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Abstract
This thesis explores the intersection of deep generative models and reinforcement learning,
focusing on the alignment of diffusion-based text-to-image models using reinforcement
learning from human feedback (RLHF). Text-to-image models have attracted significant
attention due to their potential to generate high-fidelity and semantically coherent images
from natural language descriptions. Despite their impressive capabilities, current models’
performance is limited by their inability to fully capture human preferences, as they are
trained using objectives that merely maximize the likelihood of training data, rather than
the ease-of-use of human users’ interactions with the models or the users’ expected or
preferred outputs.

Motivated by the recent success of aligning large language models using RLHF, we develop
a corresponding methodology for text-to-image models based on diffusion models. We
frame the reverse diffusion process as a Markov decision problem, allowing policy gradient
methods to optimize the model using reward signals from human feedback. By training
a reward model to serve as a proxy for human preferences during reinforcement learning,
we enable the alignment of state-of-the-art text-to-image models with human values
and preferences. Furthermore, we develop a novel reward model by repurposing parts
of the diffusion model itself, ensuring a common understanding of the underlying data
distribution between the model being optimized and the model guiding the optimization.

Our key contributions are fourfold. Firstly, we propose a systematic methodology for
aligning diffusion models with human preferences using reinforcement learning from
human feedback. Secondly, we validate the effectiveness of our approach through a series
of experiments that showcase the improvement in image quality and text-image alignment.
Thirdly, we provide insights into the challenges and limitations of our approach, informing
future research in this domain. Lastly, we demonstrate the real-world applicability of
our method, as it successfully aligns a state-of-the-art text-to-image model with general
human preferences, underscoring its potential impact across various fields, such as art,
education, and entertainment.

Through the development and validation of this novel RLHF methodology for text-to-
image models, this thesis paves the way for more user-centric and safer models, enhancing
their performance and unlocking their full potential in numerous real-world applications.
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Sammendrag
Denne avhandlingen utforsker krysningen mellom dype generative modeller og forsterk-
ningslæring, med søkelys på tilpasningen av diffusjonsbaserte tekst-til-bilde-modeller ved
hjelp av forsterkningslæring fra menneskelige tilbakemeldinger (RLHF). Tekst-til-bilde-
modeller har fått betydelig oppmerksomhet på grunn av deres potensiale til å generere
høyoppløselige og semantisk sammenhengende bilder fra naturlige språkbeskrivelser. Til
tross for deres imponerende egenskaper, er dagens modellers ytelse begrenset av deres
manglende evne til fullt modellere menneskelige preferanser, da de blir trent ved å maksi-
mere sannsynligheten for treningsdataene, heller enn brukervennligheten til menneskelige
interaksjoner med modellene eller de forventede eller foretrukne resultatene fra brukerne.

Motivert av den nylige suksessen med å tilpasse store språkmodeller ved hjelp av RLHF,
utvikler vi en tilsvarende metodikk for tekst-til-bilde-modeller basert på diffusjonsmodeller.
Vi omformulerer den reverserte diffusjonsprosessen som et Markov-beslutningsproblem,
noe som tillater at gradientbaserte metoder optimaliserer modellen ved hjelp av beløn-
ningssignaler fra menneskelige tilbakemeldinger. Ved å trene en belønningsmodell for å
fungere som en proxy for menneskelige preferanser under forsterkningslæring, gjør vi
det mulig å tilpasse toppmoderne tekst-til-bilde-modeller til menneskelige verdier og
preferanser. Videre utvikler vi en ny belønningsmodell ved å gjenbruke deler av diffu-
sjonsmodellen selv, for å sikre en felles forståelse av den underliggende datadistribusjonen
mellom modellen som blir optimalisert og modellen som veileder optimaliseringen.

Våre hovedbidrag er firedelte. For det første foreslår vi en systematisk metodikk for
å tilpasse diffusjonsmodeller til menneskelige preferanser ved hjelp av forsterkningslæ-
ring fra menneskelig tilbakemelding. For det andre validerer vi effektiviteten av vår
tilnærming gjennom en serie eksperimenter som viser forbedringen i bildekvalitet og
tekst-bilde-sammenheng. For det tredje gir vi innsikt i utfordringene og begrensningene
ved vår tilnærming, noe som informerer fremtidig forskning på dette området. Til slutt
demonstrerer vi den reelle anvendeligheten av vår metode, da den med hell tilpasser en
toppmoderne tekst-til-bilde-modell til generelle menneskelige preferanser, og understreker
dens mulige betydning i en rekke ulike felt, som kunst, pedagogikk og underholdning.

Gjennom utvikling og validering av denne nye RLHF-metoden for tekst-til-bilde-modeller,
baner denne avhandlingen vei for mer brukersentrerte og sikrere modeller, forbedrer deres
ytelse og frigjør deres fulle potensial for en rekke virkelige applikasjoner.
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1. Introduction
In this Thesis, we propose a novel approach for aligning diffusion-based text-to-image
models using Reinforcement Learning from Human Feedback (RLHF). Diffusion models
are a class of generative models that can produce high-quality and diverse images by
reversing a stochastic diffusion process. RLHF is a technique that leverages human
feedback as a reward signal to optimize a model’s behavior using reinforcement learning.
By combining these two techniques, we aim to improve the performance and alignment
of text-to-image models.

1.1. Motivation
Text-to-image models aim to synthesize realistic and diverse images from natural language
descriptions, enabling novel applications in art, content creation, education, entertainment,
and more. They have attracted a lot of attention in recent years, thanks to advancements
in transformers for Natural Language Processing (NLP), diffusion models for high-quality
image synthesis, and large-scale datasets for multimodal training. Some of the most
impressive text-to-image models include DALL-E 2 (Ramesh et al., 2022), which shocked
the world with its ability to create surreal and humorous images from complex prompts;
Midjourney1, which offers a paid service for high-quality image generation with easy-to-
use prompts; and Stable Diffusion (Rombach et al., 2022), which is a free and open-source
model that can be run locally and has a huge community of users training custom models
and constantly adding new features.

While diffusion-based text-to-image models have come a long way since their initial
introduction, they still face some limitations and challenges. One of them is that the
generated images are often misaligned with human preferences. For example, human
users may prefer more creative, realistic, coherent, diverse, or ethical images than the
diffusion model can produce by default. Another is that they can be difficult to use and
control, requiring careful prompt engineering and iterative refinement to achieve desired
results.

These limitations stem from the way the models are constructed and trained. The quality
and diversity of the generated images depend largely on the training data used as well
as the chosen text encoder (Saharia et al., 2022a). The training data used to train
large text-to-image models is usually scraped from the internet, with varying quality of

1Available at: https://www.midjourney.com/.
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1. Introduction

(image, text) pairs. Furthermore, human preferences are subjective and hard to define
and capture with predefined loss functions or metrics. The standard training objective
for diffusion models is based on Maximum Likelihood Estimation (MLE), which tries to
optimize the generative likelihood of the training data and does not seek to capture the
nuances, subtleties, and complexity of human preferences. These inefficiencies in training
can lead to unsatisfactory or even harmful generations. Therefore, it would be desirable
to have a mechanism that can directly optimize the text-to-image model using human
feedback.

Inspired by the recent success of RLHF in aligning language models (Ouyang et al.,
2022; Schulman et al., 2022), we propose to apply RLHF to align diffusion models for
text-to-image generation. We hypothesize that RLHF can improve the quality and
diversity of the images generated by diffusion models, as well as make them more aligned
with human preferences and expectations.

From a practical perspective, text-to-image generation using diffusion models has many
potential applications that can benefit from RLHF. For example, RLHF can enhance
the creativity and expressiveness of text-to-image systems by allowing users to provide
feedback and guide the generation process. RLHF can also improve the safety and
reliability of text-to-image systems by preventing or correcting undesirable or harmful
outputs. Furthermore, RLHF can increase user satisfaction and trust in text-to-image
systems by aligning them with user values and goals.

1.2. Thesis Goal and Research Questions
This Thesis aims to investigate the potential of RLHF in improving the alignment of
diffusion-based text-to-image models. By drawing inspiration from recent advancements
in natural language processing and related fields, we aspire to create a novel approach
for aligning the text-to-image generation process. The primary goal of this Thesis is:

Thesis Goal: Develop an approach to align diffusion-based text-to-image models using
RLHF for generating high-fidelity and semantically consistent images.

To accomplish this goal, the Thesis will address the following research questions:

Research questions:

• RQ1: How can diffusion-based text-to-image models be mapped to a policy gradient
environment that enables RLHF?

• RQ2: How can we design and train a reward model that effectively captures human
preferences and provides rewards for diffusion-based text-to-image models?
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• RQ3: How can we evaluate the performance and alignment of text-to-image models
trained with RLHF?

The first research question (RQ1) aims to explore the applicability of policy gradient
methods, such as Proximal Policy Optimization (PPO), in the context of RLHF for
text-to-image generation. We will investigate the challenges and potential solutions in
adapting diffusion models to reinforcement learning environments.

The second research question (RQ2) focuses on the design and training of a reward model
capable of learning from human feedback. This question will delve into various reward
modeling approaches and their suitability for RLHF in the context of text-to-image
generation, as well as how to effectively collect human preferences.

The third research question (RQ3) aims to establish evaluation metrics and methods for
assessing the performance and alignment of diffusion models trained using RLHF. We
will compare these models with suitable baselines, considering both their image fidelity
and image-text alignment.

1.3. High-Level Methodology
This section provides a high-level overview of the methodology proposed in this Thesis;
it should serve as a reference to the reader.

The method is an adaptation of OpenAI’s RLHF approach for aligning Large Language
Models (LLMs) (Ziegler et al., 2019; Stiennon et al., 2020; Ouyang et al., 2022) to the
domain of diffusion-based text-to-image models. The method leverages a pre-trained
diffusion model (e.g., Stable Diffusion; Rombach et al., 2022) and consists of four main
steps, outlined below:

Step 1: Curating a Labeling Dataset. The first step in the methodology involves
curating a dataset consisting of text prompts and associated image samples generated
from the text-to-image model. Following a similar approach to the concurrent work of
Lee et al. (2023), simple prompts are used to test specific capabilities of the text-to-image
model, such as generating objects with certain properties (e.g., a lion wearing pink
sunglasses). Multiple image samples are generated for each text prompt to ensure diverse
representations for comparison.

Step 2: Collecting Human Feedback. The second step involves collecting human
feedback on the curated labeling dataset. Human labelers are presented with pairs of
image samples generated from the same text prompt. These labelers are tasked with
selecting which image sample better aligns with the corresponding text prompt.
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Step 3: Training a Reward Model. The collected human feedback is used to train
a reward model via supervised learning. This model learns to predict preference rankings
for pairs of responses, where each pair has a “winner” and a “loser” according to human
preference. In order to effectively learn the relationships between texts and images in
this context, the encoder component of the diffusion model is repurposed as the reward
model architecture. This approach offers an additional benefit by pre-aligning the reward
model with the underlying image generation process in terms of understanding text and
image content.

Step 4: Optimizing Policy with Reinforcement Learning. Once the reward
model is trained, the next step is to optimize a diffusion policy using reinforcement
learning algorithms, specifically policy gradient methods (e.g., PPO). The objective is
to optimize the policy against human preferences by employing the reward model as a
proxy.

To further enhance performance and alignment, this methodology allows for continuous
iteration of steps 2 and 3, which involves collecting additional comparison data on the
current best policy and training new reward models and policies accordingly. This
multi-iterated training process (Gao et al., 2022) addresses potential misalignments that
may arise as the optimized policy deviates from the initial policy and, consequently, from
the reward model trained on samples generated by the initial policy.

A comprehensive exploration of the methodology outlined above will be covered in two
main chapters:

Chapter 4: Human Data Collection This chapter will discuss the process of
curating a labeling dataset, Step 1, and collecting human feedback on this dataset, Step
2. It will elaborate on the selection of text prompts, image sample generation, and
the procedure and interface for obtaining pairwise comparisons from human evaluators.
Furthermore, criteria used by evaluators to determine which image samples better align
with the given text prompts will be explored.

Chapter 5: Reinforcement Learning for Fine-tuning Diffusion Models The
focus of this chapter will be on Step 3 and Step 4, which involve training a reward model
using human feedback and detailing the optimization of a policy against the reward
model using reinforcement learning methods. The supervised training objective employed
will be presented, and a discussion about the reward model architecture derived from the
encoder part of the diffusion model will follow. Additionally, it will be explained how this
approach allows for effective learning of text-image relationships. In the latter part of the
chapter emphasis will be placed on the mapping of a diffusion model to a reinforcement
learning environment for use as a policy to be optimized. Followed by our PPO setup.
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1.4. Key Contributions
The key contributions of this Thesis are:

1. Development of a methodology for aligning diffusion models with human
preferences: The Thesis presents a systematic methodology that addresses a specific
gap in the field by proposing a novel approach to align diffusion models with human
preferences using reinforcement learning. The methodology includes steps for data
collection, reward model training, and policy optimization, allowing for the alignment of
state-of-the-art text-to-image models.

2. Validation of the methodology through a series of experiments: The Thesis
includes a series of experiments that progressively increase in complexity and demonstrate
the effectiveness of the proposed methodology. These experiments involve simple diffusion
models trained on restricted datasets and aligned using fixed reward functions, as well
as more complex text-to-image models trained on large-scale datasets and aligned using
reward models trained using human feedback. The results show that the methodology
can effectively align diffusion models using a wide variety of reward schemes to improve
the quality of generated images.

3. Insights into the challenges and limitations of aligning diffusion models with
human preferences: The experiments highlight various challenges and limitations
encountered during the alignment process. These include issues related to reward model
training, mode collapse, degradation of image quality, and loss of diversity. These insights
provide valuable knowledge for guiding future research in this area.

4. Proof-of-concept of aligning models with general human preferences:
The experiments conducted in the Thesis demonstrate the scalability and real-world
applicability of the methodology. By successfully aligning a state-of-the-art text-to-image
model with general human preferences, the Thesis establishes the methodology as a
powerful tool for generating images that are better aligned with human expectations
and preferences. This highlights the potential impact of the methodology in various
domains, including art, education, and entertainment, enabling the development of more
sophisticated and user-centric text-to-image models.

1.5. Thesis Structure
The Thesis is structured as follows:

Chapter 2 introduces the background and preliminaries necessary to understand current
text-to-image models, such as transformers and diffusion models. It also gives an
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introduction to reinforcement learning techniques which are used in RLHF. Other topics,
such as key datasets for training text-to-image models and key metrics for evaluation,
are also covered.

Chapter 3 provides an overview of the related work on aligning generative models using
human preferences, primarily in the domain of language models. It also covers some
of the early explorations into aligning text-to-image models using human preferences,
focusing on reward modeling.

Chapters 4-5 present our proposed method for aligning diffusion-based text-to-image
models using RLHF, the human data collection scheme, the reward model architecture,
and the training procedures for our reward model and text-to-image model.

Chapter 6 describes the series of experiments conducted to develop and evaluate the
methodology presented in the two prior chapters. The experiments gradually increase
in complexity, building up to the alignment of a text-to-image model using our pro-
posed RLHF framework. It covers 7 experiments in total, including their motivation,
experimental setup, results, and a per-experiment evaluation.

Chapter 7 discusses the experiment series, reviews our research questions in light of our
work, and discusses the implications and limitations of our approach.

Chapter 8 establishes future directions for work on the alignment of text-to-image models
in light of our methodology and findings, and concludes the Thesis by summarizing our
main contributions.
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This chapter introduces key deep-learning architectures and concepts that are fundamental
to understanding State-of-the-Art (SOTA) text-to-image models and alignment techniques.
It assumes that the reader has a general understanding of machine learning and deep
learning concepts, especially artificial neural networks. Some knowledge of probabilistic
notation used in variational Bayesian methods is also valuable when reading the sections
on generative models, Variational Autoencoders (VAEs), and diffusion models. ‡

We will begin by discussing generative models and encoder-decoder architectures, including
VAEs, which form the basis of many other generative architectures. Next, we cover
the transformer encoder, which serves as the textual understanding module for many
text-to-image models. We will also cover U-Nets, which are commonly used with
diffusion models, and the diffusion models themselves, which have proved themselves to
be competent generative models in systems such as DALL-E 2 (Ramesh et al., 2022),
Imagen (Saharia et al., 2022a) and Stable Diffusion (Rombach et al., 2022). Next, we will
discuss Contrastive Language-Image Pretraining (CLIP), a joint image-text encoder that
is used in Stable Diffusion and other text-to-image systems. Then, reinforcement learning
and Proximal Policy Optimization (PPO), which serves as the alignment technique of
the methodology presented in this Thesis, will be explained. Finally, we will provide
an overview of the datasets used to train the diffusion models in the experiments in
chapter 6. ‡

2.1. Generative Modeling
Generative modeling constitutes a fundamental approach within the domains of stat-
istical modeling and deep learning, and it can be differentiated from its counterpart,
discriminative modeling. While discriminative models primarily concentrate on learning
the boundaries between data classes, or p(y | x), generative models’ main objective is
to learn the underlying data distribution, represented as p(x). Due to their ability to
learn the data distribution itself, generative models have the capacity to generate novel
samples that resemble the training data. Some noteworthy instances of generative models
include Variational Autoencoders (VAEs), Generative Adversarial Networks (GANs), and
Denoising Diffusion Probabilistic Models (DDPMs).

Formally, Considering a dataset X = {x1, x2, . . . , xn} consisting of n samples; the goal
of generative modeling is to approximate the true data distribution p(x) with a learned
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distribution pθ(x) that captures the joint distribution of the data. In the case of deep
learning, θ represents the parameters of an artificial neural network.

Within the framework of text-to-image synthesis, generative models can be employed
to learn the joint distribution of text and images, p(y, x). Consequently, the resulting
text-to-image model can be used for generating synthetic images x that are conditioned
on specific text descriptions y.

2.1.1. The Principle of Maximum Likelihood Estimation
A central concept in parameter estimation for generative models is Maximum Likelihood
Estimation (MLE). MLE seeks to find the parameters θ that maximize the likelihood
of the observed data X given the model pθ(x). In other words, MLE aims to find the
model parameters that make the observed data as probable as possible.

Mathematically, MLE involves finding θ̂ such that:

θ̂ = arg max
θ

n∏
i=1

pθ(xi),

In practice, it is often more convenient to work with the log-likelihood, which transforms
the product into a sum, as follows:

θ̂ = arg max
θ

n∑
i=1

log pθ(xi).

The transformation to log-likelihood preserves the optimization objective since the
logarithm is a monotonic function. Furthermore, it can help in avoiding numerical issues
resulting from extremely small likelihood values.

2.1.2. Variational Inference
There are instances when we require approximate inference techniques due to the intract-
ability of computing exact posteriors or MLEs directly. Variational Inference (VI) presents
a viable solution, particularly in the context of Bayesian statistics, by approximating the
true posterior distribution pθ(z | x) with a tractable distribution qϕ(z | x), which is often
referred to as the variational posterior.

Bayes’ rule states that the posterior distribution can be computed as follows:

pθ(z | x) = pθ(x | z)pθ(z)
pθ(x) ,
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where pθ(z | x) is the posterior, pθ(x | z) is the likelihood, pθ(z) is the prior, and pθ(x)
is the marginal likelihood (or evidence). In generative modeling, we are particularly
interested in learning pθ(x | z) and pθ(z), since they allow us to sample new data points
from the learned distribution. However, computing the posterior pθ(z | x) or the marginal
likelihood pθ(x) can be intractable for complex models, necessitating the use of VI for
approximation.

VI proposes to find an approximate posterior distribution qϕ(z | x) within a family of
tractable distributions Q parametrized by ϕ. This is achieved by minimizing a certain
divergence measure between the true posterior and its approximation. Among several
measures of divergence, Kullback-Leibler (KL) divergence is most commonly used in VI.

2.1.3. The Evidence Lower Bound (ELBO)
A crucial concept in Variational Inference is the Evidence Lower Bound (ELBO), which
provides a lower bound for the marginal log-likelihood. Optimizing the ELBO facilitates
the performance of inference in complex models where direct computation of the posterior
is intractable.

The ELBO can be mathematically expressed as:

L(θ, ϕ, x) = Eqϕ(z|x)[log pθ(x, z)− log qϕ(z | x)].

By maximizing the ELBO with respect to both the model parameters θ and the variational
parameters ϕ, we aim to approximate the true posterior distribution as closely as possible.
It is important to note that the ELBO is a lower bound on the marginal log-likelihood,
i.e., L(θ, ϕ, x) ≤ log pθ(x).

2.1.4. Kullback-Leibler Divergence
The Kullback-Leibler (KL) divergence serves as a measure of the difference between two
probability distributions, and plays a key role in Variational Inference. KL divergence
quantifies the difference between the approximating distribution qϕ(z | x) and the true
posterior distribution pθ(z | x).

The KL divergence between two distributions P and Q is defined as:

KL(P∥Q) =
∫

P (x) log P (x)
Q(x)dx.

In Variational Inference, we minimize the KL divergence between qϕ(z | x) and pθ(z | x)
to improve our approximation of the true posterior. This is directly related to the ELBO
optimization, as the difference between the marginal log-likelihood and the ELBO is the
KL divergence between the true and approximate posteriors:
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log pθ(x)− L(θ, ϕ, x) = KL(qϕ(z | x)∥pθ(z | x)).

Thus, maximizing the ELBO with respect to θ and ϕ is equivalent to minimizing the KL
divergence between the true and approximate posteriors.

2.2. Encoder-Decoder Architectures †
The encoder-decoder architecture is a versatile deep learning framework that has been
successfully employed in a variety of tasks, ranging from machine translation (Sutskever
et al., 2014), image captioning (Vinyals et al., 2015), and speech recognition (Chan et al.,
2016). It consists of two main components: an encoder q(z|x) and a decoder p(x|z). The
former maps an input x to a latent space representation z, while the latter reconstructs
the original data given z.

2.2.1. Autoencoders †
An autoencoder (Hinton and Salakhutdinov, 2006) is a specific type of encoder-decoder
that is trained to reconstruct its own inputs. Autoencoders are commonly used for
dimensionality reduction, as the encoder compresses the input into a lower-dimensional
latent space. This compressed representation, or embedding, can then be used for
downstream tasks such as classification or clustering. Autoencoders are typically trained
on unlabeled datasets via supervised learning techniques.

2.2.2. Variational Autoencoders †
Variational Autoencoders (VAEs) (Kingma and Welling, 2013) extend autoencoders by
introducing a prior distribution p(z) over the latent space. This prior is often chosen
to be a standard Gaussian distribution, and the encoder is trained to approximate the
posterior distribution over the latent space given the input. This is achieved through
variational inference (see subsection 2.1.2).

The use of a prior distribution over the latent space allows VAEs to be used as generative
models. In particular, by sampling from the prior and passing these samples through the
decoder, it is possible to generate new samples that resemble the original input data. This
makes VAEs a powerful tool for tasks such as text-to-image synthesis, as they provide a
probabilistic framework for generating novel images from text descriptions.

2.3. Transformers †
The transformer was first introduced in 2017 by Vaswani et al. as an alternative way
to perform sequence-to-sequence modeling. Their architecture forgoes recurrence and
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convolutions entirely, the mechanisms behind the SOTA models at the time, in favor of an
approach based solely on attention (Vaswani et al., 2017). As a result, the transformer is
more parallelizable and sees significant speedups in training time. Since its inception, the
transformer has received a lot of attention from researchers and numerous architectural
updates have been introduced to improve performance on many tasks (Vaswani et al.,
2017), including Natural Language Processing (NLP) tasks with the introduction of Large
Language Models (LLMs) and vision understanding tasks with the Vision Transformer
(ViT). Of interest to this Thesis is its use for natural language understanding in text-to-
image models. Because of this, only the encoder stack will be explained.

2.3.1. Tokens
The transformer operates on tokens. Tokens usually encapsulate symbolic data like that
of a word or a phrase, but they can generally be used as a representation for any discrete
value. The data encapsulated by a set of tokens make up the transformer’s vocabulary,
and is encoded and decoded by mapping to and from the index of tokens that make up
the vocabulary.

Tokenizers

While there is no inherent semantic relationship between the set of index-integers rep-
resenting the tokens in the transformer, it is important to select tokens that represent
information with meaningful relations where such relationships can be learned. This is
the job of a tokenizer.

Byte-Pair Encoding

Byte-Pair Encoding (BPE) (Sennrich et al., 2015) is a popular tokenization technique for
text, used, among others, by text generation models GPT (Radford and Narasimhan,
2018) and GPT-2 (Radford et al., 2019), and image-text understanding models such as
CLIP (presented in section 2.6). Commonly, BPE pretokenizes the data by splitting the
text on spaces. After pretokenization, BPE forms a base vocabulary of tokens made
up of all the characters that appear in the training data. This base vocabulary is then
iteratively grown to include new tokens merged from the most frequent pairs of two
tokens already in the vocabulary (Sennrich et al., 2015). BPE grows the vocabulary until
it hits a predefined size limit or has encapsulated every pair of tokens in the data.

