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A B S T R A C T

Model predictive control (MPC) is increasingly being considered for control of fast systems and embedded
applications. However, MPC has some significant challenges for such systems, such as its high computational
complexity. Further, the MPC parameters must be tuned, which is largely a trial-and-error process that
affects the control performance, the robustness, and the computational complexity of the controller to a high
degree. This paper presents a multivariate optimization method based on reinforcement learning (RL) that
automatically tunes the control algorithm’s parameters from data to achieve optimal closed-loop performance.
The main contribution of our method is the inclusion of state-dependent optimization of the meta-parameters
of MPC, i.e. parameters that are non-differentiable wrt. the MPC solution. Our control algorithm is based on an
event-triggered MPC, where we learn when the MPC should be re-computed, and a dual-mode MPC and linear
state feedback control law applied in between MPC computations. We formulate a novel mixture-distribution
RL policy determining the meta-parameters of our control algorithm and show that with joint optimization we
achieve improvements that do not present themselves with univariate optimization of the same parameters.
We demonstrate our framework on the inverted pendulum control task, reducing the total computation time
of the control system by 36% while also improving the control performance by 18.4%.
. Introduction

Model predictive control (MPC) is a powerful optimizing control
echnique, capable of controlling a wide range of systems with high
ontrol proficiency while respecting system constraints. Nonlinear MPC
an even handle nonlinear dynamics and constraints, and while not
s simple as its linear counterpart, is increasingly being considered
or embedded systems applications with fast dynamics (Gros et al.,
012; Albin et al., 2015; Johansen, 2017). However, one of the main
rawbacks of the MPC is its high computational complexity, which
akes it ill-suited for applications with low-powered hardware or

attery energy restrictions, necessitating some form of compromise in
ts implementation (Feng et al., 2012; Gondhalekar et al., 2015).

The high computational complexity of the MPC comes as a result of
ts online operation consisting of solving a numerical optimal control
roblem (OCP) at every time step, executing the first control input of
he solution, and then solving the OCP again at the subsequent time
tep. Several adjustments to this basic paradigm have been suggested
n order to reduce the computational complexity, e.g. early termination
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T.A. Johansen).

(suboptimal) MPC (Scokaert et al., 1999), semi-explicit MPC (Goebel
and Allgöwer, 2015), and explicit MPC (Bemporad et al., 2002).

A further challenge of the MPC method is the need to tune its
parameters to the task at hand, greatly affecting the control profi-
ciency, robustness, and computational complexity of the controller.
The main tunable parameter in these regards is the prediction horizon,
which essentially controls how far into the future the MPC evaluates
the optimality of its solution. Further, the performance sensitivity to
the prediction horizon varies over the state space, and this obser-
vation motivated the adaptive-horizon MPC technique, in which the
prediction horizon is varied according to some criteria. There exist
several suggestions in the literature on how to design these criteria,
e.g. terminal conditions (Michalska and Mayne, 1993; Krener, 2018),
as decision variables of the OCP (Scokaert and Mayne, 1998), and
learning approaches (Gardezi and Hasan, 2018; Bøhn et al., 2021b).
Other parameters of the MPC scheme are also subject to tuning, e.g. dis-
cretization step size, objective functions, optimality tolerances, and
constraints. How to tune all these parameters for the MPC scheme is
a non-trivial question.
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Learning can be an important tool in assisting the tuning process of
he MPC scheme. In this paper, we propose the novel idea of tuning the
eta-parameters of the MPC scheme using reinforcement learning (RL).
y meta-parameters, we mean parameters that are non-differentiable
rt. the MPC outputs such as the prediction horizon and deciding when

he MPC should be computed. This separates our work from tuning of
ther non-meta-parameters such as cost functionals and the dynamics
odel, the tuning of which has previously been demonstrated in the

iterature (Amos et al., 2018; Gros and Zanon, 2019). By utilizing
L we get the benefits of learning from self-supervised closed-loop
ata, comparative data efficiency (since RL uses gradient information),
nd state-dependent optimization of the chosen parameters. It might
eem counter-productive to introduce a learning framework such as RL
o the MPC scheme from a computational complexity standpoint. We
uggest in this paper to use small neural networks (with a few thousand
arameters) to implement the RL components, and evaluating these
n a forward pass is computationally negligible compared to solving
nonlinear MPC problem. Thus, the potential savings from tuning the
PC scheme far outweigh the overhead from the tuning framework.

urther, there is no requirement that the parameter updates from RL
ust be computed in real-time or even on the control system itself, and

ould therefore be offloaded to a remote computer and communicated
ack to the control system whenever convenient.

This work extends our previous works (Bøhn et al., 2021a), in
hich we propose to learn when it is necessary to recompute the MPC

olution, and Bøhn et al. (2021b), in which we suggest learning the
ptimal prediction horizon of the MPC scheme as a function of the state.
ere, we propose a unified framework in which these meta-parameters,
s well as any other parameters (e.g. cost functionals) of the control
lgorithm are jointly optimized according to a user-configurable objec-
ive. In this paper, we set the objective to simultaneously maximize the
ontrol performance and reduce some measure of the computational
omplexity, i.e. resources that are spent as a product of control algo-
ithm calculation such as network transmission in networked control
ystems, CPU load, or energy consumption.

The control algorithm we propose consists of a recomputation policy
hat decides when the event-triggered MPC solution should be com-
uted, a state-feedback controller (i.e. the linear quadratic regulator
LQR)) that is applied on the predicted state trajectory produced by
he MPC in between MPC computations, and an RL algorithm that
ncorporates the parameters of these controllers and optimizes them
ccording to the specified objective. Although we can enforce input
onstraints, there is no mechanism to ensure that the state constraints
old in our control algorithm, and the constraint satisfaction properties
ill be determined by the behavior identified as optimal through RL.
hile we do not treat the topics of closed-loop stability and feasibility

uarantees in this paper, several works exist in the literature on how
uch guarantees can be given when combining RL and MPC (Aswani
t al., 2013; Fisac et al., 2018; Gros et al., 2020). We demonstrated
n our aforementioned works the effectiveness of learning these meta-
arameters in isolation, however, it is clear that the questions of
hen and how (wrt. its tunable parameters) to compute the control
lgorithm are related, and treating them separately fails to consider the
nteractions and indirect effects at play.

To the best of our knowledge, no other works optimize the described
eta-parameters (i.e. recomputation and prediction horizon) together

n a state-dependent manner. In Gardezi and Hasan (2018) the authors
se supervised learning to learn a state-dependent predictor for the
ptimal prediction horizon. Thus, they are required to in advance
onstruct a rich dataset of MPC solutions using numerous choices of
rediction horizons covering the whole state space, as opposed to
utomatically and iteratively converging to the optimal horizon as is
ossible with our RL approach. Other works propose learning a single
lobal (i.e. state-independent) value for MPC parameters including the
rediction horizon using derivative-free optimization (Bansal et al.,
017; Piga et al., 2019; Edwards et al., 2021; Makrygiorgos et al.,
2

2022). Of these, the most similar method to our own is the AutoMPC
framework presented in Edwards et al. (2021), a method where several
parameters of a path integral MPC such as cost functionals, prediction
horizon, and dynamics model can be learned in a configurable manner
using Bayesian optimization. Their framework is however not state-
dependent or event-triggered as ours is, and therefore does not support
optimizing the recomputation parameter. See also Mesbah et al. (2022)
for an overview of Bayesian optimization for MPC and its connection
to our RL-based approach. For event-triggered MPC, several methods
have been proposed for how to design the triggering policy (i.e. the
recomputation parameter) based on monitoring the tracking error and
designing hand-crafted rules derived from domain knowledge about
the system and the controller (Berglind et al., 2012; Li and Shi, 2014;
Yoo and Johansson, 2019). In Yoo and Johansson (2019) the authors
introduce an element of learning through a model predicting the un-
known system noise, which is used to adaptively set the triggering
threshold. However, compared to our framework these methods are
fundamentally manually designed and do not consider the interactions
of the recomputation parameter with the rest of the control algorithm’s
parameters in a multivariate optimization procedure.

The contributions of this paper can be summarized as:

1. We propose the novel idea of optimizing the meta-parameters
of the MPC scheme using RL, i.e. parameters that are non-
differentiable wrt. the MPC solution.

2. We develop a novel MPC formulation whose parameters are
optimized through RL according to a configurable objective. The
benefits of RL for MPC tuning include multivariate optimization,
state-dependency for tuned parameters, and automatic design of
data-collection.

3. By configuring the RL tuning objective to maximize control
performance and minimize a measure of computational com-
plexity we demonstrate considerable reduction in total compu-
tation time of the control algorithm while improving control
performance.

