
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f N

at
ur

al
 S

ci
en

ce
s

D
ep

ar
tm

en
t o

f C
he

m
ic

al
 E

ng
in

ee
rin

g

M
as

te
r’s

 th
es

is

Abubakar Bampoye

An Comparative Study:

Model-Based vs. Noise Estimation Approach for
State Estimation

Master’s thesis in Chemical Engineering & Biotechnology
Supervisor: Johannes Jäschke
Co-supervisor: Halvor Aarnes Krog
August 2023

Abubakar Bampoye

An Comparative Study:

Model-Based vs. Noise Estimation Approach for State
Estimation

Master’s thesis in Chemical Engineering & Biotechnology
Supervisor: Johannes Jäschke
Co-supervisor: Halvor Aarnes Krog
August 2023

Norwegian University of Science and Technology
Faculty of Natural Sciences
Department of Chemical Engineering

Contents

List of Python modules i

List of Algorithms i

List of Figures v

List of Tables vii

1 Introduction 1

1.1 Motivation and problem statement 1

1.2 Literature review of noise estimation methods 3

1.3 Outline . 5

2 Theoretical background 6

2.1 System description of linear systems 6

2.2 System description of nonlinear systems 7

2.3 Additive noise . 8

2.4 Nonlinear noise . 8

2.5 Random variation in plant parameters 9

3 Kalman filters 10

3.1 The linear discrete-time Kalman filter 10

i

Contents

3.2 Nonlinear Kalman filtering . 12

3.2.1 The unscented transformation 13

3.2.1.1 Scaled sigma points 15

3.2.1.2 Generalized sigma points 16

3.3 The unscented Kalman filter . 20

4 Estimation of the noise statistics 23

4.1 Model-based estimation of noise statistics 23

4.1.1 Modelling noise as parametric uncertainty 23

4.1.2 Scaled unscented transformation to estimate the noise statistics 25

4.2 Data-driven estimation of noise statistics 26

4.2.1 Weighted statistical linear regression (WSLR) 27

4.2.2 Adaptive unscented Kalman filter 28

5 Case study 31

5.1 Motivation . 31

5.2 System model . 32

6 Results & Discussion 34

6.1 The performance between the model-based and data-driven estimation

method . 34

7 Concluding Remarks 41

ii

Contents

A Definitions & Theorems 47

B Code Listing 49

iii

List of Algorithms

1 The scheme for computing the unscented transformation. 14

2 The steps for computing the generalized sigma points. 18

3 The procedure for computing the constrained generalized sigma points. 19

4 The full procedure for computing the UKF. 22

5 The scaled unscented transformation procedure for estimating the noise

statistics. 26

6 The steps for computing the adaptive UKF. 29

iv

List of Figures

6.1 The plot illustrates the state estimation performance obtained from

different approaches to estimate the covariance matrix Q for the

bioprocess system. The plant is represented by the green line,

while the model-based estimation of Q using the scaled unscented

transformation is depicted by the blue line (UKF1). Additionally,

the red line corresponds to the data-driven estimation of Q using

an adaptive scaled unscented Kalman filter (UKF2), and the

measurements are marked as x. 36

6.2 The error plot illustrates the deviation between x𝑘,𝑝𝑙𝑎𝑛𝑡 − x̂𝑘 , the blue

dashed line represents the deviation of the model-based estimation,

while the red dashed line corresponds to the deviation of the data-

driven estimation. 38

6.3 The diagonal elements of the covariance matrix Q obtained from the

estimation of the model-based method is represented by the blue line

(UKF1), and the estimation derived from the data-driven method is

illustrated by the red line (UKF2). 39

v

List of Python modules

1 Functions for computing the scaled sigma points. 49

2 A function that compute the constrained generalized sigma points. . . 51

3 Implementation of the main module for the bioprocess system with

additive noise. 56

4 Implementation of the main module for the bioprocess system with

nonlinear noise. 63

5 Functions that implements the scaled unscented filter. 74

6 Functions that implements the generalized unscented filter. 81

7 Utility module with function for the bioreactor system with additive

noise. 87

8 Utility module with function for the bioreactor system with nonlinear

noise. 94

vi

List of Tables

5.1 The model parameters of the bioprocess system given in Equation (5.1),

with estimated mean values from Tuveri et.al[33]. The units and

standard deviations are also presented. 33

6.1 The Root Mean Square Error (RMSE) value from the state estimation

using the model-based method (UKF1) and the data-driven (UKF2)

method gathered from 1, and the mean of 100 simulations are presented

in their respective columns. 37

vii

Abstracts

This thesis delves into an analysis conducted within the context of a bioprocess model.

It involves a comparative investigation of two distinct estimation techniques, namely

those proposed Krog & Jäschke[21] and Berry & Saue[8]. These techniques are

categorized as model-based and data-driven approaches, respectively. Their primary

objective is to eliminate the need for manual tuning of the covariance matrices Q

and R, which play a crucial role as essential components of the Kalman filter, and

crucial for controlling filter divergence. By enhancing the applicability of the filters,

these estimation techniques contribute to improved performance and efficacy in state

estimation.

Based on the results gathered, it is evident that the estimation technique presented by

Krog & Jäschke[21], which utilizes the scaled unscented transformation to estimate

the covariance matrix Q, yielded the most favorable outcomes, as determined by the

Root Mean Squared Error (RMSE).

viii

Sammendrag

Denne oppgaven tar for seg en analyse av en bioprosessmodell, som omfatter

en sammenlignende undersøkelse av to forskjellige estimeringsteknikker. Selve

estimeringsteknikkene er foreslått av Krog & Jäschke[21] og Berry & Saue[8]. Disse

teknikkene er klassifisert som henholdsvis modellbasert og datadrevet. Hovedmålet

deres er å eliminere behovet for manuell tilpasning av kovariansmatrisene Q og R, som

spiller en avgjørende rolle som essensielle komponenter i Kalman-filteret, noe som er

avgjørende for å kontrollere filterdivergens. Ved å forbedre anvendeligheten av filtrene

bidrar disse estimeringsteknikkene til bedret ytelse og effektivitet i tilstands-estimering.

Basert på de innhentede resultatene er det klart at estimeringsteknikken presentert av

Krog & Jäschke[21], som bruker den skalerte uscented transformasjonen for å estimere

kovariansmatrisen Q, ga de mest gunstige resultatene, bestemt ved hjelp av Root Mean

Squared Error (RMSE).

ix

Acknowledgements

I would like to express my sincere gratitude to my co-supervisor, Halvor Aarnes Krog,

for his invaluable support, encouragement, and genuine interest in my project. His

diligent efforts in double and triple-checking the equations and Python modules, as

well as his generous dedication of time, with weekly meetings throughout the entire

semester, was a critical inspiration and motivation for me.

I would like to extend my heartfelt appreciation to my friends, whose companionship

and camaraderie have transformed my five-year at the university into a wonderful

journey, encompassing both social and academic aspects. Moreover, I wish to express

my deep gratitude to my beloved family, especially my elder sister, Assia Bigirimana,

whose unwavering kindness and support have been a constant pillar throughout my

studies.

x

Preface

This thesis is submitted to fulfill the requirements for the degree in Chemical

Engineering and Biotechnology at the Norwegian University of Science and

Technology (NTNU). The thesis represents a continuation of a specialization project

conducted during the autumn of 2022.

With the exception of explicitly indicated instances, all figures and illustrations

presented in this thesis have been exclusively generated by the author. The simulation

was executed using the Python programming language, and the utilization of the

built-in functions and libraries was used to reduce the need for extensive manual

programming.

xi

List of abbreviations

EKF Extended Kalman filter
GenUKF Generalized unscented Kalman filter
KF Kalman filter
PDF Probability density functions
RMSE Root mean square error
RV Random variable
Scaled UKF Scaled unscented Kalman filter
UKF Unscented Kalman filter
UT Unscented transformation
WSLR Weighted statistical linear regression

xii

1 Introduction

1.1 Motivation and problem statement

Over the past decade, model-based predictive control has become increasingly popular

in chemical processing. These models require an estimate of all the dependent variables

of the model, referred to as state variables, x(𝑡), that describe the current state of the

process[2, 3, 17, 22, 23, 26]. By combining the available output measurements, y(𝑡),

the process model, and the inputs, u(𝑡), of the process to estimate the optimal state

variables, x̂, we can obtain a more complete picture of the system’s behaviour, and use

this information to make more informed control decisions. Thus estimation is essential

for gaining a deeper understanding of the inner workings of the process, which in turn

facilitates the design of effective multivariable and nonlinear control strategies[28].

Overall, accurate estimation of the state variables is a critical component of modern

control strategies that can lead to improved performance, greater efficiency, enhanced

process stability, and condition monitoring.

State estimators need dynamic models of the system so that we can make predictions

about the future[34]. Traditionally, the mathematical models used in predictive control

techniques are developed from physics, chemistry, and biology (first principles),

empirical models (data regression), or a mix between these two (hybrid models).

However, a model will never exactly match the plant (plant-model mismatch). The

mismatch is either a structural or parametric deviation from the process. The

uncertainty in the model can be interpreted as the process noise, and uncertainty

in the measurement is interpreted as measurement noise. State estimation assumes

knowledge of the mean and covariance of the noise at each time step. This is an

unrealistic assumption, and the specification of the noise statistics is therefore often

considered as tuning parameters of the state estimation which greatly affects the

performance of the state estimation. Often, the noise statistics are manually tuned.

1

1 Introduction

This is laborsome and often results in sub-optimal performance of the filter. There

exist, however, structural methods to tune the state estimator. In this work, we compare

two methods, a model-based and data-driven.

The model-based is a method that accounts for uncertainty in the parameters and relies

on the current state x𝑘 and control variable u𝑘 . This yields time-varying estimates of

w𝑘 , which is the process noise. On the other hand, the data-driven method utilizes

measurements y𝑘 . It typically assumes that the noise statistics are stationary, meaning

they do not change over time. We expect the data-driven method to perform well

on continuous processes. However, it is possible that the data-driven method may

not perform as effectively on batch processes, as it usually assumes stationary w𝑘 .

Therefore, we intend to conduct a test with these two methods on a fed-batch bioreactor.

In order to achieve precise predictions, these models need to be initiated from the

true initial condition, which is inherently unattainable[1]. When dealing with large-

scale systems, obtaining a comprehensive experimental measurement of the system’s

complete state at a specific point in time is practically infeasible. Even in the

hypothetical scenario where such measurements could be obtained, the measurements

are always contaminated by noise, reducing the fidelity of our estimations. Lastly, the

mathematical model that fully characterizes the underlying processes and dynamics of

the system is either undisclosed or inherently challenging to handle. As a consequence,

approximation and simplified models are adopted instead.

To mitigate these challenges, or at least their effects. State estimators can be used

to estimate unmeasured states and the impact of disturbances. The goal of state

estimation is to make optimal use of available information from the process model and

measurements, in order to estimate the unmeasured states of the dynamic system. This

information can then be utilised to monitor and control the process effectively[5].

2

1 Introduction

1.2 Literature review of noise estimation methods

With the progress in measurement systems and the decreasing costs of sensors,

recursive stochastic state estimation techniques, such as the Kalman filter, have

become more applicable and very popular in systems engineering, robotics, navigation,

and control[1]. They have traditionally been used for state estimation in many

chemical processes, such as chemical reaction systems, polymerisation processes, and

bioreactors[11, 29, 35]. The linear Kalman filter is used to estimate states based on

linear dynamical systems, while the extended Kalman filter (EKF) is used to estimate

nonlinear dynamical systems (in recent years, UKF). These state estimators will be

explained in greater detail in Section 3. The standard equations provided originally by

Kalman[15] are provably optimal for systems where the dynamics and observations are

linear with Gaussian noise. If the covariance matrices Q𝑘 and R𝑘 referred to as process

noise and measurement noise covariances, respectively, are known on each time step

𝑘 , the Kalman filter gives the maximum likelihood estimate of the current state. If

inexact Q𝑘 and R𝑘 are used in the Kalman filter, the filter will be suboptimal and

may give reasonable state estimates[4]. Normally one assumes that Q is constant (i.e.

Q𝑘 = Q𝑘−1 = · · · = Q). In the context of nonlinear processes, there exist estimators

of higher precision, such as particle filters, moving horizon techniques, and modified

versions of Kalman filters specifically designed for nonlinear systems[4, 6, 36].

In order to use Kalman filters, it’s necessary to specify the level of accuracy for both the

model and the measurements. This is done through the process noise and measurement

noise covariances, Q and R, respectively. The performance of the filter heavily relies

on accurately specifying the levels of noise, as incorrect specifications can cause the

filter to diverge. The measurement covariance matrix, R, can be derived directly from

the properties of the measurement instrument’s accuracy, while the specification of Q is

often achieved through a trial-and-error method. For a system with 𝑛 states and additive

process noise, the specification of Q requires 𝑛(𝑛 + 1)/2 elements, considering it is a

symmetric matrix. However, for time-varying processes such as batch and semi-batch,

3

1 Introduction

or for nonlinear systems, a constant matrix Q may not be sufficient to provide accurate

filter performance.

As previously mentioned, there are unavoidable differences between process models

and the actual process due to the attempt to fit a simple model into a complex process.

For instance parameters that exhibit slowly time-varying behavior, such as heat transfer

coefficients. While they remain constant within a short time window, they may change

when, for instance, fouling occurs on a heat exchanger[27]. This can lead to inaccurate

state estimates being calculated. Additionally, disturbances that occur in the process

but are not measured can also affect the estimates. One possible solution to this

problem is to use a parameter-adaptive Kalman filter[32]. This type of filter includes

non-stationary stochastic states in the estimation process, in addition to the original

system states. While this approach does not solve the problem of determining the

correct levels of process and measurement noise, it can help reduce errors in the state

estimates.

Different methods have been discussed by several authors for approximating the

correct selection of Q and R. Model-based methods, as described by Valappil &

Georgakis and Krog & Jäschke[21, 34], as well as data-driven methods by Dunik,

Berry & Saue[7, 8], are among them. In this thesis, we continue this discussion by

exploring the approaches presented by Krog & Jäschke, as well as Berry & Saue.

Both of these approaches involve online calculations and utilize current states from

the filter. To apply these techniques, it is essential to have a well-defined process

model and a quantification of the model’s uncertainty through a parameter covariance

matrix obtained during model development. The two proposed methods calculate

time-varying values of the process noise covariance matrix, Q, online, which are then

incorporated into the filter.

4

1 Introduction

1.3 Outline

The following chapters will delve into the theoretical background, followed by an

overview of Kalman filters. Subsequently, we will provide a description of the

estimation of noise covariances. Moving on, we present our case study involving

a bioprocess that has been investigated by Andrea Tuveri, Fernando Perez-Garcia,

Pedro A. Lira-Parada, Lars Imsland, & Nadav Bar[33]. The system is described by

four state variables, which represent the volume, 𝑉 , biomass, 𝑋 , sugar consumption,

𝑆, and carbon dioxide, 𝐶𝑂2. We then proceed with the obtained results, followed by a

discussion and conclusion to round off the study.

5

2 Theoretical background

This chapter serves as the foundational framework for the subsequent implementations

presented in this thesis. By providing this background information, readers will

gain a comprehensive understanding of the equations and algorithms discussed in the

subsequent chapters.

2.1 System description of linear systems

The presented expression embodies a general continuous state-space representation of

a linear system:

¤x(𝑡) = Fx(𝑡) + Gu(𝑡) + w(𝑡) (2.1)

y(𝑡) = H¤x(𝑡) + v(𝑡) (2.2)

where x ∈ R𝑛 is the state vector, u ∈ R𝑝 is the control (input) vector, y ∈ R𝑞 is the

measurement (output) vector. The matrices F, G and H are appropriately dimensioned

matrices called the system (transition) matrix, control (input) matrix, and measurement

(output) matrix, respectively[30]. We assume that the process and measurement noise

are uncorrelated zero-mean Gaussian random process, i.e:

E[w(𝑡)] = E[v(𝑡)] = 0 (2.3)

E[w(𝑡)w𝑇 (𝜏)] = Q(𝑡)𝛿(w(𝑡 − 𝜏)) (2.4)

E[v(𝑡)v𝑇 (𝜏)] = R(𝑡)𝛿(v(𝑡 − 𝜏)) (2.5)

E[w(𝜏)v𝑇 (𝑡)] = 0 (2.6)

6

2 Theoretical background

with probability density functions 𝑝w(w) and 𝑝v(v), and with unknown covariance

matrices Q ∈ R𝑛×𝑛, R ∈ R𝑞×𝑞 respectively. E, is the expectation operator, and 𝛿 is the

Dirac delta-function. Further, we address a general discrete time of the linear system

given in Equations (2.7 - 2.8) with a constant sampling time denoted by 𝑘 given as

follows:

x𝑘 = F𝑘−1x𝑘−1 + G𝑘−1u𝑘−1 + w𝑘−1 (2.7)

y𝑘 = H𝑘x𝑘 + v𝑘−1 (2.8)

2.2 System description of nonlinear systems

In this thesis, we consider a general continuous nonlinear system given by the state

space formulation that generates measurements given as follows:

¤x(𝑡) = f (x(𝑡), u(𝑡), 𝜽) (2.9)

y(𝑡) = h(¤x(𝑡)) (2.10)

where x ∈ R𝑛, u ∈ R𝑝, 𝜽 ∈ R𝑛𝜃 , and y ∈ R𝑞, denotes the system states, control inputs,

parameters of the state, process (system) noise, measurement (output), respectively,

and f (·) : R𝑛 × R𝑝 × R𝑛𝜃 ↦→ R𝑛, h(·) : R𝑛 ↦→ R𝑞 are known mappings.

Further, we shall address the general discrete time of the nonlinear system with constant

sampling time denoted by 𝑘 given as follows:

x𝑘 = f (x𝑘−1, u𝑘−1, 𝜽 , 𝑡𝑘) (2.11)

y𝑘 = h(x𝑘 , 𝑡𝑘) (2.12)

7

2 Theoretical background

where f (·) : R𝑛 × R𝑝 × R𝑛𝜃 ↦→ R𝑛, h(·) : R𝑛 ↦→ R𝑞 are the discretized version of

Equation (2.9) and (2.10).

2.3 Additive noise

Multiple conceptual frameworks exist for incorporating noise into nonlinear state

models. One prevalent approach involves modelling noise as an additive term, which

can be mathematically expressed as follows:

x𝑘 = f (x𝑘−1, u𝑘−1, 𝜽 , 𝑡𝑘) + w𝑘−1 (2.13)

y𝑘 = h(x𝑘 , 𝑡𝑘) + v𝑘−1 (2.14)

as mentioned in Section 2.1, w ∈ R𝑛, and v ∈ R𝑞, are assumed to be uncorrelated

zero-mean Gaussian noise with unknown covariance matrices Q ∈ R𝑛×𝑛, R ∈ R𝑞×𝑞,

respectively.

2.4 Nonlinear noise

The system description with additive noise described in Section 2.3 may be reasonable

in many applications. But in others, it may not be the best fit and it has been criticized

by Kolȧs & Foss[20]. They argue that noise should be actively modelled, thus another

way of modelling the noise is to model it as an extension of the process given as

follows:

x𝑘 = f (x𝑘−1, u𝑘−1, 𝜽 ,w𝑘−1, 𝑡𝑘) (2.15)

y𝑘 = h(x𝑘 , v𝑘−1, 𝑡𝑘) (2.16)

8

2 Theoretical background

2.5 Random variation in plant parameters

The estimation of parameters in many processes results in an error in the parameter,

which causes a systematic process-model mismatch due to unmodeled effects or model

inaccuracies[34]. One way of reducing this error is to assume that the parameters in

the plant vary with a given noise 𝒘𝜽 at each sample interval from a multivariate normal

random distribution. Thus:

𝒘𝜽 ∼ N(𝜽 ,P𝜽) (2.17)

where 𝜽 represents the values associated with the plant parameters, 𝜽 denotes the

average value of the plant parameters, 𝜽 = E[𝜽], and P𝜽 denotes the covariance matrix

of the parameters. The varying plant parameter is assumed to deviate from the mean

value by a fixed amount:

𝜽 = 𝜽 + 𝒘𝜽 (2.18)

where 𝜽 is used by the nonlinear model, and 𝜽 is used by the plant.

