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Abstract 

Over the last decade, increasing municipalities have decided to gear up the construction of 

smart cities. The transformation to a smart city requires to digitalize the whole city as 

faithfully as possible. To accomplish this goal, the modelling of the city should consider two 

major aspects: 1) level of details (LoDs) of 3D building models and 2) the inclusion of 

semantic information. The LoDs concept following the City Geography Markup Language 

(CityGML) 2.0 standard depicts the content of 3D building models and meanwhile, LoD3 

building models are the research focus of this thesis. 3D building models at LoD3, along with 

semantic information, play an essential role in smart city-related applications. They not only 

are appropriate for visualization tasks, but also are beneficial to further advanced analysis, 

e.g., solar energy potential estimation, flood simulation, urban planning, post-disaster 

assessment, and telecommunication like the simulation of 5G signal propagation etc. 

However, LoD3 3D building models are only available in some small regions, and they are 

lack of the semantic information. Moreover, the cost of generating LoD3 models is high both 

in time and in labor, since it is impossible for existing methods to detect and reconstruct 

LoD3 buildings in an automated manner. Data acquisition is another challenge as well 

because it requires expensive equipment/sensors. Hence, this PhD thesis aims to propose 

possible solutions to resolve above challenges. 

This thesis concentrates on the utilization of crowdsourcing approaches for reconstruction of 

LoD3 3D building models with semantic information. Given the difficulty of automatically 

detecting and reconstructing LoD3 building models, and the challenge in data collection, an 

interactive approach is proposed to reconstruct LoD3 3D building models with semantics 

from VGI (Volunteered Geographic Information) data. Specifically, a web-based interactive 

3D building modelling platform, VGI3D, is developed to reconstruct 3D building models 

from street-level images, which contain rich information of façade structures, thus ensuring 

that the reconstructed 3D models have semantic information. VGI3D is designed to have 

simple interoperability in order to attract and encourage more volunteers for 3D model 

contributions, and also with the ambition of becoming a VGI platform to collect LoD3 

building models with semantics by using the power of crowdsourcing. Moreover, a limited 

usability testing is conducted among expert and non-expert participants, which proves the 

usefulness of VGI3D and its promising value for the 3D modelling community.  

Usually, the complete roof structures are not visible in street-level images. In VGI3D the roof 

models are automatically generated by selecting a specific roof type, but their geometric 

accuracy is not guaranteed. In addition, some buildings have complex roof structures, but 

they are excluded in the predefined simple roof types of VGI3D. To address these issues, an 

improved multi-task pointwise network is proposed. This network can simultaneously 

segment instances (i.e., individual roof planes) and semantics (i.e., groups of roof planes with 
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similar geometric shapes) in standard airborne laser scanning (ALS) point clouds. The 

segmented roof planes can then be reconstructed into polygon meshes and combined with the 

façade structures generated from VGI3D. As a result, more accurate and photorealistic 3D 

building models can be created eventually. Furthermore, to train the proposed network, a new 

roof dataset (RoofNTNU) with 7 typical roof types in West Europe is established, by taking 

ALS point clouds with standard point density as training data for automatic and more general 

segmentation. The experiments on RoofNTNU dataset demonstrate the effectiveness of the 

proposed method, achieving promising segmentation results: the mean precision (mPrec) of 

96.2% for instance segmentation task and mean accuracy (mAcc) of 94.4% for semantic 

segmentation task.  

The VGI3D with simple interoperability alone may not be sufficient to motivate more 

volunteers to contribute. After the 3D building models are reconstructed, it is necessary to 

integrate them into a virtual 3D city environment, which allows users to be able to view and 

interact with their 3D models in a 3D scene, presenting a natural way to perceive 3D objects. 

This can not only increase their sense of fulfillment in contributing to the VGI community, 

but also can potentially attract more valuable users from the 3D modelling domain, as well as 

even increase the interests of non-experts. To accomplish this goal, a 3D visualization 

platform is therefore developed, where digitizes the real city environment including 3D 

terrain, 3D building models, 3D road networks, and other road-related 3D objects (e.g., traffic 

lights/signs, trees, etc.).  

For the implementation of the 3D visualization platform, the 3D terrain covering the whole 

Norway is generated from Digital Terrain Model (DTM) data and is optimized using 

triangulated irregular network (TIN) and LoDs for faster rendering. 3D building models are 

obtained from three means: hybrid generation of ALS point clouds and OpenStreetMap 

(OSM) footprints (LoD2); VGI3D generation (LoD3); and crowdsourced SketchUp models 

(LoD3). All of them are georeferenced and saved as CityGML format and then are visualized 

on the platform relying on 3D Tiles technique. Regarding the 3D road networks, a collision 

detection is utilized to project the original 2D road polylines onto 3D terrain. Then, Catmull-

Rom spline algorithm is employed to expand the 3D road polylines to 3D polygons. To 

collect road-related objects (traffic signs/lights), an automatic method is proposed to detect 

road objects from VGI street-level images and place them to the approximate correct 

positions. Two convolutional neural networks (CNNs) are applied to detect and classify the 

road objects. Additionally, to locate the detected objects, an attributed topological binary tree 

(ATBT) is firstly established based on urban rules for image sequences to depict the coherent 

relations of topologies, attributes and semantics of the road objects. Then the ATBT is further 

matched with map features on OpenStreetMap (OSM) to determine the correct placed 

positions. A case study is conducted and achieves near-precise localization results in terms of 

completeness and positional accuracy. 
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To summarize, crowdsourcing is a powerful tool to enhance the reconstruction of 3D building 

models with semantic information, thus accelerating the digitalization of smart cities. VGI3D 

is a user-friendly and efficient system that requires less input and simple user interaction, 

making it ideal for quick yet relatively detailed (i.e., LoD3) modelling. RoofNet is a 

significant enhancement to VGI3D in roof reconstruction. The combination of VGI3D and 

3D visualization platform is beneficial to attract more users and motivate them for 3D 

building contributions at the same time. 

The thesis also presents the research directions for future work. For example, it is important 

to assess the quality of LoD3 3D building models generated by VGI3D, which has not been 

done yet. Hence, quality evaluation should be a priority in the future. Additionally, VGI3D is 

still in its early stage of development and has plenty of room for further improvement and 

optimization. On one hand, it is necessary to further strengthen our CNN model and enable it 

to detect façade elements as accurately as possible so as to reduce the user interaction costs 

for updating 3D models. On the other hand, from suggestions/comments of usability testing, 

it is apparent that reconstructing complex buildings will facilitate applications that place high 

demands on the 3D models. 
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Chapter 1  

Introduction 

1.1 Background and motivation 

Buildings are one of the most essential components of physical cities, serving multiple 

functions such as human habitation, economic and entertainment activities. Likewise, 3D 

building models have become the cornerstone of smart city-related applications in the digital 

world and have turned into reliable carriers that fuse multi-source city information and 

express corresponding functions reasonably. In addition, 3D building models facilitate an 

easy understanding about spatial attributes of virtual urban objects for ordinary people, as the 

world people live in is inherently 3D and it is natural for them to perceive and interpret 3D 

scenes more easily.  

3D building models are generally categorized into five different levels of details (LoDs) 

according to the international standard CityGML2.0 (Gröger and Plümer, 2012) of the Open 

Geospatial Consortium (OGC). The LoD0 represents the ground boundary (or footprint) of a 

building. The LoD1 represents a cube by extruding a LoD0 model. LoD2 models are 

composed of simplified roof structures and plain walls. LoD3 models are the upgraded LoD2 

with detailed façade structures such as windows and doors, and they have more realistic roof 

structures by including dormant windows if exist. Lastly, LoD4 models are more complex by 

containing the indoor components (e.g., ventilation pipelines and furniture) based on LoD3. 

Moreover, some researchers have also proposed the less generic and more application-driven 

specifications for 3D building models, because standard LoDs specification lacks necessary 

degree of freedom and flexibility to support applications for specific purposes (Tang et al., 

2020; Biljecki et al., 2016). Nevertheless, this thesis concentrates on the LoD3 building 

models standardized by the CityGML. 

In general, simple LoD1 and LoD2 building models cannot satisfy the requirements of many 

smart city-related applications, since they lack the sufficient information needed for 

simulation analysis and visualization. Instead, LoD3 building models with richer semantic 

information and more detailed geometries can create a more realistic virtual world that is 

intuitive for human brain to perceive and interpret simulation/visualization results from 3D 

scenes. Various innovative experiments can thus be carried out easily in this digital world 

modelled at LoD3 by modifying building geometries or semantics, which will greatly reduce 

the cost of trial and error. This idea is also consistent with the current trend of digital twins. 

All these advantages and potentials are credited with the advancements in technologies like 

laser scanning, photogrammetry and 3D computer vision.  

Nowadays LoD3 building models with semantic information are being increasingly employed 

by smart city-related applications, since semantics can provide added value and further 
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enhance their functions, from both the visualization and analysis perspectives. For instance 

(see Figure 1.1): 

Solar energy potential estimation: Solar power distributors need 3D building models to 

estimate solar energy potential in urban areas (Nelson and Grubesic, 2020), which involves 

analyzing and computing the geometric structure and attributes (e.g., area, tilt, azimuth, etc.) 

of each roof plane or building façade. It then will be beneficial to identify the most 

appropriate places for solar panel installations in cities. From a green and low-carbon 

perspective, the 3D building models can contribute to achieving the carbon emission goals set 

by the Paris Agreement (2022) to some degree. 

Flood simulation: Emergency management authorities require information on severity of 

flood damage to buildings and its impact on city areas, so that they can prepare protective 

measures in advance (Zhi et al., 2020). 3D building models and high-resolution digital terrain 

model (DTM) together with computational fluid dynamics are a possible solution to simulate 

flood in a numerical manner, and it can also vividly illustrate the entire dynamic process of 

flooding the city. With sufficient and comprehensive attribute information of 3D building 

models, the accuracy of flood simulation can be further enhanced.  

Urban positioning accuracy optimization: In urban environment, the positioning accuracy of 

GNSS (global navigation satellite systems) is usually degraded, which is mainly caused by 

lots of buildings’ flat surfaces as well as other obstacles and thus results in multipath 

interference and non-line-of-sight (NLOS) reception problems (Groves et al., 2013). Hence, 

map service providers expect to obtain 3D building models with the highest details, including 

detailed roof, façade, window and balcony structures, etc. These detailed geometric data 

enable map service providers to improve the positioning accuracy of GNSS in dense urban 

areas. Additionally, the usage of 3D building models allows to visually simulate GNSS signal 

reflections in a 3D scene, which is friendly for researchers to inspect results and debug their 

proposed algorithms.  

Urban planning: As cities continue to grow and global warming worsens, the urban heat 

island effect poses a significant challenge for urban planning. To tackle this challenge, 3D 

building models and 3D vegetation objects like trees can play an important role in examining 

their impacts on daytime temperature control and human thermal comfort (Park et al., 2021). 

If 3D building models can include façade material data, it becomes possible to assess the 

relationship between different building materials and indoor energy consumption, particularly 

during summer and winter (Li et al., 2020). With internal structures embedded in 3D building 

models, it is even possible to evaluate the energy consumption of a single indoor room. Such 

analyses can help reduce carbon emissions and save operation cost from the economy and 

sustainability point of view. These study cases can eventually guide urban planners in 

constructing greener, low-carbon and sustainable cities.  
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Post-disaster assessment: Post-disaster assessment usually requires 3D building models with 

visual appearance/texture, detailed geometry and rich semantics. It enables public safety 

agencies to better compare damages to buildings before and after disasters, such as 

earthquake (Redweik et al., 2017) and landslide (Zeng et al., 2021). It can also help 

quantitatively evaluate the economic losses and damage levels of buildings, and then provide 

scientific and reasonable guidance on post-disaster reconstruction, including the financial 

allocation required for housing reconstruction and resettlement of disaster victims.  

Business development and tourism: Due to the impact of the global pandemic, cities that rely 

on tourism as their primary industry have been severely affected economically. To revive the 

local economy and attract new tourists, 3D visualizations with highly detailed 3D building 

models, 3D terrain together with other 3D city facilities provides an alternative by offering 

attractive virtual online tours. A successful example is the digital protection of cultural 

heritage illustrated by (Ulvi, 2021). Relevant departments should think about expanding the 

small-scale 3D visualization to a city scale.  

   

Figure 1.1. Examples of smart city-related applications requiring 3D building models with semantic 
information. (a) Solar energy potential estimation (Source: solar energy potential in Helsinki, 2023); 
(b) Flood simulation (Source: Kilsedar et al., 2019); (c) Urban positioning accuracy optimization 
(Source: Miura et al., 2013); (d) Urban planning (Source: credit from Internet); (e) Post-disaster 
assessment (Source: Redweik et al., 2017); (f) Business development and tourism (Source: 
Buyukdemircioglu and Kocaman, 2020). 

 

The applications listed above require a tremendous amount of 3D building models with 

semantic information. To fulfill this need, in the last decade a number of cities like Berlin and 

New York have created 3D city models based on the CityGML standard which is freely 

accessible by the public. These 3D city models consist of buildings, roads and trees as well as 

parks, water bodies and even digital terrain. They represent the counterpart real-world objects 

with respect to their geometrical, topological, sematic and appearance properties (Stadler et 

al., 2009). However, most 3D building models in these open-source datasets are reconstructed 

in LoD1 or LoD2. LoD3 3D building models unfortunately exist only in some small areas, 
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lacking semantic information, or with semantic information presented as separated attributes 

rather than being embedded in geometries. There are several reasons. First, existing 

approaches cannot be directly applied to automatically detect and reconstruct LoD3 building 

models. Because the input data (like images or point clouds) is heterogeneous and their 

quality may vary greatly, which lead to the difficulty in developing a general and robust 

method for object detection from these input data. For example, the classic multi-view stereo 

algorithm often suffers from painful secondary editing to fix the dense 3D models they 

produce due to the varying quality of the input images (Furukawa and Ponce, 2009), which is 

apparently contrary to the original intension of automation. Second, from the modelling point 

of view, it is challenging to extract the outlines of geometries and adjust the topology among 

the detected objects at the same time. Third, data collection is expensive, since it needs 

expensive equipment or sensors as well as plenty of manpower and time. Given the 

abovementioned challenges, the Nordig Lab has been established as a collaboration between 

Trondheim municipality and the Norwegian University of Science and Technology (NTNU), 

in order to generate large-scale LoD3 3D building models with rich semantic information. 

This is also the primary motivation behind this thesis. 

On the other hand, in the last decade of Geographic Information System (GIS) domain, two 

activities (mapping and geospatial data collection) have been significantly changed from the 

professional domains to increased involvement of the public by using the power of 

crowdsourcing. Crowdsourcing is the idea of using human power and wisdom to collect or 

create data that requires human knowledge not easily performed by computers. The data with 

geographical locations captured by the means of crowdsourcing is called Volunteered 

Geographic Information (VGI) (Goodchild, 2007), which has drawn widespread attention 

since its inception due to its active role of creating, assembling and disseminating geographic 

data provided voluntarily by individuals (Sangiambut and Sieber, 2016). The ideas of both 

crowdsourcing and VGI form two rather important concepts of this thesis.  

Compared with geographic data obtained through conventional means, VGI data has the 

characteristics of high timeliness, rapid dissemination, rich information and low cost. It can 

adapt to the trend of fast information dissemination and high demand for real-time data 

production, becoming a significant supplement to professional geographic information (Zhou 

et al., 2018). Since the data acquisition process lacks standardized constraints, which may 

lead to uneven data quality and excessive data noises, thus numerous studies (Juhász and 

Hochmair, 2016; Barrington-Leigh and Millard-Ball, 2017; Zhang and Malczewski, 2018; 

Mohammadi and Sedaghat, 2021) have been carried out to assess the quality of VGI data in 

terms of positional accuracy, completeness, temporal quality, logical consistency and 

usability. Their research findings reveal that the quality of VGI data has great inhomogeneity 

on a global scale, i.e., the data created in developed countries has high quality, while the data 

quality in developing countries is deficient. There are many reasons for this fact, including 

project popularity, factors of language, culture and politics, and even Internet infrastructure, 
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etc. All these reasons may bring uncertainties to the development of VGI projects. But the 

data quality has been continuously improving over time, as errors or low-quality data can be 

quickly modified by other contributors. Taking OpenStreetMap (OSM) as an example, the 

data located in Europe (particularly West Europe) and North America is comparable to 

authoritative and commercial mapping data in all aspects except for positional accuracy. For 

points of interest (POI), OSM data is even superior to authoritative mapping data in terms of 

completeness, accuracy and update frequency. In recent years, VGI data has been 

increasingly used as important trial data in research relevant to geography and surveying 

because of its advantages of wide coverage, free access and relatively high quality. Hence, it 

is possible to apply VGI data into this thesis for 3D building reconstruction. 

There are a couple of widely used VGI data sources nowadays. For instance, 2D OSM 

(aiming to map the world and distribute geographic data to the public for free) can be assisted 

in 3D building modelling (Wang and Zipf, 2017); Flickr and Mapillary offer street-view 

images and they can be employed for urban scene understanding (Neuhold et al., 2017), and 

in turn, benefiting other applications like autonomous driving (Paz et al., 2020); Twitter data 

can be utilized for spatiotemporal and semantic analysis (Steiger et al., 2016). However, the 

majority of existing VGI data is in the form of 2D vectors, images or texts, while 3D VGI 

data sources are not sufficient.  

Regarding the 3D VGI data, Google 3D warehouse (2023) is the most famous project for 

sharing 3D models by means of crowdsourcing. Although this project offers both geo-

referenced 3D buildings and non-geo-referenced objects such as furniture and trees, users 

must have a certain level of 3D modelling knowledge and skills for data contribution. From 

this perspective, researchers therefore cannot expect much contribution of 3D building 

models through data-sharing platforms. Furthermore, several other projects generate 3D 

building models from OSM data, such as OSM-3D (Goetz and Zipf, 2013), OSM2World 

(Knerr, 2019) and OSM Buildings (2023). However, most of these building models are only 

modelled at the coarse level of details (LoD1 or LoD2), and thus lack the detailed façade 

structures, not to mention the semantic information. The roof geometries of LoD2 models are 

not accurate as well. Flickr and Mapillary are two other famous VGI image data providers for 

3D reconstruction, as smart devices with cameras are currently becoming increasingly 

powerful and cheaper, in particular for cell phones. Anyone is capable of acting like a sensor 

to contribute photos via cell phones, digital cameras or even a GoPro. By applying dense 

image matching algorithm (Agarwal et al., 2011) on a set of street-level images taken around 

the buildings, it is possible to reconstruct 3D building models from imageries. But this is still 

at the preliminary experimental stage. The main reason is that images are uncalibrated and 

have a variety of illumination, resolution and image quality. Additionally, images have 

unclear positional accuracy and may result in the reconstructed 3D building models having 

incorrect geographic coordinates. Consequently, all these challenges increase the difficulties 

in dense image matching and the 3D model reconstruction afterwards. 
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To summarize the major challenges discussed above, they can be categorized into two aspects: 

(i) 3D buildings reconstruction using existing approaches and (ii) VGI applying for 3D 

building models reconstruction.  

The first aspect involves two issues: (a) difficultly automated 3D reconstruction; (b) high-cost 

data acquisition. For point (a), as Musialski et al. (2013) pointed out, completely automatic 

modelling is known to omit user interaction and it is generally accepted that it cannot produce 

satisfying results in case of erroneous or partially missing data. Hence, inspired by the 

OpenBuildingModels project (Uden and Zipf, 2013) and the work of Wolberg and Zokai 

(2018), in which introduced user interaction to overcome geometry incompletion, it could be 

a possible solution by applying an interactive method for 3D reconstruction. As for the point 

(b), the success of Mapillary has proved that the idea of crowdsourcing is a quite good fit for 

VGI data collection by both experts and laymen. Although it is difficult to guarantee the same 

quality of VGI data in any geographical regions due to the individual differences among 

contributors, the convenience of VGI data acquisition and richness of data quantity can 

compensate for the shortage of data quality to some extent (Zhang et al., 2021), thus 

resolving the issue of high-cost data acquisition. Therefore, using VGI data by the power of 

crowdsourcing could be a good alternative solution.  

According to above description, the second aspect reflects that most existing 3D VGI 

building models are reconstructed in LoD1 or LoD2, leading to the façade elements (e.g., 

windows, doors and balconies) missing problem. To overcome this issue, street-level images 

can be utilized to provide rich façade information for reconstructing LoD3 3D buildings. 

Furthermore, in terms of modelling speed and intelligence, deep learning-based methods, 

especially Convolutional Neural Networks (CNNs), have achieved state-of-the-art results in 

several image-related tasks, like object detection, semantic segmentation, etc. Hence, it is 

reasonable to adopt deep learning technique to automatically detect façade elements from 

VGI street-level images. This is able to shift the main task of volunteers from tedious manual 

3D drawing to simple options selection and manual error correction, thus greatly reducing the 

workload. Each detected façade element can be given a label as semantic information, which 

is very helpful in generating 3D buildings with semantics. Following this idea, an enhanced 

YOLOv3 network (Redmon and Farhadi, 2018) for façade elements detection is trained from 

the scratch on a façade image training dataset — FacadeWHU (Kong and Fan, 2020), which 

covers 900 street-level images (850 images in Paris, France and 50 images in Trondheim, 

Norway). By employing this solution, it can not only resolve façade elements missing 

problem but also ensure that the generated LoD3 building models contain semantic 

information. 

As a result, all these three possible solutions drive the thesis to develop a web-based 

interactive system (called VGI3D) for LoD3 3D building reconstruction with semantics from 

VGI street-level images. OpenStreetMap is also embedded in the system to provide building 

footprints, ensuring that the final reconstructed 3D buildings have a real geographic scale and 
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real geographic coordinates. The reason for developing a system in the web environment is 

that it eliminates the need for additional environmental configuration and allows multiple 

users to perform 3D editing simultaneously online. This stands in contrast to most existing 

desktop-based 3D building modelling systems, such as Kim and Han’s work (2018). The user 

interface and interaction are designed to be as simple as possible, aiming to reduce the 

complexity of operation and to make it more user-friendly to ordinary users/non-experts. That 

can also lower the difficulty of promoting the system to the mass market, which is beneficial 

for the dissemination and development of the VGI3D. The ultimate goal of VGI3D is to 

become a VGI platform for collecting 3D building models with semantic information. 

Moreover, it is important to note that roof structures are normally invisible in the user 

uploaded street-level images. In VGI3D, roof models are automatically generated by 

selecting a pre-defined roof type, but their geometries are usually inaccurate. In some cases, 

buildings with complex roof structures are unfortunately excluded in the pre-defined options. 

Although users can manually draw the outlines of rooftops from publicly available bird-view 

satellite imageries and then generate 3D roof models by incorporating elevation information, 

the resolution of public satellite imageries is usually not very high. Additionally, the traced 

rooftop outlines may not be very accurate due to factors such as trees obstruction or other 

obstacles, thereby affecting the geometric accuracy of reconstructed 3D roof models. To 

improve the accuracy of reconstructed roof models, airborne laser scanning (ALS) point 

clouds could be an appropriate data source for accurate roof structure reconstruction because 

of its high precision on a large scale.  

Before reconstructing 3D roofs, the first step is to segment roof planes from ALS point 

clouds so as to transform a set of points into polygons more easily. Each roof plane then 

would have unique semantics and attributes (e.g., area, tilt, azimuth, etc.), which are crucial 

for certain applications like solar energy potential estimation. However, roof plane 

segmentation is a complex task, since point clouds carry no connection information and do 

not provide any semantic features of the underlying scanned surfaces (Gilani et al., 2018). 

The existing methods for roof plane segmentation are mostly based on clustering, model-

fitting and region-growing. They either rely on human intervention to select the appropriate 

input parameters for different datasets or they are not automatic and efficient (Zhang and Fan, 

2022). Therefore, the utilization of these conventional approaches is restricted.  

Inspired by the part segmentation on ShapeNetPart dataset (Yi et al., 2016) conducted by 

Mao et al. (2019) based on CNNs, it has shown great potential to apply CNNs to the roof 

plane segmentation task. Part segmentation aims to segment meaningful parts from an object, 

for example, a chair mainly consists of three meaningful parts (legs, seat and back). The task 

of roof plane segmentation is similar to part segmentation, but will further segment a coarse 

part (e.g., legs) into a couple of separated instances (i.e., independent legs). In general, the 

results of CNN-based methods rely on the training datasets. Consequently, to implement the 
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task, it is essential to train a CNN on the general and large-scale ALS point cloud dataset with 

roof plane annotations. 

Publicly available ALS point cloud datasets are region dependent and hence roof structures in 

different regions vary greatly, for instance the Vaihingen 3D Benchmark (V3D) 

(Rottensteiner et al., 2012), RoofN3D (Wichmann et al., 2018), DublinCity (Zolanvari et al., 

2019), the Hessigheim 3D Benchmark (H3D) (Kölle et al., 2021). Amongst them, only 

RoofN3D includes the labels of roof planes. But the average point density of RoofN3D is 

only around 4.72 points/m2, which is way lower than the standard point density (10–12 

points/m2) collected by current mainstream ALS equipment. Additionally, the roof types of 

RoofN3D are too simple and limited. It does not cover the typical roof types in West Europe 

(e.g., corner element, cross element and T-element; Kada, 2007), as it was captured in New 

York, US. That means the network trained on RoofN3D cannot be general enough to segment 

the typical roof structures of West Europe from the most standard ALS point cloud data. 

To close the above research gap, this thesis establishes a new roof dataset (named 

RoofNTNU) from ALS point clouds to facilitate roof plane segmentation. The initial ALS 

point clouds were collected by Trondheim Municipality in 2018, with the standard point 

density. The RoofNTNU contains 930 roofs and covers seven types of typical roof structures 

in West Europe. Every roof is manually segmented and carefully annotated with 

distinguishable plane labels by using CloudCompare (2022). Although the training dataset 

gets ready, existing deep learning-based methods cannot be directly employed to segment 

roof planes owing to the considerable differences in objects features of indoor scenes. 

Therefore, this thesis proposes an improved multi-task pointwise network (called RoofNet) 

based on ASIS network (Wang et al., 2019b) to segment building roof planes. RoofNet is 

then trained on the RoofNTNU. As a result, detailed façade models combined with accurate 

roof models can eventually get high-quality 3D building models at LoD3 with semantic 

information.  

As mentioned above, the ambition of this thesis is to make VGI3D become a VGI platform 

for collecting 3D building models with semantic information, by the power of crowdsourcing. 

In fact, it is rather challenging to realize this goal, since most existing VGI projects (e.g., 

Foursquare, Geo-wiki, Moovit, Wikimapia and OpenBuildingModels) have limited influence 

in the world except OSM and Mapillary, and some of them even have been shut down such as 

Clickworkers-be a martian and Panoramio. Both the data itself and their contributors are 

confined to a specific region or nation, far from reaching the scale of global coverage. The 

main reason is that these platforms and their collected data almost completely overlap with 

OSM and Mapillary. Users usually have a preconceived idea and are more inclined to 

contribute data to the most influential and mature platform, thus making it difficult for those 

similar VGI projects with less influence to draw the attention of new users. Moreover, as the 

representative of VGI image platform, Mapillary is actually developed on the basis of OSM. 

In its early years, the main contributors were the same group of people as OSM. They used 
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the concept of global collaborative mapping to collect street view data as a valuable 

supplement to OSM data. From this, it can be seen that core users are of great help to the 

development and promotion of the VGI platform. Therefore, for a new VGI platform to 

survive, it has to capture geographic information data that is completely different from OSM 

and Mapillary, such as 3D data. By doing so, project creators can motivate and attract 

volunteers to participate and increase the reputation, even seizing core users from other 

existing VGI platforms. While there have been several VGI platforms in recent years that 

collect 3D buildings and 3D drone data, the number of contributors is scarce. The main 

constraint on the development of these platforms is the limitation of interactive visualization. 

The data uploaded by volunteers cannot directly connect with a virtual 3D geographic scene, 

resulting in a lack of immediate visual satisfaction. This greatly weakens the sense of 

accomplishment for contributors, thereby losing their motivation to participate in the project 

and contribute data. Additionally, people’s understanding towards 3D building models is still 

at the stage of 3D visualization, and detailed 3D buildings with semantic information have 

not been really applied to practical projects. Hence, people are currently satisfied with the 

triangular meshes with textures of 3D buildings found in Google Earth, and they do not think 

it is necessary to contribute 3D building data on an unknown platform.  

Considering the above reason analysis and motivating volunteers to contribute 3D building 

models through VGI3D, this thesis develops a web-based 3D visualization platform where 

digitalizes a real 3D city environment by integrating 3D terrain (DTM), 3D road networks, 

3D building models and other road-related 3D objects (e.g., traffic lights & signs and trees). 

Volunteers are able to interact with the building models not only created by themselves but 

also by other contributors, and can also inspect the semantic information of 3D objects in the 

3D visualization platform. Furthermore, by exploring the areas without 3D buildings in 

virtual 3D scene, users may feel that they are the pioneers of this virtual world, and every 

building model they contribute is helping to improve this massive VGI project. That can 

significantly strengthen the sense of accomplishment for contributors and enhance their 

psychological comforts at the same time. As a result, the more volunteers participate in the 

VGI3D project, the higher the popularity and maturity of the project will be. This thesis 

envisions that in the future, the global coverage of detailed LoD3 3D building models can 

only be achieved through crowdsourcing, since many impoverished and developing countries 

and regions do not have the ability and resources to accomplish such a task. 

 

1.2 Research questions and research objectives 

The main goal of this thesis is to propose a novel approach for reconstructing 3D buildings 

with semantic information in a crowdsourcing manner, and to provide volunteers with 

sufficient motivations to participate in 3D building contributions for the 3D modelling 

community. For this purpose, the thesis addresses the following original research questions: 
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Q 1: Can crowdsourcing approaches be utilized for reconstructing 3D building models? 

How to design the framework of crowdsourcing methods to reconstruct 3D building 

models with semantics? 

A 1: Perform a literature review to study the first subquestion. 

From the contributor’s perspective, design a new interactive platform for collecting 3D 

building data to draw the attention of new users, differing from what those existing well-

known VGI projects have done. Furthermore, develop this new platform in a web 

environment to enhance the convenience and interoperability for users when operating 

and interacting. Meanwhile, connect the reconstructed 3D buildings with a virtual 3D 

geographic environment for interactive visualization, aiming to give users immediate 

visual satisfaction as well as the sense of psychological accomplishment after 

contributions and in turn, to motivate them for further data contributions. 

 

Q 2: How to enable the reconstruction of 3D building models with semantics by means of 

crowdsourcing? 

A 2: Develop a web-based interactive system, VGI3D, for 3D building reconstruction from 

crowdsourced street-level images based on deep learning technique. 

To reconstruct high quality roof models, propose an improved multi-task pointwise 

network (RoofNet) based on CNN to segment building roofs in point clouds. To train 

the network, establish a new roof training dataset (RoofNTNU) with seven typical roof 

types in West Europe and also with the standard point density of ALS point clouds, 

aiming to provide a general and robust segmentation capability on most ALS cloud data. 

 

Q 2.1: How to ensure that VGI3D has simple interoperability for both expert and non-

expert users? 

A 2.1: Conduct a usability testing by limited participants who have or have not rich 3D 

modelling experience and then analyze the data collected from the usability 

testing in terms of correlation and sensitivity. 

Q 2.2: How to analyze the effectiveness of the improved modules of the proposed RoofNet? 

A 2.2: Perform a network architecture study including five variant experiments on key 

improvements. 

 

Q 3: How to motivate volunteers and enhance their psychological comforts for more 3D 

building contributions using a 3D visualization platform? 
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A 3: Digitalize a real city environment by integrating base maps, 3D terrain, 3D road 

networks, georeferenced 3D building models and other road-related 3D objects so as to 

that placing the 3D buildings created by volunteers into a 3D scene to strengthen their 

sense of accomplishment and to increase the motivations for more contributions. 

Furthermore, all these 3D objects except 3D terrain are built on CityGML standard to 

enhance the interactive capability of the visualization platform. 

 

Q 3.1: How to render massive 3D data rapidly and efficiently in the web environment? 

A 3.1: To render high-resolution 3D terrain data efficiently, TIN (Triangulated Irregular 

Network) and LoD (a scale level defined in a tiling scheme, different from the 

CityGML’s LoD) are adopted as the rendering optimization strategies. 3D Tiles 

technology is also employed to efficiently render 3D buildings and other 3D data. 

Q 3.2: How to render initial 2D road segments on high-resolution 3D terrain in a 

cartographic manner? 

A 3.2: Employ the collision detection to interpolate the vertices intersected with 3D 

terrain to get 3D polylines. 3D polylines are then expanded to 3D polygons. At the 

same time, it needs to enable 3D polygons to be as smooth as possible at the bend. 

Q 3.3: How to enrich the 3D road-related objects of the visualization platform, such as 

traffic lights and signs at road intersections? 

A 3.3: Present an approach to automatically detect road objects from street-level image 

sequences and place them to correct locations according to a set of summarized 

urban rules. 

Figure 1.2 illustrates the research questions in context of different boundary levels. 

3D Building Modelling Level

Overall Framework Level

Q2: 
How to enable the reconstruction of 3D 
building models with semantics by means 
of crowdsourcing?

3D City Visualization Level

Q1: 
Can crowdsourcing approaches be utilized for reconstructing 3D building models? How to design 
the framework of crowdsourcing methods to reconstruct 3D building models with semantics?

Q3: 
How to motivate volunteers and enhance 
their psychological comforts for more 3D 
building contributions using a 3D visuali-
zation platform?

 

Figure 1.2. Research questions in context of the different boundary levels. 
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1.3 Thesis organization 

The remaining chapters of this thesis are organized as follows:  

Chapter 2 reviews the related work about 3D building model representation, reconstruction 

methods and 3D visualization standards as well as frameworks.  Chapter 3 describes the 

methodologies of the thesis including interactive 3D building modelling algorithms, roof 

plane segmentation method for the purpose of rooftop reconstruction and web-based 3D 

visualization. Chapter 4 presents the implementation details of the system or proposed 

approaches and main experimental results of the papers. Research questions are discussed as 

well. Chapter 5 summarizes the research and gives directions for future research.  

 

1.4 List of publications 

Four journal papers constitute the foundation of this doctoral dissertation. They are presented 

below together with my contribution of each paper. 

Paper 1: 

Zhang, C., Fan, H., & Kong, G. (2021). VGI3D: an Interactive and Low-Cost Solution for 3D 

Building Modelling from Street-Level VGI Images. Journal of Geovisualization and Spatial 

Analysis, 5(2), 1-16. 

Contribution: The VGI3D platform was implemented and introduced from the perspective of 

software engineering in this paper. I implemented all functionalities both for the frontend and 

backend, designed and conducted the usability testing among expert & non-expert 

participants in collaboration with Gefei Kong, analysed the testing results and drafted the 

manuscript. Hongchao Fan proposed the research idea. Revision and editing were done by all 

co-authors.   

Paper 2: 

Fan, H., Kong, G., & Zhang, C. (2021). An Interactive platform for low-cost 3D building 

modeling from VGI data using convolutional neural network. Big Earth Data, 5(1), 49-65. 

Contribution: The VGI3D platform was introduced from the perspective of geographic 

information system (GIS) for the first time. Gefei Kong and I made the equal contrition, 

implemented and evaluated the key algorithms of the VGI3D, wrote the majority of the initial 

manuscript. Hongchao Fan proposed the research idea. Revision and editing were done by all 

authors. 
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Paper 3: 

Zhang, C., Fan, H., & Li, W. (2021). Automated detecting and placing road objects from 

street-level images. Computational urban science, 1(1), 1-18. 

Contribution: I trained two deep learning models for the tasks of semantic segmentation and 

object detection, respectively, in collaboration with Wanzhi Li. I summarized and proposed 

six urban roles to assist the implementation of the methodology. I designed and conducted the 

experiment alone and visualized the results. Results evaluation and analysis were done 

together with Hongchao Fan. Finally, I drafted the manuscript. Revision and editing were 

done by all co-authors. 

Paper 4: 

Zhang, C., & Fan, H. (2022). An Improved Multi‐Task Pointwise Network for Segmentation 

of Building Roofs in Airborne Laser Scanning Point Clouds. The Photogrammetric Record, 

37(179), 260-284. 

Contribution: I manually established a new roof ALS point cloud dataset (RoofNTNU) with 

the help of three research assistants. I designed the labels definition for two different 

segmentation tasks (i.e., instance segmentation & semantic segmentation). I also proposed an 

improved deep learning model (RoofNet) to segment roof planes, conducted the experiment 

and visualized the results. The results evaluation and analysis were done together with 

Hongchao Fan. I wrote the initial draft of the article. Revision and editing were done by all 

co-authors. 
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Chapter 2 

Related work 

With the emergence of concepts such as digital twin cities and smart cities, the construction 

of a comprehensive, high-precision and real-time digital representation of the physical world 

has become a practical requirement. 3D building reconstruction, as a critical aspect among 

them, has put forward new demands for both industry and academia, since traditional 

methods for generating 3D building models can no longer support these new application 

scenarios and meet new requirements. Hence, additional data sources like VGI data and 

semantic information need to be added to construct multi-angle representations of 3D 

building models. In this context, VGI is gaining more attention as an important 

crowdsourcing means to achieve global 3D buildings coverage. In addition to VGI and 3D 

building reconstruction, 3D interactive visualization is another significant research aspect of 

this thesis, in order to directly connect the generated data by volunteers with virtual 3D 

geographic space, offering immediate visual satisfaction. This can greatly strengthen the 

sense of accomplishment for volunteers and increase their motivations to participate in global 

mapping project. The state of the art will be introduced in this chapter through a literature 

review regarding the VGI, 3D building reconstruction and visualization.  

 

2.1 Volunteered geographic information 

Volunteered geographic information reveals differently in geospatial data acquisition by 

means of crowdsourcing, compared to classic GIS. It refers to geographic information data 

created by Internet volunteers through interactive web platforms, by directly uploading sensor 

data or providing digital labor. This behavior is purely voluntary and non-profit-driven. 

Participants might simply want to make the open-sourced community better and make 

contributions to the collective cause. The VGI data can be classified into active contribution 

and passive contribution (e.g., spatial positioning and text data contributed by social media 

Twitter users), while most of them belong to the active contribution. Therefore, this sub-

section will only review the active-contributio VGI in terms of existing data platforms and its 

application in 3D modelling. More relevant works can be found in these published review 

articles (See et al., 2016; Yan et al., 2020; Lotfian et al., 2020). 

 

2.1.1 VGI data platforms by active contributions 

Relying on the crowdsourcing manner, interactive web-based VGI data sharing platforms 

provide data support and new inspirations for VGI-related researches. With the development 
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of Internet technologies, these platforms are no longer limited to offer 2D vector map data but 

to include geotagged street view images, POI data, thematic data such as public transport 

lines, and so on. An overview of existing VGI platforms is summarized and shown in Table 

2.1. From this, it reflects that the VGI data covers the commonly used data in daily use, and 

demonstrates that these VGI data have good sustainability and practicability. However, apart 

from a few exceptions like OSM and Mapillary, most VGI data platforms either are not well-

known to the general public or are in an inactive operational status due to various reasons, 

and some have even ceased operations and shut down.  

 

Table 2.1. The existing VGI data platforms by active contributions appeared in VGI-related 
researches (reproduced from paper (Fan et al., 2022)). 

Name Country Time Data Content Status 

OpenStreetMap UK 2004 – present Various geospatial map data Active 

Foursquare US 2004 – present Geographic locations Active 

Flickr US 2004 – present Geotagged photos Active 

Mapillary Sweden 2013 – present Street-level imagery Active 

Moovit Israel 2012 – present Public transport lines Active 

Panoramio Spain 2005 – 2016 Geotagged photos Closed 

Be a Martian US 2009 – 2020 Martian landforms Closed 

OpenSeaMap UK 2009 – present Nautical and geospatial data Active 

Wikimapia Russia 2006 – present Various geospatial map data Inactive 

 

2.1.2 VGI as a data source for 3D modelling 

Google 3D Warehouse is the first approach for sharing user-generated 3D models, including 

both geo-referenced objects like 3D buildings, and non-geo-referenced objects such as traffic 

signs and trees. The non-geo-referenced objects play a significant role in helping improve 

algorithms of automatic object detection in 3D computer vision. However, volunteers must 

have a certain level of 3D modelling knowledge and skills for voluntary data contribution 

(Fan and Zipf, 2016). Thus Google Earth launched Building Maker project for those users 

who are not experienced in 3D modelling but still want to contribute. This project was 

designed for generating geo-referenced 3D building models from commercial oblique images 

in the way of crowdsourcing. Although 3D Warehouse and Building Maker adopt a 

crowdsourcing manner to collect or create 3D models, the data they used may be 

commercial/official data, which are usually not free or not easy to access. Hence, several 

projects (e.g., OSM-3D and OSM Buildings) and study (Bagheri et al., 2019) were conducted 

for 3D reconstruction from free VGI data, i.e., OSM footprints and remote sensing-derived 

elevations. Unfortunately, the LoD of the generated building models is at the coarse level and 

therefore, they do not have detailed façade structures and accurate roof geometries. To 
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resolve these issues, Uden and Zipf (2013) proposed a web-based platform, 

OpenBuildingModels, aiming to upload and share complex 3D buildings or other landmarks. 

However, it was still in the very early stage and many open issues they concluded had not 

been addressed yet. Additionally, there were no subsequent studies to further follow up. Fan 

and Zipf (2016) investigated the possibility and presented the preliminary concept of 

interactively reconstructing 3D building models from OSM footprints and street-level images. 

Fan et al. (2021) then continued following and implementing the previous concept, by 

proposing an interactive method for simple LoD3 building reconstruction.  

 

2.2 Current approaches of 3D building model reconstruction 

Earth Observation (EO) data (e.g., point clouds, aerial & satellite images) and street-level 

imageries have been widely employed by traditional and deep learning-based methods for 3D 

building reconstruction. This sub-section will present the typical conventional and deep 

learning-based approaches proposed in the last decade and will also discuss their advantages 

and disadvantages. More relevant work can be found in these published review articles 

(Musialski et al., 2013; Liu et al., 2021). 

 

2.2.1 Traditional methods  

The popular traditional methods for 3D building reconstruction can be classified into two 

major categories: model-driven, data-driven methods. 

Model-driven methods  

The model-driven approaches firstly pre-define a set of parametrized roof models to form a 

catalog and then match the generated roof geometries from this catalog to derive the best 

fitting roof model. For instance, Henn et al. (2013) proposed a robust and automatic method 

to reconstruct LoD2 building models from pretty sparse LiDAR point clouds together with 

2D building footprints. Boosting by the MSAC (M-Estimator Sample Consensus) and SVM 

(Support Vector Machines), this method was capable of enabling estimated geometric 

primitives not only topologically correct but also satisfying symmetry and orthogonality 

constraints. Xiong et al. (2014) aimed to resolve the problems of small roof faces, low point 

density and noise occurring in the process of 3D building reconstruction, and presented a 

flexible graph edit dictionary combined with 15 pre-defined building primitives to 

automatically identify and fix errors when creating roof topology graphs. As a result, they 

achieved around 95% of correct reconstructed building models in the test areas. 

Buyukdemircioglu et al. (2018) even defined a larger catalog containing 32 different building 

primitives. At the same time, they also developed a semi-automatic system to reconstruct 

LoD2 building models from stereo aerial imageries. However, these three example methods 
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can only obtain promising performance on individual building primitive and cannot handle 

well with compound buildings with multiple primitives. To address this issue, Li and Shan 

(2022) presented a two-step multi primitive reconstruction framework based on RANSAC 

(RANdom SAmple Consensus; Fischler and Bolles, 1981) from point clouds. The proposed 

approach would firstly segment the combined building into a few simple predefined building 

primitives and secondly further segment these primitives by applying RANSAC and holistic 

primitive fitting. Lastly, the 3D Boolean operations were utilized to generate 3D building 

models, which could keep the consistent topology with their compositional primitives. 

Consequently, this method makes it possible to reconstruct building models with complex 

roof structures to some extent.  

The 3D building models reconstructed by above approaches are always at LoD2 and hence 

cannot meet the requirements of some other applications that need the 3D buildings with 

detailed façade structures (i.e., LoD3 building models). For this purpose, some researchers 

have explored novel methods on model-driven reconstruction of building facades. Similar to 

pre-defined building primitives, a façade can also be formulated by using synthesis of 

templates or grammatical rules (Müller et al., 2007). Amongst them, grammatical rules (also 

known as façade grammar) are the most widely used for façade reconstruction. Koutsourakis 

et al. (2009) summarized and proposed a set of shape and parametric rules as generic façade 

grammar. Then Markov Random Field (MRF) was built for each rule by assigning a 

probability. In this way, the method could reconstruct 3D building model with detailed façade 

structures from single street views. However, it is challenging to design a large number of 

complicated façade grammar to handle with complexity and diversity of building facades. 

