
Sebastian Vildalen Ekpete

Pixel-Perfect
Style Transfer for Pixel Art Synthesis using Cycle-
Consistent Generative Adversarial Networks

Master’s Thesis in Computer Science, July 2023
Supervisor: Björn Gambäck

Data and Artificial Intelligence Group
Department of Computer Science
Faculty of Information Technology and Electrical Engineering
Norwegian University of Science and Technology

Abstract
This thesis explores the synthesis of pixel art by image-to-image translation using cycle-
consistent generative adversarial networks (CycleGANs). This is achieved by translating
cartoon illustrations into the pixel art style.

As constrained to the technical limitations of their time, early computer graphics
programmers conveyed art using a limited set of pixels and colors, deliberately placing
each pixel. Even though the technical limitations are no longer present, pixel art has
survived as a popular art form. Despite the simplistic nature of pixel art, artists must
adhere to specific stylistic rules and guidelines, making the process time-consuming and
meticulous. This motivates the automatic generation of pixel art using creative computer
systems. Such systems often employ artificial intelligence and deep learning algorithms
to generate images but are rarely optimized for the generation of pixel art.

By fine-tuning and training state-of-the-art deep learning models and leveraging a
custom, high-quantity, and quality dataset, this thesis succeeds in generating pixel art
on the level of human artists. This is done through a series of experiments, where the
importance of the dataset is examined, and different model architectures are iterated and
improved upon. All the experiments have the CycleGAN architecture as a foundation,
and three significant architectural changes are examined, each optimized in response to
the quality of the generated images.

The generated images are evaluated using visual inspection and statistical metrics.
The visual inspection and statistical metrics compare the results of the models against
each other and show that the models are able to translate to the pixel art style effectively,
with certain models performing better. Furthermore, a new color consistency evaluation
metric for image-to-image translation models is introduced, which compares color palettes
of original and translated images. The results of this metric show that the models ensure
sufficient color consistency between the images.

The results from the best-performing model are further evaluated through a domain
expert survey. The responses to the survey reveal that the model can generate artwork
on the level of a beginner human pixel artist but that the model cannot incorporate
advanced pixel art techniques. Despite this, the domain experts expressed that the results
were impressive compared to other AI-generated pixel art. The generated images show
adherence to the basic rules and guidelines of the pixel art style, and the model shows
applicability as an assistive system to pixel artists, designers, and video game developers
alike.

i

Sammendrag
Denne masteroppgaven utforsker generering av pikselkunst gjennom bilde-til-bilde over-
settelse ved bruk av sykliske generative nevrale nettverk (CycleGANs). Dette blir gjort
gjennom å oversette digitale illustrasjoner til pikselkunst.

Som følge av de tekniske begrensingene på 70- og 80-tallet, formidlet grafiske designere
og programmerere kunst ved hjelp av et begrenset sett med piksler og farger, ved å bevisst
plassere hver piksel individuelt. Til tross for at disse tekniske begrensingene ikke lenger
finnes, så har pikselkunst overlevd som en populær kunstform. Selv om pikselkunst kan
virke enkelt, så må pikselkunstnere følge spesifikke regler og retningslinjer i henhold til
kunststilen, som gjør prosessen tidkrevende og vanskelig. Dette motiverer til automatisk
generering av pikselkunst ved bruk av kreative datasystemer. Slike systemer benytter
ofte kunstig intelligens og dyp læring for å generere bilder, men de er sjelden optimalisert
for generering av pikselkunst.

Ved å utvikle og trene generative maskinlæringsmodeller og bruke et høy-kvalitets
datasett, klarer denne oppgaven å genere pikselkunst på nivå med menneskelige kunstnere.
Dette oppnås gjennom en rekke eksperimenter, der betydningen av datasettene testes,
og flere utvidelser til modell-arkitekturen blir undersøkt. Alle eksperimentene bruker
den originale CycleGAN-arkitekturen som grunnlag, og tre store arkitekturendringer blir
undersøkt, der hver arkitektur blir optimalisert med hensyn til kvaliteten på de genererte
bildene.

De genererte bildene blir evaluert ved hjelp av visuell inspeksjon og statistiske metrikker.
Den visuelle inspeksjonen og de statistiske målingene sammenligner resultatene fra
modellene med hverandre og viser at modellene effektivt klarer å oversette bilder til
pikselkunst-stilen. Videre blir det introdusert en ny metrikk for evaluering av fargebevaring
for bilde-til-bilde oversettelsesmodeller, som sammenligner fargepalettene til originale og
oversatte bilder. Resultatene fra denne metrikken viser at modellene oppnår tilstrekkelig
fargebevaring mellom bildene.

Videre blir resultatene fra den beste modellen vurdert via en undersøkelse med eksperter
innenfor pikselkunst-domenet. Svarene på undersøkelsen viste at modellene er i stand til
å generere kunstverk på nivå med en nybegynner innen pikselkunst, men at bildene ikke
viser noe form for avanserte pikselkunstteknikker. Til tross for dette, uttrykte ekspertene
at resultatene var imponerende sammenlignet med annen AI-generert pikselkunst. De
genererte bildene viser bruk av de grunnleggende reglene og retningslinjene som finnes
for pikselkunst-stilen, og den endelige modellen viser anvendelighet som et støttesystem
for pikselkunstnere, designere og videospillutviklere.

ii

Preface
This thesis is the final part of a Master’s degree in Computer Science with a specialization
in Artificial Intelligence at the Norwegian University of Science and Technology (NTNU)
in Trondheim. The work was conducted at the Department of Computer Science under
the supervision of Professor Björn Gambäck.

Parts of the work in this thesis were inspired by work in my specialization project,
Computational Creativity with Generative Adversarial Networks, written during the fall
semester of 2022. Literature, explanations, and equations from the specialization project
are adapted in some sections and will be indicated in the respective section introductions.

The experiments and training of the models in this thesis would not be feasible without
the computing resources from the IDUN cluster (Själander et al., 2019). A thanks goes
out to the High-Performance Computing group at NTNU.

Furthermore, I would like to thank artists Italivy Cortes and Nicola Di Concilio for
evaluating the model results and providing thorough feedback.

I also want to thank my supervisor, Björn Gambäck, for guidance and valuable feedback
during the past two semesters.

Finally, a special thanks to my parents for always supporting me in any way possible
and inspiring me to pursue a Master’s degree.

Sebastian Vildalen Ekpete
Trondheim, 3rd July 2023

iii

Contents
Abstract i

Sammendrag ii

Preface iii

List of Figures x

List of Tables xi

1. Introduction 1
1.1. Background and Motivation . 2
1.2. Goals and Research Questions . 3
1.3. Research Method . 4
1.4. Contributions . 4
1.5. Thesis Structure . 5

2. Background Theory 7
2.1. Machine Learning . 7
2.2. Neural Networks . 8

2.2.1. Forward Pass . 8
2.2.2. Activation Functions . 10
2.2.3. Loss Functions . 10
2.2.4. Backpropagation and Gradient Descent 12
2.2.5. Weight Initialisation . 13
2.2.6. Hyperparameters . 13

Hidden Layers and Neurons . 13
Learning Rate . 13
Batches and Epochs . 14

2.2.7. Gradient Descent Variants . 15
2.2.8. Gradient Descent Optimisations 15
2.2.9. Overfitting . 15
2.2.10. Normalization . 16

2.3. Representing Images . 17
2.4. Convolutional Neural Networks . 18
2.5. Residual Networks . 19
2.6. U-NET . 20

v

Contents

2.7. Generative Adversarial Networks . 21
2.7.1. GAN . 21
2.7.2. Failure Modes . 23
2.7.3. DCGAN . 24
2.7.4. Least Squares GAN . 24
2.7.5. Self-Attention GAN . 25
2.7.6. PatchGAN . 25
2.7.7. CycleGAN . 25
2.7.8. GAN Evaluation Metrics . 28

IS . 29
FID . 30
KID . 30
SSIM . 30
Human Evaluation . 31

3. Related Work 33
3.1. Natural Computation . 33
3.2. Paired Image-to-Image Pixelization . 34
3.3. Unpaired Image-to-Image Pixelization . 34

4. Datasets 39
4.1. Data Sources . 39
4.2. Dataset Size . 40
4.3. Dataset Acquisition . 40
4.4. Dataset Processing . 40

5. Architecture 43
5.1. ResNet Generator . 43
5.2. PatchGAN Discriminator . 45
5.3. U-NET Generator . 46
5.4. Nearest-Neighbor Upsampling Layers . 47
5.5. Self-Attention Layers . 47

6. Experiments and Results 51
6.1. Experimental Plan . 51
6.2. Experimental Setup . 52

6.2.1. Implementations . 52
6.2.2. Environment and Resources . 52
6.2.3. Parameters . 52
6.2.4. Data Preprocessing . 53

6.3. Experimental Results . 55
6.3.1. Experiment 0: Datasets . 55
6.3.2. Experiment 1: ResNet . 56

Experiment 1.1: Increasing λid . 56

vi

Contents

Experiment 1.2: Upsampling . 57
Experiment 1.3: Spectral Normalization 59
Experiment 1.4: 9 ResNet Blocks 59

6.3.3. Experiment 2 - U-NET . 60
Experiment 2.1: U-NET Generator 61
Experiment 2.2: Spectral Normalization 61
Experiment 2.3: Upsampling . 62
Experiment 2.4: SSIM Losses . 63
Experiment 2.5: Perceptual Losses 65

6.3.4. Experiment 3: Self-Attention . 66

7. Evaluation and Discussion 69
7.1. Evaluation Method . 69

7.1.1. Minimum Color Palette Distance 69
7.1.2. Domain Expert Survey . 72

7.2. Evaluation . 74
7.2.1. Visual Inspection . 74
7.2.2. Statistical Metrics . 76
7.2.3. Color Palette Evaluation . 77
7.2.4. Domain Expert Evaluation . 78

7.3. Discussion . 80

8. Conclusion and Future Work 85
8.1. Contributions . 85
8.2. Future Work . 86

Bibliography 87

Appendix 95

A. Domain Expert Survey Answers 97

vii

List of Figures
1.1. Example of pixel art . 3

2.1. Model of FCNN . 9
2.2. Activation functions . 11
2.3. Learning rate step size . 14
2.4. RGB image representation . 17
2.5. Convolution operation . 19
2.6. Residual block . 20
2.7. GAN architecture . 22
2.8. CycleGAN structure . 27
2.9. Applications of the CycleGAN . 29

3.1. Results from related work . 35
3.2. Dataset from related work . 36

4.1. Examples from the dataset . 42

5.1. ResNet generator architecture . 44
5.2. PatchGAN discriminator architecture . 45
5.3. U-NET generator architecture . 46
5.4. Nearest-neighbor upsampling layers . 48
5.5. Self-Attention layers . 49

6.1. Down and upsampling . 54
6.2. Results from Experiment 0 . 55
6.3. Results from Experiment 1.1 . 57
6.4. Checkerboard artifacts . 57
6.5. Results from Experiment 1.2 . 58
6.6. Loss functions from Experiment 1.2 . 59
6.7. Results from Experiment 1.3 . 60
6.8. Results from Experiment 1.4 . 61
6.9. Results from Experiment 2.1 . 62
6.10. Results from Experiment 2.2 . 63
6.11. Results from Experiment 2.4 . 64
6.12. Extracted features from VGG19 . 65
6.13. Results from Experiment 2.5 . 66
6.14. Results from Experiment 3 . 67

ix

List of Figures

7.1. K-means vs frequent color extraction . 70
7.2. Palettes . 71
7.3. Evaluator 1 . 73
7.4. Evaluator 2 . 73
7.5. Results from all models . 75
7.6. Highly rated images . 79
7.7. Panting-to-pixel art . 81
7.8. Three pixel art styles . 82
7.9. Pixel art-to-cartoon . 82

x

List of Tables
4.1. Dataset statistics . 41

6.1. Default parameters . 53

7.1. CIEDE2000 distance between palettes . 71
7.2. Statistics of generated images . 76
7.3. Minimum Color Palette Distance . 77

xi

1. Introduction

Artificial intelligence (AI) applications in creative tasks have seen great attention and
innovation in recent years. The intersection of AI and creativity is in the field of
computational creativity, where new research and advancements are continuously being
made. Computational creativity can be defined as computational systems exhibiting
behaviors that unbiased observers deem creative (Colton and Wiggins, 2012). These
systems often use machine learning models and neural networks to learn from examples
and generate new works. With the ascent of available computing resources and open-
source machine learning frameworks and models, creating, leveraging, and using AI
systems is highly accessible. As a result of recent advancements and a surge in the
public interest, such systems can now create complex art in multiple domains and exhibit
creative behavior on the level of professional artists. This is highly evident in digital
art creation, where AI systems can generate artwork from text prompts, transfer the
style of one image to another, and even create new art from seemingly nothing. One
popular class of models used in these systems is Generative Adversarial Networks (GANs,
Section 2.7.1). GANs can effectively create artworks of many styles but are highly limited
to the art styles they learn from. Publicly available systems today lack the means to
create quality images of the pixel art style, which motivates the need for a specifically
designed AI model for generating pixel art.

This thesis explores the generation of pixel art by image-to-image translation using
cycle-consistent generative adversarial networks (CycleGAN, Section 2.7.7). This is done
through experiments where three architecture variants are tested and optimized according
to the generated images’ quality. The results of the models are evaluated using visual
inspection, statistical metrics, and a domain expert survey. Furthermore, a new color
consistency evaluation metric for image-to-image translation models is introduced, which
compares color palettes of original and translated images. This metric is introduced since
the colors of the input images should not be changed during the style transfer.

The models in this thesis are trained to translate images from a cartoon domain to the
style of a pixel art domain. For the models to effectively translate images, the training
data must be diverse, of sufficient size, and accurately represent the distributions and
styles of the two domains. No large datasets of quality pixel art are currently available,
suggesting the need for collecting a custom one. In addition, many image generation
models are trained on data found online, despite the possible intellectual property rights
of the images. Because of this, the intersection of art and AI is a highly debated subject,
as many artists fear that AI systems “steal” and copy from artworks. This motivates
the need for collecting a dataset from sources under creative commons licenses, such

1

1. Introduction

as CC BY-SA 4.01 and CC0 (public domain)2. This thesis provides a custom-collected
open-source dataset with a total of 3,600 images consisting of cartoon illustrations and
pixel art.

1.1. Background and Motivation

Images displayed on screens are composed of individual pixels, and early computer
graphics were programmed by controlling the colors of these pixels one at a time (Silber,
2015). This was due to technical restraints, and low-resolution graphics were the only
choice. With the advent of the video game industry, many techniques and best practices
for creating aesthetically pleasing low-resolution artwork were introduced. Despite the
technical limitations having disappeared, pixel art’s unique style, nostalgia, and retro feel
have contributed to its survival and popularity today. It can be found in video games
produced today, in addition to becoming an independent art form outside of video games,
and is popular among digital artists.

Conceptually, the art form is not limited to digital images, as it has many similarities
to other art forms and techniques, such as pointillism, mosaic art, and cross-stitching.
The common factor here is that the artworks comprise discernable small dots or squares
to form illustrations. In pixel art, the placement and color of each pixel must be chosen
intentionally since they encompass much more information in low-resolution images than
in high-resolution images. This demands careful consideration and skill when creating
pixel art. The process of creating pixel art involves more complexity than solely reducing
the resolution of existing images. It demands adherence to established stylistic rules and
guidelines, including how lines and outlines are created, shading techniques, and the use
of color. The most basic rule is that each pixel must be discernible and have a uniform
square shape with one color. The total use of colors in the artwork should be limited,
and the transitions between colors should either be sharp or empose shading techniques
such as dithering. Curved lines should be formed in a zig-zag manner, and there should
be a clear distinction between objects and image elements. An example of pixel art is
shown in Figure 1.1.