9

3 Kalman filters

The Kalman filters maintains their status as one of the most widely used estimation

algorithms[15]. The primary reason may be that other types of approximations that

have been developed are either computationally unmanageable or require special

assumptions about the form of the process and observation models that cannot be

satisfied in practice[14]. The Kalman filter (KF) only utilizes the mean and covariance

in its update rule, which offers several benefits like the linearity of the mean and

covariance, and its successful compromise between computational complexity and

representational flexibility.

3.1 The linear discrete-time Kalman filter

The linear discrete KF is used to estimate states based on linear dynamical systems in

state space as described in Section 2.1. The process model defined in Equation (2.7)

describes the evolution of the state from time 𝑘 − 1 to time 𝑘 . For the sake of clarity,

we will restate the Equation:

x𝑘 = F𝑘−1x𝑘−1 + G𝑘−1u𝑘−1 + w𝑘−1 (3.1)

The process model is paired with the measurement model defined in Equation (2.8)

that describes the relationship between the state and the measurement at the current

step 𝑘 as:

y𝑘 = H𝑘x𝑘 + v𝑘−1 (3.2)

The KF for the system provide an estimate of x𝑘 , and is formally characterized as a

fusion of the a priori and a posteriori estimates, which is also called the time update[30].

10

3 Kalman filters

It is given as follows:

x̂−𝑘 = F𝑘−1x̂+𝑘−1 + G𝑘−1u𝑘−1 + w𝑘−1 (3.3)

P−
𝑘 = F𝑘−1P+

𝑘−1F𝑇𝑘−1 + Q𝑘−1 (3.4)

here the terms x̂−
𝑘

and P−
𝑘
, represent the state estimate and the covariance of the state

estimation error, respectively. The superscript “-”, associated with both variables,

indicates that these values correspond to the state prior to the measurement update,

hence referred to as the a priori estimate.

The equations for the measurement update of the state estimate, denoted by x̂+
𝑘

and P+
𝑘
,

which computes the posteriori state estimates proceeds as follows:

K𝑘 = P+
𝑘H

𝑇
𝑘R−1

𝑘 (3.5)

x̂+𝑘 = x̂−𝑘 + K𝑘

(
y𝑘 − H𝑘 x̂−𝑘

)
(3.6)

P+
𝑘 = (I − K𝑘H𝑘) P−

𝑘 (3.7)

where the terms x̂+
𝑘

and P+
𝑘

have a superscript “+” indicates the values subsequent to

the measurement update (known as a posteriori estimate), and the K𝑘 , is the so-called

Kalman gain.

While covariance matrices are designed to capture the statistical characteristics of

disturbances, the actual statistical properties of disturbances often remain unknown

or exhibit non-Gaussian behaviour in practical scenarios[18]. To achieve the

desired system performance, Q and R are commonly used as adjustable parameters.

Additionally, the performance is dependent on the initial guesses x̂+0 and P+
0 . Schneider

& Georgakis[28], have provided a thorough description of this concept, emphasizing

the importance of using common sense when determining these values. For instance,

assuming a batch process starts with a complete absence of reactants and solely

11

3 Kalman filters

products at the initial state is generally ill-advised. Conversely, it is typically more

appropriate to make the opposite assumption.

It should be acknowledged that the derivation of the linear discrete-time KF is derived

upon the assumption of linearity in both the process and measurement models, and

the process and measurement noise are additive Gaussian. Hence, a Kalman filter

provides an optimal estimate only if the assumption is satisfied.

3.2 Nonlinear Kalman filtering

Various approaches exist for estimating means and covariances in the context

of nonlinear functions. One such approach involves linearizing the means and

covariances, as in the case of the extended Kalman filter (EKF). The EKF linearizes

the model by evaluating the gradient at the current estimate. However, when the

assumptions of local linearity are violated, this approach can yield highly unstable

filters, since linearized transformations are only reliable if the error propagation being

well approximated by a linear function[14], and if this condition is not met, the

linearized approximation can be poor. At best, this undermines the performance of the

filter, and at worst it makes the estimation diverge.

Furthermore, linearization is only applicable when the Jacobian matrix exists, which

is not always the case. In some systems, discontinuities occur as a response to

changes in parameters. To overcome this limitation, the unscented transformation

(UT) was developed as a method of propagating mean and covariance through nonlinear

transformations[14]. The UT offers significant implementation and accuracy benefits

compared to linearization methods, as it eliminates the need for gradient computations

while maintaining a comparable computational cost to that of the EKF.

In the context of this thesis, emphasis is placed on the estimation of means and

covariances using the unscented transformation, which will be discussed in detail in

the subsequent chapters.

12

3 Kalman filters

3.2.1 The unscented transformation

The unscented transformation (UT), proposed by Julier and Uhlmann[13], is based on

two insights. First, “it is easy to perform a nonlinear transformation on a single point

rather than an entire probability density function (PDF)”[30]. Second, “it’s not too

hard to find a set of individual points in state space whose sample PDF approximates the

true PDF of a state vector.” The primary objective of this development was to remove

the limitations associated with linearized transformation of means and covariances,

by estimating a random variable through a nonlinear transformation. This process

involves the computation of a collection of sampling points, referred to as sigma

points. Through this framework, we can effectively capture the statistical moments of

the standard Gaussian distribution, and then use the generated sigma points to obtain an

estimate of the nonlinear system. Given that nearly all practical systems in the control

of chemical process plants involve nonlinearities in some form or another, utilising the

UT can result in significant benefits and precision, compared to the approach based on

linearization.

As an example, consider the model prediction equation x̂−
𝑘
= f (x+

𝑘−1), where the

mean and covariance matrix of the input variables are denoted as x̂+
𝑘−1, and P+

x, 𝑘−1,

respectively. In order to calculate the output variables x̂−
𝑘

and P−
x, 𝑘 from time step 𝑘 −1

to 𝑘 , we form a matrix of sigma points x̂𝑘−1 ∈ R2𝑛 of 2𝑛 sigma vectors x̂(𝑖)
𝑘−1 ∈ R𝑛

which satisfies this selection scheme:

x̂(0)
𝑘−1 = x̂+0

x̂(𝑖)
𝑘−1 = x̂+𝑘−1 +

(√︃
𝑛P+

x, 𝑘−1

)
𝑖

𝑖 = 1, ..., 𝑛

x̂(𝑖)
𝑘−1 = x̂+𝑘−1 −

(√︃
𝑛P+

x, 𝑘−1

)
𝑖

𝑖 = 𝑛 + 1, ..., 2𝑛

(3.8)

where
(√︁
𝑛P+

x, 𝑘−1

)
𝑖
is the i-th column (or row) of the matrix square root. One approach

to calculate it is to utilize the numerically efficient Cholesky factorization method[25].

The weighting coefficients for the mean and covariance, 𝑊𝑚
𝑖

, 𝑊𝑐
𝑖
, respectively, are

13

3 Kalman filters

defined as follows:

𝑊𝑚
𝑖 = 𝑊𝑐

𝑖 =
1
2𝑛

𝑖 = 1, . . . , 2𝑛 (3.9)

After we generate the sigma points, we send each point through the known nonlinear

function, thereby obtaining the transformed sigma points given as follows:

x̂(𝑖)
𝑘

= f (x̂(𝑖)
𝑘−1) (3.10)

We can then evaluate the sample mean and the covariance of the transformed sigma

points:

x̂−𝑘 =

2𝑛∑︁
𝑖=0
𝑊𝑚
𝑖 x̂(𝑖)

𝑘
(3.11)

P−
x, 𝑘 =

2𝑛∑︁
𝑖=0
𝑊𝑐
𝑖

(
x̂(𝑖)
𝑘

− x̂−𝑘
) (

x̂(𝑖)
𝑘

− x̂−𝑘
)𝑇

(3.12)

The full procedure of the UT is presented in Algorithm 1.

Algorithm 1: The scheme for computing the unscented transformation.

for i ∈ {1,...,2𝑛 +1} do

Calculate the sigma points and the corresponding weights:

x̂(0)
𝑘−1 = x̂+0

x̂(𝑖)
𝑘−1 = x̂+𝑘−1 +

(√︃
𝑛𝑃+

x, 𝑘−1

)
𝑖

𝑖 = 1, ..., 𝑛

x̂(𝑖)
𝑘−1 = x̂+𝑘−1 −

(√︃
𝑛𝑃+

x, 𝑘−1

)
𝑖

𝑖 = 𝑛 + 1, ..., 2𝑛

𝑊𝑚
𝑖 = 𝑊𝑐

𝑖 =
1
2𝑛

𝑖 = 1, . . . , 2𝑛

Time update:

x̂(𝑖)
𝑘

= f (x̂(𝑖)
𝑘−1)

x̂−𝑘 =

2𝑛∑︁
𝑖=0
𝑊𝑚
𝑖 x̂(𝑖)

𝑘

P−
x, 𝑘 =

2𝑛∑︁
𝑖=0
𝑊𝑐
𝑖

(
x̂(𝑖)
𝑘

− x̂−𝑘
) (

x̂(𝑖)
𝑘

− x̂−𝑘
)𝑇

14

3 Kalman filters

One disadvantage of the UT arises as the dimension of the state space 𝑛 increases. In

such cases, the radius of the sphere that bounds all the sigma points also increases.

Although the UT accurately captures the mean and covariance of the prior distribution,

it does so at the cost of possibly sampling non-local effects, which is observed by

looking at
√︃
𝑛P+

x,𝑘−1 in Equation (3.8).

Various approaches exist for generating sigma points used in the UT, and in the

subsequent sections, we will explore two versions, namely, “scaled sigma points”

and “generalized sigma points”[8, 12]. These versions aim to mitigate some of the

drawbacks associated with the UT, thereby enhancing its performance.

3.2.1.1 Scaled sigma points

The scaled sigma points assume a symmetric distribution, and the underlying

motivation behind their creation is to scale these points towards or away from the

mean of the prior distribution using a suitable scaling parameter 𝜆 = 𝛼2(𝑛 + 𝜅) − 𝑛.

This approach ensures that the calculated covariance remains positive definite. The

distance of the 𝑖−th sigma point from x̂+
𝑘−1,

���x̂(𝑖)
𝑘−1 − x̂+

𝑘−1

���, is proportional to
√︁
(𝑛 + 𝜆).

When 𝜆 = 0, the distance is proportional to
√
𝑛, when 𝜆 > 0, the points are scaled

further from x̂+
𝑘−1. Conversely, when 𝜆 < 0 the points are scaled toward x̂+

𝑘−1.

The procedure for selecting scaled sigma points results in a matrix of sigma points

x̂𝑘−1 ∈ R𝑛×(2𝑛+1) consisting of 2𝑛 + 1 sigma vectors x̂(𝑖)
𝑘−1 ∈ R𝑛. Each sigma vector

is associated with corresponding weights for the mean and covariance, 𝑊𝑚
𝑖

, 𝑊𝑐
𝑖
,

respectively:

x̂(0)
𝑘−1 = x̂+0 𝑊𝑚

0 =
𝜆

𝑛 + 𝜆 𝑖 = 0

x̂(𝑖)
𝑘−1 = x̂+𝑘−1 +

(√︃
(𝑛 + 𝜆)P+

x, 𝑘−1

)
𝑖

𝑖 = 1, ..., 𝑛 𝑊𝑐
0 =

𝜆

𝑛 + 𝜆 +
(
1 − 𝛼2 + 𝛽

)
𝑖 = 0

x̂(𝑖)
𝑘−1 = x̂+𝑘−1 −

(√︃
(𝑛 + 𝜆)P+

x, 𝑘−1

)
𝑖

𝑖 = 𝑛 + 1, ..., 2𝑛 𝑊𝑐
𝑖 = 𝑊𝑚

𝑖 =
1

2 (𝑛 + 𝜆) 𝑖 = 1, ..., 2𝑛

(3.13)

15

3 Kalman filters

where 𝛼 is a scaling parameter to minimize possible higher order effects, and takes

the values between (0 < 𝛼 < 1) typically 10−3, 𝛽 is used to affect the weighting

of the zeroth sigma-point for the calculation of the covariance, and 𝜅 is a scaling

factor. Choosing 𝜅 > 0 ensures the covariance matrix is positive semidefinite.(√︁
(𝑛 + 𝜆)P+

x, 𝑘−1

)
𝑖
is the i-th column (or row) of the matrix square root.

3.2.1.2 Generalized sigma points

The scaled sigma points in Section 3.2.1.1 relies on the assumption of a symmetrical

distribution of the variable x. However, this assumption may not hold true in all

scenarios. In cases where we encounter a random variable that is not symmetrical, it

is recommended to employ the generalized sigma points instead. The objective of the

generalized sigma points is to capture the diagonal components of the skewness and

kurtosis tensors of most probability distributions with high accuracy[8].

The method employs 2𝑛 + 1 sigma points to capture the mean and covariance matrix,

but also utilises 𝑛2 +2𝑛+1 additional free parameters to accurately match the diagonal

components of the skewness and kurtosis tensors. We define S̆ ∈ R𝑛 as the skewness

tensor, and K̆ ∈ R𝑛 as the kurtosis tensor, given as follows:

S̆ = [S111, S222, . . . , S𝑛𝑛𝑛]𝑇 (3.14)

K̆ = [K1111,K2222, . . . ,K𝑛𝑛𝑛𝑛]𝑇 (3.15)

Then we assign weights to the sigma points in accordance with the first three moments

of x, and subsequently enforce constraints on these weights to ensure they match the

fourth moment of x, given as follows:

16

3 Kalman filters

2𝑛∑︁
𝑖=0
𝑊𝑖 = 1 (3.16)

−𝑊 ′ ⊙ u +𝑊 ′′ ⊙ v = 0 (3.17)

𝑊
′ ⊙ u⊙2 +𝑊 ′′ ⊙ v⊙2 = 1 (3.18)

−𝑊 ′ ⊙ u⊙3 +𝑊 ′′ ⊙ v⊙3 =

√︃
P+

x, 𝑘−1

⊙−3
S̆ (3.19)

Note that the element-wise product ⊙ (Hadamard product) and the element-wise

division ⊘ (Hadamard division) are used, and are defined in A.1. The weights must

satisfy:

𝑊
′ ⊙ u⊙4 +𝑊 ′′ ⊙ v⊙4 =

√︃
P+

x, 𝑘−1

⊙−4
K̆ (3.20)

By rearranging and manipulating Equations (3.16 - 3.19), and substituting it into

Equation (3.20) we end up with design parameters u, and v given as:

u =
1
2
©­«
√︃

P+
x, 𝑘−1

⊙−3
S̆ +

√︄
4
√︃

P+
x, 𝑘−1

⊙−4
K̆ − 3

(√︃
P+

x, 𝑘−1

⊙−3
S̆
)⊙2ª®¬ (3.21)

v = u +
√︃

P+
x, 𝑘−1

⊙−3
S̆ (3.22)

In the case of normal distributions, K̆, can be derived as a function of its covariance

matrix, as described by Isserlis’ theorem defined in A.1. Conversely, when dealing

with distributions of a different nature, an alternative methodology must be employed

to compute K̆.

The steps for computing the generalized sigma points is shown in Algorithm 2, and

the Python module in Listing 2 shows how they are computed.

17

3 Kalman filters

Algorithm 2: The steps for computing the generalized sigma points.

1. Choose the free parameter vector u > 0 by Equation (3.21)

2. Calculate the free parameter vector

v = u +
√︃

P+
x, 𝑘−1

⊙−3
S̆

for i ∈ {1,...,𝑛} do

3. Calculate the sigma points:

x̂(0)
𝑘−1 = x̂+𝑘−1 𝑊0

x̂(𝑖)
𝑘−1 = x̂+𝑘−1 − u𝑖

(√︃
P+

x, 𝑘−1

)
𝑖

𝑊
′
𝑖

x̂(𝑖)
𝑘−1 = x̂+𝑘−1 + v𝑖

(√︃
P+

x, 𝑘−1

)
𝑖

𝑊
′′
𝑖

4. Calculate the weights:

𝑊
′′
= 1 ⊘ v ⊘ (u + v)

𝑊
′
= 𝑊

′′ ⊙ v ⊘ u

𝑊0 = 1 −
2𝑛∑︁
𝑖=0

= 𝑊𝑖

where𝑊 =
[
𝑊0,𝑊

′𝑇 ,𝑊
′′𝑇
]𝑇 .

Moreover, the utilization of generalized sigma points grants us the opportunity to

enforce constraints on the generated sigma points, which proves advantageous in

certain scenarios. To illustrate, consider a scenario where the state vector represents

the concentration of chemical components. Under the circumstances of employing an

unconstrained sigma-point algorithm, it is plausible that generated sigma points may

correspond to negative concentrations for these chemical components. As negative

18

3 Kalman filters

concentrations are physically impossible and lack validity within a process model, it

becomes essential to impose constraints on the sigma points. Which is obtained by

restricting the sigma points to be between a lower bound a ∈ R𝑛 and upper bound

b ∈ R𝑛:

a < x̂(𝑖)
𝑘−1 < b

In order to impose restrictions on the sigma points, it becomes necessary to introduce

a slack parameter 𝜃, where 𝜃 ∈ (0, . . . , 1), is a constant determined by the user. By

incorporating 𝜃, we proceed to redefine the independent parameters u𝑖 and v𝑖 for

𝑖 ∈ {1, . . . , 𝑛} as follows:

u𝑖 = 𝜃
[
𝑚𝑖𝑛

{���(x̂+𝑘−1 − a
)
⊘
(√︃

P+
x, 𝑘−1

)
𝑖

���}] if x̂(𝑖)
𝑘−1 < a (3.23)

v𝑖 = 𝜃
[
𝑚𝑖𝑛

{���(b − x̂+𝑘
)
⊘
(√︃

P+
x, 𝑘−1

)
𝑖

���}] if x̂(𝑖+𝑛)
𝑘−1 > b (3.24)

The procedure of constraining the sigma points is given in the Algorithm 3, and the

corresponding Python module is given in Listing 2.

Algorithm 3: The procedure for computing the constrained generalized sigma

points.
Implement Algorithm 2

if x̂(𝑖)
𝑘−1 < a for 𝑖 ∈ {1, . . . , 2𝑛} then

if 𝑖 ≤ n then

u𝑖 = 𝜃
[
𝑚𝑖𝑛

{���(x̂+𝑘−1 − a
)
⊘
(√︁

P+
x, 𝑘−1

)
𝑖

���}]
if 𝑖 > n then

v𝑖−𝑛 = 𝜃
[
𝑚𝑖𝑛

{���(a − x̂+
𝑘−1

)
⊘
(√︁

P+
x, 𝑘−1

)
𝑖−𝑛

���}]
Repeat step 3 and 4 from Algorithm 2 if v is not redefined,

otherwise only repeat step 4.

if x̂(𝑖+𝑛)
𝑘−1 > b for 𝑖 ∈ {1, . . . , 2𝑛} then

if 𝑖 ≤ n then

u𝑖 = 𝜃
[
𝑚𝑖𝑛

{���(x̂+𝑘−1 − b
)
⊘
(√︁

P+
x, 𝑘−1

)
𝑖

���}]
if 𝑖 > n then

v𝑖−𝑛 = 𝜃
[
𝑚𝑖𝑛

{���(b − x̂+
𝑘−1

)
⊘
(√︁

P+
x, 𝑘−1

)
𝑖−𝑛

���}]
Repeat step 3, 4 and 5 from Algorithm 2 if v is not redefined,

otherwise only repeat step 4 and 5.