Instead of predefining grammar rules, Dehbi and Plümer (2011) innovatively attempted to 

learn semantic models and grammar rules of building façades from precise descriptions and 

noisy observations (e.g., point clouds), in which the learning of topological and geometric 

constraints was also included. The proposed approach was proven the feasibility through 

various experiments and achieved reasonable results. Gadde et al. (2016) also adopted the 

same idea, but learned very general and compact grammar from a set of images by 

conducting a clustering algorithm during the grammar learning. As a result, they obtained 

better façade parsing results compared to other grammar-learned methods as well as 

handcrafted grammar rules.  

In summary, model-driven methods can ensure the reconstructed LoD2 building models are 

topologically correct (mainly refers to the roof parts), which are generated from such as ALS 

point clouds or aerial images. But problems may occur if there is no candidate for the roof 

shape in the predefined catalog (Buyukdemircioglu et al., 2022). Regarding the LoD3 

building models that are generated from street view imageries, terrestrial laser scanning (TLS) 

or mobile laser scanning (MLS) point clouds by means of façade grammar, as Wang et al. 

(2020) pointed out, the established grammar rules usually focus on the arrangement of 

elements on the facade and have a weak robustness to deal with occlusions, shadows and 
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specular reflections. In addition, model-driven approaches employ a restricted pre-defined 

building primitives or façade grammar, which may lead to the accuracy reduction and may 

not be able to reconstruct complex roof structures. 

Data-driven methods  

The data-driven approaches assume that a building is an aggregation of several segmented 

roof planes (Tarsha-Kurdi et al., 2007), and usually begin with a segmentation of the building 

ALS point clouds into individual roof planes and then assemble the roof planes to comprise 

polygonal building models (Li and Shan, 2022). Therefore, most of data-driven methods are 

involved in the building roof segmentation from ALS point clouds or unmanned aerial 

vehicle (UAV) photogrammetric point clouds, and they can be categorized as clustering-

based, model fitting-based and region growing-based methods. 

Clustering-based methods are basically considered as unsupervised learning where points are 

classified into distinguishable primitives based on pre-computed local surface features or 

properties. Kong et al. (2013) proposed a novel combination of the K-plane and K-means 

algorithms aiming to produce high-precision segmentation of roof structures. Additionally, an 

improved initialization method was used to acquire the better initial clustering centres for the 

K-means algorithm. Wang et al. (2019a) presented a new roof plane segmentation algorithm 

based on the DBSCAN density clustering technique. The optimal searching radius ε of 

DBSCAN could be automatically estimated through the intrinsic properties of the point cloud 

data. Despite the popularity of clustering-based approaches for segmentation, they are 

sensitive to noise and outliers, and have difficulty in neighborhood selection as well as being 

computationally expensive for multidimensional features in large datasets. 

Model fitting-based methods consist of two common used algorithms: the Hough Transform 

(HT) (Ballard, 1981) and the RANSAC. In the 3D HT for plane detection, all LiDAR points 

are first mapped to parameter space, in which each point corresponds to a roof plane in object 

space. Voting accumulators are then applied to count the points falling into the corresponding 

planes by searching for the local maximum values in the parameter space. These 

accumulators are the detected shapes in the object space. Nevertheless, the HT is sensitive to 

the selection of parameter values and inefficient for computational time (Nguyen and Le, 

2013). The standard RANSAC method typically fits a best mathematical plane with the most 

inliers from the LiDAR points and then considers this mathematical plane as the detected 

planar shape. Malihi et al. (2018) presented a two-level segmentation approach for 3D 

building reconstruction from UAV point clouds by combining RANSAC with contextual as 

well as conceptual knowledge. Since the initial UAV imageries were oblique, their work 

could reconstruct LoD3 3D building models with an acceptable geometric accuracy. 

Although RANSAC is robust on datasets with a large amount of noise and outliers, the issue 

of the spurious planes cannot be completely solved. 
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Region growing-based methods start with a chosen seed region/point and iteratively expand 

to the seed’s neighboring points until the growing meets the criteria. For instance, Nurunnabi 

et al. (2012) selected the seed points with the least curvatures in local surfaces, and then 

employed angle differences between normal vectors, the distance of points to planes, and 

distance between two points as the criteria for the growing. To improve the computational 

efficiency and robustness of region growing, Xu et al. (2017) presented a voxel-based region 

growing method with robust principal component analysis for building roofs segmentation. 

Both qualitative and quantitative results surpassed the representative algorithms. However, 

many studies (Li et al., 2020; Shao et al., 2021) have revealed that compared with clustering-

based methods, although region growing-based methods are more robust to outliers and noise, 

it is challenging to accurately determine the boundaries between adjacent planes and may 

tend to over- or under-segment. 

In Summary, the main issue of data-driven methods is that the segmented planar patches may 

not be intersected properly and thus resulting in topological or geometrical errors 

(Buyukdemircioglu et al., 2022). Moreover, data-driven methods either depend on human 

intervention and prior knowledge to select the appropriate input parameters for different 

datasets, or they are not automatic and efficient enough during the process of segmentation. 

 

2.2.2 Deep learning-based methods 

Benefitting from the advances in deep learning technique as well as the availability of 3D 

shapes training datasets, the 3D building reconstruction has been revolutionized through 

several specific tasks such as object detection, segmentation, classification, etc. Deep 

learning-based methods, in particular Convolutional Neural Networks (CNNs), can greatly 

break through the bottlenecks of traditional methods by automatically learning features of 3D 

shapes from aerial/satellite imageries or point clouds.  

CNNs were applied into 3D building reconstruction for the first time by Wang and Frahm 

(2017). By learning joint features from satellites images, vector map and LiDAR data during 

the training phase, their approach was able to reconstruct parametric building models in 

LoD1. To generate LoD2 building models, apart from training on orthophotos, Alidoost et al. 

(2019 & 2020) also fused digital surface models (DSM) as well as 2D rooflines into training 

and ensured that the reconstructed 3D buildings had simple estimated roof structures, but 

with low geometric accuracy. To improve the geometric accuracy of building models, Gui 

and Qin (2021) further optimized existing work and proposed an automate CNN-based 

approach for LoD2 models reconstruction from orthophotos and high-resolution satellite-

derived DSM, following by a “decomposition-optimization-fitting” paradigm. This method 

was evaluated on several testing datasets with different urban patterns and gained the high-

quality reconstruction results. 
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RoofN3D as the first public ALS point cloud training dataset, it provides not only distinct 

classes for buildings but also plane labels of each roof, for the purpose of 3D building 

reconstruction using deep learning technique (Wichmann et al., 2018). Since it was released, 

researchers started attempting to directly learn features from point clouds and then generate 

3D building models without the assistant of other data. Thus, Zhang et al. (2021) trained the 

well-known PointNet++ (Qi et al., 2017) on RoofN3D for building primitive recognition, and 

then utilized a holistic primitive fitting approach to generate LoD2 building models from 

point clouds in a model-driven way. However, the point density of RoofN3D is too low, only 

around 4.72 points/m2, and hence the proposed method may not have a general capability to 

be applied to other point clouds with standard point density. In a recent study, an end-to-end 

network, Point2Roof, was proposed by Li et al. (2022). It could directly reconstruct building 

roofs from ALS point clouds by identifying the corner points of roof planes using the learned 

deep features. Although this method is more concise and efficient than some existing 

approaches, the Point2Roof is trained on a synthetic dataset containing 16 different roof types 

handcrafted by authors themselves, which is different from the real datasets. Therefore, more 

evaluations on real datasets are necessary.    

However, automatic generation of high detailed LoD3 models using CNNs is still a 

challenging topic for researchers. To overcome this issue, some researchers take the 

interactive modelling into account, so that reconstructing LoD3 buildings with the help of 

CNNs. Thus an interactive system was developed by Nishida et al. (2018), with which users 

required to outline the boundary of building façade from a single building image. A façade 

grammar then would be automatically generated for procedural modelling of buildings using 

CNNs. Additionally, Liu et al. (2022) presented a translational symmetry-aware façade 

parsing method and achieved rather photorealistic 3D building models from one façade image. 

They automatically parsed the façade elements by combining semantic segmentation and 

instance detection and then interactively generated 3D models through procedural modelling. 

However, users were asked to repeatedly interact with the system, and gradually sketched and 

added floors, ledges, roof, windows, doors and balconies, respectively. Frankly speaking, it is 

not user-friendly to non-experts, since they may feel the interaction process tedious and thus 

may lose their patience. 

 

2.3 Visualization of 3D building models 

CityGML is mainly designed as a conceptual model and exchange format for the 

representation, storage and exchange of virtual 3D city models, even though it can be a 

supplement to the visualization standards/formats such as 3D Tiles (2023), glTF (2023) or 

COLLADA (Barnes et al., 2008). Therefore, dedicated 3D visualization technologies are 

needed to visualize 3D building models in an efficient manner.  



Related work 

22 
 

2.3.1 Standards for 3D visualization 

3D computer video games have become the most successful implementation of 3D 

visualization by high-definition object modelling and texture mapping, the realistic 

simulation of lights and shadows, as well as excellent rendering optimization. This kind of 

visualization is directly implemented on the hardware through calling a series of sophisticated 

graphic APIs (Application Programming Interface) provided by game engines. The space size 

of a game engine together with its all essential dependencies and material assets is commonly 

up to dozens of gigabytes (GB) and they also have high demands for computing performance 

of client devices, particularly powerful GPU (graphics processing unit). The better GPU, the 

more expensive. Hence, for 3D building models that need to be visualized by anyone from 

anywhere on any devices, it is not a smart choice to implement 3D visualization using a game 

engine, despite its impressive rendering capability.  

With the enhancement of data transmission through Internet and the development of Web 

Graphics Library (WebGL), it becomes possible to visualize 3D models online and hence 

several popular 3D standards for online visualization are proposed. They provide sufficient 

APIs for 3D scenes rendering and user interaction. As a result, the visualization of 3D 

building models would have no limitations of platforms, but only needs a browser with 

WebGL. Currently, there are a couple of popular international 3D visualization standards, for 

example: 

 glTF. It is an open standard that supports the efficient transmission and loading of 3D 

scenes and models by engines and applications, like games, virtual reality (VR) or 

web applications. glTF can minimizes the size of 3D assets and the runtime 

processing needed to unpack and use them.  

 KML (2023). It is designed and presented by Google used for displaying geographic 

data and visualization on existing or future web-based online and mobile maps (2D, 

e.g., Google Maps) in and earth browsers (3D, e.g., Google Earth).  

 3D Tiles. It is designed by Cesium for steaming, sharing, visualizing, fusing, and 

interacting with massive heterogenous 3D geospatial content (e.g., 3D buildings, point 

clouds) across desktop, web, and mobile applications. Built on glTF and other 3D data 

types, 3D Tiles has proven its strong ability on dealing with today’s ever-growing 

geospatial data and also reveals its huge potential of overcoming more complex 

challenges in the future. 

 CityJSON (Ledoux et al., 2019). It is a JSON-based encoding for storing 3D city 

models, aiming to offer a compact and developer-friendly standard so that files can be 

easily visualized, manipulated, and edited on the web-based applications.  

 COLLADA. It is an open standard XML-based schema for interactive 3D applications, 

enabling it easier to transport 3D digital assets between different graphics applications 

without loss of information. COLLADA is also compatible across multiple platforms.  
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2.3.2 Web-based 3D visualization frameworks 

Online 3D building model visualization belongs to the category of 3D WebGIS. Now there 

are two main technical routes to implement 3D WebGIS. The first one is to add plugins into 

the browser or to develop some special components in the operating system in order to 

facilitate the interactive visualization, and the second one is to rely on the latest WebGL 

rendering mechanism of the browser for upper-layer development (Xu et al., 2020). The 

whole framework is divided into frontend (client side) and backend (server side). The 

frontend is used for displaying geospatial data and providing user interaction while the 

backend is responsible for processing the request events, communicating with databases and 

doing relevant logical computation. Moreover, the network communication protocol as a 

bridge is utilized to connect frontend and backend. The 3D WebGIS frameworks employing 

browser’s built-in WebGL are currently popular ones because they do not need users to 

install additional plugins, greatly simplifying the environment configuration process. The 

convenience and applicability of 3D WebGIS with WebGL has been confirmed by practical 

application of real-time urban energy simulation in the Hammarby district of Stockholm, 

Sweden (Mao et al., 2020). 

When displaying large amount of 3D data online, web-based 3D visualization frameworks 

often face the problems such as slow speed of data loading or browser crash due to inherent 

limitations in browser memory and network bandwidth. Thus some previous studies fixed 

these problems from the perspective of 3D building generalization (Zhao et al., 2012; Baig 

and Rahman, 2013), and then visualized the simplified 3D buildings on the web side using 

existing rendering technologies. These solutions are indeed able to address the problems to a 

certain degree and improve the visualization performance, but at the expense of the geometric 

or semantic integrity of 3D building models. In other words, these solutions do not 

fundamentally solve the problems.  

To render massive 3D building models while remaining their geometric or semantic integrity, 

Cesium presented the 3D Tiles technology for the first time in 2015 and became an 

international standard afterwards. After that, the combination of 3D Tiles and WebGL has 

constituted a promising solution for efficiently rendering 3D geospatial data, not just 3D 

buildings. Song and Li (2018) proposed an improved 3D Tiles dynamic loading and 

scheduling strategy based on terminal memory and screen space error in order to rapidly and 

efficiently visualize massive 3D city models. Kulawiak et al. (2019) also applied 3D Tiles 

and other open-source technologies to present a framework for remote processing, integration, 

storage, visualization, and dissemination of 3D LiDAR in a web environment. Observing the 

challenges of visualizing BIM models in the WebGIS environment, Xu et al. (2020) explored 

a method by which BIM models can be transformed from Industry Foundation Classes (IFC) 

into 3D Tiles while ensuring their complete semantic attributes. Then a 3D WebGIS 

framework was developed for BIM model visualization based on 3D Tiles. Recently, Lu et al. 

(2021) even extended the application to meteorology field and created a new framework to 
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perform real-time 3D visual analytics of large-scale weather radar composing data taking 

advantages of 3D Tiles and WebGIS.  

3D Tiles shows the great advantages over other standards because of its powerful capability 

on rapidly rendering massive 3D geospatial data and being able to reduce memory 

consumption. Therefore, this thesis also adopts 3D Tiles standard to realize the fusion and 

visualization of multiple 3D georeferenced datasets in a web environment. 
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Chapter 3 

Methodology 

This chapter begins by briefly explaining the overall research framework of the thesis with 

three main modules. Then detailed description of each module regarding the methodology is 

introduced in Section 3.2 – 3.4, respectively. 

 

3.1 Research framework 

Reconstruction of 3D building models with high LoD and semantic information is a complex 

task which usually involves several steps including façade elements detection, roof plane 

segmentation, topology adjustment of detected/segmented objects, extraction of key points & 

edges, and georeferencing. These steps are primarily employed in the process of detailed 

façade and accurate roof modelling. To attract more volunteers to interactively create 3D 

buildings by means of crowdsourcing, it is necessary to simplify the process of interactive 

operations from user side. In addition, it is also of great help to integrate the generated 3D 

buildings into a virtual 3D city environment with other 3D city objects for better user 

experience and interaction, and in turn, the 3D visualization platform enables to increase their 

self-satisfaction and to stimulate more motivations to contribute 3D data.  

In this thesis, novel 3D reconstruction methods on façade level and rooftop level are studied 

thoroughly and are jointly utilized to generate high-quality 3D building models with 

semantics in LoD3. On the façade level, VGI3D, an interactive and low-cost solution, is 

presented for 3D building modelling (particularly detailed façade reconstruction such as 

windows, doors and balconies) from VGI street-level images using CNN. The VGI3D is 

web-based and its user interaction is designed as simple as possible. It also offers an 

interactive updating function if façade elements are incorrectly detected due to complex 

scenes of images such as distortion, blur, occlusion or bad illumination. On the rooftop level, 

an improved deep learning-based network, RoofNet, is proposed to segment roof planes from 

ALS point clouds. Meanwhile, a new roof dataset with seven typical roof types in West 

Europe, RoofNTNU, is established by taking standard ALS point clouds as training data for 

automatic and more general segmentation. All generated 3D building models are 

georeferenced with the real scales and correct geospatial coordinates. Following the 

CityGML2.0 standard, 3D buildings together with their semantics are then represented and 

stored as CityGML format, which would be convenient for data exchange/transformation on 

3D visualization platform afterwards.  

To verify and access the effectiveness of the proposed methods, the 3D modelling results are 

then evaluated by visual comparison and several commonly used quantitative metrics in deep 
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learning, respectively. The former is to manually compare real buildings with reconstructed 

ones in terms of completeness, visual plausibility and geographic location. The latter is to 

automatically test the accuracy/precision in the process of object detection or segmentation, 

since they are the critical steps of the 3D reconstruction. If the errors produced by them are 

less, the overall accumulated errors of the generated models would also be less accordingly. 

In addition, usability testing and user survey in the form of questionnaire are also conducted 

on VGI3D by limited non-expert/expert participants from the perspective of software 

engineering, which is intended to verify the usefulness and simple interoperability of VGI3D 

and to better optimize the system and user experience at the same time. The data collected 

from the questionnaire is then further discussed through data and correlation analysis. Both 

analyses aim to deeply mine the hidden findings in data answered by participants with 

different backgrounds. 

Last but not the least, a web-based 3D visualization platform integrated with multiple 3D city 

models is implemented, aiming to allow volunteers to interact with their generated 3D 

buildings in a virtual city environment and in turn, to increase their motivations for more 

contributions of 3D buildings using VGI3D. The 3D visualization platform is integrated with 

high-resolution DTM, 3D buildings coming from three different data sources, 3D road 

networks and road-related objects, and applies 3D Tiles technology as the rendering strategy 

for a rapidly display of massive 3D data. Because it is difficult for the browser to render and 

load a large amount of 3D data at one time. All of 3D city models except 3D terrain (stored as 

quantized-mesh format) are converted from CityGML into b3dm (Batched 3D Model) tiles 

and are visualized in the user browser through an asynchronous JavaScript library 

(CesiumJS). Besides, to improve the content richness of the 3D visualization platform, a case 

study focusing on road-related objects, specifically traffic lights and signs at the intersections, 

is conducted. The study aims to explore automated method for detecting and localizing these 

objects from street-level image sequences based on urban rules. The overall research 

framework of this thesis is illustrated in Figure 3.1. The rest of this chapter will introduce 

each part of proposed research framework in details. More specifically, the thesis introduces 

three main components, namely, detailed façade modelling, accurate roof modelling and web-

based 3D visualization platform. In the component of accurate roof modelling, it focuses on 

roof plane segmentation as an essential step in the process of roof reconstruction. 
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Figure 3.1. The overall research framework of the thesis. 

 

3.2 Detailed façade modelling 

The algorithms embedded in VGI3D for reconstructing LoD3 3D buildings with semantic 

information will be explained and described in this section. 

3.2.1 Workflow 

A typical workflow of the VGI3D is as follows:  

(1) Users upload all images belonging to the same building but with different façade 

orientations. 

(2) For each image, users draw the façade boundary, select its corresponding footprint 

edge from OpenStreetMap, pick a predefined roof type, enter the number of floors to 

estimate the building’s height and then click “Save” button; repeat this process until 

no more images need to be handled. 

(3) Images are transferred into the module of façade elements extraction to automatically 

obtain the locations of windows, doors and balconies under a 2D image coordinate 

system, and assign a semantic label to each façade element. 



Methodology 

28 
 

(4) These locations obtained in (3) are transformed from 2D into the 3D coordinate 

system to construct 3D building model and display it on the Web side in real time.  

(5) The generated 3D building model can be exported in CityGML/OBJ format by 

clicking “Download” button.  

Furthermore, some façade elements may be incorrectly detected because of low-quality input 

images or occlusion. Hence, interactively updating 3D models is necessary. For this purpose, 

VGI3D allows users to delete the wrongly reconstructed façade element, outline the boundary 

of incorrect façade element upon the image and select a corresponding element type for it. 

After that, the updating algorithm would automatically fuse the new façade element into the 

original 3D building and adjust element’s location to make the entire model look coordinated 

and harmonious. The abstract overview of the workflow is shown in Figure 3.2.   

CNN
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Figure 3.2. A typical workflow of the VGI3D. In the user interaction module, users provide façade 

boundaries, roof type, façade orientation and number of floors. Then, images are inputted into façade 

elements extraction module to automatically obtain the locations of the windows, doors and balconies. 

In the 3D building modelling module, the locations are transformed from 2D to 3D space and are then 

rotated according to the façade orientation. Finally, the 3D building model is reconstructed and 

displayed to users. 

 

3.2.2 User interaction 

In the user interaction module, users have the flexibility to upload multiple unique images of 

a building from different façade orientations, denoted as NI. There are no special 
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requirements for image overlap or camera type. But it is worth noting that users should make 

sure each image capturing a complete façade structure of the building. Users then outline the 

corners (XF, YF) of the façade on an image to define façade boundary, where XF = {xF1, xF2, …, 

xFn} and YF = {yF1, yF2, …, yFn}, (XF, YF)∈{(XF, YF)ni | ni=1,…,NI }. These corners serve as 

key points for reconstructing 3D façade models and rectifying the locations of façade 

elements. Additionally, users select the roof type and the corresponding OSM footprint edge 

for each façade image, which helps in generating the roof model and providing real 

geographic scale and coordinates. The number of storeys should also be entered to estimate 

the building model’s height in case the real building height is not available in the database. 

All these information is then utilized by façade elements extraction method to prepare for the 

3D building reconstruction. 

3.2.3 Location extraction of façade elements 

Façade elements detection 

Since the VGI street-level images uploaded by users usually have a variety of complex scenes 

such as occlusion or bad illumination, traditional approaches are not able to deal with these 

scenes well. The existing approaches of interactive reconstruction need users to outline each 

single façade element one by one, which is labor-intensive and time-consuming. The 

completeness and accuracy of façade elements cannot be guaranteed when users are drawing. 

Therefore, it should be a good alternative solution to utilize CNNs for façade elements 

extraction from images because of their proven capability. Then YOLOv3 is chosen to detect 

façade elements due to its reliable and excellent performance. It can also make an impressive 

balance between detection accuracy and speed. Following the work of Kong and Fan (2020), 

the Darknet53 is applied as the backbone of YOLOv3. The whole network is retrained on 

FaçadeWHU dataset from scratch to detect façade elements (windows, doors and balconies) 

directly upon the uploaded images. Then, each location of façade elements, also called 

bounding box, is organized and formulated as (Ccnn1, Ccnn2, categorycode) = ((xcnn1, ycnn1), 

(xcnn2, ycnn2), categorycode) for the location’s correction afterwards. (Ccnn1, Ccnn2, 

categorycode)∈{(Ccnn1, Ccnn2, categorycode)} = {(Ccnn1, Ccnn2, categorycode)ni
k, i | k=1,…,Nc; 

i=1,…,nk; ni=1,…,NI }, where where Nc is the number of categories,  nk is the number of 

façade elements of a façade in each category, and NI is the number of input images.  

Perspective distortion correction and inference of façade elements 

Perspective distortion often occurs in initial VGI images by distorting the shape or layout of 

the façade elements, resulting in the incorrect locations of the façade and its façade elements. 

Hence, it is essential to correct the perspective distortion before 3D building reconstruction. 

The following steps are listed to resolve this issue: 
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(1) The aspect ratio 𝑟 =  ℎ  / 𝑤  of every facade bounding box is firstly calculated, 

where hF and wF are the height and width of the façade bounding box drawn by the 

user. Meanwhile, the façade height and width after perspective distortion correction 

are defined as hp and 𝑤 = ℎ 𝑟⁄ , respectively. As a result, the corrected bounding 

box of the façade is ((0, 0), (wp , hp)), and the corrected location of façade can be 

denoted as (XpF , YpF)=((0, 0, wp , wp), (0, hp , hp , 0)). 

(2) A homography matix, M, is then computed by façade’s bounding box before and after 

perspective distortion correction using Equations (3-1) - (3-3). This homography 

matrix is regarded as the perspective transformation matrix and is used to correct 

perspective distortion. 
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𝑤
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𝑚 𝑚 𝑚
𝑚 𝑚 𝑚
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𝑦
1

 

 

(3-1) 

𝑥 =
𝑥

𝑤
=

𝑚 𝑥 + 𝑚 𝑦 + 𝑚

𝑚 𝑥 + 𝑚 𝑦 + 𝑚
 

 

 (3-2) 

𝑦 =
𝑦

𝑤
=

𝑚 𝑥 + 𝑚 𝑦 + 𝑚

𝑚 𝑥 + 𝑚 𝑦 + 𝑚
  (3-3) 

where (𝑥 , 𝑦 ) is the initial façade location obtained from user’s drawing, and (xp, yp) 

is the new façade location after perspective correction. 

(3) All the locations after applying perspective distortion correction can be denoted as 

(XpF , YpF) for façade, and {(Cp1 , Cp2 , categorycode)ni} for the façade elements. 

Specifically, the location of each façade element is formulated as (Cp1 , Cp2 , 

categorycode)ni = ((xp1 , yp1), (xp2 , yp2), categorycode)ni. (Cp1 , Cp2 , categorycode)ni∈

{( Cp1 , Cp2 , categorycode)ni}. 

Now all the locations caused by perspective distortion have been corrected, but the layout of 

façade elements is still misaligned and will influence the 3D building reconstruction. 

Therefore, a layout correction approach for façade elements is introduced here: 

(a) First of all. for each façade, the locations of façade elements after perspective 

correction from xy-xy to xy-wh are reorganized and formulated as {((xpc , ypc), (wep , 

hep), categorycode)ni}, where (xpc , ypc) is the center of each façade element, and (wep , 

hep) is the width and height of every façade element. The locations are then grouped 

by categorycode and outputted as {((𝑥  , 𝑦 ), (𝑤𝑒  , ℎ𝑒 ), categorycodek)ni}, where 

k = 1, 2, …, Nc, and Nc is the number of categories.  

(b) For each category of façade elements, the new xy-wh locations are sorted by ypc. Then 

the height difference between two adjacent locations is represented as ( ℎ  , 

categorycodek),  
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ℎ , = 𝑦 , − 𝑦 ,   

𝑘 = 1,2, … , 𝑁 , 𝑖 = 1,2, … , (𝑛 − 1) 
(3-4) 

 

where Nc is the number of categories, and nk is the number of façade elements in each 

category of a facade. 

(c) A clustering algorithm, K-means++ (Arthur and Vassilvitskii., 2007), is employed to 

classify height difference into two clusters. One cluster Gs has small height difference 

and represents that façade elements are at the same storey. Large height difference is 

composed of the other cluster Gl, which represents the façade elements are at different 

storeys. 

(d) The façade elements of each category are classified into Nf groups, where Nf is the 

number of floors entered by the users. Every group corresponds to a floor of the 

building, and then computes the mean y-center coordinate 𝑦  as well as mean height 

ℎ𝑒  of the façade elements, j = 1, 2, …, Nf. 

(e) Repeat steps (b) - (d) to correct the x-center coordinates of the façade elements, but 

the height difference, y-center coordinates and mean height should be accordingly 

replaced with width difference, x-center coordinates and mean width. As a result, the 

layout of all façade elements can be eventually rectified. 

The locations of façade elements after layout correction are formulated as {((xac , yac), (wea , 

hea), categorycode)ni}. However, this xy-wh locations is not suitable for 3D building 

reconstruction and thus they need to be changed to xy-xy locations. Then the location of each 

façade element is denoted as (Cl1, Cl2, categorycode)ni = ((xl1, yl1), (xl2, yl2), categorycode)ni. 

Repeating above steps (1) - (3) and (a) - (e) will be able to obtain all the locations of inputted 

façades as well as corresponding locations of their façade elements.  

After that, the roof’s location can be easily inferred according to locations of the façade, i.e., 

the highest façade’s coordinate on the front view is usually the lowest roof’s coordinate. 

There are four predefined roof types in VGI3D and the roof model will be automatically 

reconstructed based on user’s selected roof type. The roof location is denoted as (XR, YR). 

3.2.4 3D building reconstruction 

Before the 3D modelling, it is necessary to normalize the locations obtained from subsection 

3.2.2 because their values are in a various range due to different sizes of input images. Thus 

locations of each image ni are then normalized from range (0, hp) to range (0, hth) in height, 

and from range (0, wp) to (0, ℎ 𝑟⁄ ) in width using Equation (3-5), where hth is a constant to 

make sure the same height of all images. The location of each façade element after 

normalization is formulated as (Cnr1 , Cnr2 , categorycode)ni = ((xnr1 , ynr1), (xnr2 , ynr2), 

categorycode), (Cnr1 , Cnr2 , categorycode)ni∈{(Cnr1 , Cnr2 , categorycode)ni}. Additionally, 

the center of all locations is moved to coordinate (0, 0) for better visualization.  



Methodology 

32 
 

𝑥 , = 𝑥 , 𝑤 × ℎ 𝑟⁄ −  (ℎ 𝑟 )⁄ ,   𝑦 , = 𝑦 , ℎ × ℎ −  ℎ         

𝑘 = 1,2, … , 𝑁 , 𝑖 = 1,2, … , 𝑛  
(3-5) 

Now the normalized locations of façade and its façade elements are still under a 2D reference 

coordinate system, and they need to be transformed into 3D space for the purpose of 3D 

modelling. Therefore, a lightweight JavaScript 3D library, Three.js (Dirksen, 2015), is used 

to reconstruct 3D shapes from 2D polygons by applying a useful modelling function, 

ExtrudeGeometry. The 3D locations after coordinate transformation are formulated as ((X3D , 

Y3D , Z3D), categorycode)ni, where X3D = {𝑋 , 𝑋 ,…, 𝑋 }, and 𝑋  = (𝑥 , 𝑥 ,…, 

𝑥
( )). Y3D, Z3D are the same as X3D. Nbp refers to the number of all elements and can be 

calculated by 𝑁 = 1 + ∑ 𝑛 . co is the number of corners of the façade as well as each 

façade element.  

By repeating above steps for every input image, it is possible to figure out NI 3D location 

groups of a building formulated as {((X3D, Y3D, Z3D), categorycode)}={((X3D, Y3D, Z3D), 

categorycode)ni | ni=1,…,NI }. If NI >1, that means users input more than one image with 

different façade orientations belonging to a building.  

Next step is to rotate 3D locations of every façade and its façade elements to their right 

positions in a 3D space. The right spatial positions are the corresponding footprint edges 

selected by users in the user interaction module. Please note that the Three.js utilizes a right-

hand rule for reference coordinate system and hence the y-axis is face-up. The rotation matrix 

Mr can be formulated as shown in Equation (3-6), where θ is the rotation angle between 

façade derived from image and corresponding footprint edge (i.e., real geographic façade 

position). 

𝑀 =
cos 𝜃 0 sin 𝜃

0 1 0
− sin 𝜃 0 cos 𝜃

 (3-6) 

The rotated 3D location groups can be obtained by applying Equation (3-7) and they are 

denoted as {((X3Dr , Y3Dr , Z3Dr), categorycode)}. 

[𝑋 𝑌 𝑍 ] = 𝑀 [𝑋 𝑌 𝑍 ]            

𝑔 = 1, … , 𝑁  
(3-7) 

Finally, the 3D building model is reconstructed based on rotated 3D locations. The semantic 

information of all building parts is derived from category code of each element and they are 

visualized in different colors according to a predefined color scheme. 
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3.3 Roof plane segmentation  

Though the main goal of Section 3.2 is to reconstruct detailed façade structures, the roof 

model is also automatically inferred and generated by selecting a predefined roof type, for the 

purpose of integrity of the reconstruction results. However, the geometries of 3D roof models 

are usually inaccurate by using this way. Hence, to reconstruct the 3D roof models as 

accurately as possible, it is a promising solution to firstly segment roof planes from ALS 

point clouds and then reconstruct the segmented roof planes into 3D polygons by detecting 

the corner/key points. In this way, the final 3D roof model would not only have accurate 

geometric structure but also have semantic information for every single roof plane. This 

section will elaborate a deep learning-based method of roof plane segmentation in details.  

The proposed method can be regarded as an improvement of the ASIS network (Wang et al., 

2019b) with an incorporated feature fusion (FF) module and a modified joint features 

learning (JFL) module. With its novel network architecture and efficient learning strategy of 

mutual features, the ASIS network has delivered remarkable outcomes for both instance and 

semantic segmentation tasks on the S3DIS (Armeni et al., 2016) indoor point cloud dataset. 

Nevertheless, the ASIS network neglected the fused features generated from the decoder of 

backbone network (PointNet++), which have the potential to create more distinctive features 

and improve prediction accuracy. To resolve the issues highlighted earlier in ASIS, an FF 

module has been added into the proposed method, and certain modifications have been made 

to the JFL module to enhance the overall segmentation results. 

3.3.1 Network architecture 

Three main components of the network are depicted in Figure 3.3, i.e., the PointNet++ 

serving as the backbone network, the FF module, and the JFL module. The backbone network 

is composed of a shared encoder and two parallel decoders, where one decoder branch is 

responsible for extracting point-level semantic features for semantic predictions (i.e., groups 

of roof planes with similar geometric shapes) and the other decoder branch performs instance 

segmentation (i.e., separated roof planes). The FF module is integrated immediately after the 

semantic decoder to fuse high- and low-level features extracted from the semantic decoder. 

The JFL module promotes the learning of both semantic and instance features. 
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Figure 3.3. (a) The architecture of our RoofNet with two proposed modules: (b) the feature fusion (FF) 
module; (c) the joint features learning (JFL) module. 

 

The proposed approach starts with inputting a point cloud of size 𝑁  , which is then encoded 

by the shared encoder to produce a 𝑁 × 512 feature matrix. This feature matrix is then 

decoded separately by two parallel decoders into an 𝑁 × 128 shaped feature matrix. The 

output of the semantic decoder is represented by 𝐹  , while the output of the instance decoder 

is represented by 𝐹  . Subsequently, the semantics decoder generates two parallel branches 

with the same 𝐹  as input. One of the parallel branches fuses the 𝐹  with the features from 

different layers of the semantic decoder via an FF module, thereby producing a new fused 

semantic feature matrix 𝐹  of shape 𝑁 × 128. Finally, JFL module receives three types of 

features, namely 𝐹 , 𝐹  and 𝐹 , and produces two matrices (𝐸  and 𝑃 )  simultaneously. The 

matrix 𝐸  with shape 𝑁 × 𝐷  denotes the point-level instance embeddings, where D 

represents the dimension of the embeddings. The clustering algorithm later utilizes 𝐸  to 

predict the instance label for each point. Given that points belonging to the same instance are 

closely situated in embedding space, while those belonging to different instances are far apart 

(Wang et al., 2019b). Hence, embeddings from the network are output instead of directly 

outputting instance predictions. The other matrix 𝑃  with shape 𝑁 × 𝐶 represents the final 

semantic predictions, where the most likely class is outputted from C types of candidate 

classes. 

During the training phase, RoofNet is supervised by a hybrid loss function ℓ  comprising a 

standard softmax cross entropy loss ℓ  for learning per point semantics and a 
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discriminative loss function ℓ _  consisting of three terms to learn instance embeddings, 

which is inspired by instance segmentation in 2D images (De Brabandere et al., 2017). The 

hybrid loss function ℓ  is defined as follows: 

ℓ = ℓ + ℓ _                                   

                        = ℓ + 𝛼 ∙ ℓ + 𝛽 ∙ ℓ + 𝛾 ∙ ℓ  
(3-8) 

ℓ =
1

𝐾

1

𝑁
[‖𝜇 − 𝑒 ‖ − 𝛿 ]    (3-9) 

ℓ =
1

𝐾(𝐾 − 1)
2𝛿 − 𝜇 − 𝜇 , 𝑘 ≠ 𝑘  (3-10) 

ℓ =
1

𝐾
‖𝜇 ‖  (3-11) 

where ℓ  applies a pulling force that aims to draw embeddings towards the center of the 

instance (i.e., mean embedding of the instance), while ℓ  applies a pushing force that 

separates different instances from each other. The regularisation term ℓ  pulls all instances 

towards the origin to form a boundary for embedding values. In addition, K is defined as the 

number of instances; 𝑁  stands for the number of points in 𝑘-th instance; 𝜇  refers to the 

center of 𝑘-th instance (the mean embedding); the embedding of a point is represented by 𝑒 ; 

‖∙‖  is used to calculate 𝐿  distance; 𝛿  and 𝛿  are the margins for the loss ℓ  and ℓ  

respectively; [𝑥] = 𝑚𝑎𝑥(0, 𝑥). The experiments follow the guidance of De Brabandere et al. 

(2017), where set 𝛼 = 𝛽 = 1, 𝛾 = 0.001 are set. 

Last but not the least, during the testing phase, a mean-shift clustering algorithm (Comaniciu 

and Meer, 2002) with 𝑏𝑎𝑛𝑑𝑤𝑖𝑡ℎ = 0.6 is used to generate instance labels on embeddings 𝐸  

produced from the instance segmentation branch. For semantic labels, an argmax operation is 

performed on semantic predictions 𝑃  to obtain the semantic labels. 

3.3.2 Feature fusion (FF) module 

It is widely accepted that the low-level layers of a network tend to learn more local and 

detailed features such as edges and curves, while the higher-level layers tend to learn more 

global and semantic features such as object shapes. This insight has been obtained through 

the visualization of each layer's output (Qin et al., 2018). Many researchers have attempted to 

fuse features from different layers to improve the accuracy of semantic segmentation. 

Experimental results have shown that such fused features have a positive impact on learning 

and result in better segmentation results, both for 2D images (Chen et al., 2018) and 3D point 

clouds (Hu et al., 2020). 
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Drawing from previous research successes, the feature fusion is also adopted in this thesis, 

and an FF module is introduced (as shown in Figure 3.3b) to enhance the network's 

predictions. Due to computational efficiency and GPU memory consumption, only the last 

three layers of the decoder are fused. These three features are denoted as 𝐹 , 𝐹  and 𝐹  , with 

corresponding shapes of 𝑁 × 256, 𝑁 × 128 and 𝑁 × 128, respectively. In the FF module, 

an upsampling operation, involving interpolation, is first conducted on 𝐹  and 𝐹  to achieve 

the same point number for all features. This results in 𝐹  and 𝐹  being upsampled and denoted 

as 𝐹  and 𝐹  , respectively. Next, 𝐹  and 𝐹  are concatenated, producing 𝐹 .  𝐹  is then 

added to 𝐹  using element-wise addition, generating the feature 𝐹  with a shape of 

𝑁 × 256 . Lastly, 𝐹  is passed through a 1D convolution (Conv1D) with batch 

normalization and ReLU non-linearity to produce the final fused feature 𝐹  with a shape of 

𝑁 × 128 . The upsampling operation is carried out using the inverse distance weighted 

average based on the three nearest neighbors, following the approach of Qi et al. (2017).  

3.3.3 Joint features learning (JFL) module 

Instance segmentation is generally an extension of semantic segmentation, since the latter has 

already grouped points with the same semantic label together, while the former aims to 

separate each distinguishable instance from the groups. Therefore, the quality of the semantic 

features has a significant impact on instance segmentation results. While the ASIS network 

has shown that joint learning of the two tasks can lead to a win-win situation (Wang et al., 

2019b), it remains unclear whether fused features can better facilitate the learning of semantic 

features and, in turn, enhance the learning of instance embeddings. To address this issue, this 

thesis proposes modifications to the ASIS network by adding an FF module and ultimately 

forming a JFL module (Figure 3.3c).  

To incorporate the semantic features into instance features, the initial semantic feature matrix 

𝐹  is transformed into an instance feature space using two sequential Conv1Ds with batch 

normalization and ReLU non-linearity, resulting in 𝐹 . Then, 𝐹  is added to the instance 

feature 𝐹  element-wisely to obtain the semantic-aware instance features 𝐹 . Finally, the 

instance embeddings 𝐸 , which have a shape of 𝑁 × 𝐷, are produced from the semantic-

aware instance features 𝐹  through a Conv1D operation followed by dropout (Drop). The 

complete integration procedure can be outlined as follows: 

𝐹 = 𝐶𝑜𝑛𝑣1𝐷 𝐶𝑜𝑛𝑣1𝐷(𝐹 ) + 𝐹  (3-12) 

𝐸 = 𝐶𝑜𝑛𝑣1𝐷 𝐷𝑟𝑜𝑝(𝐹 )  (3-13) 

It is expected that the instance embeddings can enhance the learning of semantic features and 

improve the distinction of boundaries between two groups of sematic classes, since in the 

instance embedding space, points of the same instance are brought closer together while 

different instances are pushed apart. Hence, following the ASIS, the k nearest neighbors (kNN) 

of each point in the instance embedding space are found, which forms an index matrix with a 
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shape of 𝑁 × 𝑀 . Then the fused semantic matrix 𝐹  (𝑔𝑒𝑡𝐺𝑟𝑜𝑢𝑝𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 ) is used to 

generate groups of fused semantic features denoted as 𝐺  with a shape of 𝑁 × 𝑀 × 128. 

Each group represents a local region in the instance embedding space that is close to its 

centroid point. After that, the fused semantic features of each group 𝐺  and the original 

semantic matrix 𝐹  are aggregated through a max aggregation operation (𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛) to 

produce the instance-aware semantic feature matrix 𝐹 . Finally, the instance-aware semantic 

features 𝐹  are fed into a Conv1D layer with dropout to generate the final semantic 

predictions 𝑃  with a shape of 𝑁 × 𝐶. The entire process can be described as follows: 

𝐺 = 𝑔𝑒𝑡𝐺𝑟𝑜𝑢𝑝𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠(𝑘𝑁𝑁(𝐸 ),  𝐹  ) (3-14) 

𝐹 = 𝐴𝑔𝑔𝑟𝑒𝑔𝑎𝑡𝑖𝑜𝑛(𝐺 ,  𝐹 ) (3-15) 

𝑃 = 𝐶𝑜𝑛𝑣1𝐷 𝐷𝑟𝑜𝑝(𝐹 )  (3-16) 

3.3.4 Roof plane ALS point cloud dataset 

As mentioned earlier, currently available public ALS point cloud datasets have several 

limitations such as the lack of roof plane annotations, insufficient coverage of roof types, or 

point densities that deviate significantly from standard point clouds. To address these 

research gaps, a new point cloud dataset called RoofNTNU is manually established based on 

raw ALS point cloud data with a standard point density of 12-20 points/m², captured by the 

mapping authority of Trondheim Municipality. The typical roof structures are then selected 

from residential areas based on the roof types concluded by Kada (2007), with certain 

modifications as some roof types are not suitable for Norway. Additionally, complex roof 

structures that are a combination of two or three “sub-roof structures” are defined as a new 

roof type, combination, in this thesis. Overall, seven typical roof structures, labeled from 1 to 

7 (flat, hipped, gabled, corner element, T-element, cross element, and combination) are 

identified and presented in dataset RoofNTNU, as shown in Figure 3.4. 

     

Figure 3.4. Visualization of defined roof types in the dataset RoofNTNU. The left figure is the 
abstract representation of roof types 1-6, while the right figure shows some practical examples of roof 
type combination/7. 
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The recognition of the geometric shapes that comprise the roof structures is crucial for 

instance labeling of roof planes as it teaches the neural network to learn the fundamental 

geometric shapes from point cloud data. These geometric shapes have been summarized into 

five categories: rectangle, isosceles trapezoid, triangle, parallelogram and ladder-shaped. 

Each category has been given two or four labels based on the proposed roof types in Figure 

3.4. The label digits range from 0 to 11 and have been assigned a unique and distinguishable 

color for visualization purpose, as shown in Figure 3.5. Moreover, semantic labels for 

semantic features learning have also been defined to benefit the learning of instance 

embeddings. Label digits ranging from 0 to 4 have been assigned to represent groups of roof 

planes with the same geometric shapes. For example, hipped roof can be decomposed into 

two groups: a pair of isosceles trapezoids and a pair of triangles. A specific color map has 

also been assigned to semantic labels. Please note that even though some colors are the same 

between semantic and instance labels, they belong to two different tasks, and the colors of 

semantic labels should not be confused with the colors of instance labels. The structure of the 

ground truth has been denoted as [x, y, z, roof-type, instance-label, semantic-label], where 

the coordinate [x, y, z] has been normalized, and the correspondence between two sorts of 

labels with plane geometries and roof types can be found in Table 3.1. 

Table 3.1. Overview of correspondence among semantic and instance labels, plane geometries and 
roof types in the ground truth. Please note that do not confuse semantic label color with instance label 
color, as they belong to two different tasks. 

Semantic labels Instance labels Plane geometries Roof types 

0 
0 

Rectangle 
Flat, Gabled, T-Element, Cross Element, 
Combination 1 

1 
2 Isosceles 

trapezoid 
Hipped, Corner Element, Combination 

3 

2 
4 

Triangle Hipped, Corner Element, Combination 
5 

3 
6 

Parallelogram Corner Element, Combination 
7 

4 

8 

Ladder-shaped T-Element, Cross Element, Combination 
9 

10 

11 

 

As a result, the dataset RoofNTNU is established by manually annotating and segmenting a 

total of 930 different roofs with 3498 planes, comprising over 2.2 million points. The dataset 

includes seven typical roof structures found in Western Europe and has a standard point 

density. Thus it can provide general usability for roof plane segmentation from most ALS 

point cloud data. The distribution of the roof types in RoofNTNU is shown in Figure 3.5. For 

the purpose of neural network training, each roof type is randomly divided into three subsets 
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with an 8:1:1 ratio, namely training dataset (744), validation dataset (93), and testing dataset 

(93). 

