
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

t.
of

 In
fo

rm
at

io
n

Se
cu

rit
y

an
d

Co
m

m
un

ic
at

io
n

Te
ch

no
lo

gy

M
as

te
r’s

 th
es

is

Edward Palm
Håkon Isaksen Frøland

Web3 Security in Reseller Markets
with Proof of Concept
Implementations

Master’s thesis in Communication Technology
Supervisor: Danilo Gligoroski
Co-supervisor: Katina Kralevska
June 2023

Edward Palm
Håkon Isaksen Frøland

Web3 Security in Reseller Markets with
Proof of Concept Implementations

Master’s thesis in Communication Technology
Supervisor: Danilo Gligoroski
Co-supervisor: Katina Kralevska
June 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Dept. of Information Security and Communication Technology

Title: Web3 Security in Reseller Markets with Proof of Concept Implemen-
tations

Students: Frøland, Håkon I. and Palm, Edward

Problem description:

Reseller markets allow people to sell unused items and provide value for others,
benefiting society and the environment. However, traditional reseller markets have
issues, such as counterfeit products, mistrust between buyers and sellers, and lack
of transparency in product value. Buyers can have a difficult time identifying fake
items and may struggle to trust unfamiliar sellers. To address these challenges, our
thesis proposes leveraging Web3 and blockchain technology to create a more secure,
transparent, and fair reseller market that benefits all parties involved.

We will start our thesis by extending our project work by continuing our theoretical
research on the implementations of Web3. The concept of Web3 is for many an
abstract concept with a limited number of implementations having an actual use case.
While Web3 technology is a promising solution for creating trust and transparency in
transactions, we recognize that there have been instances of scams using blockchain
that have undermined trust in the technology. Therefore, we seek to demonstrate
that Web3 is not as intimidating as it may seem and can be used effectively in today’s
society. We believe that by showcasing a real-world use case, we can encourage wider
adoption and facilitate the development of secure and transparent systems.

Further, we will create a proof-of-concept using Web3 and blockchain as a solution
that solves the problems in the reseller markets. By combining the immutability of
the blockchain, the properties of Non-Fungible Tokens (NFTs), and the incorporation
of decentralization we want to show how Web3 can create a new way of trading used
and/or new goods. Storing product information on the blockchain makes it possible
for the buyers to verify the product’s origin, history, and authenticity.

Approved on: 2023-2-23
Main supervisor: Prof. Gligoroski Danilo, NTNU
Co-supervisor: Assoc. Prof. Kralevska Katina, NTNU

Abstract

Traditional reseller markets face significant challenges, including in-
consistent documentation, unethical practices, lack of transparency, trust
issues, and concerns about authenticity. This thesis presents a Proof
of Concept (PoC) solution that leverages Web3 technology, specifically
blockchain and Non-Fungible Tokens (NFTs), to address these issues and
create a secure, transparent, and fair reseller market without the need
for a trusted third party.

The PoC demonstrates that NFTs can be used to authenticate items,
build trust between parties and establish verifiable product ownership.
By paralleling NFT transfers with the sale of items, the practicality of
selling counterfeit goods is reduced. Furthermore, the blockchain-based
storage of product information enables verification of origin, history, and
authenticity by any involved party, fostering transparency and equal
access to information for buyers and sellers.

This thesis demonstrates that Web3 technology can effectively address
critical issues in traditional reseller markets, offering substantial bene-
fits to all parties involved. However, the fluctuation and uncertainties
associated with costs must be addressed to facilitate broader adoption.
Further research and collaboration are essential to establish a predictable
and affordable cost structure within the Web3 ecosystem, fully unlocking
the potential of blockchain technology in modernizing reseller markets.

Sammendrag

I tradisjonelle bruktmarkeder er det utfordringer relatert til håndte-
ring av kvitteringer, skjevfordelt informasjonstilgang, mangel på tillit og
tvilsomt opphav. Denne avhandlingen presenterer et konseptbevis (POC)
som utnytter Web3-teknologi, mer spesifikt blokkjedeteknolgi og NFTer
til å adressere disse utfordringer. Formålet er å lage et sikkert, transparent
og rettferdig bruktmarked uten å belage seg på en tredjepart.

Konseptbeviset demonstrerer at NFTer kan autentisere gjenstander,
bygge tillit mellom parter og etablere verifiserbart eierskapsbevis. Ved å
samtidig overføre NFTer ved salget av et produkt, reduseres legitimite-
ten til forfalskede produkter. Videre ved å lage produktinformasjon på
blokkjeden tilrettelegges muligheten for å verifisere opphavet, historien
og autentisiteten til ulike aktører. Dette skaper lik tilgang til informasjon
og reduserer usikkerheten for de involverte partene.

Denne avhandlingen beviser at Web3-teknologi kan brukes for å be-
kjempe utfordringene i de tradisjonelle bruktmarkedene, og tilbyr betyde-
lige fordeler for alle. Imidlertid må svingninger og usikkerheter knyttet
til kostander reduseres for alminnelig anvendelse. Videre forskning er
viktig for å skape en rimelig og forutsigbar kostnadsstruktur i Web3-
økosystemet, og nødvendig for å kunne ta i bruk det fulle potensiale til
blokkjedeteknologi i samfunnet.

Preface

This Master’s thesis is the final delivery of a 5-year Communication Tech-
nology study program at Norwegian University of Science and Technology
(NTNU). It was conducted in our last semester from January to June
2023.

We wish to express our profound gratitude to our supervising professor,
Danilo Gligoroski, for his unwavering support and mentorship that took
our initial idea to a fully realized master’s thesis. We would also like to
extend our sincere appreciation to our co-supervisor, Katina Kralevska
for her invaluable assistance. Her expertise and insightful feedback helped
shape the course and outcome of this master’s thesis. Additionally, we
like to extend our thanks to the Department of Information Security and
Communication Technology at NTNU. Their persistent encouragement,
stimulating challenges, and instructive guidance over the course of our
five-year journey as students have been worth the student loan. They have
played an instrumental role in our academic growth and development, for
which we are immensely thankful.

Special thanks to our fellow classmates and friends, for the stimulating
discussions, late-night study sessions, and all the fun we have had in
the last five years. Your friendship made this journey enjoyable and
memorable. We are heartily thankful to our family: our parents, our
grandparents and our siblings, for their love and support. Your faith in
us has always been a source of strength and inspiration when we have
been feeling low.

We cannot end this without giving a shout-out to the unsung heroes
of our academic journey - microwave dinners, energy drinks, and our
trusted friend, coffee. They fueled countless late-night study sessions and
last-minute paper writings. Their unwavering service, ready at the oddest
hours, ensured our brains kept ticking and our eyelids resisted gravity.
To them, we raise our glasses and promise to strive for a more balanced
diet in our post-academic lives.

Håkon I. Frøland
Edward Palm

Trondheim 2023

Contents

List of Figures xi

List of Tables xv

List of Acronyms xvii

1 Introduction 1
1.1 Motivation . 1
1.2 Objectives . 2
1.3 Research methods . 3
1.4 Contribution . 4
1.5 Outline . 5

2 Background 7
2.1 Different markets . 7

2.1.1 Retail markets . 8
2.1.2 Secondhand markets . 8

2.2 Cryptographic features . 12
2.2.1 Hash function . 13
2.2.2 Hash standards . 13
2.2.3 Key-pairs . 14
2.2.4 Wallets . 15

2.3 Blockchain . 16
2.3.1 Transaction . 17
2.3.2 Testnet . 17

2.4 Smart contracts and the Ethereum blockchain 18
2.4.1 Decentralized application . 18
2.4.2 Gas . 19

2.5 Web3 . 20
2.6 Related work . 21

2.6.1 Secondhand markets and blockchain technology 22
2.6.2 Existing solutions . 22

vii

3 Requirements 25
3.1 Scope . 25

3.1.1 Retail markets . 25
3.1.2 Secondhand markets . 26
3.1.3 Using Web3 to target the problems 27

3.2 Use case analysis . 27
3.3 Application requirements . 28

3.3.1 Functional requirements . 29
3.3.2 Non-functional requirements 29

4 Design and Architecture 31
4.1 System Overview . 31
4.2 System architecture . 34

4.2.1 Logical view . 35
4.2.2 Development view . 36
4.2.3 Process view . 38
4.2.4 Physical view . 40
4.2.5 Scenarios . 44

5 Implementation 47
5.1 Smart contract implementation . 47

5.1.1 Technology . 47
5.1.2 Smart Contracts . 49

5.2 Front-end web application implementation 59
5.3 Deployment process . 60

5.3.1 Deployment script . 60

6 Results 63
6.1 Deployment . 63
6.2 Scenario results . 64

6.2.1 Scenario 1: NFT Minting and Duplicate Prevention 64
6.2.2 Scenario 2: Listing, Selling, and Ownership Transfer 68
6.2.3 Scenario 3: Review and Rating System 71
6.2.4 Scenario 4: NFT Deletion . 73

6.3 Gas cost . 75
6.3.1 General costs . 75
6.3.2 Transaction cost . 76
6.3.3 Historical prices . 78

7 Discussion 81
7.1 Analysis and comparison with requirements 81
7.2 The system’s ability to cope with non-functional requirements 82

7.3 Cost of usage . 84
7.4 Web3 as a solution to issues in the reseller markets 85
7.5 Future work . 87

8 Conclusion 89

References 91

Appendices

A Web application 97
A.1 User interface . 97
A.2 Transferring a digital copy . 99
A.3 Trusted seller . 100
A.4 Making reviews . 101
A.5 Verifying the owner of an item . 102

B Guide for local testing 103
B.1 Setup with yarn . 103

C Guide for local testing 105

D Address calculation 109

E Academic paper 111

List of Figures

1.1 Flowchart representing the overall project progression based on the
methodology. 4

2.1 Trajectory of apparel sales in secondhand markets [19]. 9
2.2 Example of a hash function. 14
2.3 An example of digital signature in action. On the left side, Bob uses his

private key to sign a message. The bank, on the right side, verifies Bobs
signature with his public key[47]. 15

2.4 Visual representation of blockchain technology. 16
2.5 Historical representation of the gwei price and average gas price. 19
2.6 Simple representation of Web Iterations. 21

4.1 Modelling of how a user purchases an item, a watch, in the retail market.
The retail seller produces an NFT, which transfers the NFT ownership to
the buyer’s crypto wallet. 31

4.2 Modelling of how a seller sells an item, a watch, in the secondhand market.
As a part of the transaction, the seller transfers the NFT ownership to
the new owner’s crypto wallet. 32

4.3 System modeling of a verifying process against the blockchain. 33
4.4 4+1 architecture model. 34
4.5 Logical view of the interactions between stakeholders and the correspond-

ing tasks they perform in our proposed architecture. 35
4.6 Repository representation of the proposed architecture from the developers

view. 36
4.7 Visualization of the sequential steps involved in a user’s purchase from a

retailer, with user existence, verification and token creation. 39
4.8 Visualization of the sequential steps involved in secondhand trade, where

one user sells an item to another user. 40
4.9 UML deployment diagram of the proposed system. 43

6.1 Screenshot of SystemManger deployment on Etherscan. 65
6.2 Front-end interface that shows the purchasing process of an item from a

retailer’s perspective. 65

xi

6.3 Screenshot of the completed purchase on the Sepolia testnet. 66
6.4 Screenshot of the reverted transaction where the retailer tried to mint an

item for the second time. 66
6.5 Front-end interface that shows the owned items for a user. 67
6.6 Front-end interface that helps one user to verify the ownership of other

user’s NFT. 68
6.7 Front-end interface that shows the transfer of an NFT to another user

from a seller’s perspective. 69
6.8 Screenshot of the completed transfer on the Sepolia testnet. 69
6.9 Screenshot of the reverted transaction where the seller tries to buy back

the item sold cheaper. 70
6.10 Front-end interface that shows the review of a transaction from the buyer’s

perspective. 71
6.11 Screenshot of the reverted transaction where the buyer tries to review the

wrong item. 72
6.12 Screenshot of the completed review on the Sepolia testnet. 72
6.13 Front-end interface that shows the deletion of an NFT. 73
6.14 The provided image displays a captured transaction of the completed

burn process on the Sepolia testnet. 74
6.15 Screenshot of the reverted transaction where a user tries to burn an item

they do not own. 74
6.16 Gas cost in gwei of 50 worst-case transactions. 77
6.17 Simulation charts of deployment cost based on historical prices in gwei. 78
6.18 Simulation charts of deployment cost based on historical prices in USD. 79
6.19 Simulation charts of functions cost based on historical prices in gwei. . . 80
6.20 Simulation charts of functions cost based on historical prices in USD. . 80

A.1 An overview of the menubar in the proof of concept user interface. . . . 97
A.2 When connected to a crypto wallet. The user interface will list up all

owned NFTs. 98
A.3 User interface for transferring an NFT to another user. The current owner

needs to fill in the address of the new owner and give a price. 99
A.4 Metamask panel which handles the signing of transactions done in the

user interface. 100
A.5 Section for trusted sellers for creating new NFTs when a user has purchased

a product. 100
A.6 User interface for giving a review for a transaction. The user will here

need to choose which digital copy is related to the transaction. 101
A.7 A user interface for giving feedback on a specific transaction. The user

provides feedback through the input fields marked 1 and 2 and submits
with the button marked 3. 102

A.8 User interface to obtain information about other users’ NFTs. The user
provides a tokenId and will in return see the product information. . . . 102

List of Tables

2.1 Summary of Related Work . 24

3.1 Functional requirements and their description. 29

6.1 Gas costs for different operations and their cost in USD (sorted by gas
cost) using the gas cost of 22 gwei and gwei value of $0.00000180 76

6.2 Average historical deployment prices in gwei and USD 78
6.3 Average historical function prices in gwei and USD. 79

xv

List of Acronyms

ABI Application binary interface.

API Application programming interface.

B2C Business-to-Customer.

C2C Customer-to-Customer.

CDN Content Delivery Network.

DAO Decentralized Autonomous Organization.

dApp Decentralized application.

ECDSA Elliptic Curve Digital Signature Algorithm.

EdDSA Edwards-curve digital signature algorithm.

EVM Ethereum Virtual Machine.

IPFS InterPlanetary File System.

NFT Non-Fungible Token.

NIST National Institute of Standards and Technology.

NTNU Norwegian University of Science and Technology.

P2P Peer-to-Peer.

PoC Proof of Concept.

UML Unified Modeling Language.

xvii

Chapter1Introduction

1.1 Motivation

Reseller markets play a significant role in our daily lives, providing individuals with
platforms to sell goods and services to one another. These markets offer a valuable
arena for used items to find new owners, and people can sell items they no longer
need, which in turn is great for the society and the environment. However, these
markets have various issues. One of the most significant obstacles that traditional
reseller markets face today is fake or counterfeit products. It can be difficult for
buyers to identify these items and they are often left holding the short end of the stick.
Establishing trust between buyers and sellers who have no affiliation is generally
challenging, causing potential trades to fall through. The lack of certainty in the item’s
authenticity, the seller’s morale, and the number of counterfeit products in circulation
can discourage the buyer. Moreover, reseller markets often lack transparency, making
it challenging for buyers to assess the true value of a product. Overall, traditional
reseller markets suffer from multiple issues that harm both buyers and sellers.

Web3 [1] is an idea for a new iteration of the World Wide Web which incorporates
concepts such as decentralization, blockchain technology, and token-based economics.
Although it is often seen as an abstract concept with limited practical implementations,
it holds great potential. The technology behind Web3 with decentralization and
blockchain is often thought of as too technical and advanced, which heightens the
threshold for widespread adoption in society. Unfortunately, there have been several
cases of scams using blockchain today which fuel mistrust rather than trust in the
blockchain [2], as is the core concept of the technology. However, Web3 has numerous
use cases which can benefit society and help build bridges between people, and when
utilized correctly has the potential to improve existing services significantly. By
bridging the gap between the challenges faced by traditional reseller markets and the
untapped potential of Web3 technology, we aim to create more secure, efficient, and
reliable platforms for individuals to engage in the trade of secondhand goods.

1

2 1. INTRODUCTION

1.2 Objectives

The primary objective of our thesis is to demonstrate that by taking advantage of
modern ways of application development, it is possible to implement a decentralized
application that leverages blockchain technology, to create a secure, transparent, and
fair reseller market without the need for a trusted third party. This in turn would
provide substantial benefits to all involved parties.

By creating a PoC using Web3 and blockchain as a solution that solves a real-
life problem, we seek to show that the usage of Web3 is not as frightening as it
might seem, as well as having a genuine usage in today’s society. By combining the
immutability of the blockchain, the properties of an NFT, and the incorporation of
decentralization, we want to show how Web3 can create a new and better way of
trading used goods. As our PoC, we plan on creating a network of NFTs that are
transferred in parallel to the sale of an item. Each NFT is used to authenticate the
item as well as to build trust between the two parties. In our solution, the item is
useless without the NFT, which makes selling fake copies impractical as the NFT
can only be transferred once. It will also authenticate the item’s owner, as the item
will be registered in their name. By storing product information on the blockchain,
buyers can verify the product’s origin, history, and authenticity. The data can be
accessed by all involved parties, ensuring transparency as the buyers and sellers
have equal access to relevant information about the product. The objectives can be
summarized into the following points.

1: Identify the critical issues in the traditional reseller markets

To accurately assess the impact of our thesis, it is essential to thoroughly identify
and define the key issues in the ecosystem of traditional reseller markets. Our aim
here is to concretize these issues down to distinct points that can serve as a basis for
evaluating the effectiveness of our proposed implementation.

2: Through the creation of a proof of concept solution, demonstrate that
the traditional reseller market benefits from Web3 technology

Here we will implement the potential of the Web3 environment, incorporating
blockchain technology and decentralized applications, in the context of the secondhand
market industry. By creating a PoC solution, we aim to present the valuable features
that Web3 can offer to the traditional reseller markets. Additionally, this research
intends to demonstrate the potential of Web3 technology for enhancing existing
services in various industries.

1.3. RESEARCH METHODS 3

3: Clarify to which degree the implementation solves the defined issues

After implementation, we need to establish a connection between the developed
solution and the identified issues in the traditional reseller markets. This connection
will enable us to evaluate the extent to which the identified issues have been effectively
addressed and resolved through the application of Web3 technology. In addition, this
will reflect on the relevance of Web3 solutions in the present society.

1.3 Research methods

In this thesis we first get to know the state-of-the-art in the field by reviewing academic
papers, reports, and articles, we then design, implement, and test a PoC application
and validate the system’s viability. The research will explore the relevant field and
investigate how Web3 can be integrated into the targeted ecosystem. The resulting
application can serve as a foundation for further research or provide assistance in
the development of decentralized applications in the Web3 domain. This solution
will be presented through the design of an artifact aimed at addressing the identified
problems. Therefore, our approach is based on the principles of design science [3]
and requirements engineering. Figure 1.1 illustrates how the domain theory initiates
an iterative process that will be followed throughout this project.

The initial step in designing our solution involves identifying and formulating the
system requirements that our application must comply with. We will follow best
practices proposed by Wiegers and Beatty in their book "Software Requirements"[4]
to ensure the quality of our requirements. This phase will translate general require-
ments to specific system requirements, which will serve as a basis for validating the
implementation. Once the requirements are established, we will create an architecture
that aligns with these requirements. This process will generate an architecture model
for the system. In the third step, we will implement the solution based on the defined
architecture model and test its functionalities. The tests will be designed based on
the background research findings and the predetermined requirements. The outcome
of this process will constitute our main findings, which will be used to evaluate the
system and the overall project.

Our methodology’s main output will be a system validation, which includes
observations of the PoC along with the corresponding metrics collected from our
conducted test scenarios. The observations will be used to validate if our system can
fulfill the desired requirements and address the identified problems. The metrics,
particularly the cost of use will provide objective results that can be used to assess
our solution’s feasibility.

4 1. INTRODUCTION

Figure 1.1: Flowchart representing the overall project progression based on the
methodology.

1.4 Contribution

This thesis explores the potential of integrating Web3 technology into real-world
scenarios, with a focus on retail and secondhand markets. Firstly, we conduct
in-depth research and modeling of the traditional retail and secondhand markets,
identifying the key challenges they face. Secondly, we propose a comprehensive design
and architecture for integrating Web3 technology into these markets, addressing the
identified issues and providing solutions. Finally, we demonstrate the effectiveness of
our approach through the development and implementation of a PoC application. This
practical demonstration showcases the real-world applicability of Web3 technology in
improving transparency, trust, and authenticity in retail and secondhand markets.
Our PoC, which is a fully functional prototype, is available as open-source software

1.5. OUTLINE 5

on GitHub1. In addition to this thesis, the work has resulted in an academic paper
"Web3 and Blockchain for Modernizing the Reseller Market" which will be submitted
to a Blockchain conference and has been included in Appendix E.

1.5 Outline

This thesis is organized of eight chapters, the first of which is this introductory
chapter. Chapter 2 provides the theoretical background, including an overview of
different markets, cryptographic features, and blockchains. It also reviews related
work in the research field. Chapter 3 presents the main findings, requirements and
specifications derived from the background analysis. Chapter 4 offers an overview
model of the system design and architecture, followed by a detailed description in
Chapter 5 of the developed application, including deployment and implementation
details. Chapter 6 presents the results of the implementation, while Chapter 7
discusses and analyzes the findings. Finally, Chapter 8 concludes the project.

1https://github.com/Autentisk

https://github.com/Autentisk

Chapter2Background

This chapter serves as a foundation to grasp the theory behind our implementation
and to justify the significance and relevance of the PoC. Firstly, we will introduce
meaningful background about different markets which exist today and their current
status. Further, a section about cryptography features, blockchains, and Web3 is
presented. This will provide an understanding of the necessary technological insight
needed to understand the functionality behind our PoC. Lastly, relevant research
will be introduced, while highlighting the differences and importance of this thesis.

The state-of-the-art was reviewed, and an identification of the relevant background
material was carried out in the project preceding this thesis [5]. This is extended
with other papers and sources.

2.1 Different markets

Retail markets and secondhand markets are distinct segments within the overall
market landscape, differing in their nature and the types of products they offer.

Retail can be defined as "the activity of selling goods to the public, usually in
shops [6]". In other words, retail markets offer a wide range of services or merchandise
from various brands or manufacturers. Retailers are the final point of contact in the
supply chain, interacting directly with customers and offering brand-new products
that have not been previously owned or used. They typically operate physical stores,
online platforms, or a combination of both. These companies focus on providing
consumers with the latest products, ensuring quality and guaranteeing authenticity.
The transactions in retail markets typically involve the purchase of products at their
original or market price.

On the other hand, secondhand markets can be defined as markets selling prod-
ucts "owned or used in the past by someone else [7]". These markets revolve around
the exchange of products that have been previously owned, used, or worn by other

7

8 2. BACKGROUND

individuals. Secondhand markets can encompass various categories, including cloth-
ing, furniture, electronics, vehicles, and more. These markets provide an avenue
for individuals to sell their unwanted or unneeded items, while buyers can acquire
products at lower prices compared to retail markets. Secondhand markets originally
operated through channels like flea markets or garage sales, however, we are seeing a
growing increase of secondhand products in reseller markets like Finn.no, Amazon,
and eBay [8] [9].

The key distinction between retail markets and secondhand markets lies in the
status of the products being traded. Retail markets focus on new goods, catering to
consumers’ desire for the latest products, while secondhand markets involve the resale
of used items, emphasizing affordability, sustainability, and the potential for finding
unique or vintage items. The latter utilizes popular reseller markets to connect with
the customer.

2.1.1 Retail markets

The management of receipts and documentation in the context of retail purchases
and secondhand sales presents various challenges and potential risks. When buying
expensive items from retailers, consumers often receive receipts as proof of purchase
and is important for potential returns or future resale. There exist digital solutions
such as mobile applications, Bluetooth transfers, or the possibility of receipts received
via email [10] [11] [12]. However, there is no defined standard and with all these
different ways of storage, concerns can be raised regarding legitimacy and long-term
accessibility. For example, digital storage of receipts via email can lead to issues, as
they may be lost among numerous daily emails or subject to automatic deletion by
email providers. Furthermore, additional paperwork may be acquired such as services,
repairs, or insurance claims, further complicating the documentation process.

In Norway, instances have been reported where used products have been returned
before the refund deadline and subsequently sold as brand new, highlighting deceptive
practices within the retail industry [13] [14]. Moreover, news articles have shed light
on the extensive disposal and destruction of returned products, highlighting the
challenges retailers face in handling returned items [15] [16]. Such practices raise
concerns about the transparency and integrity of retailers in their treatment of
returned products, including potential deception of customers and the negative
environmental impact of disposing of potential high-quality products.

2.1.2 Secondhand markets

The act of selling used items to others is referred to as secondhand trading. The
market for secondhand goods has a rich history and significant importance. In
European countries, the practice of buying and selling used garments dates back to

2.1. DIFFERENT MARKETS 9

Figure 2.1: Trajectory of apparel sales in secondhand markets [19].

the 14th century, driven by economic constraints. The desire to own a variety of
goods and the need to work within limited budgets fueled the growth of the trade
in pre-owned items and continues to thrive today [17]. Secondhand markets make
effective use of social resources and can even stretch global production networks [18].
The global secondhand markets are in a rapid growth trajectory, with as much as
$177 billion sold in apparel alone in 2022 [19].

Typically, the value and quality of secondhand items may decrease due to their
pre-owned status and the fact that their initial purchase or sale was not made
by the final consumer. However, this market offers numerous benefits, including
affordable pricing, the potential for profitable resale, and a wide selection of products
from various brands that can rival their newly manufactured counterparts. The
secondhand goods market includes various sectors, such as apparel, furniture, cars,
books, machinery, electronics, and even properties with changed ownership.

