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Abstract
This paper proposes a novel method to transform the results of qualitative risk analysis into a numeric optimal control problem 
for autonomous ship navigation. Today, making autonomous high-level decisions replacing a crew onboard is considered 
difficult, in some part due to the complexity of managing the operational risks involved. Although human supervisors, e.g., 
located in remote operating control centers are still needed for safety and liability reasons, there is a growing demand for 
complex decisions to be made by the onboard control system itself, both during normal operations and in emergencies. This 
paper suggests general principles for how the results from systems-theoretic process analysis (STPA) can be transformed into 
a quantitative and computationally tractable optimization problem, solved by a MPC-based decision-making algorithm for 
autonomous navigation. The proposed method is demonstrated and evaluated by simulating an autonomous ship navigating 
in a coastal environment. It is concluded that the proposed method may serve as a reasonable and valuable bridge between 
the realms of qualitative risk analysis and numerical optimal control for risk-aware autonomous control and decision-making.

Keywords  Accident prevention · Autonomous control · Navigation · Model predictive control (MPC) · Online consequence 
analysis · Optimal control · Risk assessment · Risk control · Real-time decision-making · Systems-theoretic process 
analysis (STPA) · Trajectory planning

Abbreviations
AMM	� Autonomous machinery management ANS 

autonomous navigation system
BBN	� Bayesian belief network
CC	� Controller constraints
COLREGs	� The International Regulations for Preventing 

Collisions at Sea
DP	� Dynamic positioning
ENC	� Electronic navigational charts
LQR	� Linear-quadratic regulator
MPC	� Model predictive control
NE	� North-East
NLP	� Nonlinear programming
OCP	� Optimal control problem
ORE	� Online risk estimation

PSO	� Particle swarm optimization
ROC	� Remote operations center
RPN	� Risk priority numbers
SAS	� Situational awareness system
SC	� Safety constraints
SCA	� Supervisory control actions
SI	� Safety inequalities
STAMP	� Systems-Theoretic Accident Model and 

Processes
STPA	� System-Theoretic Process Analysis SV slack 

variables
UCA​	� Unsafe supervisory control actions

1  Introduction

There is an increasing desire to reduce operational costs and 
risks during ship operations by improving the intelligence 
and autonomous decision-making capabilities of maritime 
vessels [1]. Bridging the gap, however, between qualitative 
risk analysis and quantitative supervisory optimal control 
is a challenging task. The aim of this work is to develop a 
method for applying results from risk analysis to be utilized 
by an supervisory optimal control algorithm. Results from 
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risk analysis may provide useful input to determining safe 
and efficient sequences of control actions to be taken in a 
complex maritime environment.

Higher levels of autonomy are not the main objective in 
itself, but rather to realize safer and more efficient operations 
involving human personnel. One way of improving human 
safety may be to move operators to an remote operations 
center (ROC), which may increase the productivity and effi-
ciency of operations by giving, e.g., ship captains the oppor-
tunity to focus their abilities on monitoring a larger fleet of 
vessels simultaneously, supported by increased analysis of 
human factors or interference related to the altered supervi-
sion and (semi-)autonomous control hierarchy [2, 3].

Caution should nonetheless be exercised when making 
changes to a large operational infrastructure such as cargo or 
passenger transport. Communication and cooperation with 
conventional ships and compliance with international regu-
lations, such as the International Regulations for Prevent-
ing Collisions at Sea (COLREGs) are decisive. The safety 
and well-being of smaller vessels also need to be taken into 
account, e.g., smaller sailboats sailing in the vicinity of the 
larger (semi-)autonomous vessels.

In general, accidents occur due to unpredictable condi-
tions, erroneous decision-making, or unexpected emergent 
system failures [4–6]. Risk assessment is therefore required 
to identify and analyze hazardous events, and determine the 
need for potential risk mitigation measures. One potential 
measure for autonomous ships is to implement onboard 
online consequence analysis-based optimization algo-
rithms with some prediction horizon, weighting different 
operational objectives in light of the risks associated with 
each action considered for execution. Model predictive con-
trol (MPC) MPC is such a method, and has shown promis-
ing results for development of operational constraints [7], 
dynamic positioning (DP) [8], path following [9] and colli-
sion avoidance [10, 11].

These systems, however, usually have strictly defined 
operational areas or limited available decision spaces in 
which they are explicitly allowed to make autonomous deci-
sions. The conditions are normally the default operational 
stages, like the crossing transit phase of an autonomous 
ferry. Nor do typical applications of MPC include risk mod-
els or results from risk analysis as input to the optimization 
algorithm. In order to reach even higher levels of autonomy, 
a high-level supervisory control system for risk assessment 
and safety-aware decision-making is needed [12].

System-Theoretic Process Analysis (STPA) considers 
safety as a control problem, which makes it feasible for 
revealing hazards related to autonomous systems. Such haz-
ards should be considered in the design of control algorithms 
and when optimizing decisions during operations to improve 
safety. One of the challenges with STPA, however, is that it 

only brings forward qualitative results, which are impossible 
to use directly for MPC.

In this paper, a step-by-step approach to design of super-
visory risk control and risk-aware MPC is proposed as fol-
lows: (i) Risk analysis or hazard identification in terms of 
a STPA is performed in order to identify how inadequate 
control of a maritime vessel may occur. Next, (ii) the quali-
tative results of the STPA are transformed into an optimal 
control problem (OCP), subsequently (iii) solved numeri-
cally by nonlinear programming through an existing MPC-
based decision-making algorithm for path planning with 
anti-grounding [13]. The ship control is performed using 
a receding horizon approach, based on the chosen dynamic 
ship model and a combination of cost functions and opera-
tional limitations, each targeting different aspects of online 
path planning and risk management. The performance of the 
developed risk terms in the MPC cost function is further-
more demonstrated by example simulations.

Ultimately, the novel contribution of this paper is a 
method for transforming the results of qualitative risk analy-
sis into a tractable optimization problem to be solved by an 
online decision-making algorithm. It provides a systematic 
approach to the design of nonlinear MPC cost, constraints, 
and solution strategy, with systematic considerations for 
hazards and risks, which is a highly challenging task. The 
resulting framework may serve as a foundation for future 
autonomous decision-making or online consequence analy-
sis techniques for both accident prevention and online risk 
control. To the authors’ knowledge, this is the first time 
qualitative risk analysis and MPC are explicitly coupled.

2 � Background

2.1 � Supervisory risk control

Risk analysis in general is concerned with identifying what 
may go wrong, and determining the likelihoods and conse-
quences of those events [14]. Risk modeling represents risk 
qualitatively or quantitatively, and risk control is the use 
and integration of such models to support situation aware-
ness and decision-making, e.g., by autonomous systems 
[12]. Separating the performed risk control into two equally 
important and dependent “modes”, i.e., by human super-
vision of an automated or autonomous system, and by an 
autonomous system itself, supervisory risk control focuses 
on the latter of the two [15].

The control of an autonomous system may be divided into 
the offline mission planner layer, the online guidance and 
optimization level, and the control execution level [16]. The 
work in this paper is mainly focused on control related to 
guidance and optimization, for which the high-level mission 
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is given and preplanned, and the lower-level control is taken 
care of by corresponding subsystems.

Previous work within supervisory risk control proposes 
to use Bayesian belief network (BBN) for online risk control 
[12], in which the BBN serves as an underlying risk model 
in order to update and assess the current risk levels during 
operations. This is in contrast to the approach presented in 
this paper, wherein the main objective is to use the results 
of the risk analysis in the design process of the online con-
trol algorithm. Though both methods involve updating risk 
levels during runtime, no underlying risk model is used in 
this work. Instead, a risk-based cost function is constructed 
and used to solve the resulting numeric OCP.

2.2 � STAMP and STPA

The Systems-Theoretic Accident Model and Processes 
(STAMP) [17] is an accident causation model for analyzing 
and explaining how accidents may occur, attempting to han-
dle the ever-increasing complexity of systems. Complex sys-
tems may have emergent properties only surfacing through 
the interconnection of the various parts of the system, which 
is difficult to predict by component failure analysis alone. 
STAMP regards safety as a control problem, preventing 
accidents by controlling the system or process according 
to appropriate safety constraints (SC). Accidents may thus 
occur if these constraints are broken, i.e., inadequate control. 
STPA [17] is a hazard analysis method based on STAMP, 
which attempts to identify how hazards or inadequate control 
may take place. This method is feasible for complex and 
automated maritime control systems [18] and as a basis for 
safety verification [19], and is generally applied through the 
following steps: 

1.	 Define losses, system-level hazards and system-level 
safety constraints.

2.	 Define a system representation by analyzing and mod-
eling the system as a hierarchical control structure.

3.	 Identify unsafe control actions.
4.	 Identify loss scenarios in which the unsafe control 

actions may occur.

The first step identifies or defines what types of losses one 
wants to prevent. In the case of autonomous ships, one may 
specify what the focus of the analysis is aimed at, e.g., fires, 
grounding, collision, or security threats such as piracy. Thus, 
the scope and purpose of the analysis is clarified by defin-
ing how the system-level hazardous states may lead to such 
losses. Next, the system is modeled and represented as a 
hierarchical control structure, i.e., a set of feedback control 
loops, and all relevant process model variables related to 
the internal belief of the controllers are identified. The third 
step is to identify unsafe control actions, i.e., supervisory 

control actions (SCA) that in any way may lead to one of 
the system-level hazards.

Note that supervisory control actions in the context of this 
risk analysis are defined as any type of decision or program 
flow between system modules which allows for hazardous 
states or outcomes to develop or occur, in contrast to auto-
matic control actions typically performed by machinery sys-
tems (i.e., propulsion or steering control). STPA uses four 
general categories of unsafe control actions, which are pre-
sented in Table 1 [20].

Scenarios in which unsafe control actions may occur and 
their causes are identified by inspecting relevant parts of the 
control loops in the control hierarchy in specific contexts, 
e.g., incorrect feedback, lack of feedback, decision-making 
flaws, time-delay, (lack of) situation awareness, component 
failures, process disturbances, communication errors, or 
other risk influencing factors related to the control loops.

The identified scenarios from the STPA may subsequently 
be considered for testing and simulation, and the results used 
to construct a suitable risk-based cost function for the MPC-
based decision-making algorithm.