19

3 Kalman filters

However, it is worth noting that the UT relying on unconstrained sigma points offer a

higher accuracy in terms of the Taylor series.

3.3 The unscented Kalman filter

The unscented Kalman filter (UKF) is a recursive nonlinear Kalman filter that utilizes

the UT described in Section 3.2.1 to propagate means and covariances through the

nonlinear process model and measurement equations. In the case of a linear system,

the Kalman filter presented in Section 3.1 allows for precise updates of the mean

and covariance. However, for nonlinear systems, the mean and covariance can be

approximately updated using the UT. As a result, we replace the equations from

Section 3.1 with UT to derive the UKF algorithm. Initially, the UT is applied to the

model prediction equation, f (x̂+𝑘−1) + w𝑘 , to obtain the priori estimate, x̂−
𝑘

and P̂−
x,𝑘 ,

by assuming additive noise, we get an additive term of Q𝑘 as the covariance matrix.

Subsequently, the measurement equation is used to transform the sigma points into ŷ(𝑖)
𝑘

given as follows:

ŷ(𝑖)
𝑘

= h(x̂(𝑖)
𝑘−1) + v𝑘−1 (3.25)

Then combine the ŷ(𝑖)
𝑘

vectors to obtain the predicted measurement at time step 𝑘 , in

this manner:

ŷ𝑘 =
2𝑛∑︁
𝑖=0
𝑊𝑚
𝑖 ŷ(𝑖)

𝑘
(3.26)

Afterwards the covariance of the predicted measurement can be computed:

Py, 𝑘 =
2𝑛∑︁
𝑖=0
𝑊𝑐
𝑖

(
ŷ(𝑖)
𝑘

− ŷ𝑘
) (

ŷ(𝑖)
𝑘

− ŷ𝑘
)𝑇

+ R𝑘−1 (3.27)

20

3 Kalman filters

And the cross covariance between x̂−
𝑘

and ŷ𝑘 is given as:

Pxy, 𝑘 =
2𝑁∑︁
𝑖=0
𝑊𝑐
𝑘

(
x̂(𝑖)
𝑘

− x̂−𝑘
) (

ŷ(𝑖)
𝑘

− ŷ𝑘
)𝑇

(3.28)

Finally the measurement update of the estimate can be computed using the normal

Kalman filter equations:

K𝑘 = Pxy, 𝑘P
−1
xy, 𝑘 (3.29)

x̂+𝑘 = x̂−𝑘 + K𝑘 (y𝑘 − ŷ𝑘) (3.30)

P+
x, 𝑘 = P−

𝑘 − K𝑘Py, 𝑘K
𝑇
𝑘 (3.31)

The complete UKF algorithm that updates the mean x̂+
𝑘
, and the covariance P+

x, 𝑘 is

presented in Algorithm 4, and the implementation of the Python modules for the Scaled

UT and GenUT filters is given in Listing 5 and 6, respectively.

21

3 Kalman filters

Algorithm 4: The full procedure for computing the UKF.

1. Initialize the system with:

x̂+0 = E[x0]

P+
0 = E[(x0 − x̂0) (x0 − x̂0)𝑇]

for k ∈ {1,...,∞} do
2. Calculate the sigma points, x̂(𝑖)

𝑘−1, and the corresponding, weights

𝑊𝑖, from either Equation (3.13) or Algorithm 2.

3. Time update:

x̂(𝑖)
𝑘

= f (x̂(𝑖)
𝑘−1) + w𝑘−1

x̂−𝑘 =

2𝑛∑︁
𝑖=0
𝑊𝑚
𝑖 x̂(𝑖)

𝑘

P−
x, 𝑘 =

2𝑛∑︁
𝑖=0
𝑊𝑐
𝑖

(
x̂(𝑖)
𝑘

− x̂−𝑘
) (

x̂(𝑖)
𝑘

− x̂−𝑘
)𝑇

+ Q𝑘−1

4. Measurement update:

ŷ(𝑖)
𝑘

= h(x̂(𝑖)
𝑘−1) + v𝑘−1

ŷ𝑘 =
2𝑛∑︁
𝑖=0
𝑊𝑚
𝑖 ŷ(𝑖)

𝑘

Py, 𝑘 =
2𝑛∑︁
𝑖=0
𝑊𝑐
𝑖

(
ŷ(𝑖)
𝑘

− ŷ𝑘
) (

ŷ(𝑖)
𝑘

− ŷ𝑘
)𝑇

+ R𝑘−1

Pxy, 𝑘 =
2𝑁∑︁
𝑖=0
𝑊𝑐
𝑘

(
x̂(𝑖)
𝑘

− x̂−𝑘
) (

ŷ(𝑖)
𝑘

− ŷ𝑘
)𝑇

K𝑘 = Pxy, 𝑘P
−1
xy, 𝑘

x̂+𝑘 = x̂−𝑘 + K𝑘 (y𝑘 − ŷ𝑘)

P+
x, 𝑘 = P−

𝑘 − K𝑘Py, 𝑘K
𝑇
𝑘

22

4 Estimation of the noise statistics

One essential component of a KF is its covariance matrices, Q and R, which

serve the purpose of regulating filter divergence and mitigating model errors.

Nonetheless, in practical scenarios, acquiring precise information regarding unknown

noise statistics becomes challenging. This limitation can lead to substantial errors in

state estimation and consequently result in divergence. To address this detrimental

aspect, several estimation methods have been developed, which can be classified into

four distinct groups: correlation methods[23], the maximum-likelihood methods[17],

the covariance matching methods[24], and the Bayesian methods[22]. In this section,

we introduce the estimation approach by the works of Krog & Jäschke[21], as well as

Berry & Sauer[8].

4.1 Model-based estimation of noise statistics

As discussed in Section 2.4, noise is generally not additive. The method discussed

in this section assumes parametric uncertainty in the process model, and it translates

this uncertainty into additive process noise. We can then use the process noise to

estimate the noise statistic of Q in a more generalized form. One advantage of this

approach compared to other approaches, such as a fixed hand-tuned Q, or for instance

by a linearization approximation by Fotopoulos[9] is the ability to capture statistical

variations of the real trajectory.

4.1.1 Modelling noise as parametric uncertainty

Let us consider Equation (2.13) describe the actual plant in the nonlinear state space

form given as follows:

x𝑡𝑟𝑢𝑒𝑘 = f (x𝑡𝑟𝑢𝑒𝑘−1 , u𝑘−1, 𝜽 , 𝑡𝑘) (4.1)

23

4 Estimation of the noise statistics

where 𝜽 is a random variable. Hence, the nonlinear noise in Equation (4.1) is

considered to be captured by the uncertain parameter distribution. An approximation

of the plant nominal value is obtained using the nonlinear model with the nominal

value of the parameters given as:

x𝑛𝑜𝑚𝑘 = f (x𝑛𝑜𝑚𝑘−1 , u𝑘−1, 𝜽 , 𝑡𝑘) (4.2)

where 𝜽 is the mean value of the parameter distribution. By adding an additive noise

term w̃𝑘 ∼ (w̄𝑘 ,Q𝑘) in Equation (4.2), we can capture the real trajectory of the plant

written as:

x𝑛𝑜𝑚𝑘 = f (x𝑛𝑜𝑚𝑘−1 , u𝑘−1, 𝜽 , 𝑡𝑘) + w̃𝑘 (4.3)

Under the circumstance that we are able to specify a w̃𝑘 the prediction of the model

will be similar to the real plant. Since we desire that Equation (4.1) and Equation (4.2)

to be the same, we can calculate the value of w̃𝑘 such as:

w̃𝑘 = f (x𝑡𝑟𝑢𝑒𝑘−1 , u𝑘−1, 𝜽 , 𝑡𝑘) − f (x𝑛𝑜𝑚𝑘−1 , u𝑘−1, 𝜽) (4.4)

⇒ w̃𝑘 = f (x𝑡𝑟𝑢𝑒𝑘−1 , u𝑘−1, 𝜽 , 𝑡𝑘) − x𝑛𝑜𝑚𝑘 (4.5)

Here, x𝑡𝑟𝑢𝑒
𝑘−1 and x𝑛𝑜𝑚

𝑘−1 represent RV, and under the assumption that they are fairly close

to the approximated mean, x𝑡𝑟𝑢𝑒
𝑘

can be approximated as x̂+
𝑘−1, and the same apply

for x𝑛𝑜𝑚
𝑘−1 . The only random variable left is therefore the parameter 𝜽 . Valappil and

Georgakis[34] have two methods of exploiting the information about the uncertainty

of 𝜽 to estimate w̃𝑘 . The first approach propagates the covariance matrix P𝜽 through

the system given in Equation (4.5). Which is a linearization method because it utilises

a Taylor expansion on the right-hand side of Equation (4.5). Where the nonlinear

dependence of w̃𝑘 and 𝜽 can be linearized around the nominal parameter values and

states. The second approach uses a Monte Carlo simulation. The primary drawback

of the first approach lies in its limited accuracy, although it offers the advantage of

24

4 Estimation of the noise statistics

low computational cost. Conversely, the latter approach achieves higher accuracy, but

unfortunately at the expense of significantly increased computational requirements.

To strike a balance between accuracy and computational efficiency, we draw inspiration

from the method proposed by Krog & Jäschke[21], and employ the UT described in

Chapter 3.2.1.1 to get the proper sigma points 𝝌𝜽 and corresponding weights 𝑊𝜽 for

the computation of w̃𝑘 . It is also possible to use the version described in Chapter

3.2.1.2 to get similar results.

4.1.2 Scaled unscented transformation to estimate the noise statistics

Let us consider that the mean 𝜽 , and covariance P𝜽 of our parameter distribution are

available. By employing Equation (3.13), we can compute the 2𝑛𝜽 + 1 sigma points

𝝌𝜽 ∈ R𝑛𝜽×(2𝑛𝜽+1) , along with their corresponding weights represented 𝑊𝜽 ∈ R𝑛𝜽 . The

(𝑖 + 1)-th column in 𝝌𝜽 is denoted as the as the 𝑖−th sigma point 𝝌(𝑖)
𝜽 . Subsequently,

the mean and covariance of Equation (4.5) can be approximated using the following

equations:

w̃𝑘 = f (x̂+𝑘−1, u𝑘−1, 𝝌
(𝑖)
𝜽 , 𝑡𝑘) − x𝑛𝑜𝑚𝑘 (4.6)

w̄𝑘 =

2𝑛𝜽∑︁
𝑖=0
𝑊

(𝑖)
𝜽 w̃(𝑖)

𝑘
(4.7)

Q𝑘 =

2𝑛𝜽∑︁
𝑖=0
𝑊

(𝑖)
𝜽

(
w̃(𝑖)
𝑘

− w̄𝑘

) (
w̃(𝑖)
𝑘

− w̄𝑘

)𝑇
(4.8)

The algorithm outlining the procedure for estimating the noise statistics is presented

in Algorithm 5 and is implemented in the Python module given in Listing 4.

It is worth noting that the initial step in Algorithm 5 can be changed to Algorithm 2

as an alternative to Equation (3.13) for the computation of the sigma points and the

corresponding weights. Furthermore, it should be considered that the estimation of the

25

4 Estimation of the noise statistics

Algorithm 5: The scaled unscented transformation procedure for estimating
the noise statistics.

1. Performe Equation (3.13) to get: 𝝌𝜽 ,𝑊𝜽

2. Propagate the sigma points and estimate the noise statistics by:
for k ∈ {1,...,∞} do

x𝑛𝑜𝑚𝑘 = f (x̂+𝑘−1, u𝑘−1, 𝜽 , 𝑡𝑘)
w̃(𝑖)
𝑘

= f (x̂+𝑘−1, u𝑘−1, 𝝌
(𝑖)
𝜽 , 𝑡𝑘) − x𝑛𝑜𝑚𝑘

w̄𝑘 =

2𝑛𝜽∑︁
𝑖=0
𝑊

(𝑖)
𝜽 w̃(𝑖)

𝑘

Q𝑘 =

2𝑛𝜽∑︁
𝑖=0
𝑊 𝑖

𝜽

(
w̃(𝑖)
𝑘

− w̄𝑘

) (
w̃(𝑖)
𝑘

− w̄𝑘

)𝑇

measurement statistics, namely v̄𝑘 , and R𝑘 can also be computed utilizing the identical

procedure outlined in Algorithm 5.

4.2 Data-driven estimation of noise statistics

The adaptive estimation of noise statistics proposed by Berry & Sauer[8] represents an

extension of Mehra’s method for reconstructing the error covariance matrices Q and

R through the inclusion of auxiliary equations in the KF framework. This approach

is based on Mehra’s innovation correlation method, but it undergoes modifications to

enable its application in the non-linear domain. The rationale behind these adaptations

lies in the fact that Mehra’s method relied on the assumption of stationarity within the

KF’s innovation sequence, which is no longer valid for non-linear models. Instead,

Berry & Sauer use the innovations at each filter step, along with locally linearized

dynamics and observations, to recover independent estimates of the matrices Q and R.

These estimates are then integrated sequentially using a moving average to update the

matrices Q 𝑓 𝑖𝑙𝑡

𝑘
and R 𝑓 𝑖𝑙𝑡

𝑘
, used by the filter at time step 𝑘 . By treating each innovation

separately, using the local linearization relevant to the current state, we are able to

recover the full matrices Q and R when the model error is Gaussian white noise.

26

4 Estimation of the noise statistics

4.2.1 Weighted statistical linear regression (WSLR)

In order to apply the adaptive scheme proposed by Berry & Sauer, it becomes necessary

to linearize our model. One approach to achieve this linearization is through the

utilization of weighted statistical linear regression (WSLR), which is described by

Gelb[10]. Notably, UT itself can be viewed as an implicit WSLR.

Considering the nonlinear equation f (x) and the measurement equation h(x) outlined

in Equations (2.15) and (2.16), respectively, if we assume that both equations have

undergone mean and covariance propagation as presented in Equations (3.10 - 3.12)

and (3.25 - 3.27) respectively, and our objective is to determine the linear regression

that satisfies this condition:

y = Ax + b (4.9)

That minimizes the weighted sum of squared errors:

{A, b} = argmin
𝑁∑︁
𝑖=1
𝑊𝑚
𝑖 𝜺

𝑇
𝑖 𝜺

𝑇
𝑖 (4.10)

Where the point-wise linearization error 𝜺𝑖 is defined as:

𝜺𝑖 = ŷ(𝑖)
𝑘−1 − (Ax̂(𝑖)

𝑘−1 + b) (4.11)

Which can be interpreted as a finite sample bases approximation of the true expected

statistical linearization given by:

J = E[𝜺𝑇𝑊𝜺] ≈
𝑁∑︁
𝑖=1
𝑊𝑚
𝑖 𝜺

𝑇
𝑖 𝜺𝑖 (4.12)

It can be shown that the solution to the statistical linear regression is given as follows:

A = Pxy, 𝑘P
−1
x (4.13)

b = ŷ𝑘 − Ax̂−𝑘 (4.14)

27

4 Estimation of the noise statistics

where Pxy, 𝑘 and P−1
x can be computed by the UT. By applying Equation (4.9) to

both the nonlinear process model and measurement equation, we obtain the following

equations:

x𝑘 = f (x𝑘−1) ≈ F𝑘−1x𝑘−1 + bf, 𝑘−1 (4.15)

y𝑘 = h(x𝑘) ≈ H𝑘x𝑘 + bh, 𝑘 (4.16)

Comparing (4.15) and (4.16) with Equation (4.9), the solution of the statistical linear

regression given in Equation (4.13) can be utilized similarly to compute the matrices

F𝑘−1 and H𝑘 as the A matrix.

4.2.2 Adaptive unscented Kalman filter

In our specific scenario, the number of observations 𝑚 was lower than the number

of elements 𝑛 in the state. Consequently, H𝑘 and H𝑘F𝑘−1 was not invertible. To

address this issue, Bélenger[3] proposed a method to estimate Q𝑘−1 by parameterizing

Q𝑒
𝑘
=
∑

q𝑝Q𝑝 as a linear combination of fixed matrices Q𝑝. To enforce this constraint,

we initially set:

C𝑘−1 = 𝜺𝑘𝜺
𝑇
𝑘−1 + H𝑘F𝑘−1K𝑘−1𝜺𝑘−1𝜺

𝑇
𝑘−1 − H𝑘F𝑘−1F𝑘−2P+

x, 𝑘−2F𝑇𝑘−2H𝑇
𝑘−1 (4.17)

Our objective is to solve the equation H𝑘F𝑘−1Q𝑒
𝑘−1H𝑇

𝑘−1 = C𝑘−1, which involves

finding the vector q with values q𝑝 that minimizes the Frobenius norm, given by:

(C𝑘−1 −
∑︁
𝑝

q𝑝H𝑘F𝑘−1Q𝑝H𝑇
𝑘−1

)

𝐹

(4.18)

To solve Equation (4.18), we simplify the problem by vectorizing all the matrices

involved. Let vec(C𝑘−1) represent the vector formed by concatenating the columns of

28

4 Estimation of the noise statistics

C𝑘−1. By solving the least-squares solution of the equation:

A𝑘−1q =
∑︁
𝑝

q𝑝vec(H𝑘F𝑘−1Q𝑝H𝑇
𝑘−1) ≈ vec(C𝑘) (4.19)

where the 𝑝-th column of A𝑘 is vec(H𝑘)F𝑘−1Q𝑝H𝑇
𝑘
, we can find the least-squares

solution q = A†vec(C𝑘) and construct the estimated matrix Q𝑒
𝑘−1. In our applications,

we utilize a diagonal parameterization using 𝑛 matrices (Q𝑝 = E𝑝𝑝), where E𝑖 𝑗
represents the elementary matrix with its only non-zero entry being 1 at the 𝑖 𝑗

position. There are, however, other possible choices of Q𝑝, and these choices should

be considered as tuning parameters of the method. After constructing the estimated

matrix Q𝑒
𝑘−1 we are able to update Q 𝑓 𝑖𝑙𝑡

𝑘
at each step with an exponentially weighted

moving average:

Q 𝑓 𝑖𝑙𝑡

𝑘
= Q 𝑓 𝑖𝑙𝑡

𝑘−1 + 𝛿(Q
𝑒
𝑘−1 − Q 𝑓 𝑖𝑙𝑡

𝑘−1) (4.20)

The parameter 𝛿 should be selected to be sufficiently small in order to achieve a

smoothing effect on the moving average. The algorithm’s process is illustrated in

Algorithm 6, and the implementation of the algorithm can be found in Listing 4.

Algorithm 6: The steps for computing the adaptive UKF.

1. Performe Algorithm 4 to get: H𝑘 , F𝑘−1

2. Compute:

C𝑘−1 = 𝜺𝑘𝜺
𝑇
𝑘−1 + H𝑘F𝑘−1K𝑘−1𝜺𝑘−1𝜺

𝑇
𝑘−1 − H𝑘F𝑘−1F𝑘−2P+

x, 𝑘−2F𝑇𝑘−2H𝑇
𝑘−1

A𝑘−1q =
∑︁
𝑝

q𝑝vec(H𝑘F𝑘−1Q𝑝H𝑇
𝑘−1)

Q 𝑓 𝑖𝑙𝑡

𝑘
= Q 𝑓 𝑖𝑙𝑡

𝑘−1 + 𝛿(Q
𝑒
𝑘−1 − Q 𝑓 𝑖𝑙𝑡

𝑘−1)

In line with our hypothesis stated in the introduction, we anticipate that the adaptive

unscented Kalman filter will exhibit favorable performance in continuous processes.

