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Abstract: A fully automated artificial pancreas (AP) requires accurate blood glucose (BG)
readings. However, many factors can affect the accuracy of commercially available sensors.
These factors include sensor artifacts due to the pressure on surrounding tissues, connection
loss, and poor calibration. The AP may administer an incorrect insulin bolus due to inaccurate
sensor data when the patient is not supervising the system. The situation can be even worse in
animal experiments because animals are eager to play with the sensor and apply pressure.
In this study, we propose and derive a Multi-Model Kalman Filter with Forgetting Factor
(MMKFF) for the problem of fusing information from redundant subcutaneous glucose sensors.
The performance of the developed MMKFF was assessed by comparing it against other Kalman
Filter (KF) strategies on experimental data obtained in two different animals. The developed
MMKFF was shown to provide a reliable fused glucose reading. Additionally, compared to the
other KF approaches, the MMKFF was shown to be better able to adjust to changes in the
accuracy of the glucose sensors.

Keywords: Developments in measurement, signal processing, Diabetes.

1. INTRODUCTION

Monitoring blood glucose (BG) level in subjects with dia-
betes is important for managing their treatment. Over the
last two decades, continuous glucose monitoring (CGM)
systems have become more and more common in patients
with diabetes mellitus type 1. Most commercially avail-
able CGMs provide measurement samples each 5 minutes
allowing for a better description of the subject’s glucose
variability.

The artificial pancreas (AP) automates BG control by
reading levels from a CGM, calculating the insulin bolus
dose using a control algorithm, and infusing the insulin
with a pump. A reliable system for measuring BG level
with minimal supervision is essential to achieve the ulti-
mate goal of reducing supervision. However, real-life situ-
ations can cause CGMs to provide inaccurate information
or disconnect from APs, posing a risk to BG control in a
single-sensor APs.

For simplicity and to reduce the wiring, the common off-
the-shelf CGMs have a transmitter to connect wirelessly
with the AP. The communication methods are Bluetooth
or ANT+, which will lose connection if the CGM and
⋆ This work was funded by the IFD Grand Solution project ADAPT-
T2D, project number 9068-00056B, the Research Council of Norway
(project no. 248872), and the Centre for Digital Life Norway.

the receiver/pump are on opposite sides of the body, e.g.
during sleep. Furthermore, compression artifacts caused
by external pressure on the CGM can rapidly decrease the
measured BG level and cause failure of the APs. Many
other circumstances make single-sensor APs unreliable,
making the supervision of the CGM necessary for patients.
These circumstances have been summarised by Facchinetti
(2016).

The glucose sensors have a warm-up period, which means
that each new sensor attached will not provide accurate
data for a while. Warm-up times vary between brands
and range from 2 hours to 2 days. In other words, if
the CGM fails unexpectedly in single-sensor APs, patients
must manually control the BG during the warm-up period
of the new sensor. The issue gets aggravated in awake
animal experiments since it is challenging to take frequent
blood samples to measure the BG. Additionally, since
animals are eager to play with the sensors attached to their
bodies or exert pressure on them, the circumstances above
are more likely to occur in animal experiments. Notably,
the warm-up period in the animal experiment is not ideal
because it lengthens the experiment and raises the cost
of the experiment. In this setting, the animal experiments
are used to test controllers.

Redundant sensors are advised in the literature to address
the issues above. For example, Jacobs et al. (2014) used
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0 ≤ nk ≤ N will provide readings yk ∈ Rnk . This setup
considers cases when the sensors can fail for some periods
of time. For the modeling, we consider in this paper N
linear Gaussian dynamic models Mi with i ∈ [N ] as the
following

xi
k+1 = Aixi

k + Eiwi
k, wi

k ∼ N (0, Qi), (1a)
yk = Ci

kx
i
k + vik, vik ∼ N (0, Ri

k), (1b)
with xi ∈ Rnx , nx ∈ Z>0, Ai ∈ Rnx×nx , Ei ∈
Rnx×nq , nq ∈ Z>0, Qi ∈ Snq

>0, wi
k is an independent

and identically distributed (IID) process, Ci
k ∈ Rnk×nx ,

Ri
k ∈ Snk

≥0, and vik ∈ Rnk is a IID process. Similar to
the previous works in Knobbe and Buckingham (2005);
Facchinetti et al. (2010) in which integrators of white noise
with different orders are chosen to represent a description
for the dynamics of BG concentrations, we choose matrices
Ai = A, Ei = E, Qi = Q and Ci

k = Ck for all the models
i ∈ [N ] such that A,E,Q, and C represent the discrete
output of a triple integrated white noise w as following