2.3 � Scope and simplifications

An important prerequisite for risk analysis is to define its 
scope. The main objective is to develop an optimization-
based algorithm controlling the ship, given a preplanned 
path in a maritime environment. To ensure safe optimization 
and that hazards and risks are considered in the optimiza-
tion, STPA is performed and results are transformed into 
mathematical constraints, logic and objectives, implemented 
in MPC. The results from STPA are used as input to con-
struct an OCP, subsequently discretized into a nonlinear pro-
gram and solved by an MPC algorithm, and assessing the 
resulting trajectories. The goal is to improve the autonomy 
of the control system, and enhance safe operation of autono-
mous ships.

The cost function of the resulting MPC consists of risk-
based cost terms. Unlike the established nomenclature of 
shipping economics concerned with e.g., capital and opera-
tional expenditures [21], the concept of cost in this context 
is specifically applied solely to weigh and balance opposing 
interests or penalties as part of the standard terminology 
used within the field of optimization.

Table 1   Categories of unsafe control actions

A A SCA required for safety is not provided or not followed
B A SCA that causes a hazard is provided
C A SCA is provided too early, too late or in the wrong sequence
D A SCA is applied for a too long or too short period of time
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A simplified overview of the system scope of this work is 
shown in Fig. 1. The implemented software used for simula-
tions is highlighted in blue, and represents a core element 
of a simulated ANS. The MPC algorithm utilizes a math-
ematical Ship Model (the dynamical model in the Appen-
dix) to predict future states given the current system state. 
This structure assumes communications between systems 
such as a situational awareness system (SAS) and an autono-
mous machinery management (AMM) system, controlling 
the ship’s machinery. These system modules shown in gray 
color are, however, simplified in this work to only contain 
and relay their intended inputs and outputs between appro-
priate modules of the implemented software.

This paper is mainly concerned with grounding hazards, 
allision, and anti-grounding functionality, for proof of con-
cept. Thus, collision avoidance with respect to dynamic 
obstacles, e.g., other maritime vessels, is not considered in 
this work. Disturbances applied to the system are simpli-
fied such that only wind direction and wind velocity is con-
sidered, i.e., no current or wave disturbances are included. 
Furthermore, COLREGs compliance (or violation) is disre-
garded. As the act of docking (or berthing) the autonomous 
ship may be viewed as a separate control mode, docking 
is not considered in this work. The approach in the paper 
assumes that the autonomous ship is able to execute appro-
priate emergency measures or otherwise surrender control 
of the ship to human operators if the supervisory risk control 
algorithm exceeds a certain risk threshold or enters a specific 
hazardous situation. Additionally, consequences related to 
or occurring as a result of grounding, such as environmen-
tal pollution or loss of human lives, are not included in the 
risk analysis. This is considered appropriate for a proof-of-
concept study.

Even though approximations are used, it is proposed that 
extensions for more complex analysis and risk modeling, 

such as collision avoidance and COLREGs compliance, may 
be equivalently added using the presented method in future 
works, without loss of generality.

3 � Modeling

The STPA in this paper is based on an analysis performed in 
workshops together with industry participants during Spring 
2019. The main objectives of the control process is to: (a) 
to avoid grounding and allision with mapped obstacles, and 
(b) complete the given mission of the ship operations with 
optimized resource allocation weighted against risk consid-
erations from (a), within defined limits.

3.1 � STPA Step 1: Purpose

Step 1 of the STPA is presented in Tables 2, 3, 4 and 5, to 
be used as a basis for the following steps. The hazards were 
specified with respect to which motion control objectives 

Fig. 1   Scope of the system 
considered in this work

Table 2   Accidents

A1 Allision with a stationary mapped obstacle
A2 The ship grounds or makes contact with the seafloor

Table 3   System-level hazards

H1 The ship violates the minimum separa-
tion distance to a stationary obstacle 
(A1)

H2 The ship violates the minimum separa-
tion distance to the shore (A2)

H3 The ship sails in too shallow water (A2)



628	 Journal of Marine Science and Technology (2023) 28:624–648

1 3

that may lead to violation of the safety constraints, defined 
in Table 5.

3.2 � STPA Step 2: System representation

The system control flow and feedback hierarchy of this work 
is shown in Fig. 2, and consists of all implemented software 
modules and physical entities present in the system, includ-
ing peripheral interfaces between the software system and 
the physical environment. Directed connections between the 
various modules show the program flow.

Ship denotes the physical ship, which also encompasses 
all software modules communicating with the ANS, as well 
as the presence of a physical ship hull and machinery inter-
acting with the physical environment. Numerical values for 
physical Environment forces and states are provided to the 
Ship by the SAS module through forecasts and sensor meas-
urements, which are in turn interpreted by the MPC through 
its Scenario module. Additionally, the Dynamics module 
contains the ship’s equations of motion, which are used to 
generate simulated (expected) movement within the physical 
environment.

These system states along with hypsometry data from the 
ENC module [22] are utilized by the Supervisory Risk Con-
trol module to predict future states into a discrete time hori-
zon using its internal MPC, NLP, and Solver modules, based 
on the cost function given by the Objectives constructed 
from the preplanned route and the online risk estimation 
(ORE) module, and applied control from the AMM system 
AMMS. The output of real-time computations from the ORE 
module as defined by the operators in a ROC is used both as 

a direct input to the MPC module during runtime, as well as 
serving as a measurement or monitoring tool for the ROC. 
Additionally, the AMMS is updated with events occurring in 
the environment detected by sensor measurements generated 
in the SAS, such as machinery failures.

The ANS module is in turn given a mission by the ROC, 
i.e., to follow a pre-planned route or path within certain 
time and risk limits, and uses the predicted trajectories to 
make autonomous control decisions and give commands to 
the AMMS. The resulting decisions, including the trajec-
tory, risk cost calculations, and current internal states of the 
autonomous ship, are communicated to the ROC through 
information reports and electronic navigational charts (ENC) 
visualization, for supervisory human assessment and poten-
tially human intervention.

Note that the mission given by the ROC to the ANS 
may be to follow a pre-planned route or mitigate damages 
through various emergency protocols. Moreover, the risk 
levels calculated by the ANS are of integral importance to 
the supervisory risk control, through scaling coefficients 
provided to the MPC objective or cost function for trajectory 
predictions. The risk analysis, as well as transforming the 
results of a qualitative analysis into a quantifiable optimiza-
tion problem, thus provides the very important basis for the 
supervisory risk control and must be performed with care.

3.3 � STPA Step 3: Unsafe supervisory control actions

Given the hazards presented in Table 5, hazardous or unsafe 
supervisory control actions (UCA) are to be identified with 
respect to the control flow in the system control architecture, 
as shown in Fig. 2. The supervisory control actions are given 
in Table 6, and the process variables considered during the 
identification of the control actions are given in Table 7. No 
command or SCA given by the ROC to the ANS is consid-
ered, as the ROC handles higher levels of decision-making 
than the ANS, and as such, is generally considered outside 
of the control bounds or complexity which the autonomous 
ship is expected to be able to control on its own.

Table 4   System-level safety constraints

SSC1 The minimum separation distance to obstacles must be 
maintained

SSC2 The minimum separation distance to shore must be 
maintained

SSC3 The ship must not sail in too shallow water

Table 5   Specified hazards

H1a Motion control objectives that result in violation of the minimum distance of separation to an obstacle are formulated, i.e., the cost func-
tion of the trajectory planning algorithm is inappropriately designed with respect to avoiding obstacles during assigned time intervals

H1b Motion control objectives that do not result in violation of the minimum distance of separation to an obstacle are not followed, i.e., the 
subsystems of the ANS are unable to apply the required motion control to avoid obstacles

H2a Motion control objectives that result in violation of the minimum distance of separation to the shore are formulated, i.e., the cost function 
of the trajectory planning algorithm is inappropriately designed with respect to avoiding the shoreline during assigned time intervals

H2b Motion control objectives that do not result in violation of the minimum distance of separation to the shore are not followed, i.e., the 
subsystems of the ANS are unable to apply the required motion control to avoid the shoreline

H3a Motion control objectives that result in sailing in too shallow water are formulated, i.e., the cost function of the trajectory planning algo-
rithm is inappropriately designed with respect to keeping the vessel in deep enough waters during assigned time intervals

H3b Motion control objectives that do not result in sailing in too shallow waters are not followed, i.e., the subsystems of the ANS are unable to 
apply the required motion control to keep the vessel within deep enough waters
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Fig. 2   Overview of the system control architecture. The supervisory risk control module is the primary scope of the design
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It is assumed that the mission to be carried out by the ship 
is static throughout the decision process, and that no changes 
to objectives are made, i.e., the risk-aware cost function 
based on the results from the risk analysis and the specified 
mission objectives is unchanged during the entire process of 
autonomous navigation. This is assumed both in an effort to 
limit the scope of the system, and the fact that changing the 
mission to the ANS also is considered a higher level form 
of decision-making than the autonomous system should be 
able to perform by itself. Consequently, any change in the 
general mission objectives is thus considered to either be the 
initiation of an emergency protocol, or simply the start of 
another mission. For dynamic missions, the structure of the 
constructed solution would be unchanged, as the proposed 
analysis is generic. The same methodology may thus either 
be repeated in its entirety if a mission changes considerably, 
or one may alternatively change and re-evaluate the cost 
coefficients only (steps 12 and 13). It is suggested that an 
explicit methodology for online evaluation and tuning of the 
resulting cost function en route (for e.g., dynamic missions) 
should be investigated in future works.

The main SCA of the control hierarchy originates from 
commands given by the ANS to its two main modules: the 
MPC and the AMMS. Human operators in the ROC set the 
operational mode of the ANS to either autonomous mode 
or remote control, or initiate an emergency protocol dur-
ing emergencies. If the ANS is in an autonomous mode, 
the MPC is run to predict the next optimal trajectory (i.e., 
the next set of future ship states within the sampled time 
horizon) by solving an NLP. While solving, the equations 

defining the ship dynamics are used to compute costs, based 
on calculated distances to spatial polygons of obstacles or 
grounding areas. The result is returned to the ANS as an 
optimal ship trajectory given the current ship and environ-
mental states. It may be noted that trajectories are dependent 
on time, whereas paths (or routes) are not. Thus, the time 
aspect is in this context considered as one of the three main 
evaluation criteria during optimization, along with resource 
allocation and risk levels.