 

Figure 3.5. The distribution of the roof types in RoofNTNU dataset. 

 

3.4 Web-based 3D visualization  

Although the generated LoD3 3D building models can be visualized in a local 3D viewer of 

VGI3D, they are unable to connect to a virtual 3D city environment and perform interactive 

visualization over there, resulting in a lack of immediate visual satisfaction. If integrating the 

3D buildings into a virtual 3D city environment, it would not only address the shortcomings 

mentioned above but also strengthen the sense of accomplishment for users, since they would 

realize that every tiny contribution is of great help in improving and enriching the whole 

massive VGI project. Moreover, such a vivid 3D geographic scene is likely to increase users’ 

motivations to participate in the project and contribute more 3D building data. Therefore, a 

web-based 3D visualization with WebGL is a great solution to meet above requirements 

when taking convenience and accessibility into consideration. A similar and existing 

implementation is Google Earth (Gorelick et al., 2017), but it cannot accept CityGML as 

input format to integrate other new 3D data. For this reason, a new 3D visualization platform 

is developed based on Cesium, which is a JavaScript library based on WebGL with interfaces 

for various data sources for base maps, vector layers, etc (Schilling et al., 2016). 3D Tiles 

technology is also utilized for rapid rendering of massive 3D data over the web.  

The entire 3D visualization platform consists of the following main components: 

Base map 

A layer with geographic information that serves as a background and provides context for 

additional layers that are overlaid on top of the base map. 
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3D terrain 

3D terrain data is tiled as a set of high-resolution tiles in modern Quantized Mesh format that 

are derived from georeferenced DTM data with one-meter resolution. The terrain tileset 

covers the whole Norway and has 18 zoom levels for users to observe the terrain by zoom 

in/out. 

3D building models 

There are three sorts of data sources comprising the 3D building models with different LoDs. 

The first one is LoD2 building models but without semantic information generated from ALS 

point clouds and OSM footprints using the method proposed by Huang et al. (2022). Second, 

LoD3 building models with semantics generated by volunteers via VGI3D. The third one is a 

group of crowdsourcing SketchUp building models which cover all campus of NTNU in 

Trondheim. Yet, the data format conversion (i.e., .skp to CityGML) and georeferencing of 

them are necessary, because the format .skp is specially designed for SketchUp under a local 

coordinate system and hence, it cannot be directly visualized on web-based applications. 

Thus, the tasks of format conversion and georeferencing are implemented with the help of 

OSM footprints and an open-sourced SketchUp plugin, GEORES (2023).  

3D road networks 

3D road networks are a series of coherent road segments represented by 3D polygons and are 

generated from initial 2D polylines with no elevations. To visualize them on high-resolution 

3D terrain, it is essential to interpolate the additional vertices of road segments according to 

the ups and downs of the actual terrain, as shown in Figure 3.6, where the red points are the 

desired additional vertices. This thesis applies collision detection algorithm to find these 

additional vertices out by creating an axis aligned bounding box (AABB) tree (Hart and 

Rimoli, 2020), and then employs Catmull-Rom spline algorithm (Twigg, 2003) to expand the 

3D road polylines to 3D polygons, which can make curves keep as smooth as possible. 

 

Figure 3.6. The sketch of 2D road polylines mapping onto terrain meshes (borrowed from the work of 
Vaaraniemi et al. (2011)). 
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3D road-related objects 

To improve the content richness of the 3D visualization platform, this thesis studies the 

automated detection and localization of road objects at road intersections from street-level 

image sequences. The whole workflow is depicted in Figure 3.7 and consists of three 

modules: (1) data preprocessing and cleaning module; (2) object segmentation and 

recognition module; (3) localization module. 

Street View
 Image 1

...

Street View
 Image N

Input
Area to explore Segmentation

Traffic Signs Detection & Classification

Deep Learning Pipeline

...

...

1

2 3

4 6

Topological Binary Tree

Traffic 
Signs 
Cross 

Validation

Output
Geotagged Objects

Urban
Rules

Data preprocessing and cleaning Object segmentation and recognition Localization   

Figure 3.7. The workflow of the automated detection and localization of road objects from street-level 
images. 

 

The workflow starts with the data preprocessing and cleaning module for (1) image 

sequences identification within intersection buffers and (2) correction of GPS positions of 

image sequences. The latter issue may be caused by the tall buildings obstructing the GPS 

signal or the low accuracy of GPS receiver built into the camera, and can be addressed by 

structure from motion (SfM) algorithm (Snavely et al., 2008).  

In the second module, road-related objects such as sidewalks, traffic signs and lights are 

extracted from images using a CNN-based method, PSPNet (Zhao et al., 2017) trained on 

Mapillary Vistas dataset (Neuhold et al., 2017). Nevertheless, the quality of VGI images 

varies greatly, making it challenging to ensure accurate segmentation for all images. Thus an 

approach (YOLOv3) based on object detection is also adopted to address this issue together.  

In the third module, since VGI images usually are lack of camera intrinsics in their EXIF 

information, it is not possible to apply photogrammetry methods for the localization purpose. 

Therefore, an alternative solution is figured out by creating an attributed topological binary 

tree (ATBT) according to urban rules. The ATBT can depict the coherent relations of 

topologies and attributes of the extracted road objects. Summarized urban rules are listed in 

Table 3.2. With the image’s shooting location approaching to the intersection, ATBT is able 

to update itself until it no longer changes. Furthermore, the scene depth information is also 

taken into account when creating and updating the ATBT. For instance, in Figure 3.8 two low 

traffic lights (labeled by No. 9 and 19 in the third image) are identified as a pair according to 

Rule 4. Their height should be the same in reality, however, the No. 19’s height appears to be  
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Table 3.2. Summarized urban rules used in attributed topological binary trees (ATBT). 

Rule No. Description of the urban rules 

Rule1 1) Traffic light is surrounded by sky; 2) distance between the traffic light and road 
surface is far more than twice the height of the tallest pedestrian. 

Conclusion: high traffic lights 

Rule2 1) Traffic light is surrounded by buildings; 2) distance between the traffic light 
and road surface is less than or equal to twice the height of the tallest pedestrian. 

Conclusion: low traffic lights 

Rule3 The sidewalks on the same side are connected. 

Rule4 Low traffic lights on the sidewalks tend to appear in pairs. 

Rule5 Traffic signs either appear alone, or are usually close to the low traffic light above 
or both up and down, or arrange together. 

Rule6 The minimum width of an ordinary sidewalk is 2~3 meters. 

 

lower than No. 9. Because photography follows the law that the object appears larger when it 

is closer and smaller when it is farther away. To overcome this challenge, a combination of 

scene depth information and Rule 4 is used to infer that these two traffic lights are indeed a 

pair and should be located on the sidewalk, leading to a better performance of the ATBT. 

Finally, the approximate positions of road objects can be determined by matching ATBT with 

OSM footprints as well as the usage of urban rules. The proposed method is carried out on 

two object categories, traffic lights and signs, as a specific case study. Furthermore, a 

comprehensive explanation about how this method works can be found in Paper 3. 
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No.              Original image                 Image semantic segmentation                    ATBT 

1 

 

2 

 

 

 

3 

Figure 3.8. ATBT generation and its self-updating considering the scene depth information. The 
image numbered 1-3 are gradually approaching to the intersection. 
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Chapter 4 

Implementation, results and discussion 

The existing related studies mentioned in Section 2.1 have proven the possibility and have 

shown great potential for reconstructing 3D building models with semantics using 

crowdsourcing approaches, even though this topic is still a quite young and innovative 

research field with many open questions. Differing from the 2D vectors (e.g., OSM) and 

images (e.g., Mapillary or Flickr), a new type of VGI data with an additional third dimension 

is very likely to draw much attention of users from both academia and industry. Besides, 

conventional 3D geospatial data production methods can hardly meet the needs of emerging 

and rapidly developing digital twin cities. They require to add additional 3D VGI data (e.g., 

detailed 3D building models with semantic information) as one of significant data sources to 

construct multi-source and multi-angle representations of geographic entities. For this 

purpose, a new 3D VGI data collection platform should be designed from the perspective of 

contributors. The platform should be developed in a web-based environment to ensure user 

convenience and interoperability during operation and interaction. Furthermore, it is also 

crucial to connect the reconstructed 3D buildings with a virtual 3D geographic environment 

to enable interactive visualization. This connection aims to provide users with immediate 

visual satisfaction and a sense of psychological fulfillment upon making contributions, 

thereby fostering motivations for further data contributions. Hence, all these measures can 

answer the proposed research question Q1. 

The rest of this chapter will introduce the detailed framework implementation of Q1 and 

present the key results published in 4 journal articles (Paper 1, 2, 3, and 4). Research 

questions Q2 and Q3 and their subquestions will be also addressed in respective sections.  

Section 4.1 shows the results related to the proposed interactive 3D building reconstruction 

system, VGI3D, and answers research questions Q2 to Q2.3. Specifically, Paper 1 and Paper 

2 describe the methodology implementation for reconstructing 3D building models in a 

crowdsourcing manner, as presented in Section 4.2.1. Section 4.2.2 displays the results of 

Paper 4 concentrating on visual and quantitative results for both roof instance and semantic 

segmentation tasks on RoofNTNU testing dataset, for the purpose of roof model 

reconstruction. Furthermore, an architecture study of the proposed network is also conducted. 

Section 4.2 covers the results about the web-based 3D visualization platform including its 

basic framework and overall visualization result integrated with all mentioned components. 

Research questions Q3 to Q3.3 are answered, among which Paper 3 addresses the Q3.3. 
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4.1 3D building reconstruction using crowdsourcing method 

The crowdsourcing method for reconstructing LoD3 building models with semantic 

information takes three aspects into consideration. They are the simple interoperability, low 

cost, generality and robustness. Simple interoperability is also called ease of use, aiming to 

make the whole modelling process as simple as possible. Low cost refers to reduce the costs 

of labor/workload, processing time and equipment investment during the generation of 3D 

buildings. Generality and robustness enable the method to perform well on most of cases as 

much as possible, which can better promote the method to the mass market and attract 

ordinary users to use. Besides, simple interoperability is a necessary condition for achieving 

the latter two aspects. Therefore, the proposed method complies with this logic, and it is 

possible to realize the ambition of becoming a VGI platform to collect 3D building models 

with semantics. 

 

Q 2: How to enable the reconstruction of 3D building models with semantics by means of 

crowdsourcing? 

A web-based interactive system, VGI3D, for 3D building reconstruction from VGI street-

level images based on deep learning technique is proposed, which is mainly utilized for 

generating detailed façade models including doors, windows and balconies upon them. 

VGI3D adopts the widely used software design pattern known as MVC (model-view-

controller). An overview of the VGI3D architecture applying MVC is introduced in Section 

4.2.1 from a software engineering perspective. 

As mentioned in Section 3.3, since roof structures are usually invisible in street-level images, 

thus roof models are inferred by VGI3D, thereby resulting in the inaccurate roof geometries. 

To restructure high quality roof models, roof plane segmentation is a critical step in the 

process of 3D roof reconstruction. Then outlines of segmented roof planes can be extracted 

more easily, enabling the rooftop reconstruction. Section 4.2.2 illustrates the visual and 

quantitative result of roof plane segmentation task performing on RoofNTNU testing dataset. 

 

4.1.1 VGI3D 

VGI3D is implemented by a popular software design pattern, MVC (model-view-controller). 

In general, the controller interprets mouse and keyboard inputs from the user interaction, 

sends a request to the database to retrieve data, processes the data, and updates the view 

accordingly. An abstract overview of the system architecture is shown in Figure 4.1. 
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Figure 4.1. Abstract overview of the VGI3D architecture. 

 

In this design pattern, the “M” stands for “model” and corresponds to the data layer, where 

handles all interactions with the database. A PostgreSQL relational database with PostGIS 

plugin is thus established for spatial geometry search. The data layer also stores all building 

footprints and partial buildings’ height in Norway, along with the images uploaded by users 

and the generated 3D building models. Footprints are used in interaction layer for edge 

selection and supplying geographic information of buildings. With this geographic 

information, the real ratio of building facades can be calculated, ensuring that generated 3D 

building models have the accurate geographic coordinates and the same ground boundaries as 

the real ones,  

The “V” refers to the view or interaction layer, through which users can operate the system 

via a graphical user interface. Since one of the design principles of the VGI3D is to 

prioritizes simplicity and user-friendliness, so a drawing idea is borrowed from Mapbox 

(2023) SDK (software development kit) to simplify drawing the outline of the façade 

boundary. Leaflet (2023) is also utilized to select the edges of the footprints from an 

embedded OpenstreetMap and transmitted them to the backend for calculation through 

GeoJSON. Furthermore, the view layer incorporates other tools for user interface rendering 

and interaction. HTML5, cascading style sheets (CSS), and Bootstrap are employed for 
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rendering user graphics, while Three.js provides 3D-rendering support. User interaction is 

handled through the use of jQuery, which listens to response events. To enable 

communication between the frontend and backend, an HTTP connection, Ajax, and Jinja2 

template engine are intermittently utilized. The data flow between the frontend and backend 

is transmitted in the JSON format over the Internet. 

The “C” represents the “controller”, which refers to the business layer and is the backbone of 

the system. Most key modules are placed there to handle the user's actions and perform the 

3D building reconstruction. As another design principle of the VGI3D is the generality and 

robustness, so the modelling method should not be constrained to a limited number of façade 

styles and input image quality. To achieve this, a three-step pipeline is presented. First, it 

employs YOLOv3 to automatically detect façade elements such as windows, doors, and 

balconies. Utilizing a CNN model not only fulfills the goal of generality and robustness, but 

also significantly reduces the time required for the entire workflow, since extracting façade 

elements is the most time-consuming step reported by Nishida et al. (2016).  Second, it then 

corrects the locations of façade, detected façade elements, and roof to ensure they are under 

the same coordinate system. Third, it converts 2D elements to 3D and obtains the final 3D 

building model.  

Furthermore, the VGI3D is currently deployed on a physical Dell workstation with an Ubuntu 

16.04 as operating system, and can be accessed at 

https://vgi.ibm.ntnu.no:5002/facade/interact/. 

 

Q 2.1: How to ensure that VGI3D has simple interoperability for both expert and non-

expert users? 

The interoperability of the VGI3D for both expert and non-expert users is evaluated by 

conducting a small-scale usability testing at the NTNU and Wuhan University, China, with a 

total of 30 participants aged between 25-43 years, including 7 women and 23 men. Among 

them, 6 are experts with 3D modelling experience in fields such as 3D city modelling and 
photogrammetry, while the remaining participants are non-experts in fields such as computer 

science, urban planning, 3D visualization, etc. Before the testing, all participants are provided 

with a tutorial video and a slide presentation to familiarize themselves with the system. Each 

participant is randomly assigned a folder containing building images to use during the testing. 

After completing the testing, the participants are asked to fill out a user feedback form which 

includes questions about, for example, their demographic information, experience with 3D 

modelling, satisfaction with the interaction operation, and any suggestions or comments they 

have.  

After the usability testing, 93.3% (28/30) of the participants report that the user interface is 

easy and clear to understand, which is really encouraging and positive feedback. Regarding 
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the 3D modelling, out of the 30 participants, 20 (66.7%) are able to reconstruct 3D models 

successfully, with the majority being satisfied with the speed and plausibility of the results. 

Some participants even express that VGI3D was highly beneficial to their own research. 

However, there are also negative feedback, including issues with the tips being difficult to 

notice and a bug that made it hard to delete façade elements. Moreover, some participants, 

particularly those experienced in BIM, find that the reconstructed models are less 

photorealistic than they were used to.  

In addition to the qualitative feedback, quantitative evaluation and analysis of the 

questionnaire data are also performed from a statistical perspective. The statistical results 

about raw data have been summarized and presented in Table 4.1 (raw data can be found in 

Appendix B of Paper 1). Outliers are identified as single points in box plots as shown in 

Figure 4.2.  

 

Table 4.1. Statistics about raw data collected from participants. Mean(µ), standard deviation(σ), lower 
quartile(Q1), middle quartile(Q2), upper quartile(Q3), interquartile range (IQR). 3DBMs: 3D 
Building Models; 3DBMing: 3D Building Modelling; 3DMing: 3D Modelling. 

 Involved 
in 3BMs 
apps? 

Experienced 
using 
browser? 

Experienced 
with 
3DMing? 

VGI3D 
easy to 
use? 

Modeling 
result 
looks 
plausible? 

Modeling 
result is 
completed? 

VGI3D 
looks 
useful for 
3BMing? 

3D 
viewing 
smooth? 

Fast 
modeling 
speed? 

µ 3.20 4.20 2.40 4.00 3.83 3.57 3.90 4.53 4.20 

σ  1.30 0.60 1.33 0.52 0.58 0.56 0.60 0.50 0.40 

Q1 2.00 4.00 1.00 4.00 4.00 3.00 4.00 4.00 4.00 

Q2 3.00 4.00 2.00 4.00 4.00 4.00 4.00 5.00 4.00 

Q3 4.00 5.00 3.00 4.00 4.00 4.00 4.00 5.00 4.00 

IQR 2.0 1.0 2.0 0 0 1.0 0 1.0 0 

Skew

-ness 
-0.19 -0.11 0.51 -1.45 -0.98 -0.84 -0.90 -0.13 1.50 

 

 

Figure 4.2. Box plot of data for illustrating skewness. 
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Correlation analysis 

To study the potential relations between participants’ responses (i.e., the answers to questions 

defined in questionnaire), some possible pairs are illustrated in the form of scatter plot. Since 

the sample size of participants is relatively small, the scatter plots sometimes appear sparse 

and nonlinear, but still contain bound data internally (as seen in Figure 4.3). Hence, to 

accurately identify associations between participant responses, Spearman's rank correlation 

coefficient with full covariance has been computed between all possible question pairs (see 

Table 4.2), which is suitable for dealing with linear, nonlinear, and skewed relationships. 

   

Figure 4.3. Examples of sparse scatter plots with nonlinearity in appearance but including bound data 
points internally. 

 

Table 4.2. Correlation table showing Spearman’s rho and significance values for parameters. Values 
in red present strong positive correlation; values in blue present moderate positive correlation; other 
values show weak correlation. 3DBMs: 3D Building Models; 3DBMing: 3D Building Modelling; 
3DMing: 3D Modelling. 

 
Involved 
in 3BMs 
apps? 

Experienc-
ed using 
browser? 

Experienc-
ed with 
3DMing? 

VGI3D 
easy to 
use? 

Modeling 
result 
looks 
plausible? 

Modeling 
result is 
completed? 

VGI3D 
looks 
useful for 
3BMing? 

3D 
viewing 
smooth? 

Fast 
model-
ing 
speed? 

Involved in 
3BMs 
apps? 

1         

Experienced 
using 
browser? 

−0.22 
(p=0.25) 

1        

Experienced 
with 
3DMing? 

0.76 
(p=0.00) 

−0.10 
(p=0.60) 

1       

VGI3D easy 
to use? 

0.54 
(p=0.00) 

−0.17 
(p=0.36) 

0.50 
(p=0.00) 

1      

Modeling 
result looks 
plausible? 

0.51 
(p=0.00) 

−0.28 
(p=0.13) 

0.33 
(p=0.08) 

0.68 
(p=0.00) 

1     

Modeling 
result is 
completed? 

0.36 
(p=0.05) 

−0.01 
(p=0.95) 

0.14 
(p=0.45) 

0.45 
(p=0.01) 

0.64 
(p=0.00) 

1    

VGI3D 
looks useful 
for 3BMing? 

0.47 
(p=0.00) 

−0.08 
(p=0.66) 

0.50 
(p=0.00) 

0.82 
(p=0.00) 

0.63 
(p=0.00) 

0.34 
(p=0.06) 

1   

3D viewing 
smooth? 

0.50 
(p=0.00) 

0.05 
(p=0.78) 

0.31 
(p=0.09) 

0.40 
(p=0.03) 

0.56 
(p=0.00) 

0.60 
(p=0.00) 

0.27 
(p=0.14) 

1  

Fast 
modeling 
speed? 

0.44 
(p=0.01) 

0.10 
(p=0.60) 

0.72 
(p=0.00) 

0.37 
(p=0.04) 

0.28 
(p=0.13) 

0.08 
(p=0.68) 

0.38 
(p=0.04) 

0.30 
(p=0.11) 

1 
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First of all, I investigate whether participants’ involvement in 3D building model apps or 

experience with browsers or 3D building modelling is associated with their opinions on 

VGI3D’s ease of use/understanding, plausible and completed modelling results, and 

usefulness for the 3D building modelling community. The findings, as presented in Table 4.2, 

indicate weak positive correlations between involvement in 3D building model apps and the 

completeness of modelling results, but with nearly 100% confidence, and moderate positive 

correlations with ease of use, modelling results plausibility, and VGI3D usefulness. Although 

the correlation is weak, it is still supported by participants as shown in Figure 4.3(left). 

However, given the small sample size, it needs more data to confirm this trend. Surprisingly, 

experience with 3D building modelling shows weak positive correlations with the plausibility 

and completeness of modelling results and smooth 3D viewing capability, which is contrary 

to my expectations. Upon closer examination of the raw data, it can be found that non-expert 

participants, who have little 3D modelling experience, reduce the overall correlations among 

responses. However, the relationship between experience with 3D building modelling and the 

plausibility of modelling results in Figure 4.3(right) displays a different trend from the 

correlation. Higher ratings reveal that participants indeed think the modelling results look 

plausible, regardless of their level of experience in 3D modelling.  

Second, I seek to determine whether the usefulness of VGI3D for the 3D building modelling 

community is linked to any aspect of VGI3D, such as its ease of use/understanding, the 

plausibility or completeness of modelling results. Based on Table 4.2, strong correlations 

with almost 100% confidence are found between usefulness for the 3D building modelling 

community and both the ease of use/understanding of VGI3D and the plausibility of 

modelling results. However, it cannot be observed a strong correlation between the 

completeness of modelling results and usefulness. 

The final observation is regarding the relationship between the ease of use/understanding of 

VGI3D and the plausibility of modelling results. A clear positive correlation can be 

discovered between these two variables, with a value of 0.68, which is in line with my 

expectations. It is worth noting that all of the findings and correlations are derived from a 

restricted sample of data. Although I can only make assumptions about the meaning behind 

them, they still provide with valuable insights into which aspects of the system are critical in 

shaping users' perceptions. This information will be useful in the future efforts to optimize 

the system. 

 

Sensitivity analysis 

To verify the low sensitivity of the VGI3D, five buildings with different façade complexities 

are selected, ranging from simple to complex (as shown in Table 4.3). Building A has the 

simplest façade structure with only 7 windows, and it is reconstructed using only 2 input 

images within 48 seconds. Due to its simple facades, no model updating is needed. To export 
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the model as CityGML format, the system takes an additional 19 seconds, primarily to 

perform rotation, translation, and scaling based on the building's true size and orientation in 

the real world, as well as coordinate transformation.  

Building B has a bit more complex facade structure than Building A, with 16 windows and a 

door. However, the door is incorrectly detected as a window, likely due to similarities in their 

features. Hence, manually updating the door is required, which takes approximately 15 

seconds. Despite its increased complexity, Building B is reconstructed by only one image, 

resulting in a shorter export time. 

Building C has a larger number of windows than building B and uses 2 images for 

reconstruction. The testing results indicate that the semi-auto time is similar to building A’s, 

with a similar scenario occurring in building D’s case. As a matter of fact, more than half of 

the time is consumed by the user’s interaction, but the detection of façade elements usually 

takes a similar amount of time regardless of façade complexity. This suggests that reducing 

the overall time can be achieved by improving the user’s interaction proficiency. Since two 

façade elements are incorrectly detected, the user spends an additional 32 seconds on 

updating. Additionally, the exporting time (21 seconds) is similar to that of building A. 

The appearance of balconies in building D and E makes their façade structures more complex, 

but the semi-auto time and exporting time remain stable compared to the previous cases. 

However, the updating time is affected by the quality of input images and the proficiency of 

user interaction. When doors or windows are obscured by vehicles, they cannot be detected 

correctly, which would increase the time and workload of manual updates. It is also difficult 

to measure the proficiency of user interaction because it depends on the users. Besides, the 

only noticeable change is the size of the outputted 3D model, which increases with the 

increment of facade complexity. But for the most complex building E, its output size is still 

less than 240KB. 
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Table 4.3. Summary of buildings with various sizes and façade complexities for sensitive analysis. 
The fifth column shows the interactive modelling time (semi-auto), time of interactively updating 
incorrect façade elements (update), exporting 3D model time (export) and updated façade elements in 
(·). Blue is for door, cyan is for window and green is for balcony. 

No. 
Num 
of 
imgs 

Building size 
(L×W×H) m 

Façade 
complexity 

Modelling time (s) 
(semi-auto + update + 

export) 

Output 3D 
model 

size (KB) 
3D viewing 

A 2     11×4.7×8.7  7 windows 48 + 0 + 19 87.9 

 

B 1 21.4×8.3×12.4 
16 windows 
1   door 

24 + 15 + 11 
(1 door) 

112.7 

 

C 2 16×12.1×14.6 
21 windows 
1   door 

49 + 32 + 21 
(1 door + 1 window) 

150.9 

 

D 2 11.7×10.4×20.7 
17 windows 
1   door 
5   balconies 

47 + 59 + 20 
(1 door + 1 balcony + 

2 windows) 
162.5 

 

E 1 30.3×15.1×20.6 
28 windows 
4   doors 
6   balconies 

25 + 13 + 11 
(1 balcony) 

238.5 

 

 

On the other hand, the 3D viewing capability of VGI3D provides users with a smooth 

visualization experience, without any lagging. This is confirmed by the positive feedback 

received from participants in response to question 11, which asks if they agree that the 3D 

viewing capability of the model is smooth. All participants either select "Tend to agree" or 

"Strongly agree". 

In a word to sum up, VGI3D exhibits low sensitivity to different building sizes and 

complexities, such as modelling time, 3D viewing capability, and output size of 3D models. 

 

4.1.2 Roof plane segmentation in ALS point clouds 

To segment roof plane in ALS point clouds, RoofNet network is proposed and implemented 

according to the description in Section 3.3.1 by using an open-source deep learning 

framework Pytorch (Paszke et al., 2019). RoofNTNU as a new roof dataset with standard 
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point density is established for training the RoofNet, and it is also intended to provide a 

general and robust segmentation capability on most ALS cloud data. Experiments on the 

RoofNTNU testing dataset show that the proposed method achieves promising segmentation 

results for both instance and semantic segmentation tasks.  

 

Visual results of instance segmentation 

The visual results produced from the RoofNet are compared with two other multi-task 

networks: ASIS and JSNet (Zhao and Tao, 2020). Since PointNet++ (used as backbone 

network) cannot perform instance segmentation, so it will not be compared here. Figure 4.4 

shows the visual comparison results between ground truth and different methods. Roof type 

combination/7 is not included in the visual comparison, because it has been decomposed as 

the data augmentation strategy. More details about data augmentation can be found in Paper 4. 

Overall, the proposed method outperforms the other two methods. The first three columns of 

Figure 4.4 represent the most common and simplest roof structures in Norway and other 

countries. Due to their simple geometric structures, all three methods perform well on them. 

On the other hand, the last three columns correspond to the roof types specific to Norway and 

Western European countries, which are more complex. Although ASIS and JSNet segment T-

element roofs well, segmentation errors occur at some boundaries between adjacent roof 

planes (as marked by the red circles in Figure 4.4). Some incorrectly classified points appear 

at the boundaries or the planes are over/under-segmented. Similarly, corner element and cross 

element roofs have similar errors. These errors are more noticeable due to their geometric 

complexity. In contrast, the RoofNet produces great and distinguishable segmentation results 

on all roof types due to the semantic-aware instance features, which help separate them in the 

instance embedding space. More instance segmentation results on the RoofNTNU testing 

dataset can be available in Appendix B of Paper 4. 
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Figure 4.4. Visual comparison results of ASIS, JSNet and the proposed method on the instance 
segmentation task. Different colors stand for different instances (that is, roof planes). The colors of 
the same instance in ground truth and prediction are not necessarily the same. 

 

Visual results of semantic segmentation 

Visual semantic segmentation results are displayed in Figure 4.5 and compared with the 

baseline PointNet++, RoofNet, ASIS and JSNet. Once again, the method outperforms the 

other three methods overall. For the most common roof type, hipped, the other three methods 

struggle to segment the boundaries between different pairs of geometric shapes. A similar 

problem is observed on roof type corner element, but to a greater extent. The visualization 

reveals that JSNet produces over/under-segmentations at the boundaries and incorrectly 

classified points (row 4, column 4), including the result generated by the RoofNet. However, 

the proposed method still yields the best result with clear boundaries. This demonstrates that 

the improved result indeed benefits from the aggregation of instance embeddings, which 

enhances the distinguishability and accuracy of boundaries. In terms of incorrectly classified 

points, this problem occurs frequently in the results generated from ASIS and JSNet. ASIS 

fails to fuse semantic features adequately, while JSNet’s network structure is overly complex, 

leading to overly abstract features that do not aid semantic segmentation.  
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Figure 4.5. Visual comparison results of PointNet++, ASIS, JSNet and the proposed method on the 
semantic segmentation task. Different colors represent different pairs of roof planes with the same 
geometric shapes. 

 

To quantitatively access the quality of roof segmentation results on RoofNTNU testing 

dataset, several evaluation metrics are employed. For instance segmentation evaluation, four 

metrics are computed and they are mean coverage (mCov), mean weighted coverage 

(mWCov) (Ren and Zemel, 2017), mean recall (mRec) with IoU threshold of 0.5, and mean 

precision (mPrec). Mean accuracy (mAcc), overall accuracy (oAcc), and mean intersection 

over union (mIoU) are computed for evaluating the semantic segmentation performance. The 

Cov score is used to measure the instance-wise IoU of the prediction matched with the 

ground truth, and it is then further weighted with the size of the ground truth instances to 

obtain WCov (Wang et al., 2019b). The equations for Cov and WCov with respect to ground 

truth regions GT and predicted regions P are given as follows: 

𝐶𝑜𝑣(𝐺𝑇, 𝑃) =
1

|𝐺𝑇|
max 𝐼𝑜𝑈(𝑟 , 𝑟 )

| |

 (4-1) 
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𝑊𝐶𝑜𝑣(𝐺𝑇, 𝑃) = 𝑤 max 𝐼𝑜𝑈(𝑟 , 𝑟 )

| |

 (4-2) 

𝑤 =
|𝑟 |

∑ 𝑟
 (4-3) 

 

Quantitative assessment of instance segmentation results 

Table 4.4 presents the quantitative results of various methods on the instance segmentation 

task. The proposed method shows a slightly better performance than ASIS in terms of metrics 

mCov and mWCov, and a significant improvement of 1.4% in mPrec when evaluated on the 

testing dataset. This suggests that the FF module and modified JFL module have helped 

optimize the network structure, and the instance branch benefits more from the semantics 

branch, which aligns with the initial hypothesis. In contrast, JSNet is significantly inferior to 

the proposed method on all four metrics except for mPrec, which is still 2.3% lower than the 

proposed method. This may be because JSNet is primarily designed for indoor datasets (e.g., 

S3DIS; Armeni et al., 2016), where indoor scenes are more complex than roof structures. 

Therefore, JSNet’s architecture is designed with many convolution layers and other tensor 

operations. This reflects that complex and deep network structures may not necessarily 

improve feature learning on datasets with relatively simple scenes. Furthermore, the 

quantitative results also validate that the JFL module is appropriately designed and capable of 

enhancing the performance of instance segmentation. 

Table 4.4. Quantitative results of instance segmentation on RoofNTNU dataset. 

Method mCov (%) mWCov (%) mPrec (%) mRec (%) 

ASIS 85.0 85.0 94.8 91.7 

JSNet 66.7 66.5 93.9 71.6 

RoofNet 
(Ours) 

85.3 85.2 96.2 91.7 

 

Quantitative assessment of semantic segmentation results 

Table 4.5 shows the quantitative results of different methods on the semantic segmentation 

task. The proposed method achieves an mIoU of 86.7%, which significantly outperforms the 

PointNet++ baseline by 2.7%. In addition, RoofNet also considerably outperforms ASIS and 

JSNet in terms of mIoU. Regarding the metric mAcc, RoofNet shows a slight improvement 

compared to the baseline, but it demonstrates significant improvement when compared to 

ASIS and JSNet, with an improvement of 1.3% and 5.1% respectively. Similarly, there is an 

observable improvement in the oAcc metric, with the RoofNet surpassing the other three 

methods by 1.0%, 2.2%, and 5.2%, respectively. The proposed method employs PointNet++ 

as its backbone, and its superior performance indicates the ability to extract high-quality 
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features. The fused features produced by FF module further enhance the learning of semantic 

features, which are advantageous for the final semantic segmentation results. 

Furthermore, in order to present a more objective evaluation of the performance of RoofNet 

and eliminate any bias due to data imbalance on two roof types (corner element/4 and cross 

element/6), the scores for each roof type have been calculated separately, and the detailed 

results can be found in Appendix A of Paper 4. 

Table 4.5. Quantitative results of semantic segmentation on RoofNTNU dataset. 

Method mAcc (%) oAcc (%) mIoU (%) 

PointNet++ (baseline) 93.8 95.4 84.0 

ASIS 93.1 94.2 81.1 

JSNet 89.3 91.2 66.4 

RoofNet (Ours) 94.4 96.4 86.7 

 

Q 2.2: How to analyze the effectiveness of the improved modules of the proposed RoofNet? 

To assess the effectiveness of the improvements, a network architecture study involved in 

five variant experiments on key improvements is performed and discussed. This study only 

focuses on the improved components compared to ASIS, as ASIS has already demonstrated 

its advantages in terms of semantic awareness and instance aggregation. The essential part of 

the ASIS baseline and the details of the five experiment groups are shown in Figure 4.6, 

where their encoders and decoders are the same as RoofNet. In each group, the upper yellow 

bar represents the feature generated by the instance branch decoder, while the lower yellow 

bar refers to the feature generated by the semantic branch decoder. 

 ASIS baseline. The ASIS network is regarded as the baseline (Figure 4.6a) and all 

other groups will compare the results with the baseline. 

 Add FF module to both the semantic and instance branches immediately after the 

decoders; eliminate the upper parallel feature 𝐹  from the semantic branch and 

transfer the fused semantic features into the instance feature space (see Figure 4.6b). 

 Eliminate the upper parallel feature 𝐹  from the semantic branch and transfer the 

fused semantic features to the instance feature space (see Figure 4.6c). 

 Keep two parallel features 𝐹  of the semantics branch, but incorporate an FF module 

after the upper parallel feature 𝐹  ; then transfer the fused semantic features into 

instance feature space (see Figure 4.6d). 

 Remain the semantic branch and semantic awareness consistent with RoofNet; deepen 

the instance branch to learn more high-level instance features (see Figure 4.6e), which 

is inspired by JSNet. 
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Figure 4.6. Key part of baseline ASIS (a) and four groups of experiments (b–e). Their encoders and 
decoders are consistent with RoofNet. 

 

Results analysis  

The experiments focus on answering three questions: (i) whether the instance branch requires 

the FF module (groups 1 and 2); (ii) where to add the FF module to the semantics branch 

(groups 3–6); (iii) whether it is beneficial to increase the depth of the instance branch (group 

5). 

Table 4.6 presents the results of all architecture study experiments. When comparing group 2 

with the baseline, it shows that even though the FF modules do enhance semantic 

segmentation, they weaken the instance segmentation at the same time. This is because 

integrating fused semantic features into fused instance features may cause confusion in the 

network, particularly in the instance branch, about which features it should learn. Hence, the 

FF module was not added to the instance branch. 

When comparing with group 2, the performance of group 3 is improved when the FF module 

is applied only to the semantic branch. This enhancement benefits both segmentation tasks by 
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providing more explicit information to the network about what features to learn for each 

branch. Specifically, it penalizes over-separated semantic features on the semantic branch and 

facilitates the learning of semantic-aware instance embeddings. 

When comparing with group 3, it is less effective for group 4 by adding the FF module as a 

parallel semantic sub-branch and integrating it into the instance branch. The primary reason is 

that the aggregation operation (Aggregation) is directly applied to non-fused semantic 

features, which limits the learning of refined semantic features for each point. Hence, the 

structure of RoofNet (group 6 in Table 4.6) is designed to enable the semantic the semantics 

branch to learn refined semantic features for each point after the aggregation operation. In 

addition, thanks to the weight updating during backpropagation, adding non-fused semantic 

features to the instance branch benefits the entire instance branch from the FF module. 

The deeper network architecture tested in group 5 is found to be less effective for roof plane 

segmentation. This is because the complexity of roof planes’ features is much lower 

compared to object features found in indoor/outdoor scenes. Applying a deeper and more 

complex network may result in overfitting and negatively affect the segmentation 

performance. 

In summary, although RoofNet did not outperform all other groups on both segmentation 

tasks, the ultimate objective of it is to accurately segment roof planes or instances. Therefore, 

a compromise was made, and the network that demonstrated the best performance on instance 

segmentation was selected, i.e., RoofNet. 

 

Table 4.6. Instance and semantic segmentation results of all experiments of architecture study on 
RoofNTNU. 

Group 
Instance Segmentation  Semantic Segmentation 

mWCov (%) mPrec (%) mAcc (%) mIoU (%) 

(1) Baseline (ASIS) 85.0 94.8  93.1 81.1 

(2) 83.6 94.8  94.8 88.3 

(3) 84.1 95.9  94.9 88.8 

(4) 83.0 94.9  93.0 85.1 

(5) 82.8 92.5  93.4 85.9 

(6) RoofNet (Ours) 85.2 96.2  94.4 86.7 

 

4.2 Web-based 3D visualization platform 

The results on the 3D platform’s implementation, rendering optimization, multi-source data 

integration and visualization are presented in this section. Paper 3 discusses a new approach 

for extracting and locating road objects to enhance the content richness of the 3D 

visualization platform and therefore, Paper 3 resolves research question 3.4.  
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Q 3: How to motivate volunteers and enhance their psychological comforts for more 3D 

building model contributions using a 3D visualization platform? 

As a visualization platform aimed at motivating volunteers and enhancing their psychological 

comforts to contribute more 3D buildings through VGI3D, it should be able to digitalize a 

city environment by integrating different 3D data sources, to enable interaction with 3D 

objects and to have a fluid user experience. Additionally, as a research prototype, this 

platform should have good scalability by integrating other research methods to support 3D 

urban analysis, and should be easily implemented as well. Therefore, through this 3D 

visualization platform, on one hand, it can enhance the popularity of VGI3D and attract more 

volunteers to contribute 3D buildings; on the other hand, it can also provide convenience for 

relevant researchers, without requiring them to regenerate such large-scale 3D data and 

rebuild a new visualization platform for displaying research results.   

The framework of 3D visualization platform is shown in Figure 4.7, which is basically an 

extension of the Cesium virtual globe. Most data sources (e.g., 3D buildings, 3D road 

networks and 3D road objects) are in CityGML format and are converted into b3dm format to 

represent 3D city objects on the web environment. High-resolution DTMs are tiled and 

transformed as Quantized Mesh format to represent 3D terrain. 2D imagery data is also 

included as base map. Most of these 3D data contain both geometry and semantic information, 

and they are then parsed and rendered in a web browser through Cesium engine. Users are 

able to interact with the 3D city models, such as inspecting semantic information on mouse-

click, hiding and displaying desired 3D objects, and observing the 3D models from different 

view perspectives. Moreover, the combination of 3D terrain and base map can hugely 

increase the realism of the 3D visualization platform and improve the user experience as well. 
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Figure 4.7. The framework of the web-based 3D visualization platform. 

 

Furthermore, the 3D visualization platform is currently deployed on a physical Dell 

workstation, and can be accessed at http://vgi.ibm.ntnu.no:8082/Apps/terrain/TRD3D.html/. 

Visualization examples of the 3D platform with integrated 3D city objects are illustrated in 

Figure 4.8. For instance, Figure 4.8a displays a close-up view of Gløshaugen campus, NTNU, 

showcasing different elements of the 3D visualization platform. The 3D buildings with red 

roofs are represented in LoD2 and have semantics, thus being able to be interactive. Detailed 

building models with textures are derived and transformed from SketchUp models but they 

lack semantic information. The LoD3 building models are generated from VGI3D and 

contain the semantic information. The road networks are represented with different colors 

indicating different road categories, but some segments of the roads are missing owing to 3D 

terrain’s occlusion. This reflects a deficiency of the interpolation method for creating 3D road 

networks, because the elevation values of the 3D road networks are fixed and derived from 

the level 16 (18 levels in total) of the 3D terrain. Consequently, the 3D road networks cannot 

dynamically adjust their elevations as users zoom in or out. Finally, 3D terrain is represented 

as TIN and can be visually viewed in Figure 4.8b after switching to wireframe mode. Both 

Figure 4.8c and Figure 4.8d present a good perspective to better visualize and perceive the 

3D terrain from a global view. 
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(a) 

 

(b) 
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(c) 

 

(d) 

Figure 4.8. (a)-(b) provide a close-up view of Gløshaugen, NTNU, showcasing different elements of 
the 3D visualization platform, while (c)-(d) present a good perspective for better visualizing and 
perceiving the 3D terrain. 

 

Q 3.1: How to render massive 3D data rapidly and efficiently in the web environment? 

Rendering performance is one of the most important factors to consider during visualization. 

Faster loading time provides users with a more fluid user experience.  

To render high-resolution 3D terrain data efficiently, a popular optimization strategy, TIN 

(Triangulated Irregular Network), is applied in this thesis. This technique involves the 

creation of a surface model using a set of non-overlapping triangles to represent the terrain 
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surface. The triangles are formed by connecting adjacent points on the terrain surface, and the 

shape of the triangles is determined by the shape of the terrain. For example, for the sloped 

terrain surfaces, it can use dense and small triangles to keep high resolution, while for the flat 

terrain surfaces, using sparse and sparse and large triangles to reduce the complexity. Each 

triangle is assigned an elevation value based on the average elevation of the points that define 

the triangle. In this way, a large amount of memory space and computing resources have been 

saved, making the TIN models more efficient at representing terrain surfaces with variable 

resolution, as the density of triangles can be adjusted based on the complexity of the terrain. 

In addition to the TIN optimization strategy, another rendering optimization mechanism, LoD, 

is also employed during runtime. It is aware that the concept of this LoD a scale level defined 

in a tiling scheme and hence it is different from the one defined by CityGML standard. Based 

on the distance between the user’s viewpoint and the 3D terrain tiles, the high-resolution 

terrain tiles that are close to the viewpoint would be rendered, while only rendering low-

resolution terrain tiles that are away from the viewpoint. As a result, it can allow for faster 

rendering and improved performance. An example of displaying 3D terrain data on the 3D 

visualization platform is shown in Figure 4.9.  

 

Figure 4.9. Example of 3D terrain visualization using two rendering optimization strategies. 

 

To rapidly render large amount of 3D city models such as 3D buildings and 3D road 

networks, 3D Tiles technology is utilized due to its excellent performance for visualization. 

3D models are first divided into a series of hierarchical tiles based on geometric errors and 

3D models’ distribution, each tile representing a smaller portion of the overall 3D models. 

Geometric errors are calculated based on the distance between tiles and viewpoint. This 

means that when the user’s viewpoint moves closer to the 3D models, the tiles with higher 

detailed tiles are loaded and rendered on-the-fly, while lower detailed tiles are culled to 
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improve performance and reduce the network bandwidth. The tiles are usually compressed 

for faster data transmission over the network. Furthermore, 3D Tiles would not affect the 

semantic information or attributes embedded in the 3D city models and support interactive 

selection and inspection.  

 

Q 3.2: How to render initial 2D road segments on high-resolution 3D terrain in a 

cartographic manner? 

Roads in GIS are usually stored as a collection of 2D polylines. To render them on high-

resolution 3D terrain in a cartographic way, a geometry-based approach is developed in this 

thesis. One of the core parts of this approach is to find out the intersected/additional vertices 

against the 3D terrain quickly and accurately, as mentioned in Figure 3.6 of Section 3.4. For 

this purpose, the 3D terrain tiles near the road segments are firstly identified, and then all 

triangles comprising the selected 3D terrain tiles are projected to ground (xy plane). Next, by 

taking the 2D triangles as input, an AABB tree is constructed to insert additional vertices at 

each intersection between road segments and triangles, which is so-called collision detection 

algorithm applied in this thesis. As long as the actual elevation values are reassigned to the 

vertices, the 3D road polylines can be eventually obtained.  

Moreover, to render cartographic 3D roads, it has to expand the 3D polylines to the 3D 

polygons and at the same time, to remain the curves as smooth as possible. To achieve this, 

Catmull-Rom spline algorithm is employed, making the original sharp curves become smooth 

enough. Figure 4.10 shows the final cartographic roads on high-resolution 3D terrain. 

