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Exercised breastmilk: a kick-start to prevent
childhood obesity?
Highlights
The period from conception to 2 years of
age is the most critical period for patho-
physiological disorders leading to child-
hood obesity.

Differences in breastmilk composition
may play a role in the mother-to-child
transmission of obesity.

Human milk oligosaccharides (HMOs)
are identified as central breastmilk com-
pounds linking maternal obesity to infant
weight gain in early life, their effect poten-
tially mediated by changes in the infant’s
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Exercise has systemic health benefits through effects on multiple tissues, with
intertissue communication. Recent studies indicate that exercise may improve
breastmilk composition and thereby reduce the intergenerational transmission
of obesity. Even if breastmilk is considered optimal infant nutrition, there is evi-
dence for variations in its composition between mothers who are normal weight,
those with obesity, and those who are physically active. Nutrition early in life is
important for later-life susceptibility to obesity and other metabolic diseases,
and maternal exercise may provide protection against the development of
metabolic disease. Here we summarize recent research on the influence of
maternal obesity on breastmilk composition and discuss the potential role of
exercise-induced adaptations to breastmilk as a kick-start to prevent childhood
obesity.
gut microbiome.

Emerging data suggest that acute and
chronic exercise can modify both the
nutritional and non-nutritional bioactive
constituents of breastmilk.

In mice, exercise training increased the
abundance of the HMO 3′sialyllactose in
milk, and this HMO was crucial in medi-
ating improvements to metabolic health
in mouse offspring. Whether these
findings are translatable to humans is
unknown.
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Can exercise affect breastmilk composition? (Why wouldn’t it?)
Exercise is a formidable regulator of overall systemic metabolism through both acute effects
driven by individual exercise sessions and chronic adaptations. Exercise challenges whole-
body homeostasis and affects multiple cells, tissues, and organs through the increasedmetabolic
activity of contracting skeletal muscles. Moreover, the beneficial effects of exercise are not limited
to adaptations within tissues, but instead stem from the integration of intertissue communication
through various signalingmolecules, hormones, and cytokines (see Glossary) collectively known
as ‘exerkines’ [1]. Dramatic shifts are observed for more than 80% of annotatedmetabolites in the
circulatingmetabolome in response to a single endurance exercise session of just 12 min, with
beneficial alterations in metabolites from key metabolic pathways for obesity, insulin resistance,
and inflammation [2]. These alterations may partly explain the broad benefits of exercise for car-
diometabolic health. As little as 5 days of endurance training induced substantial changes in the
serummetabolome, concomitant with improvements in aerobic fitness, glycemic control, and cir-
culating lipid levels in men with overweight/obesity [3].

Recent studies have focused on the effects of maternal exercise on maternal and fetal outcomes.
In humans, most studies demonstrate that exercise during pregnancy is safe and beneficial to
both the mother and the fetus [4,5]. Specific benefits of maternal exercise in humans include in-
creased rates of full-term delivery, normalized birth measures, reduced risk of macrosomia, and
improved neurobehavioral abilities and cardiac autonomic health [5–9].