Learning the basic rules and placing pixels is of a low threshold, but creating advanced
and aesthetically pleasing pixel art takes creativity, ingenuity, and advanced techniques.
As with all art creation, it takes practice to excel, and pixel art can be challenging due
to the stylistic rules, even for experienced artists. In addition, creating large quantities
of pixel art can be time-consuming. These factors motivate the automatic generation
of pixel art as a tool for beginners, artists, designers, and video game developers. This
field has garnered some research attention, but most algorithms employ clustering and
downsampling techniques. Using deep learning to synthesize pixel art requires more
research, and this thesis explores this field.

1https://creativecommons.org/licenses/by-sa/4.0/
2https://creativecommons.org/share-your-work/public-domain/cc0/

2

1.2. Goals and Research Questions

Figure 1.1.: A pixel art illustration with discernible pixels, shading techniques, and a
minimal color palette. Image by author.

1.2. Goals and Research Questions
Goal Create a generative adversarial network model capable of synthesizing high-quality

pixel art.

Pixel art is an art form with a distinct style. In order to be considered high quality, the
artwork must conform to a specific set of rules and principles. Current generative models
can struggle with certain stylistic demands, and generative adversarial networks (GANs,
Section 2.7.1) do not perform well in the synthesis of pixel art. To achieve the goal of this
thesis, image-to-image translation techniques will be explored using a cycle-consistent
adversarial network, and suitable datasets will be collected and assembled. Experiments
will be conducted to document how the techniques and the datasets affect the generated
pixel art. The thesis will try to answer the following research questions.

Research question 1 How can GAN architectures be designed to be able to create pixel
art effectively?

Several experiments will be carried out to test different architecture extensions, tech-
niques, and configurations. These will build upon the official implementation of the
state-of-the-art CycleGAN model (Section 2.7.7). The effects of hyperparameter tuning
and optimization techniques will also be researched.

Research question 2 What impacts do the datasets’ quality and quantity have on the
generated artwork?

A major issue in the synthesis of pixel art by generative models is the lack of suitable
available datasets. Both the quality and the quantity of the datasets may have significant

3

1. Introduction

impacts on how well the models can perform. The experiments will be conducted using a
variety of datasets to review these impacts.

Research question 3 How can the performance of the models be measured and evaluated?

The generated samples must be compared to the real images to evaluate the model.
The quality and the variety of the generated samples need to be captured. This can be
done with commonly used metrics such as Fréchet Inception Distance or Kernel Inception
Distance (Section 2.7.8). Human evaluation may also be needed to further evaluate the
quality of the generated samples. This may be done through conducting surveys and
consulting with domain experts. Custom evaluation metrics to explicitly evaluate pixel
art will be explored.

1.3. Research Method
Several research methods will be applied to answer the three research questions and
ultimately try to achieve the research goal. First, a study on necessary background
theory will be conducted to gain a thorough understanding of the technologies applied.
Furthermore, literature relevant to the synthesis of pixel art will be explored. Relevant
literature from the specialization project mentioned in the Preface will be included, and
the Google Scholar search engine3 will be used to find new literature.

Several experiments will be conducted to answer Research Questions 1 and 2. Different
model architectures will be tested and optimized during the experiments according to
an experimental plan. To answer Research Question 3, the collected dataset will be
compared to a subset of itself and to an existing lower-quality dataset.

The generated images during training will be visually inspected to evaluate the indi-
vidual architectural changes during the experiments. After the experiments, the results
from the best-performing models will be further evaluated and compared using a combin-
ation of visual inspection and statistical metrics. Finally, a domain expert survey will
assess the resulting pixel art images.

1.4. Contributions
The main contributions of this thesis are as follows:

1. An investigation of architectural changes to the base CycleGAN model for effectively
generating pixel art.

2. An introduction of a new color palette evaluation metric. This metric extracts
dominant colors from images and scores how consistent the colors are with each
other. This metric applies to all style transfer tasks where the input and the output
images should have the same dominant colors.

3https://scholar.google.com

4

1.5. Thesis Structure

3. A collection of a high-quality dataset with 1,800 cartoon illustrations and 1,800
pixel art images, all under a creative commons license.

4. An approach for implementing a ResNet generator with modified upsampling layers
and spectral normalization in the discriminator. The implementation generates
results with no artifacts and sufficient color consistency between input and generated
images.

5. An approach for implementing a U-NET generator with added SSIM and perceptual
loss functions. This implementation was shown to have improved color consistency.

1.5. Thesis Structure
• Chapter 2 introduces the theory, tools and methods necessary to understand the

work.

• Chapter 3 gives an overview of related work in the field of pixel art synthesis.

• Chapter 4 introduces the collected custom dataset used in the experiments.

• Chapter 5 presents the network architectures used in the experiments.

• Chapter 6 provides the experimental plan, the experiments, and the experimental
results.

• Chapter 7 evaluates, compares, and discusses the experimental results in the context
of each other and the context of real pixel art.

• Chapter 8 concludes the thesis and provides the main contributions and suggestions
for future work.

5

2. Background Theory
This chapter provides the necessary background theory for understanding the research
conducted in this thesis. First, Section 2.1 presents an introduction to machine learning.
Section 2.2 introduces neural networks and deep learning, including network elements,
parameters, and optimizations. Section 2.3 presents how images are represented for
use in neural networks. Sections 2.4, 2.5, and 2.6 present various deep learning models,
respectively CNN, ResNet, and U-NET. Section 2.7 introduces GAN, along with several
variants, such as CycleGAN. Lastly, a selection of GAN evaluation metrics is presented.

2.1. Machine Learning

Machine learning algorithms learn from a set of input data. The most common form
of machine learning, supervised learning, requires labeled data. This data is a set of
real-world examples from a particular domain. The data is made up of features (inputs),
denoted by X, along with corresponding labels (outputs), denoted by y. The algorithms
work by making output estimations based on the input X and computing errors (or
losses) by comparing the estimations to the correct output y. The comparison is done
by an objective function (often called loss function) and is used to gradually improve
the accuracy of the model by updating its parameters θ. This process of evaluating and
optimizing is done repeatedly until the accuracy of the model reaches a certain threshold
(IBM, 2022b). In short, supervised algorithms want to model the probability distribution
p(y|x, θ). For the classification example, this would mean the probability of example x
belonging to class y, based on θ. Supervised machine learning models which predict class
labels are called discriminative models.

In contrast to supervised learning, unsupervised learning uses datasets with no labels.
These algorithms learn the properties of the structure of the input data. Unsupervised
models want to learn the probability distribution of the dataset p(X), without any labels
y (Goodfellow et al., 2016, p. 105). This means that instead of comparing the models’
output to a label y, the output is compared to the input x by some objective/loss function.
The model can then use the generated probability distribution to fabricate new data
instances that are similar to or even indistinguishable from the input data. Machine
learning models that generate these sorts of distributions are called generative models.

The input data to machine learning models is often divided into training data and test
data. The training data is used during the learning process, where the model is trained
and optimized. Therefore, the training data should be of a large enough size to represent
the dataset as a whole. The test set is used to evaluate if the model can generalize to
new, unseen data. The challenge for the algorithm is to make the model fit the training

7

2. Background Theory

data by reducing the training error, while also reducing the test/generalization error
(Goodfellow et al., 2016, p. 110).

2.2. Neural Networks

Artificial neural networks (ANNs) are machine learning algorithms that are good at
recognizing patterns in large amounts of data. ANNs are often used in discriminative
tasks, but can also be used with unlabelled data in generative tasks. Relevant tasks can
be found in many fields, with some being object recognition (Zhao et al., 2019), speech
recognition (Graves et al., 2013), and image creation (Goodfellow et al., 2014). ANNs are
modeled on a simplified version of the human brain, in that they consist of large numbers
of interconnected neurons (or nodes). Neurons in a neural net mimic how biological
neurons send and receive signals between each other. Together, neurons in a neural
network form layers, and neural nets with several layers are called deep neural networks.
The resulting learning algorithms are under the term deep learning. The most prominent
types of deep learning models are deep feedforward networks, also called feedforward
neural networks or multilayer perceptrons (MLPs).

A feedforward neural net wants to approximate some function f , and for the classifica-
tion example, the network creates a mapping y = f(x; θ), analogous to finding p(y|x, θ)
(Goodfellow et al., 2016, p. 167). A network consists of several layers, namely the input
layer, the hidden layer(s), and the output layer. The input layer is just a representation
of the input data in the form of nodes. The hidden layers are the intermediate layers
in the network where computation and training take place. The output layer produces
the results after the computations in the hidden layers (Goodfellow et al., 2016, p. 168).
Together, the layers form the function f . In each node in each layer, computation takes
place during forward propagation, and when the input data has propagated through every
layer, one forward pass has been completed. After a forward pass, the loss is computed,
and the network parameters are updated through backpropagation. This cycle repeats
until the model converges. After the model has converged, one can feed the network with
new examples. The new example is propagated forward through the trained network
until an output prediction is computed. In short, neural network models are trained
using an optimization algorithm that incrementally adjusts weights to minimize a loss
function. These weights are then used to make predictions, with the use of a forward
pass through the network.

2.2.1. Forward Pass

The neural network in figure Figure 2.1 has two input variables, which can be represented
as a vector X. The weights going from the first layer can be represented as a matrix W1.
The weights indicate the importance of the inputs to each node. A weighted sum of the
inputs is computed during the forward pass. This sum is added with a bias matrix B1,
which has the same dimensions as W1. The bias matrix are a set of constants to adjust
the outputs of the nodes. The resulting matrix Z is then fed into a ReLU activation

8

2.2. Neural Networks

Figure 2.1.: Model of a fully connected neural network (FCNN) with one hidden layer.
The input layer X =

(
x1 x2

)
has two input variables. The hidden layer H

is composed of three hidden nodes: H =
(

h1 h2 h3
)
. The output layer O

has two output nodes: O =
(

o1 o2
)
. The arrows represent the forward pass

through the network, and each arrow has a corresponding weight wi. The
weights wi between each layer form the weight matrices W1 =

(w1 w2 w3
w4 w5 w6

)
and W2 =

(w7 w8
w9 w10
w11 w12

)
. Deep neural nets are scalable to have many hidden

layers, and thousands or even millions of nodes in each layer. The number
of nodes in the input layer is dependent on the number of features in the
input data, and the number of output nodes is dependent on what is being
predicted. The number of hidden layers and the number of nodes in them are
dependent on the complexity of the task at hand and are up to the designer
of the network to decide.

function (Figure 2.2, page 11) in the hidden layer. The output vector H of the hidden
layer becomes the input to the final layer, and the same calculation is done again. This
time with the weights matrix W2 and the bias matrix B2. Finally, the output layer’s
activation function σ produces the output O. The complete computation of one forward
pass is shown in Equation 2.1.

9

2. Background Theory

(2.1) Computations of a single forward pass in an FCNN. ” · ” is the dot product.

Z1 = X ·W1 + B1 (2.1)

H = ReLU(Z1)

Z2 = H ·W2 + B2

O = σ(Z2)

2.2.2. Activation Functions

Activation functions are mathematical functions that are applied to the output of a neuron,
or a group of neurons, to introduce non-linearity into the model. The standard functions
that are used are often Tanh(x) or σ(x). However, these saturating nonlinearities are
much slower than non-saturating nonlinearity functions (Krizhevsky et al., 2012). In this
case, saturating functions refer to functions that squeeze numbers into a range. The ReLU
activation function (Figure 2.2 (a)) for neurons provides much faster training for gradient
descent, especially with large networks and datasets. Because of this computational
efficiency, ReLU is one of the most successful and popular choices of activation functions,
especially in convolutional neural networks (Krizhevsky et al., 2012). One issue of ReLU
is the “dying ReLU” problem when ReLU neurons become inactive and only output 0 for
any input, which prevents learning (Lu et al., 2019). An alternative is to use LeakyReLU
(Figure 2.2 (c)), which has a small slope for negative values instead of ReLU’s flat slope.

For networks that want to predict a probability as an output, the sigmoid activation
functions are good choices, because they produce an S-curved shape in the range [0,1].
The standard sigmoid function is the logistic function (Figure 2.2 (b)). Sigmoid pairs
well with the binary cross-entropy loss function (2.4) in the context of networks made
for binary classification problems. Sigmoid and BCE are used in GANs (2.7.1) to decide
if images are real or fake. In some GAN variants, the output is fed through a Tanh
(Figure 2.2 (b)) activation function to map the output to the range [-1,1].

2.2.3. Loss Functions

After the forward pass, the predicted output vector O is compared with the ground truth
Y =

(
y1 y2

)
to get a measure of the degree of discrepancy between the two. This measure

is performed through an objective/loss function. The loss function can be any function,
but two popular ones, especially in image processing, are the L1 and L2 loss functions
(Zhao et al., 2017). L1 loss calculates the absolute difference between the predicted
output o and the true value y. L2 loss calculates the squared difference. In practice,
L1 is analogous to the Mean Absolute Error function (MAE, Equation 2.2), and L2 is
analogous to Mean Squared Error (MSE, Equation 2.3). The difference is that MAE
and MSE calculate the average of the differences across the whole training set, and are
called cost functions, while L1 and L2 calculate the loss of one training example (IBM,
2022a).

10

2.2. Neural Networks

Figure 2.2.: (a): ReLU (Rectified Linear Unit) activation function. Returns the input x
if x is positive, returns 0 otherwise. (b): Sigmoid (σ) activation function.
Maps the input x to the range [0, 1]. (c): LeakyReLU with slope α = 0.2.
(d): Hyperbolic tangent Tanh.

LMAE = 1
N

N∑
i=1
|Yi −Oi| (2.2)

LMSE = 1
N

N∑
i=1

(Yi −Oi)2 (2.3)

The choice of loss function is not arbitrary and is dependent on the task at hand.
E.g. L1 and L2 loss are good choices for many prediction tasks. If the network is a
classifier where the classification task only has two class labels, it is often efficient to
use a binary cross-entropy loss function (Mao et al., 2016), also known as log or BCE
loss (Equation 2.4). In this case, the network only has one output node o. Here, o is the
probability of the prediction belonging to the first class, while 1− o is the probability of
the prediction belonging to the second class.

11

2. Background Theory

LBCE = 1
N

N∑
i=1
−yilog(oi)− (1− yi)log(1− oi) (2.4)

2.2.4. Backpropagation and Gradient Descent

The learning part of a neural network takes place during backpropagation, and it is
during this process the network’s parameters are updated. After each forward pass, a
backward pass follows, and this cycle is repeated iteratively to improve the network’s
performance until a predefined error threshold is reached. The mathematics behind the
backpropagation involves partial derivatives and the chain rule to compute gradients.
Gradients are vectors that point in the direction of the steepest ascent on a curve, and in
the case of neural networks, the curve is the loss function. After computing the total
gradient of the loss function starting from an arbitrary point and subsequently traversing
in the opposite direction, the minimum of the loss function can be identified after a
sufficient number of iterations. The point where the loss function has its lowest value is
known as the point of convergence (IBM, 2022a). This optimization technique is called
stochastic gradient descent (SGD).

To compute the total gradient, the gradient of the loss function is computed separately
in each layer with respect to the current layer’s parameters, conducted in a backward
manner through the network. The simplified steps of the backpropagation algorithm
for the example network in Figure 2.1 are shown in equations (2.5)-(2.10). Note that
only the calculations for the weights are included. In practice, biases are updated in the
manner as the weights, but with the derivative of the loss with respect to the biases.

(2.5)-(2.10) (Simplified) computations of a single backward pass in an FCNN. ” · ” is the
dot product.