2.3.2. Embeddings
To learn the semantic relationships between tokens, the transformer uses embeddings
(Vaswani et al., 2017). Instead of processing the tokens as unordered integers, the
transformer projects them onto a lower-dimensional space as dense vectors, where their
semantic relationship is represented by their distance in the embedding space (Lin et al.,

11



2. Background Theory

2017). By operating in the embedding space, the transformer can learn relations between
points in the embedding space rather than between indices in the vocabulary. Since the
embedding space supports semantic closeness, the relations learned about a point in the
embedding space translates to the points near it, meaning the transformer can generalize
across groups of words rather than just across words (Mikolov et al., 2013; Dar et al.,
2022).

2.3.3. Attention
Attention was first introduced in 2014 by Bahdanau et al. as a way to perform neural
machine translation. Since a source sentence from one language often follow a different
structure and can have a different length to that of its translated counterpart in another
language, it was not enough to naively match one word in the source sentence to one
word in the translation (Bahdanau et al., 2014). To overcome this, Bahdanau et al.
proposed what would later be known as attention: to compute a weight for each word in
the source sentence for every word in the target sentence. Bahdanau et al. could then
attend to the words according to the calculated weight.

Mathematically, this attention process is as simple as two matrices multiplied together,
where the first matrix serves as a filter for the second. Perhaps more intuitively, attention
can be thought of as the process of selective masking, where a filter weighs the importance
of each element in a sequence, and thus how much the element should be attended to, or
if it should not be attended to at all.

Scaled Dot-Product Attention

Scaled dot-product attention was introduced with the transformer and builds on the
concept of attention (Vaswani et al., 2017). It is natural to look at the scaled dot-product
attention mechanism through the eyes of information retrieval theory. In information
retrieval, given a query and a set of keys and values, where each key is mapped to a value,
the goal is to find the key that best represents the given query, under the assumption
that this key’s corresponding value is the most representative value to that of the query.

In scaled dot-product attention, shown in Equation 2.1 where Q is the queries, K the
keys and V the values matrices, and dk is the number of dimensions in Q and K, this is
done by calculating the similarity between the queries and the keys and then using that
similarity score to weigh how much of each value to retrieve (or attend).

Attention(Q, K, V ) = Softmax
(

QKT

√
dk

)
V (2.1)

First, the similarity between the queries and the keys are calculated by taking the dot
product of the two matrices. When the similarity score between the queries and the keys
are calculated, the resulting similarity matrix experiences a shift in variance from that of
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the input matrices. This is a result of the dot product operation used to calculate the
similarity (Vaswani et al., 2017). If this variance shift is not corrected, the values grow
out of control as the attention process is repeated. This makes gradient descent unstable
and prohibits model learning. In scaled dot-product attention, it is therefore scaled back
by the square root of the number of dimensions in the queries and keys matrices,

√
dk,

which makes up the variance after the dot product.

Before the final filtering step, the similarity matrix is passed through the softmax (Bridle,
1989) function. The softmax function normalizes the values between zero and one, and
makes sure that their sum equals one, creating a probability distribution over how much
attention to pay to each element in the values sequence.

The final step of scaled dot-product attention is then to attend the values matrix with
the similarity matrix using another dot product operation.

Masked Scaled Dot-Product Attention

The transformer is often shown tokens it should not be aware of, either as an optimization
technique during training or from padding-tokens just used to fill the remaining space
in the fixed-length input sequence. These “filler” tokens need to be filtered out of the
scaled dot-production attention before the similarity matrix attends to the values. To
effectively mask these tokens out of the sequence their similarity score is set to “negative
infinity” just before the softmax-step. This makes their softmax score in the succeeding
step zero, showing the final step of the attention mechanism that there is absolutely no
similarity between the selected queries and keys, and likewise to give no attention to
their corresponding values.

Multi-Head Attention

Since the similarity matrix in scaled dot-product attention is a probability distribution,
where the total attention sums to one, one such instance alone is unable to focus on many
things at the same time without having to focus less on everything. Running multiple
instances of scaled dot-product attention at the same time, or “heads”, allows each head
to attend a small part of the sequence, and the collective of heads to attend to everything
important. This is the concept behind multi-head attention (Vaswani et al., 2017).

Like with scaled dot-product attention, the input of the multi-head attention comprises
the queries, Q, the keys, K and the values, V , matrices. Then, for each head in the
attention mechanism (Vaswani et al. used eight), the embedded matrices are projected
onto another lower-dimensional space. It is these transformations that allow the individual
heads to process the input differently from each other and learn different concepts, while
the dimensionality reduction is just another tool to speed up the computation. Scaled
dot-product attention is then applied to the transformed matrices for Q, K and V .
The results from each head are then concatenated together and projected back into the
embedding space using another learned matrix.
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Self-Attention and Cross-Attention

In the transformer, multi-head attention takes two forms: self-attention and cross-
attention. Self-attention is used to describe multi-head attention where the input queries,
keys and values matrices are the same. Here, the sequence effectively attends to a
projection of itself, hence the name. In cross-attention, the input keys and values, which
are the same, come from a different embedding, usually produced by an encoder (described
further in subsection 2.3.7), while the input queries comes from an earlier layer similar
to that in self-attention.

2.3.4. Skip Connections

Surrounding each multi-head attention and Multilayer Perceptron (MLP) block in the
transformer are skip connections. Skip connections work by adding the input of a module
to its output. This is sometimes called a residual block, and a deep neural network with
residual blocks is often referred to as a deep residual network (He et al., 2016).

The primary purpose of a skip connection is to smooth the gradient landscape for
backpropagation (Furusho and Ikeda, 2020). Because the softmax function in each
attention head returns mostly near-zero values (they all have to add to one across the
entire context length), most of the input is filtered out, which artificially flattens the
gradients and slows down backpropagation. By adding the original input to the final
output, artificial saddle points and ridges in the gradients are smoothed out, while the
important features of the gradient landscape from the attention processes are preserved
(Furusho and Ikeda, 2020).

Skip connections also serve a secondary purpose. In the case that none of the attention
heads in the multi-head attention module attends to an element in the input sequence,
this element will be forgotten in the output. Because of the transformer’s multi-layer
nature (further described in subsection 2.3.7), this means that each layer, which works
on the output of the previous layer, might filter out more and more of the signal until
all auxiliary information is lost. By adding the input to the output, the skip connection
preserves the original sequence for later layers to process.

However, while skip connections help smooth the gradient landscape, they also introduce
unwarranted variance to the output (He et al., 2016). This variance grows exponentially
with the depth of the residual network, and will lead to a gradient explosion in deep
residual networks unless treated.

2.3.5. Layer Normalization

To prevent gradient explosion from skip connections, the output from each skip connection
is normalized and scaled to a mean of zero and a standard deviation of one using layer
normalization (He et al., 2016).
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Layer normalization has empirically been shown to improve performance and help model
convergence (Ba et al., 2016). The high-level intuition is that maintaining a consistent
distribution across the layers of the model, and throughout training, makes it easier for
the model to learn, since neural networks are inherently nonlinear and therefore sensitive
to such distribution changes (Ba et al., 2016).

2.3.6. Positional Encoding
Sequence structure is important for many sequence-to-sequence modeling tasks like
language understanding and vision. However, the attention module as introduced with
the transformer has no inherent understanding of how the tokens in a sequence positionally
relate to each other. To make the attention modules positionally aware, the original
transformer proposed to encode positional information directly into the input embeddings
using absolute positional encoding (Vaswani et al., 2017).

To do this, a positional embedding of the same size is added to the input embedding,
moving the points around in the embedding space according to the encoded positional
information of the token. The positional embedding is made using sinusoidal positional
encoding (Vaswani et al., 2017), as shown in Equation 2.2, where p is the position of a
token in the sequence, i is the index of the embedding-dimension and dmodel is the size of
the embedding space.

PositionalEncoding(p, 2i) = sin(p/100002i/dmodel)
PositionalEncoding(p, 2i + 1) = cos(p/100002i/dmodel)

(2.2)

Sinusoidal positional encoding applies a sinusoidal and a cosine signal alternatingly to the
dimensions in the encoding, with the frequency of the wave in a dimension decreasing as
the index of the dimension increases. This means that despite the positional embedding
being the same size as the input embedding, only the first few dimensions of the embedding
are actually used to encode the positional information. This is important, since it leaves
the rest of the dimensions of the input embedding positionally undisturbed.

2.3.7. Encoder Stack
The goal of the transformer encoder as originally proposed by (Vaswani et al., 2017)
was to make processed embeddings for the transformer decoder. In the context of text-
to-image models, the goal is very similar: make processed embeddings for image-text
understanding models such as CLIP. As such, the encoder is fairly simple, consisting of
just a list of encoder layers iteratively working on the output from the prior layer, with
the first layer working on the positionally encoded embedding of the input sequence. Each
layer is made up of a self-attention module (with an accompanying skip connection and
layer normalization) and an MLP with one hidden layer (again with an accompanying
skip connection and layer normalization; Vaswani et al., 2017).
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2.4. U-Nets †
U-Nets are a class of Convolutional Neural Networks (CNNs) that were originally de-
veloped for biomedical image segmentation (Ronneberger et al., 2015), but they have
since found use in other domains as well, such as image restoration.

A U-Net is an encoder-decoder architecture consisting of a contracting path (the encoder)
and an expanding path (the decoder). The contracting path is typically a series of
convolutional and pooling layers that reduce the spatial size of the input, leading to
a bottleneck that forces the network to learn a more compressed representation of the
input. The expanding path then uses this learned representation to upsample the input
back to its original size, typically using a series of convolutional and upsampling layers.

The two paths are connected by a series of skip, or residual, connections that concatenate
the feature maps from the contracting path with the feature maps from the expanding
path. The skip connections let information flow more easily through the network and
give gradients a more direct backward path, which makes training easier and more stable.
This allows the network to learn complex spatial relationships between the input and the
output.

Training a U-Net is usually done in an end-to-end supervised fashion with a regression-
based loss. The network inputs are images while the targets are e.g. segmentation masks
or denoised versions of the inputs.

2.5. Diffusion Models ‡
Diffusion models are a class of latent variable generative models that rival VAEs and
Generative Adversarial Networks (GANs) (Goodfellow et al., 2020) on image generation
tasks; They outperform VAEs on sample quality and GANs on mode coverage (Xiao
et al., 2021). At the time of writing, they are considered to be the SOTA in image
generation and have received a surge in research attention, as they play a key role in the
latest SOTA text-to-image models.

The first work on diffusion models was published by Sohl-Dickstein et al. (2015); taking
inspiration from non-equilibrium thermodynamics. However, diffusion models did not
gain much traction within the field of image generation until the seminal paper by Ho
et al. (2020), which introduced Denoising Diffusion Probabilistic Models (DDPMs). Song
and Ermon (2019) and Song et al. (2020b) also made important theoretical contributions
with their work on Score-based Generative Models (SGMs), which can be considered
a generalization of DDPMs within the framework of stochastic differential equations.
While DDPMs and SGMs are regarded by some to be two different paradigms within the
diffusion field (Yang et al., 2022), practitioners generally do not distinguish between the
two. As such, the theory is introduced under the shared term of Diffusion Models.

The main concept of diffusion models is to gradually add noise to samples x0 from
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our data distribution q(x) through a forward diffusion process q(xt | xt−1), resulting
in a Markov chain of latent variables x1 . . . xT , of the same dimensionality as x0, that
get progressively more noisy until xT can be approximated by random noise. We then
try to remove the noise to recover our samples by learning a reverse diffusion process
pθ(xt−1 | xt), parametrized by θ. By adding only a small amount of noise at each step,
the problem of learning to undo a single step becomes tractable.

The following sections will provide details on the forward and reverse processes and will
cover how to train and sample from the diffusion model they define. These sections are
entirely based on the DDPM theory presented by (Ho et al., 2020). Lastly, we will discuss
different schemes for conditioning these models on class labels and text captions.

2.5.1. Forward Process
The forward process q(xt | xt−1) is usually modeled as a fixed Gaussian process with
linear noise schedule α1, . . . , αT

q(xt | xt−1) = N (xt;
√

αtxt−1, (1− αt)I) (2.3)

A nice property of this forward process is that we can sample xt at an arbitrary timestep
t, by using the reparameterization ᾱt =

∏t
s=1 αs

q(xt | x0) = N (xt;
√

ᾱtx0, (1− ᾱt)I) (2.4)

where (1− ᾱt)→ 1 as t→ T , and hence, q(xT ) ∼ N (xT ; 0, I). That is, we gradually add
small amounts of Gaussian noise to our samples, until they become indistinguishable
from standard Gaussian noise. Scaling the data by √αt ensures that the variance of the
data does not grow when adding the noise, which is beneficial, as it provides the deep
neural networks in the reverse process with consistently scaled inputs (Ho et al., 2020).
Ho et al. propose using α1 = 1− 10−4, αT = 0.98, and T = 1000.

The forward process presented here is fixed, i.e. we do not need to learn it. This allows
us to focus our parameter resources on the reverse process, which is what will be used
during generation. Note however that it is possible to define a learnable forward process.
While this is more complicated, it has been shown to increase performance Nichol and
Dhariwal (2021).

2.5.2. Reverse Process
The reverse process pθ(xt−1 | xt) is a learnable Gaussian process
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pθ(xt−1 | xt) = N (xt−1; µθ(xt, t), Σθ(xt, t)) (2.5)

where µθ(xt, t) and Σθ(xt, t) are parameterized by deep neural networks, instead of being
fixed like in the forward process. That is, we attempt to remove the small amount of
noise that was added during one step of the forward process by estimating the denoised
mean and variance of the noisy sample using complex non-linear function approximators.

To simplify the process, Σθ(xt, t) is usually set to σ2
t I, where σ2

t are time-dependent
constants. Ho et al. propose using σ2

t = 1− αt. Thus, we only need to model µθ(xt, t).

Furthermore, µθ(xt, t) is usually reparameterized to

µθ(xt, t) = 1
√

αt
(xt −

1− αt√
1− ᾱt

ϵθ(xt, t)) (2.6)

where ϵθ(xt, t) is a denoising network that is trained to predict the noise added to xt at
timestep t. The key takeaway here is that ϵθ(xt, t) is the main workhorse of the diffusion
model.

2.5.3. Training
While the diffusion processes presented above are somewhat complicated, they essentially
make up a training scheme for a distribution-specific denoising network. The forward
process generates noisy training data at several noise levels and the reverse process uses
this data in a supervised fashion to train the denoising network. The end product is
a robust denoising network that is able denoise images, independent of the amount of
noise present, by using the knowledge it has learned about the structure of the data
distribution it is trained on.

To train the denoising network we choose a random sample x0 from the dataset and a
random timestep from 1, . . . , T . In accordance with Equation 2.4, we can add noise to
x0 until it becomes xt by computing

xt =
√

ᾱtx0 +
√

1− ᾱtϵ (2.7)

where ϵ ∼ N (0, I) represents the noise added during the timestep (and that we are trying
to predict). The denoising network output is then given by ϵθ(

√
ᾱtx0 +

√
1− ᾱtϵ, t).

A loss function such as mean squared error is then used to compute the difference between
the predicted noise and the actual noise, and gradient descent is used to optimize this
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loss. This training scheme is repeated until convergence. The loss function proposed by
Ho et al. is given below:

L(θ) = E
[∥∥∥ϵ− ϵθ

(√
ᾱtx0 +

√
1− ᾱtϵ, t

)∥∥∥2
]

(2.8)

2.5.4. Sampling
To sample a single reverse step xt−1 ∼ pθ(xt−1 | xt) we need to compute

xt = µθ(xt, t) +
√

Σθ(xt, t)z (2.9)

where z ∼ N (0, I). As per subsection 2.5.2, this can be done by computing

xt = 1
√

αt
(xt −

1− αt√
1− ᾱt

ϵθ(xt, t)) + σtz (2.10)

To generate a novel sample from the original data distribution x0 ∼ q(x), we repeat the
process above for T timesteps, starting from xT ∼ N (0, I). However, in practice, only a
fraction of the timesteps are actually employed. For example, sampling using only 20
denoising steps could use timesteps t ∈ {1000, 950, . . . , 100, 50}. This greatly speeds up
inference time, at a slight cost to fidelity. This sampling technique is generally referred
to as DDPM sampling.

The development of more advanced samplers, which do not require retraining the diffusion
model and which provide different tradeoffs between speed and fidelity, is an active area
of research. Other notable sampling techniques include Denoising Diffusion Implicit
Models (DDIM) (Song et al., 2020a) and the Stochastic Differential Equation (SDE)
solvers by Karras et al. (2022).

2.5.5. Denoising Network
The denoising network used in diffusion models is usually a modified U-Net (Ronneberger
et al., 2015). To this end, a timestep embedding is added to each convolutional residual
block. Ho et al. (2020) use sinusoidal positional encoding as proposed by Vaswani et al.
(2017) in the transformer, for their timestep embeddings. This embedding allows the
diffusion model to learn to treat different timesteps of the denoising process differently.
This is advantageous both from a practical and a theoretical standpoint; it allows the
parameters of a single U-Net to be shared across the whole diffusion process, which
greatly simplifies training and sampling from the model, and it leverages the fact that
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there is significant overlap between the denoising tasks of different timesteps. However,
the use of separate U-Nets for different parts of the diffusion process is also possible and
has been shown to increase model performance, at a great cost to parameter efficiency
(Balaji et al., 2022).

To improve the modeling performance of the original U-Net architecture, Ho et al. (2020)
introduce a self-attention block with a single attention head between the two convolutional
residual blocks at the 16x16 resolution level of the U-Net. This is inspired by the success
of transformer architectures (Vaswani et al., 2017). Dhariwal and Nichol (2021) further
explored the introduction of the attention mechanism through a series of ablation studies,
and found that using self-attention blocks between the residual blocks at the 32x32, 16x16,
and 8x8 resolution levels, instead of at just the 16x16 resolution level, and increasing the
number of attention heads in the self-attention block, further improves the performance
of the U-Net.

2.5.6. Latent Diffusion Models
Latent diffusion models are a variant of diffusion models that operate within the latent
space of a frozen VAE (Rombach et al., 2022). The VAE performs perceptual compression
with little effect on image quality and semantic content. Compared to pixel-space models,
latent diffusion models present several advantages. They are more parameter efficient,
requiring smaller U-Nets to achieve comparable resolution and performance to pixel-space
models. Additionally, latent diffusion models enable faster training and sampling due to
the reduced computational cost of operating in a compressed latent space. Furthermore,
these models can create more semantically cohesive images with fewer timesteps during
sampling, because the VAE decoder smoothes and interpolates the noisy latent samples.
They also facilitate high-resolution synthesis without the need for a cascade of diffusion
models to upsample the generated base image, such as in DALL-E 2 (Ramesh et al.,
2022) and Imagen (Saharia et al., 2022a), since the VAE decoder upsamples the latent
samples. Lastly, these models increase the accessibility of diffusion models as they can be
run locally by users and researchers in academia with limited computational resources.
Stable Diffusion is an example of a popular free and open-source latent diffusion model
(Rombach et al., 2022).

To train a latent diffusion model, one must first train a VAE on the dataset and freeze
its parameters. Next, the encoder network of the VAE is used to map data samples
x0 to latent vectors z0. The forward process q(zt | zt−1) is applied to these latent
vectors, resulting in a Markov chain of noisy latent vectors z1 . . . zT . The reverse process
pθ(zt−1 | zt) is then trained on these noisy latent vectors, using the same denoising
network architecture, training setup, and loss function as with pixel-space models (see
subsection 2.5.3).

Sampling from a latent diffusion model involves first sampling a random noise vector
zT ∼ N (0, I). The reverse process pθ(zt−1 | zt) is then applied for T timesteps, starting
from zT , using the same sampling technique as in pixel-space models (see subsection 2.5.4).
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Finally, the decoder network of the VAE is used to map the final latent vector z0 to pixel
space, resulting in a novel image sample x0.

2.5.7. Conditional Diffusion Models

While unconditional diffusion models excel at generating high-quality image samples
(Dhariwal and Nichol, 2021), their lack of control limits their applicability in real-world ap-
plications. Conditional diffusion models, denoted as pθ(xt−1 | xt, c), significantly enhance
the capabilities of diffusion models by integrating additional conditional information
(e.g., class labels, text descriptions, and reference images) into the diffusion process. This
extends their use to a wider range of tasks, including class-conditional image synthesis,
text-to-image synthesis, style transfer, and image interpolation.

Class Conditioning

Class conditioning is a straightforward approach to conditional generation, wherein the
diffusion model is conditioned on a singular class label. In practice, this conditioning is
implemented by appending an embedding of the class label to the timestep embedding
already provided to the denoising network (see subsection 2.5.5). This embedding can
be acquired either via a learned embedding layer or a static embedding scheme such as
one-hot encoding (Dhariwal and Nichol, 2021).

Despite its ease of implementation, class conditioning presents a significant limitation
in terms of its expressiveness due to its reliance on the classes on which the model
is trained. Consequently, while it can generate images for classes like “dog” or more
specific categories such as “german shepherd”, it falls short when tasked with generating
images that require the composition of concepts from different classes. This limitation
restricts the generation of images with complex features, such as “a photo of an astronaut
riding a horse on the moon”, which would require conditioning on text descriptions (see
subsubsection 2.5.7).

Classifier Guidance

An alternative or supplementary approach to class-conditional generation is classifier
guidance, proposed by Dhariwal and Nichol in 2021. This technique involves training a
separate classifier to categorize the noisy image samples generated during the sampling
process. The sampling process is then guided by incorporating gradients from the
classifier, scaled by a guidance scale factor, into the mean of the reverse diffusion process.
The perturbed mean, µ̂θ(xt | t, c), is computed as:

µ̂θ(xt | t, c) = µθ(xt | t, c) + s · Σθ(xt | t, c)∇xt log pϕ(c | xt, t) (2.11)
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where s is the guidance scale and pϕ(y | t, c) is the predicted probability of the target class
y by the classifier. Dhariwal and Nichol (2021) observed that increasing the guidance
scale enhances the quality of the generated samples, albeit at the expense of sample
diversity.

Classifier-Free Guidance

Motivated by the inconvenience of training a separate classifier and the benefits of a
unified architecture, Ho and Salimans (2022) proposed a method known as classifier-free
guidance. This technique bypasses the requirement of a separate classifier, instead
leveraging an implicit classifier defined by the model itself.

Classifier-free guidance operates by occasionally replacing the conditional information
with a null value during training. The conditional and unconditional outputs of the model
are then combined during sampling using a classifier-free guidance scale, which is similar
to the guidance scale used in classifier guidance. The modified prediction, ϵ̂θ(xt | t, c), is
computed as:

ϵ̂θ(xt | t, c) = ϵθ(xt | t, ∅) + s · (ϵθ(xt | t, c)− ϵθ(xt | t, ∅)) (2.12)

where s ≥ 1 is the guidance scale. Classifier-free guidance offers two key advantages over
classifier guidance: firstly, it enables the diffusion model to utilize its own knowledge
during guidance instead of relying on a separate classification model; secondly, it enables
guidance using conditional information that is not well-suited for prediction by a classifier
(e.g., text descriptions; Ho and Salimans, 2022). However, a disadvantage is that it
requires two full forward passes of the denoising network per timestep.

Upsampling Diffusion Models

Image upsampling refers to the process of enhancing the resolution of an image, typically
by upsampling a low-resolution version of the image. This can be achieved through
various techniques, including conditional diffusion models.

Upsampling diffusion models condition on the low-resolution input image in addition to
the noisy latent image and timestep embedding. Usually, the low-resolution image will
be upsampled to the target resolution using simple interpolation (e.g., bilinear), before
being concatenated channel-wise to the noisy latent image. This allows the model to
improve the resolution of the image while preserving its overall structure and content.

Research has shown that diffusion models can achieve impressive results on upsampling
tasks (Dhariwal and Nichol, 2021; Saharia et al., 2022b), outperforming other methods
in terms of metrics such as Fréchet Inception Distance (FID) and Inception Score (IS)
(introduced in section 2.12) as well as human comparison scores.
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Upsampling diffusion models are often used in combination with other diffusion models
to create a cascade of diffusion models (Ho et al., 2022), where the output of one model is
used as the input to the next, allowing for the generation of increasingly detailed images.
The simplest example of this is to first generate a low-resolution base image using a
regular diffusion model, then generate a final high-resolution image from the base image
using the upsampling diffusion model.