In rodents, numerous studies have identified the role of maternal exercise to improve the meta-
bolic health of adult offspring. Studies have shown that maternal treadmill exercise and voluntary
wheel running have similar effects in reducing body weight and fat mass and improving glucose
metabolism and insulin sensitivity, even in the presence of a maternal high-fat diet [7,10–14].
The beneficial effects of maternal exercise on offspring metabolic health are not present in
young animals, but instead in adult offspring. Importantly, these effects have been observed
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Figure 1. Exercise induces multiple molecular adaptations in the heart, adipose tissue, pancreas, skeletal
muscle, circulation, liver, and brain directly and via interorgan crosstalk. Few data are currently available for
exercise-induced adaptations in human breastmilk, but exercise may induce adaptations to breastmilk that can
mediate whole-body metabolic and cardiovascular health in the offspring. The underlying mechanisms of such effects
are unclear, but it is likely that breastmilk mediates improvements in the offspring’s liver and microbiome. Figure was
created with BioRender.com.
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Glossary
Common polygenic obesity: the
results of hundreds of genetic variations
that each has a small effect. The heritability
of polygenic obesity follows a pattern
that is similar to other complex traits and
diseases. Polygenic obesity is classically
considered as a different disease than
monogenic obesity, which is typically a
rare, early-onset, and severe type of
obesity involving either chromosomal
deletions or single-gene defects.
Cytokines: is a broad category of
small proteins that are important in
cell signaling and that help to control
inflammation in the body.
Epigenetic modifications: heritable
changes in phenotype not involving
changes to the genetic code itself.
Epigenetic modifications include DNA
methylation (the process by which methyl
groups are added to the DNA molecule
and thereby typically repress gene
transcription), histone modifications
(a post-translational modification to
histone proteins that alters chromatin
structure or recruits histone modifiers
that can impact gene expression), and
noncoding RNAs such as miRNAs.
Gut microbiota dysbiosis: an
imbalance in bacterial composition,
changes in bacterial metabolic activities,
or changes in bacterial distribution within
the gut. A dysbiotic microbiota can
compromise the gut barrier, resulting in a
negative impact on the host immune
system and metabolism.
Human milk oligosaccharides
(HMOs): a group of structurally complex
carbohydrate-based polymers. With
around 200 different HMOs identified to
date, HMOs are the third most abundant
solid component in breast milk, after
lactose and lipids.
Metabolome: the complete set of small
molecules in a biological sample (e.g., a
cell, an organ, a tissue, a biofluid, an
entire organism).
miRNA:microRNA; a type of noncoding
RNA molecule, meaning that it is not
translated into protein. miRNAs are
smaller than other types of RNA and can
bind to mRNAs to inhibit specific protein
production.
Population attributable risk: the
proportion of the incidence of a disease
that is due to an exposure; the difference
between the risk in the total population
and that in unexposed individuals.
across species and strains of rodents (C57BL/6 mice, ICR mice, and Sprague–Dawley rats)
[7,10,15,16]. The mechanisms underlying the beneficial effects of maternal exercise on offspring
metabolism are only beginning to be elucidated, but we hypothesize that there are many factors
involved. These include epigenetic modifications to metabolic tissues in the offspring, adapta-
tions to the placenta, and changes to the offspring metabolome [7,11,17]. Little is known, how-
ever, about how exercise affects human breastmilk or whether exercise-induced breastmilk
modifications affect infant health (Figure 1).

The interplay between maternal lifestyle, breastmilk composition, and infant health is an emerging
field of research, with maternal smoking, bodymass index (BMI), gestational diabetes, and diet all
influencing breastmilk composition [18–22]. Maternal diet can alter breastmilk composition, with
demonstrated differences between carbohydrate-rich and high-fat diets and between different
types of carbohydrates [22]. However, there is currently no experimental evidence that lifestyle-
induced breastmilk modifications affect infant obesity risk. One behavioral factor that has not
been well studied in this context is exercise. Herein we review recent evidence for differences in
breastmilk composition in response to maternal physical activity and metabolic health, the impor-
tance of breastmilk composition for infant obesity risk, and the potential role that exercise can
have in making the milk less obesogenic. This topic is timely, in light of the increasing prevalence
of childhood obesity and of recent advances in technology that now allow much more detailed
analyses of breastmilk.We suggest that exercised breastmilk may be a kick-start to prevent child-
hood obesity (Figure 2, Key figure).

The origins of childhood obesity and early-life nutrition
Childhood obesity is reaching alarming proportions in many countries and poses an urgent
challenge to healthcare systems. Between 2006 and 2016, 18% of European children aged 2–
7 years were overweight or obese [23], while 13% of US children aged 2–5 years were obese
in 2013–2016 [24]. Obesity affects a child’s immediate health and quality of life, and children
with obesity are five times more likely to remain obese as adults compared with those without
childhood obesity [25]. Maternal pre-pregnancy BMI is a strong risk factor for childhood obesity,
accounting for up to 21% of the population attributable risk [26], implying strong mother-to-
child transmission.
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Key figure