Erroroutput = L′(y, o) · σ′
2(Z2) (2.5)

Errorhidden = Erroroutput ·W2 ·ReLU ′(Z1) (2.6)

dW2 = Erroroutput ·H (2.7)
dW1 = Errorhidden ·X (2.8)

W2 = W2 − (lr · dW2) (2.9)
W1 = W1 − (lr · dW1) (2.10)

Equations 2.5-2.6 show the computation of the error term for the output layer O and
the hidden layer H. L′ is the derivative of the cost function. σ′ is the derivation of the
activation function and Z2 is the input to the output layer. Equations 2.7-2.8 show the
computation of the cost derivatives for the weights, where H is the output of the hidden
layer, and X is the output of the input layer. Equations 2.9-2.10 show the updating of

12

2.2. Neural Networks

the weights by subtracting them with their respective cost derivatives multiplied by the
learning rate lr. lr is a predefined hyperparameter. After the gradients are computed, the
weights and biases are updated, and another forward/backward pass with new training
examples can be conducted. The mechanics of forward/backward passes and gradient
descent mostly stay the same for both supervised and unsupervised training. However,
other network features such as how loss functions are handled differ between them.

2.2.5. Weight Initialisation

The weights W in a network should be initialized to small random values prior to training.
When working with networks that employ ReLU activations, He Initialization (He et al.,
2015) is a good choice. The weights for each node derived from He Initialization are
random numbers from a zero-centered Gaussian probability distribution (N) with a
standard deviation of

√
2/n. He initialization for weight wl is show in Equation 2.11.

Here, nl is the number of inputs to the node. Initializing weights can prevent the network
from reducing or magnifying the magnitudes of the input signal exponentially (He et al.,
2015). He Initialization sets biases to 0.

wl = N (0,
2
nl

) (2.11)

2.2.6. Hyperparameters

Hyperparameters are parameters that need to be chosen before network training begins.
Hyperparameters are not the weights and biases, but rather a set of values that control
the learning process of the model. Correct configurations of these values are key to
the learning process, but the choice of these values often needs to be revised through
empirical testing of the model. Hyperparameters include but are not restricted to the
structure of the network, the learning rate, the division of the input data (batches and
batch size), and the number of iterations.

Hidden Layers and Neurons

The network structure refers to the number of hidden layers and the number of neurons
in each layer. The number of hidden layers is the number of layers between the input
and output layers. Increasing the number of hidden layers and the number of hidden
neurons can increase the network’s capacity to learn complex features, but it can also
increase the risk of overfitting. Overfitting is discussed in Section 2.2.9.

Learning Rate

Learning rate controls the step size used during gradient descent to update the weights
of the neural network, i.e. how fast the network should learn from its gradients with each
iteration. A larger learning rate can result in faster convergence, but it may also cause

1https://creativecommons.org/licenses/by/3.0/

13

2. Background Theory

Figure 2.3.: The size of the learning rate and its effect on convergence. Left: Small
step size can lead to slow convergence. Right: Large step size can lead to
overshooting. Figure adapted from Cui (2018), under licence CC BY 3.01.

the model to overshoot the optimal weights and lead to instability and even divergence.
A smaller learning rate can cause slow convergence and cause the optimization process to
be stuck in a local minimum of the cost function. The effects of the step size are shown
in Figure 2.3. Typically, the learning rate is set to a small positive value, such as 0.1,
0.01, or 0.001. However, the optimal learning rate can vary depending on several factors,
including the architecture of the network, the complexity of the problem, and the size of
the dataset. Finding the optimal learning rate is important for the convergence of the
network, and can be done automatically by gradient descent optimization techniques.

Batches and Epochs

The dataset to be used in training neural networks can range from only a few to a million
or more different samples. A neural network normally can not handle entire large datasets
at once, so the dataset is often divided into equally sized mini-batches. The size of each
mini-batch is usually defaulted to a power of two, with normal values being 32, 64, or 128.
Every time the network has passed through every sample in the dataset, one epoch is
completed. The number of epochs defines how many times the network will use gradient
descent on the entire dataset. For each epoch, the network completes a number of n
iterations, where the gradients are computed and updated every iteration. The number
of iterations depends on the variant of gradient descent.

14

2.2. Neural Networks

2.2.7. Gradient Descent Variants

The gradient descent algorithm has several variants and optimizations. The three major
variants are SGD, batch gradient descent, and mini-batch gradient descent. SGD updates
the network’s parameters for each training example xi individually. Here, the number of
iterations is the same as the number of N training samples and corresponds to one epoch.
Batch gradient descent, on the other hand, updates the parameters by computing the
gradient of the loss function for the entire training set. Here, one epoch corresponds to
one single iteration, since the batch size is 1. This can lead to faster convergence but can
be computationally expensive for large datasets compared to SGD. Mini-batch gradient
descent is a compromise between the previous two, as it computes the gradients for
smaller batches. The parameters are then updated based on the average of the gradients
computed for each batch. Here, one epoch has N

b iterations, where N is the number of
samples and b is the batch size. Mini-batch gradient descent can provide a good balance
between computational efficiency and accuracy (Cotter et al., 2011).

2.2.8. Gradient Descent Optimisations

The three gradient descent variants do not guarantee convergence, and the choice of
learning rate can heavily influence this, as seen in Figure 2.3. To combat this issue,
several gradient descent optimization algorithms have been introduced. One of these
optimizers is Adam (Adaptive Moment Estimation, Kingma and Ba (2015)), and its job
is to help with hyperparameter initialization and updating. Adam adapts the learning
rate to different parameters automatically, based on the statistics of gradients during
training (Zhang, 2018). Specifically, Adam stores an exponentially decaying average
of the gradients and their squared values. It then uses these estimates to update the
learning rate for each parameter. Adam has three main configuration parameters: α,
β1, and β2. α is the learning rate, and β1, β2 ∈ [0, 1) control the exponential decay
rates of the moving averages of the gradient and the squared gradient. Kingma and Ba
recommend α = 0.001, β1 = 0.9, and β2 = 0.999 as starting values. Adam is well-suited
for dealing with noisy data since it can continuously adjust the learning rate in response
to fluctuating gradients.

2.2.9. Overfitting

When the gap between the model’s training error and test error is too large, the model
is overfitting. In other words, the model is memorizing properties of the training set
that do not apply to the test set (Goodfellow et al., 2016, p. 111-112). This defeats the
purpose of the model since it cannot perform accurately on new data. Overfitting can
occur when the model is trained for too long or if the model is too complex compared
to the complexity of the input data. However, if the training is stopped too early or
the model is not complex enough, the model may become underfitted and not able to
establish a connection between the input and the output data.

To achieve the optimal balance of the model, where it can both find the underlying

15

2. Background Theory

structure of the training data while also generalizing well to new data, regularization
approaches are often used. Regularization approaches are modifications to the networks
which are intended to reduce their generalization error but not their training error
(Goodfellow et al., 2016, p. 120). The Adam optimizer has an option for regularization,
where it can use weight decay. Weight decay is when a penalty term is added to the cost
function, based on the parameter λ.

Another form of regularization is the dropout technique. Dropout randomly drops nodes
and their connections from the network during training. Every node has a probability
p of being dropped. This simple, yet effective technique, prevents the network from
adapting too much and can improve performance in image-related tasks when combined
with other regularization methods (Srivastava et al., 2014).

2.2.10. Normalization

Training deep neural networks can be difficult due to the distribution of the inputs to
the layers in the network. During training, the parameters of the layers change, which in
turn will change the distribution of their outputs. These outputs are the inputs to the
subsequent layers. The change in input distribution is defined as an “internal covariate
shift”, which can be a problem when more layers are added to the network. This problem
increases when the number of layers increases because every layer needs to adapt to new
distributions for every training iteration. To combat the problem of internal covariate
shift, a normalization step is introduced. In general, normalization fixes the mean and
variance of an input x to the network layers by subtracting the mean µ and dividing
by the standard deviation σ. x has dimensions C ×W ×H. The operation is shown in
equation (2.12).

x̄ = x− µ

σ
(2.12)

Batch normalization (Ioffe and Szegedy, 2015) allows for easier initialization of the
network and a higher learning rate and is also beneficial for the gradient flow through the
network. These advantages allow a network to be trained efficiently in fewer iterations,
provide stabilization, and allow deeper networks to converge. The normalization process
is done individually for each channel, where each sample will be normalized by the mean
and variance of the whole batch.

An alternative to batch normalization is instance normalization (Ulyanov et al., 2016),
where the mean and variance are calculated for each channel in each sample and not for
whole batches. Here, the mean and variance of the rest of the samples do not affect the
normalization of each sample. This method proves effective in style transfer tasks and
prevents instance-specific mean and covariate shift. Instance normalization can replace
batch normalization in the generator network in GANs. This removes instance-specific
contrast information (range of brightness) from the image that needs to be transformed,
which speeds up the generation and can provide better results.

To specifically stabilize the training of the discriminator network in GANs (Sec-
tion 2.7.1), Miyato et al. (2018) introduced spectral normalization. Spectral normaliza-

16

2.3. Representing Images

tion controls the Lipschitz constant of the discriminator function f by constraining the
spectral norm of each weight layer. A Lipschitz constant is how much the output of a
function can change with respect to changes in the input (Avant and Morgansen, 2021).
The spectral norm is simply the largest singular value of a matrix which is also called
the L2 matrix norm. The spectral norm of a weight matrix W is denoted σ(W), and
its full mathematical computation can be found in Miyato et al. (2018). By this, the
spectral norm of W is normalized to satisfy the Lipschitz constraint σ(W) = 1. For a
neural network, each weight layer can be normalized by equation (2.13).

W̄SN (W) := W

σ(W) (2.13)

2.3. Representing Images

Neural networks receive vectors of numerical values as input. Together, these numerical
values are representations of real-world data that the network will process. This data
should be something that has a learnable pattern, and in the field of computational
creativity, this data can for example be music or images. A digital image is composed of
pixels in a grid, which is by default suitable for input to a neural network after the pixel
values are fed into vectors to form a matrix. A small grayscale image with a resolution of
16× 16 pixels can be fed into a 16× 16 matrix, where each entry in the matrix is the
value of a pixel. If the image has colors, it is necessary to represent the individual color
values of each pixel. Each pixel often has three color values, referred to as RGB (Red
Green Blue), which mixed can produce any color. The advantage of this representation is
that any color can be decomposed into three discrete values only ranging from 0 to 255
(8 bits). To represent a W ×H pixel RGB color image, three matrices of size W ×H are
needed, one for each color channel C, as seen in Figure 2.4.

Figure 2.4.: 16 × 16 pixel color image converted to RGB representation for input to a
neural network. The pixel grid is included for illustration.

17

2. Background Theory

2.4. Convolutional Neural Networks

Convolutional neural networks (CNNs) are built upon the same concepts as ANNs, in that
they are comprised of neurons and that they try to learn through forward passes and back
propagation. CNNs were initially designed for pattern recognition in images, and they
allow for image-specific features to be encoded into the architecture (O’Shea and Nash,
2015). CNNs make strong and accurate assumptions about the contents and statistics
of images and make good approximations for the relations between pixels. Compared
to standard feed-forward neural networks of equal size, CNNs have fewer parameters
and connections and are thus easier to train (Krizhevsky et al., 2012). Standard ANNs
struggle with images because of the vast amount of weights needed for each neuron. If
an image of size 64x64 pixels with 3 color channels is sent as input to a standard ANN,
each neuron in the first layer would have 12,288 weights. This complexity can also lead
to overfitting (O’Shea and Nash, 2015). CNNs are constructed to handle exactly this
challenge, and neurons within a CNN layer will only connect to a small region of the
previous layer, not the whole layer, as in standard ANNs. The neurons in the layers of a
CNN are organised into three dimensions, namely the width (W) and the height (H) of
the image, and the depth (D). When considering color images, the depth is referring to
the number of color channels, and this extra dimension preserves the spatial integrity
of the input image during computations. The main trick convolutional neural networks
perform is extracting important features from the input image through convolution, such
as edges of objects, and then lowering the dimensionality of the image through pooling
(O’Shea and Nash, 2015).

A CNN is comprised of four major parts. The input layer, the convolutional layer,
the pooling later and lastly fully-connected layers. Similar to standard ANNs, the input
layers simply holds the numeric values of the input (in this case, the pixel values). The
pooling layer gradually reduces the dimensionality of the image, and by this, reduces the
number of parameters that need to be computed. The fully connected layers are on the
same form as the ones described in Section 2.2. The convolutional layer is the core of the
CNN architecture. The convolutional layer contains a kernel (also called a filter), which
is typically a 3× 3 matrix of numbers that sweeps across the input image and performs a
two-dimensional cross-correlation operation. This computation is a series of dot products
between the kernel and the pixel values of the image (Figure 2.5). The kernel matrix
contains weights that will be adjusted trough learning, analogous to the weights in a
standard ANN. When the kernel traverses the image, the step size is defined by the
stride, which can be set to 1 or higher, depending on the wanted amount of overlapping.
If stride > 1, it is often called a strided convolution. It is also normal to add padding
of zero-pixels around the edges of the input image to not lose pixel information during
the convolution process. The convolution happens for each layer in the depth dimension,
which is then fed into a ReLU activation function (O’Shea and Nash, 2015).

In some cases, it can be useful to inverse the reduction process and reconstruct the
spatial resolution of the original image. This is done by a fractionally strided convolution
(or deconvolution/transpose convolution), which performs a regular convolution and a

18

2.5. Residual Networks

Figure 2.5.: Convolution operation on a 4x4 grayscale image with zero-padding, stride=1
and one kernel. The convolved image has a depth dimension equal to the
number of kernels. The width and height is 4, since the step size is 1. For
RGB images, the kernel would have a depth dimension of 3 (equal to the
input image), the convolution would happen for each color channel and the
convolved image would have a depth dimension of 3.

reconstruction in the same process, by adding padding between the pixels before the
convolution operation.

2.5. Residual Networks

For deep convolutional neural networks, network depth (number of layers) is important
in achieving good results. Deep models with a depth of up to thirty layers can perform
better than smaller networks on difficult image classification tasks. However, adding more
layers to a network invites several issues. One issue is vanishing/exploding gradients,
which is largely addressed by normalization techniques. A second issue is the degradation
problem. When the network depth increases, the accuracy of the network can degrade
which leads to higher training errors. To alleviate degradation, Residual Networks, or
ResNets, were introduced by He et al. (2016). The core of the ResNet is the residual
block in Figure 2.6.

Compared to a regular block in a CNN, the residual block adds a skip connection. In
addition to the normal forward pass of the input x through the layers, x is added to the

19

2. Background Theory

Figure 2.6.: Residual block with a skip connection. The input x of the block is added to
the output F (x). Adapted with permission from He et al. (2016), Copyright
© 2016 IEEE.

layers’ output. The output of the block is then: F (x)+x. This ensures that information is
not lost and that it is safe to add more layers to the network. He et al. (2016) empirically
shows that the addition of skip connections in a deep convolutional neural network can
increase performance, without adding computational load or complexity. Instead of
letting the layers learn only the underlying mapping of the data, ResNets lets the layers
fit a residual mapping based on residual functions that reference the input x.