The rest of the paper is organized as follows. Section 2 introduces
the problem formulation and the necessary theoretical background for
our method. Section 3 then describes our method in detail, before we
in Section 4 demonstrate our method on a numerical example with the
inverted pendulum.

2. Preliminaries and problem formulation

We consider control problems on the form:

𝑥𝑡+1 = 𝑓 (𝑥𝑡, 𝑢𝑡), min
𝑥,𝑢

𝑇
∑

𝑡=0
𝐶(𝑥𝑡, 𝑢𝑡) (1)

here 𝑥 ∈ R𝑛𝑥 is the state vector, 𝑢 ∈ R𝑛𝑢 is the control input vector, the
unction 𝑓 defines the (discrete-time) system dynamics and 𝐶 defines
he cost objective to be minimized. The system runs in an episodic
ashion, beginning in some initial state 𝑥0 and terminating after some

predetermined time 𝑇 has passed. The control inputs are produced by
a parameterized control algorithm (or equivalently, a policy) 𝜋𝜃 , for
which we want to optimize the parameters 𝜃 in the sense of minimizing
the objective in (1) using RL. The defining characteristic of this work
is that some of these parameters are non-differentiable wrt. the control
algorithm’s outputs, which we will address further in Section 3.

For any statement that holds regardless of the time, we omit the
time subscript. To denote a contiguous sequence of points we use the
subscript 𝑥𝑡∶𝑡+𝑛, i.e. the sequence of states from time 𝑡 to time 𝑡 + 𝑛.

e denote the time dimension of variables internal to any controller
cheme with a subscript 𝑘. Finally, matrices are denoted with bold
ppercase letters, e.g. 𝐀.



E. Bøhn, S. Gros, S. Moe et al. Engineering Applications of Artificial Intelligence 123 (2023) 106211

𝑢

W
t
o

d
d

2.1. Control algorithm

2.1.1. Model predictive control
In this paper, we consider adaptive-horizon nonlinear state-feedback

discrete-time MPC (Allgöwer et al., 1999; Rawlings et al., 2017). The
MPC receives as arguments the current state of the plant, 𝑥̄𝑡, exogenous
input variables (e.g. reference signals, forecasts), 𝑝̂𝑡, as well as the
prediction horizon, 𝑁𝑡, for the OCP. We label the MPC control law
(for a given horizon selected by the horizon policy 𝜋N

𝜃N
, more on this

in Section 3.2.3) as:
(

𝑢M𝑡∶𝑡+𝑁𝑡−1, 𝑥̂𝑡∶𝑡+𝑁𝑡
)

= 𝜋M𝜃M (𝑥̄𝑡, 𝑝̂𝑡, 𝑁𝑡) (2)

where the first return value is the optimal input sequence, the second
return value is the predicted optimal state trajectory, and 𝜃M are the
tunable parameters of the MPC scheme. The OCP is formulated as:

min
𝑥,𝑢

𝑁𝑡−1
∑

𝑘=0
𝜌𝑘𝓁𝜃M (𝑥𝑘, 𝑢𝑘, 𝑝̂𝑘) + 𝜌𝑁𝑡𝑚𝜃M (𝑥𝑁𝑡 ), (3)

s.t. 𝑥0 = 𝑥̄𝑡 (4)

𝑥𝑘+1 = 𝑓𝜃M (𝑥𝑘, 𝑢𝑘, 𝑝̂𝑘) ∀ 𝑘 ∈ 0,… , 𝑁𝑡 − 1 (5)

ℎ𝜃M (𝑥𝑘, 𝑢𝑘) ≤ 0 ∀ 𝑘 ∈ 0,… , 𝑁𝑡 − 1 (6)

Here, 𝓁𝜃M is the stage cost, 𝑚𝜃M is the terminal cost, 𝜌 ∈ (0, 1]
is the discount factor, 𝑓𝜃M is the MPC dynamics model, and ℎ𝜃M is
the constraint vector. The stage cost evaluates the computed solution
locally up to 𝑁𝑡 − 1 steps, the terminal cost 𝑚𝜃M (𝑥𝑁𝑡 ) should therefore
provide global information about the desirability of the terminal state
of the computed trajectory, which helps the MPC avoid sub-optimal
performance. Therefore, the more accurate the terminal cost is wrt.
the total cost of the infinite horizon solution, the shorter horizons can
be used in the MPC scheme while still delivering good control perfor-
mance (Lowrey et al., 2018; Zhong et al., 2013). We therefore propose
to learn the value function of the MPC, which measures the total cost
accrued over an infinite horizon, and use it as the terminal cost. For
brevity, we refer the reader to Bøhn et al. (2021b), Lowrey et al. (2018),
Zhong et al. (2013) for more information on this topic. Note that while
we assume state-feedback for simplicity, the formulation could easily
be extended with an estimator such as the moving horizon estimator
which can be tuned in unison with the MPC (Nejatbakhsh Esfahani
et al., 2021).

We further employ a modification to the MPC framework called
event-triggered MPC, in which the OCP is not recomputed at every
time step, but rather a recomputation policy 𝜋c𝜃c decides at every time
step whether the OCP should be recomputed. Thus, not only the first
input of the MPC input sequence 𝑢M𝑡 is applied to the plant, but rather
a variable number of inputs 𝑢M𝑡∶𝑡+𝑛, 𝑛 < 𝑁𝑡 are applied sequentially at
the corresponding time instance until the recomputation policy triggers
the recomputation of the OCP at time step 𝑡 + 𝑛. We will detail this
recomputation policy in Section 3.2.1.

2.1.2. Note on feasibility
There is no explicit mechanism in our method that ensures the

recursive feasibility of the MPC scheme, or the stability of the con-
trol algorithm. However, the control algorithm and tuning framework
we present are agnostic wrt. the implementation of the underlying
controllers. As such, one could modify the MPC scheme by adding
e.g. assumptions on the form and magnitude of the disturbances, adding
terminal constraints, or entirely replacing the MPC scheme with more
complex formulations, e.g. robust MPC (Bemporad and Morari, 1999)
or tube MPC (Mayne et al., 2005).

The prediction horizon is one of the most important tunable pa-
rameters to achieve stable control with the MPC scheme (Grüne and
Pannek, 2011; Mayne et al., 2000). Learning approaches can therefore
be an important tool in identifying prediction horizons that yield a
stable control system. As discussed in Section 3.5, RL is an optimization
procedure that seeks optimality wrt. its reward function, therefore, if it
produces non-stabilizing solutions this would suggest that the learning
problem itself is ill-posed.
 s

3

2.1.3. The linear quadratic regulator
The LQR (Bertsekas, 1995) is a state-feedback controller that arises

as the optimal solution to unconstrained control problems where the
dynamics are linear, and the cost is quadratic. The role of the LQR in
our control algorithm is to act as the linear feedback correction of the
MPC, which can be applied to compensate for errors in the open loop
predicted state trajectory between MPC recomputations. To accomplish
this, we employ a time-varying LQR where the 𝐀𝑡 and 𝐁𝑡 matrices are
obtained from the MPC scheme as the linearization of the MPC model
each time it is computed1:

𝐀𝑡+1∶𝑡+𝑁𝑡 ,𝐁𝑡+1∶𝑡+𝑁𝑡 = linearize(𝑓𝜃M )
|

|

|𝑥𝑡+1∶𝑡+𝑁𝑡 ,𝑢𝑡∶𝑡+𝑁𝑡−1
(7)

𝐀,𝐁 = linearize(𝑓𝜃M )
|

|

|𝑥𝑠𝑡 ,𝑢
𝑠
𝑡

(8)

After the horizon end (i.e. when 𝑡 > 𝑖 + 𝑁𝑖 where 𝑖 is the time of last
MPC computation), we set the LQR dynamics matrices as the time-
invariant matrices corresponding to the steady state (equilibrium) of
the system 𝑥𝑠𝑡 , 𝑢

𝑠
𝑡 (8). The specific linearization procedure depends on

the implementation of the dynamics model in the MPC, i.e. discrete vs
continuous model and the accompanying discretization schemes. The 𝐐
and 𝐑 cost-weighting matrices are initialized from the MPC objective
as follows and then tuned further as described in Section 3.