A =


1 0 0
T 1 0

T 2/2 T 3/6 1


, E =


T

T 2/2
T 3/6


, Ck =



0 0 1

...
0 0 1


 ∈ Rnk×3,

with T [min] being the sampling time 1 . The integrated
white noise model serves as a prior assumption regarding
the stationarity and the power spectrum density of the BG
concentration. Additionally, if the model in (1a) is viewed
as a discretized version of a continuous time dynamical
glucose model, then it captures our knowledge that BG
concentration is differentiable with respect to time. This
choice is common in time series estimation of physiological
processes (see De Nicolao et al. (1997) for e.g.). The higher
the order of the integrator, the smoother the continuous
time BG concentration is assumed to be. The variance Q
of the driving white noise can be understood as a repre-
sentation of how confident we are in the assumed model
(see Section 5.1 for more details). Note that the model
does not reflect the ground truth of the time evolution
for BG concentration and different models with differ-
ent accuracy and inputs (e.g. insulin, physical activity,
meals, etc...) can also be considered and used. For the
simplicity in this paper, we considered a simple white noise
integrator which can work in a general setting in which
data regarding more specific inputs is not available. As
for the covariance matrix Ri

k for the measurement noise,
it will be chosen differently for each model i ∈ [N ]. To
define Ri

k, let ri ∈ RN such that the ith element of ri

is σ2
l while the rest of the elements in ri are σ2

u with
σu > σl. Let sk ∈ RN such that the ith element of sk
is 1 if the ith sensor is providing a reading at sample
k and zero otherwise. Then the covariance matrix Ri

k is
chosen as Ri

k = diag
�
s⊤k r

i

. This basically means that for

each sensor i, we have a model Mi that assumes a lower
variance for the ith sensor (σ2

l ) than the variance for the
other sensors (σ2

u). In other words, each model is more
confident with respect to one sensor than the others. Note
that it is possible with this structure to have a continuum
of models weighting the sensors differently. However, we
chose to have a finite number of models for simplicity
and tractability. Finally, we define for each model Mi a
1 If the sensors are operating at different sampling rates then T can
be chosen to be the minimum of the different sampling times.

random variable mi
k ∈ {0, 1} such that p(mi) = P(mi

k =
1) := P

�
Mi is the best model at step k


. Note that the

time dependence for mi
k is included to account for the

fact that some sensors will become better than others for
a period of time. To relate mi

k+1 with mi
k, we use the

following
p(mi

k+1) = p(mi
k+1|mi

k)p(m
i
k) := (1−α)p(mi

k)+αβ̄i, (2)
with 0 ≤ α ≤ 1 a constant which we call the forgetting
factor, and 0 ≤ β̄i ≤ 1 with

N
i=1 β̄

i = 1 are predefined
probabilities for the models. The dynamic model in (2) is
to be understood as a prior model in the absence of mea-
surement updates (similar to (1a)). A measurement correc-
tion step will be introduced in section 4.2. To understand
more what "forgetting" is meant with (2), assume we start
from probabilities p(mi

k) > 0, ∀i ∈ [N ] representing our
knowledge at step k regarding the models. If we only follow
the update in equation (2), then the l− step prediction is
p(mi

k+l) = (1−α)lp(mi
k)+

�
1− (1− α)l


β̄i. If 0 < α ≤ 1,

we can see that liml→∞ p(mi
k+l) = β̄i. This means that

∀i ∈ [N ], our knowledge regarding the models p(mi
k) with

equation (2) only is "forgotten" exponentially with a rate
1 − α to converge to a predefined knowledge captured
in β̄i. The predefined probabilities β̄i can be uniform
(β̄i = 1

N , ∀i ∈ [N ]) or prior probabilities regarding the
models.

4.2 Multiple Models Kalman Filter with Forgetting Factor

The idea of the MMKF, which was first introduced in
Magill (1965), is to run a KF for each model Mi in
parallel and combine the estimated results to obtain a
better new estimate. In this section, we will extend the
MMKF with the forgetting factor equation (2) and provide
a description for the MMKFF strategy. Note that the
MMKFF can be thought of as a specific case for dynamic
MMKF where the probabilities of the true models evolve
with time and it is different from the one in (Bar-Shalom
et al., 2004, chapter 11) since (7) is not a homogeneous
Markov chain. For ease of notation, we will use βi

k1|k2
:=

p
�
mi

k1
|Yk2


with k1, k2 ∈ Z≥0, and Yk2 = (y1, . . . , yk2)

being a tuple of all the available measurement up until
sample k2. Assume now at iteration k we have an estimate
x̂k|k ∼ N

�
µk|k, Pk|k


for the states and probabilities βi

k|k.
If there is an available measurement reading yk+1, then we
run a KF for each model Mi as following
Time update:

µk+1|k = Aµk|k, Pk+1|k = APk|kA
⊤ + EQE⊤ (3a)

Measurement Correction:
ỹk+1|k = yk+1 − Ckµk+1|k, Si

k+1|k = CkP
i
k+1|kC

⊤
k +Ri

k

(4a)
µi
k+1|k+1 = µk+1|k + Pk+1|kC

⊤
k (Si

k+1|k)
−1ỹk+1|k (4b)

P i
k+1|k+1 =


I− Pk+1|kC

⊤
k (Si

k+1|k)
−1Ck


Pk+1|k (4c)

To derive a time update step and a measurement correc-
tion step for the probabilities βi

k+1|k+1, we use Baye’s rule
to write

βi
k+1|k+1 = p(mi

k+1|Yk+1) =
p(mi

k+1,Yk+1)

p(Yk+1)
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Fig. 1. Placement of glucose sensors. Left: Experiment 1,
both sensors Exp1.S1 and Exp1.S2 placed on the pig’s
belly. Right: Experiment 2, two sensors on the left
side of the neck. Another two sensors were on the
pig’s right side, with sensor Exp2.S4 attached at the
bottom and Exp2.S2 at the top.

two sensors in their AP where one sensor would replace the
active one in the event of a sensor failure. In the present
study, instead of using the other sensor(s) only for backup,
we developed a method based on a Multi-Model Kalman
Filter (MMKF) approach to combine the data from all
the glucose sensors attached on the subject to increase
the reliability. The proposed method was evaluated using
experimental data from anesthetized and awake pigs.

The works in Facchinetti et al. (2013, 2015); Vettoretti
et al. (2019) used data batches from multiple CGMs
devices together with an accurate reference BG data
for the aim of obtaining a detailed parametric model
description for the measurement errors in specific CGM
devices. Therefore, the methods developed in these works
are not suitable for a real time sensor fusion of CGMs for
APs.

Kalman Filter (KF) strategies have been used in previ-
ously reported studies with CGMs for the purpose of cali-
brating one CGM device with self monitored blood glucose
samples obtained by finger pricking Knobbe and Bucking-
ham (2005); Kuure-Kinsey et al. (2006); Facchinetti et al.
(2010). While these solutions primarily focused on sensor
calibration, in this paper we aim to fuse information from
numerous CGM devices with varying degrees of accuracy
considering that one or more sensors can fail and recover
over time.

The contributions of this work are as following:

• We show how MMKF can be used for the fusing of
CGM devices. In addition, we derive a MMKF with
a Forgetting Factor (MMKFF) in Section 4.

• We apply the MMKFF on two sets of experimental
data and evaluate its performance in Section 5 com-
paring it with different types of KFs.

2. ANIMAL EXPERIMENTS

The example data sets used in this paper are from two
different animal experiments. The tests were carried out
in two non-diabetic farm pigs (Sus scrofa domesticus) of
36 and 40 kg, respectively.

The first experiment (Exp1) was performed in an anes-
thetized pig for 24 hours. Three Medtronic Enlite glucose
sensors (Northridge, Canada) with custom transmitters
from Inreda Diabetic (Goor, the Netherlands) were used

(hereafter named Exp1.S1, Exp1.S2, and Exp1.S3) with a
1.2s sampling time. The provided data acquisition system
could only receive data from two of the sensors. There-
fore, one of the sensors only served as a backup sensor.
Blood samples were taken sporadically to calibrate the
sensors and compare them. A blood gas analyser (BGA)
of ABL800 FLEX (Copenhagen, Denmark) was used to
measure the actual BG level throughout the experiment.
We compared the performance of the developed MMKFF
method with the BGA. Exp1.S1 and Exp1.S2 were at-
tached to each side of the belly as shown in Figure. 1, and
Exp1.S3 was attached to the neck as backup. The protocol
for this animal experiment was similar to the protocols
used in Halvorsen et al. (2022) and Benam et al. (2023).