2.6. U-NET

U-NET (Ronneberger et al., 2015) is a convolutional network architecture for fast and
precise segmentation of images. U-NET incorporates skip connections between its
downsampling and upsampling layers to facilitate low-level information “skipping” across
the network. These skip connections enable the network to keep features that otherwise
could have been lost during downsampling and upsampling. The n layers form a U-shape,
where layer number i will have a connection to layer n − i. The downsampling (or
encoding) path is in the form of a typical convolutional network. The path has repeating
blocks, where each block consists of two 3× 3 unpadded convolutions, each followed by a
ReLU and a 2× 2 max pooling operation with stride 2 for downsampling. Each block
doubles the number of feature channels and halves the spatial resolution. Downsampling
is followed by a path of upsampling (decoding) blocks, where each block consists of a 2×2
transpose convolution, concatenation with the corresponding skip connection channels,
and two 3× 3 convolutions each followed by a ReLU activation. The upsampling block
doubles the spatial resolution and halves the number of feature channels. U-NET can
be used as the generator network in GANs (Section 2.7.1). This application, along with
the skip connections and the U-shape of the network is shown in Figure 5.3 (page 46) in
Chapter 5.

20

2.7. Generative Adversarial Networks

2.7. Generative Adversarial Networks

This section introduces Generative Adversarial Networks (GANs), and present several
GAN variations, including DCGAN, LSGAN, SAGAN, PatchGAN and CycleGAN. This
section contains paragraphs and figures that are inspirations and revisions of work from the
specialization project. This applies to some of the explanations of GAN (Section 2.7.1) and
CycleGAN (Section 2.7.7). Specifically, Equations 2.14, 2.17, 2.18, 2.20 and Algorithm 1
are copied directly, along with some of their explanations.

2.7.1. GAN

As mentioned in Section 2.2, generative models are machine learning models that try to
learn the underlying probability distributions p(X) for unlabeled datasets. Historically,
these probability distributions have been challenging to approximate by generative models.
Goodfellow et al. (2014) introduced adversarial neural networks, where a generative model
competes with a discriminative model. The two models combine into the Generative
Adversarial Network (GAN), which avoids many of the difficulties of learning p(X).
In GANs, the generative and discriminate models are called the generator and the
discriminator, respectively. The generator creates new, previously unseen samples derived
from the learned distribution p(X). The discriminator learns to determine if the samples
are from the real dataset or if they are generated. The generator tries to fool the
discriminator by creating samples that are more and more indistinguishable from the real
samples. Both models are neural networks trained using backpropagation algorithms.

Goodfellow et al. provided a suitable analogy to GANs: “The generative model can
be thought of as analogous to a team of counterfeiters, trying to produce fake currency
and use it without detection, while the discriminative model is analogous to the police,
trying to detect the counterfeit currency. Competition in this game drives both teams
to improve their methods until the counterfeits are indistinguishable from the genuine
articles”.

G (the generator network in Figure 2.7) takes a noise vector z from a standard normal
distribution pz as input. G then generates a fake sample G(z), which in turn becomes an
input to the discriminator network D. D takes either a real (x) or a generated (G(z))
image as input and produces a single scalar D(x) or D(G(z)), respectively. x derives
from the real distribution pdata(x). The output scalar is the probability of the input being
real or fake. D tries to guess correctly by maximizing the value of D(x) being 1 (real)
and D(G(z)) being 0 (fake). Meanwhile, G wants to maximize D(G(z)) being 1. In other
words, the discriminator is trained to maximize the probability of assigning the correct
label to training examples from the real world and samples created by the generator. The
generator is trained to minimize the probability of the generator assigning the correct
label. This results in the minimax objective function (Equation 2.14), which is used
during backpropagation for both networks. Equation 2.14 is the average log probability
of D(x) plus the average log probability of D(z). This loss function is analogous to
the BCE loss (Equation 2.4). The output of the discriminator goes through a sigmoid
activation function which works well as input to the BCE loss function.

21

2. Background Theory

Figure 2.7.: GAN architecture. The generator inputs a random noise vector and produces
a fake image. The discriminator takes an image as input and decides whether
it is real or fake. The generator learns by maximizing the discriminator’s
loss, and the discriminator learns by minimizing its loss, both through back-
propagation. The generator wants to learn p(X) without having direct access
to X but implicitly through gradients flowing through the discriminator. In
this case, GAN is used to generate images. GAN figure inspired by Google
(2022a), under license CC BY 4.0.

.
(2.14) Minimax objective function for GANs.

min
G

max
D

V (D, G) = Ex∼pdata(x))[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))] (2.14)

To train G and D, the GAN model uses Algorithm 1. In the inner for loop, the
discriminator’s parameters (θd) are updated by calculating the gradient (∇) of the
loss function with respect to θd. For the discriminator, the gradient is maximized, so
gradient ascent is used. In the outer loop, the gradient of the loss function with respect
to the generator’s parameters (θg) is calculated. Here, the gradient is minimized, so
gradient descent is used to update θg. Note that during the training of the generator,
the discriminator remains constant, and during the training of the discriminator, the
generator remains constant. The objective function (Equation 2.14) is used in both loops
in Algorithm 1, and for each training iteration, m samples are sampled from the real
and the noise distributions. The discriminator penalizes the generator if it labels the
generated sample as fake.

22

2.7. Generative Adversarial Networks

Algorithm 1 GAN training algorithm with stochastic gradient descent.
for number of training iterations do

for k steps do
- Sample m noise samples z(1), ..., z(m) from pg(z)
- Sample m real samples x(1), ..., x(m) from pdata(x)
- Update the discriminator by ascending its stochastic gradient:

∇θd

1
m

∑m
i=1[logD(x(i)) + log(1−D(G(z(i))))]

end for
- Sample m noise samples z(1), ..., z(m) from pg(z)
- Update the generator by descending its stochastic gradient:

∇θg
1
m

∑m
i=1 log(1−D(G(z(i))))

end for

2.7.2. Failure Modes

The GAN minimax game should, in theory, result in the discriminator being unable to
differentiate between the real samples and the generated ones because the generator has
successfully learned p(x). In practice, the model does not always converge to this point.
The convergence of GANs is still being actively researched, and it is generally known
that GANs can be hard to train and that gradient descent-based optimization often does
not lead to convergence (Mescheder et al., 2018).

An example of non-convergence is if the loss function does not provide sufficient gradient
for the generator to learn fast enough, and the discriminator “wins” (Goodfellow et al.,
2014). This is known as vanishing gradients (or the saturation problem) and is caused by
the discriminator being too good with respect to the generator. Another example is if
the training continues past the point of convergence and the discriminator does not give
any valuable feedback to the generator. Then, the generator might adjust its parameters
based on bad feedback, and the quality of the generated images may decrease.

Another common GAN failure is mode collapse. This happens when the current
generator optimizes its output according to the current discriminator. In other words,
if the generator starts to produce only a small set of outputs, the discriminator learns
to always reject those outputs. This limited strategy can cause the discriminator to get
stuck in a local minimum (Google, 2022b). Then the next iteration of the generator
can simply create a different set of outputs that always trick the discriminator, with the
limited set of generated samples not necessarily being close to the real images. One way
to identify mode collapse is to visually check the generated images for repeated patterns
and objects between them.

Because of the different failure modes, the original GAN algorithm has seen several
improvements. One improvement is using other loss functions for G and D. An example
is in WGAN (Arjovsky et al., 2017), where the discriminator model is changed to a critic
that scores the realness or fakeness of a given sample instead of only a probability. One
of the goals of WGANs is to prevent vanishing gradients which is a common problem for
GANs.

23

2. Background Theory

2.7.3. DCGAN

One of the most significant GAN improvements is the Deep Convolutional GAN (DCGAN)
(Radford et al., 2015), where CNNs are used for more stable training in the networks.
DCGAN provides good representations of images for supervised learning and generative
modeling while reducing the complexity of the networks. DCGAN makes three significant
changes from standard CNNs. The first change is to replace pooling layers with strided
convolutions for the discriminator and fractionally-strided convolutions for the generator.
The second is the removal of fully connected hidden layers for deeper architectures, and
the third is batch normalization. Batch normalization helps the generators to begin
learning by preventing them from collapsing all samples to a single point (mode collapse).
Batch normalization is applied to all layers in both networks, except for the generator’s
output and the discriminator’s input, since this can result in more model instability. In
addition, the ReLU activation function is used in the generator for all layers except for
the output, which uses Tanh (Figure 2.2 (d), page 11). Tanh is used to make the model
quickly learn the color space of the training distribution. LeakyReLU (Figure 2.2 (c),
page 11) is used for all layers in the discriminator, which works well for higher-resolution
images (Radford et al., 2015).

2.7.4. Least Squares GAN

The discriminator in regular GANs is a binary classifier, which places images on either
side of a decision boundary, depending on whether they are deemed real or fake. When
updating the generator in regular GANs, the sigmoid cross entropy loss function will
cause the problem of vanishing gradients for the samples that are on the correct side of
the decision boundary but are still far from the real data (Mao et al., 2017). This loss can
be replaced by a least squares loss function, which may lead to more stable training and
higher-quality generated images. This least squares loss will penalize generated samples
that lie far from the decision boundary, leading to the generator generating samples
closer to the real data. Since samples that are a long way from the decision boundary are
penalized, more gradients can be generated, which can alleviate the issue of vanishing
gradients. For the discriminator and the generator, the new least squares loss functions
are defined in Equations 2.15 and 2.16, where the discriminator wants D(x) to be as close
to 1 (real label) and D(G(z) to be as close to 0 (fake label) as possible. The generator
wants (D(G(z))) to be as close to 1 as possible.

min
D

VLSGAN (D) = 1
2Ex∼pdata(x))[(D(x)− 1)2] + 1

2Ez∼pz(z)[(D(G(z)))2] (2.15)

min
G

VLSGAN (G) = 1
2Ez∼pz(z)[(D(G(z))− 1)2] (2.16)

24

2.7. Generative Adversarial Networks

2.7.5. Self-Attention GAN

Traditional convolutional GANs generate higher-resolution details as a function of only
spatially local points in lower-resolution feature maps. Zhang et al. (2019) introduced
Self-Attention GAN (SAGAN), which uses an approach that enables the generation
of details by incorporating information from all feature locations. Furthermore, the
discriminator in SAGAN can verify the consistency of highly detailed features across
distant parts of the image. This entails that, for example, a feature in the top left of an
image can be ensured to be consistent with a feature in the bottom right of an image.
SAGAN works by adding a self-attention module that calculates attention weights for
each feature map by looking at many spatial positions, which signify the importance
of the positions. This is done by transforming the self-attention layer’s input features
and generating three feature matrices which are multiplied together. The Self-Attention
module is further explained in Section 5.5.

2.7.6. PatchGAN

In the original GAN architecture, the discriminator predicts an image as real or fake
with a single scalar by considering the entire image simultaneously. Isola et al. (2017)
introduced PatchGAN, a CNN-based discriminator. This architecture was adopted from
Li and Wand, which originally wanted to capture local style statistics. PatchGAN maps
the input image to an N ×N array of outputs X, where Xij indicates whether patch ij
is real or fake. This enables the architecture to penalize the structure of smaller image
patches at a time. The discriminator convolution operation is run across all patches,
averaging all the Xijs and producing a final scalar D, which accounts for the entire image.
Mathematically, the convolutions over all patches are identical to dividing the image
into patches, manually feeding the patches into a regular discriminator one at a time,
and then averaging the outputs. However, PatchGAN is advantageous to this manual
operation since it requires fewer parameters, runs faster, and is scalable to large images.
Intuitively, PatchGAN can be understood as a type of texture/style loss (Isola et al.,
2017).

2.7.7. CycleGAN

After the DCGAN was introduced, the use of convolutions in GANs became standard,
as they performed well in generating samples. The traditional GAN models synthesize
new samples from random noise based on the distribution of the training data. Another
application of GANs is to translate an image from one domain to another, also called image-
to-image translation or style transfer. A domain is a set of images with characteristics in
common, e.g. high-resolution photos, Monet paintings, hand-drawn sketches or cartoons.
An image-to-image translation model takes an image from a source domain and transfers
the contents of the image into the style of the target domain. This technique can for
example convert sketches into photo-realistic images, and vice versa.

25

2. Background Theory

Isola et al. (2017) introduced the pix2pix model for image-to-image translation, which
requires a training set of aligned image pairs from the two domains. The pix2pix model
has one generator and one discriminator, where the networks are conditioned on class
labels. The generator tries to transform the image, and the networks are trained with an
additional loss function, pixel-wise loss, in combination with the min-max loss function
(Equation 2.20). This loss function compares the generated image with its actual labeled
counterpart from the target domain.

For many domains, especially in visual art, it can be difficult to find pairs of images. If
the style transfer task were to be from pictures of people to paintings of people, a training
pair should preferably be a painting and a picture of the same person with the same pose
in the same environment. A painting of a landscape and a picture of a landscape should
preferably be in the same location at the same time of day. In short, the layout of both
images in the pair should closely resemble each other, despite being of different styles.

CycleGAN, introduced by Zhu et al. (2017), was designed specifically to achieve image-
to-image translation for unpaired, unlabelled sets of images. This alleviates the need for
collecting and labeling image pairs for the training data and only requires sets of images
from the two different domains. Where regular GAN architectures normally consist of one
generator and one discriminator, CycleGAN uses two generators and two discriminators,
to generate and discriminate samples for both domains. The first generator translates
images from the source domain to the target domain, while the second generator translates
the generated images back to the source domain. The recreated image is compared to
its original, to ensure that the generator does not disregard important features and still
encompasses the same structure of the objects in the source image. The corresponding
discriminators classify the generated images as being real or fake for the two domains.
The generators and discriminators and their connections are shown in Figure 2.8.

CycleGAN firstly wants to create a mapping G : A→ B where G is the generator, A
is the source domain and B is the target domain. a is a sample image from domain A
and b from domain B. The goal is to make G(a) indistinguishable from b. To achieve
this, CycleGAN uses the principle of cycle consistency. Cycle consistency can be thought
of as if you translate a sentence from one language to another and translate it back, you
should arrive back to the original sentence. Applied to GAN, this means that another
mapping is created: F : B → A, such that generators G and F are inverses of each other.
CycleGAN trains G and F simultaneously, and adds a loss function that encourages
forward (a → G(a) → F (G(a)) ≈ a) and backward (b → F (b) → G(F (b)) ≈ b) cycle
consistency. The cycle consistency loss is defined as:

Lcyc(G, F) = Ea∼pdata(a)[||F (G(a))− a||1] + Eb∼pdata(b)[||G(F (b))− b||1] (2.17)

In the two terms on the right side of Equation 2.17, the images a and b are being
translated back and forth through G and F , and then compared with themselves, to
measure the forward and backward cycle consistency. Cycle consistency loss further
reduces the space of possible mapping functions, such that the generators become more
restricted and are able to learn the correct mapping. CycleGAN combines the cycle

26

2.7. Generative Adversarial Networks

Figure 2.8.: Simplified CycleGAN model structure. Adapted from Bansal and Rathore
(2017) with permission from author.

consistency loss with the adversarial loss from GAN (Section 2.7.1). Applying the
adversarial loss function to the mapping function of generator G and discriminator DB

results in:

min
G

max
DB

LGAN (G, DB, A, B) = Eb∼pdata(b))[logDB(b)] + Ea∼pdata(a))[log(1−DB(G(a)))]
(2.18)

where G(A) generated images resembling images from domain B, and DB tries to
discriminate between the generated images and real images from B. The same principle
is applied to generator F and discriminator DA, resulting in:

min
F

max
DA

LGAN (F, DA, B, A) = Ea∼pdata(a))[logDA(a)] + Eb∼pdata(b))[log(1−DA(G(b)))]
(2.19)

Combining cycle consistency loss and the adversarial losses, the full objective function
for CycleGAN is achieved:

L(G, F, DA, DB) = LGAN (G, DB, A, B) + LGAN (F, DA, B, A) + λLcyc(G, F) (2.20)

where λ controls the relative importance of the two objectives. Zhu et al. (2017)
recommend λ = 10. CycleGAN wants to minimize the two generators G and F , and

27

2. Background Theory

maximize the two discriminators DA and DB, shown by Equation 2.21, where G∗ and
F ∗ are the learned mappings.