𝐐 ←
𝜕2𝓁𝜃M (𝑥, 𝑢, 𝑝̂)

𝜕𝑥2
|𝑥𝑠0 ,𝑢

𝑠
0
, 𝐑 ←

𝜕2𝓁𝜃M (𝑥, 𝑢, 𝑝̂)
𝜕𝑢2

|𝑥𝑠0 ,𝑢
𝑠
0

(9)

In this paper, we focus on the discrete-time formulation of the LQR.
The LQR control law (12) consists of a state-feedback gain matrix
𝐊 that is derived from the dynamics matrices 𝐀 and 𝐁, the cost-
weighting matrices 𝐐, 𝐑 and 𝐍, and the solution 𝐒 to the discrete-time
Riccati-Eq. (10):

𝐒𝑘 = 𝐐𝑘 + 𝐀⊤𝑘 𝐒𝑘+1𝐀𝑘 − (𝐀⊤𝑘 𝐒𝑘+1𝐁𝑘 + 𝐑𝑘)
(𝐑𝑘 + 𝐁⊤𝑘 𝐒𝑘+1𝐁𝑘)

−1(𝐁⊤𝑘 𝐒𝑘+1𝐀𝑘 + 𝐑⊤𝑘 )
(10)

𝐊𝑘 = −(𝐑𝑘 + 𝐁⊤𝑘 𝐒𝑘+1𝐁𝑘)
−1(𝐁⊤𝑘 𝐒𝑘+1𝐀𝑘 + 𝐑⊤𝑘 ) (11)

L
𝑘 (𝑥𝑘) = 𝜋L𝜃L (𝑥𝑘) = −𝐊𝑘𝑥𝑘 (12)

e consider in this paper the vector 𝜃L containing all the elements of
he matrices 𝐐,𝐑,𝐍 as parameters of the LQR controller that can be
ptimized. The finite horizon LQR control problem is stated as:

min
𝑥,𝑢

𝑁𝑖−1
∑

𝑘=0

[

‖𝑥𝑘‖
2
𝐐𝑘

+ ‖𝑢𝑘‖
2
𝐑𝑘

+ 2𝑥⊤𝑘𝐍𝑘𝑢𝑘
]

, (13)

s.t. 𝐐𝑘 − 𝐍𝑘𝐑−1
𝑘 𝐍⊤𝑘 ≻ 0, 𝐑𝑘 > 0 (14)

𝑥𝑘+1 = 𝐀𝑘𝑥𝑘 + 𝐁𝑘𝑢𝑘 (15)

where 𝑁𝑖 is the optimization horizon and ‖𝑥𝑘‖2𝐐𝐤
= 𝑥⊤𝑘𝐐𝑘𝑥𝑘 is the

quadratic form. We also consider the infinite horizon problem, i.e. 𝑁𝑖 =
∞, in which the matrices are constant wrt. time and the discrete-time
algebraic Riccati equation (DARE) is solved at its stationary point,
yielding the solution 𝐒∞ and consequent gain matrix 𝐊∞.

2.2. Reinforcement learning

The system to be optimized in the RL framework (Sutton and Barto,
2018) is formulated as axMarkov decision process (MDP). The MDP is
defined by a state space 𝑠 ∈ , a set of actions 𝑎 ∈ , a transition
probability matrix  that governs the evolution of states as a function
of time and actions, i.e. 𝑠𝑡+1 =  (𝑠𝑡, 𝑎𝑡), a reward function 𝑅(𝑠, 𝑎) that
escribes the desirability of the states of the system, and finally, the
iscount factor 𝛾 ∈ [0, 1) (note the different limits from 𝜌) that describes

the relative importance of immediate and future rewards. Note that
rewards, 𝑅, are interchangeable with costs, 𝐶, through the substitution

1 Note that the MPC solver generates these matrices when solving the OCP,
o in practice they are free to obtain for this purpose.
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𝑅 = −𝐶 and changing maximization of the objective to minimization.
We will use rewards when discussing RL as this is customary in RL.

The objective in RL is to develop a policy 𝜋𝜃 , i.e. a function that
maps from states to actions (here parameterized by 𝜃) that maximizes
the expected discounted sum of rewards. In this paper, we use the
policy gradient algorithm proximal policy optimization (PPO) (Schul-
man et al., 2017). For brevity, we refer the reader to the original
paper (Schulman et al., 2017) for details on how PPO updates the
parameters to be optimized. In general, policy gradient algorithms up-
dates a parameterized stochastic policy directly in the parameter space,
by sampling actions from the policy’s action distribution and observing
the outcomes in terms of states and rewards. Parameters are adjusted to
increase the likelihood of actions leading to high rewards using gradient
ascent with gradients from the policy gradient theorem (Sutton and
Barto, 2018):

𝜃 ← 𝜃old + 𝜂∇𝜃𝐽 (𝜃) (16)

where

∇𝜃𝐽 (𝜃) = E

[ 𝑇
∑

𝑡=0
∇𝜃 log𝜋𝜃(𝑎𝑡|𝑠𝑡)𝐺(𝑡)

]

(17)

𝐺(𝑡) =
𝑇
∑

𝑡′=𝑡
𝛾 𝑡

′−𝑡𝑅(𝑠𝑡′ , 𝜋𝜃(𝑠𝑡′ )) (18)

3. Method

The standard modus operandi for optimizing the parameters of a
control algorithm using RL is as described in Section 2.2 to obtain the
policy gradient of the control algorithm (which gives information on
the sensitivity of the output to changes in its parameters), and give this
along with control trajectories (i.e. state transitions and accompanying
rewards from closed-loop trajectories) to the RL algorithm such that it
can iteratively improve the parameters to yield higher rewards.

However, since the meta-parameters that we seek to optimize are
non-differentiable wrt. the MPC’s outputs, the required information is
not readily available through the existing methods for obtaining the
policy gradient of the MPC (Gros and Zanon, 2019; Edwards et al.,
2021; Gros and Zanon, 2021). Therefore, we need to derive how these
meta-parameters affect the MPC’s outputs, and further how they inter-
act with each other and the other parameters of the control algorithm
(see Fig. 1). To this end, in Section 3.2 we argue for suitable choices
of probability distributions for the meta-parameters, and subsequently
derive the policy gradient of the control algorithm that includes the
MPC scheme and these meta-parameters.

3.1. A state space with the Markov property

For RL theory to hold for the control system we wish to optimize,
the state space needs to have the Markov property, i.e. future states
should not depend upon past states given the current state. This section
outlines such a Markovian state.

Consider the input sequence 𝑢M𝑖∶𝑖+𝑁𝑖−1 and the predicted state tra-
jectory 𝑥̂𝑖+1∶𝑖+𝑁𝑖 computed by the MPC at time 𝑖. As discussed in Sec-
tion 2.1.1, a variable number 𝑛 ∈ {0, 1,… , 𝑁𝑖 − 1} of these inputs
are applied to the plant. Since 𝑛 is not known a priori, the state
vector 𝑥 is not a sufficient state representation to yield the Markov
property for the control system consisting of the recomputation policy,
the horizon policy, and the MPC and LQR control laws. We define
an augmented state 𝑠 in (19) that contains the current plant state
and exogenous variables, labeled 𝑥̄𝑡 and 𝑝̂𝑡, the state of the system,
exogenous variables, and prediction horizon used when the last MPC
computation took place, labeled 𝑥̄𝑖, 𝑝̂𝑖, and 𝑁𝑖, as well as the number
of time steps since the MPC computation, 𝑡 − 𝑖:

[ ]⊤
𝑠𝑡 = 𝑥̄𝑖, 𝑝̂𝑖, 𝑁𝑖, 𝑥̄𝑡, 𝑝̂𝑡, 𝑡 − 𝑖 (19) a

4

Fig. 1. An overview of the control algorithm. Not shown here is the connection of
each policy’s output to the RL algorithm that updates the policy’s parameters.

where 𝑥̄𝑡 has evolved from 𝑥̄𝑖 according to the real system dynamics.
When the MPC problem is recomputed, the deterministic transition
𝑖 ← 𝑡, 𝑥̄𝑖 ← 𝑥̄𝑡, 𝑝̂𝑖 ← 𝑝̂𝑡, 𝑁𝑖 ← 𝑁𝑡 takes place. The MPC and MPC plus LQR
control laws deployed on the plant is then (20) and (21), respectively,
while the total control system is defined as (22), where the projℎ𝜃M
operator projects the control input onto the constraint vector ℎ𝜃M (6):

𝜋M𝜃M (𝑠𝑡) =

{

𝑢M𝑡−𝑖(𝑥̄𝑖, 𝑝̂𝑖, 𝑁𝑖) , if 𝑡 − 𝑖 < 𝑁𝑖

0 , otherwise
(20)

𝜋ML
𝜃M,L (𝑠𝑡) =

{

𝑢M𝑡−𝑖(𝑥̄𝑖, 𝑝̂𝑖, 𝑁𝑖) + 𝑢L𝑡 (𝑥̂𝑡−𝑖 − 𝑥̄𝑡) , if 𝑡 − 𝑖 < 𝑁𝑖

𝑢L𝑡 (𝑥
𝑠
𝑡 − 𝑥̄𝑡) , if 𝑡 − 𝑖 ≥ 𝑁𝑖

(21)

𝜋CS
𝜃M,L

(𝑠𝑡) = projℎ𝜃M
(

𝜋M𝜃M (𝑠𝑡) + 𝜋
ML
𝜃M,L (𝑠𝑡)