If the risk levels after the first control interval (or along 
the trajectory) are within accepted thresholds, the first con-
trol step of the trajectory is applied to the steering, power 
and propulsion machinery by the AMMS. Additionally, the 
current status and health of the physical machinery is esti-
mated and reported back to the ROC for potential human 
intervention. The Online state means that both the steer-
ing and propulsion are available with ordinary capabilities, 
Offline indicates no propeller propulsion or steering avail-
able, and Fixed represents no available steering.

All identified UCA are listed in Tables 8 and 9, evaluated 
with respect to the ability of the ANS to keep the ship suf-
ficiently safe during a specified time interval (i.e., the time 
required to apply appropriate SCA or counter-measures due 
to physical limitations or safety constraints). Note that com-
plex computations, such as calculating future trajectories in 
this context are also considered supervisory control actions, 
due to the fact that they may lead to later (autonomous) 
decisions-making which can cause hazardous events. Each 
SCA is given a unique identifier and a short description, in 
addition to being assigned a relevant control action category 
label (mode) from Sect. 2.2.

Together, these UCA are used to identify the controller 
constraints (CC) presented in Table 10. From Fig. 2 and 
Table 8, it is clear that UCA4–UCA12 are all part of sub-
systems related to computations for constructing scenarios 
and nonlinear problems to be solved by the MPC module. 
These UCA are thus closely related and connected, and are 
all found to potentially lead to the first three UCA identified 
between the ANS and the MPC. However, these underlying 
UCA also introduce separate system design concerns, which 
in this context are treated as supervisory control actions and 
must be considered during formulation of the individual 
controller constraints. The UCA presented in Table 9 are 
related to the ship in its current state during operations, i.e., 
either with respect to the maximum risk level threshold 
being violated or inadequate AMM or machinery control.

3.4 � STPA Step 4: Safety constraints (SC) and loss 
scenarios

In the final step of the STPA, the system-level safety con-
straints of Table 4 and specified hazards of Table 5 are 
combined with the identified CC of Table 10 to identify 

Table 6   Considered supervisory control actions

Controller Process Supervisory control action

MPC Solver Calculate trajectory over time horizon
Solver NLP Solve NLP
NLP ENC Compute obstacle distances
Scenario SAS Construct scenario from states
MPC Objectives Compute risk costs
ANS ORE Assess risk levels
ANS AMMS Command first control step
AMMS Machinery Apply first control step

Table 7   Process variables

Process variable Available states

Trajectory on horizon Distinct future ship states
Current risk level Continuous interval
Current wind disturbance Constant velocity and angle
First MPC control step Next optimal control input
Machinery health/status Online/offline/fixed
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Table 8   Unsafe supervisory control actions (part 1)

ID Controller Process Supervisory control action Mode Description

UCA1 MPC Solver Calculate trajectory on horizon A The calculated risk levels along the predicted trajectory is unaccepta-
ble, i.e., exceeds the risk threshold as defined by the ROC

UCA2 MPC Solver Calculate trajectory on horizon B The predicted trajectory returned by the MPC directly causes an 
obstacle allision or grounding

UCA3 MPC Solver Calculate trajectory on horizon C/D The MPC does not return a calculated trajectory within the required 
time interval, i.e., the result was provided too late or the computa-
tion was performed for too long

UCA4 Solver NLP Solve NLP A The computed solution trajectory is infeasible, i.e., a solution satisfy-
ing all physical constraints as well as risk constraints was not found, 
leading to UCA1 or UCA2

UCA5 Solver NLP Solve NLP B The Solver produces a feasible trajectory which contains obstacle alli-
sions or grounding events, leading to UCA2

UCA6 Solver NLP Solve NLP C/D A solution is not calculated within the required time interval e.g., due 
to a divergent or infeasible nonlinear problem, leading to UCA3

UCA7 NLP ENC Compute obstacle distances A/B The returned distances to obstacles are incorrect, producing an inac-
curate or unsafe basis for the MPC trajectory calculations, leading 
to UCA1 or UCA2

UCA8 NLP ENC Compute obstacle distances C/D The geometric operations or distance calculations applied to polygons 
are too computationally expensive, leading to UCA3

UCA9 Scenario SAS Construct scenario from states A/B The scenario classifications defined by the SAS are improperly formu-
lated (e.g., if calm winds are classified as adverse weather), leading 
to UCA1 or UCA2

UCA10 Scenario SAS Construct scenario from states A/B The scenarios produced are erroneous due to incorrect environment 
measurements or state estimations, leading to UCA1 or UCA2

UCA11 MPC Objectives Compute risk costs A/B The calculated risk costs defined by the scaling coefficients from the 
ORE module are improperly formulated by the ROC, leading to 
UCA1 or UCA2

UCA12 MPC Objectives Compute risk costs C/D The risk cost function is too computationally expensive, leading to 
UCA3

Table 9   Unsafe supervisory control actions (part 2)

ID Controller Process SCA Mode Description

UCA13 ANS ORE Assess risk levels A The calculated risk level of the currently estimated ship position during a time 
interval exceeds the maximum risk threshold set by the ROC, leading to the 
activation of an emergency protocol, a change of control mode or adjust-
ments made to mission objectives by the ROC

UCA14 ANS AMMS Command control step A The next ship position resulting from applying the first optimal control step 
calculated by the MPC exceeds the maximum risk threshold defined by the 
ROC, leading to UCA13

UCA15 ANS AMMS Command control step B The ship position resulting from applying the first optimal control step calcu-
lated by the MPC causes an obstacle allision or grounding

UCA16 AMMS Machinery Apply 1st control step A/D The control input as commanded by the ANS is not followed by the AMMS 
(i.e., the control is not applied to the machinery long enough or not at all), 
causing the maximum risk level threshold to be violated and leading to 
UCA13

UCA17 AMMS Machinery Apply 1st control step B The control input as commanded by the ANS is not followed by the AMMS, 
causing an obstacle allision or grounding

UCA18 AMMS Machinery Apply 1st control step C/D The AMMS or the ship machinery does not carry out the control commanded 
by the ANS within the required time interval e.g., due to physical system 
constraints or machinery faults
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loss scenarios and UCA-level SC, ultimately presented in 
Table 11.

Note that CC3, CC5 and CC7 from Table 10 are disre-
garded, due to the following: The ENC and SAS modules 
are considered separate subsystems, which are assumed to 
independently perform adequately and within their given 
requirements. Similarly, setting the maximum risk threshold 
is in this paper considered outside the scope of the ANS, 
and a process that must be performed by human operators 
on the ROC. However, potential machinery faults (CC9) are 
included as part of the core of the supervisory risk control. 
The resulting safety constraints SC1-5 are used as the fun-
damental basis for further decisions related to the design of 
relevant supervisory risk control components.

4 � Methodology

The proposed steps for transforming the qualitative results 
from the STPA into a quantifiable optimal control problem 
for supervisory risk control are defined below. Details of 
the methodology are provided in the following subsections.

State variables identification

1.	 Define explicit mathematical state variables for all rel-
evant measurable or quantifiable nouns or variables 
related to the identified loss scenarios and safety con-
straints of the risk-based supervisory control problem.

2.	 Represent the relationships between related variables 
as mathematical equations, and introduce intermediate 
variables or remove redundant variables if applicable.

3.	 Structure the identified variables into explicit system 
state and parameter vectors of the OCP.

4.	 Add all physical and logical equalities to the system 
dynamic equations of the OCP.

Safety inequalities construction

5.	 Formulate a risk-related inequality for all parts of a 
safety constraint that contains quantifiable variables.

6.	 Rank the safety inequalities based on the concept of risk 
priority numbers (RPN) [23].

7.	 Merge and/or remove any redundant safety inequali-
ties by evaluation of assigned RPN and mathematical 
inspection.

Cost function formulation

	 8.	 Define a slack variable s for each inequality of the form 
g(x) ≥ 0 such that g(x) + s = 0 holds, where x is a state 
variable.

	 9.	 Define an exponential cost term of the form �e−�s for 
each slack variable s, where 𝜇 > 0 and 𝜁 > 0 are tuning 
parameters approximately weighted according to the 
RPN assigned to its respective safety inequality.

	10.	 Define the risk-related part of the cost function � as the 
sum of the exponential slack variable terms.

	11.	 Formulate the total cost function as a sum of the result-
ing risk terms and other terms, e.g., related to resource 
consumption and mission objectives.

Evaluation and performance verification

	12.	 Tune the coefficients of the cost function until the 
desired solver performance and control behavior is 
achieved.

Table 10   Controller constraints

ID UCA​ Constraint description

CC1 1, 2, 3 The calculated trajectories on the horizon must be computed within the required time interval, cannot violate the maximum 
risk threshold, and shall not lead to any obstacle allision or grounding

CC2 4, 5, 6 A feasible NLP must be constructed, and the computed solution must converge to an optimal solution within the require time 
interval

CC3 7, 8 The calculations for obstacle distances must be sufficiently accurate as well as not too computationally expensive
CC4 9 All scenario definitions must be properly formulated, such that the behavior resulting from the calculated trajectories matches 

the expected behavior in any given scenario
CC5 10 The generated environment states from sensor measurements or simulations must be sufficiently accurate
CC6 11 The risk-based cost function and associated risk scaling coefficients must be correctly and sufficiently defined, such that 

obstacle allision or grounding does not occur due to logical or mathematical inconsistencies or assumptions that do not hold
CC7 13 Dependent on CC6, the maximum risk level threshold given by the ROC must be set with respect to the risk elements of the 

ORE module such that the threshold is violated only when the system should appropriately engage automatic emergency 
protocols or human intervention

CC8 14, 15 The first optimal control step of the MPC trajectory must not result in an obstacle allision or grounding
CC9 16, 17, 18 The physical machinery must carry out the control as commanded by the ANS through the AMMS within the required time 

interval
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	13.	 Verify through inspection and test simulations that the 
performance satisfies all safety constraints.

