcomes are oil and gas (Figure 16a). In addition it crosses a region

where we have a larger update due to the well with gas outcome around inline 700

and crossline 4900. Figures 16b–16d clearly show both a mean update with the AVO

data and an uncertainty reduction from prior to posterior. For the gas saturation, in

Figure 16b, the update is most visible in the part at inline 600–750, which corresponds

to a region near a gas well. This indicates that information from both well data and
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seismic data aid the prediction. Additionally, there is substantial update around

inline 1000–1100, where the posterior mean of gas decreases and the update indicates

increased oil saturation - Figure 16c. The clay content, shown in Figure 16f changes

significantly after the update, as it has rather high uncertainty in the prior ensembles.

The clay content increases around the oil well, and some at the edge of the lobes,

close to a gas well.

DISCUSSION

We perform validation and sensitivity analysis for multiple cases including compar-

ison with the IEnKS method. We test the sensitivity to prior correlation length,

configurations of patch sizes, number of iterations and different cementation depths.

Patch sizes are varied only for the ETKF type of method, while for the IEnKS, the

patch size is set and same for both observations and parameters, and only number of

iterations is varied.

Figure 17 shows that the integrated attributes are sensitive to the cementation

depths. There is a bit less oil and a lot less integrated gas for a slightly larger value

of the cementation depth. With larger cementation depth, there tends to be less of

both, the decrease being significantly more dramatic for integrated gas. The decrease

in the integrated gas with deeper cementation point indicates that we predict more

gas when the rock is stiffer. However, overlap between the fluids is also possible due

to higher stiffness of the rock and the oil being squeezed in the middle as illustrated

in the curves of Figure 10.
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Figure 17 shows predicted values of integrated oil and gas, with the standard de-

viation in parentheses. This is a measure of the total top-reservoir content of each

element. Predictions of integrated attributes are calculated from the posterior ensem-

ble, and we simply sum each reservoir variables over all grid nodes (not accounting

for cell volume or expected depth of the reservoir unit).

The sensitivity to lower correlation range in Figure 17 is rather small and the un-

certainty decreases. There appears to be an increase in oil and gas content, compared

to the benchmark case, with larger correlation range in the spatial field.

The sensitivities to LETKF patch configurations are small for the integrated gas,

where the uncertainty decreases some with the bigger observation and parameter

patches. For the integrated oil on the other hand, the uncertainty increases with

smaller observation patch, whereas increased patches seem to provide little change

compared to the benchmark case.

The sensitivity to the number of iterations for IEnKS is also tested. With 2 (or

3) iterations, there is a tendency of getting more integrated oil and gas, than the

benchmark case, and the uncertainty grows.

Using leave-one-out cross validation, as in equation 8, we study performance met-

rics of the statistical models. We compute the predictive percentiles of hold-out data

and compare them to the theoretical ones. Based on about 4000 hold-out locations,

the fraction of data below the 0.25 percentile in the predictive distribution should be

near 25 %, and similarly for other percentiles to get ideal coverage.
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In our setting, we have specified the prior mean and rock physics parameters from

well logs. These wells are drilled at the structural high locations of the reservoir

unit, and could give rise to a possible bias. In order to check this, we divide the

depth sections into four bins and calculate the empirical percentiles for the hold-out

data in different bins. We do this exercise for both R0 and G. Values for all four

bins for the base case are presented in Table 1. The percentiles for shallow parts

(bin1 and bin2) are much better than the deeper ones (bin3 and bin4). This could

come from sampling bias in the wells, challenges with the cementation model for deep

locations, or the simplified caprock assumptions ignoring a potentially nonconstant

caprock properties accounting for transition between smectite and illite above some

parts of the reservoir.

Results of percentiles averaging and CRPS values of the shallower bin1 and bin2,

are shown in Figure 18. On the x-axes of both plots, the theoretical percentiles are

shown, while the y-axes indicates the empirical percentiles. In the ideal case, they

should be the same, giving a centered straight line in these plots. We plot the values

corresponding to different percentiles for all the cases. Focusing on the average of

bin1 and bin2, we notice that values are a bit off the nominal levels, especially for

the gradient G. The CRPS values are shown in the same color as the cases. We note

that the model with smaller correlation and also the one with smaller observation

patches get smaller CRPS values than the benchmark case, but they are not the ones

showing the best results with respect to the percentile coverage. The case performing

seemingly better for percentile ranges is the one with the largest correlation range,
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but it has higher CRPS value than some others. One of the cases which stands out

with poorer performance is that of the cementation depth being deeper than for the

base case.