)

(22)

nd where 𝑥𝑠𝑡 is the steady state equilibrium of the system at time 𝑡.
ote that the policies in (20) and (21) with the state 𝑠 as input are the

ame policies defined in (2) and (12) where they select the required
lements from 𝑠.

ssumption 1. The time-varying exogenous input variables 𝑝̂𝑡 are
enerated by a Markovian process.

roposition 1. The state 𝑠 has the Markov property, i.e. 𝑃 (𝑠𝑡+1|𝑠𝑡)
𝑃 (𝑠𝑡+1|𝑠0∶𝑡)

roof. First, note that by definition from (1) 𝑥 is Markovian given 𝑢:

𝑥𝑡+1 = 𝑓 (𝑥𝑡, 𝑢𝑡) (23)

𝑃 (𝑥𝑡+1|𝑥𝑡, 𝑢𝑡) = 𝑃 (𝑥𝑡+1|𝑥0∶𝑡, 𝑢0∶𝑡) (24)

owever, the control law 𝜋CS
𝜃M,L

(22) that determines 𝑢𝑡 consists of 𝜋M
𝜃M

20) – which depends on the state 𝑥̄𝑖, exogenous variables 𝑝̂𝑖, and
he prediction horizon 𝑁𝑖 at the last MPC computation – and 𝜋M,L

𝜃ML
21), which depends on the current state 𝑥𝑡 and the (𝑡 − 𝑖)th element
f the MPC’s predicted state trajectory, and 𝑥𝑠𝑡 which depends on 𝑝̂𝑡.
herefore, with 𝑠 as defined in (19) we have:

(𝑢𝑡|𝜋CS𝜃M,L , 𝑠𝑡) = 𝑃 (𝑢𝑡|𝜋CS𝜃M,L , 𝑠0∶𝑡) (25)

inally, note that the MPC input sequence 𝑢M𝑖+1∶𝑖+𝑁𝑖−1 and the predicted
tate trajectory 𝑥̂𝑖∶𝑖+𝑁𝑖 follows from 𝜋M

𝜃M
and its arguments (which are

ll known), and as such does not need to be contained in 𝑠 for 𝑠 to be
arkovian:

𝑃 (𝑠𝑡+1|𝑠𝑡) = 𝑃 (𝑠𝑡+1|𝑠0∶𝑡) □ (26)

.2. Policies

We use the notation 𝜋𝜃(𝑠) to label a deterministic function of the
tate 𝑠 that is parameterized by 𝜃, and 𝜋𝜃(⋅|𝑠) to label the stochastic
ersion of the same function. The notation ⋅̃ signifies that the value
s drawn from the policy’s probability distribution. We denote a prob-
bility distribution by 𝑃 , and corresponding log probability by log𝑃 .
or brevity, we omit listing input-independent conditional variables as

rguments (e.g. covariance) of the distributions.
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3.2.1. The recomputation policy
The recomputation policy 𝜋c𝜃c decides on each step whether the MPC

roblem should be recomputed, or if the previously computed solution
s still acceptable. In other words, it is a binary variable that chooses
mong two different options: recompute or not. As such, we model it as
Bernoulli-distributed random variable, where the policy outputs the

ogit of the probability that the OCP should be recomputed (27), from
hich we can deduce the probability of not recomputing. We label the
utput of the recomputation policy 𝑐 ∈ {0, 1}, which has the probability

mass function (PMF) (28).

𝑤 = 1
1 + exp

(

−𝜋c𝜃c (𝑠)
) (27)

𝑃 c(𝑐|𝑠) =

{

1 −𝑤 , if 𝑐 = 0
𝑤 , if 𝑐 = 1

(28)

The log probability can be expressed as follows:

log𝑃 c(𝑐|𝑠) = 𝑐 log(𝑤) + (1 − 𝑐) log(1 −𝑤) (29)

Finally, the policy gradient of the recomputation policy is:

∇𝜃c log𝜋c𝜃c (𝑐|𝑠) = ∇𝜃c (𝑐 log(𝑤) + (1 − 𝑐) log(1 −𝑤)) (30)

= −𝑐∇𝜃c𝜋c𝜃c (𝑠)𝑤 + ∇𝜃c𝜋c𝜃c (𝑠)(1 − 𝑐) (−1 −𝑤) (31)

= ∇𝜃c𝜋c𝜃c (𝑠) (𝑐 − 1 −𝑤) (32)

3.2.2. The horizon policy
The MPC prediction horizon 𝑁 is a positive integer, which we

model with the GP-2 variant of the generalized Poisson distribution
(GPD) (Wang and Famoye, 1997). Other models we considered but
decided against include categorical classification models, as they do
not consider the ordinal information of the horizon variable, and the
standard Poisson distribution, which we found to be too inflexible due
to its mean and variance being equal. The horizon model outputs the
rate parameter of the GPD, 𝜇, as a function of 𝑠, while the dispersion
parameter 𝛼 is learned as an input-independent variable.

𝑃N(𝑁|𝑠) =
(

𝜇
1 + 𝛼𝜇

)N (1 + 𝛼𝑁)𝑁−1

𝑁!
exp

(

−
𝜇(1 + 𝛼𝑁)
1 + 𝛼𝜇

)

(33)

E(𝑁) = 𝜇 (34)

V(𝑁) = 𝜇(1 + 𝛼𝜇)2 (35)

In this model, 𝛼 is restricted according to 1+𝛼𝜇 > 0 and 1+𝛼𝑁 > 0.
o address these constraints, we introduce two hyperparameters 𝑁min
nd 𝑁max that correspond to the minimum and maximum horizons that
he MPC should operate with. To constrain the rate parameter 𝜇 we
pply the hyperbolic tangent function, denoted tanh ∈ [−1, 1], and then
inearly scale it to the limits defined by 𝑁min and 𝑁max. Finally, the
earned 𝛼 parameter is clipped according to the restrictions outlined
bove:
N
𝜃N
(𝑠) = scale

(

tanh(𝜇), 𝑁min, 𝑁max
)

(36)

𝛼new = max
(

𝛼,− 1
𝑁max

)

(37)

he log probability of the GPD is:

og𝑃N(𝑁|𝑠) =𝑁 log
(

𝜇
1 + 𝛼𝜇

)

+ (𝑁 − 1) log(1 + 𝛼𝑁)

−
𝜇(1 + 𝛼𝑁)
1 + 𝛼𝜇

− log(𝑁!)
(38)

nd the policy gradient of the horizon policy follows by application of
he gradient and some elementary calculus:

𝜃N log𝜋N
𝜃N
(𝑁|𝑠) = ∇𝜃N𝜋N𝜃N (𝑠)

(

𝑁
𝜋N
𝜃N
(𝑠)

+

𝛼
N +

1 + 𝛼𝑁 + 𝜋N
𝜃N
(𝑠)(𝛼(1 +𝑁 + 𝛼𝑁) + 1)
N N 2

) (39)
1 + 𝛼𝜋
𝜃N
(𝑠) 1 + 2𝛼𝜋

𝜃N
(𝑠) + (𝛼𝜋

𝜃N
(𝑠))

5

There are several techniques to sample from this distribution
(Demirtas, 2017). We favor the normal approximation sampling tech-
nique for its low run-time complexity: With a sufficiently high rate
parameter (i.e. 𝜇 ⪆ 10), the GPD is approximately normally distributed
with mean and variance as given in (34) and (35):

𝜋N
𝜃N
(𝑁|𝑠) ≈ clip(⌊𝜇 +

√

𝜇(1 + 𝛼𝜇)2𝜁 + 0.5⌋, 𝑁min, 𝑁max), 𝜁 ∼  (0, 1)

(40)

When optimizing the horizon policy in isolation (that is, not to-
ether with the rest of the control system) we find that faster con-
ergence and more stable solutions are obtained by learning on an
ugmented MDP where every action selected by the policy is repeated
> 1 times. Hence the policy only senses every 𝑑’th state, and the

ewards it receives are the cumulative reward over every step of the
ontrol system in the 𝑑 steps. This technique is known as ‘‘frame-skip’’
n RL and is an effective method to enhance learning for problems
ith discrete actions, see e.g. learning to play atari-games (Mnih et al.,
015), but also for continuous control (Kalyanakrishnan et al., 2021).
hile the exact mechanisms behind the improvements stemming from

rame-skipping is not fully understood, it is clear that in certain prob-
ems it increases the signal-to-noise ratio of every data sample, which
implifies the credit assignment problem. When using 𝑑 > 1 during
xploration, we use 𝑑 = 1 during exploitation (evaluation) as this
ncreases performance. We find that the horizon policy is not sensitive
o the exact value of 𝑑, and all values in 𝑑 ∈ [2, 𝑇 ] generally accelerate
earning. Finally, note that when optimizing the horizon policy and the
ecomputation policy together, the latter electing to not recompute the
PC will naturally enforce a form of frame-skipping.