G∗, F ∗ = arg min
G,F

max
DA,DB

L(G, F, DA, DB) (2.21)

In short, the adversarial losses help with matching the distribution of generated images
to the data in the target domain, while the cycle consistency losses help to prevent the
learned mappings G and F from contradicting each other.

In the actual implementation by Zhu et al. (2017), the generator architecture in
CycleGAN consists of three convolutions, two fractionally-strided convolutions with
stride set to 1

2 , and one convolution that maps features to RGB colors. The generator
has several residual blocks with the number depending on the resolution of the training
images. In addition, instance normalization is used. The discriminator networks are
PatchGANs (Section 2.7.1) of size 70 × 70, which try to classify overlapping 70 × 70
image patches individually. Mathematically, this results in the output of the generator
being a 30× 30 matrix. The receptive field of 70× 70 is determined by the depth of the
PatchGAN, and the authors experienced the best results for 256x256 images with this
choice. For the final layer of the discriminator, the authors remove the sigmoid activation
function which often is present in GANs. During the training of the model, the authors
alter the adversarial loss function (Equation 2.14) by replacing the negative log-likelihood
objective (sigmoid cross entropy) with a least squares loss, which results in the generators
trying to minimize Equation 2.22 and the discriminators minimizing Equation 2.23.

Ea∼pdata(a))[(D(G(a))− 1)2] (2.22)

Eb∼pdata(b))[(D(b)− 1)2] + Ea∼pdata(a))[D(G(a))2] (2.23)

In addition, the discriminator is trained by looking at a history of previously generated
images, and not only the images generated by the latest generator, by having an image
buffer that stores the 50 previously created images. This technique was first introduced
by Shrivastava et al. (2017), where the authors discuss that it improves training stability.

CycleGAN can be used for many different image-to-image translation tasks. Figure 2.9
shows examples of translating horses to zebras and apples to oranges.

2.7.8. GAN Evaluation Metrics

For regular regression and classification tasks, the quantitative performance of machine
learning models can be evaluated in several ways. The accuracy is often measured by how
many samples in the test set the model correctly predicted divided by the total number
of predictions. This, however, requires data with corresponding labels where the ground
truth is known. This method of measuring accuracy could apply to the discriminator
network in GANs, but it is often not of interest to measure the discriminator after
training. The interesting part is measuring the performance of the generated images by
the generator. This, however, is not a trivial task since the visual quality of a generated

28

2.7. Generative Adversarial Networks

Figure 2.9.: Some applications of the CycleGAN model. Reprinted with permission from
Zhu et al. (2017), Copyright © 2017, IEEE.

image is highly subjective and difficult to capture mathematically. Metrics such as
per-pixel mean-squared error do not assess joint statistics of the generated images and
therefore do not measure the overall structure (Isola et al., 2017). Because of this, several
quantitative evaluation metrics have been developed, mainly to assess the quality and the
diversity of generated images in a perceptual manner without human subjectivity. Many
such metrics exist, but for image-to-image translation models, examples of applicable
ones are IS, FID, and SSIM.

IS

Salimans et al. (2016) introduced the Inception Score (IS), which uses a pre-trained
network (Inception model, Szegedy et al. (2016)) to get the conditional label distribution
p(y|x) for every generated image x. This label distribution is used to compute the
probability of correct class assignments to quantify quality. The integral of the marginal
distribution of the generated samples is also captured to measure diversity. The authors

29

2. Background Theory

show that IS correlates well with human judgment but does not capture how the generated
images compare to real images of the same domain.

FID

Heusel et al. (2017) introduced Fréchet Inception Distance (FID) which is an improvement
to IS. FID was introduced to quantify how the distribution of generated images compares
to the distribution of real images of the same domain. Similarly to IS, FID uses a pre-
trained Inception model (Szegedy et al., 2016). FID compares the mean and covariance of
the last pooling layer of the Inception network. In other words, the output of the network
of the final classification layer is removed. This is done to extract high-dimensional
features from images to capture characteristics. The extracted feature distributions from
the two sets of images are compared by measuring the Fréchet distance between them.
This distance is computed into a single scalar score, and a lower FID score implies a higher-
quality image. Mathematically, FID is given by: FID = |µr − µg|+tr(Σr+Σg−2(ΣrΣg)

1
2),

where µr and µg are the means and Σr and Σg are the covariances of the extracted
features of the real and generated images, respectively. tr is the resulting matrix’s trace
(sum of the diagonal elements).

The authors show that FID also correlates well with human judgment and is more
consistent in dealing with image disturbances than IS (i.e., the more they disturb or
distort an image, the higher the FID score). FID can also capture small changes, such as
slight blurring or small artifacts (Borji, 2022). FID is popularly used to evaluate many
GAN models, such as the state-of-the-art StyleGAN models (Karras et al., 2020), and is,
together with IS, the most popular GAN evaluation metrics (Borji, 2022). A minimum
sample size of 10,000 is often used to compute FID (Chong and Forsyth, 2020).

KID

FID assumes that the features extracted from the image sets have a normal distribution.
Bińkowski et al. (2018) proposed Kernel Inception Distance (KID) which aims to improve
FID by relaxing the normal distribution assumption. KID uses a polynomial kernel to
measure the squared Maximum Mean Discrepancy (MMD) between the extracted features
(Betzalel et al., 2022). MMD is a distance measure between probability distributions of
features, and a polynomial kernel is a function to transform data (Yang et al., 2019). KID
requires fewer data samples than FID since it does not need to compute the quadratic
covariance matrix.

SSIM

Wang et al. (2004) developed the Structural Similarity index (SSIM) to objectively assess
the difference in perceptual image quality between two images. SSIM measures visible
structures in images by three factors; luminance, contrast, and structure. Luminance is a
measure of the average brightness, quantified to be the average value of all the pixels
in an image. Contrast is the difference between the light and dark parts of an image,

30

2.7. Generative Adversarial Networks

which is measured by the standard deviation of the pixels. The structure is intuitively
the shapes in an image and is quantified by measuring the correlation between local
structures in images. These three measures are combined into a single scalar SSIM score,
with each measure having its own weight. The complete mathematical calculations can be
found in Wang et al. (2004). SSIM serves as a popular method of measuring perceptual
structure in images.

Human Evaluation

When evaluating the performance of GANs, more than one metric is often used since each
metric has its applications and limitations. To further evaluate the generated images,
researchers may create user studies. Denton et al. (2015) asked 15 people to distinguish
real samples from fake samples. In their experiment, the users only had limited viewing
time for each sample. They collected information about a total of 10k generated and
real samples from various GAN models and calculated the percent of generated samples
that fooled the participants as a function of time spent looking at the photos.

Salimans et al. (2016) performed a similar task of having humans distinguish between
real and fake samples. They automated the process using Amazon Mechanical Turk
(MTurk2), a crowdsourcing marketplace for human insight. Isola et al. (2017) and Zhu
et al. (2017) also used MTurk for “real vs. fake” perceptual human studies. For each
model, Isola et al. (2017) showed each image for 1 second, and after 10 images, the 50
participants were given feedback. For the 40 rest of the images, no feedback was given.
Zhu et al. (2017) employed the same study with only 25 participants per model.

Elgammal et al. (2017) created a GAN model for generating art that they deemed
“creative” compared to human creativity. To validate their model, they conducted three
experiments in the form of questionnaires, which they sent out through MTurk. This
was to compare the responses of humans to the generated art with the responses to art
created by artists. Their first experiment asked if the sample was real or fake and further
asked to rate the realness on a scale from 1 to 5. The following experiments asked several
domain-related questions about the images regarding aesthetics, complexity, emotions,
and more. Finally, they conducted a survey with a pool of art history students to gather
responses from domain experts.

2https://www.mturk.com

31

3. Related Work

In this chapter, related work in the field of pixel art synthesis is introduced. To motivate
the need for deep learning methods, insights from natural computational methods will
be presented. In the remainder of the chapter, efforts toward image-to-image pixelization
using GANs will be introduced, along with the datasets used. The presentation of
image-to-image pixelization efforts and their datasets contain revisions of work from the
specialization project.

3.1. Natural Computation

Many efforts have been made toward the automatic generation of pixel art, most of which
are natural computation methods (Shang and Wong, 2021). These methods include
image downscaling (Öztireli and Gross, 2015; Kopf et al., 2013) and other optimization
techniques (Gerstner et al., 2012; Inglis and Kaplan, 2012). Downscaling methods do
well in converting lines and curves to pixelated lines and curves and ensuring color
retention, but they struggle with intricate shapes. The optimization techniques further
assess the stylistic demands of pixel art by bettering the mapping of features, reducing
color palettes, and focusing on sharp edges. The results from these techniques correlate
well with manual pixel art, but improvements are needed to deal with stylistic demands
like dithering and abstraction. Furthermore, Inglis and Kaplan do not provide any
results where the methods are tested on domains other than vector line art, which may
indicate limitations. Gerstner et al. and Shang and Wong further developed optimization
techniques mainly for the pixelization of photographic portraits. Both of these algorithms
focused on a reduced color palette and the preservation of facial features. They provide
good results for portraits and other photographic images but with limited adaptability
to other domains, as well as not having precise edges around objects. In addition, Shang
and Wong experienced issues with dominant colors in the source image, affecting the
color distribution of the output.

The common factor of the methods mentioned above is that they do not learn directly
from the artistic style of pixel art but rely on hand-crafted computational rules. They
may not be able to consider all the stylistic conventions of pixel art, which can result
in restricted adaptability to different input domains and a lack of aesthetics, creativity,
and artistry. These findings motivate using deep learning and image-to-image translation
models to synthesize pixel art since they are shown to translate artistic style between
domains effectively.

33

3. Related Work

3.2. Paired Image-to-Image Pixelization

With the pix2pix architecture as a basis, Coutinho and Chaimowicz (2022) generated
pixel art character sprites. The goal was to make assets for video games by generating
different poses (e.g., left, right, or back facing) from a source pose (e.g., front-facing). This
translation was not from cartoon to pixel art but from pixel art to pixel art. From previous
results, the authors show that the base pix2pix model is not capable of translating pixel
art sprite poses because of the characteristics of pixel art (such as limited colors) and the
lack of large datasets. To further develop the model, the authors introduced a histogram
loss term, which they experienced led to slightly better results. This histogram loss
term penalizes generated images with different color palettes than their source inputs.
This is done by extracting the input and output color histograms and measuring the
difference between them. The authors evaluated their model by visual inspection, FID
score (Section 2.7.8), and the L1 distance (Section 2.2.3) between the generated images
and their labeled targets.

Even though the results were only marginally better, the histogram loss can be applied
to domain transfer tasks where color preservation is important, such as cartoon-to-pixel
art. Another relevant part of this work is their overview of characteristics that need to
be considered when creating pixel art regarding color palette, shading, and texturing.
This overview coincides with the stylistic rules presented in Section 1.1.

Coutinho and Chaimowicz (2022) used a small dataset of 294 pixel art character
sprites, where each character had four poses with a uniform art style. The authors state
that no large datasets of pixel art are openly available, which presents a challenge for
style-transferring pixel art. They trained their model with a train/test dataset split of
85/15. During training, data augmentations of hue rotation and character offset were
applied to the images.

3.3. Unpaired Image-to-Image Pixelization

A reoccurring challenge with synthesizing pixel art is the limited availability of suitable
datasets, particularly paired ones. To circumvent this issue, unpaired image-to-image
translation models can be applied. Kuang et al. (2021) and Yang et al. (2022) apply
cycle-consistent models with GANs to synthesize pixel art. Their results vary in quality
but show that such models can learn and transfer the pixel art style with limited training
data, which motivates further research.

With CycleGAN (Section 2.7.7) as a basis, Kuang et al. (2021) generated pixel art
from cartoon images. The authors’ goal was to retain the characteristics of pixel art,
such as clear contours and jagged edges in their generated images. They proposed a
new generator for CycleGAN and adopted a nested U-NET structure called U-Net++
(Zhou et al., 2018). The switch from ResNet (Section 2.5) to U-NET (Section 2.6) was
motivated by the mainstream use of U-Net in medical image segmentation, where the
connection structure provides more precise segmentation. The authors believe that the
multi-scale feature fusion in U-NET can restore contour information when generating

34

3.3. Unpaired Image-to-Image Pixelization

pixel art. They state that U-Net++ can effectively improve the sensitivity to the edge
information of large objects and the perception of small objects, which can help with the
edges of the pixel objects. They further changed the network architecture by replacing
ReLU functions with LeakyRelu (Section 2.2.2) during downsampling. Another addition
was a topology-aware loss, where they extracted features of some layers from a pre-trained
VGG16 network (Simonyan and Zisserman, 2014). This was applied to cartoon images
before and after the network loop, but they do not mention whether they applied it to the
pixel images. Despite this, they stated that the added loss further preserved the linear
topology of pixel images while ensuring that the input and output were connected in a
meaningful way. The discriminator remained unchanged from the original CycleGAN,
along with the use of losses (cycle consistency, adversarial, and identity). To evaluate their
model, they compared their results to the base CycleGAN model, shown in Figure 3.1.

The suggested architecture was able to transfer the pixel art style to cartoons, with
results shown in Figure 3.1. The model showed improvements over the original CycleGAN
model, but it still had some artifacts and limitations. In image (a) of Figure 3.1, yellow
and gray artifacts can be seen. In addition, clear black lines in the original image are not
translated to clear black pixels. In all three images, the individual “pixels” are of different
shapes, and there are many occurrences of each pixel not being one uniform color. On
closer inspection, none of the images have clear and sharp edges, and frequent blurring
occurs. Despite the results, U-NET and topology-aware losses are reasonable model
extensions to be tested in this thesis. The reasoning is that the techniques and extensions
presented were explicitly applied to work with cartoon-to-pixel art style transfer and
may work well with another dataset and in combination with other model extensions.

Figure 3.1.: Results from Kuang et al. (2021). Reprinted with permission, Copyright ©
2021, IEEE.

35

3. Related Work

Similar to the work in this thesis, Kuang et al. (2021) used unpaired cartoon and pixel
art images as training data. The authors used a dataset consisting of 900 cartoon images
and 900 pixel art images collected from the internet. They do not state their data sources,
nor if the images are under any creative commons license or in the public domain. The
authors show examples from the dataset (Figure 3.2), and it is apparent that many of the
images from the pixel domain are of poor quality. One example of inadequate quality is
that the images inhibit different pixel sizes. That is, one “pixel” in one image is not the
same size as a “pixel” in another, despite the images being of the same spatial resolution.
Furthermore, many images have blurred edges and few discernable pixels. These images
do have a “blocky” art style but do not conform to the pixel art style. Another flaw is
that many of the images have a visible pixel grid. A pixel grid is often used as a guide
when manually creating pixel art but should not be included in the final product. All
of these artifacts and irregularities will act as noise, and it can be difficult for a deep
learning model to learn from a dataset that does not represent the true distribution of
the target domain.

Figure 3.2.: Examples of the dataset from Kuang et al. (2021). Reprinted with permission,
Copyright © 2021, IEEE.

Yang et al. (2022) used CycleGAN as a base model for synthesizing pixel art from
photographic images. The authors extended the model by adding a shared latent space
assumption, as presented in UNIT (Liu et al., 2017). Shared latent space can be thought
of as two domains having points similar to each other in an encoded representation. This
assumption is needed to be able to learn the joint distribution between the two domains
(Liu et al., 2017). Yang et al. further added a cycle consistency loss between the latent
space blocks of the generators and argued that it helped stabilize the model. In addition,
they added Gaussian noise to the generators by concatenating noise vectors to each
residual block. This method was used in StyleGAN (Karras et al., 2019) and was added
to help the model generate random patterns. They evaluated their model only by visual
inspection.