This methodology leads to the development of a risk-
based OCP and numerical solution. Note how the result-
ing safety inequalities and risk parts of the cost function 
are only related to the specific risk analysis performed 
through STPA, producing the mathematical risk elements 
of Fig. 2. Thus, all additional physical system constraints 
and resource consumption costs (i.e., fuel and/or time), as 
well as mission objective costs (e.g., path following) are 
in the steps 11 and 12 combined and tuned in tandem such 
that the total system is complete, meaning that the resulting 
cost function is appropriately weighted between the various 
aspects of autonomous navigation. This comparative tuning 
or weighting process through extensive testing and simula-
tion, denoted as steps 12 and 13 of the methodology, must 
be performed in a case-by-case basis, and may be difficult 
to generalize. Even though risk analysis provides inputs to 
such a tuning, this procedure must be performed so that the 
formulation of the cost complete function is appropriate.

The following subsections apply each step of the pro-
posed method for a case study presented in this work, and 
the performance of the implemented system is ultimately 
simulated and assessed in order to evaluate the quality of the 
mathematical formulation and risk quantification formulated 
by the procedure.

4.1 � State variables identification

The physical state variables of the ship relevant to the con-
trol problem and their relationship equations are defined as 
given in the Appendix.

Next, the content of the SC description sentences are dis-
sected and interpreted into additional mathematical variables 
by language analysis:

•	 SC1: Identified quantifiable nouns include the predicted 
ship trajectory, grounding obstacles, and the minimum 
separation distances to obstacles, the shoreline and too 
shallow waters.

•	 SC2: No quantifiable nouns or variables related to system 
states are identified in this safety constraint aside from 
the initial conditions of the NLP solver.

•	 SC3: No specific quantifiable nouns are identified aside 
from general mentions of physical states/behavior and 
(risk) cost function formulation.

•	 SC4: The only identified quantifiable noun is “risk cost”.
•	 SC5: The identified quantifiable or measurable nouns 

are propulsion (allocation), risk level, (ship) trajecto-
ries, external disturbances, minimum separation dis-
tances, and a safety distance margin. Unexpected fail-
ures, drift-off, and drive-off are terms for special events 

or scenarios during extraordinary circumstances, and 
are consequently not measurable system states.

Some of the identified quantifiable nouns concern the same 
physical quantities: The predicted ship trajectory contains 
multiple ship states, which include the positions, orienta-
tions and velocities of the ship at each discrete time step 
within the given time horizon. These ship states, as well as 
propulsion forces, are defined in the Appendix. Moreover, 
the term grounding obstacles will throughout the remain-
der of this text encompass all possible allision obstacles, 
shorelines and/or too shallow waters. This simplification 
assumes that there are no consequence or outcome differ-
ences between ship grounding and obstacle or shoreline 
allision, as per the scope defined in Sect. 2.3.

The additional system state and environmental variables 
identified during Step 1 are listed collectively as follows: 

∙	� XN =
[
x⊤
0

… x⊤
N

]⊤ , the vector of N ship states xk 
(including positions, orientations and velocities), i.e., 
the discretized ship trajectory throughout the predicted 
horizon of N control intervals

∙	� �j ∈ �J = one of J grounding obstacle polygons provided 
by the ENC (see Sect. 5.4)

∙	� dsep = the minimum allowed separation distance between 
the ship position p and any grounding obstacle �j

∙	� dsafe = the safety distance margin which is added to dsep 
in order to have the ship positioned sufficiently far away 
from obstacle boundaries such that temporary loss of 
propulsion does not result in grounding

∙	� �(x) = numerical value denoting the current risk cost of 
any ship state xk

∙	� �max = numerical threshold value denoting the maximum 
accepted risk (cost) level of the autonomous system at 
any point in the defined two-dimensional space, selected 
by the ROC with respect to the definition of � in the cost 
function

∙	� vd = velocity of the generalized disturbance forces acting 
on the ship during transit (i.e., wind velocity)

∙	� �d = angle of attack of the generalized disturbance forces 
acting on the ship during transit

All remaining system state and parameter vectors 
of physical constraints (such as propulsion or steering 
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limitations) not directly related to the risk analysis of the 
optimal control problem are given in Sect. 5.1.

4.2 � Safety inequalities construction

The above mathematical definitions are subsequently used 
to construct safety inequalities (SI) for all sub-parts of each 
SC, given some appropriate interpretation of the SC formu-
lations with respect to key logical, quantitative, qualitative 
and comparative statements.

In this work, only SC1 and SC5 are identified as contain-
ing safety inequalities. The remaining safety constraints are 
discussed in Sect. 4.4. 

SI1a	� min
(
d(x, 𝜎j) ∀𝜎j ∈ 𝛩J

)
> dsep

SI5a	� min
(
d(x, 𝜎j) ∀𝜎j ∈ 𝛩J

)
> dsafe + dsep

SI5b	� min
(
d(x, 𝜎j) ∀𝜎j ∈ 𝛩J

)
⋅ f (vd,𝜓d) > dsep

 where d(x, �j) is a distance function which returns the dis-
tance between its two arguments. The scaling function f(.) 
dependent on the disturbance velocity vd and disturbance 
angle of attack �d is given as

where �̂j is the unit vector from the ship to the obstacle j with 
the minimum distance to the ship position x , and �̂ is the 
unit direction vector of the disturbance [13].

Next, each inequality is assigned a RPN [23], based on 
severity (result or consequence of failure/loss), occurrence 
(failure probability) and detection (failure identification 
difficulty). For the purpose of demonstration, three RPN 
are in this paper defined to serve as simple categories clas-
sifying the three identified safety inequalities: Recall that 
the loss scenario of SI1a is related to grounding without 
considering external disturbances, see Table 11. Table 12 
shows the resulting RPN for each safety inequality, based 
on 1 to 10 rankings of its severity factor (S), probability of 
occurrence (O), and ease of detection (D) [24]. Note that 
the RPN of Table 12 are assigned with respect to how the 
absence of each cost term would affect the autonomous navi-
gation behavior of the ship, e.g., a moderate probability of 

(1)f (vd,𝜓d) = max(0, �̂j ⋅ �̂) ⋅ vd

grounding is assumed if the short-term re-planning naviga-
tion algorithm does not include any term directly related to 
anti-grounding based on ENC.

In this example, an RPN of 108 is assigned to SI1a due 
to high severity with respect to grounding (9), a moderate 
probability of occurrence (4), and high ease of detection 
(3). This is considered appropriate due to the fact that the 
ship should preemptively follow a pre-planned feasible path 
within well-defined safety boundaries and parameters, with 
only dynamic and unplanned obstacles providing the main 
uncertainty aspect of the equation. If the MPC planner has 
to significantly re-plan the trajectory due to some unfore-
seen circumstances such as a crossing ship, the probability 
of grounding may consequently rise accordingly. Moreo-
ver, the onboard and remote sensors with respect to spatial 
movement in the environment are assumed to be relatively 
robust with sufficient levels of e.g., accuracy and redundancy 
shared across multiple different types of technologies, and 
should thus provide a reasonably high probability of detect-
ing internal failures.

Next, SI5a is given an RPN of 30 due to low severity in 
which only the safety distance margin between the ship and 
the minimum distance of separation to obstacles is violated 
(2), moderate probability just slightly more likely than direct 
grounding (5), and similar failure detection capabilities (3). 
However, SI5b is given an RPN of 216 due to the following: 
This SI specifically is concerned with taking into account 
how external disturbances such as winds affect the ship tra-
jectory, and how it relates to avoiding grounding events with 
respect to the physical propulsion and steering limits. Thus, 
the severity of grounding is high as in SI1a (9), the occur-
rence is somewhat higher due to expected disturbances (6), 
and the difficulty of detecting failures in the equipment for 
measuring disturbance forces is moderately low (4).

In general, the definition of RPN is closely related to risk 
acceptance of the system and its operation, which are usu-
ally determined based on stakeholders’ perspectives, current 
risk levels for similar activities, rules, and regulations. Since 
risk acceptance is outside the scope of this paper, we have 
derived reasonable RPN for illustration. From this exam-
ple, and with these assigned RPN, it is clear that there is a 
distinct disparity between the highly ranked SI1a and SI5b 
compared to SI5a. This will be addressed in the following 
steps.

4.3 � Cost function formulation

All safety inequalities are subsequently transformed into risk 
cost terms which contribute to the accumulated system risk 
levels present at any point in time, and are used as additional 
guidance objectives during the autonomous decision-making 
and ship trajectory optimization.

Table 12   Process variables

Safety inequality S O D RPN

SI1a 9 4 3 108
SI5a 2 5 3 30
SI5b 9 6 4 216
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In Step 8, the slack variables (SV) of each safety inequal-
ity are consequently defined as:

where dmin(x) = min
(
d(x, �j)

)
∀�j ∈ �J . In general, dmin(x) 

is a non-smooth function, in which the J distances d(x, �j) 
to each grounding obstacle �j are themselves minimum dis-
tances between a singular geometric point p(x, y) ∈ xk and 
the boundary of the obstacle polygon as provided by the 
ENC.

Note that the resulting SV, when feasible (greater than or 
equal to zero), indicate “increased” compliance with the SI 
constraint for larger values, directly analogous to the slack 
variables used by nonlinear numeric solvers to satisfy con-
straints through barrier functions [25].

The risk cost terms are during Step 9 constructed as 
monotonic and strictly increasing exponential functions with 
the (negatively) weighted SV as the exponents. Thus, the 
resulting risk cost function � for a single time interval k is 
by Steps 8 and 9 of the procedure defined as

Note that the form of (3) directly follows from Step 9, and 
that the slack variables from Step 8 by definition serve as the 
only variables to be weighted or scaled through their respec-
tive coefficients as strictly positive cost terms. Moreover, (3) 
is only defined for a ship state during a single time interval 
( xk ), with respect to an individual grounding obstacle poly-
gon �j . It is proposed that this weighted cost may simply 
be summed for all grounding obstacles �J within the spa-
tial horizon (see Sect. 5.3). Due to the exponential form of 
(3), far away obstacles are evaluated as negligible, making 
only nearby obstacles significant with respect to the total 
cost value at any point. This is indeed in accordance with 
the desired behavior, i.e., to first and foremost avoid nearby 
shorelines or shallow waters—due to the exponential func-
tion, any land mass consequently yields insignificant costs 
compared to, e.g., a small reef closer to the ship, if located 
behind it.