The second experiment (Exp2) was closer to real-life condi-
tions than Exp1 since it was performed in an awake animal
where it could move freely. In this experiment, four sensors
were used to decrease the chance of losing data or basing
decisions on faulty data. Sensors Exp2.S1 and Exp2.S2
were factory-calibrated Dexcom G6 (San Diego, CA) with
5min sampling time. Sensors Exp2.S3 and Exp2.S4 were
Medtronic Guardian sensors 3 (Northridge, Canada) with
custom-made transmitters from Inreda Diabetic (Goor,
the Netherlands) with 1.2s sampling time. To reduce the
connection losses during the experiments, the sensors were
mounted on both sides of the neck, as shown in Figure 1.
Unlike Exp1, taking frequent blood samples was not pos-
sible. However, depending on the sensor connection losses,
general behaviours of the sensors compared to others, and
position of the pig, the experiment’s operators were giving
each sensor a reliability indicator between 0 and 1. Then
we calculated a weighted average of the sensors using
their assigned reliability indicators. With the weighted
average value as a benchmark, we evaluated the perfor-
mance of the proposed sensor fusion technique. Readings
at time 5k [min], k ∈ Z≥0 from Exp1.S1/ Exp2.S1,
Exp1.S2/Exp2.S2, Exp2.S3, and Exp2.S4 will be denoted
as yk[1],yk[2],yk[3], and yk[4], respectively.

3. NOTATIONS

For a random variable x, we write x for its realization.
We write N (µ,Σ) for the normal distribution with mean
µ and variance Σ. Let two successive time instants tk
and tk+j be such that tk+j − tk = jT, j ∈ Z with
T ∈ R, then variables x(tk), x(tk+j) will be denoted as
xk, xk+j . The symbol Sn>0 (Sn≥0) is used for the set of
positive definite (semi-definite) matrices with dimension
n. We write [N ] = {1, . . . , N}, N ∈ Z>0. We write a
diagonal matrix with diagonal elements v = [v1, . . . , vn]

⊤

as diag (v). We use I for the identity matrix.

4. METHOD

In this section, we will first present the models used for the
glucose sensors in 4.1. Afterwards, the MMKFF method
will be described in 4.2.

4.1 Problem Setup

We consider a setup in which we have N ∈ Z>0 CGM
sensors. At each sample time k, a portion of the sensors
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0 ≤ nk ≤ N will provide readings yk ∈ Rnk . This setup
considers cases when the sensors can fail for some periods
of time. For the modeling, we consider in this paper N
linear Gaussian dynamic models Mi with i ∈ [N ] as the
following

xi
k+1 = Aixi

k + Eiwi
k, wi

k ∼ N (0, Qi), (1a)
yk = Ci

kx
i
k + vik, vik ∼ N (0, Ri

k), (1b)
with xi ∈ Rnx , nx ∈ Z>0, Ai ∈ Rnx×nx , Ei ∈
Rnx×nq , nq ∈ Z>0, Qi ∈ Snq

>0, wi
k is an independent

and identically distributed (IID) process, Ci
k ∈ Rnk×nx ,

Ri
k ∈ Snk

≥0, and vik ∈ Rnk is a IID process. Similar to
the previous works in Knobbe and Buckingham (2005);
Facchinetti et al. (2010) in which integrators of white noise
with different orders are chosen to represent a description
for the dynamics of BG concentrations, we choose matrices
Ai = A, Ei = E, Qi = Q and Ci

k = Ck for all the models
i ∈ [N ] such that A,E,Q, and C represent the discrete
output of a triple integrated white noise w as following

A =


1 0 0
T 1 0

T 2/2 T 3/6 1


, E =


T

T 2/2
T 3/6


, Ck =



0 0 1

...
0 0 1


 ∈ Rnk×3,

with T [min] being the sampling time 1 . The integrated
white noise model serves as a prior assumption regarding
the stationarity and the power spectrum density of the BG
concentration. Additionally, if the model in (1a) is viewed
as a discretized version of a continuous time dynamical
glucose model, then it captures our knowledge that BG
concentration is differentiable with respect to time. This
choice is common in time series estimation of physiological
processes (see De Nicolao et al. (1997) for e.g.). The higher
the order of the integrator, the smoother the continuous
time BG concentration is assumed to be. The variance Q
of the driving white noise can be understood as a repre-
sentation of how confident we are in the assumed model
(see Section 5.1 for more details). Note that the model
does not reflect the ground truth of the time evolution
for BG concentration and different models with differ-
ent accuracy and inputs (e.g. insulin, physical activity,
meals, etc...) can also be considered and used. For the
simplicity in this paper, we considered a simple white noise
integrator which can work in a general setting in which
data regarding more specific inputs is not available. As
for the covariance matrix Ri

k for the measurement noise,
it will be chosen differently for each model i ∈ [N ]. To
define Ri

k, let ri ∈ RN such that the ith element of ri

is σ2
l while the rest of the elements in ri are σ2

u with
σu > σl. Let sk ∈ RN such that the ith element of sk
is 1 if the ith sensor is providing a reading at sample
k and zero otherwise. Then the covariance matrix Ri

k is
chosen as Ri

k = diag
�
s⊤k r

i

. This basically means that for

each sensor i, we have a model Mi that assumes a lower
variance for the ith sensor (σ2

l ) than the variance for the
other sensors (σ2

u). In other words, each model is more
confident with respect to one sensor than the others. Note
that it is possible with this structure to have a continuum
of models weighting the sensors differently. However, we
chose to have a finite number of models for simplicity
and tractability. Finally, we define for each model Mi a
1 If the sensors are operating at different sampling rates then T can
be chosen to be the minimum of the different sampling times.