.2.3. The controller policies
To ensure sufficient exploration we formulate a stochastic version

f the MPC and the MPC plus LQR control laws, modeling them as
aussian random variables (41). The mean is then the output of the
ontrol laws, and the covariance of each controller is a learned input-
ndependent variable of the RL algorithm. To be concise, we use ∗ in
lace of the superscript for the control laws as in (41). We will first
evelop these policies for the MPC scheme with a given horizon 𝑁 ,
here the output is made stochastic as follows:
∗
𝜃∗ (𝑢

∗
|𝑠,𝑁) = 

(

𝜋∗𝜃∗ (𝑠,𝑁), 𝛴∗) , ∗ ∈ {M,ML} (41)

𝑃 u(𝑢∗|𝑠,𝑁) =
exp

(

− 1
2‖𝑢

∗ − 𝜋∗𝜃∗ (𝑠,𝑁)‖2
𝛴∗−1

)

√

(2𝜋)𝑛𝑢det(𝛴∗)
(42)

Note that the argument 𝑁 to the policies is redundant (and thus
these policies are equivalent to those in Section 3.1), as 𝑁𝑖 in 𝑠 will
always reflect the latest 𝑁 that is decided by the horizon policy ahead
of control law calculation. We use this argument here to clarify the
derivations. The log probability of the Gaussian distribution and the
policy gradient is:

log𝑃 u(𝑢∗|𝑠,𝑁) = − 1
2

(

‖𝑢∗ − 𝜋∗𝜃∗ (𝑠,𝑁)‖2
𝛴∗−1

+𝑛𝑢 log(2𝜋) + log(det(𝛴∗))
) (43)

∇𝜃∗ log𝜋∗𝜃∗ (𝑢
∗
|𝑠,𝑁) = 𝛴∗−1 (𝑢∗ − 𝜋∗𝜃∗ (𝑠,𝑁))∇𝜃∗𝜋∗𝜃∗ (𝑠,𝑁) (44)

Then, note that the adaptive-horizon MPC control law is a distribu-
ion of the MPC schemes over the range of prediction horizons, with
eights 𝑃N assigned by the horizon policy. We first query the horizon
olicy for which prediction horizon to employ, and then the solution
o the MPC problem (3) is computed with the selected horizon:
MN
𝜃M,N

(𝑠) = 𝜋M𝜃M
(

𝑥𝑡, 𝑝̂𝑡, 𝜋
N
𝜃N
(𝑠)

)

(45)

here the superscript 𝑁 indicates that this is the adaptive-horizon MPC
olicy. Using the indicator function:

𝐴 =

{

1, if 𝐴
(46)
0, otherwise
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we can formulate the probability distributions and log distributions for
the stochastic adaptive-horizon control policies:

𝑃Nu(𝑢∗|𝑠) =
𝑁max
∑

𝑁=𝑁min

𝑃N(𝑁|𝑠)𝑃 u(𝑢∗|𝑠,𝑁), ∗∈ {MN,MLN} (47)

log𝑃Nu(𝑢∗|𝑠) = log

( 𝑁max
∑

𝑁=𝑁min

𝑃N(𝑁|𝑠)𝑃 u(𝑢∗|𝑠,𝑁)

)

(48)

=
𝑁max
∑

𝑁=𝑁min

1𝑁=𝑁̃
(

log𝑃N(𝑁|𝑠) + log𝑃 u(𝑢∗|𝑠,𝑁)
)

(49)

= log𝑃N(𝑁̃|𝑠) + log𝑃 u(𝑢∗|𝑠, 𝑁̃) (50)

where the log operator can be applied inside the summation over the
rediction horizons in (49), because we know the value 𝑁̃ of the

horizon variable 𝑁 that is sampled in advance of the calculation of
the control laws (Friedman et al., 2001).

3.2.4. The complete policy
We collect all the parameters of the meta-parameter-deciding re-

computation and horizon policies described above, and the parameters
of the controllers into a single parameter vector 𝜃 =

[

𝜃c, 𝜃N, 𝛼, 𝜃M, 𝜃L,
𝛴M, 𝛴ML]⊤, and define the complete policy 𝜋𝜃 , whose input is the state

and output is the action 𝑎 =
[

𝑐,𝑁, 𝑢M, 𝑢ML]

Section 3.2.1 presents the recomputation problem of the MPC and
he policy that decides when to compute it. We now view the re-
omputation policy 𝜋c𝜃c as selecting the active controller between the
wo control laws. It is then clear that 𝜋𝜃 is a mixture distribution
etween the Gaussian control policies where the weights of the mixture
re assigned by the Bernoulli recomputation policy 𝜋c𝜃c . We label the
robability distribution of the complete policy 𝜋𝜃 as 𝑃 a and define it
nd the log probability as follows:

𝑃 a(𝑎̃|𝑠) = 𝑃 c(0|𝑠)𝑃Nu(𝑢̃MLN
|𝑠) + 𝑃 c(1|𝑠)𝑃Nu(𝑢̃MN

|𝑠) (51)
log𝑃 a(𝑎̃|𝑠) = 1𝑐=0

(

log𝑃 c(0|𝑠) + log𝑃Nu(𝑢̃MLN
|𝑠)

)

+
1𝑐=1

(

log𝑃 c(1|𝑠) + log𝑃Nu(𝑢̃MN
|𝑠)

) (52)

= 1𝑐=0
(

log𝑃 c(0|𝑠) + log𝑃N(𝑁̃𝑖|𝑠) + log𝑃 u(𝑢̃ML
|𝑠, 𝑁̃𝑖)

)

+
1𝑐=1

(

log𝑃 c(1|𝑠) + log𝑃N(𝑁̃|𝑠) + log𝑃 u(𝑢̃M|𝑠, 𝑁̃)
)

(53)

where we again used the fact that we know the values of the sampled
variables 𝑐, 𝑁̃ to take the logarithm of the sums in (52) and (53), and
𝑁̃ represents the output of the horizon policy at the current step 𝑡 in
the case the recomputation policy signals to recompute the MPC. The
policy gradient of the complete policy is then:

∇𝜃 log𝜋𝜃(𝑎̃|𝑠) = ∇𝜃 log𝑃 a(𝑎̃|𝑠) (54)

= 1𝑐=0

(

∇𝜃c log𝜋c𝜃c (0|𝑠) + ∇𝜃N log𝜋N
𝜃N
(𝑁̃𝑖|𝑠)

+∇𝜃M,L log𝜋ML
𝜃M,L

(𝑢̃ML
|𝑠, 𝑁̃)

)

+

1𝑐=1

(

∇𝜃c log𝜋c𝜃c (1|𝑠) + ∇𝜃N log𝜋N
𝜃N
(𝑁̃|𝑠)

+∇𝜃M log𝜋M
𝜃M

(𝑢̃M|𝑠, 𝑁̃)
)

(55)

= 1𝑐=0

(

∇𝜃c log𝜋c𝜃c (0|𝑠) + ∇𝜃N log𝜋N
𝜃N
(𝑁̃𝑖|𝑠) + (𝛴ML)−1

(𝜋ML
𝜃M,L

(𝑠, 𝑁̃) − 𝑢̃ML)(∇𝜃M𝜋M𝜃M (𝑠, 𝑁̃𝑖) + ∇𝜃L𝜋L𝜃L (𝑠))
)

+

1𝑐=1

(

∇𝜃c log𝜋c𝜃c (1|𝑠) + ∇𝜃N log𝜋N
𝜃N
(𝑁̃|𝑠)

+(𝛴M)−1(𝜋M
𝜃M

(𝑠, 𝑁̃) − 𝑢̃M)∇𝜃M𝜋M𝜃M (𝑠, 𝑁̃)
)

(56)

ith this policy one can optimize the two meta-parameters we employ,
s well any other parameter of the MPC and LQR controllers jointly, by
roviding the gradient of these controllers wrt. the parameters. In the
L context, we show how one can obtain these gradients for the LQR
ontroller in Section 3.3. For the gradient of the MPC see e.g. Gros and

anon (2019, 2021).