The resulting images do not conform well with the artistic style of pixel art. It is
not easy to discern individual pixels, and there are few sharp edges. In addition, the
results show white spot artifacts, which are not present in the input image. Despite the
varying results, the idea of shared latent space could be beneficial to learn the one-to-one
mapping between the cartoon domain and the pixel art domain. It can be applied to

36

3.3. Unpaired Image-to-Image Pixelization

the model if the experiments show difficulties in learning mapping. Noise concatenation
might not be applicable since random patterns might interfere with the goal of keeping
all objects and colors of the original image.

Yang et al. (2022) collected a dataset of 500 pixel art images from game asset websites
and pixel art forums and 4300 photographic images from the Kaggle online database1.
During data collection, they only kept images of landscapes and nature scenes and filtered
out very bright and very dark images. As a preprocessing step, they resized their image
to the same aspect ratio. To not distort images, they scaled their images while preserving
the aspect ratio and randomly cropped a square region during training, which resulted
in a final resolution of 256× 256. The authors present some examples of their dataset.
Prior to scaling, their pixel images are of different resolutions, which dictates several
artistic styles. This may cause the model not to produce images with “pixels” of varying
sizes, as some pixel art styles contain more pixels than others.

1https://www.kaggle.com/datasets

37

4. Datasets

This chapter introduces the acquisition and processing of a custom dataset. The dataset
is composed of images from the pixel art domain and the cartoon domain. The resources
used for obtaining pixel art were first introduced in the specialization project.

No large datasets of high-quality pixel art are currently publicly available. The
majority of pixel art present online is copyrighted, many of them being trademarked game
characters and other licensed works of pixel artists. It would take great effort to collect
from all the various sources and obtain permission to use the artwork. This motivates to
collect artwork from resources where large quantities of pixel art are available and are
open-source under a creative commons license.

4.1. Data Sources

One of the main motivations behind CycleGAN was to translate between domains without
paired images since obtaining paired data can be difficult and expensive. Since Zhu et al.
(2017) significantly reduced the effort required to collect a dataset, assembling a sizable
high-quality pixel art dataset becomes feasible. To assemble a dataset, one can either
manually download each image or use web-scarping techniques on open-source online
image databases. eBoy.com1 provides thousands of pixel artworks of people, vehicles,
buildings, and other objects, with several distinctive styles. OpenGameArt.org2 provides
video game pixel art sprites for characters, items, and levels, among other things. These
two resources provide artwork under the creative commons licenses CC BY-NC-ND 4.03

and CC04. For the cartoon domain, publicdomainvectors.com5 provide thousands of
vector images under the public domain (CC0). These images are diverse in the use of
colors and their art style. In addition, Google Research provides a collection of 100k
2D cartoon avatar images with different colors and proportions. The dataset is called
Cartoon Set6 and is available under CC BY-SA 4.07.

1https://hello.eboy.com/
2https://opengameart.org
3https://creativecommons.org/licenses/by-nc-nd/4.0/
4https://creativecommons.org/share-your-work/public-domain/cc0/
5https://publicdomainvectors.org
6https://research.google/resources/datasets/cartoon-set/
7https://creativecommons.org/licenses/by-sa/4.0/

39

4. Datasets

4.2. Dataset Size
An important factor when collecting a dataset is to determine how many images are
needed. Typically, datasets must represent the proper distribution of the domains for
deep learning models to learn from them accurately. If a dataset has too few images, the
model may overfit the data. Zhu et al. (2017) trained CycleGAN on several datasets of
varying sizes during experiments and showed adequate results with datasets with a size of
around only a thousand images per domain. For their horse-to-zebra and apple-to-orange
experiments (Figure 2.9, page 29), the training set size of each class was 939 (horse), 1,177
(zebra), 996 (apple), and 1,020 (orange), all resized to 256× 256. For their photo-to-art
style transfer tasks, their datasets ranged from 401 to 1433 images for the different art
styles, all scaled to 256× 256. Their experiments suggest that datasets with around 1,000
images for each domain are suitable for style transfer with CycleGAN. In addition, one
of the authors explicitly stated that reasonable results can be achieved with relatively
small datasets (e.g., 1,000, 2000 images) but that it depends on the complexity of the
style transfer and the diversity of the dataset. These findings serve as guidelines for
the size of the dataset that will be assembled for experiments in this thesis. However,
more data acquisition can be conducted if the models become prone to overfitting during
experiments.

4.3. Dataset Acquisition
To acquire images from publicdomainvectors.com, a Python web scraping script was
created using the Requests8 and BeautifulSoup9 Python packages. Requests was used to
fetch HTML data from URLs, and BeautifulSoup to parse the data and fetch all image
elements. To ensure that the quality of the image was acceptable, the top 1,800 most
downloaded images from the website were scraped. To acquire images from eBoy.com,
the same script could not be used since the website is dynamic. BeautifulSoup works
mainly for static websites, but the Selenium package10 handles dynamic websites well.
Using Selenium, every image from eBoy.com was scraped. Scraping was unnecessary for
the remainder of the dataset, as the images were bundled and available for download.
OpenGameArt.com user and pixel artist Henrique Lanzini (username: 7soul) made their
collection of 496 pixel art video game icons available under the public domain. The 10k
version of Google Research’s Cartoon Set was acquired from their web pages.

4.4. Dataset Processing
After the acquisition, manual filtering was needed. From the pixel art from eBoy.com,
only images with the .png extension were kept. In addition, only images with a max
resolution of 64×64 were selected since larger-resolution images often dictate different art

8https://pypi.org/project/requests/
9https://pypi.org/project/beautifulsoup4/

10https://pypi.org/project/selenium/

40

4.4. Dataset Processing

styles. Another reason for this choice is that the larger the images are, the harder it is for
a deep learning model to learn the importance of each pixel, as evident in 3. Lastly, logos
and vulgar depictions were removed. From the images from publicdomainvectors.com,
images with many elements and non-cartoon artwork were removed. Manual filtering
resulted in 1304 images from eBoy.com and 1562 images from publicdomainvectors.com.
The 496 images from 7soul were added to the pixel domain, while the cartoon domain
was supplemented with 238 images from the Cartoon Set. This resulted in a total number
of 1800 images for each domain.

All the images from both domains were RGBA images. RGB are the color channels
(Section 2.3). The A is the alpha channel, which allows for a transparent background.
If the alpha channel were to be included, a deep learning model would need to learn
from an additional channel, which adds unnecessary complexity since no information
about the actual art is stored there. Because of this, it is better to have a uniform white
background for all the images. By replacing the transparent pixels with white pixels,
artifacts around the edges of objects occur. A solution to this was to add the images onto
a white background and then remove the alpha channel. The pixel art images kept their
resolution of 64× 64 and were added onto a white 64x64 image using the PIL Python
package11. All cartoon images were downscaled with PIL using bicubic interpolation.
They were downscaled such that the longest side had a length of 256 to keep their aspect
ratio. This resulted in varying image sizes but was fixed after pasting them onto a white
256× 256 background. After pasting, the images were converted from RGBA to RGB
using PIL and saved as PNGs.

Statistics about the collected dataset is given in Table 4.1, and examples from the
cartoon and pixel art domains are shown in Figure 4.1.

Domain HxW Color space Total Resource Images

Pixel art 64x64 RGB 1,800 eBoy 1,304

7Soul/OpenGameArt 496

Cartoon 256x256 RGB 1,800 Publicdomainvectors 1,562

Google Research Cartoon Set 238

Table 4.1.: The collected dataset, divided into the pixel art and cartoon domains.

11https://pypi.org/project/Pillow/

41

4. Datasets

Figure 4.1.: Examples from the dataset with images of the cartoon and pixel art domains.

42

5. Architecture
This chapter introduces the architectures used in the four experiments in Chapter 6. The
CycleGAN architecture introduced in Section 2.7.7 is presented as the base architecture
for the experiments. The base CycleGAN architecture contains a ResNet generator
and a PatchGAN discriminator. This is the recommended architecture from the official
implementation by Zhu et al. (2017). Both networks are built upon the concept of
DCGAN (Section 2.7.3), where fully connected layers are replaced with convolutional
layers.

Several extensions and modifications are made to the base architecture, resulting in
four different architectures for the four experiments. Each architecture comprises two
equal generator networks and two equal discriminator networks. Each network is an
instance of the same architecture, and a network pair will thus be referred to as one
generator and one discriminator in subsequent chapters. The model structure shown in
Figure 2.8 (page 27) applies to all architectures presented.

5.1. ResNet Generator

The ResNet generator, shown in Figure 5.1, performs downsampling, transformation, and
upsampling. The input to the generator is a 256× 256 pixel image with a depth of three
color channels.

The downsampling step performs three convolutions (Section 2.4), where each convolu-
tion is followed by an instance normalization (Section 2.2.10) of the weights and a ReLU
activation function (Section 2.2.2). The dimensions of each convolution block represent
the output of the convolution operation. For example, the left-most convolution block
in Figure 5.1, transforms the input image to dimensions 256 × 256 × 64. The spatial
resolution of the image is not changed because the stride is set to 1, and 64 filters with
kernel size 7 are applied to extract features. The second left-most convolution block takes
the 256× 256× 64 image as input and outputs a 128× 128× 128 image. Here, 128 filters
with kernel size 3 are applied. The spatial resolution is halved since the stride is set to 2.
This is repeated for the third convolution, resulting in an image size of 64×64×256. The
number of filters is doubled to extract more features from the images, and the spatial
resolution is halved to reduce the complexity of the network while still maintaining the
information in the features. Each convolution layer adds padding around the image to
not lose information around the edges. This is done by reflection padding, where values
are padded outside borders by mirroring the neighboring interior pixels of the edge pixels.
Zhu et al. states that the reflection padding reduces boundary artifacts during training.

The transformation of features follows the downsampling. Here, the transformation of

43

5. Architecture

Figure 5.1.: ResNet generator architecture

the image from the input to the output domain occurs. The transformation comprises
N residual blocks (Section 2.5), each containing two convolutions, followed by instance
normalization, ReLU, and a skip connection. The skip connection adds the input and
the output of the block together. The value of N blocks is often chosen based on the
complexity of the style transfer task and the size of the input image and is often chosen
to be 6 or 9. These values of N will be tested throughout the experiments.

After transforming the features, the image’s resolution is upsampled, and the number
of features is reduced. This is done by a series of transposed convolutions (Section 2.4),
where 0-pixels are inserted between every row and every column in the image, followed
by a convolution with kernel size 3. This results in doubling the resolution caused by the
stride with value 2. Each transposed convolution is followed by instance normalization
and ReLU activations. After two upsampling layers, the image is fed to a final convolution
to reduce the number of filters from 64 to 3. This is followed by a Tanh activation
function (Section 2.2.2) to map the pixel values to the range [-1,1], resulting in the output
image.

44

5.2. PatchGAN Discriminator

5.2. PatchGAN Discriminator

After an image has gone through the style transfer of the generator, it is fed into
a PatchGAN discriminator to determine if it can be classified as real or fake. The
architecture for PatchGAN is shown in Figure 5.2. Overlapping patches of size 70× 70
in the image are evaluated, each receiving a score between 0 and 1. The resulting scores
are stored in a 30× 30 matrix to be compared to the ground truth. Like the generator,
the convolutional layers downsample the resolution and increase the filters. The first
four convolutions extract features, while the last convolution determines whether the
patches’ features are real or fake. The first four convolutions in the discriminator use
LeakyReLU activations (Section 2.2.2) with a slope of 0.2. The middle three convolutions
are all followed by instance normalization. A further explanation of PatchGAN is given
in Section 2.7.6.

Figure 5.2.: PatchGAN discriminator architecture.

45

5. Architecture

5.3. U-NET Generator

For the image-to-image translation model using paired images, pix2pix (Section 2.7.7),
Isola et al. (2017) suggested a modified U-NET architecture as the generator network.
The authors motivate the choice of the U-NET generator by considering that even though
the input and image should differ in surface appearance, both are renderings of the same
underlying structure. Because of this, information from the input image should be able to
flow to the output image. Similar to pix2pix, using U-NET as the generator architecture
can be directly applied to CycleGAN with some modifications. Modifying the original
U-NET (Section 2.6) replaces the max-pooling layers with convolutions and transposed
convolutions with stride = 2. These changes make the U-NET operate similarly to
ResNet in that the convolutions halve the image’s resolution and increase the number of
filters by setting the stride to 2. The reverse occurs for the upsampling layers. As shown
in Figure 5.3, the first four convolutions double the number of filters. All convolutions
halve the spatial resolution until the bottleneck layer where the image is of size 1x1 with
512 filters. A LeakyReLU activation with a slope of 0.2 follows the first convolution.
ReLU follows the last convolution. The remaining convolutions are followed by instance
normalization and LeakyReLU.

Figure 5.3.: U-NET generator architecture

46

5.4. Nearest-Neighbor Upsampling Layers

After downsampling, the resolution is doubled through transposed convolution layers,
with the final four layers also reducing the number of filters. Except for the final two,
each transposed convolution is followed by instance normalization and ReLU activations.
The last layer is followed by a Tanh activation to map the output to the range [-1,1].
Each downsampling and upsampling layer is responsible for changing the resolution
and number of filters and learning transformation features. The output of equal-sized
downsample and upsample layers are concatenated and fed into their next upsampling
layer.

5.4. Nearest-Neighbor Upsampling Layers
For several experiments using the ResNet generator, the transposed convolution layers are
replaced with nearest-neighbor upsampling, followed by a regular convolution. Nearest-
neighbor upsampling scales the spatial resolution of the image by a factor f and is further
explained in Section 6.2. The upsampling part of the ResNet generator in Figure 5.1
(page 44) is replaced by the upsampling in Figure 5.4 (page 48). Here, the spatial
resolution is doubled (by a factor of 2). In contrast to the transposed convolution layers,
the nearest-neighbor upsampling layers do not change the number of filters or have any
learnable weights. Because of this, the upsampling is followed by a regular convolution to
reduce the number of filters. To not further change the spatial resolution, the stride of
these convolutions is set to 1. The normalization and activation layers remain unchanged.

For the experiments with the U-NET generator and the modified ResNet generator,
the PatchGAN discriminator will be improved by adding spectral normalization (Sec-
tion 2.2.10). This will be done by replacing the three instance normalization layers
(Figure 5.2, page 45) with spectral normalization. Spectral normalization helps stabilize
the training of the discriminator.

5.5. Self-Attention Layers
The last experiment in Chapter 6 adds Self-Attention layers (Section 2.7.5) to the
ResNet generator and the PatchGAN discriminator. This complete architecture is shown
in Figure 5.5 (page 49), where the Self-Attention layers comprise several convolutions.
Dimensions are omitted for simplicity, but all layers in Figure 5.5 have the same dimensions
as those in Figures 5.1 (ResNet generator) and 5.2 (PatchGAN discriminator).

First, the input to the layer is fed through three separate convolutions with a kernel size
of 1. The two top convolutions in Figure 5.5 (c) outputs 1/8 of the number of input filters.
E.g., if the number of input filters is 256, the output is 32. These output matrices are
multiplied and fed into a softmax activation function. Softmax is a generalized version of
the sigmoid function (Section 2.2.2). The output matrix of the softmax function is called
the attention map, which is then multiplied by the output of the bottom convolution.
The result of the multiplication is then fed into a final convolution, resulting in the
Self-Attention feature maps. These feature maps are added together with the input to
the Self-Attention layer.