Iterations in the Kalman updates are also tested, and the empirical values cor-

responding to the 0.75th percentile are closer to the theoretical one, however the

performance for the percentiles for the gradient are much poorer compared to the

other cases. CRPS is worse when it comes to gradient G and better for zero-offset

reflectivity R0.

Overall, the validation and the sensitivity analysis indicate that changes in the

forward model (cementation) are larger than those resulting from perturbations of

statistical model parameters or LETKF tuning. However, the sensitivity and valida-

tion metrics show that it is not straightforward to determine which configuration of

the model parameters is the best, particularly if we consider how differently the cases

perform for the two AVO attributes.

CLOSING REMARKS

We present a Bayesian model for seismic inversion of AVO data to predict partial oil

and gas saturation and clay content. The model builds on random fields and rock

physics relations that connect the mixed fluid and clay-sand properties to the seismic

AVO data. The posterior model is explored by an ensemble-based method, where we

use Monte Carlo samples from prior and likelihood model to train the correlations

between the reservoir variables of interest and the seismic AVO data. In our setting
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with partial continuous sample space variables, this approach involves little manual

specification of the algorithmic parameters and one can easily obtain posterior samples

in local patches of the seismic inline-crossline grid.

We implement our approach for the top-reservoir domain of the Alvheim field

in the North Sea. Well log information is used to specify model parameters and

condition the saturations at well locations. We notice a considerable change in the

posterior samples compared to the prior samples, indicating that there is much in-

formation in the seismic AVO data. Insight gained from our inversion results include

potential variation in the sand quality at locations in the field. This has an influence

on the rock physics forward model, and is included in our formulation. Validation

results are sensitive to the cementation depth used in the seismic inversion, and we

notice potential bias in the predictions, most likely due to preferential sampling of

the boreholes at structural highs. The Alvheim field has a complex geological history

with both gas and oil contained in close proximity. There is still large uncertainty for

oil and gas saturation as well as for clay content.

Our sensitivity analyses show that there is more sensitivity to the rock physics

and cementation model, and future work is needed to constrain some of these param-

eters and build rock physics relations that cover different configurations. Related to

the statistical approach, it would be interesting to expand such approaches to time-

lapse situations where uncertainty quantification is highly relevant for both predictive

assessments and monitoring questions.

We assume a Gaussian distribution for the logistically transformed oil and gas
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saturations and clay content. The depth varying means and the variance terms were

estimated from well log data. One could potentially fit non-Gaussian prior distribu-

tions for these reservoir variables using the empirical marginal distributions seen in

the well logs, but this would require much data and realistic assumptions about the

depth trends. Such an approach would further need a more nuanced ensemble-based

algorithm, possible using the normal score ensemble Kalman filter (Zhou et al., 2011).
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APPENDIX A

NOTATION

APPENDIX B

MONTE CARLO SAMPLING OF HIGH-DIMENSIONAL

GAUSSIAN RANDOM FIELDS

Consider one field only, with mean µ and covariance matrix Σ for the discretized

variable on the inline-crossline grid. The spatial covariance matrix Σ is embed-

ded on a torus structure to get at circulant matrix C. The random variable of

interest (transformed oil or gas saturation or clay content in our case), denoted

b = (b1, . . . , bN)′, N = n1n2, can be represented on the regular inline-crossline grid

as bm = (bm0,0, b
m
0,1, . . . , b

m
n1−1,n2−1). Similarly, we arrange the covariance between bm0,0

and any other variable, as they are positioned on the gridded torus, and this forms

the covariance entries of C in an n1× n2 matrix which we denote by Cm. Next, dft2

denotes the two dimensional discrete FFT, i.e.

dft2(Cm)j′1,j′2 =

n1−1∑

j1=0

n2−1∑

j2=0

Cm
j′1,j

′
2

exp

[
−2πι

(
j1j
′
1

n1

+
j2j
′
2

n2

)]
, (B-1)

for j′1 = 1, . . . , n1, j
′
2 = 1, . . . , n2, with ι =

√
−1. Further, idft2(dm) denotes the two

dimensional inverse discrete FFT of n1 × n2 matrix dm. Having prior mean µ, with

size n1 × n2 matrix associate µm, an unconditional sample is generated as follows:

bm = µm + Re{dft2[
√

dft2(Cm)� idft2(wm)]}, (B-2)
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where the square root works elementwise on the matrix and � is elementwise multi-

plication. Further, wm are independent standard Gaussian variables of size n1 × n2.