 

Figure 4.10. Cartographic rendering of roads on high-resolution 3D terrain in wireframe mode, in 
Trondheim, Norway. Different colors represent the different road categories. 
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Q 3.3: How to enrich the 3D road-related objects of the visualization platform, such as 

traffic lights and signs at road intersections? 

A case study is carried out to automatically detect and localize the traffic lights and signs at 

road intersections by using the method introduced in Section 3.4. To evaluate the 

performance of the proposed method, the result of semantic segmentation is firstly assessed 

because the ATBT is created based on the semantic segmentation results. In other words, the 

quality of semantic segmentation results would significantly affect the establishment of 

ATBT, and then further influence the localization of desired road objects. Therefore, a 

quantitative comparison between PSPNet (the trained network in this thesis) and a 

competitive network, DeepLabv3+ (Chen et al., 2018), as illustrated in Table 4.7. It shows 

that the trained PSPNet network outperforms the DeepLabv3+ in terms of both evaluation 

metrics mean IoU and pixel accuracy (acc).  

Table 4.7. Quantitative comparison of mIoU and pixel accuracy between PSPNet and DeepLabv3+. 

Method Mean IoU (%) Pixel Acc. (%) 

PSPNet (ours) 34.17 91.3 

DeepLabv3+ 33.97 90.2 

 

Regarding the evaluation of localization task, two elements of spatial data quality need to be 

assessed: completeness and positional accuracy. Although positional accuracy is the most 

established indicator of mapping accuracy, official ground truth position data for traffic signs 

and lights are unavailable. As a result, I manually collect the locations of traffic signs/lights 

from Google Maps through visual observation, and make them as “reference data” to evaluate 

the completeness and positional accuracy of my localization results. 100 intersections 

featuring either four or three branches are tested in the experiment, containing more than 350 

image sequences and over 3400 images. In terms of completeness level, over 97% of 

completeness is achieved in all 100 testing intersections. Please note that only when all traffic 

lights and signs are detected and their predicted locations are not far away from the actual 

locations at an intersection, then it is considered as a complete and correct case. Figure 4.11 

shows the comparative localization results for two examples of one crossroad and one T-

junction, where the first column represents the visual results generated by the proposed 

method and the second column is the manually collected “reference data”. Red dot 1 in the 

right figure of (a) contains three signs, and each of the red dots 1,2,3 in the right figure of (b) 

contains two signs because they are overlapped. As seen in the figures, both examples 

demonstrate approximate positional accuracy compared to the annotated “reference data”. 
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Figure 4.11. Visual comparison of traffic lights and signs localization results. The first column 
represents the results generated by our proposed algorithm. The second column refers to the manually 
collected “reference data” from Google Maps. 
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Chapter 5 

Conclusion and future research 

5.1 Conclusion 

This thesis concentrates on the reconstruction of LoD3 3D building models with semantic 

information by means of crowdsourcing. The 3D building modelling at LoD3 can be mainly 

divided into two tasks: detailed façade reconstruction and high accuracy roof reconstruction. 

To achieve these, novel 3D reconstruction approaches on façade level and roof level are 

studied respectively, and then their modelling results are combined to eventually generate 

LoD3 building models with semantics.  

On the façade modelling level, an interactive and web-based solution, VGI3D, is proposed 

for 3D building modelling from street-level images, particularly focusing on reconstructing 

detailed façade models. With the ambition of becoming a VGI platform to collect 3D 

building models with semantics, it takes simple interoperability, low cost, generality and 

robustness into consideration. All these efforts make the VGI3D require less user input and 

operations and meanwhile, make it be able to perform well on most of modelling cases as 

much as possible. It is appropriate for rapid modelling while still retaining a high level of 

detail (i.e., LoD3). Furthermore, functional and usability testing are also carried out with a 

limited number of participants among experts and non-experts. This aims to evaluate the 

usefulness of the VGI3D for the 3D building modelling community and to better optimize the 

system and user experience as well. The findings indicate that most of participants believe it 

holds promising value for the 3D building modelling community, regardless of whether they 

have rich 3D modelling experience or not. That is exciting feedback for this work, since it 

will be able to have the potential to motivate volunteers for more data contribution and to 

promote the VGI3D to the mass market, leading to increased contributions of 3D building 

models for smart city-related applications.  

On the roof modelling level, although VGI3D is able to automatically generate the roof 

model by selecting a predefined roof type, its geometric accuracy cannot be guaranteed. By 

contrast, ALS point clouds can provide the accurate geometric information about roof 

structures for roof modelling. On the other hand, since roof plane segmentation is an essential 

step in the process of 3D roof reconstruction, so an improved deep learning-based network, 

RoofNet, is proposed for better segmenting roof planes in ALS point clouds. The network 

consists of a shared encoder and two parallel decoders for rich features extraction, an FF 

module for semantic feature fusion, and a JFL module for simultaneous learning of semantic 

and instance features. Moreover, a new roof plane training dataset, RoofNTNU, is manually 

created from standard ALS point clouds for training the proposed network. The dataset 

contains 930 roof samples covering seven typical roof structures in Trondheim, Norway. The 
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proposed network achieves good performance on both instance (i.e., separated roof planes) 

and semantic (i.e., groups of roof planes with similar geometric shapes) segmentation tasks, 

as demonstrated by the results of the architecture study. Experiments on the RoofNTNU 

dataset show that the proposed method obtains a mean precision (mPrec) of 96.2% for 

instance segmentation and a mean accuracy (mAcc) of 94.4% for semantic segmentation. 

These promising results demonstrate the potential of the approach to accurately segment roof 

planes in residential regions of Norway and some other West European countries by using 

standard ALS point clouds.  

Furthermore, to motivate volunteers and enhance their psychological comforts for more 3D 

building contributions via VGI3D, a web-based 3D visualization platform is developed by 

digitalizing a city environment and integrating multiple 3D city models, such as 3D terrain, 

3D building models, 3D road networks and 3D road objects. Based on this platform, it 

enables to provide the immediate visual satisfaction for volunteers when interacting with their 

made 3D buildings and other 3D objects in a 3D scene, and in turn, facilitating volunteers to 

strengthen the sense of accomplishment and to increase their motivations to participate in the 

VGI3D project and contribute 3D data. Besides, this thesis also would like to build the 3D 

visualization platform as a general research platform, where the ideas or methods proposed 

by other researchers can be easily implemented, validated and extended on this platform to 

support their research work, for instance 3D urban analysis and applications. Hence, through 

this 3D visualization platform, it can not only enhance the popularity of VGI3D but also offer 

convenience for relevant researchers, with no need to regenerate such a large-scale 3D data 

and rebuild a new platform for visualizing the research outcomes.  

Finally, the deeper development of smart cities in the future will show a huge demand for 

detailed 3D building models, benefiting various aspects of people’s daily life. The global 

coverage of detailed 3D buildings can only be achieved through crowdsourcing, because 

many poor and developing countries and regions lack the capability and resources to 

accomplish this demanding task. Both will undoubtedly provide immense motivations for 

global volunteers to contribute data.  

 

5.2 Limitations and future research  

Regarding the VGI3D, it still has much room for improvement and optimization as the future 

research: 

 It is necessary to further enhance the CNN model used for façade elements detection 

to get more accurate detection results on most input images, so that it can reduce the 

costs of user interaction for 3D model’s error correction. 

 The number of participants involving in usability testing is relatively small. Their 

responses and comments may not represent the views of all professionals working in 
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the field of 3D building modelling. Therefore, usability testing with larger samples is 

needed especially conducting on related practitioners in the future, as their feedbacks 

are rather valuable and crucial. 

 Except for visually comparing the reconstructed building models with the real 

buildings, it is difficult to quantitatively evaluate how good the reconstruction is, 

because there are no existing high-quality 3D building models as ground truth. So the 

quantitative assessment of the reconstructed models can be a direction of future 

research. 

 The building heights are not available except for in Trondheim, Norway. As a result, 

3D buildings reconstructed elsewhere have inaccurate heights, because their heights 

are roughly estimated by entering the number of floors during the user interaction. It 

may be addressed to some degree by collecting and importing the public 

governmental data associated with the buildings into VGI3D’s database.  

 Building footprints from countries other than Norway, Sweden, and Italy are currently 

unavailable. It has to enlarge the database of building footprints by adding footprints 

from for example the rest of European nations, so as to promote VGI3D more 

extensively. 

 

Regarding the RoofNet for roof plane segmentation, several aspects will be improved in the 

future: 

 A place worthy of improvement is the joint features learning (JFL) module, as the 

current use of kNN has limitations in the selection of k-value and distance metric. In 

the future study, the network will be further optimized to overcome this problem and 

to obtain more accurate segmentation results. 

 The amount of two roof types (cross element and corner element) in the RoofNTNU 

dataset is too small compared to other roof types, leading to the data imbalance issue. 

Consequently, the thesis will also plan to enrich the dataset on these two roof types. 

 The current RoofNet cannot directly segment combination roofs (roof type 7) due to 

the complexity and diversity of their geometric structures. It is necessary to increase 

the general ability of the method to handle with hard cases in the future study.  

 Furthermore, the key/corner points of each roof plane will be extracted and the 

topological relations among them will be adjusted to form the geometric surfaces, 

implementing the final goal of roof reconstruction. 

Regarding the 3D visualization platform,  

 The main objective of developing a 3D visualization platform is to enhance VGI3D 

users’ immediate visual satisfaction and psychological comforts through a virtual 3D 

city environment, thus giving them motivations for more data contributions. However, 

whether visual perception and psychological comforts are improved have not been 
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verified yet. Thus, research from the perspectives of visibility engineering psychology 

and cognitive science will be conducted to analyze users’ visual perception and 

psychological comforts towards 3D visualization platform. For instance, a 

combination of virtual reality (VR) technique and questionnaire is a potential method 

to apply.  

 The 3D terrain tilesets consist of 18 zoom levels, and currently, the elevation values 

of the 3D road networks are fixed and derived from the level 16 of the 3D terrain. 

They cannot be dynamically adjusted as users zoom in or out. Therefore, as the 3D 

terrain zooms in or out, dynamically adjusting and rendering 3D road networks will 

be a future optimization direction. 

 Currently, 3D building models generated by VGI3D cannot be immediately delivered 

and visualized in 3D visualization platform for some technical reasons caused by 

Cesium. Instead, they have to be uploaded to the visualization platform in batches. 

Hence, that would be great in the future to implement a seamlessly linking mechanism 

between VGI3D and 3D visualization platform for “what you see is what you 

modelled”, which means volunteers will be able to see and interact with their 3D 

buildings right after the modelling in a 3D geographic scene. 

Last but not the least, the VGI3D will be relocated to Trondheim municipality’s website and 

shared as a citizen participation project. The announcement of the host change will be 

publicly released when the new website is ready to access. 



 

73 
 

Bibliography 

Nelson, J. R., & Grubesic, T. H., 2020. The use of LiDAR versus unmanned aerial systems (UAS) to 
assess rooftop solar energy potential. Sustainable Cities and Society, 61, 102353. 

The Paris Agreement, 2022. https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-
agreement (Accessed 23rd August 2022). 

Zhi, G., Liao, Z., Tian, W., & Wu, J., 2020. Urban flood risk assessment and analysis with a 3D 
visualization method coupling the PP-PSO algorithm and building data. Journal of environmental 
management, 268, 110521. 

Groves, P. D., Jiang, Z., Rudi, M., & Strode, P., 2013. A portfolio approach to NLOS and multipath 
mitigation in dense urban areas. The Institute of Navigation. 

Park, Y., Guldmann, J. M., & Liu, D., 2021. Impacts of tree and building shades on the urban heat 
island: Combining remote sensing, 3D digital city and spatial regression approaches. Computers, 
Environment and Urban Systems, 88, 101655. 

Li, Z., Lin, B., Zheng, S., Liu, Y., Wang, Z., & Dai, J., 2020. A review of operational energy 
consumption calculation method for urban buildings. In Building Simulation (Vol. 13, No. 4, pp. 739-
751). Tsinghua University Press. 

Redweik, P., Teves-Costa, P., Vilas-Boas, I., & Santos, T., 2017. 3D city models as a visual support 
tool for the analysis of buildings seismic vulnerability: The case of Lisbon. International Journal of 
Disaster Risk Science, 8(3), 308-325. 

Zeng, P., Sun, X., Xu, Q., Li, T., & Zhang, T., 2021. 3D probabilistic landslide run-out hazard 
evaluation for quantitative risk assessment purposes. Engineering Geology, 293, 106303. 

Ulvi, A., 2021. Documentation, Three-Dimensional (3D) Modelling and visualization of cultural 
heritage by using Unmanned Aerial Vehicle (UAV) photogrammetry and terrestrial laser scanners. 
International Journal of Remote Sensing, 42(6), 1994-2021. 

Solar energy potential in Helsinki, 2023. https://kartta.hel.fi/3d/solar/#/ (Accessed 23rd January 2023). 

Kilsedar, C. E., Fissore, F., Pirotti, F., & Brovelli, M. A. (2019). Extraction and visualization of 3D 
building models in urban areas for flood simulation. The International Archives of the 
Photogrammetry, Remote Sensing and Spatial Information Sciences, 42, 669-673. 

Miura, S., Hisaka, S., & Kamijo, S., 2013. GPS multipath detection and rectification using 3D maps. 
In 16th International IEEE Conference on Intelligent Transportation Systems (pp. 1528-1534). IEEE. 

Buyukdemircioglu, M., & Kocaman, S. (2020). Reconstruction and efficient visualization of 
heterogeneous 3D city models. Remote Sensing, 12(13), 2128. 

Sangiambut, S., & Sieber, R. (2016). The V in VGI: Citizens or civic data sources. Urban Planning, 
1(2), 141-154. 

Wang, Z., & Zipf, A., 2017. Using openstreetmap data to generate building models with their inner 
structures for 3d maps. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial 
Information Sciences, 4, 411. 



Bibliography 

74 
 

Neuhold, G., Ollmann, T., Rota Bulo, S., & Kontschieder, P., 2017. The mapillary vistas dataset for 
semantic understanding of street scenes. In Proceedings of the IEEE international conference on 
computer vision (pp. 4990-4999). 

Paz, D., Zhang, H., Li, Q., Xiang, H., & Christensen, H. I., 2020. Probabilistic semantic mapping for 
urban autonomous driving applications. In 2020 IEEE/RSJ International Conference on Intelligent 
Robots and Systems (IROS) (pp. 2059-2064). IEEE. 

Steiger, E., Resch, B., & Zipf, A., 2016. Exploration of spatiotemporal and semantic clusters of 
Twitter data using unsupervised neural networks. International Journal of Geographical Information 
Science, 30(9), 1694-1716. 

Google 3D Warehouse, 2023.  https://3dwarehouse.sketchup.com/ (Accessed on 13rd January 2023). 

Goetz, M., & Zipf, A. (2013). The evolution of geo-crowdsourcing: bringing volunteered geographic 
information to the third dimension. In Crowdsourcing geographic knowledge (pp. 139-159). Springer, 
Dordrecht. 

Knerr, T. (2019). OSM2World Create 3D models from OpenStreetMap.  Available: 
http://osm2world.org/ 

OSM Buildings, 2023. http://osmbuildings.org/ (Accessed 13rd January 2023). 

Agarwal, S., Furukawa, Y., Snavely, N., Simon, I., Curless, B., Seitz, S. M., & Szeliski, R. (2011). 
Building rome in a day. Communications of the ACM, 54(10), 105-112. 

Wolberg, G., & Zokai, S. (2018). PhotoSketch: a photocentric urban 3D modeling system. The Visual 
Computer, 34(5), 605-616. 

Zhang, C., Fan, H., & Kong, G. (2021). VGI3D: an interactive and low-cost solution for 3D building 
modelling from street-level VGI images. Journal of Geovisualization and Spatial Analysis, 5, 1-16. 

Redmon, J., & Farhadi, A. (2018). Yolov3: An incremental improvement. arXiv preprint 
arXiv:1804.02767. 

Kong, G., & Fan, H. (2020). Enhanced facade parsing for street-level images using convolutional 
neural networks. IEEE Transactions on Geoscience and Remote Sensing, 59(12), 10519-10531. 

Kim, H., & Han, S. (2018). Interactive 3D building modeling method using panoramic image 
sequences and digital map. Multimedia tools and applications, 77, 27387-27404. 

Gilani, S. A. N., Awrangjeb, M., & Lu, G. (2018). Segmentation of airborne point cloud data for 
automatic building roof extraction. GIScience & remote sensing, 55(1), 63-89. 

Zhang, C., & Fan, H. (2022). An Improved Multi‐Task Pointwise Network for Segmentation of 
Building Roofs in Airborne Laser Scanning Point Clouds. The Photogrammetric Record, 37(179), 
260-284. 

Yi, L., Kim, V. G., Ceylan, D., Shen, I. C., Yan, M., Su, H., Lu, C., Huang, Q., Sheffer, A., & Guibas, 
L. (2016). A scalable active framework for region annotation in 3d shape collections. ACM 
Transactions on Graphics (ToG), 35(6), 1-12. 

Mao, J., Wang, X., & Li, H. (2019). Interpolated convolutional networks for 3d point cloud 
understanding. In Proceedings of the IEEE/CVF international conference on computer vision (pp. 
1578-1587). 



Bibliography 

75 
 

Rottensteiner, F., Sohn, G., Jung, J., Gerke, M., Baillard, C., Benitez, S., & Breitkopf, U. (2012). The 
ISPRS benchmark on urban object classification and 3D building reconstruction. ISPRS Annals of the 
Photogrammetry, Remote Sensing and Spatial Information Sciences I-3, Nr. 1, 1(1), 293-298. 

Zolanvari, S. M., Ruano, S., Rana, A., Cummins, A., da Silva, R. E., Rahbar, M., & Smolic, A. (2019). 
DublinCity: Annotated LiDAR point cloud and its applications. arXiv preprint arXiv:1909.03613. 

Kölle, M., Laupheimer, D., Schmohl, S., Haala, N., Rottensteiner, F., Wegner, J. D., & Ledoux, H. 
(2021). The Hessigheim 3D (H3D) benchmark on semantic segmentation of high-resolution 3D point 
clouds and textured meshes from UAV LiDAR and Multi-View-Stereo. ISPRS Open Journal of 
Photogrammetry and Remote Sensing, 1, 100001. 

Kada, M. (2007). Scale-dependent simplification of 3D building models based on cell decomposition 
and primitive instancing. International Conference on on Spatial Information Theory, Springer, Berlin. 
Heidelberg. 222-237. 

Wang, X., Liu, S., Shen, X., Shen, C., & Jia, J. (2019b). Associatively segmenting instances and 
semantics in point clouds. In Proceedings of the IEEE/CVF Conference on Computer Vision and 
Pattern Recognition (pp. 4096-4105). 

CloudCompare. 2022. CloudCompare-Open Source project. http://www.cloudcompare.org/ (Accessed 
20th December 2022). 

Gröger, G., & Plümer, L. (2012). CityGML–Interoperable semantic 3D city models. ISPRS Journal of 
Photogrammetry and Remote Sensing, 71, 12-33. 

Tang, L., Ying, S., Li, L., Biljecki, F., Zhu, H., Zhu, Y., Yang, F., & Su, F. (2020). An application-
driven LOD modelling paradigm for 3D building models. ISPRS Journal of Photogrammetry and 
Remote Sensing, 161, 194-207. 

Biljecki, F., Ledoux, H., & Stoter, J. (2016). An improved LOD specification for 3D building models. 
Computers, Environment and Urban Systems, 59, 25-37. 

Stadler, A., Nagel, C., König, G., & Kolbe, T. H. (2009). Making interoperability persistent: A 3D 
geo database based on CityGML. In 3D Geo-information sciences (pp. 175-192). Springer, Berlin, 
Heidelberg. 

Furukawa, Y., & Ponce, J. (2009). Accurate, dense, and robust multiview stereopsis. IEEE 
transactions on pattern analysis and machine intelligence, 32(8), 1362-1376. 

Goodchild, M. F. (2007). Citizens as sensors: the world of volunteered geography. GeoJournal, 69, 
211-221. 

Zhou, X., Zhao, Y., Li, G., & Zhang, P. (2018). Crowdsourcing Spatio-Temporal Data Model 
Considering Reputation. Geomatics and Information Science of Wuhan University, 43(1), 10-16. 

Juhász, L., & Hochmair, H. H. (2016). User contribution patterns and completeness evaluation of 
Mapillary, a crowdsourced street level photo service. Transactions in GIS, 20(6), 925-947. 

Barrington-Leigh, C., & Millard-Ball, A. (2017). The world’s user-generated road map is more than 
80% complete. PloS one, 12(8), e0180698. 

Zhang, H., & Malczewski, J. (2018). Accuracy evaluation of the Canadian OpenStreetMap road 
networks. International Journal of Geospatial and Environmental Research, 5(2). 

Mohammadi, N., & Sedaghat, A. (2021). A framework for classification of volunteered geographic 
data based on user’s need. Geocarto International, 36(11), 1276-1291. 



Bibliography 

76 
 

See, L., Mooney, P., Foody, G., Bastin, L., Comber, A., Estima, J., ... & Rutzinger, M. (2016). 
Crowdsourcing, citizen science or volunteered geographic information? The current state of 
crowdsourced geographic information. ISPRS International Journal of Geo-Information, 5(5), 55. 

Lotfian, M., Ingensand, J., & Brovelli, M. A. (2020). A framework for classifying participant 
motivation that considers the typology of citizen science projects. ISPRS International Journal of 
Geo-Information, 9(12), 704. 

Yan, Y., Feng, C. C., Huang, W., Fan, H., Wang, Y. C., & Zipf, A. (2020). Volunteered geographic 
information research in the first decade: A narrative review of selected journal articles in 
GIScience. International Journal of Geographical Information Science, 34(9), 1765-1791. 

Fan, H., Kong, G., & Yang, A. (2022). Current status and prospects of research for volunteered 
geographic information. Acta Geodaetica et Cartographica Sinica, 51(7), 1653. 

Girres, J. F., & Touya, G. (2010). Quality assessment of the French OpenStreetMap 
dataset. Transactions in GIS, 14(4), 435-459. 

Forghani, M., & Delavar, M. R. (2014). A quality study of the OpenStreetMap dataset for 
Tehran. ISPRS International Journal of Geo-Information, 3(2), 750-763. 

Wu, H., Lin, A., Clarke, K. C., Shi, W., Cardenas-Tristan, A., & Tu, Z. (2021). A comprehensive 
quality assessment framework for linear features from Volunteered Geographic 
Information. International Journal of Geographical Information Science, 35(9), 1826-1847. 

Balducci, F. (2021). Is OpenStreetMap a good source of information for cultural statistics? The case 
of Italian museums. Environment and Planning B: Urban Analytics and City Science, 48(3), 503-520. 

Brovelli, M. A., & Zamboni, G. (2018). A new method for the assessment of spatial accuracy and 
completeness of OpenStreetMap building footprints. ISPRS International Journal of Geo-
Information, 7(8), 289. 

Xu, Y., Chen, Z., Xie, Z., & Wu, L. (2017). Quality assessment of building footprint data using a deep 
autoencoder network. International Journal of Geographical Information Science, 31(10), 1929-1951. 

Zhou, Q. (2018). Exploring the relationship between density and completeness of urban building data 
in OpenStreetMap for quality estimation. International Journal of Geographical Information 
Science, 32(2), 257-281. 

Zacharopoulou, D., Skopeliti, A., & Nakos, B. (2021). Assessment and Visualization of OSM 
Consistency for European Cities. ISPRS International Journal of Geo-Information, 10(6), 361. 

Muttaqien, B. I., Ostermann, F. O., & Lemmens, R. L. (2018). Modeling aggregated expertise of user 
contributions to assess the credibility of OpenStreetMap features. Transactions in GIS, 22(3), 823-841. 

Jacobs, K. T., & Mitchell, S. W. (2020). OpenStreetMap quality assessment using unsupervised 
machine learning methods. Transactions in GIS, 24(5), 1280-1298. 

Zhang, D., Ge, Y., Stein, A., & Zhang, W. B. (2021). Ranking of VGI contributor reputation using an 
evaluation‐based weighted pagerank. Transactions in GIS, 25(3), 1439-1459. 

Zielstra, D., & Hochmair, H. H. (2013). Positional accuracy analysis of Flickr and Panoramio images 
for selected world regions. Journal of Spatial Science, 58(2), 251-273. 

Senaratne, H., Bröring, A., & Schreck, T. (2013). Using reverse viewshed analysis to assess the 
location correctness of visually generated VGI. Transactions in GIS, 17(3), 369-386. 



Bibliography 

77 
 

Bagheri, H., Schmitt, M., & Zhu, X. (2019). Fusion of multi-sensor-derived heights and OSM-derived 
building footprints for urban 3D reconstruction. ISPRS International Journal of Geo-Information, 8(4), 
193. 

Uden, M., & Zipf, A. (2013). Open building models: Towards a platform for crowdsourcing virtual 
3D cities. Progress and new trends in 3D geoinformation sciences, 299-314. 

Fan, H., & Zipf, A. (2016). Modelling the world in 3D from VGI/Crowdsourced data. European 
handbook of crowdsourced geographic information, 435. 

Musialski, P., Wonka, P., Aliaga, D. G., Wimmer, M., Van Gool, L., & Purgathofer, W. (2013). A 
survey of urban reconstruction. In Computer graphics forum (Vol. 32, No. 6, pp. 146-177). 

Liu, C., Kong, D., Wang, S., Wang, Z., Li, J., & Yin, B. (2021). Deep3D reconstruction: Methods, 
data, and challenges. Frontiers of Information Technology & Electronic Engineering, 22(5), 652-672. 

Henn, A., Gröger, G., Stroh, V., & Plümer, L. (2013). Model driven reconstruction of roofs from 
sparse LIDAR point clouds. ISPRS Journal of photogrammetry and remote sensing, 76, 17-29. 

Xiong, B., Elberink, S. O., & Vosselman, G. (2014). A graph edit dictionary for correcting errors in 
roof topology graphs reconstructed from point clouds. ISPRS Journal of photogrammetry and remote 
sensing, 93, 227-242. 

Buyukdemircioglu, M., Kocaman, S., & Isikdag, U. (2018). Semi-automatic 3D city model generation 
from large-format aerial images. ISPRS International Journal of Geo-Information, 7(9), 339. 

Li, Z., & Shan, J. (2022). RANSAC-based multi primitive building reconstruction from 3D point 
clouds. ISPRS Journal of Photogrammetry and Remote Sensing, 185, 247-260. 

Fischler, M. A., & Bolles, R. C. (1981). Random sample consensus: a paradigm for model fitting with 
applications to image analysis and automated cartography. Communications of the ACM, 24(6), 381-
395. 

Müller, P., Gang, Z., Wonka, P., & Gool, L. J. V. (2007). Image-based procedural modeling of 
facades. ACM Transactions on Graphics, 26(3), 85. 

Koutsourakis, P., Simon, L., Teboul, O., Tziritas, G., & Paragios, N. (2009). Single view 
reconstruction using shape grammars for urban environments. In 2009 IEEE 12th international 
conference on computer vision (pp. 1795-1802). IEEE. 

Dehbi, Y., & Plümer, L. (2011). Learning grammar rules of building parts from precise models and 
noisy observations. ISPRS journal of photogrammetry and remote sensing, 66(2), 166-176. 

Gadde, R., Marlet, R., & Paragios, N. (2016). Learning grammars for architecture-specific facade 
parsing. International Journal of Computer Vision, 117, 290-316. 

Buyukdemircioglu, M., Kocaman, S., & Kada, M. (2022). Deep learning for 3D building 
reconstruction: A review. The International Archives of Photogrammetry, Remote Sensing and Spatial 
Information Sciences, 359-366. 

Wang, Y., Fan, H., & Zhou, G. (2020). Reconstructing facade semantic models using hierarchical 
topological graphs. Transactions in GIS, 24(4), 1073-1097. 

Tarsha-Kurdi, F., Landes, T., Grussenmeyer, P., & Koehl, M. (2007). Model-driven and data-driven 
approaches using LIDAR data: Analysis and comparison. In ISPRS workshop, photogrammetric 
image analysis (PIA07) (pp. 87-92). 



Bibliography 

78 
 

Kong, D., Xu, L., Li, X., & Li, S. (2013). K-plane-based classification of airborne LiDAR data for 
accurate building roof measurement. IEEE Transactions on Instrumentation and Measurement, 63(5), 
1200-1214. 

Wang, C., Ji, M., Wang, J., Wen, W., Li, T., & Sun, Y. (2019a). An improved DBSCAN method for 
LiDAR data segmentation with automatic Eps estimation. Sensors, 19(1), 172. 

Ballard, D. H. (1981). Generalizing the Hough transform to detect arbitrary shapes. Pattern 
recognition, 13(2), 111-122. 

Nguyen, A., & Le, B. (2013). 3D point cloud segmentation: A survey. In 2013 6th IEEE conference 
on robotics, automation and mechatronics (RAM) (pp. 225-230). IEEE. 

Malihi, S., Valadan Zoej, M. J., & Hahn, M. (2018). Large-scale accurate reconstruction of buildings 
employing point clouds generated from UAV imagery. Remote Sensing, 10(7), 1148. 

Nurunnabi, A., Belton, D., & West, G. (2012). Robust segmentation in laser scanning 3D point cloud 
data. In 2012 International Conference on Digital Image Computing Techniques and Applications 
(DICTA) (pp. 1-8). IEEE. 

Xu, Y., Yao, W., Hoegner, L., & Stilla, U. (2017). Segmentation of building roofs from airborne 
LiDAR point clouds using robust voxel-based region growing. Remote Sensing Letters, 8(11), 1062-
1071. 

Li, L., Yao, J., Tu, J., Liu, X., Li, Y., & Guo, L. (2020). Roof plane segmentation from airborne 
LiDAR data using hierarchical clustering and boundary relabeling. Remote Sensing, 12(9), 1363. 

Shao, J., Zhang, W., Shen, A., Mellado, N., Cai, S., Luo, L., Wang, N., Yan, G., & Zhou, G. (2021). 
Seed point set-based building roof extraction from airborne LiDAR point clouds using a top-down 
strategy. Automation in Construction, 126, 103660. 

Wang, K., & Frahm, J. M. (2017). Single view parametric building reconstruction from satellite 
imagery. In 2017 International Conference on 3D Vision (3DV) (pp. 603-611). IEEE. 

Alidoost, F., Arefi, H., & Tombari, F. (2019). 2D image-to-3D model: Knowledge-based 3D building 
reconstruction (3DBR) using single aerial images and convolutional neural networks (CNNs). Remote 
Sensing, 11(19), 2219. 

Alidoost, F., Arefi, H., & Hahn, M. (2020). Y-Shaped Convolutional Neural Network for 3d Roof 
Elements Extraction to Reconstruct Building Models from A Single Aerial Image. ISPRS Annals of 
Photogrammetry, Remote Sensing & Spatial Information Sciences, 5(2) 

Gui, S., & Qin, R. (2021). Automated LoD-2 model reconstruction from very-high-resolution 
satellite-derived digital surface model and orthophoto. ISPRS Journal of Photogrammetry and Remote 
Sensing, 181, 1-19. 

Wichmann, A., Agoub, A., & Kada, M., 2018. RoofN3D: Deep Learning Training Data for 3D 
Building Reconstruction. International Archives of the Photogrammetry, Remote Sensing & Spatial 
Information Sciences, 42(2) 

Zhang, W., Li, Z., & Shan, J. (2021). Optimal model fitting for building reconstruction from point 
clouds. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 
9636-9650. 

Qi, C. R., Yi, L., Su, H., & Guibas, L. J. (2017). Pointnet++: Deep hierarchical feature learning on 
point sets in a metric space. Advances in neural information processing systems, 5105–5114. 



Bibliography 

79 
 

Li, L., Song, N., Sun, F., Liu, X., Wang, R., Yao, J., & Cao, S. (2022). Point2Roof: End-to-end 3D 
building roof modeling from airborne LiDAR point clouds. ISPRS Journal of Photogrammetry and 
Remote Sensing, 193, 17-28. 

Nishida, G., Bousseau, A., & Aliaga, D. G. (2018). Procedural modeling of a building from a single 
image. In Computer Graphics Forum (Vol. 37, No. 2, pp. 415-429). 

Liu, H., Li, W., & Zhu, J. (2022). Translational Symmetry-Aware Facade Parsing for 3-D Building 
Reconstruction. IEEE MultiMedia, 29(4), 38-47. 

3D Tiles, (2023). https://www.ogc.org/standard/3dtiles/ (accessed on 28 February 2023) 

glTF, (2023). https://www.khronos.org/gltf/ (accessed on 1 March 2023) 

Barnes, M., Finch, E.L., Sony Computer Entertainment Inc, (2008). COLLADA – Digital Asset 
Schema Release 1.5.0 

KML, (2023). https://www.ogc.org/standard/kml/ (accessed on 1 March 2023) 

Ledoux, H., Arroyo Ohori, K., Kumar, K., Dukai, B., Labetski, A., & Vitalis, S. (2019). CityJSON: A 
compact and easy-to-use encoding of the CityGML data model. Open Geospatial Data, Software and 
Standards, 4(1), 1-12. 

Mao, B., Ban, Y., & Laumert, B. (2020). Dynamic online 3D visualization framework for real-time 
energy simulation based on 3D tiles. ISPRS International Journal of Geo-Information, 9(3), 166. 

Xu, Z., Zhang, L., Li, H., Lin, Y. H., & Yin, S. (2020). Combining IFC and 3D tiles to create 3D 
visualization for building information modeling. Automation in Construction, 109, 102995. 

Zhao, J., Zhu, Q., Du, Z., Feng, T., & Zhang, Y. (2012). Mathematical morphology-based 
generalization of complex 3D building models incorporating semantic relationships. ISPRS Journal of 
Photogrammetry and Remote Sensing, 68, 95-111. 

Baig, S. U., & Rahman, A. A. (2013). A three-step strategy for generalization of 3D building models 
based on CityGML specifications. GeoJournal, 78, 1013-1020. 

Song, Z., & Li, J. (2018). A dynamic tiles loading and scheduling strategy for massive oblique 
photogrammetry models. In 2018 IEEE 3rd International Conference on Image, Vision and 
Computing (ICIVC) (pp. 648-652). IEEE. 

Kulawiak, M., Kulawiak, M., & Lubniewski, Z. (2019). Integration, processing and dissemination of 
LiDAR data in a 3D web-GIS. ISPRS International Journal of Geo-Information, 8(3), 144. 

Lu, M., Wang, X., Liu, X., Chen, M., Bi, S., Zhang, Y., & Lao, T. (2021). Web‐based real‐time 
visualization of large‐scale weather radar data using 3D tiles. Transactions in GIS, 25(1), 25-43. 

Arthur, D., & Vassilvitskii, S. (2007). K-means++ the advantages of careful seeding. In Proceedings 
of the eighteenth annual ACM-SIAM symposium on Discrete algorithms (pp. 1027-1035). 

Dirksen, J. (2015). Learning Three.js–the JavaScript 3D Library for WebGL. Packt Publishing Ltd. 

Armeni, I., Sener, O., Zamir, A. R., Jiang, H., Brilakis, I., Fischer, M., & Savarese, S. (2016). 3d 
semantic parsing of large-scale indoor spaces. In Proceedings of the IEEE conference on computer 
vision and pattern recognition (pp. 1534-1543). 

De Brabandere, B., Neven, D., & Van Gool, L. (2017). Semantic instance segmentation with a 
discriminative loss function. Proceedings of the IEEE Conference on Computer Vision and Pattern 
Recognition (CVPR) Workshops, 478–480. 



Bibliography 

80 
 

Comaniciu, D., & Meer, P. (2002). Mean shift: A robust approach toward feature space 
analysis. IEEE Transactions on pattern analysis and machine intelligence, 24(5), 603-619. 

Qin, Z., Yu, F., Liu, C., & Chen, X. (2018). How convolutional neural networks see the world – A 
survey of convolutional neural network visualization methods. Mathematical Foundations of 
Computing, 1(2): 149. 

Chen, L. C., Zhu, Y., Papandreou, G., Schroff, F., & Adam, H. (2018). Encoder-decoder with atrous 
separable convolution for semantic image segmentation. In Proceedings of the European conference 
on computer vision (ECCV) (pp. 801-818). 

Hu, Q., Yang, B., Xie, L., Rosa, S., Guo, Y., Wang, Z., Trigoni, N. & Markham, A. (2020). Randla-
net: Efficient semantic segmentation of large-scale point clouds. In Proceedings of the IEEE/CVF 
conference on computer vision and pattern recognition (pp. 11108-11117). 

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth 
Engine: Planetary-scale geospatial analysis for everyone. Remote sensing of Environment, 202, 18-27. 

Schilling, A., Bolling, J., & Nagel, C. (2016). Using glTF for streaming CityGML 3D city models. 
In Proceedings of the 21st International Conference on Web3D Technology (pp. 109-116). 

Huang, J., Stoter, J., Peters, R., & Nan, L. (2022). City3D: Large-scale building reconstruction from 
airborne LiDAR point clouds. Remote Sensing, 14(9), 2254. 

GEORES (2023). https://www.geoplex.de/geores/. (Accessed 1 April, 2023). 

Vaaraniemi, M., Treib, M., & Westermann, R. (2011). High-quality cartographic roads on high-
resolution DEMs, Journal of WSCG, 12/2, pp. 41–48. 

Twigg, C. (2003). Catmull-rom splines. Computer, 41(6), 4-6. 

Snavely, N., Seitz, S. M., & Szeliski, R. (2008). Modeling the world from internet photo collections. 
International Journal of Computer Vision, 80(2), 189–210. 

Hart, K. A., & Rimoli, J. J. (2020). Generation of statistically representative microstructures with 
direct grain geometry control. Computer Methods in Applied Mechanics and Engineering, 370, 
113242. 

Zhao, H., Shi, J., Qi, X., Wang, X., & Jia, J. (2017). Pyramid scene parsing network. In Proceedings 
of the IEEE conference on computer vision and pattern recognition (pp. 2881-2890). 

Neuhold, G., Ollmann, T., Rota Bulo, S., & Kontschieder, P. (2017). The mapillary vistas dataset for 
semantic understanding of street scenes. In Proceedings of the IEEE international conference on 
computer vision (pp. 4990–4999). 

Mapbox (2023). https://www.mapbox.com/. (Accessed 1 April, 2023). 

Leaflet (2023). https://leafletjs.com/. (Accessed 1 April, 2023). 

Nishida, G., Garcia-Dorado, I., Aliaga, D.G., Benes, B. and Bousseau, A. (2016). Interactive 
sketching of urban procedural models. ACM Transactions on Graphics (TOG), 35(4), p.130. 

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen, T., Lin, Z., Gimelshein, 
N., Antiga, L. & Desmaison, A. (2019). Pytorch: An imperative style, high-performance deep learning 
library. Advances in neural information processing systems, 32: 8026–8037. 

Zhao, L. and Tao, W. (2020). JSNet: Joint instance and semantic segmentation of 3D point clouds. 
Proceedings of the AAAI Conference on Artificial Intelligence, 34(7): 12951–12958. 



Bibliography 

81 
 

Ren, M. and Zemel, R. S. (2017). End-to-end instance segmentation with recurrent attention. 
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 6656–6664. 

Chen, L. C., Zhu, Y., Papandreou, G., Schroff, F., & Adam, H. (2018). Encoder-decoder with atrous 
separable convolution for semantic image segmentation. In Proceedings of the European conference 
on computer vision (ECCV) (pp. 801–818). 

 

  



Bibliography 

82 
 

  



 

83 
 

Research publications 

This part includes the complete research outcomes that are communicated through the 

following international publications. 

 

  



Research publications 

84 
 

  



Research publications 

85 
 

PAPER 1 

 

VGI3D: an interactive and low-cost solution for 3D building modelling  

from street-level VGI images 

Chaoquan Zhanga, Hongchao Fana, Gefei Kongb 

aDepartment of Civil and Environmental Engineering, Norwegian University of Science and 

Technology, Trondheim, Norway 

bSchool of Remote Sensing and Information Engineering, Wuhan University, Wuhan, China 

 

This paper is published in Journal of Geovisualization and Spatial Analysis, September 

 2021; 5:1-16



Research publications 

86 
 



Vol.:(0123456789)1 3

Journal of Geovisualization and Spatial Analysis            (2021) 5:18  
https://doi.org/10.1007/s41651-021-00086-7

VGI3D: an Interactive and Low‑Cost Solution for 3D Building Modelling 
from Street‑Level VGI Images

Chaoquan Zhang1  · Hongchao Fan1 · Gefei Kong2

Accepted: 10 August 2021 
© The Author(s) 2021

Abstract
Applications in smart cities are inseparable from the usage of three-dimensional (3D) building models. However, the cost 
of generating and constructing 3D building models with semantic information is high both in time and in labour. To solve 
this problem, we developed a web-based interactive system, VGI3D, with the ambition of becoming a VGI platform to col-
lect 3D building models with semantic information by using the power of crowdsourcing. VGI3D is a platform-independent 
software program that is composed of a spatially relational database (PostgreSQL/PostGIS) for the storage and management 
of spatially geometrical data and other software modules, allowing users to import, analyse, reconstruct, visualise, modify 
and export 3D building models according to the OBJ/CityGML standard. In this paper, we present the VGI3D in detail, 
focusing on relevant technical implementations, and report the results of limited usability testing aimed at optimising the 
system and user experience. After limited expert and non-expert participants’ testing, we proved the usefulness of VGI3D 
and its promising value for the 3D modelling community.

Keywords 3D building modelling · Spatial relational database · Python Flask · User interaction · CityGML · VGI images · 
Low cost

Introduction

As the technology centre in Norway and the first big city 
to implement and test 5G communication in 2020, the 
Trondheim municipality is currently gearing up the con-
struction of a smart city. In the coming years, a number of 
smart city-related applications will be planned. Meanwhile, 
increasing applications in smart cities necessitate a large 
number of 3D building models (3DBMs)—just think of 
solar simulation (Li et al. 2019), virtual tourism (Templin 
et al. 2020), urban planning (Park et al. 2021), augmented 
reality (Blut and Blankenbach 2021), path navigation (Liu 
et al. 2020), disaster management (Haynes et al. 2018), 
architectural design (Li et  al. 2017), etc. Therefore, it 
is urgent to generate 3D building models with semantic 

information. For this purpose, a joint laboratory called 
Nordig Lab was established as a collaboration between the 
Norwegian University of Science and Technology (NTNU) 
and Trondheim municipality. The main focus of Nordig 
Lab is digitalisation, which includes generating large scale 
3D building models with rich semantic information as well.

3D building models are generally defined by five different 
levels of details (LoDs) according to the CityGML2.0 stand-
ard (Gröger and Plümer 2012). LoD0 is a representation 
of the ground boundary (or footprint) of a building. LoD1 
is a cuboid obtained by extruding the LoD0 model. LoD2 
consists of a simplified roof shape and multiple semantic 
classes of a building (e.g. wall, roof). In comparison with 
LoD2, LoD3 is often considered a more architecturally 
detailed model in that it contains windows, doors and other 
rich semantic information. LoD4 is more complicated and 
completes an LoD3 model by including indoor components. 
In general, most of the 3D building model-related applica-
tions are not just satisfied with the simple LoD1 models 
and instead want models to have at least a roof shape (i.e., 
LoD2 or better), particularly in smart cities (Monteiro et al. 
2018). They prefer photorealistic 3D building models with 
windows, doors or balconies in LoD3 or higher, such as the 
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estimation of solar irradiation of buildings (Machete et al. 
2018) and urban CO2 emission simulation and measure-
ment (Eicker et al. 2018). Even some attempts (Tang et al. 
2020; Biljecki et al. 2016) have been tried to propose the 
less generic and more application-driven specification for 
3D building models, since standard LoDs specification lacks 
flexibility and degree of freedom to some extent.

To meet the requirements of the abovementioned applica-
tions that require 3D building models with different LoDs, a 
few cities like New York and Berlin have created and freely 
released 3D city models based on the CityGML standard 
over the last decade. These 3D city models not only contain 
buildings but also include streets, trees, bridges and even 
terrain. They are defined and presented as the respective 
real-world objects with respect to their geometrical, topolog-
ical, sematic and appearance properties (Stadler et al. 2009). 
Nevertheless, most of these 3D city building models are con-
structed in LoD1 or LoD2, and large-scale LoD3 models 
with semantic information are hardly available. Hence, that 
is the main motivation of this paper to generate 3D building 
models in LoD3 with semantic information.

3D building models are mainly generated from 3D point 
clouds and images. 3D point cloud data can be classified 
into three categories: airborne, terrestrial and mobile laser 
scanning data. While 3D modelling methods based on point 
clouds have been widely studied (Sun and Salvaggio 2013; 
Xiong et al. 2014; Wang et al. 2018), the quality of recon-
structed 3D building models varies, owing to differences in 
point densities, scanning patterns and geometric character-
istics (Yang and Dong 2013). In other words, the kind of 
data used depends on the specific needs of the application. 
For instance, we would like to create 3D building models in 
LoD3, and, in this case, airborne point cloud data are obvi-
ously inappropriate and cannot provide rich façade infor-
mation due to the sparse point density of facades (Wu et al. 
2017). However, terrestrial point clouds can. In the methods 
based on terrestrial point clouds, classic approaches usually 
learn attribute topology and grammar rules from precise 
descriptions and noisy observations to create high-resolu-
tion 3D building models (Becker 2009; Dehbi and Plümer 
2011). Even though their reconstructed models are stable 
and complete, their algorithms are limited by the computa-
tional performance and complexity of the scene as well as 
types of architectural styles.