6

.3. Optimizing LQR with reinforcement learning

.3.1. The time-invariant case
To apply the policy-gradient theorem to tune the LQR, we need to

ompute the gradients of the 𝐊-matrix wrt. the 𝐐, 𝐑 and 𝐍 matrices.
s Eqs. (10) and (11) show, the feedback matrix 𝐊 is only implicitly
efined in terms of the these matrices, and so direct differentiation of
qs. (10) and (11) is not possible. Since we obtain the system matrices
and 𝐁 directly from the MPC scheme and they have a clear purpose in
aking the MPC and LQR objectives compatible, we assume that they

re fixed wrt. 𝐐,𝐑,𝐍 such that ∇𝐐,𝐑,𝐍𝐀 = ∇𝐐,𝐑,𝐍𝐁 = 0:

ssumption 2. The weighting matrices {𝐐,𝐑,𝐍} values are such that
he DARE has a solution 𝐒∞.

roposition 2. We flatten the matrices 𝐒,𝐊,𝐐,𝐑 and 𝐍 into vectors, and
rganize them as follows: 𝑦 = {𝐒,𝐊} and 𝑧 = {𝐐,𝐑,𝐍}, such that the DARE
nd 𝐊-matrix equations can be written on the vector form 𝐹 (𝑦, 𝑧) = 0. The
radient of 𝐊 wrt. the weighting matrices 𝐐,𝐑,𝐍 can then be found as:

𝜕𝑦
𝜕𝑧

= − 𝜕𝐹
𝜕𝑦

−1 𝜕𝐹
𝜕𝑧

= ∇𝐐,𝐑,𝐍𝐒∞,𝐊∞ (57)

Proof. We rewrite (10)–(11) on the general vector form 𝐹 (𝑦, 𝑧) = 0
here 𝑦 = {𝐒,𝐊} and 𝑧 = {𝐐,𝐑,𝐍}.
⊤𝐒𝐀 − 𝐒 − (𝐀⊤𝐒𝐁 + 𝐍)𝐊 +𝐐 = 0 (58)

(𝐁⊤𝐒𝐁 + 𝐑)𝐊 − (𝐁⊤𝐒𝐀 + 𝐍⊤) = 0 (59)

We then apply the implicit function theorem (IFT) which states that:

𝜕𝐹
𝜕𝑦

𝜕𝑦
𝜕𝑧

+ 𝜕𝐹
𝜕𝑧

= 0 ⇒
𝜕𝑦
𝜕𝑧

= − 𝜕𝐹
𝜕𝑦

−1 𝜕𝐹
𝜕𝑧

(60)

These gradients are easily obtained with automatic differentiation
software. □

Assumption 2 holds if 𝐐 − 𝐍𝐑−1𝐍⊤ ≻ 0 and 𝐑 > 0, and further it
is required that the symplectic pencil of the problem has eigenvalues
sufficiently far from the unit circle, which is satisfied if the pair (𝐀,𝐁)
s stabilizable and the pair (𝐀, 𝐐) is detectable (Laub, 1979). These
onditions can be ensured by estimating the gradients as described
bove, and then solving axsemidefinite program (SDP) using the es-
imated gradients subject to these constraints. However, for simplicity
nd to avoid constrained optimization, we set 𝐍 = 0, simplifying the
onstraints on the positive (semi)-definiteness to 𝐐 ≻ 0 and 𝐑 > 0.
urther, we write 𝐐 and 𝐑 in terms of their Cholesky decompositions:
= 𝐐⊤

𝐶𝐐𝐶 , 𝐑 = 𝐑⊤𝐶𝐑𝐶 , and let the RL algorithm adjust the elements
f 𝐐𝐶 and 𝐑𝐶 .

.3.2. Time-varying gradients
In what follows we will assume 𝐍 = 0, for simplicity of the

erivation and expressions (and the constraint reasons outlined above).
e find the gradients with respect to 𝑝, where 𝑝 is an arbitrary scalar

lement of the 𝐐 and 𝐑 matrices. The full gradients ∇𝐐,𝐑𝐊𝑘 can then be
ound by solving (63) for each parameter of 𝐐 and 𝐑 and arranging the
esults into the appropriate matrix structure. The derivations involve
epeated application of the chain rule and the following relation for
he gradient of the matrix inverse, where we define 𝐄 for convenience:

𝐄𝑘 = 𝐑 + 𝐁⊤𝑘 𝐒𝑘+1𝐁𝑘, ∇𝑝𝐄
−1 = −𝐄−1∇𝑝𝐄𝐄−1 (61)

∇𝑝𝐒𝑘 = ∇𝑝𝐐 + 𝐀⊤𝑘 (−∇𝑝𝐒𝑘+1𝐁𝑘𝐄
−1
𝑘 𝐁⊤𝑘 𝐒𝑘+1𝐀𝑘

+𝐒𝑘+1𝐁𝑘(𝐄−1
𝑘 ∇𝑝𝐄𝑘𝐄−1

𝑘 𝐁⊤𝑘 𝐒𝑘+1𝐀𝑘
−𝐄−1

𝑘 𝐁⊤𝑘∇𝑝𝐒𝑘+1𝐀𝑘) + ∇𝑝𝐒𝑘+1𝐀𝑘)
(62)

∇𝑝𝐊𝑘 = −𝐄−1
𝑘 ∇𝑝𝐄𝑘𝐄−1

𝑘 𝐁⊤𝑘 𝐒𝑘+1𝐀𝑘 + 𝐄−1
𝑘 𝐁⊤𝑘∇𝑝𝐒𝑘+1𝐀𝑘 (63)
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Algorithm 1: Control Algorithm with Learning
while Running do

Initialize episode: 𝑥0, 𝑝̂0
Compute initial MPC solution:
𝑢M0∶𝑁max−1

, 𝑥̂1∶𝑁max
= 𝜋M

𝜃M
(𝑥0, 𝑝0, 𝑁max)

Execute first MPC input: 𝑢M0
Calculate LQR system matrices: 𝐀1∶𝑁max

,𝐁1∶𝑁max

for 𝑡 = 1, 2,… , 𝑇 do
Measure system state: 𝑥̄𝑡
if 𝜋c𝜃c (𝑐𝑡 | 𝑠𝑡) draws 𝑐𝑡 = 1 then

Compute MPC solution:
𝑢̃MN
𝑡∶𝑡+𝑁𝑡−1

, 𝑥̂𝑡+1∶𝑡+𝑁𝑡 = 𝜋MN
𝜃MN (𝑢̃

MN
|𝑠𝑡)

Execute control input: 𝑢̃MN
𝑡

Calculate LQR system matrices: 𝐀𝑡∶𝑡+𝑁𝑡 ,𝐁𝑡∶𝑡+𝑁𝑡
Update last computation states: 𝑖 ← 𝑡

else
Compute input: 𝑢̃CS𝑡 = 𝜋CS

𝜃M,L,N
(𝑢CS𝑡 |𝑠𝑡)

Execute input: 𝑢̃CS𝑡
Collect data:  ← (𝑠𝑡, 𝑎̃𝑡, 𝑅(𝑠𝑡, 𝑎̃𝑡), 𝑠𝑡+1)
if size() = 𝑍 then

for 𝑒 = 1,… ,NumEpochs do
for  ∈  do

Evaluate PPO objective over minibatch 
Update parameters (16)

Empty dataset:  = {}

Note that these gradients could easily be extended with time-
arying 𝐐 and 𝐑 matrices. The time-varying gradients of the LQR policy
re then as follows:

∇𝐐,𝐑𝐊𝑘 =

⎧

⎪

⎨

⎪

⎩

∇𝑝𝐊∞
|

|

|𝑝∈𝐐,𝐑
, if 𝑘 ≥ 𝑁𝑖

∇𝑝𝐊𝑘
|

|

|𝑝∈𝐐,𝐑
, otherwise

(64)

∇𝜃L𝜋L𝜃L (𝑠𝑡) = ∇𝐐,𝐑𝐊𝑡−𝑖(𝑥̂𝑡 − 𝑥̄𝑡) (65)

3.4. Summary of control algorithm with learning

The complete control algorithm is outlined in Algorithm 1. This
shows the control algorithm in the exploration phase, but the ex-
ploitation phase is identical with the two exceptions: (1) there is no
data collection (and therefore no parameter updates), and (2) we use
the deterministic version (i.e. the mode of the probability distribu-
tion) of all policies except for the recomputation policy. The Bernoulli
distribution of the recomputation policy does not generally tend to
quasi-determinism as exploration settles, unlike the other policies. As
such, we find that the deterministic version of this policy has worse
control performance and less consistency in the plant response than the
stochastic version which we are in fact optimizing the response for.

The system to be optimized runs in an episodic fashion, and every
𝑍 steps the RL algorithm updates the parameters of the control system.