To find the motivation of secondhand shoppers, Guiot and Roux [20] have
introduced an 8-factor scale that demonstrates reliability and validity in capturing
motivations related to both the desired products and the distribution channels
that offer them. Through the development of this scale, the research uncovers
the significance of key motives that drive consumers towards secondhand products
and channels. Notably, the factors of "distance from the system" and "ethics and
ecology" play a vital role in shaping consumer behavior in this context. These factors
intertwine with more commonly discussed economic motives such as the "allocative
role of price" and "seeking a fair price," as well as hedonic and recreational motives

10 2. BACKGROUND

like "treasure hunting," "originality," "social contact," and "social pleasure". They
also note that in specific product categories that are perceived to carry a higher level
of risk, such as household appliances, computers, or televisions and audio equipment,
the potential of the secondhand market is less trusted.

In order to gain a deeper understanding of some of the challenges faced by the
secondhand market, we have devised three important aspects: transparency, trust,
and authenticity. Each of these plays a crucial role in shaping the dynamics of the
secondhand market. We will address each aspect individually, exploring the specific
issues and implications associated with them in the context of the secondhand market.

Transparency

In the realm of secondhand markets, the process of buying and selling is primarily
facilitated through online platforms where sellers have the autonomy to provide
descriptions and set prices for their commodities. This nature of the market allows
buyers to engage in online discussions with sellers, enabling them to make informed
decisions regarding their purchases. However, it is important to note that the lack of
supervision in these platforms raises concerns about transparency and reliability.

One key issue lies in the subjective nature of product descriptions, which are
predominantly written by the sellers themselves. This subjectivity introduces a
level of ambiguity, particularly in relation to crucial aspects such as the condition
of the items [21]. The accurate assessment of item condition plays a significant
role in determining the true value of a product, yet the absence of robust evidence
regarding this condition poses a challenge. Consequently, the probability of customer
dissatisfaction is heightened, particularly when buyers encounter sellers with low or
few reputation ratings [22].

Another key issue lies within the imbalance between the seller and the buyer in
regard to knowledge about the product. Knowledge about previous owners, previous
prices at purchase, and direct information about the product gives sellers a key edge.
The buyers are often in a position where the only information they have access to is
the information the seller is willing to give.

Given these circumstances, the evaluation of a seller’s reputation becomes pivotal
in mitigating risks for buyers in online secondhand markets. The provision of valuable
information by sellers can alleviate buyers’ perceived risk and increase the likelihood
of satisfactory transactions [23]. When buyers have access to comprehensive and
reliable details about the products they intend to purchase, they are more inclined
to engage in successful and mutually beneficial exchanges [24].

2.1. DIFFERENT MARKETS 11

Trust

As explained by Lee and Lee [25] in the realm of online used markets, customers
harbor concerns regarding two distinct facets of initial trust. These two concerns
can be divided into trust towards the seller and trust towards the product. Together
these two dimensions encapsulate the fundamental factors that contribute to the
establishment of trust in the online used market. Lee and Lee also observe that the
establishment of initial trust in unknown stores and products can be facilitated by
the presence of third-party assurance seals. This means that the existence of a third
party that can vouch for the product or the seller can be a crucial impact on the
trust and the buyer experience [26]. Additionally, trust is reciprocally transferred
between the involved parties, thereby contributing to the maintenance of a cognitive
balance structure.

To extend on these differences of trust, the trust towards the seller further extends
to the factual information the seller states and the perception of transparency. There
are more regulations for retail and resellers, while with secondhand goods the seller
can often be vague and choose to not disclose important aspects. Terms for quality
as "as good as new" [27] and "sold as is" are common, and place the customer at a
disadvantage. Joo [28] discovered that with the presence of trust, the buyer is willing
to pay a higher price. When customers buy more expensive products, their behavior
and decision to buy are more sensitive to the trust in the seller than the price of the
product.

Many e-commerce companies such as Finn.no, Amazon, and eBay create arenas
where either Business-to-Customer (B2C) or Customer-to-Customer (C2C) can sell
products. It is normal to implement the possibility for the buyer to rate the experience
or the seller. This creates the possibility for sellers to build up ratings and thus trust
through the validation of other buyers. Although this is a way to build trust on
these platforms, there are studies showing that the rating system can be manipulated
by sellers purchasing fake reviews [29] [30]. In addition, the requirements to create
accounts on such marketplaces are often just e-mail and phone numbers which makes
it possible for sellers to create new accounts if they get too many bad reviews. As
one would expect, the quantity of good reviews builds up trust which has a positive
impact on buyers’ willingness to pay. However, it turns out that there is no impact
on buyers’ willingness to pay between new sellers with no reviews and new sellers
with a couple of bad reviews [31]. This opens up the possibility for ill-intentioned
sellers to create new accounts whenever the number of bad reviews starts infecting
sales. To finish off in regarding rating sellers on digital marketplaces, in addition to
the mentioned problems, there are no good implementations to track sellers through
different arenas.

12 2. BACKGROUND

Authenticity

The purchase of goods from sources other than trusted retailers or brands raises
concerns about the authenticity and quality of the product. Secondhand goods, in
particular, may have gone through multiple transactions and could originate from
unoriginal producers, raising doubts about their legitimacy and functionality. There is
simply no way of knowing the origin of the product or the existence of previous owners.
Further, the absence of authenticity compromises the overall quality, durability, and
ethical standards of the product. Such compromises have led to severe injuries and,
in some cases, even fatalities [32]. Counterfeit goods are often associated with the
trade of fake luxury items in back alleys, but the issue extends far beyond that,
encompassing a wide range of products that are currently in demand by consumers.
Virtually every product that has a market demand has either been counterfeited
in the past or is susceptible to counterfeiting in the future. While luxury items
like purses, watches, and jewelry are commonly targeted, counterfeiting also affects
industries such as automotive, electronics, defense, and healthcare [32].

Perpetrators of online counterfeiting employ various tactics to deceive consumers
and evade detection. One common strategy involves the use of images featuring
genuine brand logos, coupled with persuasive language emphasizing the value and
affordability of their products. This makes it challenging for consumers to differentiate
between genuine and counterfeit goods. Moreover, individuals who fall victim to
counterfeit purchases on these sites often encounter difficulties when attempting
to report their losses and seek compensation. Platforms like eBay do not directly
compensate customers, although they may register complaints against sellers [21].
The lack of adequate regulation and enforcement on auction websites makes them
highly susceptible to counterfeiting. This is exemplified by eBay’s penalty for their
inability to effectively combat counterfeit trading on their platform [33] or falsely
listed certifications and scant information on Amazon [34].

2.2 Cryptographic features

In this section, we will provide a background into the cryptographic features utilized
in this master’s thesis. Cryptography plays a crucial role in safeguarding sensitive
data and ensuring secure communication in various applications. The selection and
implementation of appropriate cryptographic techniques are essential in achieving the
desired level of confidentiality, integrity, and authenticity needed. This section aims
to provide a comprehensive overview of the cryptographic features employed in this
master’s thesis, discussing their significance, functionality, and potential implications
for our implementation. By exploring the cryptographic aspects incorporated within
blockchain technology, we aim to shed light on the robustness and reliability of

2.2. CRYPTOGRAPHIC FEATURES 13

our Web3 solution. An extensive overview of the use of modern cryptography in
blockchain systems is given in [35].

2.2.1 Hash function

A hash function is a mathematical algorithm that takes a message as input and
produces an output of fixed length which is unique for that particular input data [36].
We often refer to the output as a "hash" or "hash value". Hash functions are core
components in modern cryptography and in this thesis, we utilize their properties
and their purpose in blockchain such as address generation and tamper protection.
More formally we can define a hash function H : {0, 1}∗ → {0, 1}n as a function
that maps an arbitrary finite length input to a fixed size output. To adopt a hash
function into a blockchain system, it should include the following properties:

1. The hash function is applicable to blocks of data with varying lengths (In
practice, the term "any length" may be limited by a large constant value, which
is generally larger than any message we would want to hash [36].)

2. The hash function produces a fixed-length output [36].

3. Given a hash function H and an input x, computing the message digest H(x) is
a computationally easy process [36].

4. Pre-image resistance - The hash is a one-way function, meaning that it is
computationally infeasible to find the input from the hash output [37].

5. Second pre-image resistance - Even when given the input message, it is com-
putationally infeasible to find any other input which leads to the same hash
output [37].

6. Collision resistance - It is infeasible to find two inputs that lead to the same
hash output [37].

Hash functions having properties 1 through 5 are called one-way functions.
Meanwhile, hash functions satisfying all the properties are called collision-resistant
hash functions [38].

2.2.2 Hash standards

The current approved hash algorithms issued by the National Institute of Standards
and Technology (NIST) by the time of writing are FIPS 180-4 and FIPS 202 [39].
FIPS 180-4 specifies seven hash algorithms: SHA-1, SHA-224, SHA-256, SHA-384,
SHA-512, SHA-512/224 and SHA-512/256 [40]. It does have to be noted that SHA-1

14 2. BACKGROUND

Figure 2.2: Example of a hash function.

has been revised from FIPS 180-4 as of March 7th 2023 [41], leaving only hash
algorithms belonging to the SHA-2 family. Here the SHA-256 is the most known
hashing algorithm as it is used by Bitcoin when mining for new hashes.

In regards to approved hash algorithms, FIPS 202 specifies four: SHA3-224,
SHA3-256, SHA3-384, and SHA3-512 [42] which all belong to the SHA-3 family.
NIST chose an instance of the KECCAK algorithm as the winner of the SHA-3
Cryptographic Hash Algorithm Competition, and each of the SHA-3 functions is
based on this selected instance. We will not be diving into the technical aspect of
these hash algorithms, but it is worth mentioning as Ethereum uses the KECCAK-256
hash algorithm [43]. This algorithm is not a part of NIST list of approved hash
algorithms, but uses the same underlying computation as the SHA-3 family. The
only difference is in the padding of the data, but the security level is the same [44].

2.2.3 Key-pairs

In most blockchains, public key cryptography (asymmetrical cryptography) is used
to authenticate the different users. Here each user has a key pair, where a key pair
consists of a public key and a private key. As indicated by their names, the private
key is to be kept hidden by the owner while the public key is open to the public.
They are considered a “pair” because the public key is derived from the private key
using advanced mathematical operations such as elliptic curve cryptography [45].
This operation makes it easy for a user to produce the corresponding public key(s) to

2.2. CRYPTOGRAPHIC FEATURES 15

Figure 2.3: An example of digital signature in action. On the left side, Bob uses his
private key to sign a message. The bank, on the right side, verifies Bobs signature
with his public key[47].

its private one while making it difficult to calculate the private key from the public
key.

We can use the key pair to sign messages, such that anyone can securely verify
who sent a message. This is called a digital signature.

Digital signatures

Based on public-key cryptography we can generate digital signatures using the private
key of the user and we can verify the signature with the corresponding public key.
In the blockchain, digital signatures are used to authenticate transactions in order to
verify honest transactions. In other words, a user proves his authenticity to spend
owned assets in a transaction while preventing others from spending those assets.

The Elliptic Curve Digital Signature Algorithm (ECDSA) and the Edwards-curve
digital signature algorithm (EdDSA) are the most widely used signature schemes
in the blockchain. These signature schemes are considered secure due to their
dependence on the elliptic curve version of the discrete logarithm problem’s hardness
assumption [46].

2.2.4 Wallets

One of the simplest methods to store private keys today is through hosted crypto
wallets. These wallets, such as Coinbase, MetaMask, and TrustWallet, allow you to
create an account with a third party that manages your keys. The process is similar
to logging into other applications, using a password and two-factor authentication.

16 2. BACKGROUND

Since it is not practical to remember numerous characters, this method is likely to
be the norm for key management if Web3 services become widely used. However,
it places significant pressure on the hosted crypto wallets to safeguard your private
keys, as well as on the user to properly establish their passwords and two-factor
authentication. One disadvantage of decentralized assets and wallets is that if your
wallet is breached, your assets are most likely lost forever [5].

2.3 Blockchain

In simple terms, a blockchain is a publicly accessible ledger or distributed database
that records all transactions or digital events that have occurred and been shared
among participants. Each transaction is verified by the majority consensus of the
system’s participants, and once recorded, the information cannot be erased. The
blockchain provides an accurate and verifiable record of every single transaction
ever made. The most well-known example of blockchain-based technology is Bitcoin,
which is a decentralized, peer-to-peer digital currency. While Bitcoin itself is highly
debated, the underlying blockchain technology has functioned nearly faultless and
has been applied in a wide range of financial and non-financial domains [48].

To give a more visual picture, a blockchain can be thought of a series of blocks
after each other. A new block contains either one or many new transactions which
is then added to the end of the other blocks. These blocks are chained together by
using the previous block’s hash, making it impossible for someone to go back and
change it without having to change all the succeeding blocks, as this would change
that block’s hash. Without going too far into how the validation of blocks on the
blockchain works, the essence is that once a block has been validated, it cannot be
changed.

Figure 2.4: Visual representation of blockchain technology.

2.3. BLOCKCHAIN 17

2.3.1 Transaction

A transaction on the blockchain is similar to any other transaction. When someone
makes a physical transaction, there is an exchange of assets, e.g. coins. On the
blockchain it is the same, the only difference is that the coins are electronic. An
electronic coin is defined as a sequence of digital signatures. To transfer the coin to
the next owner, the current owner digitally signs a hash of the preceding transaction
and the public key of the succeeding owner and attaches it to the end of the chain.
By examining the signatures, a payee can confirm the coin’s chain of ownership [49].

Fungible tokens

These electronic coins can be either fungible or non-fungible, in the online community
called tokens. Fungible tokens are uniform in which all units are identical and cannot
be distinguished from one another [50]. Examples of this are Bitcoin and Ethereum,
where one Bitcoin or one ether1 holds the same value as others. This is similar to
how money works in our society, one dollar bill has the same value as any other
dollar bill.

Non-fungible tokens

NFTs however are different than fungible tokens, these are all unique. In NFTs, the
value lies within the uniqueness and the value people put in them [50]. The most
known use case for NFTs today are digital paintings, characters such as "Bored Ape"
or in-game valuables. These are however not the only use case for NFTs, as digital
copies of physical products create interesting applications [51]. Similar to paintings
and antiques, the value of one does not equal another.

The reason why one NFT is different from others is that when they are minted2,
they get a unique identification number. Think that the first NFT is given the
identification number 0, the second 1, etc. This makes it possible to differentiate the
different tokens from one another. As these tokens also belong to a smart contract3

with a unique contract address, one NFT with the identification number 0 will also
be distinguishable from others with the same identification number [52].

2.3.2 Testnet

A testnet in blockchain technology refers to an instance of a blockchain that operates
on the same or newer version of the underlying software. Its primary purpose is to
provide a safe environment for testing and experimentation without exposing real
funds or the main chain to potential risks [53]. Notably, testnet tokens are distinct

1Ether is the currency used on the Ethereum blockchain
2When a new token is created, it is called minting
3Smart contracts are described in the next section

18 2. BACKGROUND

from official (mainnet) tokens, hold no real value, and can be obtained freely [54].
By utilizing a testnet, developers can refine their blockchain-based applications with
minimal risk, ensuring that they meet the required standards before deployment on
the official main chain.

2.4 Smart contracts and the Ethereum blockchain

Ethereum is often referred to as "the world computer". Essentially, it is a deterministic
state machine that is practically unbounded, comprising a globally accessible singleton
state and a virtual machine that applies changes to that state. From a more practical
viewpoint, Ethereum is a globally decentralized computing infrastructure that is
open source and executes smart contracts programs. It leverages a blockchain to
synchronize and store system state changes and utilizes a cryptocurrency named ether
to measure and limit the costs of executing resources. By enabling developers to build
potent decentralized applications with built-in economic functions, the Ethereum
platform delivers high availability, auditability, transparency, and neutrality. It also
minimizes or removes censorship and mitigates specific counterparty risks [45].

2.4.1 Decentralized application

A Decentralized application (dApp) is an application that operates autonomously on
a blockchain or peer-to-peer network, typically through the use of smart contracts.
Unlike centralized applications, dApps eliminate the need for a trusted centralized
database to store the application state, removing the need for a specific centralized
server to execute back-end logic. Instead, the program state runs on a virtual
environment within the blockchain, with roughly half of all dApps hosted on the
Ethereum blockchain [55] and running on the Ethereum Virtual Machine (EVM).
This blockchain can be viewed as a state machine with strict rules for transitions,
established by the smart contracts when the dApp is deployed, and for all practical
purposes, unalterable. This creates a level of trust in the application that is not
achievable in the current internet architecture, as the application owner cannot
change their code.

Smart contracts play a significant role in dApp functionality. These contracts are
computer code designed to execute automatically at significant events and represent
a set of rules governing how the application operates. The logic in a smart contract
primarily involves reading and writing data to the blockchain through actions such as
buying or selling a token [5]. When smart contracts are deployed, they are deployed
on an address similar to the address people have with their Ethereum accounts4. The
address of this contract is deterministic and is the rightmost 160 bits of the Keccak-

4Their public key

2.4. SMART CONTRACTS AND THE ETHEREUM BLOCKCHAIN 19

256 hash of the nonce 5 and the address that deploys it, using RLP encoding [43].
If a smart contract implements NFTs, ERC-721 is the standard interface used [52].
This is an API for tokens within a smart contract and provides the functionalities
needed for NFTs to have the properties we mention earlier.

2.4.2 Gas

An important aspect in the launching of dApps, execution of transactions, and
movement of assets on the blockchain is gas. Gas is a quantifiable unit that measures
the amount of computational effort required to execute particular operations within
the Ethereum network [56]. There is then also a fee needed to be paid to have
someone, e.g. a validator, to incentivize them to carry out these computations on
your behalf, often referred to as gas fees. These fees are, as mentioned earlier, paid
with ether. However, ether is further divided into a smaller unit named wei. One
ether consist of 1018 wei [43]. As hundreds of millions of wei are used when carrying
out these actions, they have again been grouped together to gwei, incorporating the
unit prefix giga. One gwei equals 109 wei, which is then used denotation for gas
prices. As of today, one gas equals 22 gwei6 and one gwei equals $0.000001737. These
has however fluctuated since the beginning of the Ethereum blockchain, which can
be seen in Figure 2.5 [57] [58].

Figure 2.5: Historical representation of the gwei price and average gas price.

5Nonce is a scalar value equal to the number of transactions sent by the sender [43]
6As of 14.06.2023 21:00 GMT+2 on https://etherscan.io/chart/gasprice
7As of 14.06.2023 21:00 GMT+2 using https://coinmarketcap.com/currencies/ethereum/

https://etherscan.io/chart/gasprice
https://coinmarketcap.com/currencies/ethereum/

20 2. BACKGROUND

2.5 Web3

Online services with the integration of blockchain technology and cryptocurrencies
have begun to gain widespread acceptance. This movement is often referred to as
Web3. The concept was introduced by Gavin Wood, a co-founder of Ethereum, where
the idea is to facilitate the development of new online services without relying on
trusted third parties, thus providing users with greater control over their data. A
fundamental principle of Web3 applications is to leverage blockchain technology and
infrastructure so users have complete control over user data instead of relying on big
tech organizations which is the typical practice today.

Web3 seeks to be an improvement in privacy and security compared to its
predecessors. According to Ethereum [1], one of the leading organizations in the
field, there have been three iterations of the Internet. The first era of the World
Wide Web is known as Web 1.0 which consisted mostly of static pages and minimal
user interaction. We often call this period of the Internet "Read-only" [59]. Web 2.0
capitalized on improvements in Internet infrastructure, expanding its user base and
transitioning from content provision to facilitating user-generated content sharing and
enabling user-to-user interactions on platforms. It is therefore referred to as “read
and write” [60] as users could easily read and contribute data to the Web. With more
people coming online, a few leading companies started to dominate an inordinate
share of traffic and value generated on the Internet. The era of Web 2.0 also saw the
emergence of an advertising-based revenue model. Although users could generate
content, they lacked ownership of it and didn’t gain from its monetization. Gavin
put into words a resolution for an issue that many early cryptocurrency enthusiasts
experienced: the Web demanded an unreasonable level of trust. The majority of
today’s familiar and frequently used Web depends on placing trust in a handful group
of private firms, hoping they would act in favor of public interests [1]. The solution
is to move user data away from centralized servers and facilitating new applications
and services that leverage blockchain technologies. The act of transitioning backend
servers from centralized clouds to decentralized chains is a defining characteristic
that sets Web3 apart from previous web paradigms. Web3 developers are, in fact, not
obligated to create applications that depend on a single server for executing business
logic or a centralized database for storing user data. Instead, Web3 applications
deploy on decentralized networks such as blockchain platforms or distributed systems,
which are hosted by multiple Peer-to-Peer (P2P) nodes.

It is hard to give Web3 a precise definition, but some core principles can explain
its creation: Trustless, users have the ability to connect or exchange assets directly
with unfamiliar users, eliminating the need for reliance on a trusted third party.
Permissionless, user identities are not bound to any particular platform, and their
activities are not linked to a central entity, such as a company. Decentralization, a

2.6. RELATED WORK 21

key advantage of decentralization in Web3 is increased availability, as it ensures that
services are not reliant on a single server, thereby minimizing the risk of single points
of failure[61].

Figure 2.6: Simple representation of Web Iterations.

2.6 Related work

There are numerous papers investigating the benefits of blockchain technology and
its implementation in various fields such as agriculture [62], imported foods [63],
education [64] and healthcare [65]–[67] to mention some. Nevertheless, to the best of
our knowledge, there does not exist any other PoC implementation utilizing Web3
as a solution to the problems in the reseller market in regard to secondhand goods.
There are however some papers and companies that have done something in the same
area.

22 2. BACKGROUND

2.6.1 Secondhand markets and blockchain technology

Shen et al. [68] wrote a paper where they researched the usage of blockchain in
selling secondhand products. They examined the value of blockchain for disclosing
secondhand product quality in a supply chain, with the usage of an online platform
to resell the items. While they touch upon many similarities such as using the
blockchain as a tool for identifying quality and item history, their research is more
focused on the supply chain as a whole and on pricing and quality strategies, rather
than the implementation itself. They also did not incorporate the cost of the usage
of a blockchain, while this is an essential part of our potential solution.

In the study conducted by Huang et al. [69], the challenges within the sec-
ondhand market are addressed by introducing a framework incorporating a novel
committee consensus mechanism. The authors illustrate the workflow of this frame-
work, highlighting the utilization of smart contracts as a third-party agency on the
permission-based Hyperledger Fabric ledger. Additionally, the proposed solution
incorporates the InterPlanetary File System (IPFS) as a data storage component.
However, it is important to note that the implementation does not involve any form
of NFT or tokenization. The project aims to address issues such as transparency and
traceability but does not target immutability or security concerns.

It is important to point out that we are not the first ones to utilize the Ethereum
platform with Solidity and a library like Web3.js or Ethers.js to create a dApp . In
2021, Panda and Satapathy [70] wrote about investigating the possible usage of a
solution like this. Numerous researchers are exploring the potential use of a Web3
solution in our society [71], but we have not found anyone with the same approach as
ours. We are exploring potential areas where a Web3 solution could prove beneficial,
while also developing a specific PoC tailored to address these identified needs.

There are papers looking into isolated parts of our paper, such as blockchain
adaptation in combating counterfeits [72] or Web3 as an implementation in view of
the blockchain [61]. However, we have yet not found anyone else who has investigated
the combination of everything into one solution.

2.6.2 Existing solutions

There are some companies that have already launched platforms using NFTs to target
the reseller market. Tangible [73] is a company that has built an ecosystem for
tokenized real-world assets. They have essentially created a platform where you can
buy an asset listed on their platform and receive a "TNFT", a Tangible NFT, which
in turn is sent to your wallet. The item itself is sent to a warehouse for storage. While
you are able to redeem the "TNFT" for the physical item at any time, the concept is
more to buy luxury items that are stored and appreciated in value. To concretize,

2.6. RELATED WORK 23

while they do mint NFTs for their products, this is redeemed and disappears as soon
as you want the physical item and does not help with reselling unless they keep the
item in their vault.

Aura Blockchain Consortium [74] is an exclusive platform designed specifically
for luxury brands aiming to combat counterfeit products through the use of NFT.
This platform operates on the Quorum permissioned blockchain technology and is
exclusively open to luxury brands across all sectors. Each brand must apply and
supply its own product data to participate. On the contrary, our application is
not restricted to luxury brands but accommodates a broader range of businesses
and individuals. While Aura promotes the use of a single global blockchain for an
improved user experience related to product authentication, our application operates
on a public, permissionless Ethereum blockchain. This means that it is open to
a broader range of businesses and individuals. Although both the Aura platform
and our application use Ethereum-based technology and employ the ERC721 NFT
standard for interoperability among Ethereum-based networks, our proposal offers a
more open and decentralized approach. We aim to provide a permission based model
for retailers, but which do not extend to buyers or other participants in the network,
who can freely interact with the smart contracts. This is an important distinction
and emphasizes that our system incorporates a degree of control to maintain integrity
and trust, while it still maintains a higher level of openness and inclusivity compared
to the Aura platform.

There are also existing solutions for the authentication of secondhand goods.
StockX [75] focuses on reselling coveted items, such as sneakers, apparel, electronics,
etc. where they are responsible for the authentication process of the item. While
they do not utilize anything on the blockchain or have anything decentralized, they
do offer a way for people to buy secondhand products and not be worried about
counterfeits. However, this solution relies heavily on StockX as a third party and
trust between the customer and them as a company and authenticator. A solution
using this business model for all secondhand goods would require experts in every
selling category as well as having a high quantity of these experts, to make sure there
is not a backlog, thus, most likely infeasible as a global solution.