Text-Conditional Diffusion Models

Text-conditional diffusion models present a substantial advancement in the domain of
image generation by enabling the creation of images based on textual descriptions. The
primary challenge involves converting text into a meaningful representation that can
be effectively integrated into the denoising network. To achieve this, transformer-based
text encoders, such as T5 (Saharia et al., 2022a) or CLIP (introduced in section 2.6),
are commonly used to transform textual descriptions into embeddings (explained in
section 2.3). These embeddings are then incorporated into the denoising network using
techniques like cross-attention (Rombach et al., 2022) or concatenation before the self-
attention layers of the U-Net (Nichol et al., 2021), or even into the timestep embedding
akin to the class-conditional case (see subsubsection 2.5.7). This approach yields increased
flexibility and expressiveness in generating diverse images based on text descriptions
(Nichol et al., 2021).

Several popular text-to-image diffusion models have emerged and captured the attention
of the general public in recent years, including DALL-E 2, Stable Diffusion, Imagen, and
Midjourney. These models are trained on extensive datasets of (image, text) pairs and
utilize large pre-trained text encoders to accurately capture the semantic information
required for image generation. All of these models employ classifier-free guidance cap-
abilities to enhance the quality of the generated images. Some, such as DALL-E 2 and
Imagen, rely on cascaded upsamplers to upscale the generated images to achieve higher
resolutions, while others, like Stable Diffusion and Midjourney, utilize latent diffusion
models for efficient high-resolution generation.

These advancements in text-to-image diffusion models showcase the potential of combining
powerful text encoders with diffusion models for generating visually compelling images
that accurately reflect the provided textual descriptions. By employing techniques such
as classifier-free guidance, cascaded upsamplers, and latent diffusion, these models have
pushed the boundaries of what is possible in conditional image synthesis.

2.6. Contrastive Language-Image Pretraining (CLIP) †
Contrastive Language-Image Pretraining (CLIP) (Radford et al., 2021) was proposed by
OpenAI as a way to align related image and text embeddings. The method is capable
of zero-shot classification, outperforming SOTA models on various tasks such as visual

23



2. Background Theory

question answering and natural language inference.

The CLIP model consists of two components: an image encoder that uses either a ResNet-
50 (He et al., 2016) or ViT based architecture, and a text encoder using a transformer
based architecture. To train the model from scratch, Radford et al. created a dataset
consisting of 400M (image, text) pairs collected from the internet.

The overall model flow includes four steps: firstly, feature representations are extracted
from each modality; secondly, joint multimodal embedding vectors are calculated; thirdly
scaled pairwise cosine similarities between all possible pairs in both modalities are com-
puted; fourthly, these similarities are used to optimize the parameters with a symmetric
loss function such as cross-entropy loss.

In summary, CLIP is an effective approach to learning joint representations of images
and texts in an unsupervised manner by leveraging contrastive learning principles for
better alignment between related embeddings across different modalities. This makes it
particularly suitable for zero-shot classification tasks where labels may not be available
during training time but can be inferred at test time using only information provided by
both visual and textual data points. Furthermore, since CLIP embeddings capture the
semantic information of text and images well, they are also good candidates for use in
text-to-image models.

2.7. Reinforcement Learning
Reinforcement learning is a branch of artificial intelligence that focuses on training agents
to make decisions in an uncertain environment, given limited information. The central
problem reinforcement learning aims to solve is to learn a policy, which is a mapping from
states to actions, that maximizes the expected cumulative reward in a given environment.
It is important in the field of artificial intelligence as it enables the development of agents
that can learn and adapt to new situations autonomously. Applications of reinforcement
learning span across various domains, including robotics, finance, healthcare, gaming,
and natural language processing, among others.

2.8. Markov Decision Processes (MDPs)
Markov Decision Processes (MDPs) are the foundational framework for modeling decision-
making problems in reinforcement learning. MDPs represent the dynamics of an environ-
ment, accounting for uncertainty in both state transitions and rewards.

2.8.1. Concept of MDPs
An MDP is defined by a tuple (S, A, P, R), where:
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• S denotes the set of states in the environment.

• A denotes the set of actions available to the agent.

• P denotes the transition probability function P (s′|s, a), which represents the
probability of transitioning from state s to state s′ when taking action a. The
transition function must satisfy the Markov property, which states that the future
dynamics of the system depend only on the current state and action and not on
prior history.

• R denotes the reward function R(s, a) or R(s, a, s′), which represents the immediate
reward received after taking action a in state s, or after transitioning from state s
to state s′ via action a, respectively.

2.8.2. Policies and Value Functions
A policy, denoted by π(a|s), is a mapping from states to actions that determines the
agent’s behavior in the environment. Policies can be deterministic, where the agent
chooses a specific action given a state, or stochastic, where the agent chooses actions
according to a probability distribution. Policies can also be discrete, where the action
space is finite, or continuous, where the action space is infinite.

Value functions are used to estimate the expected cumulative reward an agent can obtain
from a given state or state-action pair under a specific policy. The state-value function
V π(s) is defined as the expected cumulative reward when starting from state s and
following policy π:

V π(s) = Eπ

[ ∞∑
t=0

γtRt|S0 = s

]
,

where γ ∈ [0, 1) is a discount factor that controls the relative importance of immediate
versus future rewards, and Rt denotes the reward at time step t. Value functions are
crucial in MDPs as they help evaluate and compare different policies.

2.8.3. Bellman Equation
The Bellman equation is a recursive relationship that connects the value function of a
state with the value functions of its successor states. It can be expressed as:

V π(s) =
∑

a

π(a|s)
∑
s′

P (s′|s, a)
[
R(s, a, s′) + γV π(s′)

]
.

This equation states that the value of a state under a policy is equal to the expected
immediate reward plus the expected discounted value of the next state when following
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that policy. The Bellman equation forms the basis for various solution methods in
reinforcement learning, such as value iteration, policy iteration, and Q-learning.

2.9. Proximal Policy Optimization (PPO)
Proximal Policy Optimization (PPO) is a modern policy optimization technique that
aims to address the challenges of traditional policy gradient methods. In this section, we
discuss PPO and its advantages over vanilla policy gradient methods.

2.9.1. Policy Gradient Methods
Policy gradient methods are a class of reinforcement learning algorithms that directly
optimize the policy by computing an estimate of the policy gradient and updating the
policy parameters using stochastic gradient ascent. The most commonly used policy
gradient estimator has the form:

ĝ = Et

[
∇θ log πθ(at|st)Ât

]
,

where πθ is a stochastic policy parameterized by θ, Ât is an estimator of the advantage
function at time step t, and the expectation Et[. . . ] denotes the empirical average over a
finite batch of samples.

The vanilla policy gradient method, often called REINFORCE, suffers from high variance
in gradient estimates, leading to slow convergence and unstable learning. Additionally,
traditional policy gradient methods struggle to handle continuous action spaces effectively.
Policy gradient methods can handle continuous action spaces by learning a policy that
outputs a probability distribution over actions, instead of directly outputting actions.

2.9.2. PPO and its Advantages
PPO improves upon the basic policy gradient method by using a surrogate objective
function to limit the change in policy at each update. PPO is similar to Trust Region Policy
Optimization (TRPO), which maximizes a surrogate objective subject to a constraint
on the size of the policy update. However, PPO simplifies the optimization problem by
avoiding the complicated KL-divergence constraint used in TRPO.

The primary advantage of PPO over traditional policy gradient methods is its stability
and robustness in learning. PPO addresses the issue of excessively large policy updates by
introducing a clipping mechanism that prevents the policy from deviating too much from
the previous policy at each update. This enables PPO to achieve better performance in
a wide range of tasks with varying complexity and dynamics.
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2.9.3. Algorithm
The PPO algorithm consists of several components, including the clipping technique and
multiple epochs of mini-batch updates. The main objective function used in PPO is
defined as:

LCLIP(θ) = Et

[
min

(
rt(θ)Ât, clip(rt(θ), 1− ϵ, 1 + ϵ)Ât

)]
,

where rt(θ) = πθ(at|st)
πθold (at|st) is the probability ratio between the new and old policies, and

ϵ is a hyperparameter (e.g., ϵ = 0.2). The objective function combines the clipped and
unclipped surrogate objectives, effectively providing a lower bound (or pessimistic bound)
on the unclipped objective while penalizing changes to the policy that move rt(θ) away
from 1.

The PPO algorithm alternates between sampling trajectories from the environment using
the current policy and updating the policy using stochastic gradient ascent on the clipped
surrogate objective function. The policy is updated using multiple epochs of mini-batch
updates to improve sample efficiency and stability.

In summary, PPO offers a more stable and robust learning algorithm compared to
traditional policy gradient methods by introducing a surrogate objective function that
limits the change in policy at each update. This enables PPO to achieve competitive
performance across a wide range of reinforcement learning tasks.

2.10. Generalized Advantage Estimation (GAE)
Generalized Advantage Estimation (GAE) (Schulman et al., 2015) is a technique for
estimating the advantage function used in policy gradient methods. It is closely related
to both MDPs and PPO, as it aims to improve the stability and efficiency of policy
optimization algorithms.

2.10.1. Importance of Advantage Estimation
Advantage estimation plays a critical role in policy gradient methods, as it helps reduce
variance in the gradient estimates and improves learning efficiency. The basic idea behind
advantage estimation is to subtract a baseline from the policy gradient estimator:

ĝ = Et

[
∇θ log πθ(at|st)Ât

]
.

Here, Ât is an estimator of the advantage function, which measures how much better an
action is compared to the average action in a given state.
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2.10.2. Limitations of Existing Methods

Existing advantage estimation methods often face a trade-off between bias and variance.
High-variance estimators, such as the Monte Carlo returns, can lead to slow convergence
and unstable learning. On the other hand, low-variance estimators, such as TD(λ) returns,
can suffer from bias due to bootstrapping, which may result in suboptimal policies.

2.10.3. Introduction to GAE

Generalized Advantage Estimation (GAE) addresses the bias-variance trade-off by intro-
ducing a weighting scheme that combines multiple estimators with different bias-variance
characteristics. GAE is defined as:

GAE(γ, λ) =
∞∑

t=0
(γλ)tδt,

where δt denotes the temporal difference error at time step t, γ is the discount factor,
and λ is a parameter that controls the trade-off between bias and variance.

By adjusting the parameter λ, GAE allows for flexible control over the bias-variance
trade-off, resulting in more stable and efficient learning.

2.10.4. Algorithm

The GAE algorithm is integrated within the PPO training loop, as it provides an improved
advantage function estimator for policy gradient updates. The algorithm consists of the
following steps:

1. Collect a batch of trajectories using the current policy. 2. For each trajectory, compute
the temporal difference errors δt. 3. Calculate the generalized advantage estimates
GAE(γ, λ) for each time step. 4. Update the policy using the PPO algorithm with the
computed GAE values as advantage estimates.

In conclusion, GAE provides a flexible and efficient method for estimating the advantage
function in policy gradient methods, addressing the inherent bias-variance trade-off and
improving the overall stability and performance of algorithms like PPO.

2.11. Datasets
This section describes the datasets used to train the base policies for the experiments
presented in chapter 6 and some of the datasets discussed in chapter 7.
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2.11.1. MNIST

The MNIST (Deng, 2012) dataset is a collection of 70,000 images of handwritten digits
(0-9). The dataset is divided into 60,000 training and 10,000 test samples (Deng, 2012).
The images are grayscale, 28x28 pixel representations. Due its simplistic nature, MNIST
is commonly used as a development dataset, where model and algorithm implementations
can be tested and validated to ensure that everything is working correctly before the
complexity is increased.

2.11.2. ImageNet

ImageNet (Deng et al., 2009) is a popular dataset for image classification. The dataset
is structured into WordNet (Fellbaum, 1998) concepts, where each class, often called a
“synset”, can be described by one or more words or phrases. The goal with ImageNet
is to represent each synset with at least 1,000 quality-controlled, human-annotated
images. The full dataset has more than 100,000 synsets (Russakovsky et al., 2014), while
ImageNet-1k, the dataset used in the ImageNet Large Scale Visual Recognition Challenge
(ILSVRC) (Russakovsky et al., 2014) and the most common subset of ImageNet, has
1000 synsets.

2.11.3. LAION-5B ‡

LAION-5B (Schuhmann et al., 2022) is a large-scale dataset of 5.85 billion English image-
text pairs that is open and freely accessible. The dataset was assembled by extracting
image links and their accompanying ALT-text from metadata files in Common Crawl
web data. These image-text pairs were then automatically filtered using CLIP to remove
suspected illegal content or images with bad image-text alignment. LAION-5B is therefore
a non-curated dataset not meant for real world use, but provides an opportunity for
researchers to test model training on a larger scale (Schuhmann et al., 2022). A subset
of LAION-5B was used to train text-to-image model Stable Diffusion (Rombach et al.,
2022).

2.11.4. MS-COCO Captions †

Microsoft Common Objects in Context Captions (MS-COCO Captions) (Chen et al.,
2015), or more commonly MS-COCO or just COCO, is a dataset with image-text pairs
often used to train and evaluate text-to-image models. MS-COCO Captions contains
over 330,000 images, each with five human-generated captions. The images themselves
were gathered by searching for common object pairs and scenes on popular image sharing
site Flickr (Lin et al., 2014).
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2.12. Evaluation Metrics †
This section presents Inception Score and Fréchet Inception Distance, the evaluation
metrics most commonly used to automatically evaluate text-to-image models and their
image fidelity.

2.12.1. Inception Score
The Inception Score (IS) (Salimans et al., 2016) is a metric used to evaluate the quality of
generated images in generative models. The IS is calculated by first using an Inception v3
model (Szegedy et al., 2016) trained on the ImageNet (Deng et al., 2009) dataset to classify
the generated images and assign them probabilities of belonging to the different classes
the Inception model was trained on. The idea is that the more confident the Inception
model is in its classification, e.g. by predicting just one class with high confidence, the
higher quality the generated image is, and a low confidence prediction, i.e. a predicted
class distribution that approaches a uniform distribution, would indicate a lower quality
generation (Salimans et al., 2016). The IS is therefore calculated as the average of the
Kullback-Leibler divergence (KL-divergence) between the predicted class probabilities
and a uniform distribution for all images, with a lower IS indicating a higher quality
model.

The reliance on predicting a set of predefined classes made it difficult to assess the quality
of generative models trained on other datasets than ImageNet, and the metric fell out
of favor as researchers sought more accurate ways to automatically evaluate generative
models (Barratt and Sharma, 2018).

2.12.2. Fréchet Inception Distance
Proposed in 2017 by Heusel et al., the Fréchet Inception Distance (FID) is an automatic
evaluation metric that attempts to solve some of the problems seen with the IS. Instead
of measuring image fidelity based on the confidence of a fixed classifier, like the IS does,
FID calculates the Fréchet distance between the statistics from a set of real images to
that from a set of generated images (Heusel et al., 2017). Like with the IS, the Inception
v3 model is used. But instead of looking at the output of the final classification, the
activations from the final pooling layer are used to form two distributions, one for each of
the set of images. The FID score is then the Fréchet distance between these distributions,
where a lower distance means the two sets of images are more similar.

The FID-30K score is the FID score calculated when 30,000 random images from a
dataset are compared against 30,000 generated samples. In 2023, FID score is the most
common automatic evaluation metric for text-to-image models, with FID-30K on the
MS-COCO Captions validation set being the benchmark for image fidelity.

30



3. Related Work

In this chapter, we provide an overview of the development of Reinforcement Learning
from Human Feedback (RLHF) as a fine-tuning method for aligning generative models
with human preferences. We first review the foundational work by OpenAI on aligning
Large Language Models (LLMs) using RLHF, which led to notable developments such
as ChatGPT (Schulman et al., 2022) and GPT-4 (OpenAI, 2023), and which serves as
the main inspiration for our approach. We then cover prior and concurrent works in
text-to-image model alignment and discuss their relation to our work.

3.1. Aligning Large Language Models with Human
Preferences

In a series of papers, OpenAI introduced and demonstrated the effectiveness of RLHF
for aligning transformer-based LLMs, leading to significant improvements in accessibility
and safety. Here, we briefly review four milestone papers.

Deep Reinforcement Learning from Human Preferences. The introduction
of RLHF can be traced back to the seminal work of Christiano et al. (2017) on deep
reinforcement learning from human preferences as a method for learning complex goals
in reinforcement learning tasks without direct access to a reward function. The authors
demonstrated that this approach could effectively solve challenging reinforcement learning
tasks, such as Atari games and simulated robot locomotion, using human feedback on less
than one percent of the agent’s interactions with the environment. This work significantly
reduced the cost of human oversight for State-of-the-Art (SOTA) reinforcement learning
systems and demonstrated that complex novel behaviors could be trained within an hour
of human time.

Fine-Tuning Language Models from Human Preferences. Building upon Chris-
tiano et al.’s work, Ziegler et al. (2019) were the first to apply RLHF to natural language
tasks, including text continuation and summarization. They leveraged advances in
generative pretraining of LLMs and showed that, with a relatively small number of
human-evaluated comparisons, their models could produce high-quality text that aligned
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with human preferences. This paper demonstrated the feasibility and potential of ap-
plying RLHF to natural language processing tasks and laid the groundwork for LLM
fine-tuning using RLHF.

Learning to Summarize from Human Feedback. Subsequent work by Stiennon
et al. (2020) further explored the application of RLHF for training language models on
summarization tasks. The authors demonstrated that fine-tuning LLMs using RLHF
significantly improved summarization performance, outperforming both human reference
summaries and larger models fine-tuned with supervised learning alone, as assessed by
human evaluators. This work provided additional evidence that RLHF can be successfully
applied to language-related tasks.

Training Language Models to Follow Instructions with Human Feedback.
Advancements to the RLHF methodology by Ouyang et al. (2022) showed that language
models could be trained to follow instructions using human feedback. Their approach,
dubbed InstructGPT, improved truthfulness and reduced toxic output generation, as
assessed by human evaluators, while maintaining performance on public natural language
benchmarks when compared to the base GPT-3 (Brown et al., 2020) model. This work
demonstrated that RLHF could be applied to a wide range of tasks and added to the
growing body of evidence supporting the efficacy of RLHF in aligning language models
with human preferences; It represents the main inspiration for our work.

3.2. Aligning Text-to-Image Models with Human
Preferences

While aligning LLMs using RLHF has been extensively explored, the field of aligning
text-to-image models using human preferences is still emerging. In this section, we review
some prior and concurrent works that focus on different aspects of aligning text-to-image
models using human preferences.

Optimizing Prompts for Text-to-Image Generation. The work by Hao et al.
(2022) is one of the earliest attempts to apply RLHF to improving text-to-image models.
They proposed a method called prompt adaptation, which automatically adapts user
input to model-preferred prompts. The method consists of two steps: supervised fine-
tuning of a pre-trained language model on manually engineered prompts, followed by
reinforcement learning of the language model to explore better prompts. Their approach
outperformed manual prompt engineering both in terms of automatic metrics and human
preference ratings. Although their method shares similarities with ours, such as using
RLHF to improve text-to-image models, they optimize an LLM policy for automatic
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prompt engineering, used as a pre-processing step, without fine-tuning the text-to-image
model itself.

3.3. Concurrent Works
Several concurrent works also aim to align text-to-image models using human feedback.
Most focus on creating reward models which model human preferences, which is only
part of the RLHF framework. Here, we discuss their approaches and how they relate to
our work.

Aligning Text-to-Image Models using Human Feedback. Lee et al. (2023)
proposed a fine-tuning method for aligning text-to-image models using human feedback
in three stages: collecting human feedback, training a reward function, and fine-tuning
the text-to-image model using reward-weighted likelihood maximization. Their method
generated objects with specified colors, counts, and backgrounds more accurately than
the pre-trained model.

This work is closely related to ours, as both approaches aim to align diffusion-based
text-to-image models using human preferences by directly fine-tuning the diffusion model.
However, there are some differences in methodology: Lee et al. do not use reinforcement
learning and instead fine-tune the model using a reward-weighted maximum likelihood
objective, which is more similar to standard diffusion training. The authors note that
an RLHF-based approach may lead to better models in terms of alignment with human
preferences, but left exploration of this to future work as it would require “extensive
hyperparameter tuning and engineering”.

Better Aligning Text-to-Image Models with Human Preference. Wu et al.
(2023) proposed a method called Human Preference Score (HPS) for adapting text-to-
image models to better align with human aesthetic preferences. They collected human
preferences based on real user interactions with Stable Diffusion and trained a Contrastive
Language-Image Pretraining (CLIP)-based reward model. They demonstrated that HPS
outperformed existing scoring methods and had good generalization capability toward im-
ages generated from other models. By tuning Stable Diffusion with the guidance of HPS,
their adapted model was able to generate images that were more preferred by human users.

While this work is closely related to ours, it does not employ reinforcement learning
for fine-tuning. Instead, the authors opt for the much simpler option of fine-tuning
the text-to-image model using Low-Rank Adaptation (LoRA) (Hu et al., 2021) on a
reward-filtered dataset.
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ImageReward: Learning and Evaluating Human Preferences for Text-to-
Image Generation. Xu et al. (2023) proposed ImageReward, a BLIP-based (Li et al.,
2022) general-purpose text-to-image human preference reward model trained on a large
dataset of expert comparisons. ImageReward outperformed existing scoring methods
in human evaluation and was presented as a promising automatic metric for evaluating
and improving text-to-image synthesis. Although Xu et al.’s work only proposes a
reward model, the authors note that their reward model could be used with future RLHF
frameworks for text-to-image models, such as our proposed method.

Pick-a-Pic: An Open Dataset of User Preferences for Text-to-Image Gener-
ation. Kirstain et al. (2023) introduced Pick-a-Pic, an open dataset containing over
500,000 images generated from 35,000 distinct prompts and combined with real user
preferences collected through a custom web interface. Similar to Wu et al.’s work, Kirstain
et al.’s approach is based on human preferences collected from real user interactions with
Stable Diffusion. They used this dataset to train a CLIP-based reward model called
PickScore, which demonstrated superhuman performance on predicting human prefer-
ences and correlated much better with human rankings than prior automatic evaluation
metrics, such as HPS and ImageReward. While their work provides a valuable resource
for the research community, they do not explore the application of their reward model in
aligning text-to-image models with RLHF.

3.4. Conclusion
In summary, the field of aligning generative models using RLHF has seen significant
progress in recent years. The success of RLHF in aligning large language models inspired
our work on applying this approach to diffusion-based text-to-image models. Although
our work is the first to propose using RLHF to directly fine-tune diffusion-based text-
to-image models, some prior and several concurrent works have explored similar problems.

While the field is still in its infancy, we anticipate that there will be significant advance-
ments in RLHF-based alignment for text-to-image models in the coming months. By
understanding the current SOTA and incorporating lessons learned from related works,
our research aims to contribute to pushing the boundaries of what can be achieved with
text-to-image models aligned with human preferences.
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This chapter explains the first two steps of the methodology presented in this Thesis (see
section 1.3 for a high-level overview of the methodology). First, the methodology for task
specification and labeling dataset curation is presented (step 1). This involves generating
sample images for labeling in tasks of fixed sizes based on curated prompts that cater
to the base diffusion model’s knowledge. Then, the methodology for human preference
collection is explained (step 2). The human labelers are given tasks of images generated
in the first step and are asked to assemble a total preference order from the images within
the tasks. To facilitate this process, a custom labeling software is employed.

4.1. Task Specification and Sample Data Generation
Before a human labeler can start collecting preferences, sample images for labeling
are generated. The images are generated in tasks of size K, with all images in a task
generated using the same conditioning prompt. The task prompts are sampled randomly
from a list of prompts curated at the start of the experiment.

Since the proposed methodology is an alignment technique, the list of prompts should
be curated based on the knowledge already ingrained in the base diffusion model. We
therefore limit task prompt selection to only that which the model is already somewhat
capable of doing when curating the prompt list. We theorize that to achieve an efficient
reward model training, most tasks should contain a range of both “good” and “bad”
generations, to make the labeled order within each task as accurate to its true distribution
as possible. Task size specification then becomes a trade-off between a more accurate
order (higher K) and faster labeling (lower K).

Exact values for various sampling details, dataset size and task size are specified on a
per-experiment-basis in chapter 6.

4.2. Human Preference Collection
After a labeling dataset has been curated, the evaluators can start collecting human
preferences. Adapting the preference collection methodology introduced by Stiennon et al.
(2020), we present a task to the human labeler and ask them to create a total preference
ordering of images within that task. To do this, the human labeler is presented with two
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Figure 4.1.: Screenshot of the custom labeling software. Captured during the preference
collection of Experiment 4: Macaw.

images from the same task, as well as the task’s prompt, and is assigned with selecting
which of the two images they prefer given a set of static, predefined instructions. After
a preference is selected, another pair of images from the same task is presented to the
human labeler. Once all the images in a task have been compared against one another,
the human labeler moves onto the next task.