With the deepening of research and the updating and 
iteration of algorithms, great success has been achieved in 
recent years. Dehbi et al. (Dehbi et al. 2017) further opti-
mised their previous work and proposed a statistical method, 
which is capable of successfully coping with complexity 
(a varying number of objects), uncertainty and unobserv-
ability in real-world problems. This idea also inspired other 
researchers and was applied to the 3D modelling of indoor 
environments (Tran et  al. 2019). In addition, the great 

method presented by Yu et al. (Yu et al. 2017) not only 
ensured a very high modelling precision but also stamped 
out the weaknesses of restricted architectural styles. How-
ever, to obtain impressive results, the above approaches have 
to reply on quite expensive point cloud acquisition devices 
not suitable for mass markets, and modelling procedures are 
time-consuming and laborious as well.

Another research branch for 3D building modelling is 
to use images. The classic multiview stereo (Furukawa and 
Ponce 2009) algorithm often needs to take a set of calibrated 
images that are surrounding the object. While it emphasises 
that it is an automatic method and does not require any ini-
tialisation, it often suffers from painful secondary editing 
to fix the dense 3D models they produce, contrary to the 
original intention of automation. Moreover, images cannot 
provide rich geometric and topological information about 
buildings. Hence, completely automatic modelling is known 
to omit user interaction, and it is generally accepted that such 
does not produce satisfying results in case of erroneous or 
partially missing data (Musialski et al. 2013). To address 
these issues, Wolberg and Zokai (Wolberg and Zokai 2018) 
designed a photo-centric 3D modelling system—Photo-
Sketch—that not only benefited automatic camera pose 
recovery and point cloud generation by using the structure 
from motion algorithm (SfM) (Ullman 1979) but also intro-
duced user interaction to overcome geometry incompletion. 
However, SfM requires many images with overlap and must 
know the internal parameters of a camera for camera cali-
bration. In their experiment, it took them around 20 min to 
reconstruct only one building model, which reflected the 
inefficient computation and great reliance upon the number 
of images. Getting benefit from advances in deep learning, 
Liu et al. (Liu et al. 2021) proposed a translational symme-
try-aware façade parsing approach for 3D building model-
ling and achieved extremely photorealistic 3D models. They 
fused semantic segmentation and instance detection to parse 
the façade elements into semantic grammars from just one 
image, and then reconstructed final 3D models by using 
procedural modelling. Despite gaining highly detailed 3D 
building models, the system asked users to repeatedly inter-
act and gradually add floors, ledges, roof, windows, doors 
and balconies, respectively. However, they did not report 
the whole modelling time and hence we cannot know the 
efficiency of this approach and cannot compare it to other 
methods. In addition, to be honest, it is not friendly or easy 
for non-expert users to use because they may find the inter-
action process cumbersome and may lose patience.

Furthermore, most of the existing 3D building model-
ling systems appear predominantly desktop or lab-based, 
such as Kim and Han’s work (Kim and Han 2018), and 
might need users to do some extra environmental con-
figuration. That will undoubtedly further increase the dif-
ficulty of promotion to ordinary users and the mass market 
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appeal, even though these 3D building modelling systems 
are outstanding products. On the other hand, many smart 
city applications now urgently demand 3D building mod-
els, but the existing 3D modelling costs are not low in 
terms of modelling time, labour or data collection. No 
matter whether from the economic or efficiency point of 
view, using the existing solutions to simultaneously meet 
the above points is difficult. Therefore, we are motivated 
to design a web-based interactive 3D building modelling 
system with lower costs, faster speed and more intelligent 
processes.

The idea of volunteer geographic information (VGI) has 
received widespread attention since its inception. VGI employs 
tools to create, assemble and disseminate geographic data pro-
vided voluntarily by individuals (Sangiambut and Sieber 2016). 
Nowadays, smart devices with cameras are becoming increas-
ingly powerful and cheaper, particularly for mobile phones. 
People have been more willing to share their daily life through 
images than ever. Thus, everyone can become a sensor to con-
tribute image data by using mobile phones, digital cameras and 
even a GoPro. Although it is hard to evaluate and ensure the 
quality of VGI images, the convenience of VGI image data 
acquisition and richness of image data quantity can make up 
for the shortage of image quality to some extent, which resolves 
the problem of low-cost data acquisition.

In terms of modelling speed and intelligence, a deep 
learning technique would be an excellent assistant. In our 
work, users only need to simply and directly outline the 
façade of a building upon the image; then, our system will 
automatically detect façade elements (e.g. windows, doors, 
balconies) and adjust their bounding boxes. Finally, 2D loca-
tions of building elements are going to be transformed into 
a 3D coordinate system and, meanwhile, show a 3D model 
to users in real time. Due to the simplicity of interaction, 
it is easier to promote the system to ordinary users and it 
will certainly be beneficial to the spread and development 
of urban 3D modelling.

The novelty of our work is in combining interactive and 
low-cost 3D building modelling, interactive model updating, 
real-time 3D model visualisation and integration with a spa-
tially relational database (PostgreSQL/PostGIS) and Python 
Flask (Flask 2021) web framework. In summary, we intend 
to verify among both expert and non-expert users that our 
system is useful and has potential value for the 3D building 
modelling community.

The rest of this paper is organised as follows: the ‘Meth-
odology’ section presents our methodology, which contains 
the system architecture and design, algorithm, testing and 
evaluation and usability testing. Then, we show the imple-
mentation with the results of testing in the ‘Software Imple-
mentation and Testing’ section. A discussion is presented 
in the ‘Discussion’ section, and the ‘Conclusion and Future 

Work’ section provides the conclusions as well as future 
work.

Methodology

In this paper, our system has the following functionality: 
(1) simple user interaction, including roof type and façade 
orientation selection and façade drawing; (2) geographi-
cally matching façade with an edge of the footprint on a 
2D map as a reference to get the real ratio/scale; (3) façade 
elements detection, correction and inference of locations of 
façade elements; (4) 3D building modelling from 2D loca-
tions; (5) interactively editing/updating incorrect parts of 
reconstructed models; (6) cloud server (AWS EC2) capabil-
ity for system deployment and PostgreSQL for data storage/
retrieval; (7) integration with a Python Flask (Flask 2021) 
web framework, Three.js (Dirksen 2015) as 3D real-time 
visualisation and WebGL.

The presented work is based on our two earlier works 
(Kong and Fan 2020; Fan et  al. 2021). The first one 
(Kong and Fan 2020) proposed a deep learning method 
to detect façade elements from low-quality street-level 
images. The second one (Fan et  al. 2021) introduced 
the first version of VGI3D from the perspective of geo-
graphic information system (GIS). Now, this paper will 
concentrate on changes and new features and, meanwhile, 
further explain our system from the perspective of soft-
ware engineering.

Designed User Experience

A summary of the designed user experience is presented 
here to help better understand our system, VGI3D. A typi-
cal use case would be as follows: (1) users upload no more 
than two images that belong to the same building but dif-
ferent façade directions to the building; (2) they select the 
façade direction for each image and its corresponding foot-
print edge from the map; (3) they pick a roof type, draw the 
façade boundary for each image and then click the ‘Save’ 
button; (4) they repeat this process until no images need to 
be handled, and then the reconstructed 3D building model 
with different elements colour would be shown in real time; 
and (5) additionally, if certain façade element is wrongly 
reconstructed, they click the ‘Update’ button and start to 
update the model in an interactive fashion as well by delet-
ing the incorrect element from the 3D model, drawing the 
element boundary on the façade image, selecting a right ele-
ment type for it and then click the ‘Save’ button to finish 
the modification; (6) lastly, the reconstructed 3D building 
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model can be exported in CityGML/OBJ format by clicking 
the ‘Download’ button.

System Architecture, Design and Data Flow

An abstract overview of system architecture is shown in 
Fig.  1, which adopts a classic software design pattern, 
MVC (model-view-controllers). ‘M’ means model and cor-
responds to the data layer. All interactions with the database 
are done here. ‘V’ refers to the display or interaction layer in 
which we can operate the system through the graphic user 
interface. ‘C’, the controller, refers to the business layer. 
Most key modules are placed there and handle the user’s 
actions. Generally, the controller interprets the mouse and 
keyboard inputs from the user, then launches a request to the 
database to get the data, process the data and then update 
the view.

The VGI3D is currently deployed on a cloud server 
(AWS EC2) with an Ubuntu version 16.04 operating sys-
tem. In the data layer, we set up a relational database, 
PostgreSQL, with PostGIS plugin, for the purpose of spa-
tial geometry search. The data layer mainly stores all the 
building footprints with geographic locations in Norway 
(would be used in edge selection in interaction layer), 
all the images that users uploaded and reconstructed 3D 
building models. The business layer is the core part of our 

system. The concise pipeline is, first, detect the façade ele-
ments by using a deep learning model, YOLOv3 (Redmon 
and Farhadi 2018), such as windows, doors and balconies. 
Second, we correct the locations of façade, façade ele-
ments and roof to unify them under the same coordinate 
system. Third, we convert 2D elements into 3D and then 
obtain the final 3D model. A detailed sequence diagram 
of each step and data flow between steps can be found in 
our previous work (Fan et al. 2021). User interaction takes 
place in the interaction layer, which involves roof type and 
façade orientation selection, façade drawing and geograph-
ically matching the façade with an edge of a footprint on 
the 2D map as a reference to get the real ratio/scale. The 
last important item would make sure that the reconstructed 
3D building model has a real scale, real orientation and 
real geographic coordinates.

Display layers include HTML5, cascading style sheets 
(CSS) and Bootstrap for rendering the user graphics, and 
Three.js is used to provide 3D-rendering support. jQuery 
is also employed to handle user interaction, mainly lis-
tening to response events. An HTTP connection, Ajax 
and Jinja2 template engine are intermittently needed to 
communicate with the frontend and backend. Data flow 
between the frontend and backend is represented in the 
format of JSON.

Fig. 1  Abstract overview of 
system architecture
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Figure 2 shows our core system design with the 3D 
building modelling application at the bottom. Activity flow 
follows the direction indicated, but the order within ‘mod-
elling activity’ can be interchanged (i.e. no fixed order). 
The JSON data flow helps with communication between 
the database and web service and is capable of accessing 
via ‘modelling activity’ and ‘update activity’ as well.

Algorithms

Since the core concepts of our 3D modelling method are 
low cost and speed, one of the key algorithms is to auto-
matically and accurately detect façade elements in a short 
time. As we know, building facades in street-level images 
generally have complex scenes, such as distortion, blur or 
bad illumination. The existing approaches demand users to 
manually draw façade elements, which is labour-intensive 
and time-consuming. Hence, we adopt a convolutional neu-
ral network (CNN) model, YOLOv3, to help us automati-
cally extract façade elements. We follow the steps suggested 
by Kong and Fan (Kong and Fan 2020) and train YOLOv3 
on the FacadeWHU dataset (Kong and Fan 2020), which 
includes 900 street-level images (50 images in Trondheim, 
Norway, and 850 images in Paris, France). Then, we can 
obtain the location of every façade element on the image 
coordinate system. Since street-level images usually have 
more or less perspective distortion, we need to correct the 
extracted façade elements and then project them to a 3D 
space. Besides, for visualisation and modelling complete-
ness purposes, we also need to construct the building’s roof 
according to roof type that was selected by the user before. 
The top edge of the façade is regarded as the bottom of the 
roof. The height of the roof can be estimated according to 
the ratio of façade length to width. Algorithm details can 
be found in the ‘Methodology’ section of our earlier work 
(Fan et al. 2021).

In some cases, however, this CNN model may sacrifice 
accuracy or completeness while ensuring speed. Some 
façade elements might be incorrectly detected because of 
their complicated scenes or low-quality images. Therefore, 
interactively updating 3D models is needed and necessary. 
For this purpose, VGI3D allows users to firstly select and 
delete the incorrectly reconstructed façade element based 
on the original model. Next, they can simply outline the 
wrongly reconstructed façade element upon an image and 
select a corresponding element type for it. Then, an updat-
ing algorithm will automatically merge the new façade ele-
ment into the original 3D model and adjust the locations 
of elements to make the overall model look coordinated 
and harmonious. After that, the new modified model will 
be shown to users in real time. This algorithm worked 
well and met the requirements of fast speed, ease of use 
and low cost.

Last but not least, to apply 3D building models into vari-
ous map-based applications, it is essential to give 3D build-
ing models real geographical coordinates instead of rela-
tive coordinates. We asked users to select a footprint of the 
building that they want to construct on the map (here, it 
was OpenStreetMap) before outlining the façade, then fur-
ther select the edge from the footprint, which corresponds 
with the façade direction being drawn. In other words, users 
should pick up an edge for each façade within the image. 
Our modelling algorithm will be able to calculate the ratio 
(facade height/façade width) of real coordinates and assign 
real geographical coordinates for each vertex of the geomet-
ric 3D model.

Testing and Evaluation

In addition to usual unit tests during development, functional 
testing was also carried out to make sure the system worked 
as planned—for example, by raising technical issues. The 

Fig. 2  System activities flow 
and communication between the 
database and Flask web service
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functional testing is mainly conducted around the following 
aspects:

(1) Image-uploading activity, including uploading more 
than two images and continuously uploading images.

(2) Geographic matching activity, including map layout/
location, highlighting selected footprint and edge with 
different colours.

(3) Options activity, including operating under different 
conditions, e.g., different combinations of façade direc-
tion and roof type.

(4) Façade/façade element drawing activity, including 
drawing operation and deleting wrong drawing opera-
tions.

(5) Incorrect façade element deletion activity, including 
selecting and highlighting incorrect elements and delet-
ing incorrectly reconstructed elements.

(6) Visualising and exporting the 3D building model.

The system was evaluated by conducting a user study 
with 30 non-expert/expert participants. The Participants 
were (a) shown a tutorial video and a slide presentation 
about how to operate the system, (b) were given some time 
to try the system by themselves, and finally (c) were asked 
to fill in a user feedback form. A copy of the user feedback 
form is available in Appendix A. Most questions of this 
form are for participants to rank a specific aspect of the sys-
tem from one (least) to five (most) points. The raw data of 
their answers can be found in Appendix B. Please note that 
Nos. 1–15 are expert participants and Nos. 16–30 are non-
expert participants. The grouping criteria is roughly based 
on: the research fields are strongly or relatively related to 
the 3D model as the expert group; the research fields are 
weakly or slightly related to the 3D model as the non-expert 
group.

Software Implementation and Testing

The VGI3D has been implemented and can be accessed at: 
https:// 18. 210. 26. 42: 5002/ facade/. We also invited expert 
and non-expert users to test the software. In this section, 
software implementation will be demonstrated.

Implementation

A driving principle behind our design is to enable the sys-
tem’s interaction as simple as possible, which would be 
friendly to non-expert users and would be more beneficially 
promoted to the mass market. For this purpose, we borrowed 
the drawing idea from the Mapbox (Mapbox 2021) SDK 
(software development kit) to achieve the façade polygons 
on images. A building footprint database with PostGIS was 
created in advance to supply geographic information of foot-
prints and buildings’ height. Then, Leaflet (Leaflet 2021) 
was utilized to select edges of the footprints from an embed-
ded map and wrapped and transmitted them to the backend 
for calculation via GeoJSON. Relying on these geographical 
information, we could calculate the real ratio of building 
facades, which would further ensure reconstructed building 
models have real geographic coordinates.

Another driving principle behind our design is model-
ling buildings anywhere. This tries to ensure the modelling 
system is viable in a general environment and, hence, users 
will not be constrained to a limited number of facade styles. 
To realise this goal, we adopted a CNN model, YOLOv3, for 
helping to automatically detect façade elements (i.e. window, 
door, balcony) within one second. The utilization of CNN 
not only satisfied the modelling anywhere but also saved 
considerable time for the entire workflow because the step 
of façade elements extraction is the most time-consuming 
according to previous work (Nishida et al. 2016).

After the interaction with all images, the created data 
are transferred to the backend in JSON format to recon-
struct 3D building models. The content of data includes 
edges’ geographic coordinates, locations of façade bounda-
ries, locations of all the façade elements, building’s height, 
uploaded images, roof type and façade orientations. In addi-
tion, all these data will be stored in two separate tables 
of database (as shown in Fig. 3). One is used for storing 
building’s geometry and the other is for image attributes. 
They can communicate with each other via a foreign key, 
building_id. The reconstruction part of models has been 
explained in detail in our previous work (Fan et al. 2021), 
so we are not planning to describe the reconstruction part 
here once again.

Although our objective is capable of automatically and 
accurately reconstructing building models with arbitrary 

Fig. 3  Table structure of the 
database

1 1..n
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facade styles, the actual situation always deviates from 
the ideal situation. For example, there are tons of styles of 
doors and windows in the world and our CNN model can-
not correctly detect all of them due to an inadequate train-
ing dataset. Sometimes, incorrect or missing detection can 
also be caused by low-quality images, such as distortion, 
blur, illumination or reflection. Therefore, update activity 
was implemented to interactively correct the wrong façade 
elements. In our approach, users can (a) select and high-
light the element that they want to modify; (b) remove it by 
clicking the ‘Delete’ button, which is located at the upper 
right corner of the 3D viewer; (c) draw the corresponding 
element’s boundary that we deleted before; (d) select the 

element type and façade orientation as extra but essential 
attributes; (e) click the ‘Update’ button to wrap the data 
into a JSON file and transmit them to the backend; (f) the 
system would simultaneously execute the update function 
and update the database; (g) lastly, the modified 3D model 
would be returned to the frontend. Figures 4 and 5 illustrate 
the whole modelling process. The benefit of this approach 
was to make the modelling process more flexible and con-
venient and make the results more accurate to some degree.

Once modelling has been completed, exporting 3D build-
ing models is possible and available by clicking the ‘Down-
load’ button. We currently support two types of 3D formats, 
OBJ and CityGML.

Fig. 4  (a) Main modelling 
activity; (b) geographic match-
ing activity; and (c) recon-
structed 3D building model 
visualisation
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Software Functional Testing

The system was opened on a laptop in browser mode and the 
main modelling page appeared. First, image uploading activ-
ity was activated, in which preprepared images that belong 
to the same building were uploaded by clicking the fold icon 
of the left sidebar, as shown in a purple rectangle of Fig. 4a. 
Then, one image in the image sequence was displayed in the 
2D viewer of the workspace. Second, we searched and chose 
the footprint of this building (i.e. highlighted in orange) from 
the map, then further selected the corresponding edge (i.e. 
highlighted in blue) of the façade that the participant was 
handling, from the map to complete the geographic match-
ing activity (as shown in Fig. 4b). Third, we respectively 
selected the roof type and façade orientation for the current 
processing image from the right sidebar to finish the options 

selection activity (see green rectangle in Fig. 4a). Fourth, we 
began to draw the façade boundary on the image, which gen-
erally is a rectangle, to complete the façade drawing activity 
(see red rectangle in Fig. 4a), then clicked the ‘Save’ button 
to transfer the data to the backend and save them into the 
database. Fifth, we switched to the next image by clicking 
the ‘Next Image’ button, then repeated the second to fourth 
steps until all images were done. Once the functional testing 
of modelling activity had been finished, the reconstructed 
3D building model was visualised in a 3D viewer workspace 
as expected (see Fig. 4c). Additionally, if participants did not 
select any item of a certain kind, such as roof type, edges or 
façade orientation, a dialogue box would pop up to remind 
participants not to omit certain items. Or, another case was 
that, if participants would like to reupload images and dis-
card all the operations that they had done previously, the 

Fig. 5  (a) Incorrect façade 
element deletion activity; (b) 
model updating activity; and (c) 
new 3D building model after 
updating
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system would also pop up a dialogue box to ask whether they 
wanted to discard them or not. These eventualities were all 
considered during the development stage and were worked 
as planned.

Sometimes, the incorrect façade elements (e.g. the door 
outlined in red in Fig. 4c) are inevitable after reconstruction 
due to the reasons we mentioned above. Such will lead us to 
test update activity by clicking the ‘Update Model’ button in 
the left sidebar. Meanwhile, we will advance to a new page, 
‘update page’. In the 3D viewer workspace, a deletion icon 
was available, which was used to delete the selected wrong 
façade element with highlighted colour (see Fig. 5a). That 
was the first step under update activity, i.e., incorrect façade 
element deletion activity in Fig. 2. Second, we found the 
right image that we would like to draw upon via clicking the 
‘Next Image’ or ‘Prev Image’ button, then manually drew 
the boundary of the façade element on the image whose 
location corresponded to the element we deleted just now. 
In this way, we completed the testing of the façade element 
drawing activity (see red rectangle in Fig. 5b). Third, we 
selected the appropriate element class and façade orienta-
tion from the right sidebar (see green rectangle in Fig. 5b). 
Fourth, we clicked the ‘Update’ button to transmit the data to 
the backend and executed the model updating functionality. 
Meanwhile, we updated the database (i.e., column build-
ing_geometry and labels of table Building) accordingly and 
the updated result would be displayed in the 3D viewer in 
real time (see Fig. 5c). We repeated this process until no 
other incorrect façade elements needed to be updated. Please 
note that only one façade element can be updated at a time. 
Finally, exporting 3D models was supported according to 
the OBJ/CityGML standard.

Until now, we have managed to test all functionalities 
and everything worked well, with the only possible chal-
lenge being the quality of images. Images of a low quality, 
particularly for façade parts, can affect the completeness or 
stability of façade elements extraction, but it is typically 

not severe enough to kill performance. The system most 
likely performed well thanks to the fact that modelling has 
a powerful CNN detection model as a reliable cornerstone, 
simple but considerate interaction logic and novel interactive 
updates. The system was also tested extensively in practice, 
which tremendously reduced the potential problems dur-
ing actual use. Furthermore, since VGI3D was developed 
based on HTML5, it is possible to open it in the browser on 
any device. Hence, we tested the system on a mobile phone, 
but, unfortunately, the user experience was not good at all 
because the screen of a mobile phone was too small and the 
layout of widgets had changed a lot and made the system 
look very ugly.

Software Evaluation

To evaluate the usability of VGI3D, we conducted a small 
scale of usability testing at the Norwegian University of 
Science and Technology, Norway, and Wuhan University, 
China. 30 expert/non-expert participants (aged 25–43 years 
old, including 7 women and 23 men) were invited to experi-
ence and test the VGI3D. Six of them are expert participants 
and the others are non-expert participants. Their research 
fields include 3D city modelling, 3D visualization, photo-
grammetry, urban planning, BIM for asset assessment/man-
agement, spatial analysis, computer science, GPS, railway 
design and facility management. Before the formal testing, 
they would be shown a tutorial video and a slide presentation 
about how to operate the system and be given some time to 
get familiar with the system. After that, our testing kicked 
off. Each participant was randomly assigned a preprepared 
folder where storing building images, and the participant 
could use them for testing. Once the testing was complete, 
they were asked to fill in a user feedback form. This form 
included questions about, for instance, their demographic 
information, previous experience (‘How experienced are 
you with 3D modelling, e.g., Sketchup?’), satisfaction (‘The 

Table 1  Summarized 
suggestions/comments from 
participants during the usability 
testing

‘The user interface is clear and concise, and easy to understand overall.’

‘This button is slightly small; making it bigger would be better.’
‘Overall, the system is good and promising and is beneficial to my research.’
‘From the BIM point of view, the reconstructed 3D model is not as accurate and detailed as BIM model.’
‘The tips are not obvious. Had better move them to a more obvious place.’
‘Downloading model spent a little longer time in my case.’
‘The modelling time is beyond my expectation.’
‘Deleting incorrect façade elements sometimes would face bugs.’
‘The reconstructed model is cool and 3D viewing is smooth.’
‘Include building height to get proper element ratio.’
‘Some reconstructed windows are uneven in size.’
‘Hope to improve the system so that it can reconstruct buildings with arbitrary footprints.’
‘Cannot find a specific location name by searching on the map. Hope to fix this problem.’
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interaction operation is easy to understand’), understanding 
of the system, any subjective comments/suggestions, etc. 
Their comments/suggestions have been summarized and 
listed in Table 1, as shown below.

After the usability testing, we fortunately received some 
positive feedbacks from participants: 93.3% (28/30) of the 
participants reported that the user interface was ‘clear’ and 
‘easy’ to understand. In terms of 3D modelling, two thirds of 
participants (20/30; 66.7%) could manage to reconstruct 3D 
models. Most of the participants who could not successfully 
reconstruct the 3D models either were non-experts or were 
inexperienced in 3D modelling. Participants largely thought 
our system could reconstruct buildings at a rapid speed, and 
the plausibility of modelling results as well as 3D viewing 
capability exceeded their expectations. Most importantly, 
some participants said VGI3D was very beneficial to their 
own researches. Meanwhile, we also received negative feed-
backs from participants. For instance, one of them reported 

that the tips were not obvious and were easy to be ignored. 
Three of them found the same bug when trying to delete 
the wrong façade elements (i.e. failed to delete). Since BIM 
participants have been used to utilizing high-detailed 3D 
models for research, they thought our models were not very 
photorealistic.

Apart from the qualitative comments, we also per-
formed the quantitative evaluation and analysis based on 
user-feedback-form data from the statistical point of view. 
The raw data in Appendix B has been statistically sum-
marised in Table 2. Outliers are identified as single points 
in box plots as shown in Fig. 6. Besides observing the 
spread and centrality of data, we also proposed related 
questions by judging how some responses of a participant 
were associated with others. Since our sample size of par-
ticipants was not too big, its use would lead to a sparse 
scatter plot. Sometimes it could be nonlinear in appearance 
but usually included bound data internally (see Fig. 7). 
Therefore, to identify associations between participants’ 

Table 2  Statistics about raw data collected from participants. Mean(µ), standard deviation(σ), lower quartile(Q1), middle quartile(Q2), upper 
quartile(Q3), interquartile range (IQR). 3DBMs: 3D Building Models; 3DBMing: 3D Building Modelling; 3DMing: 3D Modelling

Involved 
in 3BMs 
apps?

Experi-
enced using 
browser?

Experi-
enced with 
3DMing?

VGI3D 
easy to 
use?

Modeling 
result looks 
plausible?

Modeling 
result is com-
pleted?

VGI3D looks 
useful for 
3BMing?

3D 
viewing 
smooth?

Fast 
modeling 
speed?

µ 3.20 4.20 2.40 4.00 3.83 3.57 3.90 4.53 4.20
σ 1.30 0.60 1.33 0.52 0.58 0.56 0.60 0.50 0.40
Q1 2.00 4.00 1.00 4.00 4.00 3.00 4.00 4.00 4.00
Q2 3.00 4.00 2.00 4.00 4.00 4.00 4.00 5.00 4.00
Q3 4.00 5.00 3.00 4.00 4.00 4.00 4.00 5.00 4.00
IQR 2.0 1.0 2.0 0 0 1.0 0 1.0 0
Skew-ness -0.19 -0.11 0.51 -1.45 -0.98 -0.84 -0.90 -0.13 1.50

Fig. 6  Box plot of data for 
illustrating skewness
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responses data, we computed Spearman's rank correlation 
coefficient, which is capable of handling linear, nonlinear 
and skewed relationships. In our case, we had to calculate 
the Spearman’s coefficient with full covariance rather than 
an approximate formula because of the presence of bound 
data and, thus, duplicate ranks. Table 4 compares the cor-
relation coefficients between all possible question pairs.

Discussion

Data Analysis

The answers to questions in the user feedback form usually 
have skewness. We can find their skewed degrees (i.e. mag-
nitude) and nature (i.e. positive or negative skewness) from 
Table 2. The first column of Fig. 6 shows a wide range of 
knowing about applications of 3D building models and with 
a negative skewness of the data. This is what we expected 
because our participants are from different research fields 
and the number of participants is limited. We cannot guar-
antee that every participant is quite involved in applications 
related to 3D building modelling.

Almost all participants were able to use the browser skill-
fully with a mean rating of 4.20, slightly negative skewness 
and no outliers. Most of the participants (24/30; 80%) were 
not very familiar with 3D building modelling, as seen by an 
apparent positive skewness and mean rating of 2.40, which 
is interesting when we compare it with the mean value of 
3.20 recorded for the first column (involvement in apps of 
3D building models), which has opposite skewness. This 
might indicate the participants currently do not often use 3D 
building modelling tools, not to mention the interactive 3D 
modelling system. To rule out the impact of non-expert par-
ticipants (Nos. 16–30) on the results, we further calculated 
the mean value of expert group (Nos. 1–15) on question 
‘how experienced with 3D modelling?’ and obtained the 

mean rating of 3.47. This degree is between ‘moderately’ 
and ‘very’ and further verified our guess is correct. This 
could be interpreted as the novelty of our interactive VGI3D 
to the 3D building modelling community. almost all partici-
pants (28/30; 93.3%; rank over 4) thought our system was 
easy to use, with a mean rating of 4.00 and negative skew-
ness. Furthermore, most participants (24/30; 80%) reported 
the modelling results looked plausible by a mean rating of 
3.83 and a lower quartile (Q1) value of 4.0, reflecting the 
fact that most participants highly appraised to VGI3D. Both 
the modelling result completeness and system usefulness to 
the 3D building modelling field were considered positive, 
with mean ratings of 3.57 and 3.90, respectively.

In terms of system usefulness to 3D building modelling, 
we not only obtained the highest rating of 5 three times but 
also got the low rating of 2 once. As for the low rating, the 
participant had no 3D modelling experience and his research 
interest (railway design) was quite different from the 3D 
building modelling. As a result, he did not understand the 
system well; hence, he ended up failing to reconstruct the 
building model. The ability of understanding varies from 
person to person and we cannot expect everyone to be able to 
use our system smoothly; still, this special case encourages 
us to better optimise the system in the future.

In addition, to further analyse the assessment of differ-
ent types of participants towards the system, we grouped 
them by their research fields and then compared the ratings 
between different groups on each question. Due to space 
limitations, only ‘mean (µ)’ is displayed here as shown 
in Table 3. The remaining statistical indicators (standard 
deviation and skewness) can be found in Appendix C. From 
Table 3, we can discover that all the groups gave the highly 
positive assessment (rank over 4) in terms of smooth 3D 
viewing capability and fast modelling speed. Together with 
the plausibility of modelling results and VGI3D usefulness, 
there is an interesting finding over them. The research fields 
(BIM and facility management) that need high-detailed 3D 

Fig. 7  Examples of sparse scatter plots with nonlinearity in appearance but including bound data points internally
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models tend to give the moderate evaluation, which might 
be because these two groups have got used to utilizing the 
realistic models and think our reconstructed models are not 
as realistic as the actual buildings, sometimes even worse. 
Therefore, they do not think our models can be applied to 
their researches. Additionally, strictly speaking, only two 
groups (3D city modelling and photogrammetry) have the 
3D modelling experience with the mean rating of 4.75 and 
3.33, respectively. However, other groups except railway 
design group still gave us the positive assessment on ease 
of use, plausibility, completeness, VGI3D usefulness, etc., 
which indeed reflect that overall our system is great.

Correlation Analysis

Table 4 presents the correlation between all questions based 
on Spearman’s rank correlation coefficient. All correlations 
were positive except those that were associated with experi-
ence using browsers. In our testing, all participants have rich 
experience in using browsers. These negative correlations 
could be interpreted as whether or not having experience 
with using browsers has no direct relationship with other 
modelling-related responses. That makes sense if we connect 
with the practice. Nowadays, well-educated people generally 
have rich experience in using browsers, but they do not nec-
essarily understand 3D building modelling. From Figs. 6 and 

7, we can discern that Spearman’s coefficient is appropriate 
in possible nonlinear data and skewed data.

First, we observed whether or not involved in 3D build-
ing model apps or experience with browsers or 3D build-
ing modelling associated with opinions regarding whether 
VGI3D was easy to use/understand, modelling results looked 
plausible and completed, and if VGI3D was indeed useful 
for the 3D building modelling community. Our findings in 
Table 4 demonstrate weak positive correlations between 
involvement in 3D building model apps and the complete-
ness of modelling results, but with nearly 100% confidence 
and moderate positive correlations with ease of use, mod-
elling results plausibility as well as VGI3D usefulness. 
However, this weak correlation does not mean that it lacks 
support from participants as illustrated in Fig. 7(left). Fig-
ure 7 (left) seems to show an upward trend; however, we 
still require more statistical data to verify our guess because 
the current sample size is not big enough. Another interest-
ing finding was that experience with 3D building modelling 
showed weak positive correlations with the plausibility and 
completeness of modelling results as well as smooth 3D 
viewing capability. This finding was contrary to our intui-
tion. After carefully analysing the raw data, the reason for 
this may be that non-expert participants have little experi-
ence in 3D modelling, which reduced the overall correla-
tions among responses. However, the relationship between 
experience with 3D building modelling and the plausibility 

Table 3  Mean value (µ) comparisons between different types of practitioners regarding each question in user feedback form

Involved in 
3BMs apps?

Experi-
enced using 
browser?

Experi-
enced with 
3DMing?

VGI3D 
easy to 
use?

Modeling 
result looks 
plausible?

Modeling 
result is com-
pleted?

VGI3D looks 
useful for 
3BMing?

3D 
viewing 
smooth?

Fast 
modeling 
speed?

3D city mod-
eling

4.75 4.25 4.75 4.50 4.50 3.75 4.50 5.00 5.00

3D visualiza-
tion

4.50 4.50 3.00 4.50 4.00 4.00 4.50 5.00 4.00

Photo-gram-
metry

4.30 3.67 3.33 4.00 4.00 4.00 4.00 4.67 4.33

Urban plan-
ning

4.00 3.50 3.00 4.00 4.00 3.50 4.00 4.50 4.00

BIM for asset 
assessment 
/ manage-
ment

3.75 4.50 2.75 4.00 3.50 3.25 3.75 4.50 4.25

Spatial 
analysis

2.67 4.33 1.00 4.00 4.00 3.67 4.00 4.33 4.00

Computer 
science

1.80 4.40 1.40 3.80 3.80 3.60 3.80 4.40 4.00

GPS 1.50 4.00 1.00 4.00 4.00 3.50 4.00 4.50 4.00
Railway 

design
1.50 4.50 1.00 3.00 2.50 2.50 2.50 4.00 4.00

Facility man-
agement

3.00 4.00 2.00 4.00 3.67 3.67 3.67 4.33 4.00
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of modelling results in Fig. 7 (right) shows a completely dif-
ferent trend from the correlation. Higher ratings suggested 
that, regardless of whether participants have rich 3D mod-
elling experience or not, they did feel that the modelling 
results looked plausible.

Next, we would like to know whether or not VGI3D 
usefulness for the 3D building modelling community was 
associated with any item of easy usage/understanding of 
VGI3D, the plausibility of modelling results or the com-
pleteness of modelling results. Table 4 clearly demonstrates 
strong correlations between usefulness for the 3D building 
modelling community and ease of use/understanding of 
VGI3D and the plausibility of modelling results with nearly 
100% confidence. However, no strong correlation could be 
discovered between the completeness of modelling results 
and usefulness.

Our final observation concerned the ease of use/under-
standing of VGI3D and the plausibility of modelling results. 
We found a distinct positive correlation with value of 0.68 
between them, which appeared to be consistent with our 
intuition. Until now, all observations and correlations have 
been based on limited sample data. We can only conjecture 
the meanings behind them, but they still give us much help 
and clues to identify which aspects of the system will affect 
users’ perspectives and will be beneficial to us for optimising 
the system in the future.

Sensitivity Analysis

To better display the low sensitivity of our system, we 
selected five different buildings from simple to complex in 
terms of façade complexity (as illustrated in Table 5) for 
sensitivity analysis. Building A had the simplest façade 
structure with 7 windows and it was reconstructed by 2 
input images in 48 s. Due to its simple façades, our system 
correctly detected all windows and hence no need to manu-
ally and interactively update. Building A took another 19 s 
for export as CityGML model where mainly did the rota-
tion, translation and scaling according to the real building 
size and its real orientation in reality, and did the coordinate 
transformation (i.e. convert from local coordinate system to 
world coordinate system).

For building B, its facade became a little more complex 
with 16 windows and 1 door, and was bigger in building 
size compared to building A. The door of building B was 
not correctly detected and was wrongly recognized as a 
window, probably because of the similar features between 
them in this case. Thus, we had to manually update the door 
and it took us another around 15 s. Since building B was 
reconstructed through one image, it would consume less 
time when exporting.

Building C had more windows than building B and was 
reconstructed through 2 images. The testing results showed 
that semi-auto time was similar to building A’s and a similar 

Table 4  Correlation table showing Spearman’s rho and significance values for parameters

Involved 

in 3BMs 

apps?

Experienc-

ed using 

browser?

Experienc-

ed with 

3DMing?

VGI3D 

easy to 

use?

Modeling 

result 
looks 

plausible?

Modeling 

result is 

completed?

VGI3D 

looks 
useful for 

3BMing?

3D 

viewing 

smooth?

Fast 

model-
ing 

speed?

Involved in 
3BMs

apps?

1

Experienced 
using 

browser?

−0.22

(p=0.25)
1

Experienced 

with 
3DMing?

0.76

(p=0.00)

−0.10

(p=0.60)
1

VGI3D easy 

to use?

0.54

(p=0.00)

−0.17

(p=0.36)

0.50

(p=0.00)
1

Modeling 
result looks 

plausible?

0.51

(p=0.00)

−0.28

(p=0.13)

0.33

(p=0.08)

0.68

(p=0.00)
1

Modeling 

result is 
completed?

0.36

(p=0.05)

−0.01

(p=0.95)

0.14

(p=0.45)

0.45

(p=0.01)

0.64

(p=0.00)
1

VGI3D

looks useful 
for 3BMing?

0.47

(p=0.00)

−0.08

(p=0.66)

0.50

(p=0.00)

0.82

(p=0.00)

0.63

(p=0.00)

0.34

(p=0.06)
1

3D viewing 

smooth?

0.50

(p=0.00)

0.05

(p=0.78)

0.31

(p=0.09)

0.40

(p=0.03)

0.56

(p=0.00)

0.60

(p=0.00)

0.27

(p=0.14)
1

Fast 
modeling 

speed?

0.44

(p=0.01)

0.10

(p=0.60)

0.72

(p=0.00)

0.37

(p=0.04)

0.28

(p=0.13)

0.08

(p=0.68)

0.38

(p=0.04)

0.30

(p=0.11)
1
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situation appeared in the building D case. In fact, more than 
half the time was consumed by user’s intersection; however, 
façade elements detection usually was done within a similar 
time regardless of the façade complexity. In other words, as 
long as the proficiency of user interaction can be improved, 
the overall time can be further reduced. Since two elements 
were wrongly detected, user spent another 32 s on updating. 
Meanwhile, exporting time (21 s) similar to building A’s 
was recorded.

Balconies showed up in both building D and E and 
made the façades become more complicated. However, the 
semi-auto time and exporting time seemed not to change 
a lot and still keep similar/stable compared to previous 
cases. Additionally, updating time is affected by input 
images’ quality and proficiency of user interaction. If 
doors or windows are obscured by cars, that undoubtedly 
cannot detect them correctly and thus would increase the 
time and workload of manual updates, just like two missed 
windows in building D. The proficiency of user interaction 
depends on users and hence it is hard to measure. In addi-
tion, the only thing that changed was the size of the output 
3D model. Their sizes increased with the increment of 
façade complexity as we expected, but even the most com-
plex building E, its output size was still less than 240 KB.

Finally, in terms of 3D viewing capability, our system 
gave users a good 3D visualization experience without 
any laggings. We can also verify this point according to 

participants’ feedback on Q11 (Is the 3D viewing capability 
of the model smooth?). All the participants select the ‘Tend 
to agree’ or ‘Strongly agree’.

In summary, our system has low sensitivity regarding var-
ious sizes and complexities of buildings on the functionali-
ties of the system including the modelling time, 3D viewing 
capability and the output size of 3D models.

Limitations

First of all, the number of participants was relatively small, 
and their comments and responses may not reflect the views 
of all those working in the domain of 3D building modelling.

Second, given the limited experience of the design team, 
we could not carry out sufficient user requirements analysis 
at the beginning of the system design. For this reason, we 
could only quickly develop the system and let users give us 
feedback through usability testing.

Third, the current VGI3D system cannot provide an over-
view of building models after one user managed to generate 
a few models. Additionally, current 3D models are visualised 
in ‘3D viewer’ under the relative coordinate space. If they 
can be directly visualised on the map with real geographic 
coordinates, that would be greater.

Fourth, since the building heights are not available except in 
Trondheim, Norway, the current 3D models after exporting as 
CityGML are given a fixed height, 12 m. In the future, we plan 

Table 5  Summary of buildings 
with various sizes and façade 
complexities for sensitive 
analysis. The fifth column 
shows the interactive modelling 
time (semi-auto), time of 
interactively updating incorrect 
façade elements (update), 
exporting 3D model time 
(export) and updated façade 
elements in (·). Blue is for door, 
cyan is for window and green is 
for balcony

No.

Num 

of 

imgs

Building size

(L×W×H) m

Façade

complexity

Modelling time (s)

(semi-auto + update + 

export)

Output 3D 

model

size (KB)

3D viewing

A 2 11×4.7×8.7 7 windows 48 + 0 + 19 87.9

B 1 21.4×8.3×12.4
16 windows

1   door

24 + 15 + 11

(1 door)
112.7

C 2 16×12.1×14.6
21 windows

1   door

49 + 32 + 21

(1 door + 1 window)
150.9

D 2 11.7×10.4×20.7

17 windows

1   door

5   balconies

47 + 59 + 20

(1 door + 1 balcony + 

2 windows)

162.5

E 1 30.3×15.1×20.6

28 windows

4   doors

6   balconies

25 + 13 + 11

(1 balcony)
238.5
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to add an option and allow users to enter the number of floors 
and then the system can roughly estimate the height of buildings. 
Furthermore, except for Norway, Sweden and Italy, footprints 
from other countries are not available for the time being.

Fifth, now VGI3D can only reconstruct buildings whose 
footprints are in rectangle-like shape. We will improve the 
modelling algorithm and extend it to arbitrary footprints. 
However, it might lead to a new challenge, mainly on roofs. 
Since our current roofs are automatically reconstructed 
according to user’s roof type selection, if building’s roof 
is fancy and consists of several different parts, the original 
method for automatic roof reconstruction will not be appro-
priate anymore. To solve this challenge, we are considering 
whether users could sketch a roof as the customized roof 
type in the future version.

Last but not least, the current performance in façade ele-
ments detection still has room for improvement. For example, 
one participant reported ‘…almost 25% of windows and one 
big door were not be detected in my test case’ and ‘…if [it] let 
me manually draw too many windows at one time, I would lose 
patience’. Although interactively updating models is one of our 
highlights, ideally, we want to make users reduce interactive 
manipulation as much as they can. One possible solution to 
this problem is to extend the training dataset with more differ-
ent kinds of facade images. Another solution is to collect the 
labelled data when users manually draw façade elements, then 
add them into the training dataset and retrain the deep learning 
model again to attain a better detection accuracy.

Conclusion and Future Work

This paper presented the VGI3D system, which is a web-
based and interactive solution for 3D building modelling, 
from the perspective of software engineering. VGI3D con-
sists of a spatially relational database (PostgreSQL/PostGIS) 
for the storage and management of spatially geometrical data 
and other software modules, allowing us to upload images as 
input, analyse and reconstruct, visualise, modify and export 
virtual 3D building models according to the OBJ/CityGML 
standard. Functional and usability testing under limited 
participants were also conducted, which was intended to 
assess the potential usefulness of our work for the 3D build-
ing modelling community and to better optimise the system 
and user experience at the same time. We interpreted our 
findings as that, regardless of whether or not participants 
have rich 3D modelling experience, they did think VGI3D 
is useful and has promising value for the 3D building model-
ling community. However, our system still has much room 
for improvement and optimisation. On one hand, it is nec-
essary to further strengthen our CNN model and enable it 
to detect façade elements as accurately as possible so as to 
reduce the user interaction costs for updating 3D models. On 

the other hand, from suggestions/comments, it was apparent 
that reconstructing complex buildings would be helpful for 
applications that place high demands on models.

Overall, our VGI3D needs less input and user interaction 
and is easy to manipulate. It is suitable for quick modelling 
but still with relatively high details (i.e. LoD3). We hope our 
work could provide a new idea for the 3D building model-
ling domain and let more volunteers join this community to 
contribute to wider applications in smart cities.

Furthermore, VGI3D is currently running on an Amazon 
cloud server (EC2). At the end of this year or the beginning of 
2022, it will be moved to the website of Trondheim municipality 
and released as a citizen participation project in Trondheim. The 
announcement regarding the host change will be made publicly 
available when the new website is ready to be accessed.
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Appendix A: User feedback form 

Part 1: Basic information about participant 

Q1: How old are you? 

_________________ 

Q2: What is your gender? 

_________________ 

Q3: What is your research interest? 

_____________________________ 

Q4: Have you ever got involved in applications of 3D building models? 