24 2. BACKGROUND

Work Retail/Secondhand Blockchain NFTs Web3
Inbook [70] Neither ✓ X X
Paper [68] Secondhand ✓ X X
Paper [69] Secondhand ✓ X X
StockX [75] Secondhand X X X
Tangible [73] Retailer ✓ ✓ X
Aura B.C. [74] Both ✓ ✓ X
This paper Both ✓ ✓ ✓

Table 2.1: Summary of Related Work

Chapter3Requirements

In the context of our methodology, the requirements act as comprehensive set of
specifications that outline the functionalities, features, and constraints that the
application must adhere to. These serve as a blueprint for the development and
help to ensure that the application meets the needs of its intended users. The
requirements come from analysis of the state-of-the-art to point out participants’
needs and expectations, as well as an assessment of the limitations and capabilities
of the underlying technology, such as blockchain infrastructure.

3.1 Scope

In our objective to leverage Web3 technology in traditional reseller markets, we have
analyzed the issues highlighted in our background research, identified and concretized
these difficulties into distinct, quantifiable statements. These statements cover the
significant issues in both markets, from cumbersome management of documentation
and unethical practices in retail to concerns of transparency, trust, and authenticity
in secondhand markets. By breaking these problems down in a methodical manner,
we create a foundation that gives us a comprehensive insight into the core issues
within these markets, and subsequently a clear scope for our project. As we move
forward, this provides us with a roadmap that enables us to approach each issue
systematically and guides us in designing an implementation.

3.1.1 Retail markets

– Inconsistent and Non-standardized Documentation:

◦ Retailers use different methods when providing receipts, which can be
cumbersome and have issues with long-term accessibility.

◦ There is a risk of losing digital receipts, as they may get lost in different
implementations or automatically deleted by email providers.

25

26 3. REQUIREMENTS

◦ Additional paperwork from services, repairs, or insurance claims further
complicate the process.

– Unethical Practices:

◦ Instances of used products being returned and sold as new, deceiving
customers about the product’s status.

◦ Discarding and destruction of returned products have environmental
implications and question the integrity of retailers.

3.1.2 Secondhand markets

– Lack of Transparency:

◦ Product descriptions are written by sellers themselves, which introduces
subjectivity and ambiguity regarding the product’s condition.

◦ Imbalance of information between the seller and buyer - sellers have an
edge with more information about the product.

◦ Evaluating a seller’s reputation is vital but can be misleading due to
factors such as fake reviews or the possibility of creating new accounts to
evade poor reviews.

– Trust Issues:

◦ Consumers have no built-up trust towards an unknown seller.

◦ The trust level can be influenced by the presence of third-party assurance
seals, but these can be inconvenient or expensive.

◦ Consumers’ purchasing decisions are highly sensitive to their level of
trust in the seller, especially for more expensive products. Consequently,
transactions for valuable items have a higher likelihood of not being
completed.

– Authenticity Concerns:

◦ Secondhand goods may originate from unoriginal producers, raising doubts
about their legitimacy and quality.

◦ Counterfeit goods have a high presence in the secondhand market, affecting
a wide range of products, including luxury items and electronics.

◦ In regards to counterfeits, e-commerce platforms have few regulations and
poor enforcement to prevent such activities. Consumers often encounter
difficulties when attempting to report losses and seek compensation.

3.2. USE CASE ANALYSIS 27

3.1.3 Using Web3 to target the problems

From our background research, we have identified several key Web3 principles that
can be integrated into the existing market infrastructure, effectively addressing the
problems mentioned in the retail and secondhand markets.

In the retail market, Web3 introduces the use of blockchain technology, which pro-
vides an immutable and transparent record of transactions. By leveraging blockchains,
the issue of inconsistent and non-standardized documentation can be tackled. Re-
ceipts and transaction details can be securely stored on-chain, ensuring long-term
accessibility and preventing any tampering or manipulation of records. This increased
transparency and integrity foster trust between buyers and sellers, mitigating the
risks associated with unethical practices.

Further, we can develop smart contracts which function as a trust and reputation
system built on a decentralized network, which can address the lack of transparency
and trust issues in the secondhand market. Through the utilization of technologies
such as decentralized identity and digital wallets, buyers and sellers can establish and
verify their accounts, creating a more trustworthy environment. Additionally, the
implementation of reputation systems allows for feedback and ratings, empowering
buyers to make informed decisions based on the experiences of others.

One significant aspect of Web3 is the use of NFTs to represent ownership of items.
By utilizing NFTs, ownership is no longer tied to a specific retailer or secondhand
market platform. Users can securely claim ownership of their items through their
digital wallets, as the proof of ownership resides on the blockchain rather than
relying on a centralized authority. This freedom allows users to utilize their proof
of ownership across different platforms, ensuring the portability and accessibility of
their assets.

Lastly, Web3 leverages permissionless blockchains, enabling the system to operate
without dependence on a single entity or service provider. By utilizing a permissionless
blockchain network, the risk of service disruption is minimized, ensuring that users
can always access and manage their assets independently. Even if a specific retailer
or platform ceases operations, users can retain control over their assets and continue
to participate in the market.

3.2 Use case analysis

We use Freeman’s definition [76] of stakeholders as “any group or individual who is
affected by or can affect the achievement of an organization’s objectives”. According
to this definition, stakeholders can include both those directly influencing the markets,
such as retailers, and external actors and entities who benefit from the system, such

28 3. REQUIREMENTS

as secondhand sellers, repair shops, and buyers. To simplify the analysis, we can
categorize the stakeholders into two main groups: Trusted Seller and Users. Trusted
Sellers include both physical and online retailers that are integrated into the system.
Meanwhile, users refer to individuals who have an interest in purchasing goods,
whether new or secondhand, as well as individuals interested in selling secondhand
items.

Stakeholders

The stakeholders used in our requirements are specified as follows:

Trusted Seller When specifying the physical or online retailer, which has been
included in the system.

Users Individual buyers and individual sellers will be referred to as Users.

3.3 Application requirements

We need to specify a set of functional and non-functional requirements to further
guide our development process. These requirements serve as the criteria used to
evaluate the successfulness of our implementation. Functional requirements represent
the fundamental actions that a system must perform. They describe what a system
is supposed to accomplish in terms of specific behaviours or functionalities. On the
other hand, non-functional requirements define the quality attributes or criteria that
the system must meet or adhere to. Together, they provide the necessary detail and
context for the design and implementation stages, helping to ensure that our solution
is robust, reliable, and capable of effectively addressing the identified key challenges.

3.3. APPLICATION REQUIREMENTS 29

3.3.1 Functional requirements

Functionality Description
Purchase Item and
Receive NFT

Users should be able to purchase items from a
Trusted Seller, both physical and online, and in
return receive both the actual item and the corre-
sponding NFT. This NFT serves as a digital proof
of purchase and ownership, storing relevant informa-
tion such as name, price, category, brand and serial
number.

Overview of
NFTs

Users should have access to an overview of all their
NFTs and the associated information for potential
resale.

Access Product
Information

Other Users should have the ability to look up prod-
uct details simply by referencing the NFT. This in-
cludes data such as item description, original pur-
chase date, history of ownership, and potential war-
ranties or services linked to the item.

Execute Transaction
and Transfer NFT

During a transaction, it should be possible for the
User to safely transfer the NFT to another User.
This NFT transfer validates the change of ownership,
ensures that the digital record aligns with the ex-
change of the product, and updates with the new
information from the transaction.

Rate a Transaction After the completion of a transaction, the User who
bought the item should be able to rate their expe-
rience. This review will be open for all to see and
follow the Trusted Seller or the User who sold the
item across different e-commerce platforms.

Remove a Broken
Product

In the event of a product becoming worn out or
broken, Users should have the option to remove
its corresponding NFT from their ownership. This
ensures that Users are not bothered by old NFTs.

Table 3.1: Functional requirements and their description.

3.3.2 Non-functional requirements

Scalability Given the volatile and potentially extensive nature of the reseller mar-
ket, the system needs to be designed to handle an increasing number of transactions
and users without significant performance degradation.

Robustness The smart contracts should be able to handle unexpected situations
or inputs gracefully without causing unintended consequences which damage the plat-

30 3. REQUIREMENTS

form’s integrity. The NFTs created and managed within the system must be designed
to maintain their existence indefinitely. This implies that under no circumstance
should an NFT spontaneously disappear or get destroyed unintentionally.

Security As the system deals with digital copies representing valuable goods,
security measures need to be in place to prevent fraudulent activities and protect
user data. Ensuring secure storage and identity verification is crucial for protecting
the value and integrity of the digital assets represented by NFTs. These include:

– Only the trusted system administrator should have access to add retailers to
the system.

– Only trusted retailers should be able to mint NFTs.

– Only the owner should have access to transfer ownership.

Reliability The system should be able to operate for all users whenever they need
it. This means high availability and low downtime.

Performance The system must be designed to provide swift responses to user
requests and manage transactions efficiently. This includes optimising the smart
contracts regarding resource usage and gas cost, contributing to a prompt transaction
with minimal cost for the users.

Usability To ensure widespread adoption, the user interface must be intuitive and
easy to use, even for individuals unfamiliar with NFTs or digital transactions. Clear
instructions and a simple workflow for buying, selling, and transferring NFTs should
be implemented. It should be easy to get an overview of all owned NFTs.

Upgradability The smart contracts should have a mechanism for upgrading their
logic, enabling the addition of new features or fixing bugs without requiring the
redeployment of the whole system anew.

Privacy The smart contracts should respect user privacy as much as possible,
minimizing the amount of personal information accessible to everyone.

Chapter4Design and Architecture

In Chapter 3, we established the framework conditions and identified the main
stakeholders and their individual needs. This chapter aims to design a solution to
solve the identified problems. First, we provide an overview to give an insight into
how our solution will work. We then cover design choices and present the suggested
system architecture with the 4+1 model view.

4.1 System Overview

Before diving into the technical part, we will present a system description. This
section will explain how the system works in interaction with the stakeholders. We
also describe the choice of blockchain and its impact on our design.

Figure 4.1: Modelling of how a user purchases an item, a watch, in the retail
market. The retail seller produces an NFT, which transfers the NFT ownership to
the buyer’s crypto wallet.

31

32 4. DESIGN AND ARCHITECTURE

Users typically receive proof of payment when they buy a product in a shop. In
our solution, a purchase at a store should trigger the generation of an NFT that
belongs to the effect that was just purchased. The user who has just paid will receive
an NFT corresponding to the product in question. Figure 4.1 illustrates the user
interaction during a purchase transaction. After the transaction, the retail store
mints an NFT representing the purchased item and transfers the ownership to the
user’s digital wallet. This NFT is proof of ownership for the specific product. Further,
on the secondhand market, a user sells an item to another user. In this process,
the selling user also transfers the digital copy belonging to the article. Figure 4.2
illustrates the trade between two users involving a secondhand item. As the seller
hands over the item to the new owner, they also transfer the corresponding NFT,
thereby establishing proof of ownership for the new owner of the secondhand product.

Figure 4.2: Modelling of how a seller sells an item, a watch, in the secondhand
market. As a part of the transaction, the seller transfers the NFT ownership to the
new owner’s crypto wallet.

Owning an NFT within our system promotes security and trust between users
and retail businesses. Figure 4.3 demonstrates how a user can verify the authenticity
and ownership of a product before making a purchase. This verification process
ensures that the item is genuine and not counterfeit or stolen. Users can confidently
confirm that the secondhand seller possesses the relevant item, adding an additional
layer of trust to the transaction.

While the system is primarily designed as an Application programming interface
(API) integration into physical transaction systems and various reseller platforms
online, it also provides a visual user interface accessible through a web browser. This
interface simplifies the management of NFTs, allowing users to easily view, transfer,

4.1. SYSTEM OVERVIEW 33

Figure 4.3: System modeling of a verifying process against the blockchain.

and interact with their digital assets.

A critical design choice is the selection of a blockchain network. First, the
blockchain must allow smart contracts. We can implement complex system logic
within smart contracts executed on the blockchain. Secondly, we must ensure
our users with high availability and not risk any downtime or loss of data. To
provide a high level of reliability and transparency to all users, we have chosen the
Ethereum blockchain. Ethereum’s open nature as a public transaction database
aligns with our objectives. The blockchain imposes no access restrictions on data
reading and writing, promoting transparency and inclusivity. Additionally, our smart
contracts, which incorporate the core logic of the dApp, are publicly accessible,
enhancing the transparency of the contract execution process. Considering the
security requirements outlined in section 3.3, the system should ensure availability.
The Ethereum blockchain is, by nature, resilient against faults and attacks and
minimizes the risk of downtime or compromise of the backend system responsible for
processing transactions. This feature adds an extra layer of reliability and stability
to our application.

Ethereum is publicly available to anyone that has an internet connection. If we
launch our NFT system without restrictions, it will result that anyone can create NFT,
and the system will collapse. While the Ethereum blockchain allows anyone to mint

34 4. DESIGN AND ARCHITECTURE

new tokens, our system restricts the minting process to a select group of authorized
retailers. This measure ensures the authenticity and credibility of the platform,
preventing the unauthorized creation of NFTs and maintaining the integrity of each
token as proof of ownership. Additionally, Ethereum wallets establish pseudonymous
identities that do not link directly to real-world users. To prevent the same individual
from creating multiple accounts, meanwhile maintaining user privacy, we implement
a user list that verifies the uniqueness of users while preserving their pseudonymity.

By utilizing a crypto wallet, individuals can establish their possession of a specific
item, thereby facilitating the verification of ownership. This feature offers convenience
for potential buyers in the secondhand market or repair shops, as they can confidently
verify the legitimacy of the item in question. Moreover, the NFT serves as a digital
twin for the physical product, representing the asset’s unique qualities and history on
the blockchain. This digital copy, once minted, is an immutable proof of ownership
that cannot be modified or destroyed, providing a reliable and transparent track
record for the product. This transparency is particularly beneficial for high-value or
collectable items, where provenance and authenticity are paramount.

4.2 System architecture

In this section, we will explore the system architecture to illustrate how the system is
designed. We employ the 4+1 model view[77] to analyze the system, which provides
a comprehensive perspective on its various aspects and functionalities. The 4+1 view
model constructs the architecture into five distinct perspectives. Each focused on a
specific issue. "4+1" is used because it consists of four views around one central idea.
Here’s a brief overview of each view: Logical view, development view, process view,
physical view and scenario view.

Figure 4.4: 4+1 architecture model.

4.2. SYSTEM ARCHITECTURE 35

4.2.1 Logical view

The logical view of our smart contracts demonstrates how the system fulfils its
requirements by outlining the interactions between stakeholders and the corresponding
tasks they perform. Figure 4.5 presents a class diagram illustrating these interactions,
which we will further describe below.

Figure 4.5: Logical view of the interactions between stakeholders and the corre-
sponding tasks they perform in our proposed architecture.

User: To interact with the system, it is required to have an identity in a blockchain
system. On the Ethereum blockchain, we handle this by assigning a unique address
to every user. The user class has only one property which is an Ethereum address.

Digital copy: This is a digital representation of a physical item. This entity is
responsible for creating and managing digital copies and can also be used to access
product information stored on the blockchain. The creation of a digital copy is
done through the mint function. The mint function takes in relevant information
about the product that will be baked into the NFT. The transfer function handles
transferring of ownership of a digital copy from one user to another. When a product
is broken or destroyed and we need to delete the corresponding digital copy, the burn
function permanently removes the digital copy from circulation. This entity can
also provide users with their NFT. The retrieveInforamtionForDigitalCopy function
returns information about a specific digital copy.

Trusted Seller: The system is also used by retailers, which we call trusted sellers.
Each trusted seller is responsible for generating the digital copy NFT and transferring
ownership to the buyer after completing a purchase transaction. This is done with the

36 4. DESIGN AND ARCHITECTURE

purchase function, which inputs the user’s address. The purchase function allows au-
thorized retailers to mint new digital copies and transfer them to a buyer immediately.

Reviews: Designed to manage user reviews on the blockchain. Allows users to
request reviews and scores of other users and retail businesses. The entity will review
previous trades and enable buyers to rate transactions after a trade. The user can
use the newReview() function to add reviews for trades it has done.

4.2.2 Development view

The development view offers a depiction of the system architecture from a developer’s
viewpoint.. It contains internal conditions tied to the simplicity of development and
limitations set by the programming language or toolkit. [77]. We have included a
component diagram in Figure 4.6 to present our proposed system architecture from
the development view. A textual description has also offered a more comprehensive
understanding of the solution.

Figure 4.6: Repository representation of the proposed architecture from the devel-
opers view.

4.2. SYSTEM ARCHITECTURE 37

Repository

Our application will be organized as a mono-repo, consisting of two distinct modules:
one for the front-end code and another for the smart contracts. Each module will
maintain its own set of dependencies to avoid any potential conflicts or unnecessary
dependency issues between the modules. This approach ensures a clean and isolated
development environment for the front-end and smart contract components, allowing
for efficient dependency management and minimizing potential compatibility issues.

User interface

All interfaces within the smart contracts will be accessible through HTTP/RPC calls.
However, a dedicated user interface will be developed to enhance the user experience
and interaction with the system. This user interface will facilitate the request and
reception of API calls to other components.

Ethereum blockchain

Ethereum consists of a large and active developer community that can be a resource
for finding help, support, and collaboration opportunities as we build this Web3
solution. Ethereum is also one of the oldest and most mature blockchain platforms.
This maturity shows that the Ethereum project ensures stability and longevity.

Ethereum has well-established token standards (e.g., ERC-20 for fungible tokens
and ERC-721 for non-fungible tokens) that have been widely adopted by the Web3
community. By leveraging these standards, we can provide compatibility with a
wide range of other projects, services, and platforms. This standard defines asset
ownership and includes methods for transferring ownership, enabling the verification,
trading, and selling of items on marketplaces. As a result, the ERC721 interface
provides a powerful tool for facilitating secure and efficient transactions of unique
assets on the Ethereum blockchain.

Data storage

Data storage is necessary for storing information about each item. The chosen data
storage solution must be accessible, cost-effective, and resistant to downtime. We
mainly considered two options to store data: Off-chain and on-chain storage.

Off-chain storage involves storing data outside of the Ethereum blockchain. This
approach is more cost-effective and scalable compared to on-chain storage. However,
using centralized databases contradicts the decentralized nature of Web3 and may
introduce single points of failure. Another storage solution is Decentralized storage
like IPFS or Filecoin which can be used for storing data in a decentralized manner.

38 4. DESIGN AND ARCHITECTURE

These will introduce unnecessary complications to our PoC and will therefore not be
considered.

On-chain storage means that data can be stored on the Ethereum blockchain
itself. This data can be accessed by anyone who is connected to the Internet. The
data is stored in a decentralized manner, meaning it is not controlled by any single
entity. This makes it difficult for anyone to tamper with the data or manipulate it in
any way. It also provides a very good reliability feature since it does not risk any
downtime. The downside of such a solution is the high cost of writing new data and
is not considered an effective way of storing data. However, since the system only
needs to store small chunks of data and to simplify our implementation, we will use
the blockchain itself as data storage. In addition, there exist optimization solutions
like Layer 2 protocols, such as rollups or sidechains, that store and process data off
the Ethereum main chain while maintaining security and decentralization.

Deployment strategy

The software is built and deployed in two stages. First, we compile smart contracts
and generate associatedApplication binary interface s (ABIs). The ABIs are then
moved to the front-end module. Secondly, we build the front-end application and
deploy it to a website service, and we deploy all smart contracts to the Ethereum
network with a deployment script.

4.2.3 Process view

The process view in the 4+1 model provides a detailed understanding of the system’s
interactions between actors and components. These interactions can vary based on
the specific actions performed by users, such as buying or selling an item. To showcase
these different scenarios, we have selected two distinct situations to illustrate the
process flow and interactions within the system.

Figure 4.7 provides an insight into the underlying process when a user purchases
at the retail market. In this scenario, the retailer is recognized as a trusted seller,
granting them the authority to mint an NFT and transfer it to the customer. Let us
break down the steps involved: In step 1, the user takes the initiative and purchases
an arbitrary product. The retailer must perform a lookup to validate whether the
customer is a registered user. This verification process facilitates the User contract,
which ensures the user’s existence at a specific Ethereum address.

Next, the retailer initiates a function call to the DigitalCopy contract, requesting
the creation of a new token. To confirm the seller’s authority, the DigitalCopy
contract reviews the SystemManager contract, verifying whether the retailer is an

4.2. SYSTEM ARCHITECTURE 39

approved entity. This ensures the creation of NFTs to only authorized individuals or
entities, preventing unauthorized parties from creating NFT.

Once the retailer is accepted, the DigitalCopy contract generates a unique token,
represented as an NFT, and designates the seller as its owner. This token will serve
as a representation of the purchased product. To complete the transaction, the
retailer transfers the ownership of the token to the customer’s address. As a result,
the customer now possesses an NFT corresponding to the purchased product.

Figure 4.7: Visualization of the sequential steps involved in a user’s purchase from
a retailer, with user existence, verification and token creation.

In Figure 4.8, we observe the process of transferring an already minted NFT to a
new owner, typically occurring during a sale in the secondhand market. The system
facilitates the verification of the seller’s possession of the relevant product before the
trade takes place.

The process begins with the secondhand seller initiating the user interface to
display all the items they possess. The user interface within a web browser commu-
nicates with the DigitalCopy contract on the blockchain, requesting a return of all
tokens associated with the given user address. The response from the DigitalCopy
contract provides a comprehensive list of all the tokens owned by the user within the
system. It is necessary to note that this system exclusively showcases products from
trusted retail businesses, as only these businesses can mint NFTs on the network.

Next, the seller places the desired item for sale, triggering the corresponding
digital copy token to transition into "for-sale" mode. Now, all users can access product
details and verify the ownership of the token.

40 4. DESIGN AND ARCHITECTURE

In the following step, a potential buyer enters the scene. The buyer interacts
with the user interface, specifically requesting information about the owner of a
particular token. To fulfill this request, the user interface communicates with the
Digital contract on the blockchain, which promptly retrieves and provides the current
owner’s address.

This process serves a crucial purpose. It empowers users who wish to purchase
secondhand goods the ability to ensure the authenticity of the products and mitigate
the risk of purchasing stolen items. Consequently, this verification mechanism greatly
benefits buyers, particularly when engaging in transactions through online platforms.
By establishing trust and transparency, verifying token ownership creates a safer and
more secure trading environment, fostering buyers’ and sellers’ confidence and peace
of mind.

Figure 4.8: Visualization of the sequential steps involved in secondhand trade,
where one user sells an item to another user.

4.2.4 Physical view

The physical view describes the interconnection between the software and hardware
components of the application, as well as the operational aspects of the system
upon deployment. Figure 4.9 represents the Unified Modeling Language (UML)
deployment diagram, illustrating the application’s architecture.

4.2. SYSTEM ARCHITECTURE 41

CDN network: We will utilize a CDN network to host our static website files.
This network will efficiently deliver the required HTML, CSS, and JavaScript files to
the user’s web browser, enabling interaction with our distributed system through a
front-end application.

Ethereum Node: To store smart contracts and maintain an accurate system
state, we employ the public blockchain of Ethereum. It was a requirement to
restrict access to specific acts., which led us to deploy in a hierarchical tree network.
Within this network, the "SystemManager" contract operates independently, while
the "TrustedSeller", "DigitalCopy", "Review", and "Users" contracts are dependent
on it.

1. SystemManager Contract: This contract maintains the list of trusted
sellers that are authorized to mint and trade digital copies and deploys the
Users and Reviews contracts. It includes functionalities to add or remove
an address from the trusted seller’s list. Additionally, this contract facilitates
the deployment of new DigitalCopy contracts, keeping track of all deployed
instances. Further, it also provides functions to show all DigitalCopy contracts
it has deployed and to check whether a certain address exists as a Digital-
Copy contract. Lastly, there is also a method to retrieve all owned items for a
specific owner and a method to stop specific DigitalCopy contracts from minting.

2. TrustedSeller Contract: This contract defines a trusted retailer’s operations
in the system. It allows a trusted retailer to sell an item, which entails minting
an NFT and transferring it to a buyer. If any items are returned, the contract
maintains a list of items it has sold to ensure that no items have multiple
digital copies. Moreover, trusted sellers can add or remove addresses from their
trusted address list, which allows for managing their internal operations (like
multiple wallets for a single seller). It also allows a trusted seller to change the
associated DigitalCopy contract and show the currently associated DigitalCopy
contract.

3. DigitalCopy Contract: This contract deals with the creation, management,
and ownership tracking of the digital representation of a physical object. Its
essential functions include minting new digital copies, transferring ownership
of digital copies, querying the owner of a specific digital copy, burning digital
copies, and retrieving all digital copies owned by one particular address. The
minting process is restricted to trusted sellers only, thereby enforcing the trust
and authenticity of the NFTs in the system.

42 4. DESIGN AND ARCHITECTURE

4. Users Contract: This contract manages user information and maintains a
list of all the users in the system. The main tasks of this contract are to create
new users and check for existing users.

5. Reviews Contract: This contract offers the opportunity for buyers to review
transactions and, by extension, rate sellers. Although the contract is integrated
into our implementation and is deployed alongside the SystemManager contract,
it holds a somewhat secondary role. It is not crucial for the functionality of
the other contracts, except when the SystemManager contract needs to access
the reviews. Since leaving a review is optional, this contract does not play a
critical role in the system’s day-to-day operations. Nevertheless, it is vital as it
archives all transactions that have been reviewed and the reviews themselves.

Each contract performs a distinct function in the application, and they work
together to provide security and trust in the marketplace for trading digital rep-
resentations for items. The DigitalCopy contract defines the core functionality of
creating and managing NFTs, the SystemManager contract secures the integrity of
the marketplace by controlling who can mint NFTs, and the TrustedSeller contract
handles the interactions of trusted sellers within the system. The Users contract
manages the user accounts and the Review contract does the same for reviews.

Web-browser unit: The web browser interacts with the Ethereum blockchain
using the ethers.js API, enabling smooth communication and data exchange.