Labeling Software. Figure 4.1 shows the “Labeling” pane of our custom preference
collection software. In the middle of the screen is the main interface for making image-to-
image comparisons. At the top of this interface is a box with the current task’s prompt.
Below the task prompt are the two images being compared. When the labeler decides
which image they prefer given the instructions and the task prompt, a button under the
corresponding image can be pressed. Alternatively, the labeler can press a key on the
keyboard to quickly mark their preference and move onto the next comparison. The
labeling software also supports going back and forth between comparisons to relabel
images if the labeler changes their opinion or makes a mistake.

Whenever a preference comparison is made, the data is saved to a database for reliable
storage. This ensures the human labeler can continue from where they left off and not be
afraid of losing valuable time and progress in the event that something were to happen
with the labeling software.

The labeler has access to two additional panels of information at all times. The panel on
the right-hand side of the workspace displays the instructions for the preference collection.
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The panel on the left-hand side of the workspace displays the labeler’s progress. This
panel shows which task they are currently labeling and an estimate of the remaining
time to finish labeling.

Further images of the software as well as a more thorough description of its design and
functionality is available in Appendix E.

Transitivity. Following the definition of a labeled task as a total ordering of images,
we can assume that a task is transitive. By assuming transitivity, the amount of image-
to-image comparisons the human labeler needs to make is greatly reduced. To support
transitivity, the labeling software uses binary insertion sort (Auddy, 2023). Binary
insertion sort combines binary search with insertion sort to efficiently locate the position
in the order of sorted images to insert the next image. This reduces the comparisons
needed to order a task, to the comparisons that make up the binary search. For this
reason, binary insertion sort is especially efficient for labeling small tasks (we use task
size K = [5, 8]; Auddy, 2023).

Transitivity assumes consistent human labeling. When the human labelers become
inconsistent, cycle comparisons can appear, breaking the total ordering. This limitation
still holds when labeling in the software’s transitivity mode, but here such potential
cycles are effectively broken by which comparison the labeler is presented with first. In
experiments where we use transitive labeling, we therefore try to naturally guide the
labeler to acyclic labeling by constructing instructions that promote transitivity, rather
than relying on arbitrarily solving cycles in software.
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Fine-tuning Diffusion Models

This chapter presents a novel approach for aligning diffusion-based text-to-image models
with human preferences using Reinforcement Learning from Human Feedback (RLHF).
The chapter begins by reframing the reverse diffusion process as a Markov Decision
Process (MDP), which allows for the application of reinforcement learning techniques to
optimize the diffusion model policy. The chapter then moves on to a detailed presentation
of the proposed reward modeling approach, which is designed to capture complex human
preferences and handle simultaneous text and image input. The reward model architecture
and training methodology are discussed, with insights drawn from related studies in
reinforcement learning for fine-tuning language models. Lastly, the chapter presents the
policy optimization setup, focusing on an implementation of Proximal Policy Optimization
(PPO) tailored to work with diffusion models

5.1. Reframing the Reverse Diffusion Process as a Markov
Decision Process

Our approach involves reframing the reverse diffusion process, defined as a Markov chain
(see section 2.5), as a MDP. To this end, we present how states, actions, and reward
functions can be defined in the context of diffusion models in the following subsections.

State Space. The state space S is defined by the original conditional diffusion model
as st = (xt, t, c), where xt is the intermediate noisy image latent at timestep t in the
diffusion process, t is the current diffusion timestep, and c represents the conditioning
(i.e., text prompt). The initial state is denoted as sT = (xT , T, c) with xT being randomly
sampled Gaussian noise. The terminal states are given by s0 = (x0, 0, c) and correspond
to completed image samples.

Action Space. The action space A is defined by a multivariate Gaussian distribution
with mean µt and diagonal standard deviation σt, as produced by a single reverse step of
the diffusion model1, for the associated timestep. The action space is continuous and

1i.e., a pass through the U-Net, producing ϵt, which is transformed into µt and σt by the noise schedule.
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represents pixel values2, depending on the diffusion model employed. Actions are sampled
from this distribution, at ∼ N (µt, σt), akin to a reparameterization trick. In addition
to the randomized initial states, this sampling process makes the MDP environment
stochastic.

Transition Function. A key observation about the action space is that sampling at is
equivalent to Denoising Diffusion Probabilistic Model (DDPM) sampling of xt−1, hence,
an action directly defines its subsequent state. This allows for reparameterization of
the reverse diffusion process, which originally defines a state transition function, into a
policy: πθ(at|xt) := pθ(xt−1|xt). This explicitly defines the state transition function as
P (st−1|st, at)→ (at, t− 1, st[c]). Furthermore, the MDP trajectories can be represented
by the original reverse diffusion trajectories: τ = (sT , sT −1, . . . , s1, s0). However, as per
standard diffusion model sampling, only a select few timesteps from the trajectory are
actually employed during the sampling process (see section 2.5).

Reward Model. The reward model, denoted rϕ(st) : S → R, produces a scalar reward
that is zero for all states except for terminal states s0 (reward is given at episode end,
similar to a bandit problem). The reward should be high for terminal states (completed
image samples) that are likely to be preferred by humans and low for terminal states
that are less likely to be preferred. The model parameters ϕ are learned from a dataset
of human comparisons, where each comparison consists of a pair of terminal states and
a label indicating which state is preferred by a human (see chapter 4). The training
objective for ϕ is to minimize the disagreement between the reward model’s predictions
and the human labels. This approach is known as reward modeling and is often used in
reinforcement learning to learn complex tasks that are difficult to define with a simple,
hand-crafted reward function. Our proposed reward model for accomplishing this is
detailed in the following section.

5.2. Reward Modeling
In this section, we present the architecture of our proposed reward model. The reward
model serves as a proxy for human preferences, guiding the fine-tuning of the diffusion
model policy in a reinforcement learning environment. The following sections describe
the design criteria and inspiration behind our proposed reward model, as well as the
architecture and training methodology.

Design Criteria and Inspiration. The reward model is designed with several key
criteria in mind:

2or latent values if the diffusion model operates in a latent space.
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1. The reward model should have sufficient expressive power to capture complex
human preferences.

2. The reward model should be multimodal, enabling it to handle simultaneous text
and image input, as text-image alignment is an essential part of human preferences.

3. The reward model should produce a scalar reward for each text-image pair provided.

To address these criteria, we derive inspiration from two related studies: Stiennon et al.
(2020) and Dhariwal and Nichol (2021).

Stiennon et al. (2020) investigate the fine-tuning of Large Language Models (LLMs) using
RLHF. In their work, they initialize the reward model from the same base model as the
policy. This approach ensures that the reward model has comparable expressive power to
the policy being evaluated and guarantees that both models operate in similar domains,
thereby facilitating a consistent understanding of the inputs.

Dhariwal and Nichol (2021) propose classifier guidance for diffusion models (refer to
subsubsection 2.5.7). They employ U-Net encoder blocks analogous to those used in
constructing their diffusion models, in conjunction with a final attention pooling layer
(Radford et al., 2021), to develop their classifier architecture. The classifier is trained from
scratch to predict the conditions associated with intermediate noisy images during the
diffusion process. Consequently, their architecture does not simultaneously accommodate
both images and conditions as input.

Architecture. Building on the design criteria and drawing inspiration from Stiennon
et al. (2020) and Dhariwal and Nichol (2021), we propose the following reward model
architecture:

1. Start with a pre-trained U-Net of a diffusion-based text-to-image model, consisting
of an encoder, middle bottleneck, and decoder.

2. Remove the decoder and feed the output of the bottleneck into a newly initialized
cross-attention pooling layer instead. This layer attends to both text and image,
producing a scalar reward output.

3. Freeze all parameters except for the new cross-attention parameters to preserve the
encoding capabilities and alignment with the initial policy model.

The architecture meets our design criteria by incorporating both text and image input
using a cross-attention mechanism, and the large U-Net encoder ensures that the reward
model has great expressive power. Furthermore, by leveraging the pre-trained U-Net from
the diffusion-based text-to-image model, our architecture guarantees that the reward
model operates in a similar domain as the policy being evaluated.

Another benefit of this approach is that when the diffusion model employed is a latent
diffusion model, which is the case for our experiments involving Stable Diffusion, our
reward model can directly take latent input. As a result, there is no need to decode

41
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images produced by the policy before feeding them into the reward model, which provides
a stronger coupling between the text-to-image model and reward model, additional
computational efficiency, and avoids lossy decoding-encoding.

Training Objective. The training process for our reward model is based on the
methodology presented by Ouyang et al. (2022), which is, in turn, inspired by Stiennon
et al. (2020). We train the reward model on a dataset of comparisons between pairs
of image samples generated using the same prompt by the base diffusion model (see
chapter 4). A cross-entropy loss is utilized, with differences in rewards indicating the log
odds of one response being preferred over the other by a human labeler.

Following Ouyang et al. (2022), to speed up comparison collection, labelers rank more
than two images per prompt, generating a set of pairwise comparisons for each prompt
(see chapter 4). However, treating each comparison as a separate data point can lead
to overfitting (Ouyang et al., 2022). To address this issue, we train the model using all
pairwise comparisons from each prompt as a single batch element. This approach is more
computationally efficient, requires fewer forward passes of the reward model, and helps
avoid overfitting.

Specifically, the loss function for the reward model is:

L(ϕ) = 1(k
2
)E [log (σ (rϕ(xwinner)− rϕ(xloser)))] (5.1)

where K is the number of image samples per prompt, σ is the sigmoid function, rϕ(xwinner)
and rϕ(xloser) represent the rewards for the winning and losing images, respectively.

Classifier-Free Reward Guidance. We retain the classifier-free guidance capabilities
of the original diffusion model by randomly dropping the text condition during training.
This approach allows us to control how much weight to assign to text conditioning
after training, ensuring that the text plays a crucial role in determining the reward and
maintaining the importance of text-image alignment.

Reward Standardization. Following Ouyang et al. (2022), we standardize3 the
rewards produced by the reward model before using them for reinforcement learning.
Since the reward model loss is invariant to shifts in reward, we standardize the reward
model to produce a mean reward of 0.0 and a standard deviation of 1.0, given the training
dataset. This standardization makes it easier to compare reinforcement learning runs
using different reward models and reduces the need to adjust hyperparameters.

3Also referred to as normalization in the literature
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5.3. Policy Optimization

r̃ϕ(x) = rϕ(x)− µr

σr
(5.2)

where µr and σr are the mean and standard deviation of training dataset rewards
respectively.

KL Regularization. Following Ziegler et al. (2019), we modify the reward model
by adding a per-timestep KL penalty from the base diffusion model to mitigate mode
collapse of the learned generative distribution and overoptimization towards the reward
model. This regularization technique keeps the diffusion policy from diverging too much
from the base diffusion model, and subsequently from the range where rϕ is valid (Ziegler
et al., 2019). Additionally, it serves as an entropy bonus, and replaces the traditional
entropy bonus in most available implementations (Ziegler et al., 2019). The modified
reward model can be written as:

R(st) = r̃ϕ(st)− β KL(πθ ∥ πBase) (5.3)

where πθ is the policy model, πBase is a frozen copy of the policy before optimization, β
is the coefficient of the KL penalty, and KL is an estimator of the KL divergence. While
Ziegler et al. (2019) uses KL(p ∥ q) = log(p/q), we use KL(p ∥ q) = ((p/q)−1)− log(p/q),
as it is an unbiased estimator with lower variance (Schulman, 2020).

5.3. Policy Optimization
With the MDP formulation established, it is possible to apply policy gradient methods
such as REINFORCE, Trust Region Policy Optimization (TRPO), and PPO to optimize
the policy πθ. Following Ziegler et al. (2019), we chose to use PPO in all our experiments.

Our implementation of PPO is loosely based on the continuous PPO implementation in
the CleanRL library4. Our adaptation of PPO for RLHF is inspired by the available LLM
approaches, notably, OpenAI’s lm-human-preferences5, CarperAI’s trlX6, and Lucidrain’s
PaLM-RLHF7.

The following subsections describe our PPO setup, which includes an overview of the mod-
els used and the training loop (rollout + optimization). Experiment-specific parameters
are presented with the relevant experiments in chapter 6.

4Available at: https://github.com/vwxyzjn/cleanrl
5Available at: https://github.com/openai/lm-human-preferences
6Available at: https://github.com/CarperAI/trlx
7Available at: https://github.com/lucidrains/PaLM-rlhf-pytorch
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Models. The main two models needed for our method are the policy model πθ and
reward model rϕ. These are both initialized from diffusion models; we use a 64x64
ImageNet-1k model8 by OpenAI in our class-conditional experiments and Stable Diffusion
v1.59 by Runway in our text-to-image experiments. Additionally, we make copies of both
to use as the base model and the value function respectively. The base model is used for
computing KL penalty, while the value function is needed for value estimation in PPO
(see section 2.9). Parameters are not shared between any models and are frozen for the
reward and base models. Remark that, unlike Stiennon et al. (2020), the models are not
initialized from supervised-finetuned weights.

Rollout. During rollout, sampling trajectories are generated from multiple parallel
environments and stored in a rollout buffer for use during optimization. The image
generation settings used are shared across all trajectories and are the same as the
ones used during dataset curation for reward model training (see chapter 4). The only
difference between trajectories is the text condition used, which is uniformly sampled
from our prompt dataset, and the initial state Gaussian noise xT . This ensures that the
model operates close to the domain where the reward model r is valid, and simplifies
implementation. Notably, employing the same timestep schedule for all trajectories
ensures that they have the same length and terminate in unison, which allows for a more
efficient storage layout in the buffer and better utilization of GPU resources.

Rollout is equivalent to standard diffusion model sampling (see section 2.5), the only
difference being that the intermediate states are saved to the rollout buffer with associated
log-likelihoods, values, and rewards.

Log-likelihoods are computed under the action distribution on a per-pixel basis, then
summed over the action dimensions to produce the joint log-likelihood for the state.
Values are computed by the value function. Rewards are computed in accordance with
section 5.2. To compute the KL penalty, log-likelihoods have to be computed under the
action distribution of the base policy as well. The completed image samples are not saved
to the rollout buffer, but are kept for logging/evaluation purposes.

Optimization. During optimization, the PPO algorithm updates the policy model πθ

based on the states, log-likelihoods, values, and rewards collected in the rollout buffer.
The optimization procedure is performed with several modifications from the original PPO
algorithm proposed by OpenAI, following current best practices (Schulman et al., 2017;
Huang et al., 2022). Some of these modifications include normalizing advantages and
clipping values. The implementation is similar to the one used in lm-human-preferences
(Ziegler et al., 2019). Advantages are estimated using Generalized Advantage Estimation
(GAE) (Schulman et al., 2015).

8Model weights available at: https://github.com/openai/guided-diffusion
9Model weights available at: https://huggingface.co/runwayml/stable-diffusion-v1-5
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5.3. Policy Optimization

The rollout buffer contents are utilized as a batch for optimization, where the batch size
corresponds to the number of environments multiplied by the number of timesteps used
for sampling. The batch is split into multiple minibatches, with specific values for these
quantities varying across experiments. Notably, minibatches comprise random states
from different environments, as opposed to keeping states from same trajectory grouped.
This is a deviation from OpenAI’s approach, where all tokens in a response are treated
as a single batch element. We leave an investigation of how this affects performance to
future work.

For optimization, we employ the AdamW optimizer (Loshchilov and Hutter, 2017) with
separate learning rates for the policy and value function. Learning rates are constant but
include a linear warmup for a specified number of optimization steps. Gradient clipping
is applied to stabilize learning, while gradient accumulation and gradient checkpointing
can be optionally employed to adjust minibatch size and save on VRAM usage. Most
experiments utilize full-precision (FP32), but we also experiment with mixed-precision
techniques such as FP16, TF32, and 8-bit optimizer (see chapter 6).
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6. Experiments

This chapter presents the series of experiments conducted to iteratively develop and test
the methodology laid out in chapter 4 and chapter 5. These experiments were designed
to address the research questions posed in chapter 1 and contribute insights that help
achieve the overarching goal of this thesis. In the following sections, an experimental
plan outlining the high-level structure of the experiment series is provided, followed by
each experiment’s description, setup, results, and evaluations.

6.1. Experimental Plan
The experiment series is divided into three sections of increasing complexity and with
an overarching goal per section. The end goal was to attempt to align a state-of-the-art
text-to-image model (e.g., Stable Diffusion) using human preferences. To accomplish this,
the experiments started with simple diffusion models trained on restricted datasets like
MNIST and ImageNet-1k, low-resolution images like 32×32 and 64×64, and unconditional
or class-conditional settings, gradually incorporating human feedback, before moving
on to the more complex and higher-resolution text-to-image model. This allowed for
scaling up the approach as it proved successful and ensured a solid understanding of the
methodology as it evolved.

A high-level overview of the experiment series is presented in Table 6.1.

Section 1: Aligning Simple Diffusion Models Using Fixed Reward Functions.
The first section of the experiment series focused on aligning simple diffusion models
using fixed reward functions. The main goal was to verify that diffusion models could
learn from reward signals. We defined reward functions such that it was trivial to observe
the optimization process, making these experiments useful for testing and debugging
during the initial implementation phase of our methodology.

Section 2: Aligning Simple Diffusion Models Using Human Feedback. The
second section of the experiment series focused on aligning simple diffusion models using
human feedback. The main goal was to incorporate human feedback into the reward
model and to verify that the optimized policy effectively learned the human preferences
captured by the reward model.
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Num. Experiment Name Base Policy Reward Model
Section 1: Aligning simple diffusion models using fixed reward functions

1 Target Image 32× 32 MNIST (subset) Fixed function: modified
RMSE to a target image

2 Colorfulness 64× 64 ImageNet-1k Fixed function: color vivid-
ness and diversity

Section 2: Aligning simple diffusion models using human feedback

3 Aesthetic Score 64× 64 ImageNet-1k Existing model: LAION
Aesthetics Predictor V2

4 Macaw⋆ 64× 64 ImageNet-1k Custom model: trained to
capture human preferences
for the macaw class of
ImageNet-1k

5 Macaw: Without RL 64× 64 ImageNet-1k Custom model: trained to
capture human preferences
for the macaw class of
ImageNet-1k

Section 3: Aligning diffusion-based text-to-image models using human feedback

6 Pink⋆ Stable Diffusion v1.5 Custom model: trained to
capture human preferences
for 4 basic prompts of anim-
als wearing pink sunglasses

7 PickScore Stable Diffusion v1.5 Existing model: PickScore
v1

Table 6.1.: High-level overview of the experiment series. Experiments marked with ⋆

constitute the main tests of our methodology, following all four steps outlined
in section 1.3.

Section 3: Aligning Diffusion-Based Text-to-Image Models Using Human
Feedback. The third section of the experiment series aimed to align state-of-the-art
text-to-image models using human preferences. This involved scaling the method to
much larger and more complex diffusion models, which posed technical challenges, such
as multi-GPU and mixed precision training.

6.2. Experimental Setups, Results, and Evaluations
In the following sections, descriptions, setups, results, and evaluations for each experiment
in the series are presented, organized according to the high-level structure outlined in
Table 6.1.

Table 6.2 provides an overview of hyperparameters for all experiments. It is provided
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for completeness, as a reference to the reader, and to anyone wishing to recreate our
experiments.

6.3. Training Hardware
The experiments were run using two different hardware configurations. For the smaller
experiments, a machine equipped with a single NVIDIA GeForce RTX 4090 24 GB
GPU was utilized. For the text-to-image experiments, which required more VRAM, the
IDUN High-Performance Computing (HPC) cluster (Själander et al., 2019) was utilized.
Specifically, a Dell DSS 8440 node with 10 × NVIDIA A100 80 GB GPUs was employed.
Refer to Table 6.2 for an overview of the hardware configuration used per experiment.

Section 1: Aligning Simple Diffusion Models Using Fixed
Reward Functions

6.4. Experiment 1: Target Image
The first experiment, dubbed Target Image, is a simple experiment involving a very
basic diffusion model and reward function. The experiment was designed such that the
optimization process yielded an easily observable binary outcome: it worked if all images
converged on the same target image, and it did not work if they did not. Hence, we are
trying to intentionally overfit the model using reward signals.

This experiment does not follow the methodology presented in section 1.3. The reward
model was fixed to a simple function, thus only Step 4 of the methodology was carried
out and tested. The primary motivation was to demonstrate that diffusion models
could be trained using the methodology for mapping diffusion models to a reinforcement
learning environment (see section 5.1). A secondary motivation was to validate the
implementation of Proximal Policy Optimization (PPO) and to become more familiar
with the hyperparameter values of the training scheme.

6.4.1. Experimental Setup
A custom 32x32 diffusion model was trained using the improved-diffusion1 code by
OpenAI. The model was trained on a subset of the MNIST dataset consisting of only the
images of the digit “4” (see subsection 2.11.1 for more information on MNIST). Since the
MNIST dataset is 28× 28, it was first upsampled to 32× 32 using bilinear interpolation.
This choice of increasing the resolution to 32 × 32 was made as a necessity given the
constraints of the improved-diffusion code, which only supports resolutions of 32, 64, and
256 (without modifications). For simplicity, training on all digits was not conducted, as

1Available at: https://github.com/openai/improved-diffusion.
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Target
Image

Colorful-
ness

Aesthetic
Score

Macaw Macaw:
Without
RL

Pink PickScore

Diffusion

Base Policy 32 × 32
MNIST
(subset)

64 × 64
ImageNet-
1k

64 × 64
ImageNet-
1k

64 × 64
ImageNet-
1k

64 × 64
ImageNet-
1k

Stable
Diffusion
v1.5

Stable
Diffusion
v1.5

Resolution 32× 32 64× 64 64× 64 64× 64 64× 64 512×512 512×512
Cond. Type Uncond. Class Class Class Class Text Text
CFG Scale - - - - - 7.5 7.5
Latent Diff. 7 7 7 7 7 3 3
Timesteps 25 32 50 25 25 16 50

Reinforcement Learning

RM Type Fixed
function

Fixed
function

Existing
model

Custom
model

Custom
model

Custom
model

Existing
model

Environments 32 32 32 32 32 80
(8 × 10)

80
(8 × 10)

GAE γ 1 1 1 1 - 1 1
GAE λ 0.95 0.95 0.95 0.95 - 0.95 0.95
PPO Clip Coeff. 0.2 0.2 0.2 0.2 - 0.2 0.2
PPO VF Coeff. 0.5 0.5 0.5 0.5 - 0.1 0.1
KL Penalty Coeff. 0 0.02 0.03 0.02 - 0 0

General Optimization

Epochs 3000 400 500 250 750 25500 20850
Minibatch Size 25 32 25 25 100 16 10
Learning Rate Policy 1e-7 1e-6 5e-7 1e-6 1e-6 1e-7 5e-7
Learning Rate VF 1e-5 1e-5 1e-5 1e-5 - 1e-6 1e-6
Warmup Steps Policy 4096 8192 8192 8192 100 4096 4096
Warmup Steps VF 1024 1024 1024 1024 - 1024 1024
Optimizer AdamW AdamW AdamW AdamW AdamW AdamW AdamW
Adam β1 0.9 0.9 0.9 0.9 0.9 0.9 0.9
Adam β2 0.999 0.999 0.999 0.999 0.999 0.999 0.999
Adam ϵ 1e-5 1e-8 1e-8 1e-8 1e-8 1e-8 1e-8
Adam Weight Decay 0.01 0 0 0 0.01 0.01 0.01
Grad. Accum. Steps 1 1 1 1 8 2 4
Grad. Clip Norm 0.5 0.5 0.5 0.5 - 1 1

Hardware

Precision FP32 FP32 FP32 FP32 FP32 FP16 FP16
Allow TF32 7 7 7 7 7 3 3
GPUs 4090 4090 4090 4090 4090 10×A100 10×A100

CFG: Classifier-free guidance, RM: Reward model, VF: Value function

Table 6.2.: Model parameters and optimization settings for all experiments.
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it restricted the image distribution while still maintaining some diversity to avoid making
the task too trivial. Consequently, the model was also kept unconditional.

Figure 6.1.: Target image for the Target Image experiment.