random variable mi
k ∈ {0, 1} such that p(mi) = P(mi

k =
1) := P

�
Mi is the best model at step k


. Note that the

time dependence for mi
k is included to account for the

fact that some sensors will become better than others for
a period of time. To relate mi

k+1 with mi
k, we use the

following
p(mi

k+1) = p(mi
k+1|mi

k)p(m
i
k) := (1−α)p(mi

k)+αβ̄i, (2)
with 0 ≤ α ≤ 1 a constant which we call the forgetting
factor, and 0 ≤ β̄i ≤ 1 with

N
i=1 β̄

i = 1 are predefined
probabilities for the models. The dynamic model in (2) is
to be understood as a prior model in the absence of mea-
surement updates (similar to (1a)). A measurement correc-
tion step will be introduced in section 4.2. To understand
more what "forgetting" is meant with (2), assume we start
from probabilities p(mi

k) > 0, ∀i ∈ [N ] representing our
knowledge at step k regarding the models. If we only follow
the update in equation (2), then the l− step prediction is
p(mi

k+l) = (1−α)lp(mi
k)+

�
1− (1− α)l


β̄i. If 0 < α ≤ 1,

we can see that liml→∞ p(mi
k+l) = β̄i. This means that

∀i ∈ [N ], our knowledge regarding the models p(mi
k) with

equation (2) only is "forgotten" exponentially with a rate
1 − α to converge to a predefined knowledge captured
in β̄i. The predefined probabilities β̄i can be uniform
(β̄i = 1

N , ∀i ∈ [N ]) or prior probabilities regarding the
models.

4.2 Multiple Models Kalman Filter with Forgetting Factor

The idea of the MMKF, which was first introduced in
Magill (1965), is to run a KF for each model Mi in
parallel and combine the estimated results to obtain a
better new estimate. In this section, we will extend the
MMKF with the forgetting factor equation (2) and provide
a description for the MMKFF strategy. Note that the
MMKFF can be thought of as a specific case for dynamic
MMKF where the probabilities of the true models evolve
with time and it is different from the one in (Bar-Shalom
et al., 2004, chapter 11) since (7) is not a homogeneous
Markov chain. For ease of notation, we will use βi

k1|k2
:=

p
�
mi

k1
|Yk2


with k1, k2 ∈ Z≥0, and Yk2 = (y1, . . . , yk2)

being a tuple of all the available measurement up until
sample k2. Assume now at iteration k we have an estimate
x̂k|k ∼ N

�
µk|k, Pk|k


for the states and probabilities βi

k|k.
If there is an available measurement reading yk+1, then we
run a KF for each model Mi as following
Time update:

µk+1|k = Aµk|k, Pk+1|k = APk|kA
⊤ + EQE⊤ (3a)

Measurement Correction:
ỹk+1|k = yk+1 − Ckµk+1|k, Si

k+1|k = CkP
i
k+1|kC

⊤
k +Ri

k

(4a)
µi
k+1|k+1 = µk+1|k + Pk+1|kC

⊤
k (Si

k+1|k)
−1ỹk+1|k (4b)

P i
k+1|k+1 =


I− Pk+1|kC

⊤
k (Si

k+1|k)
−1Ck


Pk+1|k (4c)

To derive a time update step and a measurement correc-
tion step for the probabilities βi

k+1|k+1, we use Baye’s rule
to write

βi
k+1|k+1 = p(mi

k+1|Yk+1) =
p(mi

k+1,Yk+1)

p(Yk+1)
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=
p(mi

k+1,Yk, yk+1)

p(Yk+1)
=

p(mi
k+1,Yk, ỹk+1|k)

p(Yk+1)

=
p(ỹk+1|k|mi

k+1,Yk)p(m
i
k+1,Yk)

p(Yk+1)

=
p(ỹk+1|k|mi

k+1)p(m
i
k+1|Yk)p(Yk)

p(Yk+1)

=
p(ỹk+1|k|mi

k+1)p(m
i
k+1|Yk)

p(ỹ)

=
p(ỹk+1|k|mi

k+1)∑N
i=1 p(ỹk+1|k|mi

k+1)p(m
i
k+1|Yk)

p(mi
k+1|Yk)

(5)
with

p(mi
k+1|Yk) = p(mi

k+1|mi
k)p(m

i
k|Yk)