Determining the values of the risk coefficients �1,2,3 and 
�1,2,3 is achieved approximately through the RPN of the 
SI associated with each resulting exponential term, i.e., 
larger coefficient values for higher RPN, and lower values 
for lower RPN. Consequently, smaller minimum distances 
between the location of the ship and grounding obstacles 
lead to (exponentially) larger costs, as expected. Moreover, 
each individual cost is weighted so that the terms with 
larger RPN have larger costs closer to their constraint 
boundary, with respect to the other terms. Note, however, 

(2)

SV1a ∶ s1 = dmin(x) − dsep

SV5a ∶ s2 = dmin(x) − dsafe − dsep

SV5b ∶ s3 = dmin(x) ⋅ f (vd,�d) − dsep

(3)�(xk, �j) = �1e
−�1s1 + �2e

−�2s2 + �3e
−�3s3

that as the RPNs are semi-qualitatively defined, the corre-
spondence between the RPN and the resulting cost scaling 
coefficients may after tuning be diminished.

More detailed discussion of the tuned risk cost terms 
with respect to optimal control and desired behavior for 
autonomous navigation is presented in Sect. 7.

4.4 � Evaluation and performance verification

Evaluating and verifying the performance of the cost func-
tion and resulting NLP formulation are challenging. The 
coefficients of the cost function are tuned, e.g., incremen-
tally through repeated simulations, and the performance 
is evaluated by comparing the resulting behavior with all 
safety constraints. Section 4.2 denotes how SC1 and SC5 
are exercised through SI1a, SI5a and SI5b. However, 
SC2, SC3 and SC4 are directly related to the solver per-
formance, i.e. that the resulting solution convergence and 
behavior is appropriate and achieved within the required 
time intervals. Compliance with these constraints are thus 
verified through the following discussion and simulation 
results presented in Sect. 6, both validating the proposed 
methodology in this work as well as the autonomous 
behavior resulting from the application of the method to 
the considered use case. A special case worth noting is 
nevertheless that the resulting cost function, as defined 
by following the proposed methodology, by construction 
satisfies SC4 with respect to computational feasibility.

The initial solution given to the solver (i.e., the pre-
planned trajectory) during the first solve will greatly affect 
the produced trajectories due to the problem being non-
convex, and must be pre-computed appropriately. The 
solver used to calculate optimal trajectories at each time 
interval may also have a significant impact on the gener-
ated results. In this work, a gradient-based solver is used—
non-smooth functions such as the minimum function used 
for polygon distances are handled by the solver through 
automatic differentiation (differentiable programming). 
However, one may consider using solvers employing e.g. 
evolutionary algorithms, particle swarm optimization 
(PSO) or similar techniques, in order to utilize discon-
tinuous and non-differentiable cost functions.

Additionally, the non-convexity of the constructed NLP 
makes no guarantees with respect to optimality of its local 
solutions, and the generated ship trajectories must conse-
quently be assessed during development, with respect to 
the current conceptual view of acceptable risks, desired 
operations behavior and defined mission objectives. As 
such, the implementation and performance of a MPC 
algorithm and a case study with example simulations are 
presented in the following sections for evaluation and veri-
fication purposes.
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5 � NLP and MPC formulation

This section presents the resulting MPC and final cost function 
to be solved by the NLP algorithm, extended and improved 
from previous works [13]. Additionally, simulation results of 
the various test scenarios are summarized to demonstrate the 
performance of the formulated risk-based supervisory control 
problem.

5.1 � Optimal control problem (OCP) formulation

An OCP is in general defined as follows:

where 𝜙̃ is a scalar stage cost function that will be defined 
in Sect. 5.3, � is a parameter vector, x0 is the initial state, T 
is the prediction horizon, and ẋ is given by the ship dynam-
ics as presented in the Appendix. The hard constraints 
h(x(t), u(t)) are given as:

where u =
[
u1 u2

]⊤ is the control input vector where u1 is 
the propulsion force of the rudder, u2 is the rotational turn-
ing rate of the rudder, and fmax and �max are the maximum 
propulsion force and rotational turning rate of the rudder, 
respectively. The solution to problem (4) will be deployed 
in a receding horizon fashion, yielding an MPC scheme.

5.2 � The reference path

A preplanned reference path is defined as a piecewise linear 
(spline) function given an initial position, discrete intermediate 
points and a destination. Next, the reference path is parameter-
ized, giving the two-dimensional reference function

for calculating path points where � ≥ 0 is a scalar advance-
ment parameter (i.e. the traveled distance during a control 
interval) acting as a decision variable along the preplanned 
path, and x(�) and y(�) are piecewise linear functions.

(4)

min
x(.),u(.)�

T

t=0

𝜙̃(x(t), u(t),�(t))dt

s.t. ẋ(t) = f (x(t), u(t), d(t))

h(x(t), u(t)) ≤ 0

x(0) = x0, 0 ≤ t ≤ T

(5)
−fmax ≤ u1 ≤ fmax

−�max ≤ u2 ≤ �max

(6)r(�) =

[
x(�)

y(�)

]

5.3 � Objectives and cost function definitions

In order to construct the NLP, a cost function to be mini-
mized is defined. Advancing along the path is a simple 
matter of increasing � , and the desired ship speed along 
the path is furthermore established by penalizing ship tran-
sit velocities larger than the given reference speed sref . 
This is achieved by minimizing a speed penalty decision 
variable � , where

in which u is the forward surge velocity, and v is the side-
ways sway velocity.

By collecting the additional decision variables into a 
vector for each time step through the control horizon N, 
we have

which in Sect. 5.4 is used to define the NLP decision vari-
able vector w.

In this work, the cost function is defined with the purpose 
of producing a safe ship trajectory that fulfills the mission 
objectives:

The cost terms are defined as follows: 

	 (i)	 The path progression cost function 

 where � > 0 is a vector of tuning parameters. These 
terms are responsible for advancing the ship posi-
tion pk (trajectory) along the precomputed feasible 
path, through the constant path step parameter �trav 
and the reference path r(�k) . The �k term penalizes 
violations of the transit speed reference as detailed in 
Sect. 5.3. It is recommended that �trav is chosen such 
that sref ≈ �trav∕tΔ , where tΔ is the sampling period 
of the NLP.

	 (ii)	 Next, the control input cost function is defined as 

 where � = diag(�) > 0 and � = diag(�) > 0 are tun-
ing matrices. These terms collectively help conserve 
power and reduce the input variations, consequently 
lowering environmental and operational costs.

(7)u2 + v2 ≤ s2
ref

+ �, 0 ≤ �

(8)qk =

[
�k
�k

]
, k = 0, 1,… ,N − 1

(9)�(w,�) =

N∑
k=1

�(xk, qk, qk- 1) + �(uk, uk- 1) + �(xk,�k)

(10)𝜉(xk, qk, qk−1) = �⊤

⎡⎢⎢⎣

��r(𝛼k) − pk��2
��𝛼k − 𝛼k−1 − 𝛼trav��2

𝛽k

⎤⎥⎥⎦

(11)𝜖(uk, uk−1) = u⊤
k
�uk + (uk−uk−1)

⊤�(uk−uk−1)
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	 (iii)	 Finally, the constructed risk cost function is used to 
keep the grounding risk levels low: 

 where s1,j , s2,j and s3,j are defined as in (2), with 
respect to each grounding obstacle �j ∈ �J . Here, 
the dot product within s3,j from (1) scales the distur-
bance contribution toward the grounding obstacles in 
any orientation around the ship, i.e., increasing the 
risk close to an obstacle to the east of the ship if the 
wind, waves or currents are coming from the west, 
etc. Negative dot products are however set to zero, 
disregarding “favorable” disturbances with respect 
to perceived risks. The remaining variables were 
defined in Sect. 4.3.

It may be noted that all of the initial safety inequalities are 
transformed into risk costs, in favor of being formulated 
as explicit constraints to ensure safe distances between the 
ship and obstacles. Thus, this “soft constraint” formulation 
utilizes violatable risk costs in order to acknowledge that 
grounding risks may still be evaluated even if high, and 
guaranteeing NLP feasibility. Using exponential terms for 
the obstacle or grounding risk costs serves to strongly domi-
nate the other objectives in the cost function, heavily favor-
ing staying safe from grounding obstacles. The grounding 
risk sensitivity constant � may for this purpose be tuned for 
optimal behavior.

5.4 � Nonlinear programming

The dynamic ship model is discretized in order to solve 
the problem numerically. The continuous time variable t 
is divided into a time grid of N intervals on the horizon 
T, defined by discrete time instants tk ∈ {t0, t1,… , tN} . 
The system inputs are discretized as piecewise constant 
over that time grid, i.e., uk = u([tk, tk+1]) . The system 
state is discretized using a numerical integration function 
xk+1 = Fk(xk, uk, dk) , based on the widely used Runge–Kutta 
4th order method. The discretization allows one to treat (4) 
as a nonlinear program by defining a vector of decision 
variables

where qk is the vector of additional decision variables related 
to mission objectives defined in Sect. 5.3. Additionally, a 
parameter vector comprised of various control settings, 
desired states and coefficients through time is denoted as 
� =

[
�⊤

0
… �⊤

N

]⊤ . The parameters considered in this exam-
ple are

(12)�(xk,�k) =

J∑
j=1

�1e
−�1s1,j + �2e

−�2s2,j + �3e
−�3s3,j

(13)w =
[
x⊤
0
q⊤
0
u⊤
0
… x⊤

N−1
q⊤
N−1

u⊤
N−1

x⊤
N
q⊤
N

]⊤

for all tk where sref is a constant reference transit speed and 
�trav is a path progression parameter (see Sect. 5.3) across 
all N control intervals. The grounding obstacles are in this 
work modeled as a union of convex polygons �j ∈ �J . Thus, 
�J is the collection of all grounding obstacles, enumerated 
by j = 1,… , J in (12).