4.2. SYSTEM ARCHITECTURE 43

Figure 4.9: UML deployment diagram of the proposed system.

44 4. DESIGN AND ARCHITECTURE

4.2.5 Scenarios

The scenarios presented in the 4+1 model view comprehensively explore the system’s
behavior and functionality from different perspectives. These scenarios capture
fundamental user interactions and system responses, providing a deeper understanding
of how the system operates in various real-world situations. By examining these
scenarios, we can gain valuable insights into the system’s performance, reliability,
and adherence to requirements. Each scenario sheds light on specific aspects of the
system’s behavior, enabling us to evaluate its effectiveness in meeting the needs of
stakeholders and achieving the desired outcomes. Through these scenarios, we aim
to illustrate the system’s functionality, highlight potential challenges, and identify
opportunities for improvement.

Scenario 1: NFT Minting and Duplicate Prevention

In this scenario, Kari Olsen purchases two watches from the retailer Trusted Watches,
established during deployment. Trusted Watches then attempts to sell a watch for
which the NFT has already been minted. We will examine how Trusted Watches
handles the attempted resale of a minted NFT. This scenario aims to prevent duplicate
NFT creation and maintain the integrity of the NFT system.

Scenario 2: Listing, Selling, and Ownership Transfer

Initially, Ola attempts to retrieve information about an item that is not currently
available for sale. Following this, Kari lists the item for sale, and now Ola can gather
information about it. Kari successfully sells the watch to Ola. Subsequently, Kari
attempts to purchase the watch back at a cheaper price, but this attempt fails as Kari
no longer holds ownership of the corresponding NFT. We will observe the smooth
process of listing, selling, and transferring ownership of the item.

Scenario 3: Review and Rating System

The scenario begins with Ola attempting to write a review for a product different
from the one he purchased. He then proceeds to leave a review for the actual product
he bought. As Kari seeks to sell another item subsequently, it is evident that her
rating has been influenced by Ola’s review. Later on, when Kari decides to put
another item up for sale, we can see that her rating has been influenced by Ola’s
review. We will analyze how this review impacts Kari’s rating and observe the overall
functioning of the review system.

Scenario 4: NFT Deletion

In this scenario, Kari makes an unsuccessful attempt to destroy Ola’s NFT. Later
on, due to damage beyond repair, she successfully carries out the burn operation of

4.2. SYSTEM ARCHITECTURE 45

her NFT. This scenario allows us to evaluate the effectiveness of the NFT deletion
process and its role in maintaining the system’s integrity.

Chapter5Implementation

After setting up our system requirements, designing our system architecture, we now
move into the implementation phase. We’ll first discuss the smart contracts, detailing
the technologies we’ve used and the implementation of each contract along with
their functionalities. Next, we’ll explore the implementation of the web application,
focusing on the technology choices for the front-end, the development process, and
its practical use. Lastly, we’ll explain the scripts we’ve developed to deploy the smart
contracts locally and on the Sepolia testnet.

5.1 Smart contract implementation

5.1.1 Technology

Solidity

Solidity is a procedural, statically-typed programming language and the desired
language for writing smart contracts on the Ethereum blockchain [45]. It was
designed to leverage the EVM and facilitates the creation of dApps.

Functions
Functions in Solidity are the contracts’ primary components and represent the
contract’s overall functionality. They contain the executable code within a contract
and can be used to retrieve information, change the state of a contract, perform
computations, change stored data and interact with other contracts. Functions may
take parameters as input, process that data and then can return an output.

Input parameters are the values that a function takes when it is called. They are
passed to the function when it is executed and are necessary for the function to have
the information needed to perform the operation(s).

In Solidity, functions need to have a visibility type that determines who can call
the function. These visibility types are the same for variables in the contract and act

47

48 5. IMPLEMENTATION

as a barrier to visibility. The visibility types in Solidity are:

– Public If a function is marked as public, it can be accessed from outside the
contract, from within the contract, and from derived contracts.

– Private If a function is marked as private, it can only be accessed within the
current contract. No other contracts can access the function.

– Internal If a function is marked as internal, it can be called from within the
current contract and any contracts inherited from it. No external contract can
access it.

– External If a function is marked as external, it can only be called from outside
of the contract. For all intents and purposes, it can not be called from inside
the current contract.

As the visibility types public and external have the same gas cost, and for our
purpose, there is no need for the extra restrictions from external, we have chosen to
only use public. Internal is also not used as we have no inheritance in our code.

Functions may be of a view type, meaning they are read-only and cannot change
state variables. Such functions do not have any gas cost when executed. Functions
can also return values, and the caller can then use these values.

Events In Solidity, events are inheritable members of contracts. Events provide
a way for smart contracts to produce a custom output that other code can interact
with. When implemented inside functions, when the function is called, this output
will be stored on the Ethereum blockchain. These can then be used to confirm
transactions, store data or trigger actions outside of the smart contracts.

Modifiers and Requires Modifiers and requirements in Solidity provide a way
to check input conditions and the smart contract’s state. They are requirements
that will be inspected and verified before a function is allowed to execute. In the
case where a condition inside the requirement is not met, an error is thrown and the
execution of the function is stopped.

Hardhat

Hardhat is an Ethereum development environment that has allowed us to deploy
contracts, run tests and debug the Solidity code. We have used Hardhat to compile
our smart contracts, deploy them on a local network and then interact with them as
if they were deployed on the actual Ethereum network. This has allowed us to write
code, test it out and make necessary changes without having to spend any ether.

5.1. SMART CONTRACT IMPLEMENTATION 49

5.1.2 Smart Contracts

As mentioned in Section 4.2.4, our implementation has five smart contracts which
make up our system. These are:

– SystemManager

– TrustedSeller

– DigitalCopy

– Reviews

– Users

As it would be too much to include all the code in all the smart contracts, we
have collapsed all the functions to only show their name, input parameters, visibility
type, modifiers and return parameters. This is done since the code is several hundred
lines long and would be impractical to include here. We will be explaining all the
important parts of what happens in the functions, and the whole code can be found
in an open repository on Github1.

SystemManager

The initial smart contract, SystemManager, in Listing 5.1 starts by establishing
two private mappings2. The first mapping essentially forms a list of trusted sellers,
while the second keeps track of all the deployed DigitalCopy contracts. The latter
ensures an overview of the number of such contracts currently operational. These
are made private so only this contract can directly access or modify them.

Next, we focus on the contract’s constructor3 on line 23. The constructor sets the
address of the deployer as the ’ownerAddress’. Furthermore, the constructor triggers
the deployment of the Users and Reviews contracts. Importantly, the addresses of
these contracts are emitted as events, which is useful for future interactions.

Moving on, the contract features ’add’ and ’remove’ functions that handles the
inclusion or exclusion of TrustedSeller contract addresses in the system. The change
in the state of approval are then announced through the events ’AddedTrustedSeller’
and ’RemovedTrustedSeller’ respectively. To ensure security and control, these
functions are tagged with the ’Authorized’ modifier, which ensures that only the
owner of the SystemManager contract can execute them.

1https://github.com/Autentisk/
2In simple terms, a mapping is like a dictionary; you store and retrieve data using a specific key.
3A constructor is a unique function that initiates when the contract is deployed

 https://github.com/Autentisk/

50 5. IMPLEMENTATION

On line 26, the function performs the gas-free operation of verifying if a retailer
exists on the list of trusted retailers. On the next line, there is the ’deployDigitalCopy’
function, which, restricted by the ’Authorized’ modifier, only permits the deployment
of a new DigitalCopy contract by the contract owner. Each deployment is announced
via the ’DeployedDigitalCopyContract’ event. In addition, the next function has
the ability to change if a specific DigitalCopy contract has the ability to mint
more NFTs. This provides the ability to stop the production of NFTs in case of a
compromised retailer and assess the situation and is understandably restricted by
the ’Authorized’ modifier.

The subsequent view function returns a list of existing DigitalCopy contract
addresses and provides an overview of the existing DigitalCopy contracts. Another
gas-free function follows, confirming the existence of a DigitalCopy contract address
within the system. This makes it possible for a user or a system to verify that a
smart contract is legit before making a transaction.

The penultimate function, ’retrieveAllOwnedItems’, is a view function that
generates a two-dimensional list of all items owned by a user. This provides a
summary of all owned items across all possible DigitalCopy contracts and is only
accessible to the owner of the items. Lastly, the concluding function is gas-free and
gives a user all relevant information required to facilitate the sale of an owned product,
thereby simplifying the process when planning to list an item for sale. In addition to
information about the product, it also returns the rating of the seller. This function
is only possible for the owner of the product to call, making it impossible for anyone
to figure out the rating of a user outside of the sale of a product.

1 pragma solidity ^0.8.17;
2
3 import ’./ DigitalCopy .sol ’;
4 import ’./ Reviews .sol ’;
5 import ’./ Users .sol ’;
6 import " hardhat / console .sol";
7
8
9 contract SystemManager {

10
11 // Variables :
12 mapping (address => bool) private SystemManager ;
13 mapping (uint256 => address) private mintedDigitalCopiesMapping ;
14 uint256 private mintedDigitalCopyCount ;
15 address private ownerAddress ;
16 Users private users ;
17 Reviews private reviews ;
18
19 // Events :
20 event DeployedUsersContract (address indexed contractAddress);
21 event DeployedReviewsContract (address indexed contractAddress);

5.1. SMART CONTRACT IMPLEMENTATION 51

22 event DeployedDigitalCopyContract (address indexed contractAddress);
23 event StatusMintable (address indexed contractAddress , bool indexed

mintability);
24 event AddedTrustedSeller (address indexed addedAddress);
25 event RemovedTrustedSeller (address indexed removedAddress);
26
27 // Modifiers
28 modifier Authorized () {...}
29 modifier ExistingDigitalCopies () {...}
30
31 // Functions
32 constructor () {...}
33 function add(address _address) public Authorized {...}
34 function remove (address _address) public Authorized {...}
35 function checkSystemManager (address _address) public view returns (

bool) {...}
36 function deployDigitalCopy () public Authorized {...}
37 function showDigitalCopies () public view ExistingDigitalCopies

returns (address [] memory) {...}
38 function statusMintable (address _address , bool _status) public

Authorized {...}
39 function digitalCopyAddressExist (address _address) public view

ExistingDigitalCopies returns (bool) {...}
40 function retrieveAllOwnedItems (address _address) public view

ExistingDigitalCopies returns (uint256 [][] memory) {...}
41 function retrieveListingInformation (address _address , uint256

_digitalCopyID) public view returns (DigitalCopy .
digitalCopyInformationRetrival memory , uint256 , uint256) {...}

42 }

Listing 5.1: Collapsed SystemManager contract

TrustedSeller

Listing 5.2 shows the collapsed code of the smart contract TrustedSeller, and
begins with the implementation of the IERC721Receiver interface on line 7. This is
important for it to be able to own NFTs as a smart contract.

On line 10-11 private mappings, ’trustedSellerAddressMapping’ and ’mintedDigi-
talCopiesMapping’, are declared. The former keeps a record of addresses that are
allowed to execute functions acting on the retailers’ behalf, while the latter keeps a
record of minted NFTs by the retailer. Then on lines 12 and 13, a reference to the
DigitalCopy contract and the SystemManager contract is declared respectively.
These private variables ensure that only functions within this contract have the
authority to modify them.

Moving on to functions, the contract’s constructor is found on line 24. It sets the
name of the trusted seller and the address of the SystemManager contract. The
address which initiates the contract is added to the ’trustedSellerAddressMapping’

52 5. IMPLEMENTATION

and thus the only address allowed to act on its’ behalf initially. It is important
to point out here that a TrustedSeller contract is impossible to deploy without
mentioning the SystemManager contract it will interact with, and is not possible
to change after deployment.

In the next line, we find the gas-free ’retrieveName’ function which does exactly
what one would expect, and returns the name of the retailer. Following this, there is
a function for purchasing items. Tagged with the Authorized modifier, it ensures
that only authorized accounts can execute a purchase on behalf of the retailer. The
function takes in details of the product being sold, here we have chosen name, price,
category, brand and serial number, and the address of the buyer. It makes sure
that the buyer exists in our User contract, and then creates a hash from the input
variables name, brand and serial number. This is then checked against the mapping
’mintedDigitalCopiesMapping’ to make sure that they are not trying to mint a
product with an already existing NFT. After completion, it then emits a ’Purchase’
event.

The next function. ’onERC721Received’, is not important in the terms of our
functionality, but is there to show that we have implemented a way for the contract
to receive NFTs and handle them so that they are not "trapped" when sent to the
contract.

Two more functions, addTrustedAddress and removeTrustedAddress, defined on
lines 28 and 29, allow for the inclusion or exclusion of addresses in the ’SystemMan-
agerMapping’. Protected by the ’Authorized’ modifier, only approved addresses can
add or remove respectively which addresses are allowed to act on the retailers’ behalf
and thus allowed to execute functions with the ’Authorized’ modifier. When these
functions are executed, there are also events emitted, broadcasting to the network
what changes have occurred.

Lastly, there are two more functions: ’changeDigitalCopyContract’ and ’showDig-
italCopyContract’. The former allows the contract to change the address of the
associated DigitalCopy contract, while the latter reveals the current DigitalCopy
contract’s address. It is important to specify that a DigitalCopy contract is not
established when the contract is deployed, making it necessary for this function to
be executed before any purchases can be made. They are also both controlled by the
’Authorized’ modifier, making sure that only trusted addresses can change or show
which DigitalCopy contract the retailer is interacting with.

1 pragma solidity ^0.8.17;
2
3 import ’./ DigitalCopy .sol ’;
4 import ’./ SystemManager .sol ’;
5 import ’@openzeppelin / contracts / token / ERC721 / IERC721Receiver .sol ’;

5.1. SMART CONTRACT IMPLEMENTATION 53

6
7 contract TrustedSeller is IERC721Receiver {
8
9 // Variables

10 mapping (address => bool) private trustedSellerAddressMapping ;
11 mapping (bytes32 => bool) private mintedDigitalCopiesMapping ;
12 string private trustedSellerName ;
13 DigitalCopy private digitalCopy ;
14 SystemManager private SystemManager ;
15
16 // Events
17 event Purchase (address indexed buyer , address indexed seller);
18 event AddedTrustedAddress (address indexed addedAddress);
19 event RemovedTrustedAddress (address indexed removedAddress);
20
21 // Modifiers
22 modifier Authorized () {...}
23
24 // Functions
25 constructor (string memory _trustedSellerName , address

_SystemManager) {...}
26 function retrieveName () public view returns (string memory) {...}
27 function purchase (string calldata _name , string calldata _price ,

string calldata _category , string calldata _brand , string
calldata _serialnumber , address _buyersAddress) public
Authorized {...}

28 function onERC721Received (address , address , uint256 , bytes calldata
) public pure returns (bytes4) {...}

29 function addTrustedAddress (address _address) public Authorized
{...}

30 function removeTrustedAddress (address _address) public Authorized
{...}

31 function changeDigitalCopyContract (address _address) public
Authorized {...}

32 function showDigitalCopyContract () external view Authorized returns
(address) {...}

Listing 5.2: Collapsed TrustedSeller contract

DigitalCopy

The next contract we implement is the Digital Copy contract, seen in Listing 5.3.
This smart contract is defined as an ERC721 contract, which is an OpenZeppelin
contract implementation of the ERC721 standard for NFTs.

The contract begins by defining the private variables on lines 11-16. The ’Sys-
temManager’ variable links the contract to a specific instance of a SystemManager
contract. This is important to highlight as this has to be defined before deploying
any of the contracts, and the address of the deployed SystemManager has to be
calculated beforehand. The reasoning behind this will be explained in subsequent

54 5. IMPLEMENTATION

paragraphs. The ’ownedTokensMapping’ maintains a record of the digital copies
owned by each address, while the ’digitalCopyInformationMapping’ is a mapping
storing information for each specific NFT. Finally, the mintable boolean variable
controls whether new digital copies can be minted.

On line 19, the contract defines a structure4. The ’digitalCopyInformation’
structure captures all relevant details about a digital copy, including its name, price,
owner, category, brand, serial number, time, lists with the history of time, prices and
owners, number of transfers, and a boolean indicating whether it is for sale. This is
then stored in the mapping mentioned earlier, ’digitalCopyInformation’.

The contract then defines several events on lines 32-34 and modifiers on lines
37-41, before we move on to the functions. The first, the constructor, sets the name
and symbol of the ERC721 token and assigns the address of the Users contract. Here
the ’onlySystemManager’ modifier explains why the address of the SystemManager
contract had to be calculated beforehand, as the address of that contract is the only
one allowed to deploy this contract.

The ’mint’ function, only accessible by a trusted retailer and when minting is
allowed, creates a new digital copy. Making this the only function that can be halted
entails that the rest of the contract will be operational, even when no new NFTs
can be created. This provides a safeguard so that even if a contract is compromised,
the owners of the NFTs still have the ability to use them. In addition, the input
parameters are used to create the struct, ’digitalCopyInformation’, and specifying
the "forSale" variable in the corresponding structure as "True". As the function is
finished, it emits the ’MintedDigitalCopy’ event.

Next is the ’transfer’ function which transfer ownership of a digital copy from
one address to another, updating its’ time, price, owner and their histories. There
are measures that insures that only the owner can transfer the asset, and that the
buyer is an existing user of the system. After the transaction is successful, the event
’TransferredDigitalCopy’ is emitted and the "forSale" variable is set as "False".

The getOwner view function on line 51 returns the owner of a specific digital
copy. The burn function, accessible only by the owner of a digital copy, provides the
opportunity to destroy the specified digital copy and emits this as an event. The
gas-free function ’retrieveInformationForDigitalCopy’ returns the data stored about
the product as specified in the struct when it was minted. This function is only
executable by the owner unless the product is put for sale, ("forSale" variable set as
"True), making the information accessible for everyone.

4A structure is a data structure format where you can store multiple data of various types in
one variable

5.1. SMART CONTRACT IMPLEMENTATION 55

Following this is the ’retrieveOwnedItems’ function which is gas-free and only
callable for the SystemManager contract by the ’onlySystemManager’ modifier,
and returns a list of digital copies owned by a specific address.

The ’existingUser’ view function, found on line 55, checks if an address corresponds
to an existing user in the Users contract. The gas-free ’isItemForSale’ function
checks if a specific digital copy is currently for sale, while the ’putItemForSale’ and
’putItemNotForSale’ functions allow the owner of a digital copy to change its sale
status.

Lastly, the ’changeMintability’ function allows the SystemManager contract to
change the mintability status of this contract. This provides the possibility to both
start and stop the creation of future NFTs.

1 pragma solidity ^0.8.17;
2
3 import ’./ SystemManager .sol ’;
4 import ’./ TrustedSeller .sol ’;
5 import ’./ Users .sol ’;
6 import " @openzeppelin / contracts / token / ERC721 / ERC721 .sol";
7
8 contract DigitalCopy is ERC721 {
9

10 // Variables
11 SystemManager private SystemManager = SystemManager (...) ;
12 mapping (address => uint256 []) private ownedTokensMapping ;
13 mapping (uint256 => digitalCopyInformation) private

digitalCopyInformationMapping ;
14 Users private users ;
15 uint256 private digitalCopyID ;
16 bool private mintable = true ;
17
18 // Structs
19 struct digitalCopyInformation {
20 string name;
21 string price ;
22 address owner ;
23 string category ;
24 string brand ;
25 string serialNumber ;
26 mapping (uint256 => string) priceHistory ;
27 mapping (uint256 => address) ownerHistory ;
28 uint256 transfers ;
29 bool forSale ;
30 }
31 struct digitalCopyInformationRetrival {...}
32
33 // Events
34 event MintedDigitalCopy (uint256 indexed digitalCopyID);

56 5. IMPLEMENTATION

35 event TransferredDigitalCopy (address indexed seller , address
indexed buyer , uint256 indexed digitalCopyID);

36 event BurnedDigitalCopy (uint256 indexed digitalCopyID);
37
38 // Modifiers
39 modifier onlySystemManager () {...}
40 modifier onlyTrustedSeller () {...}
41 modifier onlyOwner (uint256 _digitalCopyID) {...}
42 modifier forSale (uint256 _digitalCopyID) {...}
43 modifier Mintable () {...}
44
45 // Functions
46 constructor (address _users) ERC721 (" DigitalCopyAutentisk ", "DCA")

onlySystemManager {...}
47 function mint(string calldata _name , string calldata _price , string

calldata _category ,
48 string calldata _brand , string calldata _serialnumber)
49 public onlyTrustedSeller Mintable returns (uint256

mintedDigitalCopyID) {...}
50 function transfer (uint256 _digitalCopyID , address _buyersAddress ,

string memory _price) public forSale (_digitalCopyID) {...}
51 function getOwner (uint256 _digitalCopyID) public view returns (

address) {...}
52 function burn(uint256 _digitalCopyID) public onlyOwner (

_digitalCopyID) {...}
53 function retrieveInformationForDigitalCopy (uint256 _digitalCopyID)

public view returns (digitalCopyInformationRetrival memory)
{...}

54 function retriveOwnedItems (address _address) public view
onlySystemManager returns (uint256 [] memory) {...}

55 function existingUser (address _address) public view returns (bool)
{...}

56 function isItemForSale (uint256 _digitalCopyID) public view returns (
bool) {...}

57 function putItemForSale (uint256 _digitalCopyID) public onlyOwner (
_digitalCopyID) {...}

58 function putItemNotForSale (uint256 _digitalCopyID) public
onlyOwner (_digitalCopyID) {...}

59 function changeMintability (bool _boolean) public onlySystemManager
{...}

60 }

Listing 5.3: Collapsed DigitalCopy contract

Users

The fourth contract, Users, starts, as shown in Listing 5.4, with the declaration
of two private mappings: ’existingUsersMapping’ and ’userInformationMapping’.
The former maintains a list of existing users in the system, while the latter stores
user-specific data. The User struct then is declared, containing relevant data for a
user, here only name and wallet address.

5.1. SMART CONTRACT IMPLEMENTATION 57

The functions starts on line 22, first just with a basic constructor. Following is
the ’createUser’ function with the ’userDoesNotExist’ modifier, that can be called
by any address to create a new user, provided that user doesn’t already exist. The
input parameters "name" and "personalIdentifier" are hashed together, to ensure that
no confidential data are stored, while still generating a unique hash to be able to
store the ’User’ struct in the ’userInformationMapping’ mapping. This user address
is then added to the ’existingUsersMapping’ mapping before it emits the ’AddedUser’
event.

Lastly, the userExist function is a view function that takes an address as a
parameter. It returns a boolean indicating whether the given address corresponds to
an existing user in the system.

1 pragma solidity ^0.8.17;
2
3 contract Users {
4
5 // Variables
6 mapping (address => bool) private existingUsersMapping ;
7 mapping (bytes32 => User) private userInformationMapping ;
8
9 // Structs

10 struct User {
11 string name;
12 address walletAddress ;
13 }
14
15 // Events
16 event AddedUser (address indexed userAddress);
17
18 // Modifers
19 modifier userDoesNotExist () {...}
20
21 // Functions
22 constructor () {...}
23 function createUser (string memory _name , string memory

_personalIdentifier) public userDoesNotExist {...}
24 function userExist (address _address) public view returns (bool)

{...}
25 }

Listing 5.4: Collapsed Users contract

Reviews

The final contract Reviews can be seen in Listing 5.5. It begins with the two vari-
ables ’userReviewsMapping’ and ’transactionReviewedMapping’, the first mapping
maintains a list of all reviews made for a seller, while the second keeps track of which

58 5. IMPLEMENTATION

transactions have already been reviewed. The last variable on line 10 makes sure
that only the SystemManager has direct access to the reviews.

The ’Review’ struct is defined with several fields: "seller" and "buyer" are Ethereum
addresses representing the seller and buyer involved in the transaction, "rating"
is positive number between 0 and 5 representing the rating given in the review,
"digitalCopy" is the address of the DigitalCopy contract that was involved in the
transaction, ’digitalCopyID’ is the identifier for the NFT involved, ’transactionID’ is
the transaction which was reviewed, and ’text’ contains possible comments for the
review.

On line 31, the ’newReview’ function accepts various parameters related to a
review which are used to create the structure defined in the previous section. It is
protected by the ’ownerOfNFT’ and ’nonExistingReview’ modifiers, making sure
that only the new owner from the transaction can rate the seller and that they have
not already submitted a review of the transaction. After the successful creation of a
new review, the ’AddedReview’ event is emitted.

Next, the ’getUserReviews’ function returns all reviews for a given user. This
function is gas-free and uses the ’OnlySystemManager’ modifier, meaning that it can
only be called by the SystemManager contract to fetch reviews for a specific user.

Finally, the ’getUserReviewSum’ function calculates the sum of all review ratings
and the amount of reviews, before returning them to the function caller. Since
Solidity does not support decimal numbers, these numbers can then later be used to
calculate the average score of a user. This function is gas-free and only executable
by the SystemManager contract through the ’OnlySystemManager’ modifier.