Algorithm 1 Algorithm for computing target image reward.
1: function TargetImageReward(image, target)
2: Normalize image and target to have values between 0 and 1
3: loss←MSE(image, target)
4: loss← loss + loss · target/mean(target) ▷ Adjust the loss to avoid local minima
5: loss← mean(loss, dim = (1, 2, 3)) ▷ Reduce loss over image dimensions
6: loss←

√
loss ▷ MSE to RMSE

7: reward← −loss · 10 ▷ Loss is negated for gradient decent
8: return reward
9: end function

The reward function was based on a fixed target image of the digit “4” (see Figure 6.1). A
digit with significant font weight and a slanted appearance was chosen to make it distinct.
Algorithm 1 outlines the computation of the target image reward, which is based on an
adjusted Root-Mean-Square Error (RMSE) loss. The loss was adjusted in such a way as
to reduce the likelihood of the model getting stuck in a local minima consisting of purely
black images. Figure 6.2 shows the effect of the adjustment on the base model error
distribution. The loss was negated to transform it into a reward, where a lower RMSE
corresponds to a higher reward. Lastly, the loss was scaled by an arbitrary constant (10)
to increase the value range of the reward. The arbitrary scaling was incorporated with
the rationale that a larger reward scale could help accentuate the differences in reward
between different potential actions, thereby promoting more discerning action selection
and faster convergence during training. The reward was not standardized according to
the methodology (see Reward Standardization in section 5.2).

In this experiment, the KL penalty (see KL Regularization in section 5.2) was not included
in the reward calculation as the aim was to collapse the distribution into a single image
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(a) Unadjusted (b) Adjusted

Figure 6.2.: Error distributions for the adjusted and unadjusted reward functions on the
digit-“4” subset of MNIST. The vertical blue line (left) represents the target
objective (0 error). The vertical red line (middle) represents the error for a
full-black image (local minima). The vertical green line (right) represents the
error for a full-white image. For the adjusted reward function, the mean of
the distribution (starting point for policy optimization) yields a lower error
than a full-black image (local minima).

(i.e., a Dirac delta distribution). The KL penalty serves to keep the diffusion policy from
diverging too much from the base diffusion model; however, staying close to the original
distribution was not a concern in this case.

For the value function, a custom convolutional neural network with a max-pooling layer
and a fully connected output layer was utilized. The value function was initialized from
a classifier trained on all MNIST digits. The detailed model architecture can be found in
Appendix B.

During rollout, only 25 out of 1000 timesteps were used for sampling, to speed up the
optimization process. Reducing the number of timesteps represents a trade-off between
model fidelity and optimization efficiency. In testing, 25 timesteps were sufficient for
generating readable and diverse digits. It was conjectured that the optimization would
generalize to the other timesteps as well since all denoising steps utilized the same U-Net.

Both the policy and value function’s learning rates were set at a very conservative level:
1× 10−7 and 1× 10−5 respectively. This is much lower than the learning rate used to
train the base model initially, which was 1× 10−4. Preliminary testing indicated that the
diffusion model could deteriorate rapidly if the learning rate was set too high, resulting
in the generation of noise which did not resemble the digit “4”. While this experiment
was not concerned with retaining the original data distribution, it was not clear if the
optimization process would be capable of aligning the policy via reward signals if the
generated samples deviated too far from the target image.
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Refer to Table 6.2 for a comprehensive overview of the experiment’s hyperparameters.

6.4.2. Results

(a) Reward

(b) Log value loss (c) Policy loss

Figure 6.3.: Training graphs showing mean rollout reward and policy and value losses
per epoch for the Target Image experiment.

The training graphs, presented in Figure 6.3, show that the reward monotonically
increased during training, while the value loss decreased and policy loss remained spiky
without any clear decreasing trend. While the reward continued to increase until the end
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of training, there was little visual change to the samples beyond epoch 3000. Hence, a
checkpoint for epoch 3000 serves as the “optimized” model.

(a) Base model (b) Optimized model

Figure 6.4.: Samples from the base model and the optimized model for the Target Image
experiment. The samples are sampled using DDPM with 250 timesteps. The
two grids are sampled using the same conditions, starting noise, and seed.

Samples from the base model and the optimized model are shown in Figure 6.4. The
optimized model generates digits resembling the target image.

The optimization progression, illustrated in Figure 6.5, demonstrates that as training
proceeded, the generated images became progressively closer to the target image. This
indicates that the reward function effectively guided the optimization process. Further-
more, samples that initially resembled the target image smoothly transitioned to the
target image (e.g., row 1). Other samples transitioned through an intermediate state
where the digit appeared as a white “blob” before converging on the target image (e.g.,
row 2).

The reward distributions for samples from the base model and optimized model, presen-
ted in Figure 6.6, show a mean reward increase of around 5 standard deviations and
significantly lower reward variance.

6.4.3. Evaluation
The samples from the optimized model demonstrate that the experiment was successful
in aligning the policy with the target image. The optimized samples are nearly identical
to the target image, indicating significant overfitting, which was the desired outcome in
this specific experiment.
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Figure 6.5.: Optimization progression for the Target Image experiment. Starting from
the base model (left) and ending at the optimized model (right).

Tracking the optimization progression over time provided further insights. The observation
that some samples transition through a degraded intermediate stage indicates that the
starting distribution might not be critically important for this optimization task to work.
For instance, starting with an untrained diffusion model or a model trained on all MNIST
digits would likely result in slower convergence but ultimately achieve similar results.

Additionally, examining the reward distributions of the base and optimized models
revealed noteworthy differences consistent with what one would expect when converging
on a Dirac delta distribution.

However, despite its success, the optimization process required a substantial number of
epochs to complete. While this was not a significant issue with the small model used in
this experiment, the problem of longer sampling times would become more prominent
when scaling up to larger and more complex models. Thus, finding ways to increase the
convergence rate is a crucial goal for subsequent experiments. Raising the learning rate
emerges as the primary target to accelerate this process, although such adjustments need
to be made carefully to avoid rapid model degradation, as noted based on our preliminary
testing.

Overall, the experiment demonstrated that our methodology for adapting diffusion models
to a reinforcement learning environment was effective in a very restricted setting. The
results validated our implementation of PPO and provided insights into the training
scheme’s hyperparameter values, notably that it was viable to optimize using few rollout
timesteps.
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Figure 6.6.: Reward distributions for samples from the base model and the optimized
model for the Target Image experiment. Each distribution is based on
1024 samples evaluated by the reward function. The distributions were
standardized based on the mean and std of the base distribution. The
samples are sampled using Denoising Diffusion Probabilistic Model (DDPM)
with 25 timesteps and without classifier guidance. The samples for the two
distributions are sampled using the same conditions, starting noise, and seed.
The target line represents the theoretical maximum standardized reward (0
error).
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(a) Reward (b) KL-penalty-to-reward percentage

(c) Log value loss (d) Policy loss

Figure 6.7.: Training graphs from policy optimization for the Colorfulness experiment.

6.5. Experiment 2: Colorfulness
The second experiment, dubbed Colorfulness, moderately increased in complexity over
the first experiment by utilizing a larger diffusion model with a distribution that was
more representative of the text-to-image models that were being worked towards and a
reward model that was more representative of visual quality akin to a human preference.

This experiment also deviated from the methodology presented earlier as the reward
model remained fixed to a function. Only Step 4 of the methodology was carried out
and tested. The primary motivation behind this experiment was to prove that the
optimization process could align a diffusion model with the capacity to generate diverse
images, using a reward model that was more nuanced. A secondary motivation was to
prevent the distribution collapse observed in Experiment 1: Target Image and to increase
optimization speed.

Unlike in Experiment 1: Target Image, where the objective was to collapse the distribution
around a specific target image, the intention in this experiment was to maintain a certain
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diversity in the output while aligning the samples towards a particular attribute that
would still be easily observable. To this end, a reward function promoting colorfulness
was chosen.

6.5.1. Experimental Setup

The base policy used in this experiment was a class-conditional 64 × 64 ImageNet-1k
model2 trained and released by OpenAI. This model represented a significant increase
in complexity compared to the diffusion model used in Experiment 1: Target Image, as
the resolution is twice as high in the width and height dimensions and the ImageNet-1k
dataset it is trained on is much more diverse than MNIST (see subsection 2.11.2 for more
information on ImageNet-1k).

To optimize the policy toward increased colorfulness, a fixed reward function was used.
The reward function was based on a reward introduced by Pinto et al. (2023), which was
designed to promote color vividness and diversity. Since the original paper only provided
a brief textual description of the reward function, a custom implementation had to be
written; the implementation is provided in Appendix A.

For the value function, the 64 × 64 ImageNet-1k classifier3 trained and released by
OpenAI, was repurposed. This classifier was originally meant to be used with the base
policy for classifier guidance (see subsubsection 2.5.7). To adapt it for use as a value
function, a fully connected layer was added at the end of the classifier to produce a single
output scalar. Since the reward function was class-agnostic, the value function did not
take the class condition as additional input. However, it was provided with the diffusion
timestep associated with the state to be evaluated, providing more context about how
far along the reverse diffusion process the state was.

During rollout, an ImageNet-1k class label was sampled at random per environment to
condition the trajectory on. These class labels serve as the equivalent of a “prompt”, as
referred to in chapter 5.

To prevent distribution collapse and ensure model fidelity, a KL penalty was introduced
(see KL Regularization in section 5.2). The KL penalty coefficient was set to 0.02,
following the work of Ouyang et al. (2022). Unlike a reward model that uses the same
base model as the policy, such as the one proposed in section 5.2, the reward function in
this experiment did not have any knowledge about the underlying distribution of the
policy. Consequently, there was a higher risk of policy divergence, as the reward model
might guide the policy toward producing unrealistic colors or image features. Therefore,
the KL penalty was necessary to keep the policy close to the original distribution.

2Available at: https://openaipublic.blob.core.windows.net/diffusion/jul-2021/64x64_
diffusion.pt

3Available at: https://openaipublic.blob.core.windows.net/diffusion/jul-2021/64x64_
classifier.pt
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The number of rollout timesteps was increased to 32, from 25 in Experiment 1: Target
Image, to account for the increased complexity of the diffusion model. Additional
timesteps were deemed necessary to generate samples with sufficient quality. However,
the number of timesteps was still kept relatively low, which speeds up optimization.

The learning rate was increased by one order of magnitude to accelerate optimization.
The learning rate was set to 1× 10−6, up from 1× 10−7 in Experiment 1: Target Image.
As noted previously, the prior learning rate was set conservatively and necessitated a
significant number of optimization epochs. However, after rectifying some bugs from
the initial versions of our code, training became stable at this increased learning rate.
Furthermore, the larger number of rollout timesteps resulted in a larger optimization
batch, which could justify the increased learning rate.

The policy warmup period was increased compared to Experiment 1: Target Image, from
4096 to 8192 optimization steps. This adjustment was made to accommodate the more
intricate reward function. By providing a longer warmup period, the value function
had more time to learn the complexities of the reward scheme before guiding the policy
optimization.

For a full overview of hyperparameters, refer to Table 6.2.

6.5.2. Results
The training graphs in Figure 6.7 show that the reward steadily increased during policy
optimization but started decreasing after around epoch 400. Therefore, a checkpoint
saved at epoch 400 was selected as the final “optimized” model. The mean reward after
optimization was more than twice as high as before.

The value loss decreased for the first portion of training, around 200 epochs, then slowly
increased before experiencing a larger increase after epoch 250.

The policy loss remained relatively constant and spiky throughout training, similar to
Experiment 1: Target Image.

The KL penalty increased at an increasing rate throughout training. It grew faster than
the colorfulness reward and constituted around 3.3 % of the total reward at epoch 400.

Samples from the base policy and the optimized model are shown in Figure 6.8. The
optimized model generated images that were more colorful compared to the base model.
A qualitative analysis of the images showed that the images also appear to have increased
contrast and sharpness, more high-frequency information, such as lines and distinct
shapes, and less blur, specifically in the backgrounds. The optimization progression,
illustrated in Figure 6.9, demonstrates that the images became progressively more colorful
over time, and that the image content is altered during the process.

The reward distributions in Figure 6.10 show that the mean reward of the optimized
model increased by around 2 standard deviations, with a lower variance compared to the
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base model.

6.5.3. Evaluation
The samples and reward distributions clearly demonstrate that the policy was successfully
aligned with the colorfulness reward function. The samples show an increase in color
vividness and diversity, which aligns with the objective of the experiment. However, the
optimization process resulted in samples with more unrealistic and oversaturated colors
compared to those generated by the base model. This is unsurprising, considering that
the reward function specifically encourages this, but it does indicate that the optimization
process could have been cut prior to epoch 400. This overexaggeration of the effects of
the reward model, though it led to less naturalistic images, can be considered a positive
aspect of the experiment as it highlighted the effects of optimization more distinctly,
facilitating a more straightforward evaluation of the optimization process.

The change in image content observed during optimization could be a byproduct of
model degradation, but can potentially be explained by the samples shifting toward more
colorful regions of the original data distribution. It can also be attributed to the inherent
nature of diffusion models, which are sensitive to small variations in model weights
or starting noise. The recursive reverse diffusion process amplifies the effects of small
changes, resulting in more pronounced changes in the final image samples. Optimization
for fewer epochs or an increase in the KL penalty coefficient could potentially mitigate
this effect.

The increase in value loss after epoch 250 is likely related to the fact that the KL
penalty played an increasingly significant role in the total reward provided to the policy
throughout training. The value function spent the first portion of training learning the
behavior of the reward function, when the KL penalty was low, and struggled to adapt
when the KL penalty started to increase. As a result, it was overfitting to the initial
reward and was unable to effectively model the transition to a higher penalty regime.
Consequently, this created a divergence between the model’s expected rewards and the
actual rewards obtained, leading to a marked increase in value loss after epoch 250.
Future experiments should favor a setup that leads to a more gradual increase in the KL
penalty, or using methods such as adaptive KL control (Ziegler et al., 2019), to allow the
model to better adapt to changing reward structures over time.

In conclusion, this experiment successfully aligned the policy with the colorfulness reward
model while maintaining a certain level of diversity in the generated images. The results
provided insights into the optimization process, especially the challenge of balancing
reward vs penalty, and demonstrated the effectiveness of the methodology. However,
more work is needed to address the observed reduction in image fidelity.
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(a) Base model (b) Optimized model

Figure 6.8.: Samples from the base model and the optimized model for the Colorfulness
experiment. The images are sampled using DDPM with 250 timesteps and
without classifier guidance. The two grids are sampled using the same random
conditions, starting noise, and seed.
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Figure 6.9.: Optimization progression for the Colorfulness experiment. Each column
starts with the base model (leftmost) and ends at the optimized model
(rightmost). The images are sampled using DDPM with 250 timesteps and
without classifier guidance. The images in a progression-row are sampled
using the same random conditions, starting noise, and seed.

62



6.5. Experiment 2: Colorfulness

Figure 6.10.: Reward distribution for samples from the base model and the optimized
model for the Colorfulness experiment. Each distribution is based on 1024
samples evaluated by the reward function. The samples are sampled using
DDPM with 25 timesteps and without classifier guidance. The samples for
the two distributions are sampled using the same conditions, starting noise,
and seed.
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(a) Reward (b) KL-penalty-to-reward percentage

(c) Log value loss (d) Policy loss

Figure 6.11.: Training graphs from policy optimization for the Aesthetic Score experiment.

Section 2: Aligning Simple Diffusion Models Using Human
Feedback

6.6. Experiment 3: Aesthetic Score
The third experiment, dubbed Aesthetic Score, aimed to align a simple diffusion model
with a reward model trained using human feedback. This experiment deviated from the
methodology presented earlier as it involved utilizing an existing reward model instead
of training our own. The primary objective was to validate that our methodology can
effectively align diffusion models with reward models based on human preferences.

6.6.1. Experimental Setup
For this experiment, we utilized the same base policy model and value function as in
Experiment 2: Colorfulness. However, instead of using a fixed reward function like in
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the two previous experiments, we incorporated the LAION Aesthetics Predictor V24.
The LAION Aesthetics Predictor V2 is a reward model that has been trained using
human feedback and provides aesthetic scores based on human ranking from 1 to 10 on a
per-image basis.

It should be noted that the Aesthetics Predictor was not trained on such low-resolution
images, like those generated by our chosen base policy model (i.e., 64× 64). Therefore,
there might be a discrepancy between the images generated by the policy during rollout
and the image distribution the reward model is familiar with evaluating. To compensate
for this potential mismatch, we increase the KL penalty coefficient slightly, to 0.03. By
increasing the KL penalty, we encourage the policy optimization process to remain closer
to the original distribution and preserve its characteristics.

We also modify some hyperparameters to improve image quality to further compensate for
the low-resolution images. We increase the number of diffusion timesteps to 50, allowing
for higher-quality samples despite the lower resolution. Additionally, we slightly decrease
the learning rate of the policy to 5× 10−7 (with a learning rate of 2× 10−7 for the first
100 epochs) in order to achieve better training stability and maintain fidelity closer to
the original data distribution for longer.

Full details of the experimental setup, including all relevant hyperparameters, can be
found in Table 6.2.

6.6.2. Results

Training graphs are shown in Figure 6.11. During training, the reward gradually increased
over time. However, there was no significant increase in reward observed throughout the
entire optimization process.

The KL-penalty-to-reward percentage experienced a major jump at epoch 100 and
continued to climb until it reached approximately 50 % during training, before dropping
below 40 % for the fully optimized policy.

The log value loss rapidly decreased to around 0.001 within the first 100 epochs of training.
Afterward, the loss showed an upward trend, stabilizing at around 0.01 for the remainder
of the training process.

The policy loss exhibited no clear pattern or trend, with occasional spikes occurring
intermittently throughout training.

Samples from both the base model and the optimized model are shown in Figure 6.12.
The optimized model’s samples generally exhibit a white background, cropping out
everything except for the subject. Furthermore, compared to the base model, these
images tend to have increased brightness and lighter colors.

4Available at: https://github.com/christophschuhmann/improved-aesthetic-predictor.
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Analyzing the reward distributions depicted in Figure 6.14, we observe that although
there is a slight shift toward higher rewards in the optimized model compared to the
base model, the overall improvement is minimal.

6.6.3. Evaluation
The experimental results suggest that the alignment between the diffusion model and the
Aesthetics Predictor reward model was moderately successful in increasing the reward.
The noticeable increase in the KL-penalty-to-reward percentage indicates that the policy
deviated further away from the original distribution as training progressed, resulting in
large penalization due to larger divergence. This deviation may have hindered better
alignment with the Aesthetics Predictor reward model.

The stark shift toward a white background and lighter colors in the generated images is
likely related to the preferences captured by the reward model. Since we did not train this
model ourselves, it is difficult to evaluate if the resulting images align with what human
evaluators would deem preferrable, without conducting a human evaluation trial. Even
so, we conjecture that the reason for favoring such types of images could be related to the
fact that the Aesthetics Predictor is in part trained on a dataset of 15,000 logo image-text
pairs with aesthetic ratings from 1 to 10, which typically exhibit characteristics such as
small square images, with white backgrounds, and a distinct subject in focus.

Altogether, this experiment highlights some challenges related to aligning diffusion models
with complex reward models based on human preferences. The discrepancy between
the input images’ resolution and the trained reward model’s expectations may pose an
additional constraint. To achieve better alignment in future experiments, it may be
necessary to employ lower learning rates or slightly reduce the KL penalty coefficient to
prevent over-preservation of the original distribution.
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(a) Base model (b) Optimized model

Figure 6.12.: Samples from the base model and the optimized model for the Aesthetic
Score experiment. The samples are sampled using DDPM with 250 timesteps
and without classifier guidance. The two grids are sampled using the same
conditions, starting noise, and seed.
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Figure 6.13.: Optimization progression for the Aesthetic Score experiment. Each column
starts with the base model (leftmost) and ends at the optimized model
(rightmost). The images are sampled using DDPM with 250 timesteps and
without classifier guidance. The images in a progression-row are sampled
using the same random conditions, starting noise, and seed.
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Figure 6.14.: Reward distribution for samples from the base model and the optimized
model for the Aesthetic Score experiment. Each distribution is based on
1024 samples evaluated by the aesthetics reward function. The images are
sampled using DDPM with 25 timesteps and without classifier guidance.
The samples for the two distributions are sampled using the same conditions,
starting noise, and seed.
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6.7. Experiment 4: Macaw
The fourth experiment, dubbed Macaw, serves as the main implementation of the
methodology presented in chapter 4 and chapter 5. The experiment uses the same base
policy as Experiment 2: Colorfulness and Experiment 3: Aesthetic Score, but increases
the complexity from previous experiments by training a custom reward model on human
preferences. The primary motivation behind this experiment was then to prove that the
methodology is capable of capturing human preferences in a reward model and aligning
a class-conditional diffusion model to those preferences.

6.7.1. Experimental Setup
The experiment utilizes the same base policy and value function as in Experiment 2:
Colorfulness and Experiment 3: Aesthetic Score. To simplify preference collection and
reward model training, the experiment was limited to a single class: macaw (88). The
remaining experimental setup is presented according to the four steps introduced in the
high-level methodology in section 1.3.

Refer to Table 6.2 for a comprehensive overview of the experiment’s hyperparameters.

Step 1: Curating a Labeling Dataset. The labeling dataset curated for this
experiment consisted of 1000 images of macaws, split into 200 tasks for a task size of
K = 5. The low task size kept the labeling efficiency high without affecting in-task
diversity. The images were sampled at 25 diffusion timesteps using the DDPM sampler,
without classifier guidance.

Step 2: Collecting Human Feedback. For this experiment, a single human labeler
(one of the authors) was used. We theorized that it would be easier to model the
preferences of a single labeler, compared to the potentially diverging preferences of
multiple labelers, and that we as a result could get by with collecting less data to achieve
a similar, or potentially even better, result.

The 200 tasks were labeled using the labeling software and methodology presented in
chapter 4. Every image in a task was compared against every other image in the task.
As a result, a total of 2000 comparisons were made. The instructions for the preference
collection can be seen in Table 6.3.

Step 3: Training a Reward Model. The reward model was based on OpenAI’s
pre-trained ImageNet classifier, an accompanying model originally used for classifier
guidance with the base diffusion model. To produce scalar rewards, a fully-connected
layer was concatenated to the classifier.
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Num. Instruction
1 Always prefer images with a macaw over images without a macaw.

2 Of the images with a macaw, prefer the image with the highest perceived fidelity.

3 Rank the images in order of what you would most prefer as output from the model.

Table 6.3.: Instructions for the Macaw preference collection.

Preliminary testing of the reward model implementation involved training the model
on 80 % of the data from the collected human preferences, and then evaluating it using
the remaining 20 % of the data. After validating the reward model implementation, the
final reward model used for policy optimization was trained on all of the collected human
preferences. Both reward models were trained with a batch size of 8 tasks (constituting
40 images), using a learning rate of 1× 10−4 for 1000 epochs. The reward model outputs
were not standardized.

Step 4: Optimizing Policy with Reinforcement Learning. Similar to prior exper-
iments, the policy optimization of the diffusion model used 32 environments. Following
the methodology, the images generated during rollout used the same settings as when
curating the labeling dataset, for a total of 800 reinforcement learning states (32 images
× 25 diffusion timesteps) per epoch. The states were randomly split into 32 minibatches
(of size 25) for policy optimization.

The policy model was trained using a learning rate of 1× 10−6, half a magnitude higher
than Experiment 3: Aesthetic Score and similar to Experiment 2: Colorfulness. The
linear warmup schedule of the policy was 8192 minibatch steps, while the value function
used a learning rate of 1× 10−5 and a linear warmup schedule of 1024 minibatch steps,
all identical to that of the two previous experiments.

Following an aggressive distribution preservation in Experiment 3: Aesthetic Score, the
KL penalty coefficient was reduced to 0.02, to match Wu et al. (2021).

6.7.2. Results
The results of the experiment are divided into the sections “Human Preference Collection”,
“Reward Model Training” and “Policy Optimization”, for clarity.

Human Preference Collection

Four example tasks preference ordered by the human labeler are shown in Figure 6.15.
The preference ratings match the preference feedback provided by the human labeler
after the experiment in Table 6.4.
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(a) Human labeler (b) Reward model

Figure 6.15.: Four example tasks (one per row) of five images each, preference-rated by
(a) the human labeler, and (b) the reward model for the Macaw experiment.
The images within a task are ordered from least preferred (leftmost) to
most preferred (rightmost).

Num. Preference Feedback
1 Preferred images with photogenic macaws.

2 Preferred images with colorful macaws.

3 Preferred images with macaws close to the “camera”.

4 Preferred images with a single macaw.

5 Preferred images with bokeh.

6 Did not prefer images without macaws.

Table 6.4.: Feedback from the human labeler when asked about their Macaw labeling
preferences after the experiment.

Reward Model Training

Reward model training statistics for both the preliminary model and the final model can
be seen in Figure 6.16. The training loss of both models reach near-zero values after
a few epochs. The validation loss of the preliminary model reaches its lowest point by
epoch 10, after which it steadily climbs. Both reward models reach a training accuracy
of 100 % throughout training. The validation accuracy of the preliminary reward model
stabilizes at around 80 % to 83 % after a few epochs.