In other words, the entirety of all grounding or allision 
polygons present in some specified data (sub)set provided 
by the ENC module is included for distance calculations in 
each time step, yielding J distance computations for each 
subsequent NLP solver iteration, for each time interval k 
throughout the time horizon of N sampling intervals. Moreo-
ver, the distance to each polygon is computed based on its 
inherent complexity, given by its number of vertices and 
edges. Thus, it is important to limit the resolution of the 
grounding polygons such that the computation time is fast 
enough (SC4), e.g., by simplifying and reducing the number 
of vertices of each ENC polygon to some extent relative to 
the size of the ship or the size of the considered environ-
ment during application runtime. Note, however, that sim-
plifying the complexity, which consequently also lowers the 
resolution of the grounding obstacles, directly affects the 
spatial error margins needed for safe navigation near the 
obstacle polygons. As a result, both dsep and dsafe from (2) 
must be defined with respect to the resolution and inherent 
complexity of the grounding obstacles as provided by the 
ENC module (SC3).

The resulting NLP is defined as

where C(�,X0) ∈ ℝ is the minimum cost generated by a 
given set of parameter values and initial conditions X0 , i.e., 
a full initial trajectory of N ship state vectors x given by 
the path r : The preplanned path and ship speed reference 
parameters are used to calculate a reasonable initial guess for 
the ship trajectory XN . For all subsequent NLP solve calls, 
the last solution (forward shifted one time step) is used as 
the initial guess, i.e. warm start. The inequality constraints 
h(w) are given by (5), and the equality constraints g(w) hold 
the system dynamics:

The cost function � was defined and discussed in Sect. 5.3, 
based on the risk cost formulation of Sect.  4.3. Note 
that the discretization chosen here is based on the direct 

(14)�k =

⎡
⎢⎢⎣

sref
�trav
�J

⎤
⎥⎥⎦

(15)

C(�,X0) = min
w

�(w,�)

s.t. g(w) = 0

h(w) ≤ 0

(16)Fk(xk, uk, dk) − xk+1 = 0, k = 0, 1,… ,N−1
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multiple-shooting approach [26]. Because of the nonlinear 
dynamics and since the obstacles yield a non-convex feasible 
set, the NLP (15) is non-convex. As a result, the goal is to 
compute a feasible and local optimal solution for a given 
control horizon N and initial conditions. Moreover, only cost 
balancing is noted utilized to achieve the desired control 
behavior, rather than using hard constraints in addition to the 
ship dynamics and the natural input constraints. This ensures 
feasibility of the NLP solutions.

6 � Results

6.1 � Simulation verification

The purpose of this section is to present simulation results 
which showcases how the constructed risk cost terms affect 
the performance and resulting trajectory of the MPC scheme, 
to serve as the verification method for this work. Thus, the 
goal is to verify that the safety constraints of Table 11 are 
satisfied during the autonomous navigation shown in the 
simulations, with respect to suitable compliance relative to 
the expected behavior. The model parameters used for simu-
lation verification are presented in Table 13.

Figure 3 presents a reference trajectory resulting from a 
simulation using the MPC scheme discussed in this paper is 
presented in, for the purpose of comparison to later simula-
tion trajectories. A square example region with an area of 
9 km2 just south of Giske island in Norway is chosen to dem-
onstrate various aspects and discussion points related to the 
construction of the risk cost terms. Using the visualization 
capabilities of the ENC package [22], several information 

overlays are added. Three waypoints are given as a route 
reference (the western-most off-screen), and a green path is 
drawn between the waypoints. The ship trajectory is shown 
as a white trail of ship poses (i.e., the position and orienta-
tion of the ship at each time interval), and the future tra-
jectory solution computed by the MPC is shown in yellow. 
The current ship pose is shown in magenta, recorded as a 
snapshot during a simulation run. It may be noted that the 
path following and resource consumption costs are tuned 
such that the trajectory is allowed to deviate slightly from 
the planned path, in order to save time, rudder actuation, or 
fuel into the time horizon.

Figure 4 shows a simplified example in which only the 
first risk cost term for SV1a is included in the complete cost 
function during the MPC run. Moreover, only one single 
island is considered as a grounding obstacle in this exam-
ple, for clarity. Shown in red, the single grounding obstacle 
is constructed as the convex hull of all ocean depths more 
shallow than 10 m, closest to the initial ship position. The 
first waypoint serves as the starting point of the simulation, 
and is shown as a green disk. The convex hull of the original 
grounding obstacle is chosen, based on the assumption that 
concave crevices along the boundary of any obstacle poly-
gon are not considered for purposeful navigation along a 
planned path. Furthermore, though the island itself (i.e., land 
mass above sea level) is not intersected by the planned path, 
the convex grounding obstacle intersects slightly. This is as 
a result of an additional safety margin added to the ground-
ing obstacle in all directions, in Fig. 4 set to 50 m. This 
static margin is added at the ENC level in order to ensure 

Table 13   Model parameters

Parameter Symbol Value Unit

Path step size �trav 75 m
Overall ship length Loa 75 m
Transit reference speed sref 2.5 m/s
Frontal projected wind area AFw 110 m2

Lateral projected wind area ALw 624 m2

Max propulsion force fmax 400 kN
Max rudder turn rate �max 2.0 rpm
Viscous damping force surge Xu 5.0 × 1011 kNs/m
Viscous damping force sway Yv 2.0 × 102 kNs/m
Viscous damping force yaw Nr 3.0 × 104 kNs/rad
Hydrodynamic added mass surge Xu̇ 4.4 × 104 kg
Hydrodynamic added mass sway Yv̇ 8.6 × 105 kg
Hydrodynamic added mass yaw Nṙ 4.9 × 107 kgm2

Rotational inertia yaw Iz 9.8 × 108 kgm2

Rigid-body ship mass m 1.5 × 106 kg

Fig. 3   A demonstrative path following simulation using MPC, not 
including any risk cost terms in the cost function
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that inaccuracies related to the numerical charts data and/
or e.g., tides are accounted for, and is considered a separate 
discussion than the cost term added related to the dsafe vari-
able of SV5a. This static margin should be kept small, and 
is exaggerated in this work for the purpose of demonstration. 
See the discussion related to Fig. 9 on this topic.

The consequence of the combination of these factors is 
that the resulting optimal trajectory computed by the MPC 
module deviates from the planned path close to the ground-
ing obstacle, as expected. Thus, it is apparent that the first 
risk cost term is sufficient to produce the necessary behav-
ior in order to avoid grounding obstacles, even when the 
grounding obstacle is intersecting with the original path.

The next example is shown in Fig. 5, which includes the 
south-western island group as a grounding obstacle. Notice 
the small perturbation of the ship trajectory close to the 
northern tip of the obstacle, indicating that both islands have 
an effect on the risk cost term, as expected. Moreover, it is 
shown that the risk cost is properly defined also for ground-
ing obstacles located on opposite sides of the ship. The 
northern island is, however, located far away, and is through 
the inverse exponential weighting and resulting value of the 
risk cost term negligible compared to the closer islands. 
This is considered appropriate for the specific environment 
domain shown in the example demonstrations in this work.

Figure 6 demonstrates how the addition of the second risk 
cost term related to SV5a appropriately adds an extra virtual 
safety buffer or safeguard with respect to nearby ground-
ing obstacles, indeed in accordance with the wording of 
SC5: The risk levels of trajectories closer to the minimum 

separation distance plus a safety distance margin must be 
weighted sufficiently high, such that the ship to a larger 
degree is able to avoid grounding if unexpected failures or 
disturbances are introduced—which effectively increases 
the time available to, e.g., restart the ship engines after a 
power blackout in order to regain ship control. The trajectory 

Fig. 4   MPC simulation showcasing the effect of the first risk cost 
term (SV1a) for only one grounding obstacle shown in red

Fig. 5   MPC simulation utilizing the first risk cost term (SV1a) to 
avoid two opposing islands at each side of the ship

Fig. 6   MPC simulation with increased grounding sensitivity through 
the second risk cost term (SV5a), or alternatively by tuning of the � 
coefficient
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shown in Fig. 6 is ultimately considered an appropriate tra-
jectory for sufficiently safe navigation through the strait as 
presented here.

It may be noted, however, that this behavior also can be 
achieved in this example simply by adjusting the sensitivity 
coefficient �1 of the first risk cost term, as may be inferred 
through the mathematical similarities of both terms. The 
second risk cost term is nevertheless included in this work, 
for completeness.

In contrast to the previous example demonstrations, Fig. 7 
shows a simulation in which the non-convex forms of each 
grounding obstacle are used in place of the previous convex 
hulls. Additionally, the minimum distances between the ship 
and both nearby grounding obstacles are shown as orange 
lines, in order to clearly visualize the exact coordinates of 
each distance calculation provided to the exponential risk 
cost terms during MPC optimization.

Note, however, that the resulting trajectory of Fig. 7 is 
identical to that of Fig. 6. This is a consequence of the fact 
that only the minimum distances between the ship and all 
obstacles are provided to the risk cost terms. By definition, 
no point not located exactly on the boundary of the convex 
hull of an obstacle may exist as a minimum distance to the 
ship. Thus, the advantage of calculating the convex hulls of 
all obstacles during initialization of the algorithm through 
the functionality provided by the ENC module is clear. This 
results in fewer polygon vertices for distance computations, 
which leads to faster solver performance in accordance with 
the objective described in SC4 related to computational 

feasibility. The approach may nevertheless also be used on 
non-convex obstacles if necessary, at a price of reduced 
computational efficiency.

Figure 8 presents the same orange distance visualizations 
as those of Fig. 7, applied to the convex grounding obstacles 
in Fig. 6. In addition to the previous discussion with respect 
to convexity, it is apparent that these line segments are more 
well-behaved and the variation between each consecutive 
line is smaller, which in turn improves the smoothness of the 
gradients as present in the MPC during the NLP solve. This 
effect is seen directly by faster solver timings.

The last example related to the first two risk cost terms 
and the structure of the grounding obstacles provided by 
the ENC is presented in Fig. 9, in which the safety buffer 
added to the obstacles are increased from 50 to 200 m. This 
is shown in order to demonstrate the effects of this static 
approach compared to the addition of the increased safety 
risk cost applied through the second risk cost term.