47

5. Architecture

Figure 5.4.: Nearest-neighbor upsampling layers

The relevant aspect of the Self-Attention layer in relation to the experiments is that it
enables the networks to view and compare local features in distant parts of the image.
This may ensure consistency in the generation and the discrimination of features across
the image. The complete calculations can be found in Zhang et al. (2019).

48

5.5. Self-Attention Layers

Figure 5.5.: Self-Attention layers

49

6. Experiments and Results
This Chapter presents a series of experiments that employ the various network architec-
tures presented in Chapter 5. Section 6.1 presents the experimental plan, Section 6.2
presents the experimental setup, and Section 6.3 presents each conducted experiment,
along with corresponding motivations, implementations, and results. A broader discussion
of the results will be given in Chapter 7.

6.1. Experimental Plan

The plan for the experiments is to test different datasets and different architectural
extensions and improvements to answer the research questions:

RQ1 How can GAN architectures be designed to be able to create pixel art effectively?

RQ2 What impacts do the datasets’ quality and quantity have on the generated artwork?

The experiments will use the base CycleGAN model as a starting point. The base
CycleGAN model is the official implementation presented in Section 2.7.7, with the
ResNet generator (Figure 5.1, page 44) and the PatchGAN discriminator (Figure 5.2,
page 45), using the parameters in Table 6.1.

The overall experimental plan is divided into four experiments. Experiment 0 will use
the base CycleGAN model to compare the dataset collected for this thesis (Chapter 4)
to the dataset by Kuang et al. (2021) presented in Chapter 3, and thus answer RQ2.
Experiment 1 will optimize the ResNet generator, Experiment 2 will optimize the U-NET
generator (Figure 5.3, p. 46), and Experiment 3 will use Self-Attention layers(Figure 5.5,
p. 49). All three experiments will begin with the PatchGAN discriminator. Optimizations
will be done by iterating the architectures through several sub-experiments, where the
results of each sub-experiment will dictate the next. Each sub-experiment is termed
“Experiment 1.1”, “Experiment 1.2”, and so forth. Motivation, implementation details,
and results will be presented for each sub-experiment. The goal of the experiments is to
discover which architecture is the most suitable for synthesizing pixel art and thus answer
RQ1, so the results for each sub-experiment will be discussed in their corresponding
sections. The results from the most successful sub-experiments will be further discussed
and evaluated in Chapter 7.

51

6. Experiments and Results

6.2. Experimental Setup
This section first presents how the architectures from Chapter 5 are implemented, followed
by the environments and resources the experiments will run on. Then, the choice of
parameters is presented, followed by how the dataset will be processed.

6.2.1. Implementations

The experiments will be carried out utilizing the implemented network architectures,
dataset loader, and training loop from the codebase specifically developed for this thesis,
which is available on Github1. To implement the network architectures presented in
Chapter 5, PyTorch2 was used. Code for the ResNet generator, U-NET generator,
and PatchGAN discriminator were copied from the official CycleGAN implementation3

from Zhu et al. (2017). The official implementation also provides code for replacing
transposed convolutions with custom upscaling layers for the generators. Spectral
normalization (Section 2.2.10) is included with PyTorch utils4 and was directly applied to
the discriminator. More details about the architecture implementations are discussed in
their respective experiments. Elements of the code for loading datasets and training the
networks were adapted from the official CycleGAN implementation and from a collection
of PyTorch GAN implementations5. This collection is a good resource for training GANs
on custom datasets, including CycleGAN. The code in the collection is available under
the MIT license6.

6.2.2. Environment and Resources

All the experiments will run on the NTNU HPC Idun Cluster (Själander et al., 2019),
which is a computing resource with high-performance CPUs and GPUs. The experi-
ments will be conducted in Jupyter Notebooks7 in an Anaconda8 environment (version
3/2022.05). The notebooks will run on an Nvidia Tesla A100 GPU with 40 GB memory,
using the PyTorch CUDA interface9. The codebase uses Python version 3.9.12 and
PyTorch version 2.0.0. Using the A100 GPU, each sub-experiment takes approximately 3
hours, except for Experiment 3, which takes 14 hours because of network complexity.

6.2.3. Parameters

Hyperparameters, variables, and other architectural choices are presented in Table 6.1.
These are the default parameter values for all the experiments and remain the same

1https://github.com/ekpete/masterthesis
2https://pytorch.org
3https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix
4https://pytorch.org/docs/stable/generated/torch.nn.utils.parametrizations.spectral_norm
5https://github.com/eriklindernoren/PyTorch-GAN/tree/master
6https://github.com/eriklindernoren/PyTorch-GAN/blob/master/LICENSE
7https://jupyter.org
8https://www.anaconda.com
9https://pytorch.org/docs/stable/cuda.html

52

6.2. Experimental Setup

unless otherwise stated. Changes to parameters are stated prior to each sub-experiment.

Parameter Value Description

n epochs 125 Number of epochs.
batch size 1 Batch size.

H 256 Height of the images.
W 256 Width of the images.
C 3 Number of color channels in the images.
lr 0.0002 ADAM learning rate.
β1 0.5 ADAM decay of first-order momentum of gradient.
β2 0.999 ADAM decay of second-order momentum of gradient.

λcyc 10 Weight of the cycle-consistency loss.
λid 5 Weight of the identity loss.
ngf 64 The number of filters in the first layer of the generator.
ndf 64 The number of filters in the first layer of the discriminator.

n blocks 6 The number of ResNet blocks.
n downs 8 The number of U-NET downsampling layers (depth).

Table 6.1.: The default values of parameters used in the experiments.

6.2.4. Data Preprocessing

For each sub-experiment, the models will train for 125 epochs. This was chosen since
Zhu et al. recommend training CycleGAN models for 200k iterations. The dataset will
be split with a ratio of 90/10, with a training set size of 1,620 and a test set size of 180.
Setting the batch size of 1 results in 125 × 1,620 = 202,500 iterations. The remainder of
the hyperparameters has the default values from the official CycleGAN implementation.

As shown in Chapter 4, the images from the cartoon domain have a resolution of
256x256, while images from the pixel art domain have a resolution of 64 × 64. The
base CycleGAN architecture assumes an equal size for both domains since the loss
functions need tensors of identical dimensions for comparison. It is possible to change the
architecture such that the cartoon-to-pixel art generator takes in 256× 256 images and
outputs 64× 64 images by removing upsampling layers. By adding upsampling layers,
the pixel art-to-cartoon generator can take 64× 64 images as input and output 256× 256
images. However, this may hinder first generator from learning essential features since
layers with weights are removed.

To circumvent the need to remove layers, either the cartoon images can be downsampled
or the pixel images can be upsampled prior to training. Downsampling and upsampling
of images are usually done with interpolation techniques such as bilinear interpolation
or nearest-neighbor interpolation. Nearest-neighbor interpolation identifies an unknown
data point on the basis of its nearest neighbor whose value is already known (Bhatia
and Vandana, 2010). Nearest-neighbor scales pixel art without information loss, due to

53

6. Experiments and Results

Figure 6.1.: Left: Downsampling from 256× 256 to 64× 64 using nearest-neighbor and
bilinear interpolation. Right: Upsampling from 64× 64 to 256× 256 using
nearest-neighbor interpolation.

the organization of the pixels, but applying it to a continuous-tone image may result in
blocky artifacts.

Bilinear interpolation is an extension of linear interpolation to two dimensions, where
unkown data points are fitted to the linear curve between existing points. Bilinear
interpolation can result in blurry edges and loss of texture (Suwendi and Allebach, 2008).
The effects of downsampling cartoon images and upsampling pixel art images are shown
in Figure 6.1, where the cartoon image loses essential features, but the pixel image is
perfectly scaled. Because of these results, all images from the pixel art domain will be
upscaled to 256× 256 prior to training using nearest-neighbor interpolation.

Furthermore, several preprocessing steps will be done for all images of both domains.
By default, PyTorch scales RGB color values from [0, 255] to [0, 1]. In addition to this, a
normalization step will be added to normalize the images to the range [−1, 1] to make
the images coincide with the output of the Tanh activation function (Section 2.2.2). This
can be done by subtracting each color value by 0.5 and then dividing by 0.5. Finally, the
order of the images will be randomized each epoch, and images will be randomly flipped
horizontally. This has the effect of creating a more diverse dataset, which may prevent
overfitting.

54

6.3. Experimental Results

6.3. Experimental Results

This section presents the results from the four experiments. Each experiment has several
sub-experiments, where the goal is to optimize the architecture used in the experiment.

6.3.1. Experiment 0: Datasets

This experiment tested the importance of the quality and quantity of the dataset while also
providing a baseline for the remainder of the experiments. Firstly, the base CycleGAN
model was trained on the dataset from Kuang et al. (2021) presented in Chapter 3.
Secondly, the model was trained on the collected dataset for this thesis, presented in
Chapter 4. Lastly, the model was trained on a subset of the collected dataset to test the
importance of the dataset size. The first dataset had 810 images per domain, the second
had 1620, and the third had 500. Because of the varying dataset sizes, the model trained
for 250 epochs for the first dataset, 125 epochs for the second, and 400 epochs for the
third. This resulted in approximately 200k iterations for all three datasets.

Figure 6.2.: Results from Experiment 0.

Results from training the base model on the three datasets are shown in Figure 6.2.
When trained on the dataset from Kuang et al., blocky images were generated, but with

55

6. Experiments and Results

no apparent regard for the stylistic rules of pixel art. This comes as a result of the
training data having images of many different pixel sizes, despite having equal resolution.
In addition, this training data has many occurrences of background noise, which can
contribute to the generated images having a non-white background, as seen in Figure 6.2.
Furthermore, many important details are lost, such as edges.

The model trained on the full collected dataset significantly improves the model trained
on the dataset from Kuang et al.. Individual pixels are discernible, they are of equal size
and details are preserved. In addition, no style transfer is being done to the background.
The partial dataset exhibits slightly worse results in some cases, compared to the full
dataset. The main issue is the failure to produce uniform colors, as seen in Figure 6.2 (c)
and (d).

The results show the importance of a large, uniform dataset with images that all
conform to the pixel art style. The complete collected dataset will be used for the
remainder of the experiments. Despite this, training the base model on the complete
dataset presents certain challenges, primarily in relation to the preservation of colors and
other details. This will be further discussed in subsequent experiments.

6.3.2. Experiment 1: ResNet

In Experiment 0, the base model performed well on the full collected dataset and created
images composed of equal-sized pixels while retaining the structure and essential features
of the input images. One apparent issue, however, is color retention, where light colors
were darkened in several images. The next sub-experiments will explore architectural
improvements to the ResNet generator and the PatchGAN discriminator.

Experiment 1.1: Increasing λid

Zhu et al. (2017) added an additional loss function to the model to ensure color consistency
between the input and output images. This loss function is called identity loss, and
it regularizes the generators to be close to an identity mapping when real samples of
the target domain are taken as input. In other words, the identity loss ensures that
if, for example, the cartoon-to-pixel art generator receives pixel art as input, the pixel
image should remain the pixel domain after the style transfer. This also entails that
the generators will retain the colors of the input image, apart from the colors that are
supposed to change during the style transfer. The effect of the identity loss is controlled by
a weight λid. By this, increasing the weight may further ensure overall color consistency.
This experiment increased the weight λid by a factor of 2.

Increasing λid to 10 resulted in improved color retention for images with light colors,
as shown in Figure 6.3. Further increasing the weight may result in the other losses
becoming overlooked, so λid = 10 is used for the remainder of the experiments. Even
though the color was improved, another issue remained. On closer inspection, many of
the images developed repeating patterns instead of having solid colors. Figure 6.4 shows
examples of this, where the repeating checkerboard patterns can be seen. These artifacts
are subtle but give the appearance of non-uniform colors.

56

6.3. Experimental Results

Figure 6.3.: Results from Experiment 1.1

Figure 6.4.: Checkerboard artifacts

Experiment 1.2: Upsampling

Checkerboard artifacts are a common problem for GANs. Odena et al. (2016) showed that
these artifacts may stem from transposed convolutions in the upsampling layer. Networks
may be able to adjust their weights to avoid this, but they may not be able to do so
completely. This was evident in Experiment 1.1, where the artifacts were more severe in
earlier parts of training. This may be because transposed convolutions can cause uneven
overlapping of pixels when upsampling. The authors suggest replacing all transposed
convolutions with nearest-neighbor upsampling layers followed by regular convolutions.

57

6. Experiments and Results

These upsampling layers do not have any learnable weights, but normal convolutions are
added to ensure that the upsampling still can learn features. This experiment replaced
the two transposed convolution layers in the ResNet generator with two nearest-neighbor
upsampling layers. The replaced transposed convolutions had kernel size = 3, stride = 2,
and padding = 1. The stride with value 2 was responsible for the double upsampling
of the spatial resolution. After the change, each nearest-neighbor upsampling layer is
responsible for the doubling. Each upsampling was followed by reflection padding and a
convolution layer with kernel size = 3 and stride = 1. The nearest-neighbor replacement
in the generators is denoted NNG.

Figure 6.5.: Results from Experiment 1.2

As shown in Figure 6.5, replacing the transposed convolutions resulted in unstable
training and solid color artifacts around the generated images. It seems like the generator
only learned the mapping of the object and ignored the background. This issue was
persistent for most of the training epochs for the generated pixel art, but not for the
generated cartoons. A reason for this can be instability in the pixel art discriminator
which can result in non-convergence, as mentioned in Section 2.7.1. When machine

58

6.3. Experimental Results

learning models fail to converge, the graphs of the loss functions usually indicate training
instabilities. However, the loss functions of CycleGAN usually do not unveil a lot of
information. Despite this, Figure 6.6 shows that the losses in this experiment acted
differently than the losses in the base model. In addition, the pixel art discriminator
(DB) had more variance than the cartoon discriminator (DA), which may suggest that
stabilization of DB is needed.

Figure 6.6.: Loss functions from Experiment 1.2

Experiment 1.3: Spectral Normalization

To stabilize the discriminators, and thus stabilize the generators, spectral normalization
(Section 2.2.10) can be applied to the discriminators. This experiment replaced all
occurrences of instance normalization in the discriminators with spectral normalization,
which is denoted SND.

As shown in Figure 6.7 (page 60), spectral normalization greatly stabilized the training.
The major background artifacts were gone, except for some contours around the objects.
Because of the remaining artifacts, another experiment was conducted by spectral
normalizing the generators to further stabilize the model. This resulted in model failure
during early training, where all generated images became completely black. The reason
for this could be related to the normalization process. The documentation for the PyTorch
spectral normalization implementation10 states that the method is made for discriminators.
This could suggest that the implementation is not optimized for generators, which could
explain the failure.

Experiment 1.4: 9 ResNet Blocks

The artifacts in Experiment 1.3 may be caused by the model not being complex enough
to learn all features since the transposed convolution layers were replaced. One way to
make the model more complex is to add more ResNet blocks. Even though the official
CycleGAN implementation defaults to 6 ResNet blocks, Zhu et al. recommend 9 blocks
for 256x256 images. This experiment increased the number of ResNet blocks from 6 to 9.
10https://pytorch.org/docs/stable/generated/torch.nn.utils.parametrizations.spectral_norm

59

6. Experiments and Results

Figure 6.7.: Results from Experiment 1.3

As shown in Figure 6.8 (page 61), increasing the number of ResNet blocks completely
removed the artifacts present in Experiment 1.3. This may be because the increased
model complexity allowed the networks to learn not to produce artifacts. Furthermore,
9 ResNet blocks and spectral normalization allowed the model to use nearest-neighbor
upsampling instead of transposed convolutions. This resulted in zero artifacts and zero
checkerboard patterns. The overall use of color is good, but the color changes slightly
from the input in some generated samples. A further discussion on color retention is
done in Section 7.2.