Not at all          Slightly            Moderately               Very             Extremely 

□            □            □            □          □ 

Q5: How experienced are you with using browser? 

Not at all          Slightly            Moderately               Very             Extremely 

□            □            □            □          □ 

Q6: How experienced are you with 3D building modeling? 

Not at all          Slightly            Moderately               Very             Extremely 

□            □            □            □          □ 

 

Part 2: Evaluation about the VGI3D 

Q7: Is VGI3D easy to use/understand? 

Strongly            Tend to              Neither               Tend to              Strongly                                                                                                                                      

disagree            disagree              nor                      agree                 agree 

□            □           □            □           □ 

Q8: Does the modeling result look plausible? 

Strongly            Tend to              Neither               Tend to              Strongly                                                                                                                                      

disagree            disagree              nor                      agree                 agree 

□            □           □            □           □ 

Q9: Is the modeling result completed? 

Strongly            Tend to              Neither               Tend to              Strongly                                                                                                                                      

disagree            disagree              nor                      agree                 agree 

□            □           □            □           □ 



Q10: Is VGI3D useful for 3D building modeling? 

Strongly            Tend to              Neither               Tend to              Strongly                                                                                                                                      

disagree            disagree              nor                      agree                 agree 

□            □           □            □           □ 

Q11: Is the 3D viewing capability of the model smooth? 

Strongly            Tend to              Neither               Tend to              Strongly                                                                                                                                      

disagree            disagree              nor                      agree                 agree 

□            □           □            □           □ 

Q12: Is the modeling speed fast? 

Strongly            Tend to              Neither               Tend to              Strongly                                                                                                                                      

disagree            disagree              nor                      agree                 agree 

□            □           □            □           □ 

Q13: Do you have any suggestions/comments for the VGI3D? 

 

 

 

________________________ 

Thank you for your valuable responses and taking the time to complete this form. 

 

 

 

 

 

 

 

 

 

 

 



Appendix B: Raw data collected from participants 

No. Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 Q11 Q12 

1 28 M A 5 4 5 5 5 4 5 5 5 

2 43 M A 4 4 4 4 4 3 4 5 5 

3 30 M A 5 4 5 4 4 4 4 5 5 

4 26 F A 5 5 5 5 5 4 5 5 5 

5 38 M B 5 5 3 4 4 4 4 5 4 

6 35 M B 4 4 3 5 4 4 5 5 4 

7 27 F C 5 3 3 4 4 4 4 4 4 

8 26 M C 4 4 4 4 4 4 4 5 5 

9 30 M C 4 4 3 4 4 4 4 5 4 

10 31 M D 4 4 3 4 4 4 4 5 4 

11 28 M D 4 3 3 4 4 3 4 4 4 

12 32 F E 3 5 4 4 3 3 4 4 5 

13 27 F E 5 4 2 4 4 3 4 5 4 

14 28 M E 4 4 2 4 4 4 3 5 4 

15 29 M E 3 5 3 4 3 3 4 4 4 

16 29 M F 3 5 1 4 4 4 4 4 4 

17 33 M F 3 3 1 4 4 3 4 4 4 

18 28 M F 2 5 1 4 4 4 4 5 4 

19 27 M G 2 4 1 4 4 4 4 5 4 

20 25 M G 3 5 1 4 4 4 4 5 4 

21 28 M G 1 5 1 3 3 3 3 4 4 

22 27 M G 1 4 1 4 4 4 4 4 4 

23 29 F G 2 4 3 4 4 3 4 4 4 

24 33 M H 2 4 1 4 4 4 4 5 4 

25 37 M H 1 4 1 4 4 3 4 4 4 

26 28 F I 2 4 1 4 3 3 3 4 4 

27 27 M I 1 5 1 2 2 2 2 4 4 

28 26 F J 3 4 2 4 4 4 4 4 4 

29 28 M J 3 4 2 4 4 4 3 5 4 

30 34 M J 3 4 2 4 3 3 4 4 4 

For Q2, M = Male and F = Female. 

For Q3, A = 3D city modelling; B = 3D building model visualization; C = photogrammetry; D = 

urban planning; E = BIM for asset assessment/management; F = spatial analysis; G = computer 

science; H = GPS; I = railway design; J = facility management 

 

 

 

 

 

 

 

 

 



Appendix C 

Table 1. Standard deviation (σ) comparisons between different types of practitioners regarding to each 

question in user feedback form. 

 
Involved 
in 3BMs 

apps? 

Experienced 
using 

browser? 

Experienced 
with 

3DMing? 

VGI3D 
easy to 

use? 

Modeling 

result 

looks 
plausible? 

Modeling 
result is 

completed? 

VGI3D 

looks 

useful for 
3BMing? 

3D 
viewing 

smooth? 

Fast 
modeling 

speed? 

3D city 

modeling 
0.43 0.43 0.43 0.50 0.5 0.43 0.50 0 0 

3D 
visualization 

0.50 0.50 0 0.50 0 0 0.50 0 0 

Photo-

grammetry 
0.47 0.47 0.47 0 0 0 0 0.47 0.47 

Urban 
planning 

0 0.50 0 0 0 0.50 0 0.50 0 

BIM for 

asset 

assessment / 
management 

0.83 0.50 0.83 0 0.50 0.43 0.43 0.50 0.43 

Spatial 

analysis 
0.47 0.94 0 0 0 0.47 0 0.47 0 

Computer 

science 
0.75 0.49 0.80 0.40 0.40 0.49 0.40 0.49 0 

GPS 0.50 0 0 0 0 0.50 0 0.50 0 
Railway 

design 
0.50 0.50 0 1.00 0.50 0.50 0.50 0 0 

Facility 

management 
0 0 0 0 0.47 0.47 0.47 0.47 0 

 

 

Table 2. Skewness comparisons between different types of practitioners regarding to each question in 

user feedback form. 

 
Involved 

in 3BMs 

apps? 

Experienced 

using 

browser? 

Experienced 

with 

3DMing? 

VGI3D 

easy to 

use? 

Modeling 

result 

looks 

plausible? 

Modeling 

result is 

completed? 

VGI3D 

looks 

useful for 

3BMing? 

3D 

viewing 

smooth? 

Fast 

modeling 

speed? 

3D city 

modeling 
-1.15 1.15 -1.15 0 0 -1.15 0 0 0 

3D 

visualization 
0 0 0 0 0 0 0 0 0 

Photo-

grammetry 
0.71 -0.71 0.71 0 0 0 0 -0.71 0.71 

Urban 

planning 
0 0 0 0 0 0 0 0 0 

BIM for 

asset 
assessment / 

management 

0.49 0 0.49 0 0 1.15 -1.15 0 1.15 

Spatial 
analysis 

-0.71 -0.71 0 0 0 -0.71 0 0.71 0 

Computer 

science 
0.34 0.41 1.50 -1.50 -1.50 -0.41 -1.50 0.41 0 

GPS 0 0 0 0 0 0 0 0 0 
Railway 

design 
0 0 0 0 0 0 0 0 0 

Facility 

management 
0 0 0 0 -0.71 -0.71 -0.71 0.71 0 
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ABSTRACT
The applications of 3D building models are limited as producing 
them requires massive labor and time costs as well as expensive 
devices. In this paper, we aim to propose a novel and web-based 
interactive platform, VGI3D, to overcome these challenges. The 
platform is designed to reconstruct 3D building models by using 
free images from internet users or volunteered geographic informa-
tion (VGI) platform, even though not all these images are of high 
quality. Our interactive platform can effectively obtain each 3D 
building model from images in 30 seconds, with the help of user 
interaction module and convolutional neural network (CNN). The 
user interaction module provides the boundary of building facades 
for 3D building modeling. And this CNN can detect facade elements 
even though multiple architectural styles and complex scenes are 
within the images. Moreover, user interaction module is designed 
as simple as possible to make it easier to use for both of expert and 
non-expert users. Meanwhile, we conducted a usability testing and 
collected feedback from participants to better optimize platform 
and user experience. In general, the usage of VGI data reduces labor 
and device costs, and CNN simplifies the process of elements 
extraction in 3D building modeling. Hence, our proposed platform 
offers a promising solution to the 3D modeling community.
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1. Introduction

3D building models play a significant role in designing urban 3D and virtual cities. They 
support a variety of applications in urban planning, environment analysis, virtual tourism, 
and augmented reality (Haala & Kada, 2010; Verma, Kumar, & Hsu, 2006). 3D building 
models are usually divided into five level of details (LoDs) (Biljecki et al., 2016) according 
to the CityGML 2.0 standard (Gröger, Kolbe, Nagel, & Häfele, 2012). LoD0 model means the 
footprint of a building; LoD1 model is represented as a cuboid by extruding the LoD0 
model. On the basis of LoD1, LoD2 model contains the roof shape of a building, and the 
semantic information of building elements. Compared with LoD2, LoD3 model is more 
complex and can be called as “architecturally detailed model”, which contains facade 
elements of a building, such as windows and doors. LoD4 model is more complete and 
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has both internal and external building elements. 3D building modeling in LoD1 and LoD2 
has had many mature approaches (Kim & Han, 2018; Li et al., 2019; Wu et al., 2017), and is 
a key focus for some platforms (Preka & Doulamis, 2016), but these fields actually prefer 
3D building models in LoD3 or higher.

Classic methods that can create highly detailed 3D building models usually adopt 
grammar and topology rules (Becker, 2009; Dehbi & Plümer, 2011). While their produc-
tions are stable and complete, only limited architectural styles can be covered. In recent 
years, with the development of algorithm, software and hardware in computer science, 
more studies focused on automatic 3D building modeling and achieved a great success 
(Agarwal et al., 2011), which can reconstruct 3D models in most scenarios. For instance, 
automatic methods based on point cloud data from laser or LiDAR (Yu, Helmholz, & 
Belton, 2017) not only guarantee very high modeling precision, but also eliminate the 
defects of limited architectural styles. However, these automatic methods need the 
assistance of professional and expensive devices to ensure the size and quality of data 
to obtain impressive results. All of these requirements lead to higher costs on labor and 
time. Moreover, they are sensitive to noise and thus easily lead to unstable and incom-
plete results. In other words, that means automatic methods are difficult to reconstruct 3D 
models effectively when lacking data or facing data noise, without the help from users.

To address these issues, some researchers tried to reconstruct 3D building models in an 
interactive way. Wolberg and Zokai (2018) proposed a photocentric 3D modeling plat-
form, and added user interaction capabilities to overcome the instability of automatic 
methods. Users firstly sketched the building’s walls. Then structure from motion (SfM) 
algorithm (Ma, Soatto, Kosecka, & Sastry, 2012) was used to generate point clouds in order 
to more accurately reconstruct building models. However, SfM needs many images that 
belong to the same building (more images, the better the result) and need to know 
image’s GPS location and camera internal parameters for camera calibration. In their 
experiment, it took them around 20 minutes to reconstruct two building models. That 
indicated its computational inefficiency and strong reliance on the number of images. 
Nishida, Garcia-Dorado, Aliaga, Benes, and Bousseau (2016) achieved highly detailed 3D 
building modeling with only single image by combining sketch-based and procedural 
methods. However, users were asked to draw windows and doors and select their 
corresponding styles. It is not friendly to non-expert users, as they are not familiar with 
it. In addition, they defined some patterns based on the buildings they previously used, 
and hence it might not be helpful to buildings with different styles. Although other 
interactive methods are able to reconstruct 3D building models from one image as well 
(Chen, Zhu, Shamir, Hu, & Cohen-Or, 2013; Zheng et al., 2012), they are dependent on 
accurate edge detection. They could be seriously affected by image’s luminance.

In short, many existing methods rely on the size of datasets and are time consuming. 
Methods with higher efficiency and less image data often require user sketching, which is 
not convenient and friendly for non-expert users. Methods based on multiple images are 
often influenced by data quality, such as illumination change, camera position change, 
and perspective distortion. The collection and processing of datasets consume 
a significant amount of time and labor as well. Methods based on point clouds are 
sensitive to noise points. Thus additional data processing is typically necessary to solve 
this issue. Finally, existing automated methods for building modeling are time consuming 
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because they usually have to estimate camera’s position and generate point clouds from 
a sequence of images.

Considering all the above shortcomings, a low-cost 3D building modeling method is 
necessary, and it can accept lower-quality images from various devices without additional 
information, such as GPS or camera parameters, which will reduce the cost of data 
collection. In addition, this method can reconstruct 3D building models with less image 
data. Hence, we designed an interactive platform (called VGI3D) based on volunteered 
geographic information (VGI) images for 3D building modeling. In our platform, we take 
VGI image data as input and all the facades prepared for modeling should be fully 
captured on an image. Users only need to simply outline the facade of a building, and 
then our platform will automatically detect and adjust the bounding boxes of facade 
elements. Finally, 2D locations of all the elements will be transformed into 3D coordinate 
system, and 3D model of this building will be shown to users in real time.

VGI employs tools to create, assemble, and disseminate geographic data provided 
voluntarily by individuals (Sangiambut & Sieber, 2016). With the development of WebGL 
and hardware, VGI data have played a more active role in geoinformation collection, 
especially in the collection of urban images. Although the quality of VGI images is difficult 
to guarantee and measure, the low-cost and high-richness of VGI image data can narrow 
existing research gaps to some extent. Furthermore, non-expert users modeling 3D 
buildings will be conducive to the development and spread of urban 3D modeling.

Compared to existing methods, the key contributions of our work are as follows:

(1) Low-cost data requirements: the input to our platform is VGI image data. These 
images are captured by non-expert users or volunteers who upload images to the 
VGI image platform. Compared to traditional methods of data collection, VGI image 
data have lower costs, and can cover larger areas. The use of VGI image data will 
significantly reduce the time and labor costs during the data collection process. 
Moreover, considering that the geolocations of VGI images are usually scattered 
and that these images are at a street level, only one or two views of a building can 
be obtained in many cases. Hence, our platform is designed to model simple 3D 
buildings using less than two images. This implies that the time required and cost 
incurred for 3D modeling are lower.

(2) Fast 3D building modeling: the algorithm for facade elements extraction 
embedded in our platform can automatically extract windows, doors and balconies 
within one second. Additionally, the entire workflow is completed in 30 seconds, 
which is faster than most existing automatic building modeling methods.

(3) Relatively High-quality modeling results: in a low-cost environment, our platform 
can obtain modeling results that are of relatively high quality. The modeling results 
will be complete and stable even on low-quality images. Meanwhile, semantic 
information, such as facades, windows, balconies, and roofs, will be obtained and 
shown to users.

The remainder of this paper is organized as follows. Section 2 describes the modeling 
workflow and detailed algorithms of our platform. Experimental results and a platform 
usability testing are going to present in Section 3. Section 4 provides the conclusions as 
well as future work.
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2. Methodology

2.1. Workflow

Considering the convenience and availability of the proposed method, we developed 
a web-based platform embedded with all the algorithms (as shown in Figure 1). First, our 
platform accepts building images uploaded by users. Then, users provide three pieces of 
information to our web platform in the way of interaction, including facades boundaries, 
roof type, and facades views of the building in images. Next, images from users are taken 
into the module of facade elements extraction to automatically obtain the locations of the 
windows, doors and balconies. In this module, the object detection network in facade 
elements extraction module automatically detects facade elements and gives them 
semantic labels. Finally, these locations in 2D are transformed into the 3D coordinate 
system to construct the 3D building model and show it on the Web in real time. The 
generated 3D model can also be downloaded for further research.

2.2. User interaction

Since most input VGI images are at a street level and only one or two facades of a building 
can be available, multi-view facades of a single building are difficult to obtain by non- 
expert volunteers. Actually, 3D building models for urban planning or virtual cities do not 

Figure 1. Framework of our platform. In the user interaction module, users provide the facades 
boundaries, roof type, and facade views of the building in images to our web platform. Then, images 
are fed into facade elements extraction module to automatically obtain the locations of the windows, 
doors and balconies. In the 3D building modeling step, the locations are transformed from 2D to 3D 
space. Then locations are rotated according to the information of facades views. Finally, the 3D 
building model is built and visualized to users.
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require over-detailed models. Hence, in the user interaction module, users only need to 
upload no more than two images of a building. Facade and side images for the same 
building can be uploaded together to obtain a more comprehensive model. The number 
of images was recorded as NI. In terms of the image requirements, there are no specific 
requirements regarding the cameras used or the overlap percentages. The only require-
ment is that users should ensure each image containing a complete facade of the 
building. Then, users draw the corners of the facade (XF, YF) in an image to create 
a corresponding facade boundary, where XF = {xF1, xF2, . . ., xFn} and YF = {yF1, yF2, . . ., yFn}, 
(XF, YF)∈{(XF, YF)} = {(XF, YF)ni | ni = 1, . . ., NI}. The corners are used to build 3D facade and 
correct the locations of the facade elements. Meanwhile, the roof type of the building 
should be selected to help reconstruct the roof. These images and facade boundaries will 
be sent to our facade extraction method for the preparation of 3D building modeling.

2.3. Extracting locations of facade elements

2.3.1. Detecting facade elements
In user interaction module, we have obtained images and locations of the building facades. 
Images from our user interaction module are usually at a street level with various complex 
scenes, such as multi-view scenes, complex illumination and background. Traditional methods 
cannot handle these scenes well. Existing methods of interactive modeling require users to 
draw facade elements, such as windows and doors, which is time-consuming and labor- 
intensive. In addition, the accuracy and completeness of facade elements cannot be ensured 
in user drawings. Hence, we want to use a convolutional neural network (CNN) for object 
detection or semantic segmentation, to extract facade elements. However, many windows 
and balconies are too small in street-level images, and might be difficult to be completely 
segmented by semantic segmentation network. CNNs for semantic segmentation are not 
suitable for extracting them. Hence, we chose an object detection CNN, YOLO v3 (Redmon & 
Farhadi, 2018), for detecting facade elements (Kong & Fan, 2020). YOLO v3 is a one-stage, fast, 
and highly accurate object detection neural network. It can maintain a significant balance 
between detection accuracy and speed. As Kong and Fan (2020) have done, the Darknet53 
was used as the backbone of YOLO v3. And the detection network was pretrained on our 
FacadeWHU dataset to detect windows, doors and balconies. Our dataset contains 900 street- 
level images (850 from Paris, France, and 50 from Trondheim, Norway) and corresponding 
annotations for semantic segmentation and object detection. These annotations contain six 
classes – window, door, balcony, roof, shop, and wall, which can meet the requirement of our 
facade elements detection. Uploaded images were detected directly by our trained model 
from Kong and Fan’s work (2020). Then, every location (which is also called “bounding box”) of 
windows, balconies, and doors was obtained and organized as (Ccnn1, Ccnn2, classcode) = ((xcnn1, 
ycnn1), (xcnn2, ycnn2), classcode) for correction. (Ccnn1, Ccnn2, classcode)∈{(Ccnn1, Ccnn2, class-
code)} = { Ccnn1,Ccnn2,classcodeð Þ

k,i
ni | k = 1, . . ., Nc; i = 1, . . ., nk; ni = 1, . . ., NI}, where Nc is the 

number of classes, nk is the number of facade elements in every class of a facade, and NI is the 
number of input images.

2.3.2. Correction and inference of locations of facade elements
The locations of the building facade and its elements are based on images. However, 
original VGI images commonly have perspective distortion, which distorts the shape and 
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layout of facade elements. Therefore, the locations of the facade and corresponding 
elements (windows, doors and balconies) cannot be directly applied to 3D building 
modeling. To solve this problem, we added a submodule for location correction. We 
considered the following measures to correct perspective distortion for the facade in 
every image:

(1) First, we calculated the aspect ratio rF ¼ hf=wF of the bounding box of every 
corresponding facade. hF and wF are the height and width of the facade bounding box 
from the user interaction module, respectively. They were calculated using Equation (1). 
At the same time, the facade height after perspective correction is defined as the image 
height hp, and the facade width after perspective correction is defined as wp ¼ hp=rF . 
Then, we obtained the bounding box of the facade after perspective correction, as ((0, 0), 
(wp, hp)), and the location of facade is denoted as (XpF, YpF) = ((0, 0, wp, wp), (0, hp, hp, 0)). 

hF ¼ max YFð Þ � min YFð Þ,wF ¼ max XFð Þ � min XFð Þ (1) 

(2) Second, we calculated a homography matrix, M, by the bounding box of facade 
before and after perspective correction as Equations (2)–(4). The homography matrix is 
regarded as a perspective transformation matrix and was used for perspective correction. 

x0

y0

w0

2

4

3

5 ¼ M
xF
yF
1

2

4

3

5 ¼

m11 m12 m13
m21 m22 m23
m31 m32 m33

2

4

3

5
xF
yF
1

2

4

3

5 (2) 

xp ¼
x0

w0
¼

m11xF þm12yF þm13

m31xF þm32yF þm33
(3) 

yp ¼
y0

w0
¼

m21xF þm22yF þm23

m31xF þm32yF þm33
(4) 

where (xF , yF) is a facade location from user interaction module input (XF, YF). (xp, yp) is the 
facade location after perspective correction.

(3) Then, the location of the facade and its elements were corrected using the 
perspective transformation matrix M. After this step, locations from user interaction and 
CNN, including (XF, YF) for the facade and {(Ccnn1, Ccnn2, classcode)ni} for facade elements, 
were corrected. And locations after perspective correction were obtained and denoted as 
(XpF, YpF) for the facade and {(Cp1, Cp2, classcode)ni} for facade elements, where every facade 
element’s location of this facade is organized as (Cp1, Cp2, classcode)ni = ((xp1, yp1), (xp2, yp2), 
classcode)ni; (Cp1, Cp2, classcode)ni∈{(Cp1, Cp2, classcode)ni}.

The perspective distortion of the locations has been corrected. However, the facade- 
element layout of the perspective-corrected locations were misaligned, which will still 
affect the 3D building modeling process. Hence, in this step, we proposed a layout 
correction method for facade elements in every image:

(a) For every facade, first, we reorganized locations of facade elements after perspec-
tive correction from xy-xy to xy-wh as {((xpc, ypc), (wep, hep), classcode)ni}. (xpc, ypc) is the 
center of every facade element, and (wep, hep) is the width and height of every facade 
element, respectively. Then, the locations were separated by classcode and output as 
{((xk

pc,yk
pc), (wek

p,hek
p), classcodek)ni}, where k = 1, 2, . . ., Nc, and Nc is the number of classes. In 
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the following steps, we corrected the layout of the facade elements of a facade in every 
class.

(b) Second, in every class, the new xy-wh locations were sorted by ypc. We calculated 
the height differences between two neighboring locations and obtained the result of 
every class as (hdiff

k
p, classcodek). 

hdiff
k,i
p ¼ yk,iþ1

pc � yk,i
pc

k ¼ 1,2, . . . ,Nc; i ¼ 1,2, . . . , nk � 1ð Þ
(5) 

where Nc is the number of classes, and nk is the number of facade elements in every class 
of a facade.

(c) Third, a cluster algorithm, k-means++ (Arthur & Vassilvitskii, 2007), was used to 
divide the height differences into two groups. One group Gs had small height differences, 
which refers to the height difference of the facade elements on a single floor. The other 
group Gl had large height differences, which refers to the height difference of the facade 
elements between neighboring floors. The number of floors, Nf, was obtained using Gl as 
Nf ¼ NGl þ 1. NGl is the number in group Gl.

(d) Fourth, the facade elements in every class were divided into Nf groups based on the 
value of Gl and yk

pc. Each group referred to one floor of the building. In every floor, we 

calculated the average y-center coordinate ykj
ac and average height hekj

a of the facade 
elements, j = 1, 2, . . ., Nf. The y-center coordinates of every facade element in every floor 

ykj
pc is corrected to ykj

ac, and the height of every facade element in every floor hekj
p is 

corrected to hekj
a .

(e) Fifth, the x-center coordinates of the facade elements also needed correction. 
Hence, we repeated steps (b) to (d). In these steps, the height differences, y-center 
coordinates and average height were replaced with width differences, x-center coordi-
nates and average width. Finally, the layout of the facade elements was corrected.

The locations of the facade elements after layout correction are denoted as {((xac, yac), 
(wea, hea), classcode)ni}. This xy-wh format cannot be used for 3D building modeling. 
Hence, we changed the xy-wh locations to xy-xy locations and obtained the location of 
every facade element as (Cl1, Cl2, classcode)ni = ((xl1, yl1), (xl2, yl2), classcode)ni.

Steps (1) to (3) and (a) to (e) in section 2.3.2 were repeated to obtain the locations 
of all facades {(XpF, YpF)}and locations of their facade elements {(Cl1, Cl2, classcode)}.

Then the location of roof was calculated based on the location of facade from the 
image in the front direction. In general, basic roof shapes are divided into five classes: flat, 
shed, gabbled, hipped, and berliner (Kada & McKinley, 2009). Hence, we set the basic roof 
types as these five types. After the users choose the corresponding roof type of the 
building from the five basic roof types in the user interaction module, we can reconstruct 
the roof based on the corrected facade corners. The group with corners on the top edge 
of the facade is selected and is regarded as the bottom edge of the roof. Then, the top 
edge of the roof is automatically calculated according to the roof type. The top and 
bottom edges of the roof were concatenated as the final roof location (XR, YR).

We grouped the locations of facades, a roof, and facade elements into NI groups 
according to the number of images, and then sent them to the 3D building modeling 
module for 3D modeling.

BIG EARTH DATA 55



2.4. 3D building modeling

After the location detection module, we obtained the locations of facades as {(XpF, YpF)}, 
the locations of windows, balconies, doors as {(Cl1, Cl2, classcode)}, and the location of roof 
as (XR, YR). The range of these locations except roof is from 0 to hp. hp is based on every 
image height, which varies depending on the image. Thus, the size of the building models 
cannot remain stable. Hence, it is necessary to normalize these locations to the same 
range based on the height of every facade.

For locations from every image ni, we normalized these locations from range (0, hp) to 
range (0, hth) in height, and from range (0, wp) to (0, hth=rF) in width as shown in Equation 
(6). hth is a constant and we defined it as 10 to ensure the same height of all images. 
Moreover, to obtain a better visualization result, the center of all locations will be moved 
to (0, 0) by location translation. 

xk,i
nr ¼ xk,i

l =wp � hth=rF �
1
2
ðhth=rFÞ,yk,i

nr ¼ yk,i
l =hp � hth �

1
2

hth

k ¼ 1,2, . . . ,Nc, i ¼ 1,2, . . . ,nk

(6) 

The location of the facade is recorded as (XnrF, YnrF), and the location of every facade 
element after normalization is recorded as (Cnr1, Cnr2, classcode)ni = ((xnr1, ynr1), (xnr2, ynr2), 
classcode), (Cnr1, Cnr2, classcode)ni∈{(Cnr1, Cnr2, classcode)ni}.

The normalized locations of facade and other elements are still in the 2D coordinate 
system. For 3D building models, these locations need to be transformed into a 3D 
coordinate system. Hence, we utilized an easy and lightweight JavaScript 3D library, 
Three.js (Dirksen, 2015), to address this problem. Three.js provides a modeling function, 
ExtrudeGeometry, to build 3D shapes from 2D polygons. This function is applied to our 
platform to transform the coordinate system. The 3D locations after transformation are 
recorded as ((X3D, Y3D, Z3D), classcode)ni. X3D = {X0

3D, X1
3D, . . ., XNbp

3D }, and Y3D, Z3D are the same 

as X3D; Xi
3D = (xi0

3D, xi1
3D, . . ., xi co� 1ð Þ

3D ). Nbp is the number of all the elements, which can be 

obtained by Nbp ¼ 1þ
PNc

k¼1
nk. “1” in this equation means a facade number. co is the 

number of corners for the facade and every facade element. For the image in the front 

direction, the location of roof needs to be considered, so Nbp ¼ 2þ
PNc

k¼1
nk , where “2” in 

this equation means the number of a roof and a facade, and co is the number of corners 
for facade, roof and every facade element when transforming locations from the image in 
the front direction.

We repeat the steps from section 2.4 for every input image and obtain the NI 3D 
location groups of one building as {((X3D, Y3D, Z3D), classcode)} ={((X3D, Y3D, Z3D), classcode)ni 

| ni =1, . . ., NI}. If NI>1, these 3D location groups represent different facades of one building, 
which have different directions in reality. However, because the final 3D location groups 
are obtained from 2D images without z-axis information before 2D-to-3D transformation, 
they will have the same direction after transforming the coordinate system. Hence, these 
location groups need to be rotated in order to maintain their relative direction for 3D 
modeling. The relative directions, D, of these images have been provided by users in user 
interaction step. And the angle of rotation can be obtained using Equation (7). 
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Angr Dð Þ ¼

0 D ¼ front
� π=2 D ¼ left
þπ=2 D ¼ right

π D ¼ back

8
>><

>>:

(7) 

In Three.js, it uses the right-handed coordinate system, and the y-axis is face-up. Hence, 
the rotation matrix Mr can be recorded as follows. 

Mr ¼

cos Angr Dð Þ 0 sin Angr Dð Þ
0 1 0

� sin Angr Dð Þ 0 cos Angr Dð Þ

2

4

3

5 (8) 

Then, the 3D location groups are rotated using Equation (9) and denoted as {((X3Dr, Y3Dr, 
Z3Dr), classcode)}. 

X3Dr
g Y3Dr

g Z3Dr
g½ �

T
¼ Mr X3D

g Y3D
g Z3D

g½ �
T

g ¼ 1, . . . ,NI
(9) 

The process of 3D transformation is visualized in Figure 2.
The final 3D model of this building was built based on 3D locations after rotation. The 

semantic information of models was based on the class code of every element and was 
visualized using different colors.

3. Experiments

3.1. Experiment environment

We developed a web-based interactive platform. For the front-end, we used Hyper Text 
Markup Language (HTML), JavaScript (JS), Cascading Style Sheets (CSS), and bootstrap 
templates. The 3D models were rendered in the front-end using the 3D JavaScript library – 
Three.js. We used Python and a lightweight web application framework, Flask, to build our 

Figure 2. The process of 3D transformation. First, the 2D locations of every facade and its facade 
elements are extruded using ExtrudeGeometry method from Three.js, to obtain the corresponding 3D 
locations group of the facade in (b); Then, Every 3D locations group is rotated using Equations (7)~(8) 
based on the facade direction from user interaction step; Finally, the 3D building model is obtained.
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algorithms and back-end. The convolutional neural network YOLOv3 was implemented 
with the open-source machine learning framework Pytorch (Paszke, Gross, Chintala, & 
Chanan, 2017). What’s more, our platform was deployed on a server equipped with an 
Intel Core i7-8700 K CPU, 16 GB memory, and an NVIDIA GTX 1080Ti GPU.

3.2. Experiment results

In this subsection, we discuss the results of two key points in our interactive platform: the 
locations of all the elements and the 3D building modeling. The extraction results of 
facade elements and the results of 3D building modeling are shown in Section 3.2.1 and 
3.2.2, respectively.

3.2.1. Extraction results of facade elements
In this paper, we used a pretrained model of YOLO v3 to extract windows, doors and 
balconies, which was trained on the Facade WHU dataset in Paris from Kong and Fan 
(2020). There are three subnetworks in Kong and Fan’s work, and we only chose the 
window/door/balcony detection network. This model used Stochastic gradient descent 
(SGD), with momentum = 0.97 and weight decay = 0.00045 as the optimizer. The 
weighted multipart loss is also used as the loss function. This model was trained on 
a computer equipped with two NVIDIA 1080Ti GPUs. In the Facade WHU dataset, we only 
used the annotations of window, door and balcony to train the facade elements detection 
network, and it achieved state-of-the-art results: mAP = 71.6% and F1 score = 67.3%, 
where mAP is the mean average precision of objects from the three classes. We followed 
the standard definition of F1 score, where F1 score = 2� Precision�Recall

PrecisionþRecall . In the F1 score, 
precision = TP

TPþFP , and recall = TP
TPþFN . Here, TP, FP, TN, and FN mean true positive, false 

positive, true negative, and false negative, respectively. The visualization results are 
shown in Figure 3.

3.2.2. Results of 3D building modeling
The pretrained model for facade elements extraction used 850 images in Paris, France 
from the Facade WHU dataset as training and test data. Hence, to ensure that our 
workflow can work in different architectural styles, we chose five buildings from 
Heidelberg, Germany, and five buildings from Paris, France as test data. These images 
were from open-source VGI platforms Mapillary (Mapillary, 2020) and Flickr (Flickr, 2020). 
We used three metrics to evaluate the results of 3D building modeling. These three 
metrics are component precision (Pc), component recall (Rc), and component integrality 
(Inc), where Pc and Rc follow their standard definitions in computer vision, and Inc is 
defined by ourselves. TPc, FPc, TNc, and FNc are defined as true positive, false positive, true 
negative, and false negative of facade elements in every class. 

Pk
c ¼ TPk

c= TPk
c þ FPk

c

� �
k ¼ 1,2, . . . ,Nc (10) 

Rk
c ¼ TPk

c= TPk
c þ FNk

c

� �
k ¼ 1,2, . . . ,Nc (11) 

where / is the division operator. The left side of the operator represents the number of 
corresponding objects, and the right side represents the total number of corresponding 
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objects. Nc is the number of classes. The number of facade elements in a building is usually 
less than 100, which means that a few false or missing detections will seriously affect the 
percentage of these three metrics. Hence, compared with the percent symbol, %, the 
division operator,/, can better represent the performance of 3D building modeling.

Unlike Pc and Rc for per-class evaluation, Inc is designed for comprehensive evaluation. 
In 3D building modeling, we are more concerned with the total number of correct objects 
that were actually retrieved than the correct objects among the whole retrieved objects. 
Hence, we define Inc as the ratio of the total number of the correct facade elements that 
were actually retrieved to the actual number of facade elements, which is similar to the 
definition of Recall. In the actual number of facade elements, the classes were not 
considered. Inc is presented as follows. 

Inc ¼
XNc

k¼1

TPk
c=Na k ¼ 1,2, . . . ,Nc (12) 

where Nc is the number of classes and Na is the actual number of facade elements.
The facade elements that are obscured by trees, people, and other foreground were not 

calculated in Pc, Rc , and Inc because the ground truth of these facade elements cannot be 
obtained. The statistical modeling results of the 10 buildings are shown in Table 1. The 
buildings from Heidelberg, Germany are numbered 1 to 5, and the buildings from Paris, 
France are numbered 6 to 10. From the table, we can see that the overall modeling integrality 
of our workflow Inc is higher than 75% in various complex scenes. When facing two complex 
tasks of street-level 3D building modeling, (1) buildings with complex illumination and serious 
perspective distortion such as No. 2, 4, 7, 8, and 10, and (2) buildings with many facade 

balcony doorwindow

Figure 3. Visualization results for extracting facade elements locations (Containing different views, 
lighting, and architectural styles).
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elements such as No. 1, 2, 3, 5, and 9, our workflow can achieve stable 3D building modeling 
results with the Inc higher than 85%. At the same time, our workflow achieves impressive 
performance in the modeling of the key class. For the key class window, both of component 
precision Pc and recall Rc, are higher than 67%. In the case of buildings with more than five 
windows, the Pc and Rc of window are even higher than 80%. Moreover, for the modeling 
results of buildings in Paris and Heidelberg, there are the similar Incs of building models in 

Table 1. Statistic modeling results of the 10 buildings.
Building No. 1 2 3 4 5

Pc Rc Pc Rc Pc Rc Pc Rc Pc Rc

window 19/21 19/21 18/19 18/19 18/19 18/18 10/12 10/10 66/66 66/68
balcony 3/3 3/4 0/0 0/1 - - - - - -
door - - 1/1 1/1 1/1 1/1 1/1 1/2 2/5 2/2
Inc 22/25 19/21 19/19 11/12 68/70

Building No. 6 7 8 9 10

Pc Rc Pc Rc Pc Rc Pc Rc Pc Rc

window 4/6 4/4 10/12 10/10 2/2 2/3 22/22 22/23 13/16 13/13
balcony 3/3 3/3 10/10 10/10 - - 19/19 19/20 2/2 2/4
door 0/0 0/1 3/3 3/4 1/1 1/1 1/1 1/1 0/0 0/1
Inc 7/8 23/24 3/4 42/44 15/18

balcony doorwindow roof

1

2

3

4

5

6

7

8

9

10

Figure 4. Qualitative result of 3D building modeling. The first and third columns are the original 
images of every building. The second and fourth columns are the 3D modeling results of every 
building through our workflow.
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both cities. Hence, our workflow can be used for buildings with different architectural styles 
without extra work. The qualitative results of 3D building models are shown in Figure 4.

3.2.3. Performance of the platform
In addition to evaluating the performance of building extraction and modeling in 
our interactive platform, we tested the performance of our entire workflow. The 
modeling time of our workflow, T, was used for evaluation. Modeling time refers to 
the running time from when the user saves their drawing to the 3D building 
model shown on our website. Except for the time of facade elements extraction 
and 3D building modeling, the I/O time between the front-end and back-end was 
planned to be included to offer a more comprehensive evaluation. Given the differ-
ent background of users, there usually is a big difference among them finishing 
user interaction, such as uploading images and drawing corresponding building 
facades. Hence, this time is not included in the modeling time T. Our platform was 
tested on a local area network (LAN). In our preliminary test, we found that the I/O 
time is less than 1 ms and can be ignored. The convolutional neural network takes 
most of the modeling time. Hence, in further tests, the I/O time was not taken into 
account, and the time taken by the convolutional neural network was tested in two 
different modes: GPU mode and CPU mode. In the GPU mode, we used an NVIDIA 
1080Ti GPU to test the modeling time. The average modeling time in GPU mode aTG 

= 2.03 s, and the maximum modeling time in GPU mode mTG = 6.62 s. In the CPU 
mode, we used an Intel 8700 K CPU to test the modeling time. The average 
modeling time aTC = 15.35 s, and the maximum modeling time mTC = 27.08 s. The 
modeling time of our platform in the GPU mode is much faster than that in the CPU 
mode. Even in the CPU mode, our interactive platform can still achieve the 3D 
modeling of simple buildings in 30 s, which is faster than most 3D building modeling 
methods.

Figure 5 illustrates our VGI3D platform. Users can upload images and draw facades of 
buildings using our website. The website for our platform is available at https://18.210.26. 
42:5002/facade/.

3.3. Usability testing

User interaction plays an important role in the interactive 3D modeling workflow. However, 
this is difficult to evaluate. Hence, we invited four students to experience and test our platform. 
Then user interaction module will be evaluated according to their feedback. Four students 
included two men and two women. One among them is an expert user of 3D city modeling, 
and the others are users focusing on other fields, such as spatial analysis. The usability testing 
didn’t follow any additional guidance from our development team. They were only told the 
purpose of the platform and the functions of every button and every workspace. Fortunately, 
we received positive responses from all four participants. In terms of user interaction logic, all 
the participants, both men and women, considered the interface to be clear and concise. As for 
3D modeling, our platform can model buildings at a rapid pace. The speed and completeness 
of the modeling were beyond their expectations. At the same time, the three participants 
without background in 3D city modeling were also able to construct 3D building models only 
with basic guidance as we mentioned before.
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4. Conclusions

In this study, we propose a new interactive platform, VGI3D, for 3D building modeling. This 
platform is mainly composed of user interaction, automatic facade elements extraction, 
automatic roof inference, and real-time modeling of 3D buildings. Our platform only uses 
one or two images and simple user sketching as input. The extraction of facade elements 
and building modeling are automatically achieved by an object detection network and 
inference in 30 s, leading the platform to realize fast and complete urban 3D building 
modeling with lower labor and time costs. The 3D modeling performance of our platform is 
evaluated on images captured by various mobile phones and basic digital cameras, in which 
buildings have different architectural styles. Our experimental results demonstrate the 
capability of our platform for lightweight 3D building modeling. We also conducted 
a usability testing by inviting four students to try our platform and then give feedback. 
Their feedback indicates that our platform is easy to use and the interface is user friendly.

For further progress on 3D building modeling, we have released our platform on 
https://18.210.26.42:5002/facade/. In the future, we will further improve our platform to 
model complex buildings with more facades, such as shopping complexes and museums. 
Moreover, we will try to support the geographical matching of building models in the 
platform to make it easier to apply to urban 3D and other fields.

(c) 3D building models(a) Our Platform

(b) Building parts extraction

Figure 5. Results of our platform. (a) Interface of our platform. (b) Result of facade elements extraction, 
which is a middle part of our workflow. (c) Final result of 3D building modeling shown on our website.
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Automated detecting and placing road
objects from street-level images
Chaoquan Zhang1* , Hongchao Fan1 and Wanzhi Li2

Abstract

Navigation services utilized by autonomous vehicles or ordinary users require the availability of detailed information
about road-related objects and their geolocations, especially at road intersections. However, these road
intersections are generally represented as point elements without detailed information, or are even not available in
current versions of crowdsourced mapping databases including OpenStreetMap (OSM). This study proposes an
approach to automatically detect road objects from street-level images and place them to correct locations
according to urban rules. Our processing pipeline relies on two convolutional neural networks: the first one
segments the images, while the second one detects and classifies the specific objects. Moreover, to locate the
detected objects, we propose an attributed topological binary tree (ATBT) based on urban rules for each image in
an image sequence to depict the coherent relations of topologies, attributes and semantics of the road objects.
Then the ATBT is further matched with map features on OSM to determine the right placed location. The proposed
method has been applied to a case study in Berlin, Germany. We validate the effectiveness of the proposed
method on two object classes: traffic signs and traffic lights. Experimental results demonstrate that the proposed
app roach provides promising results in terms of completeness and positional accuracy.

Keywords: Object placing, Attributed topological binary tree, Street-level images, OpenStreetMap, Completeness,
Traffic lights, Traffic signs

1 Introduction
The rapid development of advanced driver assistance
systems and autonomous vehicles in recent years has
attracted the ever-growing interest in smart traffic appli-
cations. Such intelligent applications can provide de-
tailed road asset inventories of all stationary objects,
such as street furniture (traffic lights and signs, various
poles, bench, etc.), road information (lanes, edges, shoul-
ders, etc.), small façade elements (antennas, cameras,
etc.), and other minor landmarks. However, these de-
tailed road map productions are mainly generated by
mobile mapping systems (MMS), which require high
costs both in the investment of equipment and in labor-
intensive data post-processing. In addition, data updat-
ing is again a huge challenge. For instance, official road

maps suffer from a long update cycle that can last sev-
eral months or even years (Kuntzsch et al., 2016).
The last decade has witnessed an explosion of geospa-

tial data. An increasing number of crowdsourced geo-
spatial data repositories/services allow volunteers to
utilize information from various data sources when con-
tributing data to a crowd-sourced platform. That is
known as Volunteered Geographic Information (VGI)
(Goodchild, 2007). Amongst them, OSM and Mapillary
are the typical representatives of maps and street-level
crowdsourcing platforms, respectively. The large amount
of detailed map data provided by OSM not only enriches
the data sources of map making, but also supports and
promotes data-driven (Hachmann et al., 2018; Melnikov
et al., 2016) and data-intensive (Chang et al., 2016; Gao
et al., 2017) spatial analysis. Additionally, literature (Neis
et al., 2012) has shown that OSM road data in Germany
and Netherlands can be comparable to official data.
With the introduction of Mapillary in 2014, it has
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become the biggest and the most active crowdsourced
street-level imagery platform around the world. Tens of
billions of street view images covering millions of kilo-
metres of roads and depicting street scenes at regular in-
tervals are available (Solem, 2017).
Even though OSM has made remarkable achieve-

ments, it still has some drawbacks. For example, road
intersections in OSM are mainly represented as point
elements without any semantic information (e.g. traf-
fic signs/lights), or are even not available for most
cities/countries (Fig. 1). According to Ibanez-Guzman
et al. (2010), a high percentage of traffic accidents
occur at road intersections, which reflects the import-
ance of road intersections for traffic safety. If we can
provide more information about intersections to the
relevant authorities and let them use this information
together with trajectory data to optimize the setting
of traffic lights or vehicle speeds, that may help re-
duce the incidence of traffic accidents to some extent.

To the best of our knowledge, Mapillary submitted an
additional layer to OSM where marked the traffic
signs on the map. However, the locations of traffic
signs in the layer differ greatly from the actual ones.
Besides, multiple traffic signs with the same category
would appear within a small area at the same time,
which is obviously inconsistent with the actual situ-
ation. This may be related to the fact that Mapillary
only adopted pure computer vision methods to detect
the traffic signs without considering the correctness
of their locations in the real world.
Considering all the above shortcomings, in this paper

we aim to automatically detect and classify traffic lights/
signs at road intersections by using deep learning
method from street-level images, and localize their posi-
tions based on urban rules and proposed attributed
topological binary trees (ATBT). In this way, we can fur-
ther enrich the OSM data. Since these kinds of informa-
tion are hard to be seen on satellite and aerial images

Fig. 1 Incomplete information at road intersections

Zhang et al. Computational Urban Science            (2021) 1:18 Page 2 of 18



and hence they cannot be mapped by volunteers on
OSM, the proposed method provides a good solution for
this issue. To summarize, the main contributions and in-
novations of our work are as follows:

� We propose a simple convolutional neural network,
namely ShallowNet, for traffic sign classification,
which is characterized by low model complexity,
high detection accuracy and fast recognition speed.