29

4 Estimation of the noise statistics

However, its performance may be less satisfactory in batch processes, because it

typically assumes stationary w𝑘 . Conversely, the scaled UT procedure has the potential

to excel in batch cases, as it takes into account uncertainty in parameters, and the noise

is non-stationary. To investigate these two methods, we plan to conduct tests on a

fed-batch bioreactor case, which will be elaborated on the subsequent chapters.

30

5 Case study

In order to gain a deeper understanding of the diverse noise estimation techniques

discussed in the preceding sections, we will examine a Monod-growth model. This

model serves to estimate biomass formation, sugar consumption, and carbon dioxide

formation in a fed-batch bacterial cultivation process. The investigation of this

bioprocess has been carried out by Tuveri et.al[33]. Their study involves a comparative

evaluation of the performance of UKF in contrast to the EKF within this specific

context.

5.1 Motivation

Implementing accurate and reliable state estimators for bioprocesses are important,

since it is often difficult or expensive to take measurements of some states. In the

context of yeast production, optimizing the biomass yield becomes crucial, with

potential increases from approximately 20% to around 50% achievable by maintaining

glucose concentrations below a certain threshold[19]. This optimization is essential

due to the metabolic shift of yeast from oxidative to oxidative-reductive pathways,

leading to the generation of byproducts such as ethanol and acetate when substrate

concentrations exceed the critical level[31]. Consequently, the implementation

of automated processes through the integration of feedback controllers becomes

important, allowing for the avoidance of manual and time-consuming operations.

Ideally, incorporating all relevant process variables into the feedback control strategy

would ensure the desired performance of the fermentation process. However, the

lack of online sensors poses a significant obstacle to the successful implementation of

feedback controllers. While high-frequency measurements are crucial for monitoring

and control applications, obtaining frequent measurements for all states is not always

feasible. Therefore, sensor fusion presents a viable approach to overcome this

31

5 Case study

challenge. However, effective sensor fusion necessitates the fusion of measurements

and a state model, highlighting the need for accurate noise estimation to improve

the model. This enhancement enables the extrapolation of information regarding

unmeasured states, facilitating a more comprehensive understanding and control of the

fermentation process.

5.2 System model

The bioprocess system is a Monod-growth model, which accounts for growth on a

single sugar substrate. It incorporates factors such as linear cell death and considers

the effects of dilution during feeding. The system is characterized by a set of non-linear

equations that govern its dynamics, and a corresponding measurement function that

relates to the process observations. The formulation of this system is presented below:

¤𝒙 = f (x, u, 𝜽 , 𝑡) =



¤𝑉
¤𝑋
¤𝑆
¤𝐶𝑂2


=



𝐹𝑖𝑛

𝐹𝑖𝑛
𝑉
𝑋 + 𝜇𝑚𝑎𝑥 𝑆

𝐾𝑆+𝑆𝑋 − 𝑘𝑑𝑋
𝐹𝑖𝑛
𝑉

(𝑆𝑖𝑛 − 𝑆) − 𝜇𝑚𝑎𝑥 𝑆
𝐾𝑆+𝑆

𝑋
𝑌𝑋𝑆

1
𝑉𝑟−𝑉

(
𝜇𝑚𝑎𝑥

𝑆
𝐾𝑆+𝑆

𝑋
𝑌𝑋𝐶𝑂2

𝑉 + (𝐹𝑖𝑛 − 𝑞𝑎𝑖𝑟)𝐶𝑂2

)


(5.1)

y(x) =


𝑉

𝑋

𝐶𝑂2


(5.2)

Where 𝑉, 𝑋, 𝑆, and 𝐶𝑂2 are the volume, biomass formation, sugar consumption, and

carbon dioxide, respectively. 𝐹𝑖𝑛 refers to the flow rate in the reactor and serves as

an input to the system. 𝑆𝑖𝑛 denotes the substrate concentration in the input stream,

𝜇𝑚𝑎𝑥 , 𝐾𝑆, 𝑘𝑑 ,𝑌𝑋𝑆, and𝑌𝑋𝐶𝑂2 are time-invariant parameters detailed in Table 5.1 These

parameters have been obtained from the work of Tuveri et.al[33], and remain consistent

32

5 Case study

throughout the analysis.

Table 5.1: The model parameters of the bioprocess system given in Equation (5.1),
with estimated mean values from Tuveri et.al[33]. The units and standard deviations
are also presented.

𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 𝐷𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑖𝑜𝑛 𝑀𝑒𝑎𝑛 𝑈𝑛𝑖𝑡𝑠 𝑆𝑡𝑑 (𝜎)

𝜇𝑚𝑎𝑥 Maximum growth rate 1.9 · 10−1 ℎ−1 3.25 · 10−6

𝐾𝑆 Monod growth constant 7.00 · 10−3 𝑔𝐿−1 3.92 · 10−6

𝑘𝑑 Death rate constant 6.00 · 10−3 ℎ−1 4.49 · 10−6

𝑌𝑋𝑆 𝑆 from 𝑋 yield 4.2 · 10−1 𝑔𝑔−1 3.58 · 10−6

𝑌𝑋𝐶𝑂2 𝐶𝑂2 from 𝑋 yield 5.43 · 10−1 𝑔𝑔−1 2.22 · 10−6

𝑉𝑟 - 4 𝐿 -

𝑆𝑖𝑛 Substrate concentration in the input 100 𝑔

𝑙
-

𝑞𝑎𝑖𝑟 The air inflow 5.43 · 10−1 𝑁𝐿
ℎ

-

33

6 Results & Discussion

In our analysis of the bioprocess model, a measurement was acquired at a rate of

1𝑚𝑖𝑛−1, and the simulation interval spans were from 0 − 15ℎ. The integration of the

process model was carried out using a fourth-order Runge-Kutta method with adaptive

step size. The system and state estimators was initialized with the following initial

conditions:

x0 = [1.5, 1.2, 20, 10−9]𝑇

P+
0 = 𝑑𝑖𝑎𝑔([10−1, 5 · 10−1, 1, 10−2])

x̂+0 = x0 + N(x0,P+
0)

It was assumed that the measurement noise v ∼ N(0,R), was known from the error

statistics of the measurement device and is additive with the given measurement

covariance matrix R:

R = 𝑑𝑖𝑎𝑔([10−2, 1, 10−3])

The initial process covariance matrix for both estimation methods was set to:

Q = 𝑑𝑖𝑎𝑔([10−6, 10−6, 10−6, 10−6])

6.1 The performance between the model-based and data-driven

estimation method

The aim of this analysis was to evaluate the performance of the data-driven and

model-based method as described in Section 4, to estimate the covariance matrix Q in

34

6 Results & Discussion

the context of the model-based method. We tried to capture the inherent characteristics

of the bioprocess system by incorporating random variations into the plant parameters

as described in Section 2.5, by sampling the value of the parameter at each point in

time given as:

𝜽 = [𝜇𝑚𝑎𝑥 , 𝐾𝑠, 𝐾𝑑 , 𝑌𝑋𝑆, 𝑌𝑋𝐶𝑂2 , 𝑆𝑖𝑛, 𝑞𝑎𝑖𝑟]

P𝜽 = 𝑑𝑖𝑎𝑔(𝜽 2)

𝒘𝜽 ∼ N(𝜽 ,P𝜽)

𝜽 = 𝜽 + 𝒘𝜽

where 𝜽 are the model parameter given in Table 5.1, and is used by the nonlinear

model, and 𝜽𝑝𝑙𝑎𝑛𝑡 is used by the plant. The uncertainty in the parameter could then

be translated to create an additive process noise to estimate the noise statistic as the

procedure described in Section 4.1.1.

We have employed the scaled unscented Kalman filter for both noise methods in the

analysis, as the estimation of the noise matrix Q is the primary objective. This allows

for a more comparable evaluation of the methods in the prediction of Q. The value

of the tuning parameters were selected according to Section 3.2.1.1, the parameter

𝛼 was selected to be 𝛼 = 10−3, ranging between 0 and 1, in order to minimize

potential higher-order effects. The value of 𝛽 is set to 2, as we assumed that the

noise follows a Gaussian distribution, in accordance with Kandepu et al.[16]. This

choice of 𝛽 influences the weighting of the zeroth sigma-point during the calculation

of the covariance. Furthermore, 𝜅 was set to 1 to ensure the covariance matrix remains

positive semidefinite.

In the case of the data-driven method, additive noise was assumed to enter through

w ∼ N(0,Q), and we adopted a diagonal parameterization using 𝑛 matrices (Q𝑝 =

E𝑝𝑝), where E𝑖 𝑗 was an elementary matrix with its only non-zero entry being 1 at the

35

6 Results & Discussion

𝑖 𝑗 position. The value of 𝛿 was chosen as 1/50, and was determined through a trial and

error approach to identify an appropriate small value in order to achieve a smoothing

effect on the moving average.

1.5

2.0

2.5

V
[L

]

True UKF1 UKF2 Measurement

0

10

X
[L

]

0

20

40

S
[L

]

0 2 4 6 8 10 12 14
T ime[h]

0.0

0.1

C
O

2
[L

]

Figure 6.1: The plot illustrates the state estimation performance obtained from
different approaches to estimate the covariance matrix Q for the bioprocess system.
The plant is represented by the green line, while the model-based estimation of Q using
the scaled unscented transformation is depicted by the blue line (UKF1). Additionally,
the red line corresponds to the data-driven estimation of Q using an adaptive scaled
unscented Kalman filter (UKF2), and the measurements are marked as x.

36

6 Results & Discussion

Figure 6.1 illustrates the behaviour of the plant through the green line, while the

blue line (UKF1) represents the state estimation using Q matrix obtained from the

model-based method. Additionally, the red line indicates the states estimated using the

Q from the data-driven method. The measured values are denoted by the x markers.

Visually, the performance of both methods appeared quite similar in Figure 6.1. Both

methods demonstrated a high level of accuracy in estimating the behaviour of the sugar

concentration, which consistently decreased from the initial state (20𝑔/𝐿), while the

volume remained constant at 1.5𝐿, and both methods effectively captured this trend.

However, when the sugar concentration fell below 2𝑔/𝐿, a 0.5𝐿 step change in the

volume of the sugar solution was introduced into the feed stream, 𝐹𝑖𝑛. At that point,

both methods deviated from the actual plant behaviour.

This deviation was more prominently observed in the error plot, Figure 6.2, which

represented the discrepancy between the actual plant state, x𝑘,𝑝𝑙𝑎𝑛𝑡 and the estimated

state, x̂𝑘 . The deviation of the sugar concentration became more pronounced at around

10.5h and remained high thereafter.

To further quantify the errors, we also computed the root-mean-square error.

𝑅𝑀𝑆𝐸 =

√√√
1
𝑁

𝑁∑︁
𝑘=1

(x̂𝑘 − x𝑘,𝑝𝑙𝑎𝑛𝑡
)

2

(6.1)

where x𝑘,𝑝𝑙𝑎𝑛𝑡 is the ground truth, and the values are given in Table 6.1.

Table 6.1: The Root Mean Square Error (RMSE) value from the state estimation using
the model-based method (UKF1) and the data-driven (UKF2) method gathered from
1, and the mean of 100 simulations are presented in their respective columns.

State variables RMSEUKF1 (1) RMSEUKF2 (1) RMSEUKF1 (100) RMSEUKF2 (100)

𝑉 0.0090 0.0533 0.0087 0.0538
𝑋 0.0120 0.5350 0.0925 0.5261
𝑆 1.8401 1.8532 1.1400 8.9797

𝐶𝑂2 0.0025 0.0145 0.0025 0.0170

37

6 Results & Discussion

−0.1

0.0

0.1

V
[L

]

UKF1 UKF2

−1

0

1

X
[L

]

0

2

S
[L

]

0 2 4 6 8 10 12 14
T ime[h]

−0.05

0.00

0.05

C
O

2
[L

]

Figure 6.2: The error plot illustrates the deviation between x𝑘,𝑝𝑙𝑎𝑛𝑡 − x̂𝑘 , the blue
dashed line represents the deviation of the model-based estimation, while the red
dashed line corresponds to the deviation of the data-driven estimation.

Based on the RMSE values presented in Table 6.1, it is evident that the model-based

method described in Section 4.1.1, achieved the most accurate state estimates. This

finding aligns with our hypothesis, as stated at the end of Section 4.2. By analyzing

Figure 6.3, it is apparent that the data-driven method exhibited more noise in the

diagonal elements compared to the model-based method. One possible reason for this

difference is because of the tuning of 𝛿, which might be improved through Bayesian

38

6 Results & Discussion

optimization. Additionally, the value of Q𝑝 was tuned through parameterization.

Alternative approaches to tuning Q𝑝, may lead to even better performance outcomes.

0.000

0.005

V
[L

]

UKF1, ε =1e-08 UKF2

0.00

0.25

0.50

X
[L

]

0.0

0.5

1.0

S
[L

]

0 2 4 6 8 10 12 14
T ime[h]

0.0000

0.0025

0.0050

C
O

2
[L

]

Figure 6.3: The diagonal elements of the covariance matrix Q obtained from the
estimation of the model-based method is represented by the blue line (UKF1), and the
estimation derived from the data-driven method is illustrated by the red line (UKF2).

By further analyzing Figure 6.3, it becomes evident that the model-based method,

having access to perfect information about the parameter distribution, successfully

predicted the spike in the sugar concentration around 10.5h. In scenarios where

perfect information about the parameter distribution is not available, one potential

39

6 Results & Discussion

approach to achieve favorable results could involve tuning the parameter 𝜅.

40

7 Concluding Remarks

The performance of the model-based method and the data-driven method, as discussed

by the works of Krog & Jäschke[21], and Berry & Sauer[8], demonstrates promising

results as estimation techniques for the covariance matrix Q, thereby reducing the need

for manual tuning of Q. Among the explored approaches, the estimation technique

given by Krog & Jäschke[21], which utilizes the scaled unscented transformation to

estimate the covariance matrix Q, yielded the overall best results.

However, it is worth noting that the model-based method still holds potential for

improvement. By selecting better parameters for 𝛿, and Q𝑝, it is possible to achieve

better results. Nevertheless, in cases of the model-based method, if the model

uncertainties biased the prediction of states significantly, the methods could result

in noisy estimates. Due to the fact that in such case the values of Q will become very

large, and the filter will rely heavily on the measurements, capturing the noise present

in the measurements. Therefore, there exists a limit to the process-model mismatch

beyond which these techniques may struggle to deliver accurate state estimates.

41

References

[1] Shady E. Ahmed, Suraj Pawar and Omer San. ‘PyDA: A Hands-On Introduction

to Dynamical Data Assimilation with Python’. In: Fluids (2020).

[2] K.J. Åström and P. Eykhoff. ‘System identification—A survey’. In: Automatica

7.2 (1971), pp. 123–162. issn: 0005-1098. doi: https://doi.org/10.1016/0005-

1098(71)90059-8. url: https://www.sciencedirect.com/science/article/pii/

0005109871900598.

[3] Pierre R. Bélanger. ‘Estimation of noise covariance matrices for a linear time-

varying stochastic process’. In: Automatica 10.3 (1974), pp. 267–275. issn:

0005-1098. doi: https : / / doi . org / 10 . 1016 / 0005 - 1098(74) 90037 - 5. url:

https://www.sciencedirect.com/science/article/pii/0005109874900375.

[4] Tyrus Berry and Timothy Sauer. ‘Adaptive ensemble Kalman filtering of non-

linear systems’. In: Tellus A: Dynamic Meteorology and Oceanography 65.1

(2013), p. 20331. doi: 10.3402/tellusa.v65i0.20331. eprint: https://doi.org/10.

3402/tellusa.v65i0.20331. url: https://doi.org/10.3402/tellusa.v65i0.20331.

[5] Francesco Destro et al. ‘A hybrid framework for process monitoring: Enhancing

data-driven methodologies with state and parameter estimation’. In: Journal of

Process Control 92 (Aug. 2020), pp. 333–351. issn: 0959-1524. doi: 10.1016/

J.JPROCONT.2020.06.002.

[6] A. Doucet, Simon J. Godsill and Christophe Andrieu. ‘On sequential simulation-

based methods for Bayesian filtering’. In: Statistics and Computing (1998).

[7] Jindrich Dunik et al. ‘Noise covariance matrices in state-space models: A survey

and comparison of estimation methods—Part I’. In: International Journal of

Adaptive Control and Signal Processing 31 (May 2017). doi: 10.1002/acs.

2783.

[8] Donald Ebeigbe et al. ‘A Generalized Unscented Transformation for Probability

Distributions’. In: ArXiv (2021).

42

https://doi.org/https://doi.org/10.1016/0005-1098(71)90059-8
https://doi.org/https://doi.org/10.1016/0005-1098(71)90059-8
https://www.sciencedirect.com/science/article/pii/0005109871900598
https://www.sciencedirect.com/science/article/pii/0005109871900598
https://doi.org/https://doi.org/10.1016/0005-1098(74)90037-5
https://www.sciencedirect.com/science/article/pii/0005109874900375
https://doi.org/10.3402/tellusa.v65i0.20331
https://doi.org/10.3402/tellusa.v65i0.20331
https://doi.org/10.3402/tellusa.v65i0.20331
https://doi.org/10.3402/tellusa.v65i0.20331
https://doi.org/10.1016/J.JPROCONT.2020.06.002
https://doi.org/10.1016/J.JPROCONT.2020.06.002
https://doi.org/10.1002/acs.2783
https://doi.org/10.1002/acs.2783

References

[9] Jake Fotopoulos, Christos Georgakis and Harvey G. Stenger. ‘Use of tendency

models and their uncertainty in the design of state estimators for batch

reactors1This contribution is dedicated to the remembrance of Professor

Jacques Villermaux.1’. In: Chemical Engineering and Processing: Process

Intensification 37.6 (1998), pp. 545–558. issn: 0255-2701. doi: https: / / doi .

org/10.1016/S0255-2701(98)00061-0. url: https://www.sciencedirect.com/

science/article/pii/S0255270198000610.

[10] Arthur Gelb et al. Applied optimal estimation. MIT press, 1974.

[11] Ravindra D. Gudi, Sirish L. Shah and Murray R. Gray. ‘Adaptive multirate state

and parameter estimation strategies with application to a bioreactor’. In: Aiche

Journal 41 (1995), pp. 2451–2464.

[12] Simon J. Julier. ‘The scaled unscented transformation’. In: Proceedings of

the 2002 American Control Conference (IEEE Cat. No.CH37301) 6 (2002),

4555–4559 vol.6.

[13] Simon J. Julier and Jeffrey K. Uhlmann. ‘A General Method for Approximating

Nonlinear Transformations of Probability Distributions’. In: 1996.

[14] Simon J. Julier and Jeffrey K. Uhlmann. ‘Unscented filtering and nonlinear

estimation’. In: Proceedings of the IEEE 92 (2004), pp. 401–422.

[15] Rudolf E. Kálmán. ‘A new approach to linear filtering and prediction problems"

transaction of the asme journal of basic’. In: 1960.

[16] Rambabu Kandepu, Bjarne Foss and Lars Imsland. ‘Applying the unscented

Kalman filter for nonlinear state estimation’. In: Journal of Process Control

18.7 (2008), pp. 753–768. issn: 0959-1524. doi: https://doi.org/10.1016/ j.

jprocont.2007.11.004. url: https://www.sciencedirect.com/science/article/

pii/S0959152407001655.