= (1− α)p(mi
k|Yk) + αβ̄i

(6)

To summarize, (5) and (6) are written as a time update
step and a measurement correction step with the notation
βi
k1|k2

as following
Time update (using (6)):

βi
k+1|k = (1− α)βi

k|k + αβ̄i (7)
Measurement Correction (using (5)):

βi
k+1|k+1 =

p
(
ỹk+1|k | mi

k+1

)
∑N

i=1 β
i
k+1|kp

(
ỹk+1|k | mi

k+1

)βi
k+1|k. (8)

with p
(
ỹk+1|k | mi

k+1

)
being the multi-normal probability

density function with zero mean and covariance matrix
Si
k+1|k. Finally, let ∆µi

k+1 := µi
k+1|k+1 − µk+1|k+1, then

the estimated mean and covariance matrix of the states
are computed as following

µk+1|k+1 =

N∑
i=1

βi
k+1|k+1µ

i
k+1|k+1 (9a)

Pk+1|k+1 =

N∑
i=1

βi
k+1|k+1

(
P i
k+1|k+1 +∆µi

k+1

(
∆µi

k+1

)⊤)
.

(9b)
Note that the values βi

k+1|k+1 in (9a) are acting as weights
for the estimates obtained from the different KFs. The
values βi

k+1|k+1 will be referred to as "trust values for
sensor i" in the next section.

5. RESULTS

We compare the MMKFF presented in this paper with the
following KFs:

• Linear KF.
• The Distributionally Robust KF (DRKF) from Wang

and Ye (2022) with a moment based ambiguity set
and an ϵ−contamination set for outliers.

• The Adaptive Fading KF (AFKF) based on Xia et al.
(1994) but with the fading applied to the covariance
matrix R(k) adapting to sensor changes.

• The MMKF.

5.1 Choice of the Kalman Filters’ Parameters

All the KFs share the same value of Q. For a higher value
of Q, the KFs will rely on the measurements more for

their estimates which will make them faster to respond
to changes in BG but more prone to noise. On the other
hand, a smaller value of Q will make the KFs rely more
on the model predictions but will hinder their ability to
respond quickly to changes in BG. The value of Q in this
paper was chosen to be Q = 1. For the distributionally
robust KF, we tuned the parameters denoted in the paper
Wang and Ye (2022) as θ2,x, θ2,v, ϵ to be θ2,x = θ2,v = 1.02
and ϵ = 0.005. For Exp1, we only compared MMKF
and MMKFF due to limited space. For Exp2, the one
model KFs share one covariance matrix Rk = diag

(
s⊤k r

)
with r = [1 1 100 100]

⊤ since our prior knowledge is
such that Exp2.S1 and Exp2.S2 perform better than
Exp2.S3 and Exp2.S4. For the multi-model KFs, we chose
σ2
l = 1 and σ2

u = 100 for the both experiments. The
forgetting factor was chosen to be α = 0.05. The KFs
for both Exp1 and Exp2 were initialized with µ0|0 =

[0 0 0.5y0[1]− 0.5y0[2]]
⊤ and P0|0 = I where y0[1] and

y0[2] are the measurements of the first and second sensors
of both experiments, respectively. For Exp1, we chose
β0|0 = β̄ = [0.5 0.5]

⊤ based on our prior knowledge (no
prior preference over the sensors). As for Exp2, β0|0 =

β̄ = [0.3 0.3 0.2 0.2]
⊤ based on our prior knowledge.

5.2 Results from Exp1

In Figure 2, MMKFF and MMKF were tested on data
from Exp1.S1 and Exp2.S2 and the result compared to
BGA. The MMKF and MMKFF performed similarly, with
their fused CGM being close to the accurate BG readings.
The fused CGM managed to overcome the drifting in
Exp1.S2 and stayed close to the reading from the Blood
Gas Analyser (BGA). However, we can see that the trust
values β1

k|k and β2
k|k evolved differently with the CGM

readings. The trust values from the MMKF converged
faster towards Exp1.S1 (β1

k|k ≈ 1, β2
k|k ≈ 0) during the

case when Exp1.S2 was being calibrated than the trust
values of MMKFF (see Figure 3). In this particular excerpt
for Exp1, favoring Exp1.S1 quickly from the beginning
as done by MMKF is better since the performance of
Exp1.S2 continued to degrade during the period of data
collection. However, events like Exp2.S2 improving beyond
the calibration point without drifting or Exp1.S1 deterio-
rating during the trial, for instance, due to connection loss,
can still occur. In these events, the MMKFF will perform
better than MMKF since it does not immediately converge
to trusting one sensor over the others. Additionally, it
is able to "forget" past experiences which will enable it
to adapt to new changes. This is shown in the findings
for Exp2, where the MMKFF outperformed the MMKF
in a more realistic case where the quality of the sensors
varied over time. It is important to note that even though
forgetting can offer better adaptivity to changes in the
quality of sensors, it comes with the cost of slower reaction
towards abrupt events as seen in Figure 3. The lower the
forgetting factor, the faster the reaction of MMKFF to
abrupt events and vice versa.