Maternal exercise during lactation may decrease childhood obesity risk,
mediated via exercise-induced improvements in breastmilk composition
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Figure 2. Parts of the figure were created with BioRender.com
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Even if genetics partly accounts for the risk of common polygenic obesity in both childhood and
adulthood, the proportion of variation in BMI currently explained by sequence variations in genetic
loci is only ~1–2% in children [27] and ~6% in adults [28]. A large portion of the heritability of obesity
thus remains unexplained. Epigenetic modifications are a key mechanism underlying this ‘missing
heritability’ for obesity [29]. Early infant nutrition, and especially breastmilk, is thought to be a crucial
factor influencing life-long health via epigenetic programming [30,31]. The period from conception
to 2 years of age, known as ‘the first 1000 days’, is the most critical period for pathophysiological
disorders leading to obesity in childhood and later life (Figure 3) [32]. Data from human cohorts have
shown that faster weight gain in early infancy is associatedwith a greater risk of subsequent obesity
[33,34], with rapid weight gain in the first 3 months of life associated with a higher body fat percent-
age and a higher degree of central obesity in childhood [35] and later in life [36].

During early postnatal life, the role of breastfeeding is a recognized factor in discussions of the
nutritional background of childhood and later-life obesity. Breastfeeding has well-established
nutritional and immunological advantages [37]. Breastfed children have a 13% lower likelihood
of becoming overweight or obese compared with bottle-fed children [38], but these observational
data may be confounded by unadjusted or non-measured factors.
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Figure 3. The first 1000 days include pregnancy and the first 2 years of life. Epigenetic DNA imprinting is particularly
active during this period. Nutrition during this period, both via the placenta in utero and through breastmilk, formula milk, and
solid food after birth, plays a key role in epigenetic DNA imprinting, thus affecting individual susceptibility to the subsequent
development of obesity and other noncommunicable diseases. Parts of the figure were created with BioRender.com.
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Maternal metabolism, exercise, and lactational programming of obesity
Human breastmilk contains diverse substances with potential mechanistic roles in metabolic
health during early childhood, including macronutrients, micronutrients, metabolic hormones,
adipokines,miRNAs, and inflammatory markers [39–41]. Our premise is that breastmilk is nutri-
tionally optimal for infants, including for those born to women with overweight/obesity. However,
recent evidence suggests differences in breastmilk composition between mothers with high and
low BMI [19,42–48]. Maternal obesity is associated with changes in the breastmilk metabolome
reminiscent of the metabolic signature in the plasma of individuals with obesity and type 2 diabe-
tes, with high concentrations of several acylcarnitines involved in branched-chain amino-acid me-
tabolism [19]. For a subset of the metabolites differing between women with obesity and normal-
weight women, these differences are correlated with infant weight and fat percentage [19,42].
Maternal obesity is also associated with changes in the concentrations of humanmilk oligosac-
charides (HMOs), which are associated with growth during the first 5 years of life [45–48]. Fur-
thermore, Isganaitis and colleagues showed that breastmilk adenine was positively correlated
with both maternal BMI and infant weight at 1 month, whereas the metabolite 5-
methylthioadenosine correlated with both maternal BMI and infant body fat percentage [19]. An-
other study showed that the three metabolites mannose, lyxitol, and shikimic acid, all which were
increased in breastmilk from women with obesity, could predict higher infant adiposity over the
first 6 months of life [42]. Collectively, these findings suggest that breastmilk components play
a role in the mother-to-child transmission of obesity. This concept is supported by several studies
in mice. For example, offspring born to lean dams and cross-fostered by obese dams have a pro-
foundly dysmetabolic phenotype [49]. In humans, a study of infants born to mothers with type 2
diabetes who were fed either their own mothers’ milk or banked human milk from non-diabetic
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donors showed that the consumption of milk from themothers with diabetes was associated with
higher body weight at 2 years [50]. Maternal metabolic homeostasis during the lactation period
may therefore influence the infant’s risk of childhood obesity.