[17] Rangasami L. Kashyap. ‘Maximum likelihood identification of stochastic linear

systems’. In: IEEE Transactions on Automatic Control 15 (1970), pp. 25–34.

43

https://doi.org/https://doi.org/10.1016/S0255-2701(98)00061-0
https://doi.org/https://doi.org/10.1016/S0255-2701(98)00061-0
https://www.sciencedirect.com/science/article/pii/S0255270198000610
https://www.sciencedirect.com/science/article/pii/S0255270198000610
https://doi.org/https://doi.org/10.1016/j.jprocont.2007.11.004
https://doi.org/https://doi.org/10.1016/j.jprocont.2007.11.004
https://www.sciencedirect.com/science/article/pii/S0959152407001655
https://www.sciencedirect.com/science/article/pii/S0959152407001655

References

[18] Youngjoo Kim and Hyochoong Bang. ‘Introduction to Kalman Filter and Its

Applications’. In: Introduction and Implementations of the Kalman Filter. Ed. by

Felix Govaers. Rĳeka: IntechOpen, 2018. Chap. 2. doi: 10.5772/intechopen.

80600. url: https://doi.org/10.5772/intechopen.80600.

[19] C. Klockow et al. ‘ARE MONOD MODELS ENOUGH FOR BIOREACTOR

CONTROL? PART I – EXPERIMENTAL RESULTS’. In: IFAC Proceedings

Volumes 40.4 (2007). 10th IFAC Symposium on Computer Applications in

Biotechnology, pp. 331–336. issn: 1474-6670. doi: https://doi.org/10.3182/

20070604-3-MX-2914.00057. url: https://www.sciencedirect.com/science/

article/pii/S1474667016328993.

[20] S. Kolås, B.A. Foss and T.S. Schei. ‘Noise modeling concepts in nonlinear

state estimation’. In: Journal of Process Control 19.7 (2009), pp. 1111–1125.

issn: 0959-1524. doi: https://doi.org/10.1016/j.jprocont.2009.03.002. url:

https://www.sciencedirect.com/science/article/pii/S0959152409000419.

[21] Halvor Aarnes Krog and Johannes Jäschke. ‘Systematic Estimation of Noise

Statistics for Nonlinear Kalman Filters’. In: IFAC-PapersOnLine 55.7 (2022).

13th IFAC Symposium on Dynamics and Control of Process Systems, including

Biosystems DYCOPS 2022, pp. 19–24. issn: 2405-8963. doi: https://doi.org/

10.1016/j.ifacol.2022.07.416. url: https://www.sciencedirect.com/science/

article/pii/S2405896322008175.

[22] Demetrios G. Lainiotis. ‘Optimal adaptive estimation: Structure and parameter

adaption’. In: IEEE Transactions on Automatic Control 16 (1971), pp. 160–170.

[23] Raman K. Mehra. ‘On the identification of variances and adaptive Kalman

filtering’. In: IEEE Transactions on Automatic Control 15 (1970), pp. 175–184.

[24] Kenneth A. Myers and Byron D. Tapley. ‘Adaptive sequential estimation with

unknown noise statistics’. In: IEEE Transactions on Automatic Control 21

(1976), pp. 520–523.

44

https://doi.org/10.5772/intechopen.80600
https://doi.org/10.5772/intechopen.80600
https://doi.org/10.5772/intechopen.80600
https://doi.org/https://doi.org/10.3182/20070604-3-MX-2914.00057
https://doi.org/https://doi.org/10.3182/20070604-3-MX-2914.00057
https://www.sciencedirect.com/science/article/pii/S1474667016328993
https://www.sciencedirect.com/science/article/pii/S1474667016328993
https://doi.org/https://doi.org/10.1016/j.jprocont.2009.03.002
https://www.sciencedirect.com/science/article/pii/S0959152409000419
https://doi.org/https://doi.org/10.1016/j.ifacol.2022.07.416
https://doi.org/https://doi.org/10.1016/j.ifacol.2022.07.416
https://www.sciencedirect.com/science/article/pii/S2405896322008175
https://www.sciencedirect.com/science/article/pii/S2405896322008175

References

[25] William H. Press et al. ‘Solution of Linear Algebraic Equations’. In: Numerical

Recipes in C The Art of Scientific Computing. Press Syndicate of the University

of Cambridge The Pitt Building, 2002. isbn: 0 521 43108 5.

[26] Simo Särkkä and Aapo Nummenmaa. ‘Recursive Noise Adaptive Kalman

Filtering by Variational Bayesian Approximations’. In: IEEE Transactions on

Automatic Control 54 (2009), pp. 596–600.

[27] Tor Schei. ‘On-line estimation for process control and optimization

applications’. In: Journal of Process Control 18 (Oct. 2008), pp. 821–828.

doi: 10.1016/j.jprocont.2008.06.014.

[28] René Schneider and Christos T. Georgakis. ‘How To NOT Make the Extended

Kalman Filter Fail’. In: Industrial & Engineering Chemistry Research 52 (2013),

pp. 3354–3362.

[29] H. Schuler. ‘Estimation of States in a Polymerization Reactor’. In: IFAC

Proceedings Volumes 13.4 (1980). 4th IFAC Conference on Instrumentation

and Automation in the Paper, Rubber, Plastics and Polymerisation Industries,

Ghent, Belgium, 3-5 June 1980, pp. 369–376. issn: 1474-6670. doi: https :

//doi.org/10.1016/S1474-6670(17)64951-6. url: https://www.sciencedirect.

com/science/article/pii/S1474667017649516.

[30] Dan Simon. Matematisk modellering. John Wiley & Sons, Inc, 2016. isbn: 10

0-47 1-70858-5.

[31] Bernhard Sonnleitner and Othmar Käppeli. ‘Growth of Saccharomyces

cerevisiae is controlled by its limited respiratory capacity: Formulation and

verification of a hypothesis’. In: Biotechnology and Bioengineering 28 (1986).

[32] Peter Terwiesch, Mukul Agarwal and David W.T. Rippin. ‘Batch unit

optimization with imperfect modelling: a survey’. In: Journal of Process Control

4.4 (1994), pp. 238–258. issn: 0959-1524. doi: https://doi.org/10.1016/0959-

1524(94)80045-6. url: https://www.sciencedirect.com/science/article/pii/

0959152494800456.

45

https://doi.org/10.1016/j.jprocont.2008.06.014
https://doi.org/https://doi.org/10.1016/S1474-6670(17)64951-6
https://doi.org/https://doi.org/10.1016/S1474-6670(17)64951-6
https://www.sciencedirect.com/science/article/pii/S1474667017649516
https://www.sciencedirect.com/science/article/pii/S1474667017649516
https://doi.org/https://doi.org/10.1016/0959-1524(94)80045-6
https://doi.org/https://doi.org/10.1016/0959-1524(94)80045-6
https://www.sciencedirect.com/science/article/pii/0959152494800456
https://www.sciencedirect.com/science/article/pii/0959152494800456

References

[33] Andrea Tuveri et al. ‘Sensor fusion based on Extended and Unscented Kalman

Filter for bioprocess monitoring’. In: Journal of Process Control 106 (2021),

pp. 195–207. issn: 0959-1524. doi: https : / / doi . org / 10 . 1016 / j . jprocont .

2021 . 09 . 005. url: https : / / www. sciencedirect . com / science / article / pii /

S0959152421001542.

[34] Jaleel Valappil and Christos Georgakis. ‘Systematic estimation of state noise

statistics for extended Kalman filters’. In: AIChE Journal 46.2 (2000),

pp. 292–308. doi: https : / / doi .org / 10 .1002 / aic .690460209. eprint: https :

//aiche.onlinelibrary.wiley.com/doi/pdf/10.1002/aic.690460209. url: https:

//aiche.onlinelibrary.wiley.com/doi/abs/10.1002/aic.690460209.

[35] P. de Vallière and Dominique Bonvin. ‘Application of estimation techniques to

batch reactors—III. Modelling refinements which improve the quality of state

and parameter estimation’. In: Computers & Chemical Engineering 14 (1990),

pp. 799–808.

[36] Anna Voelker, Konstantinos Kouramas and Efstratios N. Pistikopoulos. ‘Moving

horizon estimation: Error dynamics and bounding error sets for robust control’.

In: Automatica 49.4 (2013), pp. 943–948. issn: 0005-1098. doi: https://doi.

org/10.1016/j.automatica.2013.01.008. url: https://www.sciencedirect.com/

science/article/pii/S0005109813000095.

46

https://doi.org/https://doi.org/10.1016/j.jprocont.2021.09.005
https://doi.org/https://doi.org/10.1016/j.jprocont.2021.09.005
https://www.sciencedirect.com/science/article/pii/S0959152421001542
https://www.sciencedirect.com/science/article/pii/S0959152421001542
https://doi.org/https://doi.org/10.1002/aic.690460209
https://aiche.onlinelibrary.wiley.com/doi/pdf/10.1002/aic.690460209
https://aiche.onlinelibrary.wiley.com/doi/pdf/10.1002/aic.690460209
https://aiche.onlinelibrary.wiley.com/doi/abs/10.1002/aic.690460209
https://aiche.onlinelibrary.wiley.com/doi/abs/10.1002/aic.690460209
https://doi.org/https://doi.org/10.1016/j.automatica.2013.01.008
https://doi.org/https://doi.org/10.1016/j.automatica.2013.01.008
https://www.sciencedirect.com/science/article/pii/S0005109813000095
https://www.sciencedirect.com/science/article/pii/S0005109813000095

A Definitions & Theorems

Theorem A.1 (Isserlis’ Theorem) Let x = (𝑥1, 𝑥2, . . . , 𝑥𝑛) be a zero-mean multivariate

normal random vector (i.e. for every “i”, E[𝑥𝑖] = 0 and E[𝑥2
𝑖
] = 1), if 𝑛 is even then:

E[𝑥1, 𝑥2, . . . , 𝑥𝑛] =
∑︁
𝑝∈𝑃2

𝑛

∏
{𝑖, 𝑗 ∈𝑝}

E[𝑥𝑖𝑥 𝑗] =
∑︁
𝑝∈𝑃2

𝑛

∏
{𝑖, 𝑗 ∈𝑝}

Cov(𝑥𝑖𝑥 𝑗)

and if 𝑛 is odd then:

E[𝑥1, 𝑥2, . . . , 𝑥𝑛] = 0

Definition A.1 Let x = (𝑥1, 𝑥2, . . . , 𝑥𝑛) be a zero-mean multivariate normal random

vector, and 𝑘 be some positive integer. We define the element-wise product (Hadamard

product) ⊙, such that:

x⊙𝑘 = x ⊙ x ⊙ · · · ⊙ x︸ ︷︷ ︸
k times

(A.1)

x⊙−𝑘 =
©­­«x ⊙ x ⊙ · · · ⊙ x︸ ︷︷ ︸

k times

ª®®¬
−1

(A.2)

Definition A.2 Let A and B be two matrices of the same dimension 𝑚 × 𝑛, the

Hadamard product is a matrix of the same dimension as the operands, with elements

47

A Definitions & Theorems

given as follows:

A ⊙ B = (A ⊙ B)𝑖, 𝑗 = (A)𝑖, 𝑗 (B)𝑖, 𝑗 (A.3)

Definition A.3 Let A, B and C be three matrices of the same dimension 𝑚 × 𝑛, the

Hadamard division is given such that:

C = A ⊘ B (A.4)

C𝑖, 𝑗 =
A𝑖, 𝑗

B)𝑖, 𝑗
(A.5)

48

B Code Listing

1 # @author: Abubakar Bampoye

Importing requierd modules

3 #---

import numpy as np

5 import scipy.linalg

#---

7

def weights(x_posteriori):

9 """

This function calculates the weights for the unsented Kalaman

11 filter.

13

15 Parameters:

17 x_posteriori : The current best guess for the mean of x.

19

Return:

21 ---

An ndarray of weighting coefficients.

23 """

25 N_dim = np.shape(x_posteriori)[0] # The dimension of

the state x

alpha = 1e-3 # positive scaling parameter which can be

made arbitrarily small (0 < Îś < 1), controls the size of the

sigma-point distribution

27 beta = 2. # optimal choice for a Gaussian prior

kappa = np.max([3 - N_dim, 0]) # scaling parameter

29 lambda_ = (alpha**2)*(N_dim + kappa) - N_dim

N_sigma_points = 2 * N_dim + 1 # The nummber of sigmapoints

49

B Code Listing

31 Wm = np.zeros(N_sigma_points)

33 for i in range(1, N_sigma_points):

Wm[i] = 1/(2*(N_dim + lambda_))

35

Wm[0] = lambda_/(N_dim + lambda_)

37 Wc = Wm.copy() # Wc: The weighting coefficients for

each sigma point for the covariance

Wc[0] = lambda_/(N_dim + lambda_) + (1 - alpha**2 +

beta) # Wc: The weighting coefficients for each sigma point for

the covariance

39

return Wm, Wc

41

43 def sigma_points(x_posteriori , P_posteriori):

"""

45 Calculating sigma points for an uncented Kalman filter,

where x_posteriori is the mean, and P_posteriori is the

47 covariance of the filter. Kappa could be an arbitrary constant.

49

51 Parameters:

53 x_posteriori : The current best guess for the mean of x.

55 P_posteriori : The current best guess for the covariance of x.

57

Return:

59 ---

An ndarray of sigma points.

61 """

dim_x = x_posteriori.shape[0]

50

B Code Listing

63 assert (P_posteriori.shape[0] == dim_x) and (P_posteriori.shape

[1] == dim_x), f"The shape of P_posteriori = {P_posteriori.shape

} is wrong, it must be ({dim_x, dim_x})"

N_dim = np.shape(x_posteriori)[0] # The

dimension of the state x

65 alpha = 1e-3 # positive scaling parameter which

can be made arbitrarily small (0 < Îś < 1), controls the size of

the sigma-point distribution

kappa = np.max([3 - N_dim, 0]) # scaling

parameter

67 lambda_ = alpha**2*(N_dim + kappa) - N_dim

N_sigma_pointa = 2 * N_dim + 1 # The nummber of

sigmapoints

69 X = np.zeros((N_dim, N_sigma_pointa)) #

Sigmapoints

sqrt_factor = np.sqrt(N_dim + lambda_)

71 x_posteriori_tilde = sqrt_factor*scipy.linalg.cholesky(

P_posteriori , lower=True)

X[:, 0] = x_posteriori

73

for i in range(N_dim):

75 X[:, i+1] = x_posteriori + x_posteriori_tilde[:, i]

X[:, N_dim+i+1] = x_posteriori - x_posteriori_tilde[:, i]

77

return X

Code 1: Functions for computing the scaled sigma points.

@author: Abubakar Bampoye

2 # Importing requierd modules

#---

4 import numpy as np

import scipy.linalg

6 #---

8

def constrained_generalized_sigmas(x_bar, P, S_skew=None, P_kurt=

51

B Code Listing

None,

10 lb=None, ub=None, theta=None):

"""

12 This function generates generalized sigma points as described by

Ebeige.

14

16

Parameters:

18

x_bar : The current best guess for the mean of x.

20

P : The current best guess for the covariance of x.

22

S_skew : A vector of diagonal components of the skewness tensor.

24

P_kurt: A vector of diagonal components of the kurtiosis tensor.

26

lb : A vector of lower bound of the state.

28

ub : A vector of upper bound of the state.

30

32 Return:

34 A tuple of ndarray consisting of sigma points, and the

corresponding

weights of each sigma points.

36 """

52

B Code Listing

38 dim_x = x_bar.shape[0]

assert (P.shape[0] == dim_x) and (P.shape[1] == dim_x), f'''The

shape

40 of P_k_posteriori = {P.shape} is wrong, it must be ({dim_x,

dim_x})'''

42 # Assumes that the distribtions are symmetrical

if S_skew == None:

44 S_skew = np.zeros((1, x_bar.shape[0]))

46

if P_kurt == None:

48 # Using IsserlisâĂŹ Theorem to compute the P_kurt

P_kurt = np.diag(P@(np.trace(P)*np.eye(x_bar.shape[0])) + 2*

P)

50

52 N = np.shape(x_bar)[0] # Acquire the number of states

54 try:

P_sqrt = scipy.linalg.cholesky(P, lower=True) # Evaluate the

matrix square root

56

except np.linalg.LinAlgError as e:

58 P = (P + P.T)/2

P_sqrt = scipy.linalg.cholesky(P, lower=True) # Evaluate the

matrix square root

60

std_P = np.diag(P_sqrt)

62 u = 0.5*((-std_P**(-3))*S_skew + np.sqrt(4*((std_P**(-4))*

P_kurt) -

3*((std_P**(-3))*S_skew)**2)).flatten() # Choosing the

free parameter vector

64

assert np.all(u>0),"Choose another paramter vector (u>0)." #

checking if the vector u > 0

53

B Code Listing

66

v = (u + (std_P**(-3))*S_skew).flatten() # Calculating the

parameters v

68

70 # Calculating the 2n + 1 sigma points

N_sigma_pointa = 2 * N + 1 # The nummber of sigmapoints

72 X = np.zeros((N, N_sigma_pointa)) # Sigmapoints

X[:, 0] = x_bar

74

for i in range(1,N):

76 X[:, i+1] = x_bar - u[i]*P_sqrt[:,i]

X[:, i+N+1] = x_bar + v[i]*P_sqrt[:,i]

78

Calculating the weights

80 weight2 = 1/v/(u + v)

weight1 = weight2*v/u

82 w0 = np.array([1 - (np.sum(weight1) + np.sum(weight2))])

weights = np.append(w0, np.hstack((weight1, weight2)))

84

86 # Creating the constraints

For the bounds, we note that lb < x < ub

88 # Handle if the slack parameter is not given

if theta == None:

90 theta = 0.9 # Default value of user defined slack parameter

92 # Handle if the lower bound is not given

if lb == None:

94 lb=-np.PINF

96 # Handle if the upper bound is not given

if ub == None:

98 ub=np.PINF

100 assert np.all(np.greater_equal(x_bar, lb)) and np.all(np.

54

B Code Listing

greater_equal(

ub, x_bar)), '''Unable fo enforce constraints: one or more

of the

102 mean does not satisfy lb < mean < ub.'''

104

for i in range(1, 2*N):

106 if np.all(X[:,i]) < lb:

if i <= N:

108 u[i] = theta*(np.min((x_bar - lb)/P_sqrt[:,i]))

if i > N:

110 v[i-N] = theta*(np.min((lb - x_bar)/P_sqrt[:,i-N]))

112 v = (u + (std_P**(-3))*S_skew).flatten() # Calculating the

parameters v

114 for i in range(1,N):

X[:, i+1] = x_bar - u[i]*P_sqrt[:,i]

116 X[:, i+N+1] = x_bar + v[i]*P_sqrt[:,i]

118 for i in range(1,2*N):

if np.all(X[:,i]) > ub:

120 if i <= N:

u[i] = theta*(np.min((x_bar - ub)/P_sqrt[:,i]))

122 if i > N:

v[i-N] = theta*(np.min((ub - x_bar)/P_sqrt[:,i-N]))

124

v = (u + (std_P**(-3))*S_skew).flatten() # Calculating the

parameters v

126

for i in range(1,N):

128 X[:, i+1] = x_bar - u[i]*P_sqrt[:,i]

X[:, i+N+1] = x_bar + v[i]*P_sqrt[:,i]

130

weight2 = 1/v/(u + v)

132 weight1 = weight2*v/u

55

B Code Listing

w0 = np.array([1 - (np.sum(weight1) + np.sum(weight2))])

134 weights = np.append(w0, np.hstack((weight1, weight2)))

136 return X, weights

Code 2: A function that compute the constrained generalized sigma points.