Well log data are available in the four wells, and we denote the logistically trans-

formed variable (oil and gas saturation) in the wells by yw. To generate a conditional

sample, given well information yw, we assume that the data are measured with in-

dependent noise having small standard deviation τ 2 = 0.01. A conditional sample

is then obtained from the well log data and the unconditional sample using FFT

routines:

xm = bm + Re{dft2[dft2(Cm)� idft2(zm)]},

z = AT [AΣAT + τ 2I]−1(yw −Ab). (B-3)

Here, A is a 4 × N selection matrix picking the well locations and xm and zm are

the matrix associate of vectors x and z, respectively. Note that this vector z only

has four non-zero entries and the matrix [AΣAT + τ 2I] is only 4× 4, so this part is

easily computed.

The procedures in equations B-2 and B-3 are repeated ne times to get independent

initial ensembles x1, . . ., xne .
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APPENDIX C

ROCK PHYSICS FORWARD MODEL

Rock physics forward model consists of multiple interconnected layers connecting

physical properties. Model parameters, fluid saturation and clay content are taken

in as input at different stages of the modelling. Due to the known existence of

cementation effects in the area, we use models from contact theory as this first layer

of our forward model.Quartz cementation is assumed to start at a certain depth dc,

which is unknown but can be estimated from a given temperature gradient. Above

this cementation depth we use the unconsolidated sand model, while below dc, we

account for the cementation effects on the grains, and Dvorkin-Nur contact cement

model is used, for overview see Lehocki and Avseth (2021).

As the assumed type of compaction changes at the given cementation depth,

meaning the transition from mechanical compaction due to the effective stress, to the

chemical compaction controlled by temperature and time, it is necessary to match the

boundaries, by correcting for the pressure effect at the start of the cementation in the

contact cement model, ensuring a smooth transition between the domains (Avseth

and Lehocki, 2016; Torset et al., 2021).

In the unconsolidated sand model, assumption of the nonuniform contacts between

the grains is made and accounted for through introduction of the volume fraction of

no-slip contacts, ft, see Bachrach and Avseth (2008). This quantity is determined

through known geological properties of the area. For the contact cement model, the
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type of cement deposition is specified and assumed to be evenly deposited on the

grain surface, which is referred to as scheme 2 in Mavko et al. (2020). For more

around these rock physical mixing properties on the Alvheim field, see Golikov et al.

(2013). Both models are porosity dependent and we use empirical depth dependent

models for porosity (Rimstad et al., 2012), with specified shale and sand porosities:

φsh(·, d) = φ0
sh exp

[
−αsh

(
d− d0

)]

φss(·, d) =





φ0
ss exp [−αss (d− d0)] if d ≤ dc

φss(d
c)− κss(d− dc) if d > dc.

(C-1)

Final porosity is computed as a weighted mean of sand and shale porosities

φ = Vclayφsh + (1− Vclay)φss. (C-2)

Using the dry bulk and shear modulus provided from the contact theory mod-

els, Gassmann fluid substitution is performed to obtain the elastic parameters. The

substitution is performed going from the dry rock to the one saturated with mixed

saturation. Once the elastic parameters are obtained, these are provided as input

into the last layer of the model. As the final layer of the forward model and inn or-

der to obtain the data, zero-offset coefficient and the gradient, we use the Zoeppritz

approximation by Shuey (1985), given as,

R0 =
1

2

(
vp − vcp

1
2
(vp + vcp)

)
,

G =
1

2

vp − vcp
1
2
(vp + vcp)

− 2
(vs − vcs)2
1
2
(vs + vcs)

2

(
ρ− ρc

1
2
(ρ+ ρc)

+ 2
vs − vcs

1
2
(vs + vcs)

)
.

The caprock properties used in the approximation are estimated from the well logs
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and assumed constant over the whole grid, where V cap
p = 2650 m/s, V cap

s = 1150 m/s

and ρcap = 2350 kg/m3.
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LIST OF FIGURES

1 (a) Location of the Alvheim field off the Norwegian coast∗. (b) Traveltimes

to top-reservoir of the Alvheim field shown in an inline-crossline plane. Three of the

gas wells are marked with red lines while the oil well is marked with a green line.

2 AVO data presented in the inline-crossline coordinate system for the Alvheim

field. (a) Unitless zero-offset intercept, R0. (b) AVO gradient, G.

3 Depth field of the top-reservoir of the Alvheim field on a grid with marked

well locations and their fluid outcomes at the top-reservoir.

4 Well logs of four different wells as a function of depth (MD-RKB).(a) Three

different fluid saturations are shown: brine, gas, and oil. The values are scaled and

shown in the range between 0 and 1 and they sum to 1 at each depth.(b) The fraction

of clay content is shown with values ranging between 0 and 1.