In contrast to maternal obesity, maternal exercise may modify both the nutrients and non-nutrient
bioactive agents in breastmilk. Breastmilk is rich in lipids, including ‘lipokines’, a crucial class of
lipids that act as signaling molecules and influence systemic metabolism.[51,52] Some lipokines
have been detected in humanmilk. A breastmilk-specific lipid group, the alkylglycerols, may delay
the transformation of the infant’s beige adipose tissue (which is more metabolically active) to lipid-
storing white adipose tissue [53]. It remains unknown whether alkylglycerol abundance is influ-
enced by maternal exercise. Another lipokine, 12,13-dihydroxy-9Z-octadecenoic acid (12,13-
diHOME), regulates brown adipose tissue fuel uptake and thermogenesis [54]. This lipokine
was recently discovered in human milk and its abundance is inversely correlated with infant adi-
posity [55], again suggesting that differences in breastmilk composition may be functionally re-
lated to early-life obesity risk. 12,13-diHOME increases fatty acid uptake in skeletal muscle and
its plasma concentrations increase acutely after exercise [2,56]. However, others have reported
no sustained increase in circulating 12,13-diHOME after daily exercise training [3], suggesting
that these effects are transient. 12,13-diHOME concentrations in breastmilk increase acutely
after exercise in most women [55], but whether such an effect plays a causal role in limiting
early rapid weight gain in the offspring remains to be determined. Furthermore, the relative abun-
dance of short-chain fatty acids in human breastmilk may affect weight gain and adiposity during
infancy, with negative associations between the levels of short-chain fatty acids (butyrate, formic
acid, and acetate) in breastmilk and infant adiposity between the ages of 3 and 12 months [57].
The abundance of several circulating lipid metabolites changes acutely after exercise, in the
opposite direction to changes observed in cardiometabolic diseases [2].

Exercise training has been shown to increase the abundance in mouse milk of 3′sialyllactose
(3′SL), an HMO crucial in mediating improvements to metabolic health in mouse offspring
[12]. The same study also showed that levels of this HMO in human breastmilk 2 months post-
partum were weakly but significantly correlated with the mean number of steps taken per day
during pregnancy. In rodent studies, maternal exercise in 3′SL-deficient (3′SL−/−) mice had no
exercise-induced improvements in metabolic health, while cross-fostering offspring from
trained 3′SL−/- to trained wild-type dams partially restored the benefits of maternal exercise
on metabolic health. Supplementation with 3′SL during the nursing period also improved the
metabolic and cardiovascular health of adult offspring. While the mechanisms by which mater-
nal exercise changes the composition of milk and how 3′SL improves offspring metabolism
are unknown, the effects of maternal exercise on breastmilk is an area ripe for investigation
and an important topic to ultimately be translated to humans.

Epigenetic and inflammatory factors in breastmilk that can alter infant
metabolism
Breastmilk can regulate infant metabolism through a variety of mechanisms including growth fac-
tors, immune factors, microbiota, appetite hormones, and miRNAs [58,59]. It is one of the richest
sources of miRNA among the body fluids, and miRNAs packaged in extracellular vesicles in
breastmilk are bioavailable to breastfeeding infants [60]. These small noncoding RNAs bind to re-
gions of mRNAs, modulating protein production typically by degrading or repressing the transla-
tion of the targeted RNA [59]. There is translational evidence for a role of breastmilk miRNA in the
epigenetic programming of offspring [58]. miRNAs, particularly those in extracellular vesicles,
have been identified as the most critical bioactive factors in human breastmilk in the modification
of postnatal epigenetic regulation [59], but little is known about the effect of human breastmilk
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Outstanding questions
Is maternal exercise an effective tool to
combat the effects of maternal obesity
on offspring metabolic health?

How may maternal exercise affect
concentrations of HMOs and
alkylglycerols in breastmilk?

What is the role of breastmilk
components in the mother-to-child
transmission of obesity?

Do miRNAs in breastmilk affect infant
body composition?

By what mechanisms do HMOs
modulate infant growth?

What are the acute effects of different
types of exercise on breastmilk
composition?

How do different types of exercise
training chronically alter breastmilk
composition?

How do exercise-induced changes in
breastmilk composition affect infant
growth and metabolism?