� We propose 6 urban rules (or grammar) to assist
the determination of the relative position and
topological relationship of the road-related objects.

� Based on the urban rules, we propose an attributed
topological binary tree (ATBT) for image sequences
to effectively describe the coherent relations of
topologies, attributes and semantics of the road
objects.

� With the proposed ATBT, we can easily and
accurately determine where the traffic lights and
signs should be placed by matching with map
features on OSM. Furthermore, our experiments
show that the whole workflow performs well in
terms of object completeness and positional
accuracy.

The remainder of this paper is organized as follows.
We first review some relevant state-of-the-art ap-
proaches in Section 2. Section 3 presents our complete
detection and localization pipeline. A set of experimental
analyses are presented in Section 4. Conclusions and fu-
ture work are discussed at the end of this paper as Sec-
tion 5.

2 Related work
Benefiting from the ubiquitous street view images ac-
cessible from Google Street View (GSV), Mapillary, etc.,
many efforts have been directed towards the intelligent
use of them to assess urban greenery (Li et al., 2015; Li
et al., 2018), to enhance existing maps with fine-grained
segmentation categories (Mattyus et al., 2016), to ex-
plore urban morphologies by mapping the distribution
of image locations (Crandall et al., 2009), to analyze the
visual elements of urban space in terms of human per-
ception (Zhang et al., 2018) and urban land use (Li et al.,
2017). Furthermore, street view images have also been
combined with aerial imagery to achieve tree detection/
classification (Wegner et al., 2016), land use classifica-
tion (Workman et al., 2017), and fine-grained road
segmentation (Mattyus et al., 2016). Together with
(Timofte & Van Gool, 2011), these methods rely on a
simplified locally flat terrain model to evaluate object lo-
cations from street-level images.
The last ten years have witnessed the quick develop-

ment of Convolutional Neural Network (CNN) and

CNN-based image content analysis. It has been proven
efficient in learning feature representations from a large-
scale dataset (LeCun et al., 2015). And as a consequence,
urban studies involving street-level images have been
largely enhanced since it was proposed. By leveraging
street view images, many studies employ deep learning
for object detection and classification, as well as image
semantic segmentation to monitor neighbourhood
change (Naik et al., 2017), to quantify the urban percep-
tion at a global scale (Dubey et al., 2016), to estimate
demographic makeup (Gebru et al., 2017), to predict the
perceived safety responses to images (Naik et al., 2014),
to predict the socio-economic indicators (Arietta et al.,
2014), and to navigate without maps in a city (Mirowski
et al., 2018). In contrast, less attention has been paid to
extracting traffic elements within road intersections
from street view imagery. Furthermore, all of these
methods use GSV as input data, but GSV charges a fee
after downloading a certain amount for free, which is no
doubt not a good choice for teams or individuals with
insufficient research funds. Therefore, we introduce
Mapillary, a fully free, crowdsourced, almost real-time
updated and ubiquitous street-level imagery, into our
work.
In terms of localization, so far, several approaches have

been made available to map particular types of objects
from street view imagery: traffic lights (Jensen et al.,
2016; Trehard et al., 2014), road signs (Soheilian et al.,
2013), and manholes (Timofte et al., 2011). These
methods determine the positions of the road assets from
individual camera views based on position triangulation.
All of them depend heavily on various visual and geo-
metrical features to match when multiple objects appear
in the same scene. As a result, the performance of these
methods is poor when multiple identical objects exist at
the same time. Hence, an improved method is proposed.
Hebbalaguppe et al. (2017) describe the problem as an
object recognition task, and then adopt a stereo-vision
(Seitz et al., 2006) approach to estimate the object coor-
dinates from sensor plane coordinates using GSV. How-
ever, different from GSV, Mapillary street view images
do not contain any camera intrinsics and projective
transformation in their EXIF information, and thus we
cannot perform the camera calibration. In other words,
we cannot apply the same method for traffic lights/signs
localization using Mapillary images. Recently, Krylov
et al. (2018) combine the use of monocular depth esti-
mation and triangulation to enable automatic mapping
of complex scenes with the simultaneous presence of
multiple, visually similar objects of interest, and achieve
the position precision of approximately 2 m.
In this study, we focus on the research of road inter-

sections to enrich the objects related to OSM intersec-
tions, such as traffic signs and lights, and to locate them
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for the reference of autonomous driving or navigation.
We propose a complete pipeline to extract scene ele-
ments such as buildings, sky, roads, sidewalks, traffic
lights and signs based on image semantic segmentation
from road intersections images. For localization pur-
poses, the hierarchy of semantic objects needs to be ap-
plied, as there are the coherent relations of topologies,
attributes and semantics of the road objects. In further,
together with the segmentation results, an attributed
topological binary tree (ATBT) based on urban rules can
be established to depict the topologies among road ob-
jects. These are then matched with map features on
OSM. In the end, road objects can be localized as prom-
ising results.

3 Methodology
In this section, we discuss a complete pipeline for the
localization of traffic lights and signs from image se-
quences at road intersections. The pipeline has the fol-
lowing three modules: (1) data preprocessing and
cleaning module; (2) object segmentation and recogni-
tion module; (3) localization module. Figure 2 depicts
the whole framework. The first module is for preparing
preprocessed and cleaned data for the next two modules
(see Section 3.1). The second module mainly extracts
road-related information by using image semantic seg-
mentation as well as object detection and classification
(see Section 3.2). In the last module, an attributed topo-
logical binary tree (ATBT) is constructed to represent
the relative position relation between extracted objects
at the intersections and to locate the objects with urban
rules (see Section 3.3). Ultimately, the located objects
can be integrated to enrich the OSM data.

3.1 Data preprocessing and cleaning
The main purpose of the data module is to prepare data
for the next two modules. First of all, the intersections
are identified by using the DBSCAN algorithm (Ester
et al., 1996) based on incomplete traffic lights existing in

OSM data. The incompleteness is reflected in, for ex-
ample, there should have had four traffic lights at the
intersection but only one or two are marked in the
OSM. Additionally, their positions are roughly estimated
which means traffic lights are with lower positional ac-
curacy. After identifying the intersections, selecting
experimented intersections mainly obeyed two rules: (1)
the intersections can be clearly seen in the Mapillary im-
ages; (2) the image sequences can be corrected well by
employing the SfM algorithm. Second, all the available
images can be downloaded by querying the relevant
Mapillary application programming interface (API). Spe-
cifically, a bounding box in geographic coordinates that
covered the entire Berlin has been calculated in advance.
To form a request to the Mapillary API, we then con-
struct an API URL in which includes a common server
address, user’s unique client ID, bounding box and other
search parameters such as start time, end time, searching
radius, etc. Third, a buffer is then set up for each road
intersection to extract image sequences within the buf-
fer. An image sequence refers to a trajectory of a user
traveling along the street. For an intersection with four
road branches, we are able to theoretically build four
image sequences by merging multiple image sequences
according to their geolocations because of four kinds of
rough driving directions, i.e. west-east, east-west, south-
north and north-south. In addition, camera location in-
cluding latitude and longitude, and camera angle are
extracted.
Furthermore, we have found that the GPS positions of

image sequences often drift, which may be associated
with the geographical environment during the shooting
(for example, tall buildings or heavy tree canopies block
the GPS signal), or it may be because the GPS receiver
built in the camera itself is inaccurate. Fortunately, one
of the big advantages of Mapillary is that street view im-
ages of the same road segment may be uploaded repeat-
edly by different volunteers. And there is a certain
degree of overlap between the two adjacent images,

Fig. 2 Workflow of the methodology

Zhang et al. Computational Urban Science            (2021) 1:18 Page 4 of 18



which makes it possible for us to correct their shooting
positions.
To reduce the error as much as possible and to im-

prove the accuracy of localization, we employ a tech-
nique called Structure from Motion (SfM) (Snavely
et al., 2008), as depicted in Fig. 3(a), to match features
between images and reconstruct their surroundings in
three-dimensional space to form point clouds. Each
point has its position in three-dimensional space, so we
can estimate the correct shooting positions of images
along with the camera angles. As a result, these correc-
tions can place misaligned images in their original posi-
tions as much as possible. In general, the more images
feeding into the system from an area, the better the re-
sults could be. An SfM-corrected sequence is shown in
Fig. 3(b). We can easily discover the original image
shooting locations (green dots) swinging from one side
of the road to the other in an “S” pose. Red dots
symbolize the corrected locations, which now are fully
aligned with roads. Additionally, if there are many over-
laps between those images, these corrections can be very
promising.

3.2 Object segmentation and recognition using deep
learning
In theory, all road-related information can be extracted
accurately from images only via semantic segmentation

(see Section 3.2.1). Nevertheless, the quality of crowd-
sourced street-level images varies greatly, and hence it is
difficult to ensure that all images can be segmented well,
which would lead to inaccuracies or errors. Hence, in
Section 3.2.2, we adopt an alternative strategy based on
object detection to improve this problem.

3.2.1 Semantic segmentation using PSPNet
Image semantic segmentation is one of the key tech-
niques used to understand a scene (Zhou et al., 2017),
and is aimed at segmenting and recognizing object in-
stances from images. Given an input image, the model
can assign a class label for each pixel. One of the state-
of-the-art semantic segmentation models with superior
performance – PSPNet (Zhao et al., 2017) is applied in
our study to perform object extraction. The PSPNet uses
a new neural network sub-architecture, which retains
global and local contextual information through a multi-
scale representation of the previous convolutional layer’s
output. Because of the validated performance of the
PSPNet trained on the PASCAL VOC 2012 (Everingham
et al., 2010) and Cityscapes (Cordts et al., 2016) datasets,
we are confident to segment road-related objects well by
using PSPNet, such as buildings, sky, roads, sidewalks,
traffic lights/signs, etc. These extracted objects will later
be used as nodes of the attributed topological binary tree
(ATBT).

Fig. 3 Structure from Motion (SfM) algorithm used for our study to correct shooting positions of images. a A typical SfM pipeline (Snavely et al.,
2008); b SfM doing its corrections
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3.2.2 Object detection and classification using YOLOv3 and
ShallowNet
After image semantic segmentation, we find that there
are three limitations associated with semantic segmenta-
tion, especially for traffic signs. First, since we can only
know this is a traffic sign through semantic segmenta-
tion, but we do not know which kind of traffic sign it be-
longs to. Second, if two signs are arranged together,
semantic segmentation cannot identify them separately,
which is not conducive to the supplement and enrich-
ment of OSM semantic data. Third, our PSPNet model
often misclassifies the isolation piles as traffic signs, or
sometimes confuses two objects with similar features
but they actually do not belong to the same category.
The third limitation may be because the two objects
have similar features (such as color, shape or texture), or
the training dataset does not include such cases. As a re-
sult, the model did not learn the relevant features well.
Fortunately, object detection can address the above

limitations. Taking into account the processing speed
and detection accuracy, we choose YOLOv3 (Redmon &
Farhadi, 2018) as our object detection model after some
researches. Thus, we specially train a YOLOv3 model
based on GTSDB (Stallkamp et al., 2012) dataset for de-
tecting traffic signs, and then cross-validate the results
of object detection and semantic segmentation to reduce
errors and provide rich and effective attribute informa-
tion for localization.
In our study, we not only need to know this is a traffic

sign, but also need to know which kind of sign it belongs
to. Consequently, in terms of traffic sign classification,
we design a new shallow convolutional neural network
called ShallowNet. As illustrated in Fig. 4, the network
contains only five layers with weights; the first three are
convolutional and the remaining two are fully-
connected. The output of the last fully-connected layer
is fed to a 45-way softmax which produces a distribution
over the 45 class labels. We adopt batch normalization
(Ioffe & Szegedy, 2015) right after each convolution and
before ReLU non-linearity (Nair & Hinton, 2010) to

speed up the convergence of model training. Addition-
ally, to reduce the size of feature maps as much as pos-
sible, the convolutional layers involved in the network
are all performed filling operation, and each convolution
is followed by downsampling.
The first convolutional layer filters the 48 × 48 × 3 in-

put image with 64 kernels of size 7 × 7 × 3. The second
convolutional layer filters the output of the previous
layer with 128 kernels of size 4 × 4 × 64. The third con-
volutional layer has 300 kernels of size 4 × 4 × 128 con-
nected to the outputs of the second convolutional layer.
Then we expand the feature map and form 1500 feature
vectors into the fully-connected layer. Moreover, to re-
duce the overfitting of the network, we introduce drop-
out (Hinton et al., 2012) at the first fully-connected
layer.
In general, our proposed network model, ShallowNet,

is characterized by:

� Simple network structure and low model
complexity. With few parameters, it is easy to be
deployed to mobile or embedded devices.

� High accuracy. It can correctly recognize the type of
traffic signs

� Fast recognition speed. Real-time object recognition
can be achieved.

3.3 Object localization
Since Mapillary street view images do not contain any
camera intrinsics in their EXIF information, it is impos-
sible to calculate the projective transformation matrix
and then perform camera calibration. In other words, we
cannot apply photogrammetry methods for traffic lights/
signs localization using Mapillary images.
After observing a large number of images of road in-

tersections, we note that many images show a structure
where buildings are on both sides of the road and a por-
tion of the sky appears between them, traffic lights and
signs being often placed at street corners, as well as pe-
destrians and vehicles appearing on the road. We can

Fig. 4 Overview of our proposed ShallowNet
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vaguely feel that there exist some certain arrangement
rules between the objects in the images. Inspired by this,
we propose a novel method to depict the coherent rela-
tions of topologies, attributes and semantics of the road
objects at the intersections by establishing an attributed
topological binary tree based on urban grammar (see
Section 3.3.1). These objects (mainly traffic lights and
signs) are then further matched with map features on
OSM to determine the correctly placed location (see
Section 3.3.2).

3.3.1 Attributed topological binary tree (ATBT) generation
and updating
Taking the extracted objects through the image semantic
segmentation as input, the ATBT can be created from
top to bottom and from left to right. The left and right
children of the binary tree can reflect the relative pos-
ition relationship between the objects. We regard traffic
lights, traffic signs and sidewalks as three types of nodes
of the tree, and assign corresponding attributes to each
type of node, such as centroid, area, height (optional),
category, and role in the tree.
For traffic lights, there are two types of traffic lights:

located on the sidewalk (low one) and located on the
road (high one), which need to be recognized through
following two urban rules (see Fig. 5):

(1). If the traffic light is surrounded by the sky, a ray
(right red solid line in Fig. 5(b)) can be cast from
the centroid of the segmented traffic light region
downwards the road. If the distance between
centroid and road surface is far more than twice the
height of the tallest pedestrian (blue solid line in
Fig. 5(b)), it can be inferred that this traffic light is
at the road junction (i.e. high one), and its height is
about 7 m (another urban rule, searched from the
Internet).

(2). If the traffic light is surrounded by the buildings, a
similar ray (left red solid line in Fig. 5(b)) can be
cast from the centroid of the segmented traffic light

region downwards the sidewalk. If the distance
between centroid and sidewalk surface is less than
or equal to twice the height of the tallest
pedestrian, it can be inferred that this traffic light is
located on the sidewalk (i.e. low one), and its height
is about 4 m.

In fact, Rule1 implies an “up and down” relationship,
that is, traffic lights are surrounded by the sky and the
sky is above the high traffic lights. Similar to Rule1,
Rule2 also implies a “front and back” relationship, that
is, the low traffic light is surrounded by buildings and
buildings are behind the low traffic light.
As we can see from Rule2, sidewalks are very import-

ant for our judgment. But in many cases, sidewalks are
divided into multiple independent “blocks” by the pedes-
trian (as shown in Fig. 6(b)) according to the results of
image semantic segmentation. In this case, it is necessary
to judge whether the adjacent independent “sidewalk
blocks” meet a certain distance threshold based on an-
other empirical knowledge (i.e. the sidewalks on the
same side are connected, Rule3). If within this distance
threshold, they are considered to be connected. Further-
more, many images do not capture the view of the whole
intersections, but just a part of them as shown in
Fig. 6(a). According to the urban rules, low traffic lights
on the sidewalks tend to appear in pairs (Rule4). As long
as there is a low traffic light on one side of the road,
there definitely has another one on the other side of the
road. This gives our topological binary tree the ability to
reason.
Of course, there are also urban rules applicable to traf-

fic signs. Since the study area of this paper is Berlin,
Germany, we find that traffic signs at road intersections
follow such patterns (Rule5, see Fig. 7): they either ap-
pear alone, or are usually close to the low traffic light
above or both up and down, or arrange together. These
are intrinsic combination patterns, and the distance be-
tween centroids of the internal objects of the combined
pattern is within a small threshold.

Fig. 5 Discrimination of different types of traffic lights based on urban grammar, which includes two rules. Rule1: (1) Surrounded by sky; (2)
Distance > > height of 2 ×max_pedestrian. Rule2: (1) Surrounded by buildings; (2) Distance <= height of 2 ×max_pedestrian
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Finally, for each image in the image sequence, an
ATBT can be established according to the results both
from semantic segmentation and traffic sign detection/
classification. The left subtree of the root node corre-
sponds to the left side of the road, and the right subtree
corresponds to the right side of the road. Additionally,
for the convenience of computation, the node number of
the tree is strictly in accordance with the node number
of the complete binary tree. The left-right or top-bottom
relationship between nodes is determined by the pos-
ition of their centroids.
However, the first image of an image sequence was

generally taken at the farthest location from the inter-
section, which may lead to some road objects not be-
ing segmented/detected and then affect the
establishment of ATBT. Therefore, with the camera
approaching the intersection, the image scene be-
comes clearer and can capture additional objects that
are missed in previous images. Then, ATBT would
dynamically update itself by comparing the difference

between the current tree and the previous tree as well
as combining with the urban rules, as illustrated in
Fig. 8. The image numbered 1–3 are gradually ap-
proaching the intersection.
Meanwhile, the scene depth information is also con-

sidered during the ATBT establishment and updating.
For example, there are two low traffic lights (labelled by
No. 9 and 19 in the third segmented image) as shown in
Fig. 8. They belong to a pair as described in Rule4 (i.e.
low traffic lights on the sidewalks tend to appear in
pairs). Their height should be the exactly same in reality,
however, from the image, the No.19’s height is obviously
lower than the No.9’s. This is because photo imaging fol-
lows the law that the object is big when near and small
when far. Hence, in this case, we used the scene depth
information and Rule4 to infer that these two traffic
lights should belong to a pair and should locate on the
sidewalk.
In summary, as the image gets closer to the intersec-

tion, ATBT can dynamically update itself according to

Fig. 6 a Only part of the intersection is photographed, and Rule4 is summarized: low traffic lights appear in pairs. b A sidewalk is divided into
multiple “blocks” by pedestrians, and Rule3 is summarized: the sidewalks on the same side are connected

Fig. 7 Four combined patterns of traffic signs and lights
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the topological relationship of the objects, urban rules as
well as scene depth information, and get the final ATBT.

3.3.2 Map matching
Based on the ATBT constructed earlier, we can use the
shooting positions and camera angles provided by im-
ages as well as OSM footprints that are located around
the intersections to match the left and right subtrees of
the ATBT with the corresponding footprints. After that,
the geographically placed locations of objects (e.g. traffic
signs) in the real world can be determined.
Assuming there is an image sequence taken from west

to east, the shooting positions of these images are repre-
sented by C1, C2 and C3 (as demonstrated in Fig. 9).
Here, C1 is illustrated as an example. We take the red
shooting point C1 as the centre of a circle, and draw the
buffer with a radius of 26 m (determined by multiple

experiments) to get footprints intersecting with the buf-
fer. After calculating the distance from footprints to C1,
we get that the yellow highlighted footprint is closest to
the C1 (i.e. it corresponds to the right subtree of the
ATBT), and similarly, the green highlighted footprint is
closest to the C1 (i.e. it corresponds to the left subtree
of the ATBT). From Fig. 9, the yellow and green
highlighted footprints are indeed at the intersection,
which indicates that the results we got are correct. In
this way, the placed positions of traffic signs and lights
can be determined.
We have inquired about the “Code for Urban Road

Design”, which clearly states that the minimum width of
an ordinary sidewalk is 2 ~ 3m (Rule6). Therefore, we
place the low traffic lights and traffic signs about 2.5 m
away from the corresponding footprint corner point (A1
or A2); the high traffic lights are placed at the midpoint

Fig. 8 Attributed topological binary tree (ATBT) generation and self-updating. The image numbered 1–3 are gradually approaching
the intersection
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of connection between A1 and A2. In fact, this is not a
precise localization, but it can indicate the approximate
location of the traffic lights and signs.
The situation of C2 is a little bit complex. Since C2 is

located in the middle of the intersection and none of the
footprints is around it. If C2 is the centre of a circle and
the corner points obtained by intersecting with foot-
prints are A1 and A2, it indicates that C2 just passed
one side of the intersection. Since the content of an
image is always the scene in front of C2, but at this time
A1 and A2 are behind the C2, so these two corners are
not the corner points we want. Similarly, if the circle
with C2 as centre intersects with footprints and yields
A3 and A4 as their corner points, which are what we
want because they are in front of C2.

Compared with the situation of C2, the situation of C3
is much simpler. Since C3 is about to leave the intersec-
tion area, the corner points that C3 intersecting with
footprints are always behind it. This situation is not
what we want as well.
For a more intuitive view of the urban rules used in

this paper, we summarize and list them in Table 1 as
shown below.

4 Experimental results
4.1 Study area and data
As the capital and largest city of Germany, Berlin was
chosen as our study area. The study area has various
intersection types, which range from the most common

Fig. 9 Map matching between shooting point and OSM footprints

Table 1 Summarized urban rules used in attributed topological binary trees (ATBT)

Rule
No.

Description of the urban rules

Rule1 1) Traffic light is surrounded by sky; 2) distance between the traffic light and road surface is far more than twice the height of the tallest
pedestrian.
Conclusion: high traffic lights

Rule2 1) Traffic light is surrounded by buildings; 2) distance between the traffic light and road surface is less than or equal to twice the height of
the tallest pedestrian.
Conclusion: low traffic lights

Rule3 The sidewalks on the same side are connected.

Rule4 Low traffic lights on the sidewalks tend to appear in pairs.

Rule5 Traffic signs in Germany either appear alone, or are usually close to the low traffic light above or both up and down, or arrange together.

Rule6 The minimum width of an ordinary sidewalk is 2 ~ 3m.
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intersections with three/four road branches to the com-
plicated intersections, like roundabouts.
The datasets used in this study include OSM building

footprints data, Mapillary street view images, Mapillary
Vistas, German Traffic Sign Detection Benchmark
(GTSDB), and German Traffic Sign Recognition
Benchmark (GTSRB) (Stallkamp et al., 2011). The
OSM building footprints data was collected from
Geofabrik. The Mapillary street view images were
downloaded via querying Mapillary APIs including the
metadata of each image, from 2014 to 2018. To facili-
tate further study, we only extracted images located
in the intersection buffer. Mapillary Vistas was from
Neuhold et al. (2017), which contains 25,000 high-
resolution images annotated into 66 object categories.
They are used as the training set for the semantic
segmentation model—PSPNet. Last but not the least,
GTSDB and GTSRB were from Stallkamp et al. (2011,
2012), and are applied for training object detection
model—YOLOv3 and proposed object classification
model—ShallowNet, respectively.
In summary, above all are reasons why we choose

Berlin as our study area. Fig. 10 depicts the example area
of Berlin as well as the distribution of Mapillary street
view camera locations and OSM building footprints.

4.2 Extraction of road-related objects with PSPNet
4.2.1 Training
For the segmentation task, our implementation is based
on the public framework TensorFlow. Like the Zhao et al.
(2017), we also use the “poly” learning rate policy (the
learning rate is multiplied by ð1− iter

max iterÞ
power ). We set the

base learning rate to 0.01 and power to 0.9. The training is
performed on three NVIDIA GTX 1080Ti GPUs using sto-
chastic gradient descent (SGD) with momentum m= 0.99
and weight decay = 0.0001. Due to limited physical memory
on GPU cards, we set the “batchsize” to 4 for each GPU
card during training. In addition, we crop the Mapillary
training images to a size of 720 × 720, and start with a pre-
trained ResNet34 (He et al., 2016) model with the dilated
network strategy (Yu & Koltun, 2015) to extract the feature
map. For data augmentation, we adopt random mirror, ro-
tations [− 5°, 5°], random resize between 0.5 and 2, and
small enhancements in the image’s color, sharpness, and
brightness for Mapillary Vistas. This comprehensive data
augmentation scheme makes the network resist overfitting.

4.2.2 Evaluation and comparison
The performance on Mapillary street-level images was
evaluated with PSPNet. Figure 11 shows several

Fig. 10 Example area of Berlin (map:© OpenStreetMap contributors). Red dots, green polygons, and blue circles are the Mapillary street view
camera locations, OSM building footprints, and intersection buffers, respectively
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segmented examples, where the first column represents
the sample images located at the intersections, the sec-
ond column corresponds to the segmented results. From
the segmentation results, the PSPNet model we trained
can well segment the sky, buildings, roads, traffic signs
and other objects that we want. Furthermore, to prove
the superiority of our PSPNet model, a comparison test
is conducted with the state-of-the-art model, Dee-
pLabv3+ (Chen et al., 2018). In Table 2, our trained
PSPNet model achieves Mean IoU 34.17% and Pixel
Acc. 91.3%, and both of them outperform the Dee-
pLabv3 + .

4.3 Detection and classification of traffic signs
In this subsection, to prove the superiority of our used
or proposed network, we will conduct a series of com-
parative experiments on detection network YOLOv3 and
the classification network ShallowNet.

4.3.1 Traffic signs detection

4.3.1.1 Training Due to some differences between the
street view at intersections and the ordinary street

view, we add 300 extra annotated Mapillary images at
road intersections into the GTSDB dataset to form a
hybrid dataset. The dataset is divided into 750/450
images for training and testing. We train the YOLOv3
with Darknet on an NVIDIA GTX 1080Ti GPU card,
and set “batchsize” to 8. The warm-up strategy is
adopted in the training phase, i.e. starting with a very
small learning rate at the beginning of training. As
the number of iterations increases, the initial learning
rate gradually increases to 0.001. Starting from the
second epoch, the normal gradient descent is made
with 0.001 as the initial learning rate. Meanwhile, to
augment the data, we use rotations [− 5°, 5°], random
flipping, random scale [20, 200], and color space
conversion.

4.3.1.2 Evaluation and comparison To prove that our
trained YOLOv3 model is excellent at both processing
speed and detection accuracy, we compare YOLOv3
with the previous best-performing method (Faster R-
CNN (Ren et al., 2015)) on the testing set. In Table 3
our trained YOLOv3 model yields mAP (mean Aver-
age Precision) 94.7% and sec/img (second per image)
0.025 s, and both of them outperform the Faster R-
CNN. The detection speed of approximately 30FPS is
much faster than two-stage detector like Faster R-
CNN. In addition, the performance of traffic sign de-
tection on Mapillary street-level images is evaluated
with YOLOv3. Figure 12 shows several example
results.

Fig. 11 Examples of PSPNet results. The first column lists the original images. The second column represents the segmented results

Table 2 Comparison of mIoU and pixel accuracy between our
trained PSPNet and DeepLabv3 +

Method Mean IoU(%) Pixel Acc.(%)

PSPNet 34.17 91.3

DeepLabv3+ 33.97 90.2
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4.3.2 Traffic signs classification

4.3.2.1 Training The public GTSRB dataset contains
only 43 types of traffic signs, but it does not cover signs
that often appear at intersections. Hence, we add two
more categories to reach 45 categories in total. The
dataset is divided into 75 K/12 K images for training and
testing. Due to the uneven number of different categor-
ies of traffic signs, we also use a data augmentation tech-
nique during training, which includes histogram
equalization of color images, affine transformation, con-
trast enhancement, Gaussian blur, Gaussian random
noise, color space conversion, and random inactivation
of pixel values. The training is performed on an NVIDIA
GTX 1080Ti GPU using Adam Optimizer with Cross
Entropy Loss Function.

4.3.2.2 Ablation study for ShallowNet To evaluate
ShallowNet, we conduct experiments with several set-
tings, including batch normalization (BN), dropout, and
data augmentation. As listed in Table 4, the accuracy of
manual recognition is 98.84%. Although the accuracy of
manual recognition is very high, the automation degree
is low, which is not conducive to information extraction.
For the simplest ShallowNet (only convolution, pooling
and full connection operation), the test accuracy on
GTSRB is 95.89%. While it does not work better than
manual recognition, it has higher automation degree and
faster forward propagation speed (it only takes 3.6 ms on
average to detect an image in CPU mode).

Even though the ShallowNet structure is very simple,
the number of neurons in the fully-connected layer is
large, which may lead to overfitting to some extent.
Hence, we introduce dropout at the first fully-connected
layer and successfully increase accuracy by nearly 1.6%.
Besides, batch normalization is adopted in ShallowNet_
Drop to reduce the difference in the distribution of ori-
ginal data, and to help speed up the convergence of
training. ShallowNet_BN_Drop has a similar perform-
ance to manual recognition. Finally, we explore whether
data augmentation improves the accuracy of the model
or not, and augment the data on ShallowNet_BN_Drop.
It achieves the accuracy of 99.52% on the testing set,
which surpasses the accuracy of manual recognition, and
increases by over 1% compared to ShallowNet_BN_
Drop. Through this experiment, it can be proved that
data augmentation is very critical to improve the accur-
acy of the model. Figure 13 shows several examples.

4.4 Localization of traffic lights and signs
In this subsection, we apply the method introduced in
Section 3.3 for locating the traffic signs and lights based
on ATBT and urban rules. The experimented image se-
quences are merged from multiple image sequences ac-
cording to their geolocations and meanwhile, misaligned
images are corrected using Structure from Motion
(SfM). Each image sequence refers to a trajectory of a
volunteer user traveling along the road; and, over time,
the same road segment may be covered by multiple se-
quences that are uploaded by different volunteers. One

Table 3 Comparison of mAP and detection time between our trained YOLOv3 and Faster R-CNN on the GTSDB + Mapillary images
hybrid testing set

Method Input size mAP(%) Model size(M) Sec/img(s)

YOLOv3(Darknet-53) 608 × 608 94.7 246.4 0.025

Faster R-CNN (ResNet) 1280 × 720 90.5 267 0.230

Fig. 12 Examples of traffic sign detection results based on YOLOv3
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hundred intersections with four or three branches are
tested in the experiment, with over 350 image sequences
and more than 3400 images.
Using hybrid results both from semantic segmentation

and traffic signs detection & classification, a parsed
scene with detailed semantic and attributed information
can be established. For this purpose, the hierarchy of se-
mantic objects needs to be applied, as there are coherent
relations of topologies, attributes and semantics of the
road objects. Therefore, an ATBT can be created based
on urban rules for each image in the image track to de-
pict the topologies among road objects. Then, we inte-
grate the final updated ATBTs, rather than only using
the result of one ATBT. Because some important items
(such as traffic signs) in a certain image may be occluded
by cars but the next image does not, which can play a
role of verification and supplement. Ultimately, it can
produce the final localization results along the driving
direction (or camera shooting direction). Please note
that this is not a precise localization, but in fact, it can
indicate the estimated location of the traffic lights and
signs. In Fig. 14, the qualitative localization results of
one crossroad and one T-junction examples are
displayed.

In general, for the localization task, two spatial data
quality elements should be assessed: completeness and
positional accuracy. While positional accuracy is the
best-established indicator of accuracy in mapping sci-
ence (Mobasheri et al., 2018), official position data
(ground truth) of traffic signs and lights are not avail-
able. We cannot compare our generated positions with
ground truth data on positional accuracy. However, we
still manually collect the locations of traffic signs/lights
from Google satellite map through visual observation
and make these locations as “reference data” to access
the completeness and positional accuracy of our
localization results. In terms of completeness level, we
get over 97% in all 100 testing intersections. Please note
that only when all traffic lights and signs are detected
and their predicted locations are not far away from the
real locations at an intersection, then we would consider
it as a complete and correct case. Figure 15 shows two
examples corresponding to Fig. 14a-b respectively, where
red dot 1 in the right figure of (a) contains three signs,
and each of the red dots 1,2,3 in the right figure of (b)
contains two signs because they are overlapped. As can
be seen in the figures, both examples have obtained ap-
proximate positional accuracy compared to the anno-
tated “reference data”.

5 Conclusions and future work
In this paper, we propose an automatic approach to de-
tect and place traffic lights/signs at road intersections in
relatively high completeness and positional accuracy.
The proposed method relies on two deep learning pipe-
lines (one for image semantic segmentation and the
other for traffic sign detection & classification), as well
as novel ATBTs based on six urban rules for traffic
lights/signs localization. The method has been tested at
multiple intersections using Mapillary street view images

Table 4 Investigation of ShallowNet with different settings.
‘Drop’, ‘BN’ and ‘Aug’ represent dropout, batch normalization
and data augmentation, respectively

Method Accuracy(%) Sec/img (ms)

Human performance 98.84 /

ShallowNet 95.89 3.6

ShallowNet_Drop 97.47 /

ShallowNet_BN_Drop 98.49 /

ShallowNet_BN_Drop_Aug 99.52 3.6

Fig. 13 Examples of traffic sign classification results based on ShallowNet
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in Berlin, Germany. We validate the effectiveness of the
proposed approach on two object classes: traffic signs
and traffic lights, and introduce two spatial data quality
elements: completeness and positional accuracy. Experi-
mental results demonstrate that our approach obtains
great objects completeness level (over 97% among 100
testing intersections) and relatively high positional

accuracy compared to the manually collected “reference
data”. Therefore, the proposed method provides a prom-
ising solution for enriching and updating OSM intersec-
tion data.
So far, to the best knowledge of the authors, there

have not been digital maps with so detailed information.
However, this kind of information is of vital importance

Fig. 14 Examples of qualitative localization results of traffic lights and signs at two types of intersections. a localization results at the crossroad; b
localization results at the T-junction
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for many applications. For instance, together with trajec-
tory data, information of traffic signs at road intersec-
tions may help offer more reasonable explanations for
many spatial analyses related to urban structure and
urban transportation. In this context, it is very useful for
urban planning recommendations.
At present, the proposed method can only be applied

to intersections with four or three branches and it is dif-
ficult to handle with complex intersections, such as
roundabouts or five-branch intersections. In addition,
the premise of employing this method is that there

needs to have at least one traffic light marked in OSM
data. Otherwise, we cannot identify and select the inter-
sections by using DBSCAN. That is the second limita-
tion of the proposed approach. However, Europe’s OSM
data is the richest compared to other continents, so the
proposed method can be applied at least in Europe. In
the future, we will further optimize the proposed ap-
proach and aim to resolve and overcome the above limi-
tations. On the other hand, the GTSRB dataset used in
this work only includes 45 categories, which does not
cover all types of traffic signs in Germany or other

Fig. 15 Visual inspection comparison of traffic lights and signs localization results. The first column is the results generated by our proposed
algorithm. The second column is the collected “reference data” from Google satellite map through visual observation
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countries. Hence, another area for future research will
be the extension of GTSRB dataset to increase the
generalization of ShallowNet. Ultimately, we want to
create and contribute a separate intersection layer to
OSM, where contains the number of lanes, the width of
roads and other road-related objects, and to provide
some help for autonomous driving or navigation.

5.0.0.1 Code availability The code is currently stored
on a local area network (LAN) of university and have
not submitted to like Github. If this paper was accepted,
we will release the code there immediately.
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Abstract

Roof plane segmentation is an essential step in the process of 3D building
reconstruction from airborne laser scanning (ALS) point clouds. The existing
approaches either rely on human intervention to select the appropriate input
parameters for different data-sets or they are not automatic and efficient. To tackle
these issues, an improved multi-task pointwise network is proposed to
simultaneously segment instances (that is, individual roof planes) and semantics
(that is, groups of roof planes with similar geometric shapes) in point clouds.
PointNet++ is used as a backbone network to extract robust features in the first
step. The features from semantics branch are then added to the instance branch to
facilitate the learning of instance embeddings. After that, a feature fusion module
is added to the semantics branch to acquire more discriminative features from the
backbone network. To increase the accuracy of semantic predictions, fused
semantic features of the points belonging to the same instance are aggregated
together. Finally, a mean-shift clustering algorithm is employed on instance
embeddings to produce the instance predictions. Furthermore, a new roof data-set
(called RoofNTNU) is established by taking ALS point clouds as training data for
automatic and more general segmentation. Experiments on the new roof data-set
show that the method achieves promising segmentation results: the mean precision
(mPrec) of 96.2% for the instance segmentation task and mean accuracy (mAcc) of
94.4% for the semantic segmentation task.

Keywords: airborne laser scanning (ALS) point clouds, data-set, instance
segmentation, roof plane segmentation

Introduction

THANKS TO THE ADVANCEMENT of laser scanning technology, airborne laser scanning (ALS) point
clouds have become a significant data source for various mapping applications due to high
accuracy. In addition to traditional applications in the remote sensing and photogrammetry
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communities (Zhang and Lin, 2017), three-dimensional (3D) ALS point clouds have drawn
significant attention from many other domains as well. For instance, high-definition map
creation for autonomous driving (Liu et al., 2020), estimation of tree-level forest biomass
(Wang et al., 2019c), power line diagnostics (Siranec et al., 2021), digital protection of
cultural heritage (Ulvi, 2021), and 3D urban building reconstruction (Zhang et al., 2018). 3D
building models can further help estimate the solar energy potential in urban areas (Nelson and
Grubesic, 2020). As a result, that could contribute to achieving the carbon emission targets set
by the Paris Agreement. Additionally, by calculating and analysing each roof plane’s
geometric structure and attributes (including slope, area, orientation, etc.), it would be
beneficial for urban planners or solar power distributors to find out the most suitable places for
solar panel installations in urban cities. For this purpose, automatic segmentation of roof
planes is a crucial task in the process of the generation of 3D buildings from the ALS point
cloud, and hence it is also the focus of this paper.

Roof plane segmentation is a complex task, since point clouds carry no connection
information and do not provide any semantic features of the underlying scanned surfaces
(Gilani et al., 2018). The existing approaches for this task are mostly based on clustering,
model-fitting and region-growing. Clustering relies on the human experience to select
appropriate input parameters and is sensitive to noise and outliers (Yan et al., 2014). Model
fitting methods, such as RANSAC (RANdom SAmple Consensus; Fischler and
Bolles, 1981), are likely to produce spurious planes on complex roof structures. The region-
growing method is limited by the choice of non-robust seed points/regions, the definition of
the general criterion as well as high computational cost. Therefore, the use of these
traditional approaches is restricted.

Over the past few years, 3D point cloud together with deep learning-based networks
have made remarkable progress in the tasks of classification (Wu et al., 2019), semantic
segmentation (Zhao et al., 2021) and instance segmentation (Zhao and Tao, 2020).
Particularly, previous studies (Mao et al., 2019; Zhao et al., 2021) used convolutional neural
networks (CNNs) for part segmentation on the ShapeNetPart data-set (Yi et al., 2016) and
obtained impressive results, which has the potential to apply CNNs to the roof plane
segmentation task. Part segmentation aims to segment meaningful parts from an object, for
example, a chair mainly consists of three major meaningful parts (legs, seat and back). The
roof plane segmentation task is similar to part segmentation, but will further segment a
coarse part (for example, legs) into several separated instances (that is, independent legs).
Consequently, to implement the task, it is necessary to train a CNN on the general and large
scale ALS point cloud data-set with roof plane annotations.

In the practical work, the results of deep learning-based networks rely on the training
data-sets. The currently open-source ALS point cloud data-sets, such as The Vaihingen 3D
Benchmark (V3D) (Rottensteiner et al., 2012), DublinCity (Zolanvari et al., 2019), The
Hessigheim 3D Benchmark (H3D) (Kölle et al., 2021) and RoofN3D (Wichmann
et al., 2018), are region dependent, and thus roof structures in different regions vary greatly.
Furthermore, although all contain roof categories, they lack the fine subdivision of roof
planes, except RoofN3D. Nevertheless, the average point density of RoofN3D is only about
4.72 points/m2, which is far less than the standard point density (10–12 points/m2) captured
by today’s mainstream ALS equipment. Another drawback of RoofN3D is that it only
covers three simple roof types (that is, gabled, hipped and pyramid), not to mentation
covering typical roof structures in West Europe (for example, corner element, cross element
and T-element; Kada, 2007). As a result, the network trained on RoofN3D would be not
general enough to segment the typical roof structures of West Europe from the most
standard ALS point cloud data.
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To close the above research gap, a new roof data-set (called RoofNTNU) is created
from ALS point clouds for the purpose of roof plane segmentation. The original ALS point
cloud was collected by Trondheim Municipality in Norway in 2018, with the standard point
density. The roof data-set contains 930 roofs and covers seven types of typical roof
structures in West Europe. Every roof is manually segmented and carefully annotated with
both distinguishable plane labels (that is, instance labels), and semantic labels according to
similar geometric shapes.

To the best of the authors’ knowledge, there is no research applying the deep learning
technique to roof planes segmentation. However, it was found that many previous studies
conducted the instance segmentation on indoor/outdoor scenarios by applying deep learning.
Unfortunately, these methods cannot be directly employed to roof plane segmentation due to
the huge differences in object features. Therefore, the possibility of segmenting roof planes
using a deep learning technique is explored and an improved multi-task pointwise network
(named RoofNet) based on the ASIS network is proposed (Wang et al., 2019b). The
proposed network is then trained on the RoofNTNU data-set. The proposed RoofNet is
capable of simultaneously segmenting instances and semantics in point clouds. PointNet++
(Qi et al., 2017b) is first employed as the backbone network to extract robust features,
where the encoder is shared but has two parallel branch decoders corresponding to two
segmentation tasks. Second, the features outputting from the semantics decoder are divided
into two sub-branches. One of them is adapted to the instance branch to facilitate the
learning of instance embeddings. Third, a feature fusion (FF) module is added to the end of
the second semantics sub-branch in order to obtain discriminative fused features from the
backbone network. Meanwhile, to increase the accuracy of semantic predictions, semantic
features belonging to the same instance group and original fused semantic features are
aggregated together via a max aggregation operation. The main contributions of this study
can be summarised as follows:

• A new roof point cloud data-set (called RoofNTNU) with seven different types of
typical roof structures in West Europe with the standard point density of ALS point
clouds is established. It can provide general usability for roof plane segmentation
from most ALS point cloud data.

• An improved network, termed RoofNet, is proposed to mutually facilitate instance
and semantic segmentation. An FF module is added to the semantics branch to
increase the accuracy of semantic segmentation and, in turn, to promote instance
segmentation with semantics awareness.

In addition, this study is a continuity of two earlier studies (Fan et al., 2021; Zhang
et al., 2021), where a web-based interactive platform, VGI3D, was developed for 3D
building reconstruction from street-level images. However, the roof structures are usually
invisible in the street-level images. In VGI3D, roof models are automatically generated by
selecting a specific roof type, but their geometries are usually inaccurate. Moreover, some
buildings have complex roof structures, but they are not included in the predefined simple
roof types (for example, gabled and hipped) of VGI3D. To solve these issues, segmenting
roof planes from ALS point clouds could be a possible solution for the purpose of the
reconstruction of roof models in future. As a result, building models can be made to have
more accurate roof geometries.

The rest of this paper is organised as follows. It next reviews the relevant methods and
point cloud data-sets. The methodology presents the proposed network for roof plane
segmentation. The following section introduces the new roof point cloud data-set.
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Experimental results and variants study are then presented. Conclusions and future work are
finally discussed.

Related Work

Building Roof Segmentation Methods

The popular traditional roof plane segmentation methods are almost data driven and
generally can be classified into three major categories: clustering-based, model fitting-based
and region growing-based methods.

Clustering-based methods are basically considered as unsupervised learning where
points are classified into distinguishable primitives based on pre-computed local surface
features or properties. Kong et al. (2014) proposed a novel combination of the K-plane and
K-means algorithms aiming to produce high-precision segmentation of roof structures.
Additionally, an improved initialisation method was used to acquire the better initial
clustering centres for the K-means algorithm. In another way, Wang et al. (2019a) presented
a new roof plane segmentation algorithm based on the DBSCAN density clustering
technique. The optimal searching radius ε of DBSCAN can be automatically estimated
through the intrinsic properties of the point cloud data. Despite the popularity of clustering-
based approaches for segmentation, they are sensitive to noise and outliers, and have
difficulty in neighbourhood selection as well as being computationally expensive for
multidimensional features in large data-sets.

Model fitting-based methods consist of two widely used algorithms: the Hough
Transform (HT) (Ballard, 1981) and the RANSAC. In the 3D HT for plane detection, all
LiDAR points are first mapped to parameter space, in which each point corresponds to a
roof plane in object space. Voting accumulators are then applied to count the points falling
into the corresponding planes by searching for the local maximum values in the parameter
space. These accumulators are the detected shapes in the object space. Nevertheless, the HT
is sensitive to the selection of parameter values and inefficient for computational time
(Nguyen and Le, 2013). The standard RANSAC method typically fits a best mathematical
plane with the most inliers from the LiDAR points and then considers this mathematical
plane as the detected planar shape. The investigation by Tarsh-Kurdi et al. (2007) compared
the 3D HT and RANSAC and suggested that RANSAC was more efficient than HT in both
segmented results and running time. While RANSAC performed well on simple roof
structures, it would tend to generate spurious planes on complex roofs. Hence, Li
et al. (2017) formulated an improved RANSAC approach with Normal distribution
transformation cells to reduce the spurious planes as much as possible. Although RANSAC
is robust on data-sets with a large amount of noise and outliers, the issue of the spurious
planes cannot be completely solved.