5 Visualization of the model components and their relation.

6 Well data of transformed clay content and gas and oil saturation in the four

wells (different colors). The fitted smooth background model (black lines) and its un-

certainty (black dashed lines 90 %) are constructed by a Gaussian process regression

model to the well data as a function of the depth.

7 Prior ensemble mean of fluid saturation and associated uncertainty. (a)–(c)

Prior ensemble mean for gas, oil and brine saturation conditioned on the well-log

outcomes at the well locations. The wells and their outcomes are marked with red

squares representing gas and green triangle representing oil. (d)–(f) The uncertainty

for gas, oil, and brine saturation is presented as the width between the 10th and 90th
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percentile, PW(10,90).

8 Prior ensemble mean of the clay content and the associated uncertainty.(a)

The prior ensemble mean of clay content. (b) The uncertainty in the clay content

presented as the width between 10th and 90th percentile, PW(10,90).

9 Ternary plots show prior ensemble for the saturation at a (a) shallow loca-

tion (800,4800) at 2112 m, and a (b) deep location (436,4532) at 2190 m.

10 Conceptual illustration of the transition between the mechanical and chem-

ical compaction at the cementation depth.

11 Grid representation of the field, illustrating the idea of dividing of the grid

into observation patches – white, which are centered around the smaller parameter

patches – black.

12 Posterior ensemble mean of the fluid saturations and their associated uncer-

tainties. (a)–(c) The posterior ensemble mean for the gas, oil and brine saturation

after the conditioning on the seismic data. The well locations and their outcomes

are shown. (d)–(f) The uncertainty in the three parameters is presented as the width

between 10th and 90th percentile, PW(10,90).

13 Posterior ensemble mean of clay content with associated uncertainty. (a)

The posterior ensemble mean for the clay content after conditioning on the seismic

data. (b) The uncertainty is presented as the width between 10th and 90th percentile,

PW(10,90).

14 Ternary plots show the posterior ensemble of the fluid saturation at two lo-

cations: (a) shallow location (800,4800) at 2112 m and (b) deep location (436,4532)

at 2190 m.
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15 Ternary plots show the prior and posterior ensemble of the fluid saturation

at two locations, ignoring the spatial correlation. (a) Prior at a shallow location

(800,4800) at 2112 m, (b) prior at a deep location (436,4532) at 2190 m, (c) poste-

rior at a shallow location (800,4800) at 2112 m, and (d) posterior at a deep location

(436,4532) at 2190 m.

16 (a) A line section of the grid nodes from the field, represented by the red line,

including areas around the well log locations. The field in the background is posterior

mean of brine saturation.(b)–(d) Prior and posterior ensemble spread along the red

line showing the changes after the update with the seismic data. Prior and posterior

means are also included. This is done for (b) gas saturation, (c) oil saturation and

(d) clay content.

17 Tornado chart for values of integrated gas and oil for different cases. The

black lines in the blue bars indicate the mean value, while the widths of the bars

indicate 2 standard deviations on each side of the mean.

18 Deviation of empirical versus theoretical percentiles for the AVO attributes

(a)R0 and (b) G. Different colors signify various sensitivity tests, along with the

associated CRPS for each case. Smaller CRPS means better predictive performance.

The percentiles plotted are 0.25, 0.50 and 0.75.
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LIST OF TABLES

1 Empirical percentiles for the R0 and G attributes. The top row show the

theoretical percentiles. Bin1 includes the depth section from 2076 m to 2116 m, Bin2

includes 2116 m to 2156 m, Bin3 includes 2156 m to 2196 m and Bin4 includes depths

from 2196 m to 2236 m.

2 Overview of the notation.
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Figure_1_v Location of the Alvheim field off the Norwegian coast*. (b) Traveltimes to top-reservoir of the 
Alvheim field shown in an inline-crossline plane. Three of the gas wells are marked with red lines while the 

oil well is marked with a green line. 
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Figure_2_v AVO data presented in the inline-crossline coordinate system for the Alvheim field. (a) Unitless 
zero-offset intercept, R0 . (b) AVO gradient, G. 
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Figure_3_v Depth field of the top-reservoir of the Alvheim field on a grid with marked well locations and 
their fluid outcomes at the top-reservoir. 

282x203mm (300 x 300 DPI) 
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Figure_4_v Well logs of four different wells as a function of depth (MD-RKB).(a) Three different fluid 
saturations are shown: brine, gas, and oil. The values are scaled and shown in the range between 0 and 1 
and they sum to 1 at each depth.(b) The fraction of clay content is shown with values ranging between 0 

and 1. 
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Figure_5_v Visualization of the model components and their relation. 
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Figure_6_v Well data of transformed clay content and gas and oil saturation in the four wells (different 
colors). The fitted smooth background model (black lines) and its uncertainty (black dashed lines 90%) are 

constructed by a Gaussian process regression model to the well data as a function of the depth. 