One may notice how the resulting trajectory in this case 
is significantly more restricted through the consequently 
narrower isle strait. It may be argued that the approach of 
adding static safety margins in this manner—i.e., through 
the initial creation process and structure of grounding 
obstacles, as constructed by the ENC module—reduces the 
flexibility of the MPC algorithm, and should be avoided in 
favor of the added virtual safety margin cost exemplified 
through the second risk cost term in this work. Moreover, 
it is clear that if the safety buffer is too large (e.g., 400 m), 

Fig. 7   MPC simulation with non-convex grounding obstacles, and 
minimum distances shown as orange lines between each past vessel 
position and the obstacle polygons

Fig. 8   MPC simulation showing the orange minimum polygon dis-
tances for convex grounding obstacles. Less variance between each 
evaluated minimum distance along the trajectory yields improved 
solver performance
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the strait would be entirely closed, which would lead to an 
entirely new behavior in which the ship must sail around 
the resulting merged obstacle of both islands. Though 
potentially appropriate in some cases, this approach is 
considered unstable and prone to produce irregular solu-
tions given any particular environment.

The effects of the third and last risk cost term of the 
constructed risk cost function produced through the meth-
odology presented in this paper is visualized in Fig. 10. 
Though the effects of the cost term is limited with respect 
to changes in the trajectory due to the direction of the wind 
compared to the vessel heading, the example illustrates 
how both isles each contribute separately to the risk cost 
scaling. Here, the two grounding obstacles located at the 
port and starboard side of the ship are given the colors red 
and orange, respectively. Furthermore, the value of s3 at 
each time step is multiplied by the unit vectors with direc-
tions equal to the opposite of the direction of the vectors 
between the ship center and the minimum distance point 
on each obstacle. The wind disturbance direction and wind 
velocity is shown in the compass in the top-right corner of 
the environment plot.

Intuitively, the red and orange arrows point away from 
their respective grounding obstacles at each side of the ship, 
due to the risks increasing toward the obstacles—which the 
MPC attempts to minimize, effectively directing the ship 
away from the obstacles in accordance with the arrow direc-
tions. Moreover, the length of the arrows are proportional 
to the gradient of the risk cost term at each point, i.e., the 

magnitude of how much the perceived risks promote evasive 
maneuvers with respect to each grounding obstacle.

This illustration aims to visualize how the external dis-
turbances (here limited to wind disturbances only) affect the 
risk levels through the third risk cost term. In this case, the 
wind direction is in an on-land direction toward both ground-
ing obstacles with respect to the initial location of the ship, 
yielding positive scalar products. Thus, if the wind force 
is driving the ship toward the shoreline or other grounding 
obstacles, the risk level increases as expected.

Figure 11 presents a situation in which the wind direc-
tion is directed toward the southwest grounding obstacle 
shown in red. Notice how the trajectory in this case inter-
sects the orange grounding obstacle, due to the scalar prod-
ucts between this obstacle and the ship location being non-
positive and consequently disregarded. This is indeed the 
expected behavior, as this risk cost term is only concerned 
with the risk levels related to external disturbance forces, 
and must be combined with the first (two) risk cost term(s) 
in order to produce appropriate trajectories during auton-
omous navigation. It is argued that no disturbance forces 
should be included as a positive or favorable driving force 
toward safe autonomous control, and as such is factored out 
in this context.

Lastly, the quality of the solutions is considered appro-
priate: All figures are generated within 6.5–12.4 s on an 
Intel® Core™ i7-9700K (3.6 GHz), with a 20 min future 
horizon using a sampling time of 30 s. This means that the 
algorithm is able to predict, optimize and plot the future ship 

Fig. 9   MPC simulation with an increased safety buffer added to the 
convex obstacle polygons, resulting in less flexible performance and 
lower degrees of solver feasibility

Fig. 10   MPC simulation including visualization of the third risk cost 
term (SV5b), demonstrating the effects of a wind disturbance with 
respect to nearby grounding obstacles
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states along the route for 40 time intervals into the future, 
repeated 20 times (one for each trailing ship pose shown 
in gray), within a maximum of 12.4 s on a desktop com-
puter. The average optimization timing for a single run is 
thus well below one second. Consequently, the proposed 
algorithm may be repeatedly utilized online to predict the 
real-time effects of the latest measured or predicted weather 
conditions on a voyage 20 min into the future, recalculated 
every second using this setup. It is however noted that this 
performance is strongly dependent on the trade-off between 
the chosen data resolution and the resulting solution quality. 
Moreover, the MPC solutions consistently convergence to 
similar sets of trajectories across various tested simulations 
of different initial conditions, further assuring the validity 
of the approach. This concludes the verification of the con-
structed risk cost terms, by human assessment and review 
of the presented simulation demonstrations.

7 � Discussion

7.1 � Choice of methods: STPA and MPC

The risk analysis part of this work is based on STPA, 
mainly due to its feasibility for large and complex control 
system structures such as autonomous navigation, control 
and awareness systems of a ship presented in this work. 
By focusing on potential unsafe control actions, loss sce-
narios, and associated safety constraints, the integrity and 

safety of the system is thus considered through the emer-
gent behavior of the interconnected system as a whole.

For the quantifiable and optimization side of the prob-
lem, a MPC scheme was chosen due to the flexibility and 
robustness of the method. As presented and discussed in 
this paper, the MPC approach is largely capable of solving 
quite complex optimization problems if given appropri-
ate and well-defined system dynamics and cost formula-
tions. In this regard, the difficult part of the method is 
rather to provide the MPC with a feasible and satisfactory 
cost function, as well as an initial guess that produces the 
desired results when used for autonomous navigation.

7.2 � Risk analysis vs optimal control

There is a definite distinction between the fields of qualita-
tive risk analysis and numerical optimal control. As such, 
it is challenging to standardize a transformation between 
STPA and MPC. First, STPA is considered an effective 
method for identification of hazardous events for a range 
of applications. However, the results of the analysis often 
yield extensive collections of possible failures or unsafe 
control actions. A challenge with STPA is that it only con-
siders negative losses, which means that any rewards and 
trade-offs between risks and system performances are not 
analyzed or supported in decision-making. Furthermore, 
STPA is a qualitative approach, which means that several 
additional steps are needed to translate the results into 
meaningful representations in MPC. A methodology for 
such a “translation” is provided in this paper.

One of the main strengths of the traditional applica-
tions of MPC is that it usually has relatively straightfor-
ward and well-tested costs, similar to feedback controllers, 
such as the linear-quadratic regulator (LQR). If instead 
the cost terms of the MPC are extensively non-smooth or 
nonlinear, feasibility and solvability problems for a given 
real-time constraint may arise. It is also apparent that oper-
ational optimization is not the same as emergency manage-
ment. During extreme conditions, the focus is arguably 
only to handle or contain the situation to a satisfactory 
degree, to avoid further loss of control within strict and 
short time periods. Hence, there is usually limited benefits 
to be gained from optimizing the best possible solution 
during these scenarios. The method is nonetheless chosen 
due to the parallels between MPC and human decision-
making, in the sense that humans inherently weigh costs 
(negative consequences) and rewards against each other 
when making most logical decisions on a day to day basis. 
The challenge, as previously mentioned, lies in the uncer-
tainty and intricacies that arise when quantifying the deci-
sion variables for optimization, and as such, this must be 
performed with care.

Fig. 11   MPC simulation visualizing how the third risk cost term 
(SV5b) is only significant for on-land wind directions
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7.3 � risk cost verification

There is no conclusive way to verify if the constructed costs 
of the OCP and NLP are sufficient to satisfy the given safety 
constraints for any possible scenario. Generally, some form 
of evaluation method has to exist for any given method for 
which the performance is to be examined. However, for the 
performance to be evaluated and classified, real meaning 
and/or actual values need to be assigned to abstract con-
cepts for the purpose of assessment, as it is not possible to 
know the “true” or objective risk. This has been shown to be 
exceedingly difficult in the case of risk quantification or cost 
estimation, due to the inherent ethical and computational 
challenges of evaluating human lives and environmental 
damages [27, 28], and the discrepancy between the meaning 
of different interpretations of core terminology, such as risk. 
Even for humans, risk aversion in itself is a highly subjec-
tive concept, and it is difficult to conclude upon a universal 
perception of the term. For example, one may relate (mini-
mum) distances to the size of the vessel, such that larger ves-
sels require larger minimum separation and safe distances. 
Another suggestion can be to utilize common law rulings 
to inform what constitutes a safe distance. Until a global 
consensus is reached and explicit definitions are obtained 
for these notions, however, the evaluation of risk “costs” is 
still somewhat abstract, and is consequently treated as such 
for the time being.

Thus, verification of the resulting risk cost function is 
approximated through visual presentation and human inter-
pretation of the simulation results presented in this paper. 
More testing and research is recommended to achieve higher 
technology readiness levels.

7.4 � Safety inequalities and hard constraints

Even though, for example, the safety inequality of SC1 may 
be implemented as an explicit (hard) constraint in the con-
structed control problem, it is argued that hard constraints 
simultaneously reduce the feasibility and may raise the com-
putational complexity of the NLP to be solved [29]. Thus, 
the decision was made to relax this constraint and allow 
it to be violated if the situation calls for it. Note that this 
subsequently allows for handling of hazardous situations 
in more complex implementations, i.e., scenarios in which 
the combined decision-making algorithm deems the cost of 
purposely grounding the ship favorable to other alternatives 
(e.g., to avoid a complete loss of the vessel, reduce the prob-
ability of an oil spill and/or potential loss of human lives).

Consequently, all explicit inequality constraints were for-
mulated as weighted risk cost, in accordance with Steps 5 
to 10 of the proposed method. However, inspection of the 
other risk cost terms reveals that the act of weighting dis-
tances close to grounding obstacles with high values of risk 

is already achieved by the second (and to some degree the 
third) term of the constructed risk cost function (12). As 
such, one may if desired merge the terms if the correspond-
ing cost coefficients are appropriately adjusted such that the 
cost term strongly and sufficiently discourages violation of 
the minimum separation distance to grounding obstacles.

This is left to be further explored in future works.