1 pragma solidity ^0.8.17;
2
3 import ’./ DigitalCopy .sol ’;
4
5 contract Reviews {
6
7 // Variables
8 mapping (address => Review []) private userReviewsMapping ;
9 mapping (bytes32 => bool) private transactionReviewedMapping ;

10 address private SystemManagerAddress = ...;
11
12 // Structs
13 struct Review {
14 address seller ;
15 address buyer ;
16 uint8 rating ;
17 address digitalCopy ;
18 uint256 digitalCopyID ;
19 bytes32 transactionID ;

5.2. FRONT-END WEB APPLICATION IMPLEMENTATION 59

20 string text;
21 }
22
23 // Events
24 event AddedReview (bytes32 indexed transactionID);
25
26 // Modifiers
27 modifier nonExistingReview (bytes32 transactionID) {...}
28 modifier OnlySystemManager () {...}
29 modifier ownerOfNFT (address _address , uint256 _digitalCopyID) {...}
30
31 // Functions
32 constructor () {...}
33 function newReview (address _seller , uint8 rating , address

_digitalCopy , uint256 _digitalCopyID , bytes32 _transactionID ,
string memory _text) public

34 ownerOfNFT (_digitalCopy , _digitalCopyID) nonExistingReview (
_transactionID) {...}

35 function getUserReviews (address _address) public view
OnlySystemManager returns (Review [] memory) {...}

36 function getUserReviewSum (address _address) public view
OnlySystemManager returns (uint256 , uint256) {...}

37 }

Listing 5.5: Collapsed Reviews contract

5.2 Front-end web application implementation

The front-end application for our decentralized system is built using React and
Typescript. React is chosen for its simplicity and it allows us to quickly set up a
user interface without using too much time on design. The use of typescript brings
in strong typing, which results in a more robust running application. Compared to
using javascript, Typescript helps with catching errors during development instead
of in run-time that typically occurs when interacting with smart contracts.

To make the front-end interact with the Ethereum blockchain, we use the Ethers.js
library. Ethers.js is a lightweight and optimized library with tools for working with
Ethereum, enabling us to work with smart contracts, make transactions and interact
with wallets from the client application.

For a more productive development process and cleaner code, we use eth-hooks.
Eth-hooks is a custom hooks library for Ethers.js that follows the best practices of the
hooks pattern in React, encapsulating complex blockchain logic into reusable hooks.
This not only simplifies the code but also abstracts away much of the complexity
involved in interacting with the Ethereum blockchain.

60 5. IMPLEMENTATION

The front-end application is deployed using Surge, a platform for deploying static
web pages to a Content Delivery Network (CDN). Surge has been chosen due to
its simplicity and efficiency in serving static websites. We especially facilitate two
advantages of Surge: Speed: Surge deploys the content to a CDN, which makes the
site load quickly regardless of the user’s location. Decentralization: By serving the
application through a decentralized platform like Surge, we align with the principles
of decentralization that underpin our blockchain-based system.

5.3 Deployment process

Before deployment we need to calculate the address of the future SystemManager
contract, this can be done using the python script found in Appendix D. By using
our private key, which by security reasons will not be written here, and the nonce
of 0, as this is our first interaction with this network using this key, we get the
address "0x0CEC837a835A4b4356a811cdB2CC3Fa66Ac30dE2". This will then be
placed inside the DigitalCopy contract as the SystemManager variable.

5.3.1 Deployment script

In Listing 5.6 we deploy the SystemManager contract, which in its’ construction con-
currently deploys the Users and Reviews contracts. Proceeding with the deployment,
we introduce the DigitalCopy contract via the SystemManager and initiate a credible
retailer named Trusted Watches, which we subsequently incorporate into our system.
Trusted Watches also adds the deployed DigitalCopy to its’ system. Following the
deployment of all the contracts, we document their addresses detected by the events
into a file, thereby ensuring their accessibility for the next scripts.

The deployment process on the Sepolia testnet has been written to be quite
similar to that of the local deployment, however with some necessary initial changes.
These changes are minimal to the code in Listing 5.6 and if interested can be found
in the repository on Github 5.

1 ...
2
3 // Deploy SystemManager with Users and Reviews
4 ...
5 SystemManager = await SystemManagerFactory . deploy ();
6 let UsersEvent : Promise <void > = new Promise ((resolve , reject) =>

{...}) ;
7 let ReviewsEvent : Promise <void > = new Promise ((resolve , reject) =>

{...}) ;
8
9 await UsersEvent ;

10 await ReviewsEvent ;

5https://github.com/Autentisk

https://github.com/Autentisk

5.3. DEPLOYMENT PROCESS 61

11 await SystemManager . deployed ();
12
13 console .log(" SystemManager .sol contract deployed to address : ",

SystemManager . address);
14
15 // Deploy DigitalCopy .sol
16 const DigitalCopyFactory : ContractFactory = await hre. ethers .

getContractFactory (" DigitalCopy ");
17
18 let digitalCopyAddress : string | null = "";
19 await SystemManager . deployDigitalCopy ();
20 let DigialCopyEvent : Promise <void > = new Promise ((resolve , reject)

=> {...}) ;
21
22 await DigialCopyEvent ;
23 digitalCopy = await DigitalCopyFactory . attach (digitalCopyAddress);
24
25 // Deploy TrustedSeller .sol
26 const TrustedSellerFactory : ContractFactory = await hre. ethers .

getContractFactory (" TrustedSeller ");
27 trustedSeller = await TrustedSellerFactory . deploy (" TrustedWatches ",

SystemManager . address);
28 await trustedSeller . deployed ();
29 console .log(" TrustedSeller .sol contract deployed to address : ",

trustedSeller . address);
30
31
32 // Add Trusted Seller to the approved list
33 await SystemManager .add(trustedSeller . address);
34
35 // Set Trusted Sellers ’ DigitalCopy contract to interact with
36 await trustedSeller . changeDigitalCopyContract (digitalCopyAddress);
37
38 // Write variables to file
39 let contractAddresses = {...};
40 fs. writeFileSync (’scripts / contractAddresses .json ’, JSON. stringify (

contractAddresses , null , 2));

Listing 5.6: Selected parts of script showing the deployment of the contracts

Chapter6Results

In this chapter, we present results from the practical deployment and operation of
our system. This includes setting up our smart contracts on the Sepolia testnet and
running the scripts from Appendix C based on the scenarios discussed in Section
4.2.5. Our front-end interface, which communicates directly with the blockchain1, will
be used to highlight these scenarios in action. We present the various transactions
that have been successfully completed on the blockchain and the instances where
transactions have been reverted.

Next, we move to the economic aspect of the system, discussing the ’gas costs’
associated with the different scenarios and their transactions. We examine how
factors like gas price, gwei value, and the number of owned NFTs can influence these
costs. This chapter aims to bridge our system’s theoretical design with its practical
application, providing a comprehensive understanding of its functionality and cost
implications.

6.1 Deployment

As we deploy our system onto the Sepolia testnet, we utilize the block explorer
Etherscan2 on the Sepolia testnet to be able to find and easily display our transactions.
By inputting the different contract addresses acquired when we run the deploy script,
we are able to observe the transactions as they appear on the blockchain network.
For readers who wish to explore further, the corresponding information is public and
easily accessible on any block explorer.

After the completion of the deploy script, these are the addresses our smart
contracts are deployed to:

1Currently only on localhost
2https://sepolia.etherscan.io/

63

https://sepolia.etherscan.io/

64 6. RESULTS

– SystemManager: 0x0CEC837a835A4b4356a811cdB2CC3Fa66Ac30dE2

– TrustedSeller: 0x74aCBE18ADEBD759e2944f34d2719B674A923718

– DigitalCopy: 0xE446bb298E67f0C27ADb8DE9BF20cc203bb6e9B2

– Users: 0xb15c0616E6CeE8a644F69a72eBDceBf6320a2457

– Reviews: 0x656aEc7fa90d169DC95b90D912Fc4513841e6248

Further in Figure 6.1, we can see the deployment of the SystemManager contract.
We have highlighted five areas that we would like to explain further. First is the
transaction hash, which is the unique identifier for this change of state in the smart
contract, and can be used to search for a specific change of state. Next, as highlighted
by the number two in the figure, we can see the "From" and "To" fields. The from
address is the public address of the private key we used to deploy the contract and the
to address is the same address we calculated the smart contract to have beforehand in
5.3. Then we have the highlighted part specified by the number three, and this part
shows the price of gas when we deployed the contract, around 1.5 gwei. Penultimately
we have the gas usage of the contract, by focusing on the last section of the right
hand side of the higlighted part, referenced by the number four, we can see that the
gas cost of this deployment was 5,155,282 gas. Lastly, the part highlighted by the
number five is not as important, but we wanted to mentioned that the nonce is also
visible and is set to zero as this is this account’s first interaction with this network.

6.2 Scenario results

We used the implemented PoC with the test scenarios introduced in 4.2.5 to validate
that we have met the functional requirements presented in Section 3.3. We validate
this by utilizing the functionality in our application by executing these 4 different
scenarios where each of these covers one or several requirements. We have also
used Alchemy, a Web3 development platform, to deploy our system through and to
observe successful and reverted functions. We refer to Appendix B to reproduce the
execution.

6.2.1 Scenario 1: NFT Minting and Duplicate Prevention

Scenario 1 (4.2.5) focuses on testing the functionality related to a store selling an
item to a user and generating a corresponding NFT for the transaction. The user
interface of the store during this process is shown in Figure 6.2.

6.2. SCENARIO RESULTS 65

Figure 6.1: Screenshot of SystemManger deployment on Etherscan.

Figure 6.2: Front-end interface that shows the purchasing process of an item from
a retailer’s perspective.

Once the trusted seller initiates the mint button in Figure 6.2, the NFT is minted
and subsequently transferred to the new owner. Confirmation of a successful purchase

66 6. RESULTS

is shown in Figure 6.3, which presents a capture from Etherscan3.

Figure 6.3: Screenshot of the completed purchase on the Sepolia testnet.

To further examine the system’s behavior, we explore the scenario where the store
attempts to generate a new NFT for the same product. Figure 6.4 demonstrates that
the generation of the NFT is not successful since it already exists on the blockchain.
This behavior ensures that duplicate NFTs for the same product is not created,
maintaining the integrity and uniqueness of the NFT system.

Figure 6.4: Screenshot of the reverted transaction where the retailer tried to mint
an item for the second time.

During our test scenario, the store successfully generates an NFT for the customer
and transfers it to them. The completion of the transfer can be observed in Figure
6.5, where the user is shown as the new owner of the NFT.

3Can be found at https://tinyurl.com/mw547wd5

https://tinyurl.com/mw547wd5

6.2. SCENARIO RESULTS 67

Figure 6.5: Front-end interface that shows the owned items for a user.

By conducting these tests and analyzing the corresponding figures, we validate
that the system effectively generates and transfers NFTs for transactions, preventing
the creation of duplicate NFTs and ensuring the accuracy and reliability of the
process.

68 6. RESULTS

6.2.2 Scenario 2: Listing, Selling, and Ownership Transfer

Scenario 2 (4.2.5) involves testing the process of a secondhand trade between two
users. The verification of the seller’s ownership of the Digital Copy is conducted by
the first user, as illustrated in the user interface shown in Figure 6.6.

Figure 6.6: Front-end interface that helps one user to verify the ownership of other
user’s NFT.

Next, we proceed to test the transfer of NFT ownership from one user to another.
Once the trade is executed, the current NFT owner transfers digital ownership.
This can be accomplished by invoking the transfer function or by utilizing the user
interface seen in Figure 6.7.

6.2. SCENARIO RESULTS 69

Figure 6.7: Front-end interface that shows the transfer of an NFT to another user
from a seller’s perspective.

Figure 6.8 illustrates a successful transfer of ownership4, confirming that the NFT
has been securely transferred from the seller to the buyer.

Figure 6.8: Screenshot of the completed transfer on the Sepolia testnet.

To ensure the integrity of the transaction, we also examine the behavior of the
4Can be found at https://tinyurl.com/4ye3hs5x

https://tinyurl.com/4ye3hs5x

70 6. RESULTS

previous owner after the transfer. Figure 6.9 demonstrates that the previous owner,
having completed the transfer, no longer has visibility or the ability to perform
actions on the NFT.

Figure 6.9: Screenshot of the reverted transaction where the seller tries to buy
back the item sold cheaper.

By conducting these tests and analyzing the corresponding figures, we verify
that the system accurately facilitates secondhand trades by verifying ownership and
enabling secure transfers of NFTs between users.

6.2. SCENARIO RESULTS 71

6.2.3 Scenario 3: Review and Rating System

In Scenario 3 (4.2.5), we focus on the process of users reviewing each other. We
conducted tests to verify two specific cases: whether a user can review a transaction
they were not involved in, and whether they can submit a review for a transaction
they were part of.

Figure 6.10 shows the implemented user interface for sending a review for an
item they have received. By submitting a review, the previous owner of the item
will receive a rating that is stored on the blockchain and contributes to their overall
rating.

Figure 6.10: Front-end interface that shows the review of a transaction from the
buyer’s perspective.

It is crucial to note users are only permitted to submit reviews on items they
have bought. Figure 6.11 demonstrates a situation where a dishonest user attempts
to submit a review for a product they do not possess. In such cases, the system
rejects the review, ensuring that only legitimate reviewers can provide feedback.

72 6. RESULTS

Figure 6.11: Screenshot of the reverted transaction where the buyer tries to review
the wrong item.

Conversely, Figure 6.12 showcases a successful transaction where the reviewer
was indeed involved in the trade, and the system accepts their review5.

Figure 6.12: Screenshot of the completed review on the Sepolia testnet.

Through these tests and the corresponding figures, we validate the functionality
of the review feature within our system, ensuring that it operates correctly and
safeguards against fraudulent or unauthorized reviews.

5Can be found at https://tinyurl.com/42389e7k

https://tinyurl.com/42389e7k

6.2. SCENARIO RESULTS 73

6.2.4 Scenario 4: NFT Deletion

Scenario 4 (4.2.5) focuses on the process of a user deleting an NFT. Figure 6.13
presents the user interface that allows users to initiate the deletion of an NFT they
possess.

Figure 6.13: Front-end interface that shows the deletion of an NFT.

Figure 6.14 illustrates a successful operation where the digital copy associated
with the NFT is successfully removed from the blockchain6. Within the highlighted
red region, it is evident that the ownership has been transferred to the zero address,
which is effectively equivalent to erasing the token.

6Can be found at https://tinyurl.com/yszctxf8

https://tinyurl.com/yszctxf8

74 6. RESULTS

Figure 6.14: The provided image displays a captured transaction of the completed
burn process on the Sepolia testnet.

In this scenario, we also conducted tests to examine the system’s response when an
unauthorized user attempts to delete another user’s NFT. Figure 6.15 demonstrates
that such transactions are not processed by the system, effectively protecting against
unwanted deletion of ownership.

Figure 6.15: Screenshot of the reverted transaction where a user tries to burn an
item they do not own.

By conducting these tests and analyzing the corresponding figures, we ensure
that the system functions as intended, allowing users to delete their own NFTs while
preventing unauthorized individuals from tampering with others’ ownership rights.

6.3. GAS COST 75

6.3 Gas cost

6.3.1 General costs

In Table 6.1 we have the gas cost and the cost in USD, which were paid during
the execution of the multiple scenarios. The costs depend on the gas price and the
value of gwei, but we have, unless otherwise specified, used the values of 22 gwei
and $0.0000018, respectively. As can be seen from the screenshots from the block
explorer when we executed our deployment and scenarios, the price at the time was
0.0000015 USD/gwei, but then again this varies over time.

An essential observation from the table is the disparity in gas costs associated with
different operations. This variation is due to the varying computational requirements
of the operations. For instance, the ’Deploy SystemManager’ operation is the most
computationally intensive task and hence incurs the highest gas cost (5,155,282),
translating into $204. This operation is essentially a one-time cost, which, although
high, is crucial for the initial setup of the system and expected to be the highest as it
implements the management of the system. Following, we see that the deployment of
the other contracts, DigitalCopy and TrustedSeller, are also at the top of the list in
reference to cost. However, these operations are generally part of the initial system
setup and hence do not contribute to the recurring costs of system maintenance and
usage. Once a DigitalCopy or a TrustedSeller contract has been set up, this is most
often a one-time cost for the deploying stakeholder.

Operations like ’Purchase 1 in Trusted Seller’ and ’Purchase 2 in Trusted Seller’
represent the two watch purchases in Scenario 1 (4.2.5) and are typical user inter-
actions with the system. Their individual costs are relatively high ($20.2 and $19,
respectively), and it is important to note that such transactions are expected to occur
frequently. However, only once per item and not frequently for the individual user,
making it a more affordable price for the user. We can observe that the first purchase
cost is more costly than the second by around 31 000 gas. This change in gas usage
is caused by the difference in the names of the two watches. "Cosmograph Daytona"
is longer than "Submariner", making it more computationally expensive to work with.
As we wanted to make sure that this increased cost did not turn exorbitant, we made
a purchase where each of the affected variables, namely name, price, category, brand
and serial number, were made to consist of 69 words each. This resulted in a cost of
2,723,742 gas, translating into $108. As this is an unreasonable length for even just
one of the variables, we can safely say that a purchase would never achieve this gas
cost, even in extreme situations.

Meanwhile, operations like ’Create user in Users (1st time)’ and ’Create user
in Users (2nd time)’ exhibit much lower gas costs. Worth commentating is that
their costs are almost identical, suggesting that the computational effort to add a

76 6. RESULTS

new user to the system remains almost the same. This can be further confirmed as
the computational cost only depends on the name’s length and the user’s personal
identifier. This is also a one-time fee paid by the users of the system when they first
register. We also wanted to ensure that this cost did not turn exorbitant with longer
names and created a user with 69 words in both name and personal identifier. This
resulted in a gas cost of 418,645, which in turn equals $16.6, which in reality would
be highly unlikely.

Operation Gas Cost Cost in USD
Deploy SystemManager 5,155,282 $204
Deploy DigitalCopy in SystemManager 2,636,386 $104
Deploy TrustedSeller 847,738 $33.6
Purchase 1 in Trusted Seller 511,163 $20.2
Purchase 2 in Trusted Seller 479,667 $19
Transfer item in DigitalCopy 214,148 $8.5
New review in Reviews 213,752 $8.5
Create user in Users (2nd time) 92,019 $3.6
Create user in Users (1st time) 91,983 $3.6
Change DigitalCopy in TrustedSeller 56,044 $2.2
Add TrustedSeller in SystemManager 47,247 $1.9
Put item for sale in DigitalCopy (2nd time) 46,012 $1.8
Put item for sale in DigitalCopy (1st time) 46,000 $1.8
Burn item in DigitalCopy 39,520 $1.6

Table 6.1: Gas costs for different operations and their cost in USD (sorted by gas
cost) using the gas cost of 22 gwei and gwei value of $0.00000180

6.3.2 Transaction cost

We further experimented with transaction cost differences, as seen in Figure 6.16.
The cost of transfers is subject to one major influencing factor, the quantity of items
owned by a given user, in this case, Kari.

Kari owns 50 identical items, which are then sequentially transferred to a second
user at the same cost, starting from the 50th item. The computational effort required
to iterate through a list of items is higher depending on the position of the item in
the list. This necessitates a larger amount of gas to transfer items further back in
the list, as with our initial transfers. As the list shortens with each transaction, the
associated cost declines progressively.

6.3. GAS COST 77

Interestingly, the first transfer also experiences a notable spike in cost. This is due
to the additional computational resources needed to set up the list for the receiving
user, who, prior to this transaction, did not own any items. This initial setup of the
list costs approximately an additional 36,500 gas. Following this setup, the cost per
transfer demonstrates a consistent decrease by 2,339 gas as the list of items decreases
with each successive transaction.

The final transfer, involving the last item on the list, requires a slightly lower
amount of gas, costing 168,195 gas which is equivalent to $6.7. This is attributed to
the absence of the need for iteration through the list, thus requiring less computational
effort and, consequently, less gas.

Figure 6.16: Gas cost in gwei of 50 worst-case transactions.

This makes it possible to calculate the worst-case expected cost of a transfer
depending on the amount of NFTs the seller has. Disregarding the cost of the initial
setup if the receiver has yet to receive an NFT as well as the decrease in the cost of
transferring the last item, we get this equation:

̂GasCost = NumberOfOwnedItems × 2400 + 177795

Which again can be further expanded to estimate the cost in USD:

P̂ rice = (NumberOfOwnedItems × 2400 + 177795) × GasPrice × EtherV alue

109

Using a gas price of 22 gwei, an ether value of $1,800 and having 100 items:

78 6. RESULTS

P̂ rice = (100 × 2400 + 177795) × 22 × 1800
109 = 16.54

This results in a worst-case cost of $16.5 for this transfer. It is worth mentioning
that these are estimators, and other factors, such as the item’s price, also affect the
gas cost.

6.3.3 Historical prices

As the gas cost is static, they will never change as the smart contracts are immutable,
a purchase or a transfer with the same variables will always have the same gas
cost. However, the gwei price for the execution of this gas and the gwei value will
fluctuate. Therefore, we have plotted the most used functions as well as the contracts
deployment cost both in gwei and USD from 2020 onwards. In addition, we calculated
a table with the average cost from the same timeline.

Deployment

Transaction Type Gas Cost Price (gwei) Price (USD)
SystemManager 5,155,282 347,413,189 $693
DigitalCopy 2,636,386 177,665,406 $354
TrustedSeller 847,738 57,128,855 $114

Table 6.2: Average historical deployment prices in gwei and USD

Figure 6.17: Simulation charts of deployment cost based on historical prices in
gwei.

6.3. GAS COST 79

Figure 6.18: Simulation charts of deployment cost based on historical prices in
USD.

Functions

Transaction Type Gas Cost Price (gwei) Price (USD)
Purchase 511,000 34,436,164 $68
Transfer 214,000 14,421,407 $28
Create User 92,000 6,199,857 $12
Burn 39,500 2,661,895 $5

Table 6.3: Average historical function prices in gwei and USD.

80 6. RESULTS

Figure 6.19: Simulation charts of functions cost based on historical prices in gwei.

Figure 6.20: Simulation charts of functions cost based on historical prices in USD.

Chapter7Discussion

7.1 Analysis and comparison with requirements

In this section, we present the evaluation of the system based on how the developed
architecture fulfills the stakeholder requirements, followed by the evaluation based
on the developed prototype. The test scenarios from Section 4.2.5 were used for the
evaluation.

1. Purchase Item and Receive NFT: This requirement is satisfied with the
purchase() function in the TrustedSeller contract. We see the requirement is
fulfilled in Scenario 1 in the result chapter.

2. Overview and Listings: An overview of all owned NFTs can be seen at the
end of Scenario 1, as well as information about each of the products, accessible
to the owner.

3. Access Product Information: We can see in Scenario 2 that a user does not
have access to information about products which are not for sale, but as soon
as it is marked for sale, the buyer acquires access. While we did not implement
information regarding warranties, this information is often accessible through
their serial number. We did not implement functionality for showing services
and repairs to items, as we evaluated this to add unnecessary complexity to
our PoC. However, one could transfer the NFTs back and forth between such a
provider, to document a proof of the service rendered.

4. Execute Transaction and Transfer NFT: In Scenario 2 we can see that
this functionality is successfully implemented with the transfer() function in
the DigitalCopy contract. As the seller is not able to purchase it back, we also
prove that the NFT’s information is updated.

5. Rate a Transaction: In Scenario 3, we see that the user is able to review the
completed purchase, and only the transaction it is involved in, and that this

81

82 7. DISCUSSION

review will follow the seller in the future. As the review is connected to the
seller’s public wallet, this will also follow them through different platforms.

6. Remove a Broken Product: Scenario 4 shows that this functional require-
ment is successfully incorporated, as well as highlighting that this option is
only possible for the owner of the NFT.

7.2 The system’s ability to cope with non-functional
requirements

Scalability: Our implementation is on the Ethereum blockchain which inherently
supports scalability. Any number of users can interact with the smart contracts
simultaneously, and the platform can handle an increasing number of transactions
without any major performance degradation. However, as it is a public blockchain,
the transaction throughput depends on the Ethereum network congestion and the
gas price that the users are willing to pay.

Robustness: Smart contracts are designed to be immutable and irreversible, adding
to their robustness. Our smart contracts are designed to handle unexpected situations
gracefully with the help of modifiers and require statements. No change to the system
is possible without passing these requirements, as has been demonstrated in the
scenarios, and we believe we have covered the most important edge cases. For
example, the NFT cannot be destroyed unintentionally or that retailers cannot mint
multiple NFTs for the same product due to the internal requirements of the code.

Security: Our smart contracts are designed with security as a primary concern.
The contracts have been meticulously designed with mechanisms, like permissions
and modifiers, to ensure that only authorized users have access to certain operations.
While the SystemManager contract has a lot of power when it comes to the inclusion of
trusted retailers and control over the deployment and functionality of the DigitalCopy
contract, it has no control over the NFTs themselves. Only the trusted retailers have
the power to add accounts which can act on their behalf and only these accounts are
allowed to mint digital copies of the product they sell. Following, the ownership of
an NFT can only be transferred by the current owner. While the SystemManager
can remove trusted sellers and stop the "mintability" of a DigitalCopy contract,
the existing NFTs still have full functionality, which ensures the protection of the
digital assets. However, if the wallet of the owner of the SystemManager contract
is compromised this would compromise the entire system. Thus highlighting the
importance of security knowledge and practices for this entity.

Reliability: As the system operates on the Ethereum blockchain, it inherits the
reliability of the Ethereum network. This means that as long as Ethereum is operating,

7.2. THE SYSTEM’S ABILITY TO COPE WITH NON-FUNCTIONAL
REQUIREMENTS 83

our system will also be operational with high availability and minimal downtime. As
Ethereum is coming up on 10 years of being operational and is one if the most used
blockchain as of today, we find this blockchain as sufficient in its reliability.

Performance: The smart contracts are probably not as optimized as they could be,
but we have had gas cost on our mind throughout the implementation of them. For
example, by using mappings as often as possible instead of arrays, this has lowered
the cost of computational operations in exchange for a more complicated system.
Our implementation has, from our testing, swift responses and efficient handling of
transactions, thereby providing a satisfying user experience. However, as can be seen
on the increased cost of gas with transfers for owners with multiple items, this could
have been made cheaper by adding more complexity to the code. As our solution is
just a PoC and the transaction cost still remains on a reasonable level, we still find
this requirement to be fulfilled.