@author: Abubakar Bampoye

2 # Importing the required modules

#--

4 import matplotlib.pyplot as plt

import numpy as np

6 import scaled_filter

import utils_bioreactor_additive_noise as utils_br

8 import generalized_filter as gen_filter

plt.rc('text', usetex=True)

10 plt.rcParams['text.latex.preamble'] = r"\usepackage{amsmath}"

plt.rcParams['text.latex.preamble'] = r"\boldmath"

12 font = {'family': 'normal', 'weight':'bold', 'size':20}

plt.rc('font', **font)

14 #--

16

#--

18 # Defining the parameters (Data) from the literature

#--

20 mu_max = 1.94e-1 # Maximum growth rate [h^-1]

K_s = 7.00e-3 # Monod growth constant [gL^-1]

22 k_d = 6.00e-3 # Death rate constant [h^-1]

Y_XS = 4.2e-1 # S from X yield [gg^-1]

24 Y_XCO_2 = 5.43e-1 # CO_2 from X yield [gg^-1]

V_r = 4 # [L]

26 S_in = 100 # [g/l]

q_air = 120 # [NL/h]

28 theta_mean = np.array([mu_max, K_s, k_d, Y_XS, Y_XCO_2, V_r, S_in,

q_air])

P_theta = np.diag((theta_mean*.05)**2)

56

B Code Listing

30 p_dim = theta_mean.shape[0]

32

#--

34 # Defining the sampling time (integration time span)

#--

36 dt = 1 # [1/min]

t_0 = 0 # [min]

38 t_f = 15*60 # [min]

t = np.arange(t_0, t_f, dt)/60 # [h]

40 dim_t = len(t)

dt_sampling = t[1] - t[0]

42 t_span = np.array([t[0], t[1]])

44

#--

46 # Defining the initial conditions and necessary information in

order to estimate the state

48 #--

The initial conditions from the literature

50 V0, X0, S0, CO_20 = 1.5, 1.2, 20., 10e-10

Initial guess of the state

52 x0 = np.array([V0, X0, S0, CO_20])

The dimention of the state

54 dim_x = x0.shape[0]

Allocating memory for the true state

56 x_true = np.zeros((dim_x, dim_t))

Initializing the first element of the true state

58 x_true[:, 0] = x0

Allocating memory for the posteriori

60 x_posteriori = np.zeros((dim_x, dim_t))

Allocating memory for the posteriori of the generelized

62 # sigmapoints

x_gen_posteriori = np.zeros((dim_x, dim_t))

64 # Inital covariance of the process

P0 = np.diag(np.square([.1, .5, 1., 1e-2]))

57

B Code Listing

66 # Inital covariance of the posteriori

P_posteriori = P0

68 # Inital covariance of the generalized posteriori

P_gen_posteriori = P0

70 # Initial state of the filter

x0_filter = np.random.multivariate_normal(x0, P0)

72 x0_filter = np.array([xi if xi > 0 else 1e-10 for xi in

x0_filter])

Initializing the first element of the posteriori state

74 x_posteriori[:,0] = x0_filter

Initializing the first element of the generalzed

76 # posteriori state

x_gen_posteriori[:,0] = x0_filter

78 # Allocating memory for the measurements

y = np.zeros((3, dim_t))

80 #remove first measurement

y[:, 0] = np.nan

82 # Creating the process noise covariance matrix

Q = np.diag([1e-6]*4)

84 # Creating the measurement noise covariance matrix

R = np.diag([1e-2, 1, 1e-3])

86 #initial control variable

u = np.array([.0])

88

90 #--

Integrating and estimating the states

92 #--

for k in range(1, dim_t):

94 # Creating the noise vectors

vk = np.random.multivariate_normal([0]*3, R)

96 wk = np.random.multivariate_normal([0]*4, Q)

98 x_true[:, k] = utils_br.f(t_span, x_true[:, k-1], u, theta_mean)

+ wk

y[:, k] = utils_br.h(x_true[:, k]) + vk

58

B Code Listing

100

#ScaledUKF prediction step

102 Q_ukf = Q.copy()/dt_sampling

f_ukf = lambda x: utils_br.f(t_span, x, u, theta_mean) + wk

104

x_priori , P_priori , _ = scaled_filter.predict(x_posteriori[:,k

-1], P_posteriori , f_ukf, Q_ukf)

106

#ScaledUKF update step

108 x_posteriori [:,k], P_posteriori , _, _, _, _, _ = scaled_filter.

update(x_priori, P_priori, utils_br.h, y[:,k], R)

110

UKF 2

112 f_ukf2 = lambda x: utils_br.f(t_span, x, u, theta_mean) + wk

#GenUKF prediction step

114 x_gen_priori , P_gen_priori = gen_filter.predict(x_gen_posteriori

[:,k-1], P_gen_posteriori , f_ukf2, Q_ukf)

116 #GenUKF update step

x_gen_posteriori [:,k], P_gen_posteriori , _ = gen_filter.update(

x_gen_priori , P_gen_priori , utils_br.h, y[:,k], R)

118

Creating the control variable

120 if x_true[2, k-1] > 2:

u = np.array([.0])

122 else:

u = np.array([0.5*60])

124

126 #--

Displaying the results

128 #--

Exctracting the states

130 V_true, X_true, S_true, CO_2_true = x_true[0], x_true

[1], x_true[2], x_true[3]

59

B Code Listing

V_ukf, X_ukf, S_ukf, CO_2_ukf = x_posteriori [0,:],

x_posteriori [1,:], x_posteriori [2,:], x_posteriori [3,:]

132 V_gen_ukf , X_gen_ukf , S_gen_ukf , CO_2_gen_ukf = x_gen_posteriori

[0,:], x_gen_posteriori [1,:], x_gen_posteriori [2,:],

x_gen_posteriori [3,:]

fig, (ax1, ax2, ax3, ax4) = plt.subplots(4, 1, figsize=(16, 8),

sharex=True)

134

ax1.plot(t, V_true ,color="#CEFA05", label="True", linewidth=3,

linestyle="-")

136 ax1.plot(t, V_ukf, color="#4169e1", label="ScaledUKF", linewidth=3)

ax1.plot(t, V_gen_ukf , color="#C70039", label="GenUKF", linewidth=3)

138 ax1.scatter(t, y[0], c="#86c9db", marker='x', label="Measurement")

ax1.set_ylabel("$V [L]$")

140 ax1.grid(color='lightgray',linestyle='--')

142 ax2.plot(t, X_true, color="#CEFA05", label="True", linewidth=3,

linestyle="-")

ax2.plot(t, X_ukf, color="#4169e1", label="ScaledUKF", linewidth=3)

144 ax2.plot(t, X_gen_ukf , color="#C70039", label="GenUKF", linewidth=3)

ax2.scatter(t, y[1], c="#86c9db", marker='x', label="Measurement")

146 ax2.set_ylabel("$X [L]$")

ax2.grid(color='lightgray',linestyle='--')

148

ax3.plot(t, S_true, color="#CEFA05", label="True", linewidth=3,

linestyle="-")

150 ax3.plot(t, S_ukf, color="#4169e1", label="ScaledUKF", linewidth=3)

ax3.plot(t, S_gen_ukf , color="#C70039", label="GenUKF", linewidth=3)

152 ax3.set_ylabel("$S [L]$")

ax3.grid(color='lightgray',linestyle='--')

154

ax4.plot(t, CO_2_true , color="#CEFA05", label="True", linewidth=3,

linestyle="-")

156 ax4.plot(t, CO_2_ukf, color="#4169e1", label="ScaledUKF", linewidth

=3)

ax4.plot(t, CO_2_gen_ukf , color="#C70039", label = "GenUKF",

60

B Code Listing

linewidth=3)

158 ax4.scatter(t, y[2], c="#86c9db", marker='x', label="Measurement") #

aquamarine

ax4.set_xlabel("$Time [h]$")

160 ax4.set_ylabel("$CO_{2} [L]$")

ax4.grid(color='lightgray',linestyle='--')

162 ax1.legend(loc="center", bbox_to_anchor=(0.5, 1.25), ncol=4,

fontsize=15)

plt.savefig('State_estiamtion_noise_additive.pdf')

164 plt.show()

166 #--

Calculating the errors from the estimation

168 #--

V_error_ukf = utils_br.error(V_true, V_ukf)

170 V_error_gen_ukf = utils_br.error(V_true, V_gen_ukf)

V_rms_ukf = utils_br.rms(V_true, V_ukf)

172 V_rms_gen_ukf = utils_br.rms(V_true, V_gen_ukf)

174 X_error_ukf = utils_br.error(X_true, X_ukf)

X_error_gen_ukf = utils_br.error(X_true, X_gen_ukf)

176 X_rms_ukf = utils_br.rms(X_true, X_ukf)

X_rms_gen_ukf = utils_br.rms(X_true, X_gen_ukf)

178

S_error_ukf = utils_br.error(S_true, S_ukf)

180 S_error_gen_ukf = utils_br.error(S_true, S_gen_ukf)

S_rms_ukf = utils_br.rms(S_true, S_ukf)

182 S_rms_gen_ukf = utils_br.rms(S_true, S_gen_ukf)

184 CO_2_error_ukf = utils_br.error(CO_2_true , CO_2_ukf)

CO_2_error_gen_ukf = utils_br.error(CO_2_true , CO_2_gen_ukf)

186 CO_2_rms_ukf = utils_br.rms(CO_2_true , CO_2_ukf)

CO_2_rms_gen_ukf = utils_br.rms(CO_2_true , CO_2_gen_ukf)

188

190 #--

61

B Code Listing

Printing MAE, MSE and RMSE

192 #--

print("-"*50)

194 print(f"V_rms_ukf: {V_rms_ukf}")

print(f"V_rms_gen_ukf:{V_rms_gen_ukf}")

196 print(f"X_rms_ukf: {X_rms_ukf}")

print(f"X_rms_gen_ukf:{X_rms_gen_ukf}")

198 print(f"S_rms_ukf: {S_rms_ukf}")

print(f"S_rms_gen_ukf:{S_rms_gen_ukf}")

200 print(f"CO_2_rms_ukf: {CO_2_rms_ukf}")

print(f"CO_2_rms_gen_ukf:{CO_2_rms_gen_ukf}")

202 print("-"*50)

204

#--

206 # Displaying the error

#--

208 fig, (ax1, ax2, ax3, ax4) = plt.subplots(4, 1, figsize=(16, 8),

sharex=True)

ax1.plot(t, V_error_ukf , color="#4169e1", label="Error ScaledUKF",

linewidth=3, linestyle="--")

210 ax1.plot(t, V_error_gen_ukf , color="#C70039", label="Error GenUKF",

linewidth=3, linestyle="--")

ax1.grid(color='lightgray',linestyle='--')

212 ax1.set_ylabel("$V [L]$")

214 ax2.plot(t, X_error_ukf , color="#4169e1", label="Error ScaledUKF",

linewidth=3, linestyle="--")

ax2.plot(t, X_error_gen_ukf , color="#C70039", label="Error GenUKF",

linewidth=3, linestyle="--")

216 ax2.grid(color='lightgray',linestyle='--')

ax2.set_ylabel("$X [L]$")

218

ax3.plot(t, S_error_ukf , color="#4169e1", label="Error ScaledUKF",

linewidth=3, linestyle="--")

220 ax3.plot(t, S_error_gen_ukf , color="#C70039",label="Error GenUKF",

62

B Code Listing

linewidth=3, linestyle="--")

ax3.grid(color='lightgray',linestyle='--')

222 ax3.set_ylabel("$S [L]$")

224 ax4.plot(t, CO_2_error_ukf , color="#4169e1", label="Error ScaledUKF"

, linewidth=3, linestyle="--")

ax4.plot(t, CO_2_error_gen_ukf , color="#C70039", label="Error GenUKF

", linewidth=3,linestyle="--")

226 ax4.grid(color='lightgray',linestyle='--')

ax4.set_ylabel("$CO_{2} [L]$")

228 ax1.legend(loc="center", bbox_to_anchor=(0.5, 1.25), ncol=4,

fontsize=15)

plt.savefig('Error_noise_addititve.pdf')

230 plt.show()

Code 3: Implementation of the main module for the bioprocess system with additive
noise.

@author: Abubakar Bampoye

2 # Importing the required modules

#--

4 import scipy.optimize

import matplotlib.pyplot as plt

6 import numpy as np

import scaled_filter

8 import utils_bioreactor_parameter_noise as utils_br

plt.rc('text', usetex=True)

10 plt.rcParams['text.latex.preamble'] = r"\usepackage{amsmath}"

plt.rcParams['text.latex.preamble'] = r"\boldmath"

12 font = {'family': 'normal', 'weight':'bold', 'size':20}

plt.rc('font', **font)

14 #--

16

#--

18 # Defining the parameters (Data)

#--

20 mu_max = 1.94e-1 # Maximum growth rate [h^-1]

63

B Code Listing

K_s = 7.00e-3 # Monod growth constant [gL^-1]

22 k_d = 6.00e-3 # Death rate constant [h^-1]

Y_XS = 4.2e-1 # S from X yield [gg^-1]

24 Y_XCO_2 = 5.43e-1 # CO_2 from X yield [gg^-1]

S_in = 100 # [g/l]

26 q_air = 120 # [NL/h]

theta_mean = np.array([mu_max, K_s, k_d, Y_XS, Y_XCO_2, S_in, q_air

])

28 P_theta = np.diag((theta_mean*.05)**2)

p_dim = theta_mean.shape[0]

30

32 #--

Defining the sampling time (integration time span)

34 #--

dt = 1 # [1/min]

36 t_0 = 0 # [min]

t_f = 15*60 # [min]

38 t = np.arange(t_0, t_f, dt)/60 # [h]

dim_t = len(t)

40 dt_sampling = t[1] - t[0]

42 #--

Defining the initial conditions and necessary information in

44 # order to estimate the state

#--

46 # The initial conditions from the literature

V0, X0, S0, CO_20 = 1.5, 1.2, 20., 10e-10

48 # Initial guess of the state

x0 = np.array([V0, X0, S0, CO_20])

50 # The dimention of the state

dim_x = x0.shape[0]

52 # Allocating memory for the true state

x_true = np.zeros((dim_x, dim_t))

54 # Initializing the first element of the true state

x_true[:, 0] = x0

64

B Code Listing

56 # Allocating memory for the posteriori

x_posteriori = np.zeros((dim_x, dim_t))

58 # Allocating memory for the posteriori of the generelized

sigmapoints

60 x_posteriori2 = np.zeros((dim_x, dim_t))

Inital covariance of the process

62 P0 = np.diag(np.square([.1, .5, 1., 1e-2])) #

Inital covariance of the posteriori

64 P_posteriori = P0

Inital covariance of the generalized posteriori

66 P_posteriori2 = P0

Initial state of the filter

68 x0_filter = np.random.multivariate_normal(x0, P0)

x0_filter = np.array([xi if xi > 0 else 1e-10 for xi in

x0_filter])

70 # Initializing the first element of the posteriori state

x_posteriori[:,0] = x0_filter

72 # Initializing the first element of the generalzed

posteriori state

74 x_posteriori2[:,0] = x0_filter

Allocating memory for the measurements

76 y = np.zeros((3, dim_t))

dim_y = y.shape[0]

78 #remove first measurement

y[:, 0] = np.nan

80

Creating the process noise covariance matrix

82 Q = np.diag([1e-6]*4)

Creating the measurement noise covariance matrix

84 R = np.diag([1e-2, 1, 1e-3])

Integration time span

86 t_span = np.array([t[0], t[1]])

88 # Noise method 1: sigma pints of the parameters and weights

X_theta = scaled_filter.sus.sigma_points(theta_mean ,

P_theta)

65

B Code Listing

90 W_theta_m , W_theta_c = scaled_filter.sus.weights(theta_mean)

dim_X_theta , dim_sigmas = np.shape(X_theta)

92 w_bar_hist = np.zeros((dim_t, dim_x))

Q_est_hist = np.zeros((dim_t, dim_x))

94 eps =1e-8

96 # Noise method 2

Qp = [np.diag([1. if p == xi else 0. for p in range(dim_x

)]) for xi in range(dim_x)]

98 epsilon_k = np.zeros((dim_y, dim_t))

K = np.zeros((dim_x, dim_y, dim_t))

100 H_hist_2 = np.zeros((dim_y, dim_x, dim_t))

F_hist_2 = np.zeros((dim_x, dim_x, dim_t))

102 x2_prior = np.zeros((dim_x, dim_t))

P2_prior = np.zeros((dim_x, dim_x,dim_t))

104 y_pred = np.zeros((dim_y, dim_t))

Py_pred = np.zeros((dim_y, dim_y,dim_t))

106 C = np.zeros((dim_y, dim_y, dim_t))

Pa = np.zeros((dim_x, dim_x, dim_t)) #posterior

covariance matrices

108 Qe = np.zeros((dim_x, dim_x, dim_t))

Q_est_history = np.zeros((dim_x, dim_x, dim_t))

110 delta = 1/50 #tuning parameter

u = np.array([.0]) #initial control variable

112

114 #--

Integrating and estimating the states

116 #--

for k in range(1, dim_t):

118

Creating the noise vectors

120 vk = np.random.multivariate_normal([0]*3, R)

wk_theta = np.random.multivariate_normal(np.zeros(

p_dim), P_theta, size=1).flatten()

122 p_plant = theta_mean + wk_theta

66

B Code Listing

x_true[:, k] = utils_br.f(t_span, x_true[:, k-1], u,

p_plant)

124 y[:, k] = utils_br.h(x_true[:, k]) + vk

126

#1) estimate noise

128 W_bar = utils_br.w_tilde(t_span, x_posteriori[:,k

-1], u, X_theta, theta_mean)

wk_bar_est , Qk_est = scaled_filter.process_noise(W_theta_m ,

W_theta_c , W_bar)

130

#save estimates for plotting

132 w_bar_hist[k,:] = wk_bar_est

Q_est_hist[k,:] = np.sqrt(np.diag(Qk_est)) #standard deviation

134 Qk_est = Qk_est + eps*np.eye(dim_x)

136 # UKF1 prediction step

f_UKF1 = lambda x: utils_br.f(t_span, x, u, theta_mean) +

wk_bar_est

138

x_priori , P_priori , F_k = scaled_filter.predict(x_posteriori[:,

k-1], P_posteriori , f_UKF1, Qk_est)

140

#UKF1 update step

142 x_posteriori[:,k], P_posteriori , sig_y, _, _, _, _ =

scaled_filter.update(x_priori, P_priori, utils_br.h, y[:, k], R)

144

#UKF2

146 #noise estimation

Qk_est2 = Q_est_history[:,:,k-1]

148 wk_bar_est2 = 0

150 #UKF2 prediction step

f_UKF2 = lambda x: utils_br.f(t_span, x, u, theta_mean) +

wk_bar_est2

67

B Code Listing

152

x_priori2 , P_priori2 , F_hist_2[:,:,k-1] = scaled_filter.predict(

x_posteriori2[:, k-1], P_posteriori2 , f_UKF2, Qk_est2)

154

#UKF2 update step

156 x_posteriori2[:,k], P_posteriori2 , sig_y2, y_pred[:,k], H_hist_2

[:,:,k], Py_pred[:,:,k], K[:,:,k] = scaled_filter.update(

x_priori2 , P_priori2 , utils_br.h, y[:,k], R)