3.5. Reward function

The RL reward function codifies the behavior that the control al-
gorithm is designed to exhibit, wrt. stability, control performance, and
computational complexity. As RL is a trial-and-error based optimization
approach, the control algorithm will necessarily have to attempt risky
maneuvers and experience the consequences in order to learn how
to control the system. However, with a feasible composition of the
learning problem in terms of hyperparameters and expressive power
of the learned components, the end result of the converged behavior
should be stable and yield good control performance. A failure to
7

achieve this would therefore indicate a misalignment between choice
of reward function, and the control design requirements. With this in
mind, we formulate a reward function on the following form:

𝑅(𝑠𝑡, 𝑎𝑡) = 𝑅𝓁(𝑠𝑡+1) + 𝜆ℎ(𝑇 − 𝑡)𝑅ℎ(𝑠𝑡+1) + 𝜆𝑐𝑅𝑐 (𝑎𝑡)𝑅𝑁 (𝑎𝑡) (66)

Here, 𝜆ℎ and 𝜆𝑐 are weighting factors that represents the relative
mportance of the different terms. 𝑅𝓁 is the control performance term

that incentivizes the RL policy to achieve good control performance.
We set it to be the same as the stage cost from the MPC objective,
i.e. 𝑅𝓁 = −𝓁 but this is not a strict requirement. 𝑅ℎ is a term that
indicates whether any system constraints are violated. If using hard
constraints as is the case in this paper, this term is binary and is further
weighted by 𝑇 − 𝑡, that is, the number of time steps remaining in the
episode, since the episode is prematurely terminated if any constraints
are violated. If the system to be controlled has soft constraints, the 𝑅ℎ
term could be made continuous. The 𝑅𝑐 term indicates whether the
MPC was computed at the current step (𝑅𝑐 = 1), and as such it should
reflect the relative computational complexity of the two modes of the
control system. Finally, 𝑅𝑁 represents the computational complexity
of the MPC as a function of the prediction horizon 𝑁 . We assume that
the computational complexity grows linearly in the prediction horizon,
i.e. 𝑅𝑁 (𝑁𝑡) = 𝑁𝑡, as a lower bound for the true complexity. We favor
a lower bound as this would bias the RL policy towards better control
performance rather than lower computation. The relationship between
the prediction horizon and the computational complexity depends upon
the algorithms used in the MPC implementation. We employ an inte-
rior point method, which under the assumption of local convergence
and a guess of an initial solution that is reasonable, generally yields
linear complexity (Rao et al., 1998), while other methods such as
active set methods typically yield quadratic growth in computational
complexity (Lau et al., 2015).

3.6. Initialization of the learning procedure

How to initialize the control algorithm, that is, defining its behavior
before any learning takes place is a question that has several valid
answers. One could favor the most computationally expensive initial-
ization, i.e. compute MPC every step with the maximum horizon, which
without any prior knowledge about the task would be the ‘‘safest’’
initialization that is most likely to give the best control performance.
This is however not necessarily the initialization that would facilitate
the learning process most optimally, and might trap the learned com-
ponents in local minima. To simplify the learning problem one might
therefore instead favor initializing the components in the center of
their operating range and with high entropy (wrt. its output) such that
exploration is maximal.

We offered some guidance in the case of the LQR in Section 2.1.3,
i.e. the LQR should be initialized such that it is compatible with the
MPC. We view the purpose of the recomputation policy as finding
instances where comparable (or better) control performance can be
achieved without computing the MPC, and as such, we choose to
initialize it to emulate the MPC paradigm and with a high probability
elect to compute the MPC. For the horizon policy, we initialize it
equal to the best performing fixed horizon MPC scheme. Initializing the
policies can be done by adjusting the bias terms of the policy outputs:

𝜋c𝜃c ← − log
(

1
𝑐init

− 1
)

(67)

𝜋N
𝜃N

← tanh−1
(

(𝑁max −𝑁min)(𝑁init − (−1))
1 − (−1)

+𝑁min

)

(68)

4. Numerical results

This section illustrates the proposed control method as outlined
in Section 3 on the simulated inverted pendulum system. Addition-
ally, to aid in highlighting the contributions of the different meta-
parameters of the control algorithm we also present experiments for
each meta-parameter in isolation.
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We set 𝑁min = 1 and 𝑁max = 40, and note that this horizon
oes not cover a full swing-up maneuver of the pendulum (requiring
> 100). The maximum horizon is chosen to emulate the effects of a

omputationally limited embedded hardware platform. The weighting
erms of the reward function (66) are set to 𝜆ℎ = −10 and 𝜆𝑐 = 10−2. We
hose the value of 𝜆ℎ by considering the total control cost of a typical
pisode, and then setting the value of 𝜆ℎ such that violating a constraint
thus ending the episode) will give a higher total cost than continuing
he trajectory within the constraints until episode end. Finally, 𝜆𝑐 was
et such that the computation term account for approximately 8% of
he total cost of the standard MPC scheme (i.e. MPC computed at
very step) with the highest prediction horizon. This value is significant
nough to leave some room for optimization, while not being so large
hat it dominates the objective and makes gains trivial to achieve by
imply reducing the computation.

While our method supports tuning parameters internal to the MPC
e.g. cost functionals), doing so requires reevaluating the log-
robabilities and recomputing the OCP for every data sample after
very parameter update (when using minibatches or several passes
ver a dataset). This adds considerable computation, and optimization
f these parameters with RL has been successfully demonstrated in
revious works (Amos et al., 2018; Gros and Zanon, 2021). Therefore,
ince this paper focuses on optimizing the meta-parameters of the MPC
cheme (that is, the prediction horizon and when to compute) we do
ot tune any parameters internal to the MPC in this example. We do
owever optimize the parameters of the LQR to illustrate the concept,
s the LQR is less costly to evaluate. Finally, we omit learning the
alue function of the MPC, as it adds considerable complexity to the
xperiments, and was found to not add much benefit for control of
imilar systems in Bøhn et al. (2021b).

.1. The inverted pendulum system

The inverted pendulum system is a classic control task in which a
endulum, consisting of a rigid rod with a mass at the end, is mounted
n top of a cart that is fixed on a track. The control system exerts
horizontal force on the cart, which moves the cart back and forth

n the track, which subsequently swings the pendulum. The control
bjective is to stabilize the pendulum in the up-position and position
he cart at the position reference while respecting the constraint that
he cart’s position is limited by the physical size of the track. The
ynamics of the system are highly nonlinear, and further, the system
s unstable, meaning that a controller is necessary to guide the system
o stable conditions and then to maintain the stability. We perturb the
arameters of the MPC dynamics model such that its dynamics differ
rom the plant dynamics, as shown in Table 1, and thus the LQR is
useful addition to correct for prediction errors in between the MPC

omputations. The state 𝑥 consists of the cart position 𝜓 and velocity
, pendulum angle 𝜙, and angular velocity 𝜔.

Each episode lasts a maximum of 150 steps (i.e. T=150), or until
he position constraint (73) is violated. We sample initial conditions
ccording to (72), and a position reference (71) that is redrawn every
0 steps, where  is the uniform distribution. The MPC objective is
efined as (74), i.e. minimize the kinetic energy of the system and the
istance of the cart to the position reference, while maximizing the
otential energy.

𝑣̇ =
𝑚𝑔 sin𝜙 cos𝜙 − 7

3

(

𝑢 + 𝑚𝑙𝜔2 sin𝜙 − 𝜇𝑐𝑣
)

− 𝜇𝑝𝜔 cos𝜙
𝑙

𝑚 cos2 𝜙 − 7
3𝑀

(69)

𝜔̇ = 3
7𝑙

(

𝑔 sin𝜙 − 𝑣̇ cos𝜙 −
𝑢𝑝𝜔
𝑚𝑙

)

, 𝜙̇ = 𝜔, 𝜓̇ = 𝑣 (70)

𝑥 = [𝜓, 𝑣, 𝜙, 𝜔]⊤ , 𝜓𝑟(𝑡) ∼  (−1, 1) (71)

𝑥0 ∼ [0, (−1, 1), (−𝜋, 𝜋), (−1, 1)]⊤ (72)

𝑥𝑠𝑡 =
[

𝜓𝑟(𝑡), 0, 0, 0
]⊤ , −5 ≤ 𝑢𝑡 ≤ 5, −2 ≤ 𝜓𝑡 ≤ 2 (73)

(𝑥𝑡, 𝑢𝑡, 𝑝̂𝑡) = Ek − 10Ep + 10(𝜓𝑡 − 𝜓𝑟(𝑡))2 + 0.1(𝑢𝑡 − 𝑢𝑡−1)2 (74)
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Table 1
Parameters of the inverted pendulum system.

Name Plant MPC Description

𝑚 0.1 0.2 Mass of pendulum
𝑀 1.1 1.5 Mass of cart and pendulum
𝑔 9.81 9.81 Gravitational constant
𝑙 0.25 0.25 Half the length of the pendulum
𝜇𝑐 0.01 0.01 Friction coefficient between track and cart
𝜇𝑝 0.001 0.001 Friction coefficient between pendulum and cart
𝛥𝑡 0.04 0.04 Discretization step size in seconds

Fig. 2. Total cost over the evaluation set for the MPC as a function of fixed horizons
and fixed recomputation schedules. The minimum is found at horizon 𝑁 = 31 and
recompute every step with a cost of 781.