Do findings of increased an abundance
of 3′SL in mouse milk after exercise
training translate to humans? If so,
what are the implications for infant
growth and metabolism?
miRNAs on infant body composition. Two studies have reported associations of selected
breastmilk miRNAs with maternal BMI and infant body composition [43,44]. However, these
studies investigated two completely different sets of miRNAs by targeted approaches, and the
evidence concerning the effect of breastmilk miRNAs on infant body composition remains incon-
clusive. A recent systematic review reported associations between the circulating levels of some
miRNAs and childhood obesity, the evidence being the strongest for miR-122, miR-222, and
miR-423 [61]. Both miR-222 and miR-423 are detected in breastmilk and miR-222 levels are
higher in the breastmilk of mothers with obesity than in breastmilk from normal-weight women
[43].

The past decade has seen an exponential increase in evidence for a role of gut microbiota
dysbiosis in host obesity, in both adults and children. Specifically, childhood obesity is associ-
ated with high levels of bacteria from the phylum Firmicutes and low levels of bacteria from the
phylum Bacteroidetes [62]. HMOs have attracted particular attention as breastmilk bioactive
compounds with effects on the infant gut microbiome, growth, and health [45–48,63–66]. Infants
cannot digest HMOs, but these compounds aremetabolized by some of the nursing child’s intes-
tinal bacteria. Breastmilk concentrations of certain HMOs have been associated with growth rate
in early infancy [45–48], but few data are available concerning the potential mechanisms by which
these compounds modulate infant growth. HMOs have been identified as candidate breastmilk
compounds linking maternal obesity to infant fat accretion and thus involved in maternal-obe-
sity-related postnatal nutritional programming [45–48]. The first 1000 days of life are central for
the constitution of the gut microbiota and provide a unique opportunity to modify this process
via breastmilk. If maternal exercise can alter the composition of HMOs in breastmilk, mothers
may impact their infants’ early gut microbiota via exercise training.

Chronic low-grade inflammation, with high circulating concentrations of proinflammatory cyto-
kines such as tumor necrosis factor-alpha (TNF-α), contributes to metabolic disorders including
insulin resistance and obesity. Regular exercise suppresses TNF-α-induced insulin resistance,
providing a partial explanation for the protection against chronic diseases afforded by exercise
[67]. There is some evidence for an anti-inflammatory effect of exercise during pregnancy on
the first breastmilk produced after delivery (colostrum) [68], but the effect of maternal exercise
during lactation on breastmilk inflammatory markers has been little studied. Only one previous
study has investigated the relationship between exercise in lactating women and cytokines in
breastmilk: an observational study reporting associations between exercise level and proinflam-
matory cytokine levels in breastmilk [69]. However, these correlational data provide no informa-
tion about causality and no evidence for effects on the infants.

Concluding remarks and future perspectives
Current research clearly demonstrates the beneficial effects of breastmilk on the health of the in-
fant and into adulthood. Recent studies in both rodents and humans have highlighted the bene-
ficial effects of exercise on breastmilk composition and identified some of the mechanisms that
confer improved metabolic health on the offspring. There are many critical areas for future
investigation and further studies are needed before we can comprehensively define the central
mechanisms that regulate the beneficial effects of maternal exercise on breastmilk composition
(see Outstanding questions). For example, taking into consideration exercise-induced changes
to epigenetic states like DNA methylation, histone modification, and noncoding RNAs that are al-
tered in models of obesity could be critical in defining the effects of exercise. The identification of
factors mediating the beneficial effects of exercise on offspring metabolism is essential for trans-
lation to humans, and given the constant rise in global obesity this will become increasingly more
important. The identification of exercise-regulated components in breastmilk with importance for
6 Trends in Endocrinology & Metabolism, Month 2023, Vol. xx, No. xx
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the prevention of childhood obesity could potentially lead to their enrichment in formula milk. One
HMO (2′fucosyllactose) is already available in some commercial infant formulas and has been
reported to have promising health benefits in infants [70]. Another possibility is donated
breastmilk from exercised mothers. Exercise is sometimes not an option during pregnancy
and the potential for benefits to the infant induced by maternal exercise after it is born is a future
avenue for research.
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