5.3 Results from Exp2

Figure 4 shows the results for three different excerpts
of Exp2 compared to a fused CGM signal obtained by
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Fig. 2. Results from Exp1. BGA represents the values from the blood gas analyser, and ‘Calibration’ represents points
where sensors S1 and S2 were calibrated using the BGA values. The Upper plot shows a comparison between
MMKFF and MMKF using the readings from Exp1.S1 and Exp1.S2, while the lower plot shows the trust values
βi in (8) for each of the sensors i ∈ {1, 2}.
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Fig. 3. The upper plot shows the response of MMKFF
and MMKF with different forgetting factors, while the
lower plot shows the trust values.

manually tuning a weighted average of the four CGMs in
an online fashion (labeled Manual in the plots). In the
first excerpt (left of the figure), the four sensors were all
working as expected and readings were provided each 5
minutes. The MMKFF was the closest to the manually
tuned signal. For the second excerpt (middle of the figure),
Exp2.S3 was not working properly and stopped provid-
ing measurements towards the end. Additionally, Exp2.S2
was performing poorly with missing measurements and
reporting readings which were close to 0 [mmol/L] while
Exp2.S4 was performing better and close to Exp2.S1. This
situation is challenging not only due to the missing and
wrong readings of some sensors, but also due to the fact
that our prior knowledge prefers Exp2.S1 and Exp2.S2
over Exp2.S3 and Exp2.S4. Despite these challenges, the
MMKFF performed the best in the sense of being the clos-
est to the manually tuned reading. Observe how both the
MMKF and MMKFF reduced the trust value of Exp2.S4
when it stopped providing readings around 50 [min] of
the excerpt. However, the MMKFF increased the trust
value of Exp2.S4 when it started providing good readings
again, unlike the MMKF. Moreover, the MMKFF started
trusting Exp2.S2 more when its readings improved. For the
third excerpt (right of the figure), Exp2.S3 was not provid-
ing any readings, and Exp2.S4 started providing readings
around the time when Exp2.S1 and Exp2.S2 stopped pro-

viding readings. Out of the four KFs, the MMKFF was still
the closest to the manually tuned reading on average and
had the lowest maximum ARE value. Additionally, notice
how it was difficult for the MMKF to increase its trust
value of EX2.S4 again when it was providing readings. On
the other hand, the MMKFF increased the trust value of
EX2.S4 when it started providing readings again. These
results show how the MMKFF is able to adapt better to
changes in the quality of the sensors.

6. CONCLUSION AND FUTURE WORK

For CGM devices, the MMKFF fusing approach was in-
troduced. The technique was evaluated using two separate
sets of experimental data, and it was shown to be capable
of producing a reliable fused CGM signal. It was demon-
strated that MMKFF can respond to variations in the
quality of the CGM readings more effectively when com-
pared to other KF approaches. However, it was observed
that MMKFF’s ability for adaptation came at the expense
of a slower reaction to sudden changes. Future studies
could improve this by taking into account an adaptive for-
getting factor for MMKFF. Additionally, the past data and
inputs can be used with the high gain observer suggested
in Benam et al. (2019) and Benam et al. (2022) to estimate
the BG levels when the sensor connection is lost. Evaluat-
ing the proposed fusing approach on additional data from
various experiments can provide a better understanding
of the strategy’s performance and its likelihood of being
applied in a human environment.
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To summarize, (5) and (6) are written as a time update
step and a measurement correction step with the notation
βi
k1|k2

as following
Time update (using (6)):

βi
k+1|k = (1− α)βi

k|k + αβ̄i (7)
Measurement Correction (using (5)):

βi
k+1|k+1 =

p
(
ỹk+1|k | mi

k+1

)
∑N

i=1 β
i
k+1|kp

(
ỹk+1|k | mi

k+1

)βi
k+1|k. (8)

with p
(
ỹk+1|k | mi

k+1

)
being the multi-normal probability

density function with zero mean and covariance matrix
Si
k+1|k. Finally, let ∆µi

k+1 := µi
k+1|k+1 − µk+1|k+1, then

the estimated mean and covariance matrix of the states
are computed as following

µk+1|k+1 =

N∑
i=1

βi
k+1|k+1µ

i
k+1|k+1 (9a)

Pk+1|k+1 =

N∑
i=1

βi
k+1|k+1

(
P i
k+1|k+1 +∆µi

k+1

(
∆µi

k+1

)⊤)
.