Four example tasks ordered by the trained reward model are shown in Figure 6.15. The
reward model orders the most preferred images similar to the human labeler, with slight
deviations for the less preferred images in some of the tasks.
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Figure 6.16.: Loss and accuracy graphs for the preliminary and final reward models for
the Macaw experiment. Training statistics for both reward models are
shown, but only the preliminary reward model has validation statistics. The
y-axis in the accuracy graph starts at 50 %.

.

Policy Optimization

Training statistics from policy optimization of the diffusion model can be seen in Fig-
ure 6.17. The log value loss steadily decreases throughout policy optimization, with a
spike at epoch 250. The policy loss is spikey with a slight upwards trend. The reward
monotonically increases from epoch 25, and reaches a mean reward that is 3.5 times as
high compared to that of the base policy at the end of training. The KL-penalty-to-
reward percentage stays beneath 0.12 % throughout the duration of training. The final
“optimized” model uses a checkpoint saved at epoch 250.

Samples from the base policy and the optimized model can be seen in Figure 6.18.
Compared with the base policy, the optimized model prefers centered, close-up images of
the macaw. A qualitative analysis of the images show that the images also appear to
have increased contrast and a simplistic background or a soft bokeh. The optimization
progression, illustrated in Figure 6.19, demonstrates that the composition converges to
headshots of a single macaw around epoch 100. By the end of policy optimization, the
preference-aligned model prefers to sample images of the blue-and-yellow macaw (Ara
ararauna).

Figure 6.20 shows how samples from classes other than the macaw were affected by the
macaw policy optimization. Many of the samples gained bokeh and increased contrast
after policy optimization. The animals in the samples also often moved closer to the
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(a) Log value loss (b) Policy loss

(c) Reward (d) KL penalty reward-contribution

Figure 6.17.: Training statistics from policy optimization for the Macaw experiment.

“camera” throughout training, and became easier to discern.

Figure 6.21 shows the reward distributions for the final reward model on samples from
both the base policy and the optimized model on the class macaw and the classes other
than macaw. The mean reward has increased by two standard deviations for the class
macaw in the optimized model, along with a significantly reduced variance. For the classes
other than macaw, the mean reward has increased by over half a standard deviation in
the optimized model, with a similar variance to the base policy.

6.7.3. Evaluation
A validation accuracy of 85 % indicates that the preliminary reward model learned
to differentiate between less preferred and more preferred image generations. This is
corroborated by the comparison in Figure 6.15, where the tasks are ordered almost
identically between the human labeler and the final reward model (bar a few differences in
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the lower-rated generations). However, as seen in the training statistics in Figure 6.16, the
validation loss decreased notably during the initial epochs but increased throughout the
remaining training duration. Despite the increasing validation loss, we did not consider
this a major concern as it had little observable impact on the validation accuracy, and
we considered the reward model good enough to validate the methodology.

Similar to previous experiments, the policy-optimized diffusion model successfully learned
the objective from the reward model. This is evident in the reward histogram in
Figure 6.21, which shows a clear shift toward higher rewards after policy optimization.
Furthermore, the images generated by the policy-optimized model mostly match the
preferences reported by the human labeler in Table 6.4.

An interesting observation arose when evaluating the macaw policy optimization on
classes other than macaw. The results showed no apparent negative impact on other
classes’ image quality and, instead, demonstrated a positive transfer of learned preferences
(Figure 6.20). We observed that these other classes exhibited more vibrant colors, bokeh
backgrounds, and in some cases more detailed close-ups of the animals, suggesting that
the alignment procedure is able to learn just the preferences of the human labeler, without
negatively affecting the rest of the diffusion model, and that general preferences can be
learned across domains.

Unlike in Experiment 3: Aesthetic Score, the KL penalty did not seem to significantly
contribute to the reported reward. This implies that the KL penalty coefficient may
be several orders of magnitude too low in this experiment, which could hamper the
final model’s diversity. Following the over-preservation of the original distribution in
Experiment 3: Aesthetic Score, which stemmed from a too-high KL penalty coefficient,
and the under-preservation in this experiment, it is clear that a more thorough study into
effective values for the KL penalty coefficient is needed. We defer this to future work.
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(a) Base model

(b) Optimized model

Figure 6.18.: Samples of the macaw class from the base model and the optimized model
for the Macaw experiment. The images are sampled using DDPM with 250
timesteps and without classifier guidance. The two grids are sampled using
the same random conditions, starting noise, and seed.
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Figure 6.19.: Optimization progression of the macaw class for the Macaw experiment.
Starting from the base model (left) and ending at the optimized model
(right). The images are sampled using DDPM with 250 timesteps and
without classifier guidance. Every image in a progression-row are sampled
using the same random conditions, starting noise, and seed.
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Figure 6.20.: Optimization progression for select classes other than macaw for the Macaw
experiment. Starting from the base model (left) and ending at the optimized
model (right). The images are sampled using DDPM with 250 timesteps and
without classifier guidance. Every image in a progression-row are sampled
using the same random conditions, starting noise, and seed.
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(a) Class macaw

(b) Classes other than macaw

Figure 6.21.: Reward distributions for (a) class macaw, and (b) classes other than macaw,
of both the base policy and the optimized model for the Macaw experiment.
1024 images were sampled per model. The histograms have been standard-
ized around the reward distribution of the base diffusion model, giving it a
mean reward of 0.0 and a standard deviation of 1.0.
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6.8. Experiment 5: Macaw (Without RL)
In this supplementary experiment, we explore whether reinforcement learning is even
necessary to align diffusion models with rewards. As such, the rewards are directly
backpropagated through the sampling process instead of using reinforcement learning like
in the policy optimization methodology presented in chapter 5. The experiment reuses
the reward model from Experiment 4: Macaw.

6.8.1. Experimental Setup
The setup for this experiment was very similar to that of Experiment 4: Macaw to make
the experiments as comparable as possible. As such, instead of collecting new preferences
and training a new reward model, Macaw (Without RL) simply reused the reward model
trained in Experiment 4: Macaw, making steps 1-3 of the methodology identical between
the experiments. The base policy was also reused.

The experimental setup diverged from that of Experiment 4: Macaw in how the policy
was trained. Since the entire pipeline of the proposed methodology is differentiable,
from rollout to reward, Macaw (Without RL) could simply backpropagate the gradients
from the loss all the way through the reward model and the policy. The loss was then
defined as the negative of the reward, so that when the training objective attempted to
minimize the loss, the reward was indirectly maximized. Since only the reward is needed
to calculate the gradients, Macaw (Without RL) made away with the value function
and base policy entirely, only needing one pass through the policy and reward model,
compared to the two passes of the original methodology (to calculate log probabilities).
As a result, Macaw (Without RL) is also unable to preserve the original distribution
through the use of KL regularization. To not affect the reward model throughout training,
its parameters were frozen.

Similar to Experiment 4: Macaw, 32 environments was used, generating 800 reinforcement
learning states (32 images × 25 diffusion timesteps) per epoch. To save VRAM, the
images were split into minibatches of 4 images each. The gradients for all 8 minibatches
were accumulated into one big gradient update at the end of the epoch, for an effective
batch size of 800.

Since there was no value function to learn, the linear warmup schedule of the policy was
reduced to 100 optimization steps from 8192 optimization steps in Experiment 4: Macaw
(comparatively 100 epochs vs 256 epochs, respectively).

For a full overview of hyperparameters, refer to Table 6.2.

6.8.2. Results
Logging of training statistics was not implemented for this methodology, and as such, no
loss or reward graphs are provided.
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In Figure 6.18, samples from the base policy and the optimized model can be seen. The
optimized model tends to favor centered, close-up images of the macaw as opposed to the
base policy. Upon qualitatively examining the images, we observe that the images have
increased contrast and vividness, a simplistic background, or a soft bokeh. As depicted
in Figure 6.19, the optimization process shows convergence toward headshots of macaws
by the 300th epoch. Ultimately, the preference-aligned model leans towards generating
images of the scarlet macaw (Ara macao).

Figure 6.24 shows how samples from classes other than macaw were affected by the
macaw reward optimization. Many of the samples gained bokeh and few of the animals
are easier to discern. There is no noticeable difference in composition from the base
policy to the reward-optimized model.

Reward distributions for images generated of macaw and classes other than macaw can be
seen in Figure 6.25. The mean reward has increased by almost two standard deviations
for the class macaw in the optimized model, along with a reduced variance. For the
classes other than the macaw, the mean reward has increased by nearly a standard
deviation in the optimized model, with a slightly increased variance to the base policy.

Images of classes other than macaw generated at 25 diffusion timesteps from the base
policy, the optimized model from Macaw and the reward-optimized model from Macaw
(Without RL) can be seen in Figure 6.26. We observe that the images generated by the
model optimized without reinforcement learning have a red hue when generated with
fewer timesteps.

6.8.3. Evaluation
Similar to in Experiment 4: Macaw, the images of macaws generated by the reward-
optimized model show high image fidelity and follow the preferences reported by the
human labeler (see Table 6.4, page 72). The most notable difference between the two
optimized models when generating macaws, is how the model optimized with reinforcement
learning generates images of the blue-and-yellow macaw, while the model optimized
without reinforcement learning generates images of the scarlet macaw. However, this is
likely because the two models randomly sampled different highly-rewarded macaw species
in the early stages of the optimization process and that the momentum of the reward
optimization led them to prefer different species. That there is no notable difference
between preferring the two species is backed by the reward distribution histograms, which
show that the two models are rewarded similarly after optimization, despite generating
different species.

Interestingly, the model trained without reinforcement learning suffers from degradation
when generating images of classes other than macaw at low timesteps, as the images
gain a red hue. The red hue is likely an artifact from reward exploitation and overfitting
on the scarlet macaws, and cannot be seen for the model optimized in Experiment 4:
Macaw. The theory of reward exploitation is corroborated by the reward distribution
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charts, which show that the mean reward of the red-hued images have increased by almost
one sigma, despite having noticeably decreased image fidelity. We speculate that a less
aggressive learning rate, the introduction of KL regularization (which was disabled with
the removal of the base policy) or a more robust reward model might help to mitigate
this degradation, but a more thorough investigation of these potential solutions remains
an area for future work.
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(a) Base model

(b) Optimized model

Figure 6.22.: Samples of the macaw class from the base model and the optimized model
for the Macaw (Without RL) experiment. The samples are sampled using
DDPM with 250 timesteps and without classifier guidance. The two grids
are sampled using the same conditions, starting noise, and seed.
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Figure 6.23.: Optimization progression of the macaw class for the Macaw (Without RL)
experiment. Starting from the base model (left) and ending at the optimized
model (right). The images are sampled using DDPM with 250 timesteps and
without classifier guidance. Every image in a progression-row are sampled
using the same random conditions, starting noise, and seed.
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Figure 6.24.: Optimization progression of select classes other than macaw for the Macaw
(Without RL) experiment. Starting from the base model (left) and ending at
the optimized model (right). The images are sampled using DDPM with 250
timesteps and without classifier guidance. Every image in a progression-row
are sampled using the same random conditions, starting noise, and seed.
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(a) Class macaw (b) Classes other than macaw

Figure 6.25.: Reward distributions for (a) class macaw, and (b) classes other than macaw,
of both the base policy and the optimized model for the Macaw (Without
RL) experiment. 1024 images were sampled per model. The histograms
have been standardized around the reward distribution of the base diffusion
model, giving it a mean reward of 0.0 and a standard deviation of 1.0.

(a) Base model (b) Macaw (c) Macaw: Without RL

Figure 6.26.: Samples from the base model and the optimized models for the Macaw and
Macaw: Without RL experiments. The images are sampled using DDPM
with 25 timesteps and without classifier guidance. The grids are sampled
using the same conditions, starting noise, and seed.
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Aligning Diffusion-Based Text-to-Image Models Using
Human Feedback

6.9. Experiment 6: Pink
The sixth experiment, dubbed Pink, serves as the main implementation of the methodology
with a State-of-the-Art (SOTA) text-to-image model. The primary motivation behind
this experiment was to show that the methodology presented in chapter 4 and chapter 5
can align text-to-image model Stable Diffusion to human preferences. The experiment
uses a very restricted prompt domain of various animals wearing pink sunglasses, with the
goal of aligning the model to generating images in the prompt domain with high fidelity
and image-text alignment, something the model was not already consistently capable of
doing, and to see if this could generalize to unseen animals and colors of sunglasses.

6.9.1. Experimental Setup
The base policy for the experiment was Stable Diffusion v1.5 (Rombach et al., 2022),
a text-to-image latent diffusion model. The remaining experimental setup is presented
according to the four steps introduced in the high-level methodology in section 1.3.

Refer to Table 6.2 for a comprehensive overview of the experiment’s hyperparameters.

Step 1: Curating a Labeling Dataset. To simplify preference collection and reward
model training, the policy optimization was limited to a few specialized prompts centered
around “animals wearing pink sunglasses”. The prompt domain was chosen because it
was a task the base policy was already somewhat capable of generating compelling and
aligned images of, but also a task that it had not yet mastered. We theorized that this
restricted prompt domain would effectively show the capabilities of the methodology
without requiring the collection of vast amounts of human preferences. The four prompts
used in the experiment can be seen in Table 6.5. The prefix “A photograph of” was
added to avoid generating images of cartoons, children’s drawings or graphics designs.

Num. Prompt
1 A photograph of a corgi wearing pink sunglasses.

2 A photograph of a deer wearing pink sunglasses.

3 A photograph of a lion wearing pink sunglasses.

4 A photograph of a mouse wearing pink sunglasses.

Table 6.5.: Prompts for the Pink labeling dataset tasks. The animals have been high-
lighted in bold.

Because the base policy was better at this objective for the animals lion and corgi, than

87



6. Experiments

for deer and mouse, the task size was increased to K = 8 (from K = 5 in Experiment 4:
Macaw) to ensure that the model was capable of producing tasks that included some
good and bad samples for all prompts most of the time. As a result, the labeling
dataset consisted of 120 tasks, for a total of 960 images. To speed up rollout and policy
optimization, the images were sampled at 16 diffusion timesteps. All images had a
resolution of 512× 512, and had the classifier-free guidance scale set to 7.5.

Step 2: Collecting Human Feedback. Like in Experiment 4: Macaw, a single
human labeler (one of the authors) was used for preference collection.

The 120 tasks were labeled using the labeling software and methodology presented in
chapter 4. To speed up the preference collection, transitivity was assumed when ordering
the images. The instructions for the preference collection, which can be seen in Table 6.6,
were designed to split the generated images into four categories (“animal with sunglasses”,
“animal”, “sunglasses” and “other”) to make objective and consistent labeling easier.

Num. Instruction
1 Always prefer images with {animal} wearing pink sunglasses over images with {an-

imal} not wearing pink sunglasses.

2 Always prefer images with just {animal} over images without {animal}.

3 Always prefer images with just sunglasses over images without {animal} or sunglasses.

4 Within these categories, always prefer images with pink sunglasses over images with
sunglasses in other colors.

5 Within these categories, rank the images in order of what you would most prefer as
output from the model.

Table 6.6.: Instructions for the Pink preference collection. Here, {animal} refers to the
animal in the task prompt.

Step 3: Training a Reward Model. The reward model for the experiment is
described in the methodology presented in chapter 5.

To evaluate the reward model’s performance, a preliminary reward model was first trained
on 80 % of the labeled tasks and validated on the remaining 20 %. The final reward model
was then trained on all of the tasks. Both models were trained using a learning rate of
1× 10−4, and a batch size of 4 tasks (constituting 32 images) for 40 epochs. The reward
model was standardized to a mean reward of 0.0 and a standard deviation of 1.0.

Step 4: Optimizing Policy with Reinforcement Learning. With limited know-
ledge of good KL penalty coefficients or how various degrees of KL penalty would affect
the policy from previous experiments, the KL penalty was disabled entirely for Pink.
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Without a good value for the KL penalty coefficient, it was decided it was better to leave
it off so the optimization of the policy was not unnecessarily discouraged by a too strong
penalty. Besides, by disabling KL penalty, the frozen base policy was no longer needed,
clearing VRAM for a larger batch size and faster policy optimization.

Because of the memory requirements of keeping the policy, reward model and value
function in memory at the same time, it was no longer possible to run policy optimization
with a decent number of environments with just 24 GBs of VRAM. The policy model and
value function were therefore trained on a Dell DSS 8440 node of 10 × NVIDIA A100
80GB GPUs. To optimize the policy and value function across multiple GPUs, PyTorch’s
Distributed Data Parallel (DDP) was used. With DDP, every GPU held its own identical
copy of the models’ parameters, and performed its own rollouts and gradient calculations.
Before every optimization step, the gradients were then synchronized so that all of the
models were updated with the same gradients across the GPUs, ensuring the models
were still identical copies by the start of the next epoch. Unlike previous experiments,
Pink was also trained using mixed precision and TF32 to speed up optimization.

Because of the complexity of the policy, the number of environments was also increased
to 80 (8 per GPU × 10 GPUs). The images generated during rollout used the same
settings as when curating the labeling dataset, for a total of 1280 reinforcement learning
states (80 images × 16 diffusion timesteps) per epoch. The states were then split into 80
minibatches (of size 16) for policy optimization. The states were not shared across GPUs.

The learning rates for the policy and value function were decreased by one order of
magnitude from Experiment 4: Macaw, to 1× 10−7 and 1× 10−6, respectively. This was
done to prohibit aggressive changes to the policy. To speed up the start of the policy
optimization, the linear warmup schedule of the policy was decreased from 8192 to 4096,
as experience from previous experiments saw the value function “good enough” by this
point in training.

6.9.2. Results

The results of the experiment are divided into the sections “Human Preference Collection”,
“Reward Model Training” and “Policy Optimization”, for clarity.

Human Preference Collection

Four example tasks preference-ordered by the human labeler can be seen in Figure 6.28.
The preference ratings match the preference feedback provided by the human labeler
after the experiment shown in Table 6.7.
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Num. Preference Feedback
1 Preferred images with {animal} correctly wearing pink sunglasses.

2 Preferred images with {animal} wearing stylish sunglasses.

3 Preferred images with a single {animal}.

4 Preferred images with portrait shots of {animal}.

5 Preferred images with {animal} looking at the “camera”.

6 Preferred images with bokeh.

7 Did not prefer images without {animal} or sunglasses.

Table 6.7.: Feedback from the human labeler when asked about their Pink labeling
preferences after the experiment. Where {animal} refers to the animal in a
given task’s prompt.

Reward Model Training

The reward model training statistics can be seen in Figure 6.27. Both the preliminary
and final reward models approached a near zero loss throughout training, and an accuracy
close to 100 %. The validation loss of the preliminary reward model decreased for the
first four epochs and increased throughout the rest of training. The validation accuracy
stabilizes around 80 % after the first ten epochs of training.

Four example tasks ordered by the trained reward model can be seen in (b) in Figure 6.28.
The reward model is consistently able to order the images into the categories defined
by the instructions. Within these categories, the correspondence between the reward
model’s and the human labeler’s rankings is mixed. The accuracy of the reward model
compared with the human labeler is 81.7 % (albeit with a smaller task size of K = 6).

Policy Optimization

The policy optimization training statistics can be seen in Figure 6.29. Throughout
training, the log value loss decreased, while the policy loss and the reward increased. At
the end of training, the reward increased by four sigma. A checkpoint saved at epoch
2028 was selected as the final “optimized” model. At this point, the mean reward was
1.5.

Sample images from the base model and the optimized model can be seen in Figure 6.30.
The images generated by the base model show a varying degree of success, with the images
of the animals lion and corgi achieving the best image-text alignment. For the images of
the animals lion and mouse, the glasses are often simple, cartoonish or disfigured. There
is little detail in the background of most of the images from the base model, and only
some of the images have bokeh. All images from the optimized model show the correct
animal with a pair of pink sunglasses. The sunglasses are more realistic and stylish. In
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Figure 6.27.: Training and validation statistics for the Pink reward model. The y-axis in
the accuracy graph starts at 50 %.

the images of the animals mouse, corgi and deer, the animals have moved closer to the
“camera”. All of the images from the optimized model have a degree of bokeh.

Figure 6.31 shows samples from the base model and the optimized model on partially
related and unrelated prompts. The optimized model is consistently able to generate
images with other animals wearing pink sunglasses, as well as sunglasses of other colors,
something the base model struggles with. When generating images of animals, regardless
of them wearing sunglasses or not, the optimized model prefers the animals closer to
the “camera” than the base model. The images generated by the optimized model with
completely unrelated prompts are mostly unchanged from the base model.

Progression images generated at various stages throughout optimization for both original,
related and unrelated prompts are shown in Figure 6.32. As the policy is overoptimized,
it experiences a local mode collapse, whereby the images generated with prompts close to
the original prompts (e.g., animals wearings various-colored sunglasses) drastically lose
variety, and the animals become indistinguishable from one another. The animals not
wearing sunglasses generated by the over-optimized model are also affected by the local
collapse by relation, whereby the images generated of them too lose variety, but are still
visually distinguishable from other animals. The unrelated prompts change minimally
from base to overoptimized model.

Reward distributions for the base and optimized models using the original, relevant
and unrelevant prompts are shown in Figure 6.33. For the original prompts, the base
model can be divided into three reward distributions: (1) a very small distribution from
rewards (−2,−3), (2) a small distribution at reward −1, and (3) the main distribution
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from rewards (0, 1). The optimized model has two distributions for the original prompts,
one with a mean reward just below 2 and the other with a mean reward just below 3.
The reward distributions for different prompts than the original prompts are not divided
into smaller distributions to the same degree. As the prompts deviate further from the
original prompts, the reward distributions for the base and optimized models became
more and more similar.

6.9.3. Evaluation
The preliminary reward model trained in the Pink experiment achieved a validation
accuracy of 80.8 %. This matches the example tasks ordered by both the human labeler
and the final reward model in Figure 6.28, which had an effective accuracy of 81.7 %
(albeit with a smaller task size of K = 6, compared to K = 8 for the validation tasks).

However, while the reward model seems capable of ordering sample images according
to human preferences, the degree to which it actually checks image-text alignment is
uncertain. The only changing variable in the list of task prompts for this experiment is
the animal. In our experience, when the base policy generated images for reward model
labeling, it never once swapped the target animal for another. This means that the
reward model could potentially always rely on the animal in the sampled image being
correct, removing all variables from the prompt, and then learn to completely ignore the
given prompt in its assessment of the image. This uncertainty could have been cleared
with a more complex task specification, which we defer to future work.

Unlike Experiment 3: Aesthetic Score, the log value loss continued to decrease throughout
the duration of the policy optimization. Likewise, the reward kept increasing until
training stopped. This is likely a result of disabling KL penalty, which the value function
would have had to optimize for (which increases the value loss) and which would have
prohibited further reward optimization once the distributions started to deviate too much.
That the reward kept increasing despite the visual fidelity and image-text alignment
degradation experienced towards the end of training is a clear sign of reward exploitation,
where the policy starts to exploit weaknesses in the reward model to keep gaining reward.
Also noticeable as the policy is over-optimized is how the animals in the images sampled
with the original prompts converge into one animal. This is a sign that the policy is
experiencing a local mode collapse when sampling for these, or very similar, prompts.
That the reward kept increasing through the reward model exploitation and policy mode
collapse is a sign that the reward metric cannot be trusted to accurately evaluate model
performance.

The three reward distributions visible for the base model using the original prompts are
likely a result of the explicit instructions given to the human labeler before preference
collection. Following the instructions, the highest-rewarded distribution would then likely
be made up of images with both an animal and a pair of sunglasses. The second-highest-
reward distribution would be made up of the images with just animals, leaving the last
distribution for the images with just sunglasses or neither animal nor sunglasses.
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Altogether, the experiment successfully captured the preferences of the human labeler in
a reward model, and aligned Stable Diffusion v1.5 to those preferences. We also showed
that the optimized policy was capable of generalizing to animals and colored sunglasses
not seen in the alignment process. We also saw that the further away from the original
prompts, the less the policy is changed. Ideally, KL regularization should be used to
align the policy to improve sample variety and prevent mode collapse. However, due to a
lack of knowledge on how KL penalty affects this specific policy and reward model, and
what would constitute a good KL penalty coefficient to adequately preserve the original
distribution, this was left for future work.
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(a) Human labeler

(b) Reward model

Figure 6.28.: Four example tasks (one per row) of six images each, preference-rated by
(a) the human labeler, and (b) the reward model for the Pink experiment.
The images in a task are ordered from least preferred (leftmost) to most
preferred (rightmost).
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(a) Log value loss (b) Policy loss

(c) Reward.