158 epsilon_k[:,k] = y[:,k] - y_pred[:,k]

x2_prior[:,k] = x_priori2.copy()

160 P2_prior[:,:,k] = P_priori2.copy()

Pa[:,:,k] = P_posteriori2.copy()

162

C[:,:,k-1] = (np.outer(epsilon_k[:,k], epsilon_k[:,k-1])

164 + H_hist_2[:,:,k]@F_hist_2[:,:,k-1]@K[:,:,k-1]@np.

outer(epsilon_k[:,k-1], epsilon_k[:,k-1])

- H_hist_2[:,:,k]@F_hist_2[:,:,k-1]@F_hist_2[:,:,k

-2]@Pa[:,:,k-2]@F_hist_2[:,:,k-2].T@H_hist_2[:,:,k-1].T)

166

A = []

168 for p in range(len(Qp)):

Akp = H_hist_2[:,:,k]@F_hist_2[:,:,k-1]@Qp[p]@H_hist_2[:,:,k

-1].T

170 A.append(np.ravel(Akp, order='f').reshape(-1,1))

172 A = np.hstack(A)

174 vec_C = np.ravel(C[:,:,k-1], order='f')

sol = scipy.optimize.lsq_linear(A, vec_C, bounds=(1e-10,np.inf

))

176 q = sol.x

Qe[:,:,k-1] = sum(qj*Qpj for qj, Qpj in zip(q,Qp))

178

delta = 1/50

180 Q_est_history[:,:,k] = Q_est_history[:,:,k-1] + delta*(Qe[:,:,k

68

B Code Listing

-1] - Q_est_history[:,:,k-1])

182 # Creating the control variable

if x_true[2, k-1] > 2:

184 u = np.array([.0])

else:

186 u = np.array([0.5*60])

188

#--

190 # Displaying the results

#--

192 # Exctracting the states

V_true, X_true, S_true, CO_2_true = x_true[0], x_true[1], x_true

[2], x_true[3]

194 V_UKF1, X_UKF1, S_UKF1, CO_2_UKF1 = x_posteriori[0,:],

x_posteriori[1,:], x_posteriori[2,:], x_posteriori[3,:]

V_UKF2, X_UKF2, S_UKF2, CO_2_UKF2 = x_posteriori2[0,:],

x_posteriori2[1,:], x_posteriori2[2,:], x_posteriori2[3,:]

196 fig, (ax1, ax2, ax3, ax4) = plt.subplots(dim_x, 1,

figsize=(16, 8), sharex=True)

198 ax1.plot(t, V_true ,color="#CEFA05", label="True", linewidth=3,

linestyle="-")

ax1.plot(t, V_UKF1, color="#4169e1", label="UKF1", linewidth=3)

200 ax1.plot(t, V_UKF2, color="#C70039", label="UKF2", linewidth=3)

ax1.scatter(t, y[0], c="#86c9db", marker='x', label="Measurement")

202 ax1.set_ylabel("$V [L]$")

ax1.grid(color='lightgray',linestyle='--')

204

ax2.plot(t, X_true, color="#CEFA05", label="True", linewidth=3,

linestyle="-")

206 ax2.plot(t, X_UKF1, color="#4169e1", label="UKF1", linewidth=3)

ax2.plot(t, X_UKF2, color="#C70039", label="UKF2", linewidth=3)

208 ax2.scatter(t, y[1], c="#86c9db", marker='x', label="Measurement")

ax2.set_ylabel("$X [L]$")

69

B Code Listing

210 ax2.grid(color='lightgray',linestyle='--')

212 ax3.plot(t, S_true, color="#CEFA05", label="True", linewidth=3,

linestyle="-")

ax3.plot(t, S_UKF1, color="#4169e1", label="UKF1", linewidth=3)

214 ax3.plot(t, S_UKF2, color="#C70039", label="UKF2", linewidth=3)

ax3.set_ylabel("$S [L]$")

216 ax3.grid(color='lightgray',linestyle='--')

218 ax4.plot(t, CO_2_true , color="#CEFA05", label="True", linewidth=3,

linestyle="-")

ax4.plot(t, CO_2_UKF1 , color="#4169e1", label="UKF1", linewidth=3)

220 ax4.plot(t, CO_2_UKF2 , color="#C70039", label = "GenUKF", linewidth

=3)

ax4.scatter(t, y[2], c="#86c9db", marker='x', label="Measurement") #

aquamarine

222 ax4.set_xlabel("$Time [h]$")

ax4.set_ylabel("$CO_{2} [L]$")

224 ax4.grid(color='lightgray',linestyle='--')

ax1.legend(loc="center", bbox_to_anchor=(0.5, 1.25), ncol=4,

fontsize=15)

226 plt.savefig('State_estiamtion_paramater_noise.pdf')

plt.show()

228

#--

230 # Displaying the noise matrices UKF1 & UKF2

#--

232 Q_V_UKF1 , Q_X_UKF1 , Q_S_UKF1 , Q_CO_2_UKF1 = Q_est_hist[:,0],

Q_est_hist[:,1], Q_est_hist[:,2], Q_est_hist[:,3]

Q_V_UKF2 , Q_X_UKF2 , Q_S_UKF2 , Q_CO_2_UKF2 = Q_est_history[0,0,:],

Q_est_history[1,1,:], Q_est_history[2,2,:], Q_est_history[3,3,:]

234 fig_q, (ax_q1,ax_q2, ax_q3, ax_q4) = plt.subplots(dim_x, 1,

figsize=(16, 8), sharex=True)

236 ax_q1.plot(t, Q_V_UKF1 ,color="#4169e1", label="UKF1, $\epsilon = $"

+ f"{eps}", linewidth=3, linestyle="-")

70

B Code Listing

ax_q1.plot(t, Q_V_UKF2 ,color="#C70039", label="UKF2", linewidth=3,

linestyle="-")

238 ax_q1.set_ylabel("$V [L]$")

ax_q1.grid(color='lightgray',linestyle='--')

240

ax_q2.plot(t, Q_X_UKF1, color="#4169e1", label="UKF1, $\epsilon = $"

+ f"{eps}", linewidth=3,linestyle="-")

242 ax_q2.plot(t, Q_X_UKF2, color="#C70039", label="UKF2", linewidth=3,

linestyle="-")

ax_q2.set_ylabel("$X [L]$")

244 ax_q2.grid(color='lightgray',linestyle='--')

246 ax_q3.plot(t, Q_S_UKF1, color="#4169e1", label="UKF1, $\epsilon = $"

+ f"{eps}", linewidth=3, linestyle="-")

ax_q3.plot(t, Q_S_UKF2, color="#C70039", label="UKF2", linewidth=3,

linestyle="-")

248 ax_q3.set_ylabel("$S [L]$")

ax_q3.grid(color='lightgray',linestyle='--')

250

ax_q4.plot(t, Q_CO_2_UKF1 , color="#4169e1", label="UKF1, $\epsilon =

$" + f"{eps}", linewidth=3, linestyle="-")

252 ax_q4.plot(t, Q_CO_2_UKF2 , color="#C70039", label="UKF2", linewidth

=3, linestyle="-")

ax_q4.set_xlabel("$Time [h]$")

254 ax_q4.set_ylabel("$CO_{2} [L]$")

ax_q4.grid(color='lightgray',linestyle='--')

256 ax_q1.legend(loc="center", bbox_to_anchor=(0.5, 1.25), ncol=4,

fontsize=15)

plt.savefig('Noise_Q.pdf')

258 plt.show()

260

#--

262 # Calculating the errors from the estimation

#--

264 V_error_UKF1 = utils_br.error(V_true, V_UKF1)

71

B Code Listing

V_error_UKF2 = utils_br.error(V_true, V_UKF2)

266 V_RMSE_UKF1 = utils_br.RMSE(V_true, V_UKF1)

V_RMSE_UKF2 = utils_br.RMSE(V_true, V_UKF2)

268

X_error_UKF1 = utils_br.error(X_true, X_UKF1)

270 X_error_UKF2 = utils_br.error(X_true, X_UKF2)

X_RMSE_UKF1 = utils_br.RMSE(X_true, X_UKF1)

272 X_RMSE_UKF2 = utils_br.RMSE(X_true, X_UKF2)

274 S_error_UKF1 = utils_br.error(S_true, S_UKF1)

S_error_UKF2 = utils_br.error(S_true, S_UKF2)

276 S_RMSE_UKF1 = utils_br.RMSE(S_true, S_UKF1)

S_RMSE_UKF2 = utils_br.RMSE(S_true, S_UKF2)

278

CO_2_error_UKF1 = utils_br.error(CO_2_true , CO_2_UKF1)

280 CO_2_error_UKF2 = utils_br.error(CO_2_true , CO_2_UKF2)

CO_2_RMSE_UKF1 = utils_br.RMSE(CO_2_true , CO_2_UKF1)

282 CO_2_RMSE_UKF2 = utils_br.RMSE(CO_2_true , CO_2_UKF2)

284

#--

286 # Printing RMSEE

#--

288 print("-"*50)

print(f"V_RMSE_UKF1: {V_RMSE_UKF1}")

290 print(f"V_RMSE_UKF2:{V_RMSE_UKF2}")

print(f"X_RMSE_UKF1: {X_RMSE_UKF1}")

292 print(f"X_RMSE_UKF2:{X_RMSE_UKF2}")

print(f"S_RMSE_UKF1: {S_RMSE_UKF1}")

294 print(f"S_RMSE_UKF2:{S_RMSE_UKF2}")

print(f"CO_2_RMSE_UKF1: {CO_2_RMSE_UKF1}")

296 print(f"CO_2_RMSE_UKF2:{CO_2_RMSE_UKF2}")

print("-"*50)

298

300 #--

72

B Code Listing

Displaying the error

302 #--

fig, (ax1, ax2, ax3, ax4) = plt.subplots(4, 1, figsize=(16, 8),

sharex=True)

304 ax1.plot(t, V_error_UKF1 , color="#4169e1", label="UKF1", linewidth

=3, linestyle="--")

ax1.plot(t, V_error_UKF2 , color="#C70039", label="UKF2", linewidth

=3, linestyle="--")

306 ax1.grid(color='lightgray',linestyle='--')

ax1.set_ylabel("$V [L]$")

308

ax2.plot(t, X_error_UKF1 , color="#4169e1", label="UKF1", linewidth

=3, linestyle="--")

310 ax2.plot(t, X_error_UKF2 , color="#C70039", label="UKF2", linewidth

=3, linestyle="--")

ax2.grid(color='lightgray',linestyle='--')

312 ax2.set_ylabel("$X [L]$")

314 ax3.plot(t, S_error_UKF1 , color="#4169e1", label="UKF1", linewidth

=3, linestyle="--")

ax3.plot(t, S_error_UKF2 , color="#C70039",label="UKF2", linewidth=3,

linestyle="--")

316 ax3.grid(color='lightgray',linestyle='--')

ax3.set_ylabel("$S [L]$")

318

ax4.plot(t, CO_2_error_UKF1 , color="#4169e1", label="UKF1",

linewidth=3, linestyle="--")

320 ax4.plot(t, CO_2_error_UKF2 , color="#C70039", label="UKF2",

linewidth=3,linestyle="--")

ax4.grid(color='lightgray',linestyle='--')

322 ax4.set_ylabel("$CO_{2}[L]$")

ax4.set_xlabel("$Time [h]$")

324 ax1.legend(loc="center", bbox_to_anchor=(0.5, 1.25), ncol=4,

fontsize=15)

plt.savefig('Error_paramater_noise.pdf')

326 plt.show()

73

B Code Listing

Code 4: Implementation of the main module for the bioprocess system with nonlinear
noise.

@author: Abubakar Bampoye

2 # Importing requierd modules

#--

4 import numpy as np

import scipy.linalg

6 import scaled_unscented_sigma_points as sus

#--

8

10 #--

def process_noise(W_theta, W_theta_c , w_tilde):

12 """

This function calculates the process noise.

14 ---

16

Parameters:

18 ---

W_theta : The weighting coefficients for each sigma point of

20 the mean.

22 w_tilde : The transformation of the sigma points.

24

Returns:

26 ---

A the process noise.

28 """

dim_X_theta , dim_sigmas = np.shape(w_tilde)

30 assert W_theta.shape[0] == dim_sigmas , f"Dimensions of

W_theta = {dim_sigmas} is wrong."

assert w_tilde.shape[1] == W_theta.shape[0], f"Wrong shape

in w_tilde {w_tilde.shape[1]} and W_theta = {W_theta.shape[0]}

74

B Code Listing

can't performe matrix multiplication."

32 W_bar = w_tilde @ W_theta

assert w_tilde.shape[0] == W_bar.reshape(-1, 1).shape[0],

f"Wrong shape in W_bar = {W_bar.reshape(-1, 1).shape[0]} can't

subtract with w_tilde = {w_tilde.shape[0]} can't perform matrix

multiplication"

34 B = (w_tilde - W_bar.reshape(-1, 1))

A = W_theta_c*B

36 Q_k = A@B.T # Evaluating the sample

covariance of the transformed sigma points

assert Q_k.shape == (dim_X_theta , dim_X_theta), f"The shape of

Q_k = {Q_k.shape} is wrong"

38

return W_bar, Q_k

40

42 def uncented_transformation(Wm, Wc, Y):

"""

44 This function performs the uncented transformation.

46

48 Parameters:

50 Wm : The weighting coefficients for each sigma point for the

mean.

52

Wc : The weighting coefficients for each sigma point for the

54 covariance.

56 Y : The transformation of the sigma points.

58

Returns:

60 ---

A tuple of ndarray consisting of an estimation of the mean and

75

B Code Listing

62 covariance.

"""

64

dim_Y, dim_sigmas = Y.shape

66 assert Wm.shape[0] == dim_sigmas and Wc.shape[0] ==

dim_sigmas , f"Dimensions of Wc = {Wc.shape} and Wm = {Wm.shape}

are wrong."

assert Y.shape[1] == Wm.shape[0], f"Wrong shape in Y {Y.

shape[1]} and Wm = {Wm.shape[0]} can't performe matrix

multiplication."

68 y_u = Y @ Wm

assert dim_Y == y_u.reshape(-1, 1).shape[0], f"The

shape of Y = {Y.shape} is wrong."

70 y_tilde = (Y - y_u.reshape(-1, 1))

y_tilde_W = Wc * y_tilde # Evaluating the sample

mean of the transformed sigma points

72 assert y_tilde_W.shape[1] == y_tilde.T.shape[0], f"Wrong shape

in y_tiled = {y_tilde_W[1]} and {y_tilde.T[0]} can't perform

matrix multiplication."

P_u = y_tilde_W @ y_tilde.T # Evaluating the

sample covariance of the transformed sigma points

74

return y_u, P_u

76

78 def predict(x_posteriori , P_posteriori , f, Q):

"""

80 This function calculates the mean and covariance of the uncented

approximation.

82 ---

84 Parameters:

86 x_posteriori : The current best guess for the mean of x.

88 P_posteriori : The current best guess for the covariance of x.

76

B Code Listing

90 f : The nonlinear system equations.

92 Q : The process noise covariance matrix.

94 Returns:

96 A tuple of ndarray consisting of an estimation of the mean and

covariance.

98 """

assert (Q.shape == P_posteriori.shape), f"Shape of Q = {Q.

shape} is wrong, the shape must be the same as P_posteriori = {

P_posteriori.shape}"

100 Wm, Wc = sus.weights(x_posteriori)

x_posteriori_out = sus.sigma_points(x_posteriori , P_posteriori

)

102 dim_x, dim_sigmas = np.shape(x_posteriori_out) # The dimension

of the state x

assert Wm.shape[0] == dim_sigmas and Wc.shape[0] == dim_sigmas ,

f"Dimensions of Wc = {Wc.shape} and Wm = {Wm.shape} are wrong."

104 assert dim_x == P_posteriori.shape[0], f"The shape of

x_posteriori_out = {x_posteriori_out.shape} is wrong"

x_hat = np.zeros((dim_x, dim_sigmas))

106

for i in range(dim_sigmas):

108 x_hat[:,i] = f(x_posteriori_out[:,i])

110 x_priori , P_priori = uncented_transformation(Wm, Wc, x_hat)

P_posteriori_prior = cross_cvariance(x_posteriori_out , x_hat

, x_posteriori , x_priori, Wc)

112 F_k = P_posteriori_prior.T@scipy.linalg.inv(

P_posteriori)

P_priori = P_priori + Q

114

return x_priori, P_priori, F_k

116

77

B Code Listing

118 def cross_cvariance(x_hat, y_hat, x_priori , y_pred, Wc):

"""

120 This function estimate the cross covariance between x and y

122

124 Parameters:

126 kappa : A design parameter which is a scaling factor, it can be

used to reduce higher order errors.

128

x_hat : The transformation of the sigmapoints through the

130 nonlinear system equations.

132 y_hat : The transformation of the sigmapoints through the

nonlinear measurment equation.

134

x_priori : The estimation of the priori state at time k.

136

y_pred : The predicted measurement at time k.

138

Wc : The weighting coefficients for each sigma point for the

140 covariance.

142

Returns:

144 ---

Returns an ndarray with the cross covariance between x_k and

146 y_pred.

"""

148

#Checking if the input is right

150 dim_x, dim_sigmas = x_hat.shape

dim_y = y_hat.shape[0]

152 assert y_hat.shape[1] == dim_sigmas , f'''Different number of

78

B Code Listing

sigma-points

for x_hat and y_hat. Expected that the last dimensions are the

same,

154 but the shapes are dim(x_hat) = {x_hat.shape} and

dim(y_hat) = {y_hat.shape}'''

156

#Checking the input size

158 assert x_priori.shape[0] == dim_x, "x-dimensions are wrong"

assert y_pred.shape[0] == dim_y, "y-dimensions are wrong"

160 assert Wc.shape[0] == dim_sigmas , "Dimensions of Wc are

wrong"

assert ((x_priori.ndim == 1) and (y_pred.ndim == 1) and (Wc.ndim

== 1)), "These input arrays should be 1D numpy arrays"

162 assert ((x_hat.ndim == 2) and (y_hat.ndim == 2)), '''These

arrays should

be 2D numpy arrays'''

164

P_xy = np.zeros((dim_x, dim_y)) # Allocating space for the

cross covariance

166

for i in range(dim_sigmas):

168 P_xy += Wc[i]*(x_hat[:, i] - x_priori).reshape(-1,1) @ (

y_hat[:, i] - y_pred).reshape(-1, 1).T

170 assert ((dim_x, dim_y) == P_xy.shape), f"shape of P_xy = {P_xy.

shape} is wrong"

172 return P_xy

174

def update(x_priori, P_priori, h, y, R):

176 """

This function performs the measurement update of the state

estimate.

178 ---

79

B Code Listing

180 Parameters:

182 x_priori : The estimation of the priori state.

184 P_priori : The estimation of the priori covariance.

186 h : The measurement equation.

188 y : The predicted measurement.

190 R : The measurement noise covariance matrix.

192

Returns:

194 ---

Returns a tuple of ndarray with the updated prediction

196 measurement and predicted covariance.