7.5 � The structure of the risk cost terms

Making the cost terms monotonic and convex greatly sim-
plifies the complexity of the NLP, leading to faster solving 
times as well as more predictability with respect to solution 
quality or expected trajectories (performance). Using vari-
ous polynomials in place of exponentials was in this context 
considered, for different levels or ranges of assigned risk 
priority numbers. However, compared to e.g. x−2 or x−4 , 
the exponential function does not contain singularities for 
inverse proportional relationships such as e−x , making it a 
more suitable candidate for continuous risk scaling when 
approaching the safety boundary. Additionally, it is argued 
that due to limited function domains (e.g., 0–10 km horizon 
ranges around a ship in a specific environment), there is little 
to no practical difference between terms of e.g., the form x−2 
compared to ae−bx for a given domain range and appropriate 
tuning of the a and b parameters. It is thus assumed that any 
approximately equivalent behavior may be obtained through 
the exponential terms alone.

In summary, the first risk term related to SV1a is intro-
duced to enforce minimal distances to grounding obstacles 
by a natural inverse exponential relationship. For SV5a, it 
is assumed that the objective of not grounding is unchanged 
during loss scenarios with reduced propulsion capabilities, 
regardless of environmental disturbance forces potentially 
being dominant. However, SV5a serves to encourage even 
more conservative avoidance distances to grounding obsta-
cles if such scenarios occurs. The magnitude of this effect 
may be tweaked by adjusting �2 and �2 relative to �1 and �1 . 
This is due to the fact that by definition, the safety buffer 
variable dsafe of SI5a is merely a shifted or more conserva-
tive formulation of dsep from SI1a. Lastly, the third term 
of SV5b is modified to increase only with positive scalar 
products between the wind disturbance vector and the vector 
between the ship and any grounding obstacle �j , scaled by 
the disturbance velocity vd . This effectively adds an addi-
tional safety margin toward down-stream obstacles, which 
may improve the initial system state if loss scenarios such 
as machinery faults occurs.

7.6 � Simulation performance and parameter tuning

In general, the performance of the MPC is both expected 
and verified as appropriate. However, the simulation results 
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are heavily dependent on the specific tuning of parameters 
as applied in the example demonstrations. Recent research 
indicate that there exists methods for data-driven or auto-
matic tuning of simple problems [30, 31], in which the latter 
software is available as an open-source Python package. This 
is nevertheless a limitation of this study, which means that 
further evaluation and verification of the simulation perfor-
mance is necessary.

Similarly, the connection between the assigned RPN and 
the resulting coefficient values of the exponential risk cost 
terms presented in the methodology is somewhat abstract. 
The RPN only provide initial values for parameter tuning, 
and as such, the cost coefficients must be fine-tuned to each 
application on a case-to-case basis. Thus, detailed parameter 
tuning was mostly left out of the scope of the main contribu-
tion of this paper.

8 � Future work and extensions

8.1 � Forward velocity and risks ahead of the ship

In autonomous navigation for surface vessels, the forward 
velocity and the uncertainties and related risks in the front 
of the ship are considered as significant contributions to the 
risk of a given situation, potentially dominating other risk 
factors, such as the uncertainty and grounding risk related 
to lateral on-land wind disturbances. It is recommended that 
this is addressed in future implementations.

8.2 � Machinery system additions

Additional risk cost terms for wear and tear or component 
failure in the machinery system related to high-intensity 
operation periods or over-use may be included in future ver-
sions of the implementation, including certain thresholds or 
dynamically weighted costs for machinery utilization. With 
varying AMM modes, the machinery system may experience 
changes in its inherent uncertainty and probability estima-
tions for, e.g., a blackout scenario based on various available 
system modes or power configurations. The margins could 
be smaller with safer machinery modes, and the ship may in 
such situations consequently sail closer to land. Fuel con-
sumption modeled in the machinery model may similarly 
also yield a more thorough understanding of the actual costs 
related to various control actions.

8.3 � NLP solver considerations

Due to the complexity of the environment (i.e., sea depth 
polygon obstacles provided by an ENC module) in the con-
structed NLP, feasible solutions that successfully carries 
out the given mission are not guaranteed. Moreover, if the 

solver is not able to converge to a solution within the given 
maximum time limit, the returned solution may be danger-
ous or even physically impossible with respect to the defined 
ship dynamics. In this case, the MPC could fail to produce 
a suitable trajectory, and this is regarded as a drawback to 
this method. A potential remedy to this challenge may be to, 
e.g., employ the use of an additional backup controller and a 
performance monitor to assume emergency control or make 
the human intervene in the ROC if failures or problems are 
detected in the MPC, as suggested by recent research [32].

Moreover, the complexity or resolution of the mapped 
grounding obstacles constructed during initialization of 
the ENC, as well as the discretization step or resolution of 
the ship trajectory (i.e., sampling time) are of significant 
importance with respect to the performance of the NLP 
solver. Lower spatial and temporal resolutions reduce the 
time complexity of the ENC minimum distance computa-
tions, but also decrease the accuracy and confidence of the 
computed optimal solution. An appropriate balance between 
these essential factors is in general difficult to determine, and 
must in addition to the cost function parameter tuning be 
established and verified on a case-by-case basis.

As a result of the non-convexity of the ENC grounding 
obstacles and their respective risk cost, no global mini-
mum solution is guaranteed. Hence, providing a suitable 
initial guess to the NLP solver during setup is critical in 
order to both achieve adequate solver performance and to 
ensure feasibility of the optimal NLP solutions. It is thus 
necessary that a conservative initial guess is properly con-
structed such that the solution converges to an appropriate 
local minimum, with respect to the expected trajectory of 
the navigational mission given to the ship. Due to warm 
start, subsequent initial guesses are provided to the solver 
as the forward shifted solution of the previous solve, and are 
consequently also largely dependent on the solution guess of 
the very first solve. Furthermore, this initial guess should not 
diverge from the optimal solution to such a degree that the 
solver is not able to calculate and return the solution within 
the required time interval. It is proposed that evolutionary or 
genetic algorithms such as particle swarm optimization may 
serve as a possible alternative approach for this problem, in 
order to obtain global convergence less dependent on the 
initial conditions of the NLP.

8.4 � Safety framework and risk model utilization

An additional consideration may be to transform or model 
tuning variables or cost coefficients into a safety framework, 
or to employ the use of an appropriate risk model. Recent 
research has shown that scenario-based MPC may utilize a 
probabilistic uncertainty model to achieve safe path traversal 
for e.g., inspection drones [33]. This may prove useful in 
order further structure the considered problem, to speed up 
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the tuning process, and to enable use of models for resource 
limited embedded and real-time computing.

8.5 � Other improvements

No sensor uncertainties were considered in this study, and 
may be implemented in future works. Additionally, parallel 
scenario simulations may be utilized during runtime to pre-
dict more complex risk pictures for any given time instant, 
beyond the current system state and environment conditions 
considered in this work. Collision avoidance and COLREGs 
handling are considered natural features of autonomous navi-
gation systems, and should be included in future works. It is 
lastly recommended that more scenarios are investigated for 
analysis and simulation purposes in order to further increase 
the robustness and reliability of the MPC scheme.

9 � Conclusion

A systematic and novel method has been proposed that enables 
the use the results of risk analysis to formulate an optimizable 
supervisory risk control problem through MPC, taking safety 
constraints and risk factors systematically into account. The 
risk analysis in the paper was performed using STPA with a 
focus on anti-grounding for an autonomous ship. A method 
providing appropriate system state variables and equations 
and a risk-based cost function for an optimal control problem, 
based on the STPA results has been proposed. The optimal 
control problem was subsequently transformed into a nonlin-
ear program and solved using an MPC scheme with a reced-
ing horizon approach. Several demonstrated control scenarios 
for an autonomous ship, simulated by an MPC scheme, show 
that the proposed method for construction of quantitative and 
optimizable risk-based costs based on safety constraints from 
STPA produces adequate and safe control trajectories. Addi-
tionally, the analysis has identified some vulnerabilities that 
should be addressed in future works. Ultimately, the paper 
shows that constructing the MPC objective function based on 
the results from STPA produces ANS behavior appropriate 
for safe navigation of ships, thus supporting the hypothesis 
that increased levels of safety may be achieved by the MPC-
based ANS through systematic analysis of unsafe control 
actions and hazards when designing the MPC cost function. 
This approach is consequently considered a reasonable bridge 
between the realms of qualitative risk analysis and numerical 
optimal control.

10 � Appendix: Ship model and dynamics

To model the risk and enable optimization and control of 
related physical processes, the mathematical and physi-
cal relationships between the autonomous ship and its 

environment are formulated. This section defines the ship 
model used in this work, adapted from the ship model and 
the terminology as presented in [34].

The horizontal plane North-East (NE) and BODY coor-
dinate frames are defined as given in Fig. 12. The NE 
coordinate system assumes a locally flat ocean surface 
plane and is oriented with its X- and Y-axes toward the 
true North and East, respectively. The BODY reference 
frame is positioned with its origin located in the centroid 
of the ship.

Given the previous reference frame definitions, the 
model variables are defined according to Fig. 12:

where {n} is the NE reference frame and {b} is the BODY 
reference frame. The ship states, forces and moments are 
defined by the variables

where � , � and � denotes the position, velocity and forces or 
moments vectors in the horizontal plane, i.e. surge, sway and 
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Fig. 12   The model variables and coordinate frames of the autono-
mous ship used in this work
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yaw, respectively. Moreover, the principal rotation matrix in 
the XY-plane is defined as

Due to the roll and pitch angles being neglected, the 
body-fixed velocity vectors can be expressed in {n} as

The Jacobian J�(�) is further given by

and the resulting kinematic equations are formulated as

The reduced three-dimensional ship kinetics equations in the 
horizontal XY-plane (with no Coriolis, wave, ballast, buoy-
ancy or gravitational forces included) are given by

where MRB is the rigid body mass matrix, MA is the hydro-
dynamic added mass matrix, �wind and �currents are the wind 
and currents forces, and D is a constant damping matrix. In 
the example simulations presented in this work, �currents = 0 
for simplicity, and the wind forces �wind are defined accord-
ing to [34] as

where Vw is the relative wind velocity with respect to the 
ship’s velocity, �w = � − �w − � , �w is the clockwise wind 
angle relative to the North axis, and the wind coefficients 
c∗ are generated by polynomial approximations of a wind 
coefficient table for a given ship.

Lastly, the propulsion and steering forces vector is 
given as

given the definitions from Fig. 12, where frudder(.) is a rudder 
coefficient function, u is the forward surge velocity, and �r 
is the rudder angle.

See [34] for generalizations to other propulsion and 
steering configurations.
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