Figure 6.29.: Training graphs from the policy optimization of Pink.
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(a) Base model

(b) Optimized model

Figure 6.30.: Samples from the base model and the Pink optimized model. The images
are sampled using DDPM with 25 timesteps and with classifier-free guidance
scale 7.5. The two grids are sampled using the same conditions, starting
noise, and seed.
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(a) Base model

(b) Optimized model

Figure 6.31.: Samples from the base model and the Pink optimized model using a variety of
partially related and unrelated prompts. The first two columns show animals
wearing pink and colored sunglasses. The next two columns show animals
without sunglasses. The final two columns show completely unrelated
prompts. The images are sampled using DDPM with 25 timesteps and with
classifier-free guidance scale 7.5. The two grids are sampled using the same
conditions, starting noise, and seed.
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(a) Original prompts.

(b) Modified prompts with different animals and colored sunglasses.

(c) Modified prompts with original animals without sunglasses.

Figure 6.32.: Over-optimization progression of the Pink policy for different prompts
showing different levels of overfitting. From the base model (left) until
epoch 20,000 (right), at 2000 epoch increments.
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(d) Modified prompts with different animals without sunglasses.

(e) Unrelated prompts.

Figure 6.32.: Over-optimization progression of the Pink policy for different prompts
showing different levels of overfitting. From the base model (left) until
epoch 20,000 (right), at 2000 epoch increments.
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(a) Original prompts. (b) Modified prompts with different animals and
colored sunglasses.

(c) Modified prompts with original animals
without sunglasses.

(d) Modified prompts with different animals
without sunglasses.

(e) Unrelated prompts.

Figure 6.33.: Reward distributions for both the base and the Pink-optimized model
using different prompts. The various animals and colored sunglasses used
for generating the modified prompts are available in Appendix C. The
histograms have been standardized around the reward distribution of the
base diffusion model, giving it a mean reward of 0.0 and a standard deviation
of 1.0.
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6.10. Experiment 7: PickScore

The final experiment, dubbed PickScore, serves as a preliminary test for the application
of the methodology to large-scale human-preference alignment of a state-of-the-art text-
to-image model using a state-of-the-art reward model. The primary motivation was
to show that the methodology was capable of scaling beyond the restricted domain of
Experiment 6: Pink, thereby establishing it as a universally applicable method.

The experiment did not involve any new human preference collection nor reward model
training but instead relied on an existing dataset and reward model from the concurrent
work of Kirstain et al. (2023) (see paragraph 3.3 for more information). Thus, only Step
4 of the methodology was tested.

6.10.1. Experimental Setup

The experimental setup closely resembled that of Experiment 6: Pink, but used the 37,523
unique prompts from the Pick-a-Pic v15 training dataset and the associated PickScore
v16 reward model.

The only other difference to Experiment 6: Pink was the number of timesteps used, which
was increased from 16 to 50 to produce better samples and to account for the increased
complexity of the reward model, and the policy learning rate, which was increased from
1× 10−7 to 5× 10−7 for faster convergence. Slight modifications to minibatch size and
gradient accumulation steps were also made to accommodate the increase in timesteps.

The rationale for a high number of timesteps was that if the human preferences captured
by the reward model are sufficiently complex, they may present challenges for the policy’s
learning process, potentially requiring more training epochs to achieve a noticeable
deviation from the original reward distribution. This could subsequently cause additional
degradation of the base image distribution. By increasing the number of timesteps,
we can ensure a more robust initial image distribution, which could help maintain the
stability of the distribution for an extended training period.

As in Experiment 6: Pink, KL penalties were disabled for practical reasons, as they incur
additional memory and time requirements and have been shown to be difficult to balance
against the base rewards given by the reward model. The lack of such a regularization
mechanism was unfortunate given the scale and nature of this experiment, but it was not
a strict necessity to evaluate the potential of the methodology for large-scale alignment.

Training was stopped after 20,850 epochs.

5Available at: https://huggingface.co/datasets/yuvalkirstain/pickapic_v1.
6Available at: https://huggingface.co/yuvalkirstain/PickScore_v1.
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6.10.2. Results

The training graph, presented in Figure 6.34, shows that the reward started increasing
very early in training and at a rapid pace. It eventually flattened off before starting to
decrease toward the end of training. The reward peaked at epoch 10,000 at around 1.2σ,
which is a significant deviation from the base model.

Manual visual inspection of samples from every stage of the optimization process revealed
that checkpoints around epochs 4,000 to 6,000 struck a balance between visible alignment
and improved image samples without overdoing the effect and introducing excessive
artifacting. However, the ideal checkpoint varies depending on the sampling settings and
prompts used.

Diverse samples from the base policy and optimized model at epochs 4,000 and 20,000
are shown in Figure 6.35, Figure 6.36, and Figure 6.39, respectively. Samples showing
a more restrictive prompt domain consisting of animals only from the base policy and
optimized model at epochs 5,000 and 20,000 are presented in Figure 6.37, Figure 6.38,
and Figure 6.40, respectively. The selection of text prompts used to generate the diverse
and animal samples is provided in Appendix D.

Comparison and qualitative analysis of the base and optimized samples revealed that
samples from optimized models exhibited a clear change in style and composition over
base samples. The optimized samples appeared more realistic and natural, especially for
animal samples. They displayed more consistent color grading, with colors being more
muted and images gaining a bluish tint towards the end of optimization. Some samples
changed more than others (e.g., the cherry blossom tree).

Samples from epoch 20,000 exhibited severe degradation, generating unnatural images
that appeared “dreamlike” with unrealistic intricate details, often defying anatomy in
the case of animals. The optimization process also resulted in a loss of diversity, with
images converging on a centered subject and very similar composition regardless of
prompt. Late-stage samples also demonstrated increased high-frequency information and
striation-like patterns.
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Figure 6.34.: Graph showing reward progression during PickScore experiment.
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Figure 6.35.: Select diverse samples from the base model for the PickScore experiment.
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Figure 6.36.: Select diverse samples from the PickScore optimized model at epoch 4,000.
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Figure 6.37.: Select animal samples from the base model for the PickScore experiment.

106



6.10. Experiment 7: PickScore

Figure 6.38.: Select animal samples from the PickScore optimized model at epoch 5,000.
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Figure 6.39.: Select diverse samples from the PickScore optimized model at epoch 20,000,
exhibiting overt distribution degradation.108
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Figure 6.40.: Select animal samples from the PickScore optimized model at epoch 20,000,
exhibiting clear loss of diversity. 109
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6.10.3. Evaluation

Judging by the reward graph alone, the experiment seems to have been successful at
aligning the policy to human preferences. However, the samples show that a high reward
does not necessarily equal good-quality images, as the samples with the highest reward
would likely not be preferred by humans. For example, images sampled at epoch 20,000
had higher rewards than those sampled at epoch 4,000 but appeared much worse on
visual inspection. This result indicates reward model exploitation and highlights the
need for a more robust reward model to properly model general human preferences.

The best samples were observed around epochs 4,000 to 6,000, which is before the reward
peak. Samples after these epochs show clear signs of degradation. Consequently, there
is little point in optimizing past this point with the current setup. This signifies that
achieving desirable optimization is feasible within a few thousand epochs.

Without conducting a proper human evaluation trail, it is difficult to gauge whether
the optimized policy genuinely generates images that are generally preferred by humans,
particularly when assessing improvement or regression in image-text alignment. However,
the provided samples give a good indication of the potential of the methodology to align
text-to-image models against general human preferences.

It is somewhat surprising how effectively the policy managed to increase the reward
considering that PickScore models general human preferences, which are considered
challenging to grasp and model. It is possible that the policy achieves this by focusing
its attention on certain optimization axes, such as general image brightness and detail
level. By exploiting enough of these axes in parallel, the policy may be able to boost the
reward significantly.

Since there was no KL regularization, the model was free to optimize the reward at any
cost. This lack of constraint can have unknown consequences for the model distribution.
Among the observed consequences were the loss of diversity and realism as optimization
progressed. Another potentially concerning observation was that since diversity decreased,
the images become biased towards the most preferred image features for a specific class.
As an example, which was not reported in the results above, it was observed during
training that women/men would converge on what the reward model considered an “ideal”
woman/man, with certain hair types, facial features, skin colors, and clothes. In many
cases, this would be considered unwanted behavior, and thus, it warrants further research
into creating robust and bias-free reward models and optimization methods that can
better maintain diversity.

In conclusion, this experiment served as a proof of concept for the methodology’s ability
to scale beyond the restricted domain of previous experiments and demonstrated its
potential as a universally applicable method. Although the experiment achieved decent
results in aligning the policy to human preferences, there were indications of reward
model exploitation and loss of diversity in the generated samples. This highlights the
need for further research into creating robust and bias-free reward models, as well as
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optimization methods that can maintain diversity better. Conducting a proper human
evaluation would be necessary to further validate the results and the effectiveness of the
methodology for large-scale alignment.
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The goal of this thesis was to develop an approach to align diffusion-based text-to-image
models using Reinforcement Learning from Human Feedback (RLHF) for generating
high-fidelity and semantically consistent images. To accomplish this goal, we conducted a
series of experiments at increasing scale and complexity, gradually incorporating human
preferences to guide the optimization of simple diffusion models and, ultimately, a
state-of-the-art text-to-image model.

This chapter discusses the experiment series presented in chapter 6, revisits the research
questions posed in chapter 1, and reflects on the implications and limitations of the
proposed methodology for aligning diffusion models with human preferences. We also
briefly mention and discuss some recent concurrent work. Lastly, we provide a collection
of reflections on the work conducted.

7.1. Experiment Series Review
All experiments demonstrated a considerable increase in reward after optimization.
However, this increase in reward almost always came at the cost of diversity. The
experiments demonstrated that the RLHF methodology can optimize using very few
timesteps and that it generalizes to more timesteps during later sampling. This greatly
increases the efficiency of the method. The experiments also demonstrated positive
reward transfer to other classes and prompt not seen during optimization.

However, it proved to be difficult to balance the parameters to maximize the reward while
minimizing model degradation. The experiments showed that KL penalties did not prove
to be very successful. The KL penalty value would rise exponentially throughout training
and at a critical point, it would jump from being insignificant or only slightly significant
to being around 100 % of the total reward. At that point, no further training would be
fruitful, as the policy quickly diverged too far from the base model. Manually adjusting
the KL penalty coefficient would not have helped, as the penalty increased too rapidly.
In conclusion, the experiments were not able to tame the KL mechanism, as it was static.
The coefficients we tried were those suggested by Ouyang et al. (2022), but those values
seem to be too high in our case, because of the differences between reinforcement learning
with diffusion models and Large Language Models (LLMs). Proper ablation studies
for this sort of thing are needed, as well as the introduction of more adaptive penalty
schemes.
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The decision to use a very conservative learning rate throughout the series was primarily
based on the nature of the optimization process, which doesn’t incorporate any new
training data. Instead, the model generates its own training data during rollout. The
optimization process is therefore lossy with regard to retaining the original data dis-
tribution; there is no direct method for the model to regain any potential conceptual
knowledge lost during optimization unless that information is somehow encoded in the
reward signal. Hence, for the initial experiments, a lower learning rate was chosen to
preserve as much of the original distribution and learned representation as possible.

To facilitate easier transfer of hyperparameter values between experiments, the reward
function should have been standardized earlier in the development process. This would
have required additional time for sampling and computing rewards from a representative
distribution before optimization, which was not prioritized until the methodology had
proved itself successful enough.

The experiments also encountered difficulties with distributed training using Distributed
Data Parallel (DDP) and mixed precision. DDP had considerable overhead in the
beginning, which led to several complete refactors of the codebase, taking a great deal
of effort. This was exacerbated by the experiments’ unfamiliarity with DDP. Getting
Experiment 6: Pink and Experiment 7: PickScore to work in a timely fashion was also
critical, which necessitated the use of distributed training.

In summary, the experiments demonstrated the viability of the RLHF methodology
for aligning diffusion models with human preferences. However, they also highlighted
challenges in balancing optimization objectives and maintaining model fidelity, as well as
difficulties in hyperparameter tuning and evaluating model performance.

7.2. Overview of Results
The experiment series demonstrated the effectiveness of the RLHF methodology for
aligning both simple diffusion models and state-of-the-art text-to-image models. The
following summarizes the key findings of the experiments:

• Experiments 1 and 2 showed that simple diffusion models can be successfully aligned
with simple fixed reward functions, indicating that diffusion models are capable of
being trained using reinforcement learning techniques.

• Experiment 3 highlighted challenges related to mismatches between reward models
and the image distributions of the diffusion policies being optimized. This mismatch
necessitates careful hyperparameter tuning and regularization.

• Experiments 4 to 6 validated the reward modeling components of the methodology.
They demonstrated that diffusion policies could learn human preferences captured
by reward models based on U-Net encoders.

• Experiments 6 and 7 established the scalability of the methodology to complex
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state-of-the-art text-to-image models. They revealed issues like reward exploitation,
policy collapse, and potential biases in reward models trained on large datasets.

Taken together, the series progressively validated and improved upon the proposed RLHF
methodology, culminating in its application to align human preferences with the state-of-
the-art Stable Diffusion model. The series also uncovered many important insights into
the challenges of aligning generative models, which inform the following discussion.

7.3. Revisiting the Research Questions
The key findings and lessons learned based on the experiment series help address the
three research questions posed in chapter 1.

RQ1: Mapping Diffusion Models to a Reinforcement Environment
Experiments 1 and 2 established that diffusion models can be mapped to Markov Decision
Processes (MDPs) and optimized using policy gradient methods. These experiments
demonstrated that diffusion states, actions, and rewards could be defined as in section 5.1,
enabling the application of reinforcement learning. The main requirement found for
successful optimization was a reasonable number of diffusion timesteps for sampling
images, which ensured sufficient efficiency and quality to receive meaningful gradients
from rewards. Overall, all experiments validated the formulation and general robustness
of the proposed reinforcement learning environment for diffusion models.

RQ2: Designing Reward Models
The experiment series highlighted both the importance and challenges of designing ef-
fective reward models. Reward model mismatches with diffusion policies (section 6.6)
necessitated hyperparameter tuning and KL regularization to avoid rapid divergence or
degradation. Integrating human preferences via feedback also required thoughtful model-
ing decisions, such as splitting feedback into comparison tasks (chapter 4). Experiments
4 and 6 demonstrated that reward models initialized from diffusion model encoders and
fine-tuned on human feedback could successfully capture preferences, enabling policy
optimization (chapter 5). However, experiments 6 and 7 revealed issues like reward
model exploitation and potential bias in models trained on large datasets (section 6.9,
section 6.10), motivating future work on robust reward modeling.

RQ3: Evaluating Alignment Performance
Different metrics were used to evaluate alignment performance in the experiments.
Quantitative metrics like training loss and reward histograms showed that optimized
policies achieved higher rewards according to the modeled preferences. However, samples

115



7. Discussion

also needed to be qualitatively assessed to determine if high rewards indeed implied
better alignment. Visual inspection revealed issues like policy collapse and degradation
in several experiments. Human evaluations of generated samples and comparison tasks
emerged as the most reliable evaluation method. Overall, a combination of quantitative
metrics, qualitative assessments, and human evaluations was found to be most effective.

7.4. Implications of the Work
The experiment series established the potential viability and impact of the proposed
RLHF methodology for aligning diffusion models with complex human preferences. Some
key implications are:

• The methodology enables new ways to optimize the behavior of text-to-image
models beyond initial training objectives. This optimization can improve user
satisfaction, trust, and perception of model capabilities.

• RLHF techniques can enable text-to-image models to learn from limited human
feedback and guidance, reducing annotation costs compared to supervised training.

• The generalization capabilities observed in experiments 4 and 6 indicate that RLHF
may enable the learning of high-level preferences that transfer across domains and
prompts.

• By aligning generated images with human preferences, the methodology could
potentially make text-to-image models safer, more ethical, and capable of producing
less harmful outputs.

While most experiments focused on relatively simple preferences, they demonstrated the
promise of the methodology for aligning diffusion models in real-world settings. With
further refinements to reward modeling and regularization, the approach could enable
substantial progress in the capabilities and impact of text-to-image generation systems.

7.5. Limitations of the Work
Several limitations are evident from the experiment series, representing opportunities for
future improvement:

• Reward models are difficult to design and often exploit weaknesses to provide
rewards that do not actually correspond to human preferences. More sophisticated
reward modeling schemes are needed.

• Policy optimization led to issues like degradation, collapse, and loss of diversity.
Stronger regularization techniques are required to mitigate these problems.
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• The methodology places high demands on computational resources, especially for
large models. More efficient optimization algorithms and state representations are
necessary.

• Human evaluations are required to confirm that generated images actually align
with human preferences, but are time-consuming and expensive to obtain at scale.

• The approach does not yet consider potential harms and ethical issues that could
arise from optimized generative models.

• The methodology was only evaluated for a small number of reward models. Evalu-
ating the approach for aligning to a wide range of complex preferences remains an
open challenge.

Overall, the experiment series demonstrated promising initial progress toward aligning
diffusion models through RLHF. However, numerous technical and practical challenges
remain in scaling the methodology for real-world impact. Future work will need to
confront these limitations head-on if this approach is to realize its potential for generating
images that genuinely align with complex human preferences.

7.6. Ethical Considerations
The ability to align generative models with human preferences raises important ethical
considerations. Some potential ethical issues include:

• Biased preferences: Reward models trained on data from a specific population
may exhibit biases that reflect that population’s preferences. Optimized generative
models can perpetuate such biases. We observed hints of this in experiment 7.

• Privacy concerns: Preference data used to train reward models may contain
private information that must be properly anonymized and secured.

• Diversity issues: Optimized generative models may become aligned with prefer-
ences so narrowly that their outputs lack sufficient diversity or creative autonomy.

Addressing these ethical considerations will require careful thinking about how human
preferences are modeled and incorporated, as well as checks and safeguards that can be
integrated into the methodology itself. Future research on aligning generative models
must prioritize ethical considerations from the outset to ensure that this promising
technology is developed responsibly.

7.7. Comparison to Concurrent Work
Two recent concurrent works propose methodologies that are closely related to ours.
Their findings further reinforce the viability of our independently developed, but similar,
methodologies. The two papers are titled Training Diffusion Models with Reinforcement
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Learning by Black et al. (2023) and DPOK: Reinforcement Learning for Fine-tuning Text-
to-Image Diffusion Models by Fan et al. (2023). The authors coin the terms Denoising
Diffusion Policy Optimization (DDPO) and Diffusion Policy Optimization with KL
regularization (DPOK) to refer to their respective methods; we do not offer an alternative
term.

All our methods have in common that we frame the reverse diffusion process as a Markov
decision process. Our method differs from that of Black et al. (2023) in that they
accumulate gradients over the full rollout trajectory, instead of treating each state in
the rollout independently. Thus, all states pertaining to the same trajectory are always
part of the same optimization update, instead of being split into different minibatches.
This is more consistent with the diffusion theory and previous RLHF efforts in LLMs,
but we are not sure if this makes any meaningful difference to the optimization process.
Furthermore, Black et al. (2023) does not make use of KL regularization while Fan et al.
(2023) and our method does. While we struggled to get KL penalties to work properly,
Fan et al. (2023) suggest that they are essential for proper alignment.

Similar to our experimental approach, Black et al. (2023), devise simple functional reward
models to verify the reinforcement learning scheme. They also test using the same
Aesthetic predictor as us, but using Stable Diffusion. They observed similar results,
where the images become simplified with a single-color background with the subject in
focus.

Fan et al. (2023) test using basic prompts similar to our experiment involving animals
wearing pink sunglasses. They also test using the ImageReward model, but do not provide
many samples for analysis.

7.8. Further Reflections
This section provides further reflections on the work conducted in this thesis. These
reflections relate to our proposed methodology, the experimental series conducted, ap-
plications of our method, what we have learned in the process, and what we would do
differently if we were to do it again. This section should be helpful for guiding researchers
interested in recreating our method, and to guide future work in the field.

7.8.1. Human Preference Collection Format
We started off by wanting to capture and model general human preferences, inspired
by Ziegler et al. (2019)’s work on preference-tuning LLMs, which is why we decided to
adopt their labeling format of ranking samples based on preference.

However, while we adapted their human preference collection methodology, we never
had the time to conduct a large-scale general human preference collection experiment
as we initially wanted. Instead, we opted for simpler experiments designed to prove
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our methodology, similar to the experiments conducted by Lee et al. (2023), as the
closest work to ours in the text-to-image domain. While they also perform preference
alignment, their definition of “preference” differs slightly from Ziegler et al.’s in that
they primarily look at objective tasks like image-text alignment (correct counting, color
binding, backgrounds, etc.), while Ziegler et al. (2019) considers “preference” to include
a mix of both text alignment and fidelity.

Because of this, the ranking system which we had adapted to capture subjective, general
human preferences, was now being used on more objective tasks, meaning there were
instances where “objectively” poor images were rewarded simply because they were
superior to other “objectively” poor images. Ideally, both images would be labeled as
poor to avoid confusing the reward model.

OpenAI (2023), which builds on Ziegler et al. (2019), combines ranking with auxiliary
tasks to tackle this problem. By gathering additional data on toxicity and harmfulness,
they can penalize unwanted samples regardless of where they are ranked. While this
was not a problem of significance for Experiment 4: Macaw, where we primarily valued
image fidelity due to the non-complex task, a human preference collection format like this
would have enabled us to handle “objectively” poor images a lot better for Experiment 6:
Pink, where poor images were a lot more common.

Consequently, we believe that our methodology still holds a lot of unexplored potential.
And while we have been unable to extensively test this preference collection format, due
primarily to our simple experiments, we have no reason to believe that it wouldn’t also
work well for general preference collection in the text-to-image domain.

7.8.2. Software
There were numerous shortcomings of our software, some of which we outline below:

Cyclic Labeling. Our labeling software presents the labeler with two and two images
within a task, until all images within the task have been compared against one another
(in the case that we assume transitivity, some of the images are automatically compared),
creating a total ordering within that task. However, by naively comparing every image
against one another, cycle-comparisons can appear within the task, breaking the total
ordering. This limitation still holds when labeling in transitivity mode, but here such
potential cycles are effectively broken by which comparison the labeler is presented with
first, which is inherently random.

By only presenting the labeler with two images at a time, our labeling software enables
inconsistent human labeling. To combat this, the software would ideally show the entire
ordering of images as the labeler annotates the task, naturally forcing the human labeler
to break cycles by reconsidering past comparisons instead of arbitrarily breaking them in
software.
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By the time we realized this, we had already fully developed our labeling software. And
because we didn’t consider a complete redesign of the software cost effective, we instead
tried to naturally guide the labeler towards acyclic labeling by constructing instructions
that promote transitivity. We believe it also helped that we were doing the human
preference labeling ourselves, since we were already aware of potential cyclic labeling by
the time we were performing our larger experiments and could make sure we only labeled
data when we could guarantee a level of consistency.

Ties. Our labeling software also assumes that each task makes a total order. This
leaves no room for ties if the human labeler believes both presented images are of equal
preference. The immediate downside of being unable to declare ties, is how the loss
function of our method works. Under training of the reward model, the model tries to
maximize the reward difference between the two images that make up a comparison. If
the human labeler believes two images to be of equal preference, but is forced to prefer
one over the other, it can lead to noisy reward model training as the model tries to
maximize their reward difference.

Forcing the labeler to decide a preference among two images in the case of indecision
can also slow down labeling. This is something we experienced while labeling for our
experiments. The pressure to label as accurately as possible would often lead us to slow
down considerably as images of similar quality were presented. Ideally, the human labeler
would just be able to select “tie” if the presented images were of sufficiently similar
quality. A tied comparison could then either be excluded from the reward maximization
in the optimization step, or included in a separate reward minimization step (though
this approach would require further engineering work).

Mass Preference Collection. Our labeling software was purposely designed to collect
human preferences from “expert” annotators. Relying on data from annotators can be
slow and tedious, and easily fall prey to inconsistent labeling from demotivated human
labelers (Ziegler et al., 2019; Kirstain et al., 2023). When trying to capture general human
preference, you would also ideally try to collect preferences from as many labelers as
possible to override any bias not inherently related to the human preference you are trying
to capture. Text-to-image services like Midjourney1, Stable Diffusion’s DreamStudio2

and Pick-a-Pic (Kirstain et al., 2023) use online preference collection to expose their data
gathering to a larger group of intrinsically motivated users that can generate their own
images. This allows them to build a large dataset of real preferences based on real-world
usage of their models.