"""

198

Wm, Wc = sus.weights(x_priori)

200 x_hat = sus.sigma_points(x_priori, P_priori)

dim_x, dim_sigmas = x_hat.shape

202 assert Wm.shape[0] == dim_sigmas and Wc.shape[0] == dim_sigmas ,

f"Dimensions of Wm = {Wm.shape} and Wc = {Wc.shape} are wrong."

y_hat0 = h(x_hat[:, 0])

204 dim_y = y_hat0.shape[0]

y_hat = np.zeros((dim_y, dim_sigmas))

206 y_hat[:, 0] = y_hat0

208 for i in range(1, dim_sigmas):

y_hat[:, i] = h(x_hat[:, i])

210

y_pred, P_y_pred = uncented_transformation(Wm, Wc, y_hat)

212 assert P_y_pred.shape == R.shape, f"The shape of P_y_pred = {

P_y_pred.shape} is wrong"

P_xy = cross_cvariance(x_hat, y_hat, x_priori ,

80

B Code Listing

y_pred, Wc)

214 H_k = P_xy.T@scipy.linalg.inv(P_priori)

P_y_pred2 = H_k@P_priori@H_k.T

216 assert np.allclose(P_y_pred2 , P_y_pred), f"{P_y_pred2 - P_y_pred

}"

P_y_pred = P_y_pred + R

218 K = scipy.linalg.solve(P_y_pred.T, P_xy.T,

assume_a="pos")

K = K.T

220 x_posteriori = x_priori + (K @ (y - y_pred))

P_posteriori = P_priori - (K @ P_y_pred @ K.T)

222

return x_posteriori , P_posteriori , y_hat, y_pred, H_k, P_y_pred ,

K

Code 5: Functions that implements the scaled unscented filter.

1 # @author: Abubakar Bampoye

Importing requierd modules

3 #--

import numpy as np

5 import scipy.linalg

import constrained_generalized_sigma_points as cgsp

7 #--

9

def uncented_transformation(W, Y):

11 """

This function performs the uncented transformation.

13 ---

15

Parameters:

17 ---

W : The weighting coefficients for each sigma point for the

19 mean and covariance.

81

B Code Listing

21 Y : The transformation of the sigma points.

23

Returns:

25 ---

A tuple of ndarray consisting of an estimation of the mean and

27 covariance.

"""

29

dim_Y, dim_sigmas = Y.shape

31 assert W.shape[0] == dim_sigmas , f"Dimensions of W = {W.

shape} is wrong."

assert Y.shape[1] == W.shape[0], f"Wrong shape in Y {Y.

shape[1]} and Wm = {W.shape[0]} can't performe matrix

multiplication."

33 y_u = Y @ W

assert dim_Y == y_u.reshape(-1, 1).shape[0], f"The

shape of Y = {Y.shape} is wrong"

35 y_tilde = (Y - y_u.reshape(-1, 1))

y_tilde_W = W * y_tilde # Evaluating the sample

mean of the transformed sigma points

37 assert y_tilde_W.shape[1] == y_tilde.T.shape[0], f"Wrong shape

in y_tiled = {y_tilde_W} and {y_tilde.T} can't perform matrix

multiplication."

P_u = y_tilde_W @ y_tilde.T # Evaluating

the sample covariance of the transformed sigma points

39

return y_u, P_u

41

43

def predict(x_posteriori , P_posteriori , f, Q):

45 """

This function calculates the mean and covariance of the uncented

47 approximation.

82

B Code Listing

49

51 Parameters:

53 x_posteriori : The current best guess for the mean of x.

55 P_posteriori : The current best guess for the covariance of x.

57 f : The nonlinear system equations.

59 Q : The process noise covariance matrix.

61

Returns:

63 ---

A tuple of ndarray consisting of an estimation of the mean and

65 covariance.

"""

67

assert (Q.shape == P_posteriori.shape), f"Shape of Q = {

Q.shape} is wrong."

69 x_posteriori_out , W = cgsp.constrained_generalized_sigmas(

x_posteriori , P_posteriori)

dim_x, dim_sigma = np.shape(x_posteriori_out) # The

dimension of the state x

71 assert W.shape[0] == dim_sigma , f"Dimensions of W = {W.

shape} is wrong."

assert dim_x == P_posteriori.shape[0], f"The shape of

x_posteriori_out = {x_posteriori_out.shape} is wrong"

73 x_hat = np.zeros((dim_x, dim_sigma))

75

for i in range(dim_sigma):

77 x_hat[:,i] = f(x_posteriori_out[:,i])

79 x_priori , P_k_priori = uncented_transformation(W, x_hat)

83

B Code Listing

P_k_priori = P_k_priori + Q

81

return x_priori, P_k_priori

83

85 def cross_cvariance(x_hat, y_hat, x_priori , y_pred, W):

"""

87 This function estimates the cross covariance between x and y.

89

91 Parameters:

93 kappa : A design parameter which is a scaling factor, it can be

used to reduce higher order errors.

95

x_hat : The transformation of the sigmapoints through the

97 nonlinear system equations.

99 y_hat : The transformation of the sigmapoints through the

nonlinear measurment equation.

101

x_priori : The estimation of the priori state at time k.

103

y_pred : The predicted measurement at time k.

105

W : The weighting coefficients for each sigma point for the

107 covariance.

109

Returns:

111 ---

Returns an ndarray with the cross covariance between x_k and

113 y_pred.

"""

115

84

B Code Listing

#Checking if the input is right

117 dim_x, dim_sigmas = x_hat.shape

dim_y = y_hat.shape[0]

119 assert y_hat.shape[1] == dim_sigmas , f'''Different number of

sigma-points

for x_hat and y_hat. Expected that the last dimensions are the

same, but

121 the shapes are dim(x_hat) = {x_hat.shape} and dim(y_hat) =

{y_hat.shape}.'''

123

#Checking the input size

125 assert x_priori.shape[0] == dim_x, "x-dimensions are wrong."

assert y_pred.shape[0] == dim_y, "y-dimensions are wrong."

127 assert W.shape[0] == dim_sigmas , "Dimensions of Wc are

wrong."

assert ((x_priori.ndim == 1) and (y_pred.ndim == 1) and (W.ndim

== 1)),'''

129 These input arrays should be 1D numpy arrays.'''

assert ((x_hat.ndim == 2) and (y_hat.ndim == 2)), '''These

arrays should

131 be 2D numpy arrays.'''

133 P_xy = np.zeros((dim_x, dim_y)) # Allocating space for the

cross covariance

135 for i in range(dim_sigmas):

P_xy += W[i]*(x_hat[:, i] - x_priori).reshape(-1,1) @ (y_hat

[:, i]

137 -

y_pred).reshape(-1, 1).T

139 assert ((dim_x, dim_y) == P_xy.shape), f"Shape of P_xy = {P_xy.

shape.shape} is wrong."

141 return P_xy

85

B Code Listing

143

def update(x_priori, P_k_priori , h, y, R):

145 """

This function performs the measurement update of the state

147 estimate.

149

151 Parameters:

153 x_priori : The estimation of the priori state.

155 P_k_priori : The estimation of the priori covariance.

157 h : The measurement equation.

159 y : The predicted measurement.

161 R : The measurement noise covariance matrix.

163

Returns:

165 ---

Returns an ndarray with with the updated prediction measurement

167 and predicted covariance.

"""

169

x_hat, W = cgsp.constrained_generalized_sigmas(x_priori

, P_k_priori)

171 dim_x, dim_sigmas = x_hat.shape

assert W.shape[0] == dim_sigmas , f"Dimensions of W = {W.shape}

is wrong."

173 y_hat0 = h(x_hat[:, 0])

dim_y = y_hat0.shape[0]

175 y_hat = np.zeros((dim_y, dim_sigmas))

y_hat[:, 0] = y_hat0

86

B Code Listing

177

for i in range(1, dim_sigmas):

179 y_hat[:, i] = h(x_hat[:, i])

181 y_pred, P_y_pred = uncented_transformation(W, y_hat)

assert P_y_pred.shape == R.shape, f"The shape of P_k_pred = {

P_y_pred.shape} is wrong"

183 P_y_pred = P_y_pred + R

P_xy = cross_cvariance(x_hat, y_hat, x_priori ,

y_pred, W)

185 K = scipy.linalg.solve(P_y_pred.T, P_xy.T,

assume_a="pos")

K = K.T

187 x_posteriori = x_priori + K @ (y - y_pred)

P_posteriori = P_k_priori - (K @ P_y_pred @ K.T)

189

return x_posteriori , P_posteriori , y_pred

Code 6: Functions that implements the generalized unscented filter.

@author: Abubakar Bampoye

2 # Importing the required modules

#--

4 import numpy as np

import scipy.integrate

6 #--

8

def bioreactor(t, x, u_array, p):

10 """

This function models the system using Monod-like kinetics for

12 growth on a singular sugar, with linear cell death and

considering

dilution when the feeding is added.

14

--

87

B Code Listing

16

Parameters:

18

--

x : The state vector

20 t : Sampling time

uk : Input signal

22 p : The parameters of the system

24

Return:

26

--

A numpy array of the integrated value of the states

28 """

30 # Extracting the state variables

V = x[0]

32 X = x[1]

S = x[2]

34 CO_2 = x[3]

36 # Extracting the parameters

mu_max = p[0] # Maximum growth rate [h^-1]

38 K_s = p[1] # Monod growth constant [gL^-1]

k_d = p[2] # Death rate constant [h^-1]

40 Y_XS = p[3] # S from X yield [gg^-1]

Y_XCO_2 = p[4] # CO_2 from X yield [gg^-1]

42 V_r = p[5] # [L]

S_in = p[6] # [g/l]

44 q_air = p[7] # [NL/h]

46 # The control signal

88

B Code Listing

uk = u_array[0]

48

Defining the ode-system

50 dVdt = uk

dXdt = - (uk/(V))*X + mu_max*(S/(K_s + S))*X - k_d*X

52 dSdt = (uk/(V)) * (S_in - S) - mu_max * (S/(K_s + S))*(X/(

Y_XS))

dCO_2dt = (1/(V_r - V))*(mu_max*(S/(K_s + S))*(X/(Y_XCO_2))*V +

(uk - q_air)*CO_2)

54 xdot = np.array([dVdt, dXdt, dSdt, dCO_2dt])

return xdot

56

58 def f(t, x, u, p):

"""

60 This function computes the sytem equations.

--

62

64 Parameters:

--

66 t : sampling time

x : the state vector

68 uk : Input signal

p : The parameters of the system

70 wk : Process noise vectors

72

Return:

74

--

89

B Code Listing

A list of the integrated value of the states

76 """

sol = scipy.integrate.solve_ivp(bioreactor , t, x, args=[u, p])

78 return sol.y[:,-1]

80

def h(x):

82 """

This function computes the measurement equation.

84

--

86

Parameters:

88

--

x : the state vector.

90

92 Return:

--

94 The calculated measurements.

"""

96 H_matreise = np.array([[1, 0, 0, 0],

[0, 1, 0, 0],

98 [0, 0, 0, 1]])

y_k = H_matreise@x

100 return y_k

102

def error(y_observation , y_prediction):

104 """

90

B Code Listing

This function calculates the error in a set of predictions.

106

--

108

Parameters:

110

--

y_observation : The true observation.

112 y_prediction : The predicted.

114

Return:

116

--

A numpy array with the calculated error,

118 """

return y_observation - y_prediction

120

122 def mae(y_observation , y_prediction):

"""

124 This function measures the average over the test sample of the

absolute differences between prediction and actual obeservation.

126

--

128

Parameters:

130

--

91

B Code Listing

y_observation : The true observation.

132 y_prediction : The predicted.

134

Return:

136

--

The mean absolute errors.

138 """

140 #Chekcing the shape of the input vectors

assert np.shape(y_observation[0]) == np.shape(y_prediction[0]),

"The shape of the input vectors is wrong"

142

return np.mean(np.absolute(error(y_observation , y_prediction)))

144

146 def mse(y_observation , y_prediction):

"""

148 This function measures the average over the squared test sample

between prediction and actual obeservation.

150

--

152

Parameters:

154

--

y_observation : The true observation.

156 y_prediction : The predicted.

158

Return:

92

B Code Listing

160

--

The mean squared errors.

162 """

164 #Chekcing the shape of the input vectors

assert np.shape(y_observation[0]) == np.shape(y_prediction[0]),

"The shape of the input vectors is wrong"

166

return np.mean(np.square(error(y_observation , y_prediction)))

168

170 def rms(y_observation , y_prediction):

"""

172 This function measures root squared average over the squared

test

sample between prediction and actual obeservation.

174

--

176

Parameters:

178

--

y_observation : The true observation.

180 y_prediction : The predicted.

182

Return:

184

--

The root mean squared error.

93

B Code Listing

186

TODO: det minste tallet er den beste prediksjonen

188 """

190 #Chekcing the shape of the input vectors

assert np.shape(y_observation[0]) == np.shape(y_prediction[0]),

"The shape of the input vectors is wrong"

192

return np.sqrt(mse(y_observation , y_prediction))

Code 7: Utility module with function for the bioreactor system with additive noise.

1 # @author: Abubakar Bampoye

Importing the required modules

3 #--

import numpy as np

5 import scipy.integrate

#--

7

9 def bioreactor(t, x, u_array, p):

"""

11 This function models the system using Monod-like kinetics for

growth

on a singular sugar, with linear cell death and considering

dilution

13 when the feeding is added.

--

15

17 Parameters:

--

19 x : the state vector.

94

B Code Listing

t : sampling time.

21 uk : Input signal.

p : parameters of the system.

23

25 Return:

--

27 A list of the integrated value of the states.

"""

29

Extracting the state variables

31 V = x[0]

X = x[1]

33 S = x[2]

CO_2 = x[3]

35

Extracting the parameters

37 mu_max = p[0] # Maximum growth rate [h^-1]

K_s = p[1] # Monod growth constant [gL^-1]

39 k_d = p[2] # Death rate constant [h^-1]

Y_XS = p[3] # S from X yield [gg^-1]

41 Y_XCO_2 = p[4] # CO_2 from X yield [gg^-1]

S_in = p[5] # [g/l]

43 q_air = p[6] # [NL/h]

45 V_r = 4 # [L] HAK: Volumet til reaktoren er en

konstant parameter

47 # The control signal

uk = u_array[0]

49

Defining the ode-system

51 dVdt = uk

dXdt = - (uk/(V))*X + mu_max*(S/(K_s + S))*X - k_d*X

95

B Code Listing

53 dSdt = (uk/(V)) * (S_in - S) - mu_max * (S/(K_s + S))*(X/(

Y_XS))

dCO_2dt = (1/(V_r - V))*(mu_max*(S/(K_s + S))*(X/(Y_XCO_2))*V +

(uk - q_air)*CO_2)

55 xdot = np.array([dVdt, dXdt, dSdt, dCO_2dt])

return xdot

57

59 def f(t,x,u,p):

"""

61 This function computes the sytem equations.

--

63

65 Parameters:

--

67 t : sampling time

x : the state vector

69 uk : Input signal

p : The parameters of the system

71 wk : Process noise vectors

73

Return:

75

--

A list of the integrated value of the states

77 """

79 sol = scipy.integrate.solve_ivp(bioreactor , t, x, args=[u, p])

return sol.y[:,-1]

96

B Code Listing

81

83 def h(x):

"""

85 This function computes the measurement equation.

--

87

89 Parameters:

--

91 x : the state vector.

93

Return:

95

--

The calculated measurements.

97 """

99 H_matreise = np.array([[1, 0, 0, 0],

[0, 1, 0, 0],

101 [0, 0, 0, 1]])

y_k = H_matreise@x

103 return y_k

105

def w_tilde(t_span, x_posteriori , uk, X_theta, theta_bar):

107 """

This function calculates the mean of the noise.

109

--

97

B Code Listing

111 Parameters:

--

113 t_span : The sampling time.

115 x_posteriori : the state vector.

117 uk : The input signal (manipulated variable)

119 X_theta : The sigma points of the parameters

121 theta_bar : The deterministic parameters for the state update

123 Return:

--

125 The mean of the noise

"""

127

x_nom = f(t_span, x_posteriori , uk, theta_bar)

129 dim_X_theta , dim_sigmas = np.shape(X_theta)

dim_theta = np.shape(theta_bar)[0]

131 x_dim = np.shape(x_nom)[0]

W_tilde = np.zeros((x_dim, dim_sigmas))

133

#Checking if the shape is right

135 assert dim_sigmas == (2*dim_X_theta + 1), f"The shape of X_theta

= {np.shape(X_theta)} is wrong"

assert dim_theta == dim_X_theta , f"The shape of theta_bar = {np

.shape(theta_bar)[0]} is wrong"

137 assert x_dim == np.shape(x_posteriori)[0], f"The shape of

x_nom = {np.shape(x_dim)[0]} is wrong"

98

B Code Listing

139 for i in range(dim_sigmas):

W_tilde[:, i] = f(t_span, x_posteriori , uk, X_theta[:,i]) -

x_nom

141

assert ((x_dim, dim_sigmas) == W_tilde.shape), f"The shape of

W_tilde = {W_tilde.shape} is wrong"

143

return W_tilde

145

147 def error(y_observation , y_prediction):

"""

149 This function calculates the error in a set of predictions.

--

151

153 Parameters:

--

155 y_observation : The true observation.

y_prediction : The predicted.

157

159 Return:

--

161 A numpy array with the calculated error,

"""

163

#Chekcing the shape of the input vectors

165 assert np.shape(y_observation[0]) == np.shape(y_prediction[0]),

99

B Code Listing

"The shape of the input vectors is wrong"

167 return y_observation - y_prediction

169

def mae(y_observation , y_prediction):

171 """

This function measures the average over the test sample of the

173 absolute differences between prediction and actual obeservation.

--

175

177 Parameters:

179 y_observation : The true observation.

y_prediction : The predicted.

181

183 Return:

--

185 The mean absolute errors.

"""

187

#Chekcing the shape of the input vectors

189 assert np.shape(y_observation[0]) == np.shape(y_prediction[0]),

"The shape of the input vectors is wrong"

191 return np.mean(np.absolute(error(y_observation , y_prediction)))

193

100

B Code Listing

def mse(y_observation , y_prediction):

195 """

This function measures the average over the squared test sample

197 between prediction and actual obeservation.

--

199

201 Parameters:

--

203 y_observation : The true observation.

y_prediction : The predicted.

205

207 Return:

--

209 The mean squared errors.

"""

211

#Chekcing the shape of the input vectors

213 assert np.shape(y_observation[0]) == np.shape(y_prediction[0]),

"The shape of the input vectors is wrong"

215 return np.mean(np.square(error(y_observation , y_prediction)))

217

def rms(y_observation , y_prediction):

219 """

This function measures root squared average over the squared

test

221 sample between prediction and actual obeservation.

101

B Code Listing

--

223

225 Parameters:

--

227 y_observation : The true observation.

y_prediction : The predicted.

229

231 Return:

--

233 The root mean squared error.

"""

235

#Chekcing the shape of the input vectors

237 assert np.shape(y_observation[0]) == np.shape(y_prediction[0]),

"The shape of the input vectors is wrong"

239 return np.sqrt(mse(y_observation , y_prediction))

Code 8: Utility module with function for the bioreactor system with nonlinear noise.

102

	List of Python modules
	List of Algorithms
	List of Figures
	List of Tables
	Introduction
	Motivation and problem statement
	Literature review of noise estimation methods
	Outline

	Theoretical background
	System description of linear systems
	System description of nonlinear systems
	Additive noise
	Nonlinear noise
	Random variation in plant parameters

	Kalman filters
	The linear discrete-time Kalman filter
	Nonlinear Kalman filtering
	The unscented transformation
	Scaled sigma points
	Generalized sigma points

	The unscented Kalman filter

	Estimation of the noise statistics
	Model-based estimation of noise statistics
	Modelling noise as parametric uncertainty
	Scaled unscented transformation to estimate the noise statistics

	Data-driven estimation of noise statistics
	Weighted statistical linear regression (WSLR)
	Adaptive unscented Kalman filter

	Case study
	Motivation
	System model

	Results & Discussion
	The performance between the model-based and data-driven estimation method

	Concluding Remarks
	Definitions & Theorems
	Code Listing