169x137mm (300 x 300 DPI) 
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Figure_7_v Prior ensemble mean of fluid saturation and associated uncertainty. (a)–(c) Prior ensemble mean 
for gas, oil and brine saturation conditioned on the well-log outcomes at the well locations. The wells and 
their outcomes are marked with red squares representing gas and green triangle representing oil. (d)–(f) 

The uncertainty for gas, oil, and brine saturation is presented as the width between the 10th and 90th 
percentile, PW(10,90). 
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Figure_8_v Prior ensemble mean of the clay content and the associated uncertainty.(a) The prior ensemble 
mean of clay content. (b) The uncertainty in the clay content presented as the width between 10th and 90th 

percentile, PW(10,90). 
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Figure_9_v Ternary plots show prior ensemble for the saturation at a (a) shallow location (800,4800) at 
2112 m, and a (b) deep location (436,4532) at 2190 m. 
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Figure_10_v Conceptual illustration of the transition between the mechanical and chemical compaction at 
the cementation depth. 
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Figure_11_v Grid representation of the field, illustrating the idea of dividing of the grid into observation 
patches – white, which are centered around the smaller parameter patches – black. 
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Figure_12_v Posterior ensemble mean of the fluid saturations and their associated uncertainties. (a)–(c) The 
posterior ensemble mean for the gas, oil and brine saturation after the conditioning on the seismic data. The 
well locations and their outcomes are shown. (d)–(f) The uncertainty in the three parameters is presented 

as the width between 10th and 90th percentile, PW(10,90). 

431x203mm (300 x 300 DPI) 
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Figure_13_v Posterior ensemble mean of clay content with associated uncertainty. (a) The posterior 
ensemble mean for the clay content after conditioning on the seismic data. (b) The uncertainty is presented 

as the width between 10th and 90th percentile, PW(10,90). 
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Figure_14_v Ternary plots show the posterior ensemble of the fluid saturation at two locations: (a) shallow 
location (800,4800) at 2112 m and (b) deep location (436,4532) at 2190 m. 
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Figure_15_v Ternary plots show the prior and posterior ensemble of the fluid saturation at two locations, 
ignoring the spatial correlation. (a) Prior at a shallow location (800,4800) at 2112 m, (b) prior at a deep 

location (436,4532) at 2190 m, (c) posterior at a shallow location (800,4800) at 2112 m, and (d) posterior 
at a deep location (436,4532) at 2190 m. 
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Figure_16_v (a) A line section of the grid nodes from the field, represented by the red line, including areas 
around the well log locations. The field in the background is posterior mean of brine saturation.(b)–(d) Prior 

and posterior ensemble spread along the red line showing the changes after the update with the seismic 
data. Prior and posterior means are also included. This is done for (b) gas saturation, (c) oil saturation and 

(d) clay content. 
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Figure_17_v Tornado chart for values of integrated gas and oil for different cases. The black lines in the blue 
bars indicate the mean value, while the widths of the bars indicate 2 standard deviations on each side of the 

mean. 
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Figure_18_v Deviation of empirical versus theoretical percentiles for the AVO attributes (a)R0 and (b) G. 
Different colors signify various sensitivity tests, along with the associated CRPS for each case. Smaller CRPS 

means better predictive performance. The percentiles plotted are 0.25, 0.50 and 0.75. 
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Percentile
R0 G

0.75 0.50 0.25 0.75 0.50 0.25
Bin1 0.74 0.61 0.34 0.96 0.46 0.02
Bin2 0.63 0.30 0.07 0.87 0.28 0.01
Bin3 0.40 0.12 0.03 0.67 0.06 0.001
Bin4 0.27 0.02 0.0 0.47 0.0 0.0

Table 1:
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N number of inline and crossline grid cells
1, .., j, .., J number of patches

ne number of ensembles
u inline-crossline location

x = (xg,xo,xclay) vector of transformed spatial
gas and oil saturation and clay content

d depth
dc cementation depth

R0, G zero-offset coefficient and gradient
y seismic AVO data vector

r = (Sg,So,V clay) vector of spatial reservoir variables
Sb vector of spatial brine saturation
µ· mean vector of a given parameter/variable
Σ· covariance matrix for a given parameter/variable

yi, i = 1, ..., ne vector of simulated observations
E = (x1, . . . ,xne) ensemble of realizations from the prior model

Ω observation error matrix

Table 2:
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