Usability: Although the user interface is not a fully developed solution, we have
created a functional interface which presents the core functionality of the system.
Through this interface, we show how a large-scale system could be made intuitive
and easy to use, even for individuals not familiar with blockchain technology. The
design of the system makes it possible to develop a front-end which is user-friendly
and makes it easy to buy, sell and transfer NFTs as well as providing an overview of
owned goods. The system can be accessed through any Ethereum-compatible wallet,
such as MetaMask, and be incorporated into already existing e-commerce platforms
as an API such as Amazon, Ebay or Finn.no. Even though this thesis highlights
improvements Web3 can provide to the reseller markets, it still faces difficulties in
convincing people who do not know much about blockchain technology to trust it as
well as being heavily dependent on functional wallet systems such as MetaMask.

Upgradability: As of now, our smart contracts are not upgradable. Once deployed,
the logic inside them cannot be changed. This is a trade-off between upgradability
and immutability, which is a fundamental property of smart contracts. However, there
are design patterns like the proxy pattern which can be used to add upgradability to
smart contracts, which can be considered for future work. However, this will impact
the level of security, and could provide too much power to the owner of the system
and creates a degree of centralization. One the other hand, there are other solutions,
such as implementing a DAO1, which would remove the risk of centralization.

Privacy: User privacy is ensured as much as possible in our smart contracts. We
chose to not store any personal user information on the blockchain other than name,
as this would require functionality which adhers to regulations such as GDPR, which

1Decentralized Autonomous Organization

84 7. DISCUSSION

we found to be outside of the scope of this thesis. We did however choose to use
a personal-identifier metric when creating a user to show a possibility which is
adaptable to the different ways countries have to identify its’ citizens. Additionally,
we implemented a feature making it only possible for users other than the owner to
retrieve information about items when they are marked as for sale, to protect privacy
to some degree. However, transactions and interactions on public blockchains are
transparent and can be viewed by others, which is a fundamental property of the
technology. As we have several events emitted when changes occur to the state of
the smart contracts in order to provide functionality, this also makes it possible for
anyone to capture, store and analyze this data. As this is just a PoC we did not
find it necessary to address this issue, but solutions could be to encryption the data
emitted or deploy the system on a private or permissioned blockchain.

7.3 Cost of usage

System Manager

The cost of operation for the system manager, the one who deploys the SystemManager
contract and governs the overall system, is dependent on the size of the system. First
of, there is a one-time cost for deployment of around $204 plus $104 for each needed
DigitalCopy contract, together coming to $3082. Then there is a constant cost of $2
for each time there is a need of adding or removing a retailer to or from the system.
However, as mentioned these prices fluctuate on a daily basis, thus we find it more
reasonable to look at the average price from 2020 onwards. With a cost of $693 plus
$354 for each DigitalCopy Contract, for a total of $10472. In addition, there is the
cost of $6 for each time a retailer is added or removed from the system. This means
that a minimal system with 10 retailers included would cost roughly $1100 to set
up, while it is not a lot for most companies, could be a threshold especially without
certainty of usage from customers.

Retailers

For retailers to use the system, they will have a deployment cost of $33.6 and a $2.2
cost for changing to the correct DigitalCopy contract, total of $35.8. This would be a
one-time cost for the store, and is relatively low compared to the overall operational
cost of most companies. Even if a multi-store retailer were to establish a new contract
at each of its stores, the cost would still be minimal. However, if we are to look at
this price in an average historical aspect, the total price would be $122. While this
price is more expensive, it is still not a big expense for most retailers, especially as
the items this solution addresses are often of the more expensive type. However,

2For a minimal system with one DigitalCopy

7.4. WEB3 AS A SOLUTION TO ISSUES IN THE RESELLER MARKETS 85

more incentive might be needed with data supporting that with the implementation
is sought-after and would be widely adapted.

Individual users

As can be seen from the results, the prices for the most important day-to-day functions
such as purchase and transfer are around $20 and $103. As this concept of digital
copies are meant for more valuable items, the cost is minimal in comparison to the
price of the item itself. We would argue that the advantages of our system is worth
the extra cost. If the purchase and ownership of the NFT makes the seller more
trustworthy and desirable when they are interested in selling the item, this extra
investment would be cost-effective. However, costumers could also choose not to
purchase the digital copy for items where they feel that the pros does not outweigh
the cons. Another disadvantage in relevance to cost is that submitting a review cost
$8.5 and burning a NFT cost $1.6, and as these actions does not provide the user
with a personal gain other than contributing to the community and a more tidy
overview of owned items, this cost might make these functions seldom used. On the
other hand, since the transaction cost increases with the number of owned items, it
might be cost-effective to burn old NFTs to reduce this cost. To be able to use the
system, the user would also need to create a user, paying around $4. As this is a
one-time fee, we interpret it do be minimal in comparison to the other costs payed
when using the system over a long time.

However, we also have to look at the average historical prices of these functions.
Based on the table of historical prices in our results, the average cost of a purchase,
transfer, creation of a user and burning of a NFT are $68, $28, $12 and $5 respectively.
These prices are quite high and in comparison to the prices mentioned earlier, and
could be an important threshold for the adaptation of our suggested system.

Even though the prices of our system are somewhat expensive, we are to argue
that the prices reported in Table 6.1 could be acceptable for this kind of system.
Although the historical prices indicates a probability that there could be an increase
in cost of usage of the system, and that this provides an uncertainty for our proposed
system, neither us or anyone else can predict with a hundred percent certainty the
future trajectory of these costs.

7.4 Web3 as a solution to issues in the reseller markets

Retail markets

Our solution replaces traditional paper receipts with digital receipts stored on the
blockchain. By leveraging NFTs, each product purchase is associated with a unique

3Including marking them for sale

86 7. DISCUSSION

digital token that represents the ownership and transaction history. This standardized
and immutable record eliminates the issues of inconsistent documentation and
provides long-term accessibility. Digital receipts stored on the blockchain are not
subject to deletion or loss, ensuring their availability for future reference.

The transparency and verifiability provided by our solution help combat unethical
practices in retail, such as selling used products as new. With the immutable
transaction history recorded on the blockchain, it becomes evident if a product has
been returned and resold. This transparency holds retailers accountable for their
actions and safeguards customers against deceitful practices, as the store is unable
to mint a new NFT for the same product. Furthermore, the ability to track returned
items and maintain an unbroken chain of custody discourages retailers from engaging
in such unethical behavior.

Lastly, even though our solution does not offer a direct way to end the discarding
and destruction of returned products, the events emitted provide an indirect way of
tracking these actions. As all returned products emit a transfer event, it is possible
to log all products returned to the retailers. This log can then be used to keep track
of the inventory each store is supposed to have. If the store were to burn a lot of
NFTs for returned products, this would emit events which could be logged as well.

Secondhand markets

Our solution enhances transparency in the secondhand market by providing a stan-
dardized platform where product information and ownership history are recorded
on the blockchain. Buyers can access accurate and objective information about
a product’s condition, including detailed descriptions, repair history, and service
records4. This reduces subjectivity and ambiguity, enabling buyers to make informed
decisions on equal grounds as the sellers.

By leveraging blockchain technology, our solution instills trust in the secondhand
market. The decentralized nature of the blockchain eliminates the need to trust
individual sellers, as the transaction history and ownership records are independently
verified by the network. Additionally, our system allows for the integration of third-
party assurance mechanisms, such as seller ratings and reviews, which further enhance
trust and provide buyers with valuable information when evaluating sellers. As these
third-party assurance mechanisms would follow the seller across platforms, as well
as binding their address to their personal identifier, the buyer can be guaranteed a
comprehensive view of the seller.

Our solution tackles authenticity concerns by providing the products to be resold
in the secondhand market the possibility to be associated with a unique NFT. These

4Provided that the item is transferred back and forth with the repair or service provider

7.5. FUTURE WORK 87

NFTs represent the authenticity and origin of the product. Buyers can independently
verify the legitimacy of the item by checking the ownership history recorded on the
blockchain. This significantly reduces the risk of purchasing counterfeit goods and
provides consumers with a higher level of confidence when buying secondhand items.

7.5 Future work

Implementing DAO

Exploring the possibility of in integrating of a Decentralized Autonomous Organiza-
tion (DAO) into our solution instead of a single system manager can enhance the
governance and decision-making processes. By enabling community participation
and decentralized decision-making, DAO implementation can further empower users
and promote a sense of ownership within the reseller market ecosystem.

User identification

In future work, a valuable addition to our reseller market solution would be the
incorporation of a decentralized identification system. By leveraging cryptographic
techniques and blockchain technology, a decentralized identification system can
provide enhanced privacy, user control over personal information, and improved
interoperability across platforms. Users would have ownership and control of their
digital identities, selectively sharing relevant information with trusted parties. This
approach not only minimizes reliance on centralized authorities but also reduces
the risk of data breaches and unauthorized access. By integrating a decentralized
identification system, our solution would offer increased privacy, user empowerment,
and seamless interoperability, contributing to a more secure and user-centric reseller
market ecosystem.

Creating a proxy for upgradability

To facilitate system updates and enhancements without disrupting the functionality
and integrity of the existing contracts, implementing a proxy contract architecture
can provide a mechanism for seamless upgradability. This approach allows for the
introduction of new features, bug fixes, and improvements while preserving the core
functionality and user experience. However, careful consideration of how this might
breach the aspect of immutability is needed.

Interface for different types of products

Expanding the solution’s capabilities to accommodate various types of products
beyond the initial basic focus can broaden its applicability. Building an adaptable
and intuitive interface that caters to different product categories, such as electronics,

88 7. DISCUSSION

vehicles, fashion, or collectibles, can enhance the user experience and attract a wider
user base. These categories can then have different requirements, e.g. VIN number
for cars or RFID tags in clothing.

Implementing limitations on DigitalCopy contracts

To ensure the integrity of the reseller market, setting limitations on the number of
TrustedSellers per DigitalCopy contract and registering them within the contract
can enhance trust and accountability. This approach can prevent malicious actors
from abusing the system and maintain a higher level of quality control within the
marketplace.

Addressing data emitted in events

Another important consideration for future work is the implementation of data
protection measures when emitting events in our reseller market solution. To ensure
user privacy and data security, it is crucial to carefully manage the information
shared through event emissions. Encryption techniques can be employed to safe-
guard sensitive data, preventing unauthorized access and maintaining confidentiality.
Additionally, limiting the data emitted in events to only essential and non-sensitive
information can further mitigate privacy risks.

Advantages of private/permissioned network

While our solution currently operates on a public blockchain, exploring the implemen-
tation of a private or permissioned network can provide additional benefits in terms
of scalability, privacy, cost, and control. Future work can involve the evaluation
and development of a private or permissioned network infrastructure tailored to the
specific needs of the reseller market. However, there might be conflicting interest as
this would entail more centralization.

Achieving affordable costs

To encourage widespread adoption and ensure affordability for individuals, efforts
should be made to optimize costs associated with gas fees and transaction processing.
This can involve exploring layer 2 solutions, gas optimization techniques, or collabora-
tions with network validators and infrastructure providers to reduce transaction costs
and make the system more economically viable for users. This could also include an
empirical study of expected and reasonable cost for such a system from a users point
of view.

Chapter8Conclusion

In conclusion, our thesis successfully fulfills the outlined objectives through the
creation of a PoC solution that effectively addresses key issues prevalent in traditional
reseller markets. These issues, including inconsistent documentation, unethical
practices, lack of transparency, trust issues, and concerns about authenticity, have
been methodically identified and defined. Our solution employs Web3 technology,
including the immutability of blockchain and the unique properties NFTs, to create
a secure, transparent, and fair reseller market absent of a need for a trusted third
party.

By paralleling the transfer of NFTs with the sale of items, each NFT functions as
an authenticator of the item, builds trust between parties, and establishes product
ownership in a verifiable manner. This reduces the practicality of selling counterfeit
items, thereby addressing the aforementioned issues. The blockchain-based storage
of product information also enables verification of a product’s origin, history, and
authenticity by any involved party. Thus, we create a level of transparency that
ensures equal access to relevant information about products for both buyers and
sellers.

Our PoC is not only representative of the benefits of Web3 technology for the
traditional reseller market but also highlights its potential for enhancing services
across various industries. The PoC showcases that Web3 technology’s usage need
not to be intimidating but can have practical and beneficial applications in modern
society.

However, despite these significant advantages, the broader adoption and accep-
tance of Web3 technology are challenged by the volatility and uncertainties associated
with gas costs and ether value. The variability of transaction costs, impacted by net-
work congestion and computational complexity, can deter users from engaging with
Web3 applications due to perceived unpredictability and prohibitive costs. Moreover,
the fluctuating value of ether can affect the affordability and feasibility of employing

89

90 8. CONCLUSION

Web3 applications for everyday transactions.

To ensure the successful integration of Web3 technology into society, it is necessary
to strive for cost predictability and affordability. This could involve developing
mechanisms that provide users with more visibility and control over gas costs,
such as optimizing transaction efficiency and exploring alternative scaling solutions.
Furthermore, establishing stability and confidence in the value of cryptocurrencies
like ether can help ease concerns related to cost fluctuations. Collaboration among
blockchain developers, network validators, and policymakers will be essential in
achieving a sustainable, cost-effective Web3 environment.

As a summary, our thesis demonstrates that modern application development
techniques can effectively address the critical issues in traditional reseller markets.
By creating a decentralized, transparent, and fair trading platform, substantial
benefits can be provided to all parties involved. However, for the broader adoption
of these solutions, the fluctuation and uncertainties associated with the costs must
be addressed. This thesis hence underlines the importance of further research and
cooperation to establish a more predictable and affordable cost structure within
the Web3 ecosystem, to fully unleash the potential of blockchain technology in
modernizing reseller markets.

References

[1] «Introduction to web3». (2023), [Online]. Available: https://ethereum.org/en/web3/
(last visited: May 12, 2023).

[2] M. White. «Web3 is going great». (2022), [Online]. Available: https://web3isgoinggre
at.com/ (last visited: May 9, 2023).

[3] R. J. Wieringa, Design science methodology for information systems and software
engineering. Springer, 2014.

[4] K. Wiegers and J. Beatty, Software Requirements (Best practices). Microsoft Press,
2013. [Online]. Available: https://books.google.no/books?id=40lDmAEACAAJ.

[5] H. Frøland and E. Palm, «Security issues in web3», Department of Information
Security, Communication Technology, NTNU – Norwegian University of Science, and
Technology, Project report in TTM4502, Dec. 2022.

[6] C. A. L. Dictionary and Thesaurus. «Retail». (2023), [Online]. Available: https://dict
ionary.cambridge.org/dictionary/english/retail (last visited: May 12, 2023).

[7] C. A. L. Dictionary and Thesaurus. «Secondhand». (2023), [Online]. Available: https
://dictionary.cambridge.org/dictionary/english/secondhand (last visited: May 12,
2023).

[8] J. A. Yeap, S. K. Ooi, et al., «Preloved is reloved: Investigating predispositions of
second-hand clothing purchase on c2c platforms», The Service Industries Journal,
pp. 1–25, 2022.

[9] Y. Jang and S. Kim, «The factors influencing users’ trust in and loyalty to consumer-
to-consumer secondhand marketplace platform», Behavioral Sciences, vol. 13, no. 3,
p. 242, 2023.

[10] K. Goel and N. R. Patel, «Digital receipts: A viable replacement for the printed
receipts on thermal papers», International Journal Of Innovative Research And
Development, Guna, vol. 2, no. 12, pp. 38–41, 2013.

[11] V. Vadde, C. Nithya, and A. P. Surhonne, «An nfc based innovation for paperless
retail transactions and digital receipts management», in 2015 Annual IEEE India
Conference (INDICON), IEEE, 2015, pp. 1–6.

[12] D. L. Nguyen, «Digital receipt system using mobile device technologies», 2008.

91

https://ethereum.org/en/web3/
https://web3isgoinggreat.com/
https://web3isgoinggreat.com/
https://books.google.no/books?id=40lDmAEACAAJ
https://dictionary.cambridge.org/dictionary/english/retail
https://dictionary.cambridge.org/dictionary/english/retail
https://dictionary.cambridge.org/dictionary/english/secondhand
https://dictionary.cambridge.org/dictionary/english/secondhand

92 REFERENCES

[13] V. M. Horvei. «Forbruker-program lurte Elkjøp og kunde med ødelagt TV». (2023),
[Online]. Available: https://www.tek.no/nyheter/nyhet/i/nQvx2o/kristian-trodde-tv-
en-var-ny-men-paa-innsiden-laa-det-en-skjult-sporingsbrikke (last visited: May 10,
2023).

[14] T. Risberg. «Lefdal solgte "ny" PC med sensitivt innhold». (2016), [Online]. Available:
https://www.nrk.no/livsstil/xl/lefdal-solgte-_ny_-pc-med-sensitivt-innhold-1.128
99149 (last visited: May 10, 2023).

[15] K. Gibson. «Amazon warehouses trash millions of unsold products, media reports
say». (2019), [Online]. Available: https://www.cbsnews.com/news/amazon-warehous
es-trash-millions-of-unsold-products-say-media-reports/ (last visited: May 10, 2023).

[16] I. A. Hamilton. «One Amazon warehouse reportedly throws out 130,000 products a
week, including some that are brand new. An expert blames its giant third-party retail
business.» (2021), [Online]. Available: https://www.businessinsider.com/amazon-thro
ws-away-new-products-waste-third-party-sellers-profitable-2021-6?r=US&IR=T
(last visited: May 10, 2023).

[17] Y. Hristova, «The second-hand goods market: Trends and challenges», Izvestia Journal
of the Union of Scientists - Varna. Economic Sciences Series, vol. 8, pp. 62–71, Jan.
2019.

[18] A. Brooks, «Stretching global production networks: The international second-hand
clothing trade», Geoforum, vol. 44, pp. 10–22, 2013, Global Production Networks,
Labour and Development. [Online]. Available: https://www.sciencedirect.com/science
/article/pii/S0016718512001091.

[19] Thredup. «2023 resale report». (2023), [Online]. Available: https://cf-assets-tup.thr
edup.com/resale_report/2023/thredUP_2023_Resale_Report_FINAL.pdf (last
visited: May 9, 2023).

[20] D. Guiot and D. Roux, «A second-hand shoppers’ motivation scale: Antecedents,
consequences, and implications for retailers», Journal of retailing, vol. 86, no. 4,
pp. 355–371, 2010.

[21] J. A. Heinonen, T. J. Holt, and J. M. Wilson, «Product counterfeits in the online
environment: An empirical assessment of victimization and reporting characteristics»,
International Criminal Justice Review, vol. 22, no. 4, pp. 353–371, 2012.

[22] R. Chen, Y. Zheng, et al., «Secondhand seller reputation in online markets: A text
analytics framework», Decision Support Systems, vol. 108, pp. 96–106, 2018. [Online].
Available: https://www.sciencedirect.com/science/article/pii/S016792361830037X
(last visited: May 9, 2023).

[23] C. Forman, A. Ghose, and B. Wiesenfeld, «Examining the relationship between
reviews and sales: The role of reviewer identity disclosure in electronic markets»,
Information systems research, vol. 19, no. 3, pp. 291–313, 2008.

[24] M. Li, K.-K. Wei, et al., «The moderating role of information load on online product
presentation», Information & Management, vol. 53, no. 4, pp. 467–480, 2016.

https://www.tek.no/nyheter/nyhet/i/nQvx2o/kristian-trodde-tv-en-var-ny-men-paa-innsiden-laa-det-en-skjult-sporingsbrikke
https://www.tek.no/nyheter/nyhet/i/nQvx2o/kristian-trodde-tv-en-var-ny-men-paa-innsiden-laa-det-en-skjult-sporingsbrikke
https://www.nrk.no/livsstil/xl/lefdal-solgte-_ny_-pc-med-sensitivt-innhold-1.12899149
https://www.nrk.no/livsstil/xl/lefdal-solgte-_ny_-pc-med-sensitivt-innhold-1.12899149
https://www.cbsnews.com/news/amazon-warehouses-trash-millions-of-unsold-products-say-media-reports/
https://www.cbsnews.com/news/amazon-warehouses-trash-millions-of-unsold-products-say-media-reports/
https://www.businessinsider.com/amazon-throws-away-new-products-waste-third-party-sellers-profitable-2021-6?r=US&IR=T
https://www.businessinsider.com/amazon-throws-away-new-products-waste-third-party-sellers-profitable-2021-6?r=US&IR=T
https://www.sciencedirect.com/science/article/pii/S0016718512001091
https://www.sciencedirect.com/science/article/pii/S0016718512001091
https://cf-assets-tup.thredup.com/resale_report/2023/thredUP_2023_Resale_Report_FINAL.pdf
https://cf-assets-tup.thredup.com/resale_report/2023/thredUP_2023_Resale_Report_FINAL.pdf
https://www.sciencedirect.com/science/article/pii/S016792361830037X

REFERENCES 93

[25] S. M. Lee and S. J. Lee, «Consumers’ initial trust toward second-hand products in the
electronic market», Journal of computer information systems, vol. 46, no. 2, pp. 85–98,
2005.

[26] L. N. Leonard and K. Jones, «Trust in c2c electronic commerce: Ten years later»,
Journal of Computer Information Systems, vol. 61, no. 3, pp. 240–246, 2021. [Online].
Available: https://doi.org/10.1080/08874417.2019.1598829.

[27] J. Sihvonen and L. L. M. Turunen, «As good as new–valuing fashion brands in the
online second-hand markets», Journal of Product & Brand Management, 2016.

[28] J. Joo, «Roles of the buyer’s trust in seller in posted-price model of consumer
to consumer e-commerce», Journal of theoretical and applied electronic commerce
research, vol. 10, no. 3, pp. 30–44, 2015.

[29] S. He, B. Hollenbeck, and D. Proserpio, «The market for fake reviews», Marketing
Science, vol. 41, no. 5, pp. 896–921, 2022.

[30] F. Dini and G. Spagnolo, «Buying reputation on ebay: Do recent changes help?»,
International Journal of Electronic Business, vol. 7, no. 6, pp. 581–598, 2009.

[31] P. Resnick, R. Zeckhauser, et al., «The value of reputation on ebay: A controlled
experiment», Experimental Economics, vol. 9, Jul. 2003.

[32] J. P. Kennedy, «Counterfeit products online», The Palgrave handbook of international
cybercrime and cyberdeviance, pp. 1001–1024, 2020.

[33] J. Treadwell, «From the car boot to booting it up? ebay, online counterfeit crime and
the transformation of the criminal marketplace», Criminology & Criminal Justice,
vol. 12, no. 2, pp. 175–191, 2012.

[34] A. Berzon, S. Shifflett, and J. Scheck. «Amazon has ceded control of its site. the result:
Thousands of banned, unsafe or mislabeled products». (2019), [Online]. Available:
https://www.wsj.com/articles/amazon-has-ceded-control-of-its-site-the-result-tho
usands-of-banned-unsafe-or-mislabeled-products-11566564990 (last visited: May 11,
2023).

[35] M. Raikwar, D. Gligoroski, and K. Kralevska, «SoK of used cryptography in blockchain»,
IEEE Access, vol. 7, pp. 148 550–148 575, 2019.

[36] R. Sobti and G. Geetha, «Cryptographic hash functions: A review», International
Journal of Computer Science Issues (IJCSI), vol. 9, no. 2, p. 461, 2012.

[37] P. Rogaway and T. Shrimpton, «Cryptographic hash-function basics: Definitions,
implications, and separations for preimage resistance, second-preimage resistance, and
collision resistance», in FSE, vol. 3017, 2004, pp. 371–388.

[38] A. J. Menezes, P. C. Van Oorschot, and S. A. Vanstone, S. a. handbook of applied
cryptography. 2018.

[39] NIST. «Hash functions». (2017), [Online]. Available: https://csrc.nist.gov/Projects/h
ash-functions (last visited: May 9, 2023).

[40] P. FIPS, «180-4 secure hash standard (shs)», US Department of Commerce, National
Institute of Standards and Technology (NIST), 2015. [Online]. Available: http://dx.do
i.org/10.6028/NIST.FIPS.180-4 (last visited: May 9, 2023).

https://doi.org/10.1080/08874417.2019.1598829
https://www.wsj.com/articles/amazon-has-ceded-control-of-its-site-the-result-thousands-of-banned-unsafe-or-mislabeled-products-11566564990
https://www.wsj.com/articles/amazon-has-ceded-control-of-its-site-the-result-thousands-of-banned-unsafe-or-mislabeled-products-11566564990
https://csrc.nist.gov/Projects/hash-functions
https://csrc.nist.gov/Projects/hash-functions
http://dx.doi.org/10.6028/NIST.FIPS.180-4
http://dx.doi.org/10.6028/NIST.FIPS.180-4

94 REFERENCES

[41] NIST. «Hash functions». (2023), [Online]. Available: https://csrc.nist.gov/news/2023
/decision-to-revise-fips-180-4 (last visited: May 9, 2023).

[42] P. FIPS, «Sha-3 standard: Permutation-based hash and extendable-output functions»,
US Department of Commerce, National Institute of Standards and Technology (NIST),
2015. [Online]. Available: http://dx.doi.org/10.6028/NIST.FIPS.202 (last visited:
May 9, 2023).

[43] G. Wood et al., «Ethereum: A secure decentralised generalised transaction ledger»,
Ethereum project yellow paper, vol. 151, no. 2014, pp. 1–32, 2014.

[44] P. B. B. OBE. «Do You Know Your Keccak From Your SHA-3, And Your SHAKE
From Your KMAC». (2022), [Online]. Available: https://medium.com/asecuritysite-
when-bob-met-alice/do-you-know-your-keccak-from-your-sha-3-and-you-shake-fro
m-your-kmac-acc3a9e9f1f2 (last visited: May 9, 2023).

[45] A. Antonopoulos, G. Wood, and G. Wood, Mastering Ethereum: Building Smart
Contracts and DApps. O’Reilly Media, Incorporated, 2018. [Online]. Available: https:
//books.google.no/books?id=SedSMQAACAAJ.