Region growing-based methods are another major category for roof plane segmentation.
They begin with a chosen seed region/point and iteratively expand to the seed’s
neighbouring points until the growing meets the criteria. For instance, Nurunnabi
et al. (2012) selected the seed points with the least curvatures in local surfaces, and then
employed angle differences between normal vectors, the distance of points to planes, and
distance between two points as the criteria for the growing. To improve the computational
efficiency and robustness of region growing, Xu et al. (2017) presented a voxel-based
region growing method with robust principal component analysis for building roofs
segmentation. Both qualitative and quantitative results surpassed the representative
algorithms. However, many studies (Li et al., 2020; Shao et al., 2021) have revealed that
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compared with clustering-based methods, while region growing-based methods are more
robust to outliers and noise, it is challenging to accurately determine the boundaries
between adjacent planes and may tend to over- or under-segment.

Deep Learning Methods of Segmentation on Point Clouds

With the development of deep learning technique on point clouds, the segmentation
tasks can be divided into semantic segmentation and instance segmentation.

For semantic segmentation, PointNet (Qi et al., 2017a) and PointNet++ (Qi
et al., 2017b) represent two great milestones for point-based 3D deep learning approaches.
Many following studies (Zhang et al., 2019; Wang et al., 2020) were inspired by them and
raised suggestions for improvements to generate pointwise segmentation through multilayer
perceptron. Parallelly, some researchers also explored and employed recurrent neural
networks (RNNs) to do the semantic segmentation. 3P-RNN (Ye et al., 2018) captured local
structures at various densities by a pointwise pyramid pooling module, and introduced two-
direction hierarchical RNNs to learn the long-range spatial context. Moreover, a graph-based
method is another research direction. Landrieu and Simonovsky (2018) proposed the
superpoint graph (SPG) and concentrated on segmenting large scale indoor/outdoor point
clouds. Recently, 3D-GCN (Lin et al., 2020), a 3D graph convolution network, was
designed to learn local geometrical features from point clouds across scales, with a graph
max-pooling scheme. However, these previous works did not consider aggregating instance
embeddings into semantic segmentation.

For instance, segmentation, SGPN (Wang et al., 2018) is the first neural algorithm to
generate instance proposals from indoor point clouds by learning the similarity matrix of the
features. 3D-BoNet (Yang et al., 2019) directly regressed 3D bounding boxes for all
instances and meanwhile predicted a pointwise mask for every instance as well. Voxelising
point clouds before learning features is a classic strategy to reduce computational costs.
Thus, PointGroup (Jiang et al., 2020) first voxelised the points and then constructed a 3D
U-Net with submanifold sparse convolution and sparse convolution to generate instances.
Similarly, OccuSeg (Han et al., 2020) also performed the voxelisation on point clouds and
learned point-level features from voxels by applying a 3D U-Net. The learned features were
then decoded to construct a graph and predicted the final instances. However, these studies
did not adapt semantic features into instance feature space or take advantages of the
semantic-aware instance features.

ALS Point Cloud Training Data-sets

Well-known ALS point cloud data-sets for roof segmentation tasks include the V3D,
H3D, DublinCity and RoofN3D. The V3D is one of the most famous and high-quality data-
sets specifically created for urban classification and 3D reconstruction. It contains nine
annotated point categories including the roof. However, nowadays the V3D is outdated with
an average point density of 5–7 points/m2 and an insufficient number of points, making it
inappropriate for deep learning applications (Varney et al., 2020). To overcome the point
density and resolution issues, the highly dense H3D captured in Germany recently has a
tendency to replace the V3D as a new benchmark for semantic segmentation of 3D point
clouds and meshes. The point density of the H3D is up to 800 points/m2, which is much
greater than the data collected by current standard laser scanning equipment. Consequently,
owing to the high cost of data acquisition and post-processing, high-dense data-sets may be
valuable for small scale projects (for example, cultural heritage protection projects). In
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addition, while the roof structures in H3D have something in common with the buildings
found in Norway, the H3D does not annotate the roofs into separated roof planes. Hence,
the H3D is unsuitable for the roof plane segmentation task. Another dense point cloud data-
set is DublinCity with a point density of about 348 points/m2, which has 13 categories
including roofs. Similar to the H3D, however, the roofs are not further segmented into
separated roof planes. Moreover, since the DublinCity data-set is captured in the city of
Dublin, most of the roof structures are different from those in Norway and hence cannot be
directly applied to the task. Lastly, only one data-set with separated roof plane labels is
known, that is, RoofN3D. As far as is known, RoofN3D is the first data-set to provide both
distinct classes for buildings and plane labels of each roof, for the purpose of 3D building
reconstruction using deep learning technique (Wichmann et al., 2018). However, the data-set
has a point density of only around 4.72 points/m2, and the data-set only covers a few of
simple roof types (for example, gabled, hipped). Besides, the data is obtained in New York
City, where the roof structures differ a lot from those in West Europe. As a result, the
network trained on RoofN3D would be not general enough to segment the typical roof
structures of West Europe from the most standard ALS point cloud data.

In summary, the existing traditional roof plane segmentation approaches depend on
human intervention and prior knowledge, and they are not automatic and efficient enough
during the process of segmentation. Additionally, due to the huge differences in object
features of indoor scenes, there are no deep learning-based methods that can be used
directly to roof plane segmentation, not to mention the suitable and general training data-set
for this task. In this paper, an automatic method together with a new roof data-set is
proposed by using a deep learning technique.

Methodology

This study can be viewed as an improvement of the ASIS network (Wang
et al., 2019b) with an added FF module. The ASIS network has achieved impressive
instance and semantic segmentation results on an indoor point cloud data-set, S3DIS
(Armeni et al., 2016), with its fast and efficient network structure, and novel mutual features
learning strategy. However, this approach did not consider the fused features generated from
the backbone network, which are beneficial to producing more discriminative features and
increasing the accuracy of predictions. Consequently, an FF module is added to ASIS in
order to address the defects in ASIS that were mentioned above. Besides, the network
structure of ASIS is also partially modified to improve the overall segmentation results.

This section first elaborates the structure of the proposed RoofNet for roof plane
instance and semantic segmentation. It then introduces two key modules of the RoofNet: the
FF module and the joint features learning module.

Network Structure

As illustrated in Fig. 1a, the whole network is composed of three major components
including a PointNet++ as the backbone network, an FF module and a joint-features
learning module. The backbone network consists of a shared encoder and two parallel
decoders. The purposes of using two parallel decoders are to extract point-level semantic
features for semantic predictions (that is, groups of roof planes with similar geometric
shapes) with one decoder branch, and to carry out the instance segmentation (that is,
separated roof planes) with the other decoder branch. The FF module is added right after
the semantic decoder to fuse the high- and low-level features from the semantic decoder.
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The joint features learning module as the last part is to mutually promote the learning of
semantic and instance features.

In the starting phase, a point cloud with size N a is first input into the network and
encoded into an N e � 512 feature matrix through the shared encoder (that is, four stacked set
abstraction levels of PointNet++). Two parallel decoders then take the feature matrix as input
and separately decode it into an N a � 128-shaped feature matrix through four stacked feature
propagation levels of PointNet++. FS is for the output of the semantics decoder; and F I is for
the output of the instance decoder. Next, the semantics decoder further produces two parallel
branches with the same semantic feature matrix FS as input. One of them fuses the FS with
the features of different layers of the semantic decoder by an FF module, and it yields a new
fused semantic feature matrix FFS with shape of N a � 128. Lastly, three types of features, F I,
FS and FFS, will be inputted into the joint features learning module, which then produces two
matrices (EI and PS) at the same time. The matrix EI with the shape of N a � D is the point-
level instance embeddings, in which D is the dimension of the embeddings. EI is used to
predict the instance label for each point later by a clustering algorithm. Since the points
belonging to the same instance are close to each other in embedding space, while points
belonging to different instances are apart from each other (Wang et al., 2019b). Therefore,
that is why embeddings from the network are only output rather than directly outputting the
instance predictions. The other matrix PS with shape N a � C is the final semantic predictions
and will output the most likely class from C types of candidate classes.

In the training phase, the RoofNet is supervised by a hybrid loss function ‘all, where
consists of a standard softmax cross entropy loss ‘sem for learning per point semantics, and
a discriminative loss function ‘ins_emb composed of three terms for learning instance

FIG. 1. (a) The architecture of RoofNet with two proposed modules: (b) the feature fusion (FF) module; and
(c) the joint features learning (JFL) module.
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embedding, inspired by instance segmentation in 2D images (De Brabandere et al., 2017).
The hybrid loss function ‘all is defined as follows:

‘all ¼ ‘sem þ ‘insemb ¼ ‘sem þ α∙‘close þ β∙‘apart þ γ∙‘reg
� �

(1)
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where ‘close exerts a pulling force that aims to draw embeddings towards the instance centre
(that is, mean embedding of the instance); ‘apart exerts a pushing force that makes different
instances separate from each other; and the regularisation term ‘reg is for pulling all
instances towards the origin to form a boundary for embedding value. Furthermore, K is
defined as the number of instances; Nk is for the number of points in the k-th instance; μk
represents the centre of the k-th instance (the mean embedding); the embedding of a point is
denoted as et; ∙k k1 is for L1 distance; δv and δd are the margins for the loss ‘close and ‘apart,
respectively; and x½ �þ ¼ max 0, xð Þ. The guidance of De Brabandere et al. (2017) is followed
and α ¼ β ¼ 1, γ ¼ 0:001 are set in the experiments.

Finally, in the testing phase, a mean-shift clustering algorithm (Comaniciu and
Meer, 2002) with bandwidth = 0.6 is employed to generate the instance labels on
embeddings EI yielded from the instance segmentation branch. As for semantic labels, an
argmax operation is performed on semantic predictions PS to acquire the semantic labels.

FF Module

As is known, the low-level layers of the network learn more detailed local features (for
example, edges, curves, etc.), while the high-level layers would learn global semantic features (for
example, the shape of objects). These insights are obtained by visualising the output of each
network’s layer (Qin et al., 2018). A number of researchers tried to fuse the features from
different layers aiming to increase the accuracy of semantic segmentation. Their experimental
results have verified that fused features benefitted the learning and resulted in better segmentation
results, both for 2D images (Chen et al., 2018) and 3D point clouds (Hu et al., 2020).

Based on previous successful research cases, the FF strategy is also adopted and an FF
module is introduced (Fig. 1b) into the network to promote the predictions. Given the
computation efficiency and the consumption of graphics processing unit (GPU) memory, the
last three layers of the decoder are only fused. The features output from the last three layers
are denoted as Fc, Fb and Fa, respectively, corresponding to the shapes N c � 256,
Nb � 128 and N a � 128. In the FF module, an upsampling operation (that is, interpolation)
is first performed on features Fb and Fc to make all features have the same points number,
and thus obtain F 0

b and F 0
c . Second, Fa and F 0

b are concatenated and Fab0 is generated. Fab0

is then added to F 0
c through an element-wise addition, producing the feature Fab0c0 shaped

with N a � 256. Finally, a 1D convolution (Conv1D) with batch normalisation and ReLU
non-linearity is applied on Fab0c0 to yield the final fused feature FFS with the shape

Zhang and Fan. Building roofs segmentation in ALS point clouds

� 2022 The Authors

The Photogrammetric Record published by Remote Sensing and Photogrammetry Society and John Wiley & Sons Ltd.8



N a � 128. Moreover, the upsampling operation is conducted by using inverse distance-
weighted average based on three nearest neighbours, following (Qi et al., 2017b).

Joint Features Learning Module

In general, instance segmentation is generated based on semantic segmentation results.
As semantic segmentation has already grouped all points with the same semantic class
together, it then needs an instance segmentation task to further separate each distinguishable
instance from the groups. According to the above facts, the quality of the semantic features
undoubtedly would influence a lot on instance segmentation results. Although the ASIS
network has revealed that associative learning of two tasks can lead to a win–win situation
(Wang et al., 2019b), it is not clear whether the fused features could better facilitate the
semantic features learning and in turn benefit the learning of instance embeddings. Hence,
in this study, the ASIS is modified by introducing an FF module, and then eventually form
the joint features learning module, as illustrated in Fig. 1c.

Specifically, to integrate the semantic features into instance features, the original
semantic feature matrix FS is first transferred into an instance feature space as F 0

S by two
consecutive Conv1Ds with batch normalisation and ReLU non-linearity. Next, F 0

S is
element-wisely added to instance feature F I and then it yields the instance features with
semantic awareness as FSI. Lastly, the instance embeddings EI shaped with N a � D are
generated from semantic-aware instance features FSI by a Conv1D together with dropout
(Drop). The entire integration process can be described as follows:

FSI ¼ Conv1D Conv1D FSð Þð Þ þ F I (5)

EI ¼ Conv1D Drop FSIð Þð Þ: (6)

For the semantics branch, it is expected that the instance embeddings can feed back the
learning of semantic features and make the boundary between two groups of semantic
categories become more distinguishable and clearer. In the instance embedding space the
points belonging to the same instance are closer, whereas different instances are repelled.
Thus, ASIS is also followed and the M nearest neighbours (kNN ) of each point are sought
for in the instance embedding space. One can then obtain an index matrix which stores all
indices of M nearest neighbouring points of each point, shaped by N a �M. Based on the
index matrix, groups of fused semantic features denoted as GFS with shape Na �M � 128
can be generated from the fused semantic matrix FFS (getGroupFeatures). Each group
represents a local region of instance embedding space, which is close to its centroid point.
Next, fused semantic features of each group GFS and original semantic matrix FFS are
aggregated together via a max aggregation operation (Aggregation), producing the instance-
aware semantic feature matrix F IS. Finally, the final semantic predictions PS with shape
N a � C can be generated from instance-aware semantic features F IS by a Conv1D together
with dropout. The whole procedure is shown as follows:

GFS ¼ getGroupFeatures kNN EIð Þ,FFSð Þ (7)

F IS ¼ Aggregation GFS,FFSð Þ (8)

PS ¼ Conv1D Drop F ISð Þð Þ: (9)
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Roof Plane ALS Point Cloud Data-set

As mentioned above, the existing public ALS point cloud data-sets either lack roof
plane annotations or their point density is too high/low compared with the standard point
cloud, or their coverage of roof types is not sufficient, or the number of roof samples is not
large. To close these research gaps, a new roof plane point cloud data-set suitable for
training the deep learning models called RoofNTNU is manually established, which means a
3D roof-plane structure data-set built by the Norwegian University of Science and
Technology (NTNU) in Trondheim, Norway. The raw ALS point cloud data with a point
density of 12–20 points/m2 is obtained from the mapping authority of Trondheim
Municipality and was captured in April 2018, covering the whole of Trondheim. The typical
roof structures are then selected from residential regions following the roof types (or roof
primitives) proposed by Kada (2007). In addition, the roof types proposed by Kada are not
completely followed, since some of them cannot be suitable in Norway. For example, the
roof type “asymmetric hipped” normally does not exist in the raw point cloud data, so it is
changed to “hipped” instead. Another finding is that many complex roof structures are a
combination of two or three “sub-roof structures”, and hence these buildings are defined as
an additional new roof type, combination. As a result, seven types of typical roof structures
are presented in this paper, labelled from 1 to 7: flat, hipped, gabled, corner element,
T-element, cross element and combination. Owing to the enormous variations in roof type
combination, the other six roof types are only shown in Fig. 2.

For the instance labelling of the roof planes, it is observed that the planes comprising
the roof structures have distinguishable geometric shapes. This observation is crucial
because it will teach the neural network to learn the fundamental geometric shapes from
point cloud data. Thus, these geometric shapes are summarised as five different categories:
rectangle, isosceles trapezoid, triangle, parallelogram and ladder-shaped. Each category is
given two or four labels based on the proposed roof types in Fig. 2. As a result, the label
digits range from 0 to 11. For visualisation purposes, each label is assigned a unique but
distinguishable colour, as shown in Fig. 3. Furthermore, in the idea of network design, it is
expected that the features from the semantic segmentation branch can benefit the learning of
instance embeddings. Therefore, the semantic labels for semantic features learning are also
defined, being label digits from 0 to 4, which represent groups of roof planes with the same
geometric shapes. For instance, the roof type hipped can be decomposed into two groups: a
pair of triangles and a pair of isosceles trapezoids. Similar to the colours of instance labels,

FIG. 2. Visualisation of the defined roof types (or primitives) in the data-set (reproduced from Kada, 2007):
(left) abstract representation of roof types 1–6; and (right) some practical examples of roof type combination 7.
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a specific colour is also assigned for each semantic label. Although some colours are the
same between semantic and instance labels, they belong to two different tasks and hence
the colours of semantic labels should not be confused with the colours of instance labels. The
two sorts of labels and their correspondence with plane geometries and roof types can be
found in Table I. Thus, the structure of the ground truth is formulated as [x, y, z, roof-type,
instance-label, semantic-label], where the coordinate [x, y, z] has been normalised.

Based on the principle and definitions formulated above, three research assistants and
one of the authors used CloudCompare (2021) for the point cloud annotation. The detailed
procedures of data annotation by using CloudCompare are as follows:

• The desired building roofs are extracted from the raw ALS point clouds and
separately saved as .txt files with the file names of corresponding building IDs and
roof types.

• For every single building roof (that is, stored as the .txt file), it is further segmented
into separated roof planes according to the geometric shapes defined in Fig. 3. Each
segmented roof plane would then be temporarily stored as a .txt file with the file
name “buildingID_roofType_instanceLabel_semanticLabel”.

• An automated script is applied to merge all segmented roof planes that belong to
the same roof into a complete building roof, writing the relevant labels/information
for each point.

• A normalisation on the coordinates [x, y, z] was performed, resulting in the final
data-set.

• A cross-check strategy was then adopted to check the annotation quality and correct
errors/noises if necessary.

A total of 930 different roofs with a total of over 2.2 million points were manually
annotated and segmented into 3498 planes for the data-set RoofNTNU. The quantity
distribution of the different roof types in RoofNTNU is presented in Fig. 4a, while the
spatial geographical distribution of all roofs is illustrated in the form of highlighted building

FIG. 3. Visualisation of the defined geometric plane shapes with their corresponding labels.
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footprints in Fig. 4b. From Fig. 4a, an imbalance in the data-set with respect to the roof
types is obvious. Gabled and T-element roof types dominate the data-set, while corner
element and cross element roofs only occupy a small portion. However, this is actually
consistent with the quantity distribution of these two roof types in the real world. Corner
element and cross element roof structures are quite rare in residential areas of Norway,
whereas gabled and T-element roofs are rather common. Besides, for the neural network
training purpose, each roof type is randomly split into three sub-data-sets according to the
ratio of 8:1:1, that is, training data-set (744), validation data-set (93) and testing data-set
(93). Finally, the RoofNTNU data-set with these point clouds and their labels is established.

Experiments

Experimental Settings

Data-set. The experiments were conducted on the RoofNTNU data-set. As mentioned
above, the number of roofs in each category is unbalanced, especially for corner element
and cross element roof structures. On the other hand, the roof structures in type combination
are various and complex, but the geometric components that are similar to those in roof
types 2–6 can be found. Therefore, based on this observation, the combination roofs were
decomposed into separate geometric components by using CloudCompare (Fig. 5), and also
randomly split into training, validation and testing data-sets according to the ratio of 8:1:1.
The annotation principles for semantic and instance labels were followed as shown in
Table I. Each point (x, y, z) was associated with a roof type label, an instance label and a
semantic label. In this way, the training samples were also augmented for rare or specific
roof geometries. Hence, the final amount for training, validation and testing data-sets were
834, 99 and 99, respectively.

Evaluation Metrics. For semantic segmentation evaluation, mean accuracy (mAcc),
overall accuracy (oAcc) and mean intersection over union (mIoU) were computed. For
instance for segmentation evaluation, the RoofNet network was evaluated by calculating the
four metrics: mean coverage (mCov), mean weighted coverage (mWCov) (Ren and
Zemel, 2017), mean recall (mRec) with IoU threshold of 0.5, and mean precision (mPrec).

Table I. Overview of the correspondence among semantic and instance labels, plane geometries and roof types
in the ground truth.

Semantic labels Instance labels Plane geometries Roof types

0 0 Rectangle Flat, gabled, T-element, cross element, combination
1

1 2 Isosceles trapezoid Hipped, corner element, combination
3

2 4 Triangle Hipped, corner element, combination
5

3 6 Parallelogram Corner element, combination
7

4 8 Ladder-shaped T-element, cross element, combination
9
10
11

Note: Do not confuse the semantic label colour with the instance label colour because they belong to two
different tasks.
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FIG. 4. Overview of the distribution of the RoofNTNU data-set: (a) the quantity distribution of roof types in the
data-set; and (b) the spatial geographical distribution of all roofs, presented in form of highlighted building

footprints.
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The Cov scores measure the instance-wise IoU of prediction matched with ground truth; the
Cov score is then further weighted with the size of ground truth instances to acquire WCov
(Wang et al., 2019b). Regarding ground truth regions GT and predicted regions P, Cov and
WCov can be presented as follows:

Cov GT,Pð Þ ¼ ∑
¦GT¦

a¼1

1

¦GT¦
∙max

b
IoU rGTa , rPb

� �
(10)

WCov GT,Pð Þ ¼ ∑
¦GT ¦

a¼1
wa∙max

b
IoU rGTa , rPb

� �
(11)

wa ¼ ¦rGTa ¦
∑k ¦r

GT
k ¦

(12)

where rGTa is the number of points in ground truth region a.

Training Details. The RoofNet network is implemented by using an open-source deep
learning framework Pytorch (Paszke et al., 2019) and Python 3.5. At the training stage, the
whole network is trained on a powerful NVIDIA Quadro GV100 GPU and an Intel Xeon(R)
Gold 6146 central processing unit (CPU). The network is trained for 200 epochs with a batch
size of 16. Each roof is randomly sampled into a sub-point cloud with 2048 points. The initial
learning rate is set to 0.001 and divided by 2 every 20 epochs. Adam solver is used to optimise
the network, with momentum = 0.9 and weight decay = 0.0001. The margin parameters
δv = 0.5 and δd = 1.5 are set in the loss function and the embedding output dimensions D are
set as 5 for the instance segmentation branch. For the kNN method in joint features learning
module, 30 nearest neighbouring points were chosen. ReLU and batch normalisation are
employed after each Conv1D except for the last layer for both instance and semantic branches.
Additionally, for data augmentation strategies during the training, the sampling points were
randomly scaled, shifted, jittered and perturbed. At the testing stage, a mean-shift clustering
algorithm with bandwidth = 0.6 is adopted to generate the instances (that is, roof planes).

Segmentation Results

Instance Segmentation on RoofNTNU Data-set. The network is evaluated on the
RoofNTNU data-set for the task of instance segmentation. Both quantitative and visual

(a) Before decomposition (b) After decomposition

FIG. 5. Data augmentation by decomposing the combination roofs into several geometric components that have
similarities to those in roof types 2–6: (a) before decomposition; and (b) after decomposition.
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results achieved from the network are then compared with the other two multi-task
networks: JSNet (Zhao and Tao, 2020) and ASIS (Wang et al., 2019b). As the backbone
network, PointNet++, cannot perform the instance segmentation, it only provides the part
segmentation, which is equivalent to the semantic segmentation task in this paper.
Therefore, PointNet++ will not be compared here with other methods, but instead will be
done so below.

Table II reports the quantitative results of different methods on instance segmentation
task. The network slightly outperforms the ASIS in terms of metrics mCov and mWCov,
but achieves a more significant improvement of 1.4% mPrec when evaluating on testing
data-set. This reflects that the FF module and modified joint feature learning (JFL) module
help to optimise the network structure, and the instance branch does better benefit from the
semantics branch, which is consistent with the original assumption. Besides, as the other
comparison method, JSNet is surprisingly and greatly inferior to the method on all four
metrics except mPrec. Only its mPrec is close to the authors’ method, but it is still worse
than their method by 2.3%. The reason may be because JSNet is mainly suitable for indoor
data-sets (for example, S3DIS; Armeni et al., 2016), where the indoor scenes are much
more complex than roof structures. Thus, the architecture of JSNet is designed
complicatedly with many convolution layers and other tensor operations. Based on this
observation, it could be inferred that complex and deep network structures would not
necessarily promote the features learning on data-sets with relatively simple scenes.
Moreover, from the quantitative results, they also prove that the JFL module is reasonably
designed and able to improve the performance of instance segmentation.

The visual comparison results produced from ground truth and different methods are
presented in Fig. 6, where all roof types are listed, except roof type 7 combination because
this category has been decomposed above as a special data augmentation strategy. Overall,
the roof plane segmentation results generated from the authors’ method are better than other
two methods. The first three columns of Fig. 6 correspond to the most common and simple
roof structures in Norway and other countries. Their amount is sufficient in the RoofNTNU
data-set as well. Due to their simple geometric structures, all three methods perform well on
them, yielding good roof plane segmentation results. The last three columns correspond to
the roof types unique to Norway and Western European countries. For the fifth column, the
amount of this roof type (T-element) is a lot in the data-set and its geometric structure is
relatively simple compared with corner element and cross element. Therefore, in general,
both ASIS and JSNet segment T-element roofs well, but the segmentation at some
boundaries between adjacent roof planes is not good enough (see the red circles in Fig. 6).
Some incorrectly classified points appear at the boundaries, or the planes are under/over-
segmented. Similarly, the same errors can be observed from segmentation results on roof
types corner element and cross element. Owing to their geometric complexity, more errors
showing up can be observed. Even one roof plane is completely segmented wrongly,
produced from JSNet on roof type cross element. In contrast, the segmentation results look
great and distinguishable on all roof types because the semantic-aware instance features help

Table II. Quantitative results of instance segmentation in the RoofNet (Ours).

Method mCov (%) mWCov (%) mPrec (%) mRec (%)

ASIS 85.0 85.0 94.8 91.7
JSNet 66.7 66.5 93.9 71.6
RoofNet (Ours) 85.3 85.2 96.2 91.7

Highest scores achieved by our proposed method are indicated in bold.
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separate them in the instance embedding space. More instance segmentation results on the
testing data-set of the RoofNTNU can be found in Appendix B in the additional supporting
information.

Semantic Segmentation on RoofNTNU Data-set. The network is evaluated on the
RoofNTNU data-set for the task of semantic segmentation. Both quantitative and visual
results achieved from PointNet++ are then compared with the single scale grouping (SSG)
as the baseline, the authors’ method, ASIS as well as JSNet.

Table III illustrates the quantitative results of different methods on the semantic
segmentation task. As shown, the method generates 86.7 mIoU, which significantly
surpasses the PointNet++ baseline by 2.7%. Meanwhile, RoofNet also largely outperforms
the ASIS and JSNet in terms of mIoU. As for the metric mAcc, RoofNet slightly performs
better than baseline, but more significant improvements can be observed when comparing
with ASIS and JSNet, improving 1.3% and 5.1%, respectively. Similar improvement can
also be observed on metric oAcc. RoofNet surpasses the other three methods by 1.0%, 2.2%
and 5.2%, respectively. As the backbone of the network is PointNet++, on the one hand,
the good performance on PointNet++ indicates that it can indeed help extract useful and
good-quality features. On the other hand, the fused features generated from the features
fusion module can indeed further promote the learning of semantic features and are
beneficial to the final semantic segmentation results.

FIG. 6. Visual comparison results of ASIS, JSNet and the authors’ method on the instance segmentation task.
Different colours stand for different instances (that is, roof planes). The colours of the same instance in ground

truth and prediction are not necessarily the same.
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Furthermore, considering the data imbalance issue on two roof types (corner element/4
and cross element/6), the scores on each roof type are calculated to present the performance
of the RoofNet more objectively and to eliminate bias. The results are presented in
Appendix A in the additional supporting information.

Similar to visual comparison results in Fig. 6, visual semantic results are also presented
in Fig. 7. Again, the semantic segmentation results generated from the authors’ method are
better overall than other three methods. For the most common roof type hipped, the other
three comparison methods do not well segment the boundaries between different pairs of
geometric shapes. A similar situation happens on roof type corner element, but worse.
Through the visualisation, it can be found that over/under-segmentations at the boundaries
and incorrectly classified points exist in the JSNet result (row 4, column 4), including the
result generated by the authors’ method. However, the result is better than the others, with
clear boundaries. This reflects that the improved result does benefit from the aggregation of
instance embeddings, in which aggregates points belonging to the same instance yield more
distinguishable and accurate boundaries. Regarding the incorrectly classified points, this
situation frequently appears on results generated from ASIS and JSNet. That may be
because ASIS does not fuse the semantic features, resulting in insufficient semantic features
learning. Whereas, despite fusing the semantic features in JSNet, its network structure is too
complex, and the learned features are too abstract, which is not beneficial to semantic
segmentation.

Architecture Study

To evaluate the effectiveness of the improvements, five groups of experiments on the
RoofNTNU data-set were conducted. Here the discussion only concentrates on the improved
parts compared with ASIS, since ASIS has already proved its advantages with respect to
semantic awareness (that is, transferring the semantic features to the instance branch) and
instance aggregation (that is, aggregating the instance features into semantic branch). The
key part of the baseline ASIS and details of five groups of experiments are listed in Fig. 8,
where their encoders and decoders are consistent with RoofNet. In each group, the upper
yellow bar represents the feature produced from the decoder of instance branch, while the
lower yellow bar represents the feature produced from the decoder of semantic branch. FF
stands for the FF module.

• ASIS baseline. The ASIS network is treated as the baseline (Fig. 8a), and all other
groups will compare the results with the baseline.

• Add the FF module for both semantic and instance branches right after the
decoders; meanwhile, remove the upper parallel feature FS from the semantic
branch and transfer the fused semantic features into instance feature space, as
shown in Fig. 8b.

Table III. Quantitative results of semantic segmentation on the RoofNet (Ours).

Method mAcc (%) oAcc (%) mIoU (%)

PointNet++ (baseline) 93.8 95.4 84.0
ASIS 93.1 94.2 81.1
JSNet 89.3 91.2 66.4
RoofNet (Ours) 94.4 96.4 86.7

Highest scores achieved by our proposed method are indicated in bold.
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• Remove the upper parallel feature FS from the semantic branch and transfer the
fused semantic features into the instance feature space, as shown in Fig. 8c.

• Retain two parallel features FS of the semantic branch, but add the FF module after
the upper parallel feature FS and then transfer the fused semantic features into
instance feature space, as shown in Fig. 8d.

• Keep the semantic branch and semantic awareness consistent with RoofNet, but
greatly deepen the instance branch aiming to learn more high-level instance
features, as shown in Fig. 8e. This idea borrows from JSNet.

Results Analysis. Three questions are discussed throughout the experiments: (1)
whether the FF module needs to be applied to the instance branch (groups 1 and 2); (2)
where to add the FF module to the semantics branch (groups 3–6); and (3) whether it is
helpful to make instance branch deeper (group 5).

Table IV demonstrates the results for all experiments of architecture study. Comparing
group 2 with the baseline, the FF modules indeed strengthen the semantic segmentation, but
they weaken the instance segmentation, because integrating fused semantic features (that is,

FIG. 7. Visual comparison results of PointNet++, ASIS, JSNet and the authors’ method on the semantic
segmentation task. Different colours represent different pairs of roof planes with the same geometric shapes.
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points with the same semantic label would lie closer and form the roof parts) into fused
instance features (that is, points with different instance labels would be as mutually
exclusive as possible and form rather separated roof planes) may confuse the network
(mainly is the instance branch) about what kind of features it should learn exactly. For this
reason, the FF module was not added to the instance branch.

Compared with group (2), the FF module only applying to the semantics branch (that
is, group 3) does benefit the overall performance of two segmentation tasks, because it
could help the network to know more explicitly what features to learn for different
branches, that is, penalising the over-separated semantic features on the semantics branch, as
well as facilitating the learning of semantic-aware instance embeddings.

Compared with group (3), taking the FF module as a parallel semantic sub-branch and
adding in the instance branch (that is, group 4) is less effective. Primarily this is because the
aggregation operation (Aggregation) is directly performed on non-fused semantic features
and hence cannot learn sufficient refined semantic features for each point. Therefore, the
structure of the RoofNet (group 6 in Table IV) was designed in order to let the semantics
branch learn refined semantic features for each point after the aggregation operation.

FIG. 8. Key part of baseline ASIS (a) and four groups of experiments (b–e). Their encoders and decoders are
consistent with RoofNet.
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Further, the measure of adding non-fused semantic features to the instance branch benefits
the whole instance branch from the FF module because of the weights updating during the
backpropagation.

The deeper network architecture (that is, group 5) is less effective for roof plane
segmentation, since the complexity of roof planes’ features is much lower than object
features in indoor/outdoor scenes. The deeper and more complex network may lead to
overfit and affect the segmentation performance instead.

Finally, even though RoofNet does not surpass all groups on both two-segmentation
tasks, the final goal is to segment roof planes (or instances). Hence, a compromise was
made and the network was chosen that could perform best on instance segmentation, that is,
RoofNet.

Conclusions

This paper proposed an improved deep learning neural network, RoofNet, for the
purpose of roof plane segmentation in ALS point clouds. The authors’ network is
composed of a shared encoder and two parallel decoders for extracting rich features, an FF
module for fusing semantic features, and a JFL module for simultaneously facilitating the
learning of semantic and instance features. Most importantly, a new roof plane training
data-set, RoofNTNU, was manually established from standard ALS point clouds. The data-
set includes seven types of typical roof structures and contains 930 roof samples located in
Trondheim, Norway. The results of the variants study demonstrate that the design of the
network is reasonable, and it achieves good performance on both instance and semantic
segmentation tasks. The evaluation of the RoofNTNU data-set shows that the authors’
method obtains a mean precision (mPrec) of 96.2% for the instance segmentation task and
a mean accuracy (mAcc) of 94.4% for the semantic segmentation task. These results
present the potential of the authors’ approach to segment the roof planes in residential
regions of Norway, even in some other countries of West Europe, from the most ALS
point cloud data.

Since the use of kNN in the JFL module is limited by the selection of the k-value and
distance metric, in future the network will be further optimised and improved to obtain
more accurate roof plane segmentation results. The authors will also consider enriching the
data-set to reduce the imbalance in the number of certain roof types (for example, cross
element and corner element). Regarding the combination roofs (that is, roof type 7), the
method currently cannot directly segment them due to their complexity and variety. The
method will be further improved in future to increase the general ability of dealing with

Table IV. Instance and semantic segmentation results of all experiments of architecture study on
the RoofNet (Ours).

Group Instance segmentation Semantic segmentation

mWCov (%) mPrec (%) mAcc (%) mIoU (%)

(1) Baseline (ASIS) 85.0 94.8 93.1 81.1
(2) 83.6 94.8 94.8 88.3
(3) 84.1 95.9 94.9 88.8
(4) 83.0 94.9 93.0 85.1
(5) 82.8 92.5 93.4 85.9
(6) RoofNet (Ours) 85.2 96.2 94.4 86.7

Highest scores achieved by our proposed method are indicated in bold.
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hard cases in the real world. Furthermore, the roofs will be reconstructed after segmentation
to help generate more accurate 3D building models. Last, the RoofNTNU data-set will soon
be released to the public.
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Résumé

La segmentation de plans de toits est une étape essentielle dans le processus de reconstruction 3D de

bâtiments à partir de nuages de points de laser aéroporté à balayage. Les approches existantes s´appuient sur
une intervention humaine pour sélectionner les paramètres d’entrée appropriés pour différents jeux de données,

ou bien elles ne sont pas automatiques ni efficaces. Pour résoudre ces problèmes, un système multitâche est

proposé pour segmenter simultanément les objets (c’est-à-dire les plans de toits individuels) et leur sémantique

(c’est-à-dire les groupes de plans de toits ayant des formes géométriques similaires) dans les nuages de points.

PointNet++ est utilisé comme système de base pour extraire des caractéristiques robustes dans la première

étape. Ensuite, les caractéristiques issues de la branche sémantique sont ajoutées à la branche objets pour

l’apprentissage de l’intégration d´objets. Un module de fusion de caractéristiques est ensuite ajouté à la

branche sémantique pour acquérir des caractéristiques plus discriminantes à partir du système de base. Afin d´
augmenter la précision des prédictions sémantiques, les caractéristiques sémantiques fusionnées des points

appartenant au même objet sont fusionnées. Enfin, un algorithme de décalage moyen est appliqué aux fusions

d´objets pour produire les prédictions. En outre, nous avons créé un nouveau jeu de données de toits (appelé

RoofNTNU) où les nuages de points laser servent de données d’entraı̂nement pour produire une segmentation

automatique et plus générale. Les expériences menées sur ce jeu de données montrent que notre méthode

obtient des résultats de segmentation prometteurs : une précision moyenne de 96,2% pour la tâche de

segmentation d´objets et une exactitude moyenne de 94,4% pour la tâche de segmentation sémantique.

Zusammenfassung

Die Segmentierung der Dachebene ist ein wesentlicher Schritt im Prozess der 3D-Gebäuderekonstruktion

aus luftgestützten Laserscanning-Punktwolken (ALS). Die bestehenden Ansätze verlassen sich entweder auf

menschliches Eingreifen, um geeignete Eingabeparameter für verschiedene Datensätze auszuwählen, oder sie

sind nicht automatisch und effizient. Um diese Probleme anzugehen, wird ein verbessertes punktweises

Multitasking-Netzwerk vorgeschlagen, um gleichzeitig Instanzen (d. h. einzelne Dachebenen) und Semantik (d. h.

Gruppen von Dachebenen mit ähnlichen geometrischen Formen) in Punktwolken zu segmentieren. PointNet++
wird als Backbone-Netzwerk verwendet, um im ersten Schritt robuste Merkmale zu extrahieren. Dann werden

die Merkmale aus dem Semantikzweig dem Instanzzweig hinzugefügt, um das Lernen von Instanzeinbettungen zu

erleichtern. Danach wird dem Semantikzweig ein Merkmalsfusionsmodul hinzugefügt, um diskriminierendere

Merkmale aus dem Backbone-Netzwerk zu erhalten. Um die Genauigkeit semantischer Vorhersagen zu erhöhen,

werden fusionierte semantische Merkmale der Punkte, die zu derselben Instanz gehören, zusammen aggregiert.

Schließlich wird ein Mean-Shift-Clustering-Algorithmus auf Instanz-Einbettungen angewendet, um die Instanz-

Vorhersagen zu erzeugen. Darüber hinaus erstellen wir einen neuen Dachdatensatz (genannt RoofNTNU), indem

wir ALS-Punktwolken als Trainingsdaten für die automatische und allgemeinere Segmentierung verwenden.
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Experimente mit unserem neuen Dachdatensatz zeigen, dass unsere Methode vielversprechende

Segmentierungsergebnisse erzielt: die mittlere Genauigkeit (mPrec) von 96,2 % für die Segmentierungsaufgabe

und die mittlere Genauigkeit (mAcc) von 94,4 % für die semantische Segmentierungsaufgabe.

Resumen

La segmentación de planos de tejados es un paso esencial en el proceso de reconstrucción de edificios en

3D a partir de nubes de puntos de escaneo láser aerotransportado (ALS). Los enfoques existentes se basan en

la intervención humana en la selección de los parámetros de entrada apropiados para diferentes conjuntos de

datos, que no son automáticos ni eficientes. Para abordar estos problemas, se propone una red de puntos

multitarea mejorada para segmentar simultáneamente instancias (es decir, planos de tejado individuales) y

semántica (es decir, grupos de planos de tejado con formas geométricas similares) en la nube de puntos.

PointNet++ se utiliza como red vertebradora para extraer caracterı́sticas robustas en el primer paso. Luego,

las funciones de la rama semántica se agregan a la rama de instancia para facilitar el aprendizaje de las

inserciones de instancia. Después de eso, se agrega un módulo de fusión de caracterı́sticas a la rama de

semántica para adquirir caracterı́sticas más discriminatorias de la red vertrebadora. Para aumentar la

precisión de las predicciones semánticas, se agregan las caracterı́sticas semánticas fusionadas de los puntos

que pertenecen a la misma instancia. Finalmente, se emplea un algoritmo de agrupamiento de cambio medio en

incrustaciones de instancias para producir las predicciones de instancias. Además, establecemos un nuevo

conjunto de datos de tejado (llamado RoofNTNU) tomando nubes de puntos ALS como datos de entrenamiento

para una segmentación automática y más general. Los experimentos en nuestro nuevo conjunto de datos de

tejado muestran que nuestro método logra resultados de segmentación prometedores: la precisión media

(mPrec) del 96,2 % en la tarea de segmentación de instancias y la precisión media (mAcc) del 94,4 % en la

tarea de segmentación semántica.

摘要

屋顶面片分割是从机载激光点云（ALS）重建三维建筑过程中必不可少的重要步骤。现有的方法要么

依赖于人工干预来为不同的数据集选择合适的输入参数，要么它们不是自动和高效的。为了解决这些问

题，本文提出了一种改进的多任务逐点网络，能够同时分割屋顶ALS点云中的实例（即单个屋顶平面）和

语义（即具有相似几何形状的屋顶平面组）。PointNet++首先被用作主干网络来提取鲁棒的特征。接着，
将语义分支上的特征添加到实例分支中，以促进实例嵌入特征（embeddings）的学习。之后，将特征融合

模块添加到语义分支中，以从主干网络中获取更多有判别力的特征。为了提高语义预测的准确性，将属于

同一实例的点的融合语义特征聚合在一起。最后，在实例嵌入特征上采用均值漂移（mean-shift）聚类算

法来产生最终的实例预测。此外，通过将ALS点云作为训练数据，本文创建了一个新的屋顶数据集（称为

RoofNTNU），用于自动和更通用的屋顶面片分割。在新屋顶数据集上进行的实验表明，本文提出的方法

取得了令人鼓舞的分割结果：实例分割任务的平均精确度（mPrec）为96.2%，语义分割任务的平均准确

度（mAcc）为94.4%。
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Appendix A 

Due to data imbalance issue on two roof types (corner element/4 and cross element/6), that may affect 

the testing performance of the RoofNet. Hence, we additionally and separately compute the scores on 

each roof type to present the performance of the RoofNet more objectively and to eliminate the bias. 

From the table, we can see our RoofNet does not perform too badly on roof types 4 and 6, even though 

the amount of these two roof types are far less than others (38 and 40, respectively) and the complexity 

of them is relatively higher than others. That reflects our RoofNet is robust and does not heavily rely 

on the amount/scale of the dataset. However, the surprising finding is that RoofNet does not perform 

well on decomposed roof type 7 (i.e., combination). That might be because for our RoofNet, some 

decomposed roof parts still belong to hard cases. Their special geometric structures are not sufficiently 

learned by our network, probably due to the quite small proportion of these special geometric structures 

in the entire dataset. 

TABLE Ⅰ. Quantitative comparisons among different roof types on two segmentation tasks. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Roof Type 
Instance Segmentation Semantic Segmentation 

Cov (%) WCov (%) Prec (%) Rec (%) Acc (%) IoU (%) 

Type1 100 100 100 100 100 100 

Type2 95.2 95.2 98.1 100 97.1 92.8 

Type3 97.7 97.8 94.5 100 98.1 98.8 

Type4 82.6 82.2 94.4 90.2 79.8 81.4 

Type5 94.7 94.9 98.7 100 97.3 93.1 

Type6 85.6 85.2 100 93.8 98.3 95.9 

Type7(decomposed) 68.6 68.5 95.1 74.8 93.3 76.7 



Appendix B 

In this section, we list all roof planes segmentation results evaluated on the testing dataset of RoofNTNU. 

To visualize them beautifully, all roofs are sorted by their types and then present. Please note that we 

do not present segmentation results of combination roofs (roof type 7) because they have been 

decomposed as data augmentation.  

 

FIG. 1. Visual instance segmentation results of flat roofs (roof type 1) on testing dataset of RoofNTNU. The 

colors of the same instance in ground truth and prediction are not necessarily the same. 



 

FIG. 2. Visual instance segmentation results of hipped roofs (roof type 2) on testing dataset of RoofNTNU. The 

colors of the same instance in ground truth and prediction are not necessarily the same. 



 

FIG. 3. Visual instance segmentation results of gabled roofs (roof type 3) on testing dataset of RoofNTNU. The 

colors of the same instance in ground truth and prediction are not necessarily the same. 

 

FIG. 4. Visual instance segmentation results of corner-element roofs (roof type 4) on testing dataset of 

RoofNTNU. The colors of the same instance in ground truth and prediction are not necessarily the same. 



 

FIG. 5. Visual instance segmentation results of T-element roofs (roof type 5) on testing dataset of RoofNTNU. 

The colors of the same instance in ground truth and prediction are not necessarily the same. 

 

 

FIG. 6. Visual instance segmentation results of cross-element roofs (roof type 6) on testing dataset of 

RoofNTNU. The colors of the same instance in ground truth and prediction are not necessarily the same. 

 