4.2. Training and evaluation

The RL hyperparameters, code used to train and evaluate models,
as well as the models presented in this section are available at Bøhn
(2021). For the horizon experiment we use a frame-skip of 𝑑 = 10, and
for the other experiments we use a varying 𝑑 ∈ [1, 2, 3, 4] that is drawn
at the start of every episode (with 𝑑 = 1 when evaluating).

We initialize the recomputation policy using (67) to compute the
MPC with 90% probability, thus within any two time steps there is a
99% probability that the MPC is computed. It therefore initially mimics
the traditional MPC scheme closely. The horizon policy is initialized at
the best performing fixed-horizon (Fig. 2), i.e. 𝑁 = 31, using Eq. (68).

To evaluate the performance of the control system governed by the
RL policy, we construct a ‘‘test-set’’ consisting of 25 episodes where all
stochastic elements are drawn in advance (i.e. initial conditions and
position references) such that the episodes are consistent across evalu-
ations. This gives us an objective way to compare and order policies on
their performance, and to compare against the MPC baselines. We set
the cost objective (1) 𝐶 = −𝑅, and evaluate models based on the total
sum of costs over the episodes in the test-set.

Moreover, for every experiment, we report the average over five
random initial seeds (referred to as models in the subsequent discus-
sion), which impact the initializations of neural networks (NNs) and
the randomness in exploration and episodes. Fig. 2 shows the total cost
of the control algorithm baselines as a function of a static prediction
horizon and recomputation schedule. The minimum cost is achieved
with a prediction horizon of 𝑁 = 31 and a schedule of recomputing
at every step. It is important to note that while this figure indicates
that the optimization landscape as a function of these two variables
is monotonic and amenable to optimization, the reward landscape as
a function of the parameters 𝜃 (which in this example consists of the
parameters of the LQR and the parameters of the recomputation and
horizon NNs) is likely very different — containing many valleys and
hills to overcome in order to minimize the cost objective.
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Fig. 3. Distribution of prediction horizons and steps between MPC computations selected by the best performing policy on the evaluation test-set.
Table 2
Ablation analysis: We take the best-performing policy and alter one
aspect at a time, observing its effect on the cost.
Scenario Change

Default LQR tuning +1.95%
Max horizon 31 +13.41%
Recompute at the average frequency (every 𝑡 = 4) +35.45%

4.3. Inverted pendulum results and discussion

The results of the experiments are presented in Figs. 3 and 4, and
Table 2. When reporting the cost of the tuned system, we average over
the best-performing policy of each model, as well as over five different
seeds for the stochastic recomputation policy. When describing learned
behavior as in Fig. 3 however, we use the best performing policy and
one specific seed. We summarize our main findings as follows:

Learning improves both computational complexity and control
performance. The RL framework we propose is able to improve upon
the total objective by 21.5%, which interestingly is not only due to
reductions in the computation term (70.7%) but also a sizable im-
provement on the control performance objective (18.4%). Fig. 4 shows
that the recomputation meta-parameter is the most impactful, reaching
a cost of around 700 when optimized by itself, which is about 13%
higher than the converged value of the optimized complete policy.
It also shows why we favor biasing towards higher computation, as
while initializing the recomputation policy to compute the MPC with a
10% probability reaches the same asymptotic performance as the 90%
initialization, it is the only policy we trained that intermittently violates
the constraint. Because we initialize the learning problem at a best-
effort of optimal tuning, the control performance improvements we
observe are non-trivial to explain and arise due to complex interactions
between multi-step adaptive-horizon MPC and the LQR control law.
Fig. 3 shows the distribution of the prediction horizon and the steps
between MPC computations chosen by the policies. The horizon policy
has converged to only selecting the maximum horizon, while the MPC
is mostly computed at every step (70% of steps) with some significantly
longer streaks. Because of the finite-horizon nature of the OCP, the MPC
will produce solutions of varying optimality based on the exact initial
conditions it is computed from. The RL policy has seemingly learned to
recognize a set of conditions for which the computed solutions are more
optimal than neighboring conditions, and therefore not recomputing
and employing a longer section of the more optimal input sequence
will produce better control performance.

The control algorithm we propose adds some overhead compared
to using MPC alone, i.e. evaluating the policies deciding if the MPC
should be computed and with what horizon, and computing the LQR
gain-matrix as necessary. The overhead is however small compared to
the execution time of the MPC and the potential gains from computing
it less often or with parameters that yield a simpler OCP. Therefore,
9

our framework results in a 36% reduction in the total processing time
of the control system compared to the best-performing MPC scheme.
This frees up resources for other onboard tasks the controlled system
might have or could be leveraged to increase the battery life of the
system.

For this example it takes about 20 h of data of interaction with
the system to reach convergence, corresponding to 700 thousand data
samples. Fig. 4(a) shows that generally the performance monotonically
improves with more data, we therefore do not view the data required
as a major issue. One could run the data collection and parameter
update calculation phase in a dedicated experiment, or since our tuning
framework reduces the computational load of the control system itself,
the tuning framework could in principle be run alongside the control
system in normal operation to continuously improve performance with
little impact on the total computational load of the embedded system.
Further, parameter update calculations could even be offloaded to a
remote computer as discussed in the introduction. Note that we did not
spend significant time tuning the hyperparameters of the RL algorithm,
and we favored consistency over a faster rate of improvement. Thus,
the control algorithm’s data requirement could potentially be improved
with hyperparameter optimization of the RL algorithm.

One of the models we trained for the complete policy and one of
the models for the isolated recomputation policy got stuck in the local
minima of computing the MPC at every step, and since this did not
give any interesting results (essentially maintaining the initial behavior
and performance) we excluded them from Fig. 4 and the discussions,
replacing them with new models with new seeds. Since policy gradient
algorithms such as PPO are local search methods it is to be expected
that it finds local minima, and random exploration can cause it to
sometimes settle in sub-optimal local minima. This is also a question
of how much data is used to generate the gradient.

Multivariate optimization delivers additional improvements.
These results support the conjecture stated in the introduction; by
optimizing the different parameters of the control algorithm together,
we are able to enhance the control algorithm in ways that we are not
able to when optimizing the same parameters in isolation. The horizon
policy tends to a mean horizon of 28–31 when optimized by itself
(Fig. 4(c)), which is consistent with the best performing fixed horizon
MPC as seen in Fig. 2. However, as Fig. 3 shows the complete RL
policy favored higher horizons when optimizing all meta-parameters
together in a multivariate fashion. As shown in Table 2 this improves
performance significantly, where imposing a maximum horizon of 31
results in a 13.4% increase in cost. When solely tuning the LQR applied
on an MPC computed on a fixed recomputation schedule, we were not
able to achieve any consistent improvements. We hypothesize that this
is due to the model mismatch (the MPC is overestimating the weight of
the system by 36%) such that the computed LQR is not very well suited
for the actual control problem (since it is computed from the erroneous
MPC model), and therefore its gradients are flat and noisy. When com-
bining LQR tuning with meta-parameter optimization we are able to
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Fig. 4. Training process for the proposed learned control algorithm, and for each meta-parameter in isolation. In the isolated cases, we show that the tuning process is capable
of recovering from sub-optimal initializations.
tune the LQR to achieve meaningful improvements, with the tuned LQR
improving by 1.95% over the initialization described in Section 2.1.3.
This might be due to the recomputation policy generating trajectories
for the LQR that are similar, thus yielding more consistent gradients.
The last entry in Table 2 shows a scenario where the same amount of
computation is expended uniformly in time rather than dynamically
allocated by the recomputation policy, resulting in a 35.45% increase
in cost.

5. Conclusion

This paper has introduced a novel control algorithm based around
an event-triggered MPC that is automatically tuned using RL with a
configurable objective. The main contribution of the method is tuning
the control algorithm’s meta-parameters: the prediction horizon and the
recomputation (triggering) problem. In a numerical experiment with
the classic inverted pendulum control problem, we demonstrate that
the control performance and computational complexity of the MPC
10
can be simultaneously improved by computing the MPC less often! We
speculate that this control performance improvement stems from learn-
ing from which initial conditions the MPC produces the most optimal
solutions, and subsequently intelligently selecting when to compute the
MPC and with what parameters in a state-dependent manner.

Seeing as MPC is increasingly being considered for applications with
fast dynamics or limited computational power and energy resources,
our framework could be an important tool in enabling such applications
to harness the good control performance and constraint satisfaction
abilities of the MPC.

We found that with a model mismatch, tuning the dual mode MPC
and LQR control law was difficult. Future work could evaluate if state-
dependent 𝐐 and 𝐑 matrices alleviate this issue, which would also
provide a gain-scheduling property. Whether any stability guarantees
and control satisfaction properties can be provided given the learned

meta-parameter-deciding policies should be investigated.
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