[46] «Eddsa and ed25519». (2021), [Online]. Available: https://cryptobook.nakov.com/dig
ital-signatures/eddsa-and-ed25519 (last visited: Jun. 16, 2023).

[47] «Icons from this site has been used for the design of some of the figures in this thesis».
(2023), [Online]. Available: Flaticon.com (last visited: Jun. 19, 2023).

[48] M. Crosby, Nachiappan, et al., «Blockchain technology: Beyond bitcoin», Sutardja
Center for Entrepreneurship & Technology, Berkeley – University of California, Berke-
ley, Technical Report made in open classroom lead by Prof. Ikhlaq Sidhu, Aug.
2015.

[49] S. Nakamoto, «Bitcoin: A peer-to-peer electronic cash system», Cryptography Mailing
list at https://metzdowd.com, Mar. 2009.

[50] Q. Wang, R. Li, et al., «Non-fungible token (nft): Overview, evaluation, opportunities
and challenges», arXiv preprint arXiv:2105.07447, 2021.

[51] P. Gonserkewitz, E. Karger, and M. Jagals, «Non-fungible tokens: Use cases of nfts
and future research agenda», Risk Governance and Control Financial Markets &
Institutions, vol. 12, pp. 8–18, Sep. 2022.

[52] «ERC-721 non-fungible token standard». (2023), [Online]. Available: https://ethereu
m.org/en/developers/docs/standards/tokens/erc-721/ (last visited: May 4, 2023).

[53] «Transactions», in Understanding Bitcoin. John Wiley & Sons, Ltd, 2014, ch. 6,
pp. 77–93. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/9781
119019138.ch6.

[54] B. Badr, R. Horrocks, and X. Wu, Blockchain By Example: A developer’s guide to
creating decentralized applications using Bitcoin, Ethereum, and Hyperledger. Packt
Publishing, 2018. [Online]. Available: https://books.google.no/books?id=ci59Dw
AAQBAJ.

[55] C. Staff. «Ethereum explained: A guide to the world supercomputer». (2022), [Online].
Available: https://www.gemini.com/cryptopedia/ethereum-blockchain-smart-contrac
ts-dapps#section-ethereums-d-app-ecosystem (last visited: Jun. 16, 2023).

https://csrc.nist.gov/news/2023/decision-to-revise-fips-180-4
https://csrc.nist.gov/news/2023/decision-to-revise-fips-180-4
http://dx.doi.org/10.6028/NIST.FIPS.202
https://medium.com/asecuritysite-when-bob-met-alice/do-you-know-your-keccak-from-your-sha-3-and-you-shake-from-your-kmac-acc3a9e9f1f2
https://medium.com/asecuritysite-when-bob-met-alice/do-you-know-your-keccak-from-your-sha-3-and-you-shake-from-your-kmac-acc3a9e9f1f2
https://medium.com/asecuritysite-when-bob-met-alice/do-you-know-your-keccak-from-your-sha-3-and-you-shake-from-your-kmac-acc3a9e9f1f2
https://books.google.no/books?id=SedSMQAACAAJ
https://books.google.no/books?id=SedSMQAACAAJ
https://cryptobook.nakov.com/digital-signatures/eddsa-and-ed25519
https://cryptobook.nakov.com/digital-signatures/eddsa-and-ed25519
Flaticon.com
https://ethereum.org/en/developers/docs/standards/tokens/erc-721/
https://ethereum.org/en/developers/docs/standards/tokens/erc-721/
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119019138.ch6
https://onlinelibrary.wiley.com/doi/abs/10.1002/9781119019138.ch6
https://books.google.no/books?id=ci59DwAAQBAJ
https://books.google.no/books?id=ci59DwAAQBAJ
https://www.gemini.com/cryptopedia/ethereum-blockchain-smart-contracts-dapps#section-ethereums-d-app-ecosystem
https://www.gemini.com/cryptopedia/ethereum-blockchain-smart-contracts-dapps#section-ethereums-d-app-ecosystem

REFERENCES 95

[56] «Gas and fees». (2023), [Online]. Available: https://ethereum.org/en/developers/docs
/gas/ (last visited: May 12, 2023).

[57] «Ether daily price (usd) chart». (2023), [Online]. Available: https://etherscan.io/char
t/etherprice (last visited: Jun. 15, 2023).

[58] «Ethereum average gas price chart». (2023), [Online]. Available: https://etherscan.io
/chart/gasprice (last visited: Jun. 15, 2023).

[59] K. C. Tran. «What is Web3?» (2019), [Online]. Available: https://decrypt.co/resourc
es/what-is-web-3 (last visited: May 5, 2023).

[60] J. Beck, What is Web3?, 2022. [Online]. Available: https://consensys.net/blog/blockc
hain-explained/what-is-web3-here-are-some-ways-to-explain-it-to-a-friend/ (last
visited: May 5, 2023).

[61] Q. Wang, R. Li, et al., «Exploring web3 from the view of blockchain», arXiv preprint
arXiv:2206.08821, 2022.

[62] Y. Li, C. Tan, et al., «Dynamic blockchain adoption for freshness-keeping in the fresh
agricultural product supply chain», Expert Systems with Applications, p. 119 494,
2023.

[63] S. Liu, G. Hua, et al., «What value does blockchain bring to the imported fresh food
supply chain?», Transportation Research Part E: Logistics and Transportation Review,
vol. 165, p. 102 859, 2022.

[64] A. Hasselgren, K. Kralevska, et al., «Medical students’ perceptions of a blockchain-
based decentralized work history and credentials portfolio: Qualitative feasibility
study», JMIR Form Res, vol. 5, no. 10, e33113, Oct. 2021. [Online]. Available: http:
//www.ncbi.nlm.nih.gov/pubmed/34677137.

[65] J.-A. H. Rensaa, D. Gligoroski, et al., «Verifymed-a blockchain platform for trans-
parent trust in virtualized healthcare: Proof-of-concept», in Proceedings of the 2nd
International Electronics Communication Conference, 2020, pp. 73–80.

[66] A. Hasselgren, P. K. Wan, et al., «Gdpr compliance for blockchain applications in
healthcare», arXiv preprint arXiv:2009.12913, 2020.

[67] A. Hasselgren, K. Kralevska, et al., «Blockchain in healthcare and health sciences—a
scoping review», International Journal of Medical Informatics, vol. 134, p. 104 040,
2020. [Online]. Available: https://www.sciencedirect.com/science/article/pii/S138650
561930526X.

[68] B. Shen, X. Xu, and Q. Yuan, «Selling secondhand products through an online platform
with blockchain», Transportation Research Part E: Logistics and Transportation
Review, vol. 142, p. 102 066, 2020. [Online]. Available: https://www.sciencedirect.com
/science/article/pii/S1366554520307171.

[69] S. Huang, D. Hou, et al., «A trustable and traceable blockchain-based secondhand
market with committee consensus», in 2023 IEEE 8th International Conference on
Big Data Analytics (ICBDA), 2023, pp. 72–76.

[70] S. Panda and S. Satapathy, «An investigation into smart contract deployment on
ethereum platform using web3.js and solidity using blockchain», in May 2021, pp. 549–
561.

https://ethereum.org/en/developers/docs/gas/
https://ethereum.org/en/developers/docs/gas/
https://etherscan.io/chart/etherprice
https://etherscan.io/chart/etherprice
https://etherscan.io/chart/gasprice
https://etherscan.io/chart/gasprice
https://decrypt.co/resources/what-is-web-3
https://decrypt.co/resources/what-is-web-3
https://consensys.net/blog/blockchain-explained/what-is-web3-here-are-some-ways-to-explain-it-to-a-friend/
https://consensys.net/blog/blockchain-explained/what-is-web3-here-are-some-ways-to-explain-it-to-a-friend/
http://www.ncbi.nlm.nih.gov/pubmed/34677137
http://www.ncbi.nlm.nih.gov/pubmed/34677137
https://www.sciencedirect.com/science/article/pii/S138650561930526X
https://www.sciencedirect.com/science/article/pii/S138650561930526X
https://www.sciencedirect.com/science/article/pii/S1366554520307171
https://www.sciencedirect.com/science/article/pii/S1366554520307171

96 REFERENCES

[71] A. Nedaković, «Analysis and improvements of VerifyMed — the blockchain solution
for virtualized healthcare trust relations», English, Master’s thesis, Aalto University.
School of Science, 2022, pp. 104+22. [Online]. Available: http://urn.fi/URN:NBN:fi:a
alto-202208285217.

[72] Z. Li, X. Xu, et al., «The interplay between blockchain adoption and channel se-
lection in combating counterfeits», Transportation Research Part E: Logistics and
Transportation Review, vol. 155, p. 102 451, 2021.

[73] «Tangible». (2023), [Online]. Available: https://www.tangible.store/ (last visited:
May 19, 2023).

[74] «Auralb». (2023), [Online]. Available: https ://auraluxuryblockchain . com/ (last
visited: May 19, 2023).

[75] «Stockx». (2023), [Online]. Available: https://stockx.com/ (last visited: May 19,
2023).

[76] R. E. Freeman, Strategic Management: A Stakeholder Approach. Cambridge University
Press, 2010.

[77] P. B. Kruchten, «The 4+ 1 view model of architecture», IEEE software, vol. 12, no. 6,
pp. 42–50, 1995.

http://urn.fi/URN:NBN:fi:aalto-202208285217
http://urn.fi/URN:NBN:fi:aalto-202208285217
https://www.tangible.store/
https://auraluxuryblockchain.com/
https://stockx.com/

AppendixAWeb application

This guide demonstrates how to use the implemented user interface for the PoC.
We begin by presenting the overall functionality. We then provide step-by-step
instructions for various workflows. This user interface is not a finished product but
serves as an example of how the system works and simplifies interactions for our
users. The instructions to set up the application for local testing can be found in
Appendix B.

A.1 User interface

Figure A.1: An overview of the menubar in the proof of concept user interface.

Figure A.1 shows the overall user interface. On the top is a navigation bar with the
following sections as numbered in the Figure.

97

98 A. WEB APPLICATION

1. Section for navigating for listing owned times.

2. Section for navigating for transferring of NFTs.

3. Section for navigating to panels relevant to Trusted Seller stakeholders.

4. Section for navigating to relevant reviews.

5. Section for navigating to destroying of NFTs.

6. Section for navigating for lookup owner of digital copies.

7. Connect button (Log in).

As we see, there are no listed owned items. If we use the button marked with 7
in Figure A.1, we will connect with our crypto wallet1, and the website will then list
our digital copies stored on the blockchain, which we see in Figure A.2.

Figure A.2: When connected to a crypto wallet. The user interface will list up all
owned NFTs.

1Metamask chrome extension is required

A.2. TRANSFERRING A DIGITAL COPY 99

A.2 Transferring a digital copy

Figure A.3: User interface for transferring an NFT to another user. The current
owner needs to fill in the address of the new owner and give a price.

When navigating to the transfer section, the user will get a list of all items they
possess. With options for transferring are illustrated in Figure A.3. If we look at
Figure A.3, we see that there is an input field, marked with the number 1, where the
current owner fills in the new address and price before pressing the transfer button
labeled "3" in Figure A.3 which will transfer the ownership to the new address. We
also see the "Set item for sale" button, which is marked with label 2 in Figure A.3.
This button triggers the NFT over in the "for sale" condition, allowing other users to
look up the token, which is a practical secondhand trade for verification of ownership.

When the user presses the transfer button, a Metamask window will appear to
conduct the transfer over the Ethereum network, illustrated in Figure A.4.

100 A. WEB APPLICATION

Figure A.4: Metamask panel which handles the signing of transactions done in the
user interface.

A.3 Trusted seller

Figure A.5: Section for trusted sellers for creating new NFTs when a user has
purchased a product.

A.4. MAKING REVIEWS 101

From the trusted sellers’ point of view, Figure A.5 shows how we can create new
NFTs in our system. The system requires the trusted seller to fill in all numbered
sections 1-6 before pressing button 7, which generates a new token with the provided
information. We see this task as more automated in a well-developed product, but
this is outside our scope.

A.4 Making reviews

Figure A.6: User interface for giving a review for a transaction. The user will here
need to choose which digital copy is related to the transaction.

If the user wants to add a review for a transaction, given they have been a part of it.
They should navigate to the review page shown in Figure A.6. First, the user will
pick which NFT is related to the trade. They will then press the select item button
marked red in Figure A.6. They will then be routed to a review page specific to that
transaction which shows the previous owner. The user should then fill in the input
fields marked 1 and 2 in Figure A.7 and submit the review by pressing the button
marked 3.

102 A. WEB APPLICATION

Figure A.7: A user interface for giving feedback on a specific transaction. The user
provides feedback through the input fields marked 1 and 2 and submits with the
button marked 3.

A.5 Verifying the owner of an item

Figure A.8: User interface to obtain information about other users’ NFTs. The
user provides a tokenId and will in return see the product information.

To gain information about other NFTs, the user will use the Look up owner section
in Figure A.8. In the red field marked 1, the user inputs the relevant token ID. Then,
given that the targeted NFT is in the state "for sale", the information about it will
appear.

AppendixBGuide for local testing

This appendix instructs how to run and test the proposed solution on a local machine.
We refer to Appendix C for a closer look at how the test scenarios are implemented.

B.1 Setup with yarn

To run this application on your local machine, you will need the following tools:

– Node (v18 LTS)

– Yarn ([v1] install with: npm install –global yarn)

1. Download the repository from: https://github.com/Autentisk/Localhost

2. cd into the directory cd Localhost

3. Install dependencies, run: yarn install

4. To run a local blockchain, run yarn chain

5. Open a new terminal and run yarn deploy

Now the system is deployed on a local running server. To run our test scenarios,
you can run the following commands:

– To run scenario 1: yarn scenario1

– To run scenario 2: yarn scenario2

– To run scenario 3: yarn scenario3

– To run scenario 4: yarn scenario4

103

https://github.com/Autentisk/Localhost

104 B. GUIDE FOR LOCAL TESTING

Outputs can be seen in the first terminal, where the yarn chain command was
executed.

AppendixCGuide for local testing

Here we show the produced code which represents test scenarios in our validation of
the system. For more details, please visit the developed repository on Github:
https://github.com/Autentisk/Localhost

Scenario 1
1 // Setting up the user
2 try {
3 await users . createUser ("Kari Olsen ", " 01011991 -04200 ")
4 } catch (error) {...}
5
6 // Making purchases
7 await trustedSeller . purchase (" Cosmograph Daytona ", "500 000", " Watch ",

" Rolex ", "2049 -3630", signerAddress);
8 await trustedSeller . purchase (" Submariner ", "400 000", " Watch ", " Rolex ",

"2050 -3630", signerAddress);
9

10 // Trusted Watches tries to sell the same item to Kari again
11 try {
12 await trustedSeller . purchase (" Cosmograph Daytona ", "500 000", "

Watch ", " Rolex ", "2049 -3630", signerAddress);
13 } catch (error) {...}
14
15 // Showing proof of of ownership
16 console .log(await digitalCopy . getOwner (0));
17 console .log(await digitalCopy . retrieveInformationForDigitalCopy (0));
18 console .log(await digitalCopy . getOwner (1));
19 console .log(await digitalCopy . retrieveInformationForDigitalCopy (1));
20 console .log(await systemManager . retrieveAllOwnedItems (signerAddress));

Listing C.1: Selected parts of purchase script

Scenario 2

1 // Buyer tries to get information about an item not for sale
2 console .log (await digitalCopy . getOwner (0));

105

https://github.com/Autentisk/Localhost

106 C. GUIDE FOR LOCAL TESTING

3 console .log (await buyersDigitalCopy . isItemForSale (0));
4 try {
5 console .log (await buyersDigitalCopy . retrieveInformationForDigitalCopy

(0));
6 } catch (error) {...}
7
8 // Seller puts the item for sale , now the buyer can access it
9 await digitalCopy . putItemForSale (0);

10 console .log(await buyersDigitalCopy . retrieveInformationForDigitalCopy
(0));

11 console .log(await buyersDigitalCopy . isItemForSale (0));
12
13 // The seller makes the sale and transfers the NFT to the buyer
14 await digitalCopy . transfer (0, buyer .address , "450 000");
15 console .log(await digitalCopy . getOwner (0));
16
17 // The seller tries to sell item back the themself cheaper
18 await digitalCopy . putItemForSale (0);
19 await digitalCopy . transfer (0, sellerAddress , "350 000");

Listing C.2: Selected parts of sellSecondhand script

Scenario 3

1 // Trying to make a review for wrong item
2 try {
3 console .log(signerAddress , digitalCopy . address);
4 await buyersReviews . newReview (signerAddress , 4, digitalCopy .address

, 1,
5 "0x...", "Nice watch and good communication with seller !");
6 } catch (error) {...}
7
8 // Making the review for the right item
9 await buyersReviews . newReview (signerAddress , 4, digitalCopy .address , 0,

10 "0 x74657374537472696e6720746f20636f6e7665727420746f2062797465736932
", "Nice watch and good communication with seller !");

11
12 // Check that the review follows the seller for future sales
13 await digitalCopy . putItemForSale (1);
14 console .log(await systemManager . retrieveListingInformation (digitalCopy .

address , 1));

Listing C.3: Selected parts of reviewTransaction script

Scenario 4
1 // Trying to burn the wrong NFT
2 try {
3 await digitalCopy .burn (0);
4 } catch (error) {...}
5

107

6 // Burning the right NFT
7 console .log(await systemManager . retrieveAllOwnedItems (signerAddress));
8 await digitalCopy .burn (1);
9 console .log(await systemManager . retrieveAllOwnedItems (signerAddress));

Listing C.4: Selected parts of burnNFT script

AppendixDAddress calculation

Sometimes it is necessary to know the public Ethereum address before deployment.
This Python script inputs a private key and a "nonce" and calculates the expected
public address.

1 from Crypto .Hash import keccak
2 from rlp import encode
3
4 def get_contract_address (address : str , nonce : int) -> str:
5 """ Get the contract address given an address and nonce ."""
6 address_bytes = bytes . fromhex (address [2:]) # Remove the 0x prefix
7
8 # RLP encoding for the address and the nonce
9 rlp_encoded = encode ([address_bytes , nonce])

10
11 # Get the Keccak -256 hash of the RLP encoded
12 keccak_hash = keccak .new(digest_bits =256)
13 keccak_hash . update (rlp_encoded)
14 hashed = keccak_hash . digest ()
15
16 # The address without checksum
17 contract_address_lower = hashed [-20:]. hex ()
18
19 # Calculate the Keccak -256 hash of the lowercase address
20 keccak_hash_address = keccak .new(digest_bits =256)
21 keccak_hash_address . update (contract_address_lower . encode ())
22 keccak_hash_address_digest = keccak_hash_address . hexdigest ()
23
24 checksum_address = ’0x’
25 for i in range (len(contract_address_lower)):
26 if int(keccak_hash_address_digest [i], 16) >= 8:
27 checksum_address += contract_address_lower [i]. upper ()
28 else :
29 checksum_address += contract_address_lower [i]
30 return checksum_address
31
32 if __name__ == ’__main__ ’:
33 address = input (" Enter the wallet address : ")

109

110 D. ADDRESS CALCULATION

34 nonce = int(input (" Enter the nonce : "))
35 contract_address = get_contract_address (address , nonce)
36 print (f’The future contract address will be: { contract_address }’)

Listing D.1: Script to calculate Ethereum addresses in python

AppendixEAcademic paper

The work in this thesis resulted in a paper describing the proposed system. The
paper was submitted right before the delivery of this thesis. The first draft of this
paper complements the remainder of this appendix.

111

Web3 and Blockchain for Modernizing the Reseller
Market

Håkon I. Frøland, Edward Palm, Katina Kralevska, and Danilo Gligoroski
Department of Information Security and Communication Technology (IIK)

Norwegian University of Science and Technology - NTNU, Trondheim, Norway
Email: {haakonif, edwardp, katinak, danilog}@ntnu.no

Abstract—This paper presents a Proof-of-Concept (POC) that
leverages Web3 technology, specifically blockchain and Non-
Fungible Tokens (NFTs), to create a secure, transparent, and fair
reseller market without the need for a trusted third party. The
POC demonstrates that NFTs can be used to authenticate items,
build trust between parties and establish verifiable product own-
ership. By paralleling NFT transfers with the sale of items, the
practicality of selling counterfeit goods is reduced. Furthermore,
the blockchain-based storage of product information enables
verification of origin, history, and authenticity by any involved
party, fostering transparency and equal access to information for
buyers and sellers. We demonstrate that Web3 technology can
effectively address critical issues in traditional reseller markets,
offering substantial benefits to all parties involved. To the best of
our knowledge, this is the first POC designed to enhance trust in
a virtualized secondhand market by utilizing Web3 technology.

Index Terms—Web3, NFT, Blockchain, Reseller market, Sec-
ondhand market

I. INTRODUCTION

Reseller markets play a significant role in our daily lives,
providing individuals with platforms to sell goods and services
to one another. These markets offer a valuable arena for used
items to find new owners, and people can sell items they
no longer need, which is beneficial for the society and the
environment. However, these markets have various issues. One
of the most significant obstacles traditional reseller markets
face today is fake or counterfeit products. It can be difficult
for buyers to identify these items, and they are often left in
unfavorable position. Establishing trust between buyers and
sellers who have no affiliation is generally challenging, causing
potential trades to fall through. The lack of certainty in the
item’s authenticity, the seller’s morale, and the number of
counterfeit products in circulation can discourage the buyer.
Moreover, reseller markets often lack transparency, making it
challenging for buyers to assess the true value of a product.
Overall, traditional reseller markets suffer from multiple issues
that harm both buyers and sellers.

The technology behind Web3 [1] with decentralization and
blockchain is often considered too technical and advanced,
heightening the threshold for widespread adoption in society.
Unfortunately, there have been several cases of scams using
blockchain today, which fuel mistrust rather than trust in
blockchain [2], as it is the core concept of the technology.
However, Web3 has numerous use cases which can benefit
society and help build bridges between people, and when
utilized correctly has the potential to improve significantly

existing services. By bridging the gap between the challenges
faced by traditional reseller markets and the untapped potential
of Web3 technology, we aim to create more secure, efficient,
and reliable platforms for individuals to trade secondhand
goods.

This paper demonstrates the benefits of leveraging modern
application development techniques, implementing a decen-
tralized application for a secure, transparent, and fair reseller
market. By developing a proof-of-concept (POC) using Web3
and its features, we aim to dispel misconceptions about Web3’s
complexity and underline its practical applications in modern
society. The contributions of this paper are as follows:

• We identify the critical issues in the traditional reseller
market, and we model the data sharing and trust estab-
lishment in the virtualized reseller market.

• We implement a PoC based on Web3 technology, encom-
passing blockchain technology and decentralized applica-
tions. We make this PoC publicly available1.

• We demonstrate the potential of Web3 technology in the
context of the secondhand market.

To our knowledge, this is the first POC designed to enhance
trust and authenticity in a virtualized secondhand market by
utilizing Web3 technology.

This paper is organized as follows: Section II provides the
theoretical background and related works. Section III presents
the principles of the Web3 application model, followed by a
detailed description of the design and implementation of the
application in Section IV. Section V presents the finished POC
and results from the system’s deployment. Finally, Section VI
concludes the paper and highlights future research directions.

II. BACKGROUND AND RELATED WORK

We present the background of different markets and the
related work. An extensive overview of the use of modern
cryptography in blockchain systems is given in [3].

A. Market Types: Retail vs Secondhand

Retail and secondhand markets represent separate segments
of the larger commercial ecosystem. Retail markets, or ”the
activity of selling goods to the public, usually in shops”
2, supply consumers with new products from a variety of

1https://github.com/Autentisk
2https://tinyurl.com/2yhj7pzt, Cambridge University Press

brands. Secondhand markets, on the other hand, focus on the
resale of used or pre-owned goods, offering economic and
sustainability benefits. The primary distinction between the
two is the condition of the products for sale. Retailers supply
new items while secondhand markets offer an affordable
alternative and the opportunity to find unique or vintage items.

1) Retail Market Challenges: In retail markets, managing
receipts and documentation can be a hassle accompanied
with risks. Consumers receive receipts for expensive items as
proof of purchase and for potential returns or future resale.
Digital solutions exist [4], [5], but there is no defined standard
and concerns around accessibility and legitimacy remain.
For instance, receipts stored via email may be lost among
daily emails or deleted by providers. Also, practices such
as reselling returned items as new have been reported, as
well as unethical product disposal of returned items, raising
concerns about retailers’ transparency and their impact on the
environment [6].

2) Secondhand Market Significance and Challenges: The
secondhand market, with its rich history and significant eco-
nomic impact, continues to thrive [7], stretching global pro-
duction networks [8]. Despite the depreciating value of pre-
owned goods, the market offers affordability and profitable
resale potential for all types of products. Guiot and Roux’s
8-factor scale [9] reveals the motivations behind secondhand
purchases, highlighting the importance of economic, ethical,
and hedonic motives. However, these markets also present
challenges related to transparency, trust, and authenticity.

a) Transparency: In secondhand markets, online plat-
forms typically facilitate transactions, but the lack of oversight
introduces concerns about transparency and reliability. Product
descriptions, often subjective and ambiguous, pose a challenge
for accurately determining an item’s condition [10]. Sellers’
extra product knowledge may disadvantage buyers. Hence, a
seller’s reputation becomes crucial for reducing buyers’ risks
[11].

b) Trust: In the online used market, trust is twofold-
trust in the seller and trust in the product [12]. Establishing
this trust can be helped by third-party assurance seals [13].
Moreover, buyer-seller rating systems play a role in fostering
trust between the two parts but faces challenges of potential
manipulation by the low entry barrier for new accounts as well
as fake bought reviews [14], [15].

c) Authenticity: Purchasing secondhand goods raises
concerns about their authenticity and quality. Counterfeit
goods, which pose potential risks to safety [16], are difficult
to identify due to deceptive online practices. Online platforms
often lack adequate regulation, leaving consumers vulnerable
to counterfeit purchases [10], [17].