Others, like Wu et al. (2023), scrape user preference data from Stable Diffusion’s online
generation forums to gather the same data. While this might have been possible for us
too, it was not something we thought of at the time. However, in accordance with our

1Available at: https://www.midjourney.com/.
2Available at: https://beta.dreamstudio.ai/.
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methodology, scraping the data might not be as effective as running the mass preference
collection services themselves. Without the exact knowledge of models and settings used
to generate the images, it might be difficult to get the rollout of the policy optimization
stage as similar as possible for optimal efficiency. Though to the extent that this is
actually needed when building a general preference model is something we have not had
the time to test. Regardless, the increase in high-quality data would most likely outweigh
this downside and some form of mass preference collection might be needed to gather
enough data to accurately capture general human preference.

7.8.3. Experimental Plan.

Unlike Pick-a-Pic (Kirstain et al., 2023), which attempts to capture general human
preferences over a wide range of use cases and labelers, we ended up attempting to
capture specialized human preferences over a narrow range of use cases and for only one
labeler in our main experiments. We also limit our feedback to simple image-to-image
comparisons, unlike ImageReward (Xu et al., 2023), which gathers auxiliary data like
toxicity and harmfulness to better model a desired behavior.

Our methodology was designed to capture general human preferences, and that is what
we intended to do. However, because each experiment took so long to run, including
data gathering and model training, and the uncertainty surrounding how much data
was needed to capture general human preferences or if our methodology even worked
at all, we decided to limit the scope of our experiments. We found it more important
to show that the method worked at all than it was to show its full capabilities, on the
off-chance that we had gathered too little data or that we proceeded with unknown bugs
that prevented it from learning anything.

That said, we believe we have been able to show that our methodology is capable of
collecting human preferences and training a reward model that captures these preferences,
despite the limited scope of our experiments. We therefore see no reason why our
methodology shouldn’t also be able to collect general human preferences and train a
more general reward model in future, larger experiments.

7.8.4. Reward Model Architecture and Training

While we do not share parameters between models in our experiments, it is possible to
do so for the encoder part of the U-Net in the policy, reward model, and value function.
This is more memory efficient and could improve model performance by keeping the
reward model and value function aligned with the policy, as the policy is fine-tuned.
Ziegler et al. (2019) proposed that this approach might help maintain a sufficiently robust
reward model that precludes policy exploitation, although they were unable to provide
empirical evidence in support of this. Moreover, given that the value function in our
diffusion-based framework is required to evaluate intermediate noisy image samples with
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significant variations in perceptual content, unlike the reward model, parameter sharing
for these components seems less logical.

While we initialize the value function from the reward model in our experiments, we
conjecture that it could be beneficial to pre-train the value function using the same
comparison data used for training the reward model, while introducing noise back into the
image samples through forward diffusion (see background in section 2.5). This is similar
to the training strategy employed by Dhariwal and Nichol (2021) for their guidance
classifiers. However, in our experiments, we observe that the value loss converges early in
training, suggesting that the current initialization strategy may already be near-optimal.
We leave further exploration of this to future work.

7.8.5. Alternative Reward Models
While our proposed reward model focuses on aligning diffusion-based text-to-image
models using human preferences, alternative reward models can also be considered for
optimizing diffusion policies against different types of objectives. In this section, we
discuss some alternative reward models and their potential use cases. These models
represent potential future research directions.

Pre-defined Functional Reward Model. A pre-defined functional reward model
can be used to assign higher rewards to images with specific characteristics, such as the
colorfulness reward used in Experiment 2: Colorfulness. However, such an approach could
be problematic if the objective does not take into consideration the text conditioning. In
this case, the model might optimize toward the reward model in an undesirable manner
by forgetting to pay attention to the text, and hence, the text-related network parameters
might be negatively affected. To mitigate this, the KL regularization would have to be
sufficiently strong to keep the model from exploiting the reward model too much.

Improving Likelihood of Original Training Dataset. Inspired by Kim et al.
(2022), in their work on “Refining Generative Process with Discriminator Guidance
in Score-based Diffusion Models,” we can train a reward model as a discriminator to
discriminate between images from the original dataset and images generated by the
model. Optimizing the model against this discriminator should yield improved generative
capabilities. This approach aims to “close the gap” between original and synthetic
data, thereby improving metrics such as the Fréchet Inception Distance (FID) score (see
Background in subsection 2.12.2).

Sampling Distillation. Sampling distillation involves training a reward model as a
discriminator to discriminate between high-quality image samples (e.g., 250 sampling
steps) and low-quality image samples (e.g., 25 sampling steps). By optimizing the

122



7.8. Further Reflections

diffusion model using the discriminator, we can produce samples of similar quality to
those generated using 250 steps with just 25 steps, ultimately saving on inference time.

Improved Text Rendering. In scenarios where the text prompt involves generating
images that include text, a reward model could utilize a text detection or extraction
model to evaluate the generated images. This model would provide positive rewards when
the generated text in the image matches the expected text, and negative rewards when
the generated text does not match, is inaccurate, contains spelling errors, grammatical
errors, weird letter shapes, etc. This approach encourages the generation of legible and
correct text, which can be particularly useful in applications such as graphic design or
logo creation, where accurate text representation is vital. However, integrating a text
detection or extraction model can increase the complexity of the model and may require
additional training data where text is clearly and accurately labeled within images.

However, such a reward model presents some challenges. First, it would require sophistic-
ated and reliable text detection and recognition capabilities for effective discrimination
and reward assignment, in combination with sufficient training data (i.e., prompts for
rollout) to capture all potential ways of representing text in images. The inherent sub-
jectivity and variability in text aesthetics (e.g., fonts, sizes, colors, orientations, etc.)
also necessitate this. Moreover, as it is specifically tuned for scenarios involving text
in images, it might not perform optimally when faced with text prompts that don’t
involve the generation of text within the image. It could also inadvertently bias the
diffusion model to overemphasize text elements in image generation, potentially at the
cost of other important visual elements. Additionally, the text recognition model itself
could make errors, leading to inappropriate rewards and potentially reducing model
performance. Lastly, text rendering in an image is a complex task that might need more
specialized treatment than just reward modulation. For example, Saharia et al. (2022a)
demonstrated that the degree to which the text-to-image model is capable of rendering
text mostly comes down to the text encoder employed, and not the generative image
model itself, as one might initially believe.

Multi-objective Reward Models. Multi-objective reward models can assign rewards
based on multiple criteria simultaneously, rather than optimizing for a single objective.
These models can balance different desired outcomes, such as image quality, alignment
with text prompts, and specific image features like colorfulness or text rendering. This
concept is similar to the approach used by OpenAI in GPT-4, which employs several small
rule-based reward models which provide additional rewards during RLHF fine-tuning
(OpenAI, 2023). These individual reward models address specific areas such as detecting
harmful or inappropriate content, rambling, and deviations from a desired style.

One approach to implementing such a model could involve assigning weights to the
different objectives and combining their rewards linearly. However, determining the
appropriate weighting scheme can be a challenging task and might need to be adapted
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dynamically as the model learns. An alternative approach for multi-objective optimization
could be the use of Pareto efficiency or Pareto optimality, which allows for the balancing
of multiple conflicting objectives without explicitly defining a weighting scheme (Team,
2022). Pareto efficiency considers a solution to be optimal if there’s no way to make a
situation better for one objective without making it worse for another.

When considering multi-objective reward models, it’s worth noting that there may be a
trade-off between the complexity of the model and the quality of the output. Increasing
the number of objectives might lead to a more nuanced and balanced image generation
model, but it could also make the model more complex and potentially more difficult to
train. Moreover, multiple objectives could potentially conflict with one another, making
it challenging to find an optimal solution that satisfies all criteria simultaneously.

7.8.6. Evaluating the performance and alignment of diffusion models
trained with RLHF

In this work, the performance and alignment of these models are explored using two
primary evaluation methods: automatic evaluation and human evaluation, which provide
quantitative and qualitative insights, respectively. Automatic evaluation is a convenient
way to monitor the development of models as they are trained and to identify any
potential issues. In contrast, human evaluation provides a more accurate method for
comparing models and qualitatively assessing its ability to capture general preferences.

Automatic Evaluation

This thesis introduces four key metrics used for automatic evaluation: loss, reward,
Kullback-Leibler (KL) divergence, and Fréchet Inception Distance (FID) score. These
metrics provide a convenient way to monitor the development of models during training
and identify potential issues. Each of these components aims to offer a different perspective
on model performance.

Loss

Loss is often the primary means of evaluating model training, as it is the loss the model
tries to minimize during the learning process. However, while a decrease in loss indicates
that the model is learning, it does not reveal what the model is learning or whether
what it is learning aligns with the intended objectives. As such, the loss graph is a good
first indicator of model improvement, but other metrics are necessary for evaluating
performance and alignment.
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Reward

An immediately better quantitative evaluation metric than loss, is reward. While the loss
is the metric the model tries to minimize, the reward is the objective which it indirectly
tries to maximize. Reward is a great evaluation metric because it can encompass
information about both image fidelity and image-text alignment. By utilizing a reward
function or reward model, practically any objective can be encoded for model evaluation.
For example, if the reward function measures “colorfulness,” as presented in Experiment 2:
Colorfulness, a higher mean reward indicates that the trained model has a tendency to
produce more colorful images as defined by the reward function. Similarly, if the reward
model measures “animals wearing pink sunglasses,” as presented in Experiment 6: Pink,
it can be an evaluation metric for human preference on the task, measuring both image
fidelity and image-text alignment of animals wearing pink sunglasses.

However, it can be problematic to use the same reward model for both training and
evaluation. If the reward model is a bad approximation of the alignment objective,
the reward can still be high despite poor image fidelity or image-text alignment as
rated by humans. We experienced this during Experiment 6: Pink, where the reward
monotonically increased, even past the point where the samples started deteriorating.

Another problem of using the same reward model for both training and evaluation is
mode collapse. Mode collapse is another symptom of aggressive policy optimization,
where the model is encouraged to maximize the mean reward, even when the peak reward
stops increasing. This encourages the worse-rewarded samples to become more similar
to the best-rewarded samples until the mean reward matches the peak reward. Mode
collapse was very noticeable towards the end of Experiment 6: Pink, due to the prolonged
training, as the animals in the images converged towards the end.

If we were to naively evaluate performance and alignment using the reward model alone,
we could be deceived by increasing rewards despite degrading image quality, as the variety
decreases and the model exploits the reward model’s weaknesses. To better automatically
evaluate the performance and alignment of a trained model using a scalar reward, a
separate reward model could be used for evaluation that would not be prone to the
reward exploitation. However, this would not guard against mode collapse.

The episodic reward graph was among the metrics actively used to evaluate the perform-
ance and alignment throughout training in this Thesis (together with human evaluation)
until it was obvious that the model had overtrained and that the reward model was no
longer a reliable approximation of human preferences for the trained model.

KL-divergence

KL-divergence is a useful metric for evaluating the difference between two parametrically
related models and provides insights into alignment. A model that deviates significantly
from the base model may experience decreased image quality as the methodology shifts
from alignment to training. However, determining what constitutes an acceptable level
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of sample-deviation depends on a number of factors, including the model, the training
objective, and the task at hand. Since this has not been empirically studied in this thesis,
the degree to which KL-divergence can be used to evaluate performance or alignment of
text-to-image models trained with RLHF is uncertain.

FID Score

The FID score (see Background in subsection 2.12.2) belongs to the same category as
KL-divergence and is useful for comparing the performance of the base and aligned
models on a common benchmark dataset like MS-COCO (presented in Background in
subsection 2.11.4). This comparison can determine whether the model retains knowledge
of the elements it was not aligned on and ensure the model does not interfere with
unrelated aspects. Consequently, it is most interesting for observing if the model’s
performance worsens. While it is possible to calculate a FID score for seen prompts
between the two models, it is more closely paralleled with KL-divergence and might not
be necessary.

7.8.7. Human Evaluation
Human evaluation is necessary to gain a precise understanding of how well models
trained with RLHF perform in terms of image fidelity and image-text alignment. The
main way this study conducted human evaluation was through ad hoc observation of
sample images. The ad hoc observation were conducted on related, partially related, and
unrelated prompts to better evaluate image fidelity and image-text alignment, and to
understand how well the alignment generalizes across domains while maintaining the
original knowledge. Preferably, blind human evaluation trials should also be carried out.

Ad Hoc Observation We performed ad hoc observation of the trained models by
examining randomly sampled images from rollout and same-seed validation images to
get a sense of the model’s capabilities and shortcomings. This evaluation method was
especially useful for Experiment 4: Macaw and Experiment 6: Pink, where we could see
the reward increase during training, and then validate the model’s improved performance
and alignment by comparing sample images. This made it possible to pinpoint where
model fidelity and image-text alignment started to deteriorate, despite the increasing
reward. While the ad hoc observation performed in this work does not provide a
quantifiable evaluation of model performance or alignment, it made it easier to select a
good model from training which we could then perform more extensive and laborious
evaluation on, including a potential future blind experiment. As such, we consider it an
important part of evaluating models trained with RLHF.
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This chapter concludes the thesis by providing several directions for future work and
some brief final words.

8.1. Future Work
In this thesis, we have introduced a novel approach to optimize text-to-image models by
leveraging human feedback. Although our initial results are promising, there are many
areas where future research can further improve and refine this methodology. We outline
several directions that could be pursued to address current limitations and strengthen
the potential impact of this work.

Aligning to general human preferences. To enhance the generalization of our mod-
els to a wider range of preferences, it is necessary to gather feedback from multiple human
labelers. PickScore (experiment 7) presented preliminary evidence that incorporating
diverse opinions can improve overall alignment. However, more research is warranted to
determine the possible extent of this improvement.

More nuanced human feedback. We acknowledge that merely collecting a preference
for one image over another lacks sufficient nuance. Future work could involve collecting
preferences for multiple objectives, such as perceived fidelity and toxicity, and then
aligning policies to a multi-objective reward model.

Developing stronger reward models. The reward models explored in the presented
experiments were prone to reward exploitation by the reinforcement learning algorithm.
Potential avenues for improvement include exploring new architectures, employing en-
semble methods to increase stability, and gathering more training data to enhance
generalization performance.

Investigating multi-iterative RLHF. One potential way to mitigate issues stemming
from overoptimization is to iteratively optimize policies and retrain reward models in
multiple iterations. This approach might help prevent artifacts from arising during later
stages of training.
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Exploring alternative optimization strategies. Our work has shown that non-
RL-based methods, such as simply aligning the policy using supervised training, hold
promise as alternative training strategies. Additionally, investigating self-supervised
RL techniques that do not require human feedback, like Reinforcement Learning from
AI Feedback (RLAIF) by Bai et al. (2022), could offer valuable insights into further
improving model text-to-image models using less data.

Incorporating complementary training techniques. As demonstrated by Ouyang
et al. (2022) with Proximal Policy Optimization (PPO)-ptx, alternating the policy
optimization with training on the original objective can help maintain the base distribution
while aligning the model. Future work involves adapting and testing such strategies for
aligning text-to-image models.

Blind Human Evaluation. To better understand the impact of our methodology, it is
essential to conduct blind human evaluations of the optimized models. These assessments
would provide useful insights into the strengths and weaknesses of our approach, as well
as its overall effect on model performance as perceived by actual humans, not just proxy
reward models.

Improving KL regularization. A productive line of future work would be to conduct
ablation studies to determine appropriate KL penalty coefficients for different policy and
reward model pairings. Furthermore, additional methods for KL regularization, such
as dynamic KL penalties, could be explored to better preserve the original distribution
throughout the training process.

Ethical considerations. As we advance these techniques, a more profound exploration
into the ethical implications of aligning text-to-image models based on human preferences
should be conducted. Potential risks related to biases and harmful depictions should be
studied and mitigated in order to develop models that are beneficial to everyone and
adhere to ethical principles.

Addressing these opportunities would advance our methodology towards applicability in
real-world text-to-image generation systems. It would also provide a more comprehensive
understanding of the benefits, limitations, and risks involved in RLHF alignment for
generative models.

8.2. Conclusion
Our experiments have shown that RLHF is a viable and effective approach to align
diffusion-based text-to-image models with human preferences. We successfully optimized
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diffusion policies using fixed reward functions, existing reward models training using
human feedback, and our own reward models based on human preferences.

We recognize that there is still substantial room for further investigation and improvement
in our proposed methodology. First, our work has identified a number of technical
challenges and limitations that need to be addressed in future research, such as KL
regularization, reward model exploitation, and mode collapse. Additionally, we have
only begun to explore the vast potential of capturing general human preferences through
large-scale data collection and reward modeling. Furthermore, our work has touched upon
various ethical considerations that need to be addressed when deploying this methodology
in real-world applications, such as bias mitigation, unintended consequences, and risks of
misuse.

In conclusion, our work represents an essential step forward in aligning complex generative
models with human values and demonstrating the viability of RLHF in the text-to-image
domain. We hope that our method serves as a foundation upon which future research
can build more robust, controllable, and ethically grounded generative AI systems.
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A. Colorfulness Reward Function
Code

Python code for the colorfulness reward function used in section 6.5:

import numpy as np
from skimage.color import rgb2lab
import torch

def colorfulness_reward(images, vivid_threshold=10, n_hue_bins=7,
**kwargs):↪→

"""
Compute a colorfulness reward for a batch of images.
Input:

images: a numpy array of shape (N, H, W, C) representing N
images with↪→

height H, width W, and C color channels.
Output:

A numpy array of shape (N,) representing the reward for each
image.↪→

"""

device = images.device # Save device for output

# Convert to Lab colorspace
images = (images / 2 + 0.5).clamp(0, 1) # Move images to a [0, 1]

distribution↪→

images = images.detach().cpu().permute(0, 2, 3, 1).numpy() #
Convert to numpy↪→

lab_images = np.stack([rgb2lab(image) for image in images])

# Compute the ratio of pixels with vivid color (vividness)
a = lab_images[..., 1]
b = lab_images[..., 2]
vivid_mask = a ** 2 + b ** 2 > vivid_threshold
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A. Colorfulness Reward Function Code

vivid_ratio = np.mean(vivid_mask, axis=(1, 2))

# Compute the entropy of hue values (diversity)
hue = np.arctan2(b, a)
hue_bins = np.linspace(-np.pi, np.pi, n_hue_bins + 1)
hue_discrete = np.digitize(hue, hue_bins) - 1
hue_discrete[hue_discrete == n_hue_bins] = n_hue_bins - 1 # replace

the last bin with the second to last bin↪→

hue_counts = np.apply_along_axis(np.bincount, axis=-1,
arr=hue_discrete.reshape(hue_discrete.shape[0], -1),
minlength=n_hue_bins)

↪→

↪→

hue_probs = hue_counts / np.sum(hue_counts, axis=-1, keepdims=True)
hue_entropy = -np.sum(hue_probs * np.log2(hue_probs +

np.finfo(float).eps), axis=-1) # add epsilon for numerical
stability

↪→

↪→

# Combine terms and return reward
reward = vivid_ratio * hue_entropy

return torch.tensor(reward).float().to(device).squeeze(-1)
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B. Value Function Architecture
for Experiment 1: Target
Image

import torch.nn as nn
import torch.nn.functional as F

class CriticModel(nn.Module):
"""
Inspired by:
https://nextjournal.com/gkoehler/pytorch-mnist

https://godatadriven.com/blog/how-to-build-your-first-image-classifier-using-pytorch↪→

"""
def __init__(self, in_channels=1):

super().__init__()
self.channels = in_channels
self.out_dim = 10
self.conv = nn.Conv2d(self.channels, self.channels * 6,

kernel_size=3, stride=1, padding=1)↪→

self.pool = nn.MaxPool2d(kernel_size=2, stride=2, padding=0)
self.fc1 = nn.Linear(self.channels * 6 * 16 * 16, 24)
self.fc2 = nn.Linear(24, self.out_dim)

def forward(self, x):
x = F.relu(self.conv(x))
x = self.pool(x)
x = x.view(-1, self.channels * 6 * 16 * 16)
x = F.relu(self.fc1(x))
x = self.fc2(x)
return x
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C. Data for Generating Modified
Prompts in Experiment 6:
Pink

C.1. Animals
elephant dolphin parrot giraffe
koala turtle squirrel hippopotamus
rabbit hedgehog goose lemur
bear sheep cat pig
tiger panda horse hummingbird
penguin fox wolf monkey
frog chicken duck zebra
rhinoceros kangaroo crocodile snake
spider shark whale antelope
butterfly eagle owl bee
jellyfish lobster octopus crab
moose seahorse gorilla sloth
otter walrus raccoon skunk
bat armadillo beaver cow
donkey camel llama goat
swan flamingo lizard chameleon

C.2. Colors
red
orange
yellow
green
blue
purple
black
white
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D. Prompts Used in Experiment
7: PickScore

D.1. Diverse Prompts
The 24 prompts below were used to generate the diverse samples in Figure 6.35, Figure 6.36,
and Figure 6.39. They are given in column-major order relative to the figures.

1. “a photo of an astronaut riding a horse”

2. “a blue sky with fluffy white clouds”

3. “a serene landscape in the style of Impressionism, filled with bright yellows and
deep blues, featuring a river reflecting the afternoon sun”

4. “a futuristic cityscape at night, bustling with neon signs, hyperloops, and flying cars,
in the vein of cyberpunk aesthetics”

5. “a simple still life composition of assorted fruits on a tablecloth, reminiscent of
Caravaggio’s use of chiaroscuro”

6. “a dreamy representation of the Aurora Borealis, vibrant with green and purple
hues, reflecting in a still, clear lake”

7. “the concept of ’chaos’ portrayed through an abstract expressionist painting, using
a riot of swirling colors and brushstrokes”

8. “yellow duck, colored, splash, high detailed, painting”

9. “a lighthouse on a stormy night, waves crashing against the rocks”

10. “a photo of a hot air balloon over a wheat field”

11. “landscape photography of swiss alps, mountains, nature, high quality, summer,
bloom”

12. “macro photography of a red mushroom, morning dew, nature, high quality, bokeh,
dslr”

13. “a cherry blossom tree by a tranquil pond, pink, expressed through minimalist
Japanese ink painting”

147



D. Prompts Used in Experiment 7: PickScore

14. “a grand Gothic cathedral under a stormy sky, with dramatic shadows and highlights,
inspired by Romanticism”

15. “a tranquil rural scene of a cottage amidst a blooming meadow under the midday
sun, painted in the style of American Regionalism”

16. “a photograph of a deer wearing pink sunglasses”

17. “green apple, shiny surface, vivid colors”

18. “an ancient Egyptian pyramid under a starry night sky.”

19. “a macaw parrot with a colorful plumage perched on a branch”

20. “low poly elephant figure”

21. “sunset over the ocean, with a sailboat in the distance”

22. “logo of a red fox”

23. “photo of a nebula by the Hubble space telescope”

24. “a mystical depiction of a unicorn in an enchanted forest”

D.2. Animal Prompts
The 24 prompts below were used to generate the animal samples in Figure 6.37, Figure 6.38,
and Figure 6.40. They are given in column-major order relative to the figures.

1. “a photograph of a lion”

2. “a photograph of a mouse”

3. “a photograph of a corgi”

4. “a photograph of a deer”

5. “a photograph of a fox”

6. “a photograph of an elephant”

7. “a photograph of a kangaroo”

8. “a photograph of a eagle”

9. “a photograph of a koala”

10. “a photograph of a turtle”

11. “a photograph of a squirrel”

12. “a photograph of a hedgehog”

13. “a photograph of a panda”
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D.2. Animal Prompts

14. “a photograph of a hummingbird”

15. “a photograph of a frog”

16. “a photograph of a monkey”

17. “a photograph of an owl”

18. “a photograph of a bee”

19. “a photograph of an octopus”

20. “a photograph of an otter”

21. “a photograph of a raccoon”

22. “a photograph of a llama”

23. “a photograph of a jellyfish”

24. “a photograph of a pig”
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E. Labeling Software
The main labeling pane for preference collection is explained in section 4.2. The remaining
panes are presented here.

Figure E.1 shows the pane used to select which database the projects should read from
and write to. If a database does not exist at the target location, a new database is
automatically configured.

Figure E.2 shows the settings pane. This pane is used to quickly configure the settings
of the software. Here, the keys to select preferred image can be changed, as well as the
keys to navigate back and forth between image comparisons and tasks. It is also here
transitivity is enabled or disabled in the software.

Figure E.3 shows the pane for loading or creating a project. On project creation, the
project settings are specified, including the location of the images being preference rated,
the task size, what type of conditioning to use (single-class, multi-class, prompts) and
the project instructions.

Figure E.4 shows the pane used to export labeled projects for reward model training.
The pane supports splitting the tasks into training and validation tasks to train and
evaluate reward models.

Figure E.1.: The pane used to load project databases in the custom labeling software.
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E. Labeling Software

Figure E.2.: The pane used to configure the custom labeling software’s settings.
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Figure E.3.: The pane used to create or load a project in the custom labeling software.
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E. Labeling Software

Figure E.4.: The pane used to export a labeled project in the custom labeling software.
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