(9b)
Note that the values βi

k+1|k+1 in (9a) are acting as weights
for the estimates obtained from the different KFs. The
values βi

k+1|k+1 will be referred to as "trust values for
sensor i" in the next section.

5. RESULTS

We compare the MMKFF presented in this paper with the
following KFs:

• Linear KF.
• The Distributionally Robust KF (DRKF) from Wang

and Ye (2022) with a moment based ambiguity set
and an ϵ−contamination set for outliers.

• The Adaptive Fading KF (AFKF) based on Xia et al.
(1994) but with the fading applied to the covariance
matrix R(k) adapting to sensor changes.

• The MMKF.

5.1 Choice of the Kalman Filters’ Parameters

All the KFs share the same value of Q. For a higher value
of Q, the KFs will rely on the measurements more for

their estimates which will make them faster to respond
to changes in BG but more prone to noise. On the other
hand, a smaller value of Q will make the KFs rely more
on the model predictions but will hinder their ability to
respond quickly to changes in BG. The value of Q in this
paper was chosen to be Q = 1. For the distributionally
robust KF, we tuned the parameters denoted in the paper
Wang and Ye (2022) as θ2,x, θ2,v, ϵ to be θ2,x = θ2,v = 1.02
and ϵ = 0.005. For Exp1, we only compared MMKF
and MMKFF due to limited space. For Exp2, the one
model KFs share one covariance matrix Rk = diag

(
s⊤k r

)
with r = [1 1 100 100]

⊤ since our prior knowledge is
such that Exp2.S1 and Exp2.S2 perform better than
Exp2.S3 and Exp2.S4. For the multi-model KFs, we chose
σ2
l = 1 and σ2

u = 100 for the both experiments. The
forgetting factor was chosen to be α = 0.05. The KFs
for both Exp1 and Exp2 were initialized with µ0|0 =

[0 0 0.5y0[1]− 0.5y0[2]]
⊤ and P0|0 = I where y0[1] and

y0[2] are the measurements of the first and second sensors
of both experiments, respectively. For Exp1, we chose
β0|0 = β̄ = [0.5 0.5]

⊤ based on our prior knowledge (no
prior preference over the sensors). As for Exp2, β0|0 =

β̄ = [0.3 0.3 0.2 0.2]
⊤ based on our prior knowledge.

5.2 Results from Exp1

In Figure 2, MMKFF and MMKF were tested on data
from Exp1.S1 and Exp2.S2 and the result compared to
BGA. The MMKF and MMKFF performed similarly, with
their fused CGM being close to the accurate BG readings.
The fused CGM managed to overcome the drifting in
Exp1.S2 and stayed close to the reading from the Blood
Gas Analyser (BGA). However, we can see that the trust
values β1

k|k and β2
k|k evolved differently with the CGM

readings. The trust values from the MMKF converged
faster towards Exp1.S1 (β1

k|k ≈ 1, β2
k|k ≈ 0) during the

case when Exp1.S2 was being calibrated than the trust
values of MMKFF (see Figure 3). In this particular excerpt
for Exp1, favoring Exp1.S1 quickly from the beginning
as done by MMKF is better since the performance of
Exp1.S2 continued to degrade during the period of data
collection. However, events like Exp2.S2 improving beyond
the calibration point without drifting or Exp1.S1 deterio-
rating during the trial, for instance, due to connection loss,
can still occur. In these events, the MMKFF will perform
better than MMKF since it does not immediately converge
to trusting one sensor over the others. Additionally, it
is able to "forget" past experiences which will enable it
to adapt to new changes. This is shown in the findings
for Exp2, where the MMKFF outperformed the MMKF
in a more realistic case where the quality of the sensors
varied over time. It is important to note that even though
forgetting can offer better adaptivity to changes in the
quality of sensors, it comes with the cost of slower reaction
towards abrupt events as seen in Figure 3. The lower the
forgetting factor, the faster the reaction of MMKFF to
abrupt events and vice versa.

5.3 Results from Exp2

Figure 4 shows the results for three different excerpts
of Exp2 compared to a fused CGM signal obtained by
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Fig. 4. Results of fusion using four different glucose sensors in the Exp2, for three different excerpts (left, middle, right
column). First row: Original glucose sensor values for sensors S1 to S4. Second row: Comparison of fused glucose
sensor values for the various sensor fusion methods. Third row: ARE (absolute relative error with respect to manual
sensor fusion). Fourth row: Trust values βi

k|k in (8), where solid lines are MMKFF and dashed lines are MMKF.
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