B. Related Work

There are numerous papers investigating the benefits of
blockchain technology and its implementation in various
fields. Shen et al. [18] explored blockchain’s role in second-
hand sales, focusing on supply chain, pricing, and quality
strategies. They did not consider the blockchain’s costs, a

crucial factor in our solution. Huang et al. [19] addressed
secondhand market issues with a novel framework, incorporat-
ing smart contracts and IPFS. However, the solution does not
consider NFTs, immutability, or security concerns. Panda and
Satapathy [20] investigated Ethereum platform usage for dApp
development in general. On the other hand, in our approach,
we are exploring Web3’s potential benefits in reseller markets
while developing a POC to address identified needs. Tangible
[21] uses NFTs for tokenizing real-world assets. They focus on
luxury items stored in a vault. NFTs are redeemable for phys-
ical items but disappear upon redemption, not aiding resale.
Aura Blockchain Consortium [22] is a luxury-only platform
using NFTs to fight counterfeits. Operates on a permissioned
blockchain, limiting inclusivity. For comparison, our solution
operates on a public, permissionless Ethereum blockchain,
offering more openness. StockX [23] offers a platform for
resale of coveted items. They authenticate items but do not
utilize blockchain or decentralization i.e. they heavily rely
on StockX as a trusted third party. Table I summarizes the
works mentioned in this section and compares them with our
contribution.

TABLE I
SUMMARY OF RELATED WORK

Work Retail/Secondhand Blockchain NFTs Web3
Inbook [20] Neither ✓ X X
Paper [18] Secondhand ✓ X X
Paper [19] Secondhand ✓ X X
StockX [23] Secondhand X X X
Tangible [21] Retailer ✓ ✓ X
Aura B.C. [22] Both ✓ ✓ X
This paper Both ✓ ✓ ✓

III. WEB3 APPLICATION MODELING PRINCIPLES

A. Defined concerns and Web3 solutions

1) Evidence of Trust: The issues surrounding retail and sec-
ondhand markets are primarily rooted in a lack of transparency
and trust, as well as inconsistencies in documentation and
practices. In the retail sector, these problems manifest in the
form of non-standardized receipts and unethical return poli-
cies. On the other hand, the secondhand market is plagued by
vague product descriptions, imbalanced access to information,
and unreliable seller reputation metrics.

Integrating Web3 principles into these markets’ infrastruc-
ture can notably address these problems. Blockchain technol-
ogy offers a transparent, tamper-proof record of transactions,
addressing documentation inconsistencies in the retail market.
Smart contracts, acting as a decentralized trust and reputation
system, can help tackle the transparency and trust issues in
secondhand markets. These technologies enable users to ver-
ify their identities, create trustworthy transactions, and make
informed decisions based on shared feedback and ratings.

2) Evidence of Authenticity: Authenticity concerns are a
major drawback in secondhand markets, with prevalent issues
such as counterfeits and questionable product quality. These
problems are amplified by the lack of effective regulations and
enforcement by e-commerce platforms.

One of Web3’s features is the use of NFTs to establish
product ownership. NFTs provide a decentralized, verifiable
proof of ownership that is not tied to a specific retailer or
platform. Users can claim ownership securely through their
digital wallets, ensuring the portability and accessibility of
their assets across different platforms.

Moreover, the use of permissionless blockchains allows for
continued, independent asset management even if a specific
retailer or platform ceases operations. This promotes resilience
in the face of potential service disruptions and further assures
users of the security and longevity of their assets.

B. Functional requirements

TABLE II
FUNCTIONAL REQUIREMENTS AND THEIR DESCRIPTION

Functionality Description
Purchase Item and
Receive NFT

Upon purchasing items from a retailer, users
should receive an NFT that serves as a digital
proof of ownership, storing relevant product de-
tails like name, price, brand, category and serial
number.

Overview of NFTs Users should have access to an overview of all
their NFTs and the associated information for
potential resale.

Access Product
Information

By referencing an NFT marked for sale, users
should be able to access product details such as
description, purchase date, ownership history, and
any linked warranties or services.

Transaction and
Transfer of NFT

During a transaction, the user should be able
to securely transfer the NFT to a new owner.
This ensures that the digital record corresponds
with the physical exchange and updates with new
transaction data.

Rate a Transaction Post-transaction, the buyer should be able to
review their experience, providing feedback for
the seller or retailer which is publicly available
across e-commerce platforms.

Remove Broken
Products

Users should have the option to remove the NFTs
of worn out or broken products, preventing clutter
from obsolete NFTs.

C. Non-functional requirements

Scalability: The system must support a growing number of
users and transactions without major performance deteriora-
tion.

Robustness: The system’s smart contracts should manage
unexpected situations or inputs, safeguarding the platform’s
integrity. NFTs within the system should be designed to
exist indefinitely, preventing spontaneous disappearance or
destruction.

Security: The system should offer protection against fraud
and user data breaches. Key elements include secure storage,
identity verification, and defined access roles for system ad-
ministrators, trusted retailers, and NFT owners.

Reliability: A high-availability, low-downtime operation is
required to ensure consistent user access.

Performance: Swift responses to user requests and efficient
transaction management are paramount. This involves opti-
mization of smart contracts for resource usage and gas cost,
leading to quick, low-cost transactions.

Usability: An intuitive user interface is crucial for broad
adoption. This involves a simple workflow and clear instruc-
tions for NFT transactions, as well as an easily accessible
overview of owned NFTs.

Upgradability: The smart contracts should feature a mech-
anism for logic upgrades, enabling bug fixes and new feature
additions without full system redeployment.

Privacy: Smart contracts should respect user privacy, min-
imizing the exposure of personal information.

IV. DESIGN AND IMPLEMENTATION

Our decentralized system introduces an approach to track
and validate the ownership of physical goods through a corre-
sponding digital copy, leveraged by the Ethereum blockchain.
When a customer purchases an item in-store, a corresponding
digital copy, represented as a Non-Fungible Token (NFT), is
minted and assigned to the customer’s cryptocurrency address.
This NFT, transferred to the customer’s digital wallet, serves as
a proof of ownership, see Figure 1. This digital copy, besides
demonstrating ownership, encapsulates key information about
the product, ensuring traceability and authenticity.

Fig. 1. This model illustrates the process of a user buying a watch in the
retail market using an NFT. The retail seller creates an NFT and transfers
ownership of the NFT to the buyer’s crypto wallet.

The system architecture is designed to facilitate secure
transactions and transparent ownership validation. The initial
step of an NFTs lifecycles starts when a retailer invokes the
purchase function, passing the customer’s Ethereum address
as input. This action mints a new NFT under the customer’s
address. To prevent unregulated NFT creation, the minting pro-
cess is limited to authorized retailers, preserving the platform’s
authenticity. An authorized seller is implemented as a smart
contract called: Trusted Seller.

If the owner decides to resell the product, they call the
transfer function with the token ID and the new owner
as input, transferring the ownership to a new user. On the
secondhand market, the seller hands over the item and its
corresponding NFT, establishing ownership for the new buyer,
see Figure 2.

To list the item for sale, a user calls the putItemForSale
function with the tokenID as input. A potential buyer can
then call the getOwner function with the tokenID to verify the
current owner and the item’s authenticity. This structure makes
it unattractive to sell a product without the corresponding
digital copy NFT, ensuring the system’s integrity. Users can

Fig. 2. This model demonstrates the sale of a watch in the secondhand market.
The seller transfers ownership of the NFT to the new owner’s crypto wallet
as part of the transaction.

verify the item’s legitimacy through the associated NFT in
their crypto wallet. The NFT serves as a digital twin of the
physical product, offering an immutable proof of ownership
and a transparent track record.

After a transaction, a user can submit a review by using the
newReview function with the transaction as input, allowing
the system to gather customer feedback and build a reliable
review repository.

From a logical perspective, we have four components:
- User: Requires an identity in the Ethereum blockchain,

accomplished by assigning a unique address to each user.
- Digital Copy: A digital representation of a physical

item, managed through a mint function, transfer function,
and burn function for creating, transferring, and deleting
items, respectively.

- Trusted Seller: Retailers who generate and transfer
digital NFT copies upon a purchase using the purchase
function.

- Reviews: Manages user reviews and user scoring on the
blockchain.

Fig. 3. Logical view of the interactions between stakeholders and the
corresponding tasks they perform in our architecture

Summary of interconnections between software and hard-
ware components:

- Ethereum Node: Stores smart contracts and maintains
the system state.

- Smart Contracts: Include ”SystemManager”, ”Trusted-
Seller”, ”DigitalCopy”, ”Users”, and ”Reviews”, each
with distinct roles in the system.

- Web-Browser Unit: Facilitates interaction with the
Ethereum blockchain via the ethers.js API.

A. Implementation of smart contracts

In the implementation stage, we focus on smart contracts,
developed in Solidity. We have actively used modifiers as

access control to secure against fraudulent system use. The
system comprises several interconnected smart contracts, each
with a unique role: SystemManager, TrustedSeller, Digital-
Copy, Reviews, and Users. Instead of discussing the several
hundred lines of code for each contract, we summarize their
primary functionality, while the complete code is available on
our open Github repository.

1) SystemManager Contract: Capable of approving and
evicting trusted sellers, ensuring only credible sellers are
operational within the ecosystem. Comprised of two private
mappings, the SystemManager forms a list of trusted sellers
and tracks all active DigitalCopy contracts. It verifies retailer
existence and allows the deployment of multiple DigitalCopy
contracts. Additionally, it initiates the deployment of Users and
Reviews contracts. The ’ Authorized ’ modifier limits access to
functions such as adding and removing TrustedSeller contracts.

2) TrustedSeller Contract: Designed for retailers, enabling
the minting of new digital copies through the purchase func-
tion. The purchase function incorporates three requirements:
verifying buyers’ user existence, confirming that the purchased
product does not already possess a related NFT and ensur-
ing only authorized accounts act on the reseller’s behalf.
Its constructor initializes the trusted seller’s name and the
SystemManager contract’s address. The contract includes ad-
ditional functions for retrieving the retailer’s name, executing
transfers, and managing address authorizations. Additionally,
it provides the flexibility to modify and disclose the associated
DigitalCopy contract by authorized users.

3) DigitalCopy Contract: The digital copy contract is an
ERC721 contract developed for providing the users with
control and easy management over their NFTs. It defines
structures for storing NFT information and includes functions
for minting, transferring ownership, destroying, and retrieving
information.

4) Users Contract: Manages user accounts and identities
on-chain. This contract ensures that an identity cannot have
multiple users, maintaining a one-to-one relationship between
physical users and on-chain accounts. It creates a hash of
every new user and stores it inside a mapping. It provides
functionality for registering new users, and assists the other
contracts with verifying user existence.

5) Reviews Contract: Stores all user reviews on-chain,
providing a transparent and immutable feedback mechanism. It
contains functions for creating a new review as well as fetching
and calculating the sum of all review ratings about a user.

V. TESTING AND RESULTS

A. Deployment
In Figure 4, we detail the deployment of the SystemManager

contract on the sepolia testnet, pointing out five key aspects.
The transaction hash is the unique identifier for this state
change in the smart contract. The ”From” field represents
the public address we used to deploy the contract, and the
”To” field matches the calculated smart contract address from
Section 5.3. The gas price at deployment was approximately
1.5 gwei. The gas usage for deployment was 5,155,282 gas.
The nonce, though less critical, is visible and set to zero,
marking the account’s first interaction with this network.

Fig. 4. Screenshot of SystemManger deployment on Etherscan

B. Scenarios

We constructed four test scenarios to test the system’s
capabilities. We introduce one fictive trusted seller: Trusted
watches, and two users: Ola and Kari.

1) NFT Minting and Duplicate Prevention: Here, we
examine the retailer Trusted Watches as they attempt
to resell a previously minted NFT watch. This scenario
prevents duplicate NFT creation and upholds the sys-
tem’s integrity. It fulfils the functional requirements of
”Purchase Item and Receive NFT” and ”Overview of
NFTs”.

2) Listing, Selling, and Ownership Transfer: This sce-
nario tracks Ola’s unsuccessful retrieval of a not-for-sale
item, followed by Kari’s successful sale and ownership
transfer. We observe the process of listing, selling, and
transferring ownership of an item. It fulfils the func-
tional requirements of ”Access Product Information” and
”Transaction and Transfer of NFT”.

3) Review and Rating: Ola writes a product review
impacting Kari’s seller rating. We analyze the review
system’s overall function and the impact of reviews on
seller ratings. It fulfils the functional requirement of
”Rate a Transaction”.

4) NFT Deletion: Kari unsuccessfully tries to delete Ola’s
NFT and later successfully burns her damaged NFT.
We evaluate the NFT deletion process and its role in
maintaining system integrity. It fulfils the functional
requirement of ”Remove Broken Products”.

C. Quality attributes

Our Ethereum-based implementation features scalability,
supporting concurrent interactions and increasing transac-
tions without significant performance degradation. Transaction
throughput, however, depends on network congestion and user-
paid gas price.

Robustness is achieved through the immutability of smart
contracts, which are designed to handle unexpected situations
using modifiers and require statements. For instance, the NFT
cannot be destroyed unintentionally or multiple NFTs minted
for the same product.

Security is prioritized with contracts designed to ensure
only authorized users access certain operations. The Sys-
temManager contract controls trusted retailer inclusion and
DigitalCopy contract functionality but does not have any
control over the NFTs. Only trusted retailers can mint NFTs,
and only current NFT owners can transfer ownership. System
compromise could occur if the SystemManager owner’s wallet
is breached.

Reliability stems from the Ethereum network’s own reliabil-
ity, promising high availability and minimal downtime. Con-
sidering Ethereum’s decade-long operation and widespread
use, we find it sufficiently reliable.

Performance optimization was considered in smart contract
design, favoring mappings over arrays to reduce computational
cost. While there’s room for optimization in gas cost for
transfers involving multiple items, our PoC solution provides
a satisfactory user experience with swift transaction handling.

Usability-wise, we’ve created a functional interface show-
casing system core functionality. The design allows intuitive
user interaction, even for those unfamiliar with blockchain
technology. The system is accessible via Ethereum-compatible
wallets and can be incorporated into existing e-commerce
platforms. Trust in blockchain technology from society and
wallet system dependency remain potential challenges.

User privacy is upheld, with no personal information beyond
names stored on the blockchain, although verification of user
individuality, such as verifying personal identifier, has not
been implemented. Visibility of items is restricted unless
they’re for sale, although the public nature of blockchain
transactions means interactions can be viewed and analyzed.
Privacy considerations for future development might include
data encryption or deployment on a permissioned blockchain.

D. Gas Cost

Table III presents the gas and USD costs incurred during
various scenarios. The costs hinge on gas price and gwei value
(assumed at 22 gwei and $0.0000018). Gas costs differ due
to the diverse computational demands of operations. ’Deploy
SystemManager,’ the most computation-heavy operation, costs
5,155,282 gas or $204. This initial setup cost is a one-time
expense. Other high-cost operations, such as the deployment
of ’DigitalCopy’ and ’TrustedSeller,’ are also one-time setup
costs.

Frequent operations like ’Purchase 1’ and ’Purchase 2’ have
high individual costs ($20.2 and $19). The difference in gas
usage here, around 31,000 gas, is due to different variable
lengths. A longer name, such as ”Cosmograph Daytona,”
requires more computational resources than a shorter one like
”Submariner.” Simulating all variables set to an unrealistic
length of 69 words, the purchase cost has a maximum cost
of $108.

User creation operations, ’Create user in Users (1st)’ and
’Create user in Users (2nd),’ exhibit relatively low, consistent
gas costs. The computation cost depends on name length and
user identifier and is a one-time registration fee. For a highly
unlikely scenario with 69 words in both name and identifier,
the cost remains manageable at $16.6.

The deployment cost for a system manager totals to $308
implementation cost for a retailer equals $36 and for the user
purchase costs are around $20 and later transfers of NFTs $10
footnoteFor a minimal system using previously stated prices.
However, calculating these cost on average historical prices
from 2022 onwards, they are roughly $1047, $122, $68 and
$28 respectively.

TABLE III
GAS COSTS FOR DIFFERENT OPERATIONS AND THEIR COST IN USD

(SORTED BY COST) USING THE GAS COST OF 22 GWEI AND GWEI VALUE
OF $0.00000180

Operation Gas Cost Cost in USD
Deploy SystemManager 5,155,282 $204
Deploy DigitalCopy in SystemManager 2,636,386 $104
Deploy TrustedSeller 847,738 $33.6
Purchase 1 511,163 $20.2
Purchase 2 479,667 $19
Transfer item in DigitalCopy 214,148 $8.5
New review in Reviews 213,752 $8.5
Create user in Users (2nd time) 92,019 $3.6
Create user in Users (1st time) 91,983 $3.6
Change DigitalCopy in TrustedSeller 56,044 $2.2
Add TrustedSeller in SystemManager 47,247 $1.9
Put item for sale in DigitalCopy (2nd) 46,012 $1.8
Put item for sale in DigitalCopy (1st) 46,000 $1.8
Burn item in DigitalCopy 39,520 $1.6

1) Transaction Cost: We further experimented with trans-
action cost variations. The cost of transfers primarily hinges
on the number of items owned by a user, in this case, one
who owns 50 identical items. These items are transferred
sequentially to another user, with costs reducing as the owned
item list shortens. The position of an item in the list influences
the gas required for transfer: items further back in the list
cost more to transfer as the longer iterations require more
computational operations.

The first transfer also incurs a higher cost due to the setup
of the item list for the receiving user. This setup demands
about an extra 36,500 gas. After this setup, each transfer cost
decreases consistently by 2,339 gas, reflecting the reduction
in items in the list.

The last transfer is slightly less costly, requiring 168,195 gas
(or $6.7), due to no need for list iteration, thus demanding less
computational effort and gas.

This makes it possible to calculate the worst-case expected
cost of a transfer depending on the amount of NFTs the seller
has. Disregarding the cost of the initial setup if the receiver
has yet to receive an NFT as well as the decrease in the cost
of transferring the last item, we get these equations:

̂GasCost = NumberOfOwnedItems× 2400 + 177795

P̂ rice = GasCost×GasPrice× EtherV alue

109

Using a gas price of 22 gwei, an ether value of $1,800 and
having 100 items:

P̂ rice = (100× 2400 + 177795)× 22× 1800

109
= 16.54

This results in a worst-case cost of $16.5 for this transfer.
It is worth mentioning that these are estimators, and other
factors, such as the item’s price, also affect the gas cost.

Using the historical charts of gas prices, we performed a
simulation for the function costs of our system. The simulation
is shown in Figure 5.

Fig. 5. Simulation charts of functions cost based on historical gas prices in
USD.

VI. CONCLUSIONS

In conclusion, our research underscores the successful ex-
ecution of a POC solution which effectively navigates key
issues pervasive in traditional reseller markets, covering trou-
blesome documentation, unethical practices, lack of trans-
parency, trust issues, and authenticity concerns. The system
that we developed successfully satisfies functional and non-
functional aspects, representing a transparent, trustworthy, and
authentic alternative to existing practices in the reseller mar-
kets. Our approach leverages Web3 technology, incorporating
the blockchain’s immutability and the unique properties of
NFTs to create a secure, transparent, and fair reseller market,
eliminating the need for a third party. Each NFT, tethered to
the sale of an item, functions as an authenticator, fostering trust
between involved parties and establishing verifiable product
ownership. This solution significantly reduces the likelihood
of counterfeit item sales and builds trust.

Future work includes exploring DAO integration, decentral-
ized identification systems, upgradability options, adaptable
interfaces for different product categories, contract limitations,
data protection during event emission, private/permissioned
networks, and affordability optimization.

REFERENCES

[1] (2023) Introduction to Web3. [Online]. Available: https://ethereum.org/
en/web3/

[2] M. White. (2022) Web3 is going great. [Online]. Available:
https://web3isgoinggreat.com/

[3] M. Raikwar, D. Gligoroski, and K. Kralevska, “SoK of used cryptogra-
phy in blockchain,” IEEE Access, vol. 7, pp. 148 550–148 575, 2019.

[4] K. Goel and N. R. Patel, “Digital receipts: A viable replacement for the
printed receipts on thermal papers,” International Journal Of Innovative
Research And Development, Guna, vol. 2, no. 12, pp. 38–41, 2013.

[5] V. Vadde, C. Nithya, and A. P. Surhonne, “An nfc based innovation for
paperless retail transactions and digital receipts management,” in 2015
Annual IEEE India Conference (INDICON). IEEE, 2015, pp. 1–6.

[6] I. A. Hamilton. (2021) One Amazon warehouse reportedly throws out
130,000 products a week, including some that are brand new. An
expert blames its giant third-party retail business. [Online]. Available:
https://tinyurl.com/2udpeyh6

[7] Y. Hristova, “The second-hand goods market: Trends and challenges,”
Izvestia Journal of the Union of Scientists - Varna. Economic Sciences
Series, vol. 8, pp. 62–71, 01 2019.

[8] A. Brooks, “Stretching global production networks: The international
second-hand clothing trade,” Geoforum, vol. 44, pp. 10–22, 2013, global
Production Networks, Labour and Development. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0016718512001091

[9] D. Guiot and D. Roux, “A second-hand shoppers’ motivation scale:
Antecedents, consequences, and implications for retailers,” Journal of
retailing, vol. 86, no. 4, pp. 355–371, 2010.

[10] J. A. Heinonen, T. J. Holt, and J. M. Wilson, “Product counterfeits in
the online environment: An empirical assessment of victimization and
reporting characteristics,” International Criminal Justice Review, vol. 22,
no. 4, pp. 353–371, 2012.

[11] C. Forman, A. Ghose, and B. Wiesenfeld, “Examining the relationship
between reviews and sales: The role of reviewer identity disclosure in
electronic markets,” Information systems research, vol. 19, no. 3, pp.
291–313, 2008.

[12] S. M. Lee and S. J. Lee, “Consumers’ initial trust toward second-hand
products in the electronic market,” Journal of computer information
systems, vol. 46, no. 2, pp. 85–98, 2005.

[13] L. N. Leonard and K. Jones, “Trust in C2C Electronic Commerce: Ten
Years Later,” J. of Computer Information Systems, vol. 61, no. 3, pp.
240–246, 2021. [Online]. Available: https://tinyurl.com/2p9ep878

[14] S. He, B. Hollenbeck, and D. Proserpio, “The market for fake reviews,”
Marketing Science, vol. 41, no. 5, pp. 896–921, 2022.

[15] F. Dini and G. Spagnolo, “Buying reputation on ebay: Do recent changes
help?” International Journal of Electronic Business, vol. 7, no. 6, pp.
581–598, 2009.

[16] J. P. Kennedy, “Counterfeit products online,” The Palgrave handbook of
international cybercrime and cyberdeviance, pp. 1001–1024, 2020.

[17] J. Treadwell, “From the car boot to booting it up? ebay, online
counterfeit crime and the transformation of the criminal marketplace,”
Criminology & Criminal Justice, vol. 12, no. 2, pp. 175–191, 2012.

[18] B. Shen, X. Xu, and Q. Yuan, “Selling secondhand products through
an online platform with blockchain,” Transportation Research Part
E: Logistics and Transportation Review, vol. 142, p. 102066, 2020.
[Online]. Available: https://tinyurl.com/bdf9paze

[19] S. Huang, D. Hou, Z. Peng, Y. Dong, and J. Zhang, “A trustable
and traceable blockchain-based secondhand market with committee
consensus,” in 2023 IEEE 8th International Conference on Big Data
Analytics (ICBDA), 2023, pp. 72–76.

[20] S. Panda and S. Satapathy, An Investigation into Smart Contract
Deployment on Ethereum Platform Using Web3.js and Solidity Using
Blockchain, 05 2021, pp. 549–561.

[21] (2023) Tangible. [Online]. Available: https://www.tangible.store/
[22] (2023) Auralb. [Online]. Available: https://auraluxuryblockchain.com/
[23] (2023) Stockx. [Online]. Available: https://stockx.com/

	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Motivation
	Objectives
	Research methods
	Contribution
	Outline

	Background
	Different markets
	Retail markets
	Secondhand markets

	Cryptographic features
	Hash function
	Hash standards
	Key-pairs
	Wallets

	Blockchain
	Transaction
	Testnet

	Smart contracts and the Ethereum blockchain
	Decentralized application
	Gas

	Web3
	Related work
	Secondhand markets and blockchain technology
	Existing solutions

	Requirements
	Scope
	Retail markets
	Secondhand markets
	Using Web3 to target the problems

	Use case analysis
	Application requirements
	Functional requirements
	Non-functional requirements

	Design and Architecture
	System Overview
	System architecture
	Logical view
	Development view
	Process view
	Physical view
	Scenarios

	Implementation
	Smart contract implementation
	Technology
	Smart Contracts

	Front-end web application implementation
	Deployment process
	Deployment script

	Results
	Deployment
	Scenario results
	Scenario 1: NFT Minting and Duplicate Prevention
	Scenario 2: Listing, Selling, and Ownership Transfer
	Scenario 3: Review and Rating System
	Scenario 4: NFT Deletion

	Gas cost
	General costs
	Transaction cost
	Historical prices

	Discussion
	Analysis and comparison with requirements
	The system's ability to cope with non-functional requirements
	Cost of usage
	Web3 as a solution to issues in the reseller markets
	Future work

	Conclusion
	References
	Web application
	User interface
	Transferring a digital copy
	Trusted seller
	Making reviews
	Verifying the owner of an item

	Guide for local testing
	Setup with yarn

	Guide for local testing
	Address calculation
	Academic paper