6.3.3. Experiment 2 - U-NET

This experiment will test the U-NET generator to examine if it improves the ResNet
generator in the synthesis of pixel art.

60

6.3. Experimental Results

Figure 6.8.: Results from Experiment 1.4

Experiment 2.1: U-NET Generator

Experiment 2.1 replaced the ResNet generators with U-NET generators. This was done
because the skip connections in U-NET may further ensure the integrity of the input
image and allow for better color retention and sharp edges. The discriminators and all
other parameters in Table 6.1 remained the same. The generator change resulted in
severe mode collapse, where all generated images exhibited the same noisy filter, as shown
in Figure 6.9 (page 62). This may be caused by unstable discriminators, as experienced
in Experiment 1.2.

Experiment 2.2: Spectral Normalization

Similar to Experiment 1.3, this experiment replaced all occurrences of instance normaliz-
ation in the discriminators with spectral normalization, denoted SND. This significantly
stabilized the training and enabled the model to produce images without disturbing filters.
Despite this, cases of checkerboard artifacts occurred, as shown in Figure 6.10 (page 63).

61

6. Experiments and Results

Figure 6.9.: Results from Experiment 2.1

These artifacts were more extensive and prominent than in the ResNet generator and
may again be caused by the transposed convolution layers.

Experiment 2.3: Upsampling

Similar to Experiment 1.2, this experiment replaced the transposed convolution layers in
the generator with nearest-neighbor upsampling and regular convolutions. The U-NET
generator has 8 transposed convolutions for upsampling. All of these have a kernel size =
4, stride = 2, and padding = 1. Replacing these with upsampling layers and convolutions
with stride = 1 (as done in Experiment 1.2) will not work because of a difference in
resolutions. This is because of the skip-connections, where U-NET concatenates outputs
from the downsampling layers to the inputs of the upsampling layers, which demands
the two instances be of equal resolution. Changing the kernel size to 3 will result in
corresponding resolutions. However, this change resulted in the generated images being
only one color, in most cases completely yellow, entirely white, or completely black.
This may be caused by the difference in kernel size between the downsampling and

62

6.3. Experimental Results

Figure 6.10.: Results from Experiment 2.2

the upsampling, such that the learned features do not correspond. The issue persisted
after extensive testing with different values for kernel, stride, and padding. As a result
of this, alternatives are explored in the next experiments while still using transposed
convolutions.

Experiment 2.4: SSIM Losses

Since the artifacts in Figure 6.10 are only slight variations of the input colors, the cycle
consistency and identity losses may not register the changes since the average pixel-wise
distance is not that large, thus not penalizing them. This experiment added another
loss function to the training to try to remove the artifacts while circumventing replacing
transposed convolutions. This loss function is a structural similarity loss based on the
SSIM evaluation metric (Section 2.7.8). The SSIM should, in theory, penalize perceptual
differences, such as structure, luminance, and contrast. SSIM loss has been used in
several deep learning applications where structural similarity is important (Huang et al.,
2021; Zhao et al., 2017).

63

6. Experiments and Results

To implement SSIM loss, the PIQA PyTorch library was used. PIQA (François Rozet,
2020) is a collection of PyTorch metrics for image quality assessment in various image
processing tasks such as generation. To use SSIM from PIQA, the color values of the
images must be in the range [0, 1], so images were renormalized to this by multiplying
with 0.5 and adding 0.5. After renormalization, the SSIM loss was computed between
input images and cyclic (reconstructed) images, such as in cycle consistency loss. SSIM
outputs metrics in the range [0, 1], where a higher value indicates more similarity. Since
the loss function should be minimized, it was defined as 1− SSIM(x, y), where x is a
real sample, and y is a reconstructed sample. The loss was added to the total generator
loss.

Figure 6.11.: Results from Experiment 2.4

As shown in Figure 6.11, the SSIM loss removed the artifacts present in Figure 6.10.
Despite this, artifacts in the form of black lines were added to some of the images. These
new artifacts around the objects can be caused by faults in the SSIM loss. Fei et al. (2012)
argue that a drawback of SSIM is that it struggles with distinguishing edges and texture
information. In this case, SSIM might not be able to discern the edges of the objects

64

6.3. Experimental Results

and thus add artifacts around them. Zhao et al. state that since SSIM was created for
grayscale images, using it in the context of color images introduces an approximation.
This may further explain the added artifacts and that the generators were steered in the
wrong direction.

Experiment 2.5: Perceptual Losses

Engin et al. (2018) proposed the use of perceptual losses in addition to the cycle-
consistency loss in CycleGAN. Perceptual losses were added to preserve the image
structure, clarity, and sharpness after going through both generators. This is done by
comparing high and low-level features of real images and reconstructed images. These
features were extracted from the 2nd and 5th pooling layers of a pre-trained convolutional
neural network VGG16 (Simonyan and Zisserman, 2014). VGG16 is trained for image
recognition on the ImageNet dataset and is effectively able to extract features from any
image. As mentioned in Section 3.3, Kuang et al. (2021) combined cycle-consistency
loss with a topology-aware loss, which essentially is the same as the perceptual loss from
Engin et al. (2018), in that they extract features from some layers from VGG16. By this,
a perceptual loss function seems promising to supplement SSIM and cycle-consistency
loss to further ensure sharpness, precise edges, and overall structure of the input images,
and may remove unwanted artifacts.

This experiment extracted features from the 2nd and 5th pooling layers of a pre-trained
VGG19 (Simonyan and Zisserman, 2014). The main difference between VGG19 and
VGG16 is that VGG19 has more layers. The pre-trained VGG19 model was imported
from the Torchvision library11, and the real and reconstructed images were passed through
the model to extract the features. Examples of feature maps can be seen in Figure 6.12.

Figure 6.12.: Extracted features from VGG19

Engin et al. (2018) experienced that a high weight of perceptual loss caused a loss of
color information. As a result, they weighted the perceptual loss with a factor of 0.0001.
11https://pypi.org/project/torchvision/

65

6. Experiments and Results

For the current experiment, a factor of 0.0001 did not have any effect on the generated
images. Because of this, the weight was changed to 0.01. Adding perceptual losses with
this weight effectively removed the artifacts around the images, as seen in Figure 6.13.
The reason for this may be the penalization of change in low-level features. However, new
artifacts occurred in the shape of white clouds. This may indicate that simply adding
more loss functions can be difficult for the model to interpret since conflicting information
can affect the weights. Another experiment using perceptual losses without SSIM losses
was conducted, but the artifacts were still present.

Figure 6.13.: Results from Experiment 2.5

6.3.4. Experiment 3: Self-Attention

This experiment added self-attention layers to both the generator and the discriminator, as
presented in Section 2.7.5. This was done because self-attention can ensure that generated
images are globally consistent. Global consistency is vital in pixel art generation since
every pixel should be the same size, and the use of colors should be limited. Code for

66

6.3. Experimental Results

the Self-Attention layers was adapted from a PyTorch implementation12 of SAGAN
(Section 2.7.5). The self-attention layers were added after the ResNet blocks, before
upsampling layers in the generator, and before the second to last layer in the discriminator.
Because of the added complexity of self-attention, training took approximately five times
longer than in experiments 1 and 2. Furthermore, the self-attention layers significantly
increased the memory requirement of the model, which may inhibit the model to train
on GPUs with less than 40 GB of memory.

As shown in Figure 6.14, adding self-attention layers did not improve the results
in experiments 1 and 2. This implementation led to darkened colors and frequent
occurrences of minor artifacts. Experiments with adding self-attention in earlier parts of
the discriminator were conducted but with worse results. Perceptual losses were tested to
remove artifacts, but this resulted in unstable training. Adding spectral normalization did
not stabilize the training, and artifacts were still present. No further experiments were
conducted due to the long training time and no apparent improvements over experiments
1 and 2.

Figure 6.14.: Results from Experiment 3

12https://github.com/heykeetae/Self-Attention-GAN

67

7. Evaluation and Discussion
This chapter will evaluate, compare and discuss the results of Experiments 1, 2 and
3 from Chapter 6. First, the evaluation methods will be presented, followed by the
evaluations and comparisons of the results, with discussions in view of the evaluations.
Lastly, a broader discussion of the model with the best results will be given regarding
advantages, use cases, and limitations.

7.1. Evaluation Method

Several evaluation metrics will be used to evaluate the results. IS, FID, and KID
from Section 2.7.8 will be used to evaluate the statistics of the generated images. To
supplement the statistical metrics, a new color evaluation metric for CycleGAN is
introduced. Furthermore, a setup for domain expert evaluation is presented as an
alternative to large-scale user-studies. These evaluation methods are introduced to
answer the research question:

RQ3 How can the performance of the models be measured and evaluated?

7.1.1. Minimum Color Palette Distance

As discussed in Section 2.7.8, there is no perfect evaluation metric for GANs. This
is partly because the terms of quality of generated images greatly vary depending on
the domain. IS, KID, and FID measure the statistics of the generated images and are
applicable to all types of images but do not specifically evaluate the stylistic demands of
pixel art. Quantifying stylistic rules such as aliasing, dithering, and shading is challenging,
and human visual inspection is required instead. The use of colors in an image, however,
can be measured since the pixel color values are quantities. An essential part of style-
transferring from cartoons to pixel art is preserving the input images’ colors. Therefore,
the colors of the input and output images should be compared to measure and ensure
color consistency.

One way to compare the colors of two images is to pair-wise compare the color values of
all pixels. This, however, would not account for the change in texture in the output image
since some color values are supposed to change throughout the image when converting
from cartoon to pixel art. A better solution would be to extract the images’ color palettes
by extracting the top most frequent or most representative colors. These color palettes
can then be compared to measure how much they differ. As a result, this thesis developed
a method for comparing the color palettes of input and generated images.

69

7. Evaluation and Discussion

One way to make a color palette for an image is to extract the N most frequent colors.
This can be problematic if the image contains large parts with many colors and shading.
As seen in Figure 7.1, the resulting color palette is not representative of the whole image
when the image has many different colors. A better solution is to use K-means clustering
to extract representative dominant colors from the image (Lertrusdachakul et al., 2019).

Figure 7.1.: K-means vs frequent color extraction.

K-means clustering is an unsupervised machine-learning algorithm for grouping data
points (Na et al., 2010). K-means clustering can group similar color values into K clusters
to extract a palette from an image. First, the algorithm creates K randomly chosen
centers in the color space, with K being predetermined. Secondly, each data point (color
value) is assigned to its nearest center, measured by Euclidian distance (distance between
the coordinates of data points). Then, the averages of each of the clusters are computed,
new center points are chosen, and all data points are assigned to a new center. This is
done iteratively until a stopping criterion is met. After enough iterations, all color values
are assigned to fitting clusters, and the centers of the clusters are chosen as representative
color values (Na et al., 2010). This results in a color palette of K colors. This color
palette is more representative than extracting the most frequent colors, as shown in
Figure 7.1.

To compare two color palettes, the distances from each color in the source palette to
each color in the target pallet must be measured. The Euclidian distance of each RGB
channel can be used to compare two colors C1: (R1, G1, B1) and C2: (R2, B2, G2), and can
be defined as distance(C1, C2) =

√
(R2 −R1)2 + (G2 −G1)2 + (B2 −B1)2. However,

Euclidian distance does not conform well with the human perception of colors (Lv and
Fang, 2018), and may result in high distances for perceptually similar colors and vice
versa.

CIEDE2000 is a color difference formula that measures the human perceptual difference
between two colors and is a commonly used metric in the field of color science. Instead of
using the RGB color space, CIEDE2000 uses the CIELAB (or L∗a∗b∗) color space. Here,
colors have three values, L∗, a∗, and b∗, where L∗ represents perceptual lightness and a∗

and b∗ represent combinations of the four colors red, green, blue, and yellow (Johnson
and Fairchild, 2003). These values are designed to represent human perception better.

70

7.1. Evaluation Method

CIEDE2000 uses this color representation to calculate the distance, and the complete
CIEDE2000 algorithm can be found in Sharma et al. (2005). Since CIEDE2000 measures
distance, a lower score indicates more similar colors.

After extracting the color palettes, each color in the source palette can be compared
to each in the target palette. The distance between each color can be measured, and the
minimum distances can be recorded and averaged. This will result in similar palettes
having a smaller average distance than contrasting palettes since each color in the source
palette can find its closest match in the second palette. An issue with this approach is
that the operation is performed in only one direction, e.g., comparing the source to the
target palette, but not vice versa. Pan and Westland (2018) use the same approach to
measure color palette distance but alleviates this issue by also performing the operation
from target to source and averaging the two results. The total average difference between
the two palettes is then obtained.

Figure 7.2.: Palettes

(a) and (b) (a) and (c) (a) and (d) (e) and (f)

Distance 0.0 3.228 7.717 47.389

Table 7.1.: CIEDE2000 distance between palettes.

Figure 7.2 and Table 7.1 show the CIEDE2000 color difference between palettes. The
scale is [0, 100], where 0 indicates equal colors, and 100 indicates completely different
colors. Figure 7.2 (a) and (b) are the same palette but have different ordering. Despite
the order of the colors, the distance is still 0. Figure 7.2 (c) is a slight variation of (a),
with a distance from (a) close to 0. Figure 7.2 (d) is a more distinct variation, with a
higher distance from (a) than (c) has. Figure 7.2 (e) and (f) differ significantly and thus
have a high distance between them.

Extracting color palettes from images using K-means, converting from RGB to L∗a∗b∗,
measuring the distance between the colors using CIEDE2000, and then averaging over
all colors in the palettes is combined into an evaluation metric. The algorithm for the
constructed color palette evaluation metric is shown in Algorithm 2. Here, the algorithm
compares the color palette difference between the input image from the source domain
to the generated image in the target domain. This is done for all images in the test set,
with the mean (average) palette difference being the total score. A score closer to zero
indicates better color consistency. The number of K-means clusters k determines the

71

7. Evaluation and Discussion

number of colors in the extracted color palettes. The implementation of the algorithm
can be found in the codebase for this thesis1. In the implementation, palette extraction
with K-means clustering uses the Scikit-learn library2, conversion between RGB and LAB
uses the Scikit-image library3, and the CIEDE2000 distance uses an implementation4 of
the computations from Sharma et al. (2005).

Algorithm 2 Minimum color palette distance (MCPD) algorithm.
k ← number of K-means clusters
for n number of images in test set do

- Extract palette of k colors from source image using K-means clustering
- Extract palette of k colors from generated image using K-means clustering
- Convert palettes from RGB to L∗a∗b∗ color space
for k colors in source palette do

- Get distance to each color in generated palette using CIEDE2000
- Save minimum distance

end for
for k colors in generated palette do

- Get distance to each color in source palette using CIEDE2000
- Save minimum distance

end for
image score← mean of saved distances for current image

end for
score← mean of n image scores

7.1.2. Domain Expert Survey

As presented in Section 2.7.8, conducting user studies to measure the realness of generated
images is popular. This is often done by having a (preferably large) number of people
guessing whether the generated images are real or fake. This works well for cases where
the study participants have adequate knowledge of the target domain, such as real-life
photos or paintings. Despite pixel art being a well-known art form, the assumption that
the study participants inherently know how to distinguish between real and fake pixel
art can not be made. This is because the stylistic rules of pixel art are not well known,
and it takes practice to judge an image by them.

The most important rule of pixel art is that the image only comprises distinguishable
pixels, where every pixel is of each size, and each pixel is of one color. Determining this
can be done through visual inspection by only one person without needing a user survey.
More detailed rules, such as consistency in the line art, anti-aliasing, shading, highlights,
and shadows, should preferably be evaluated by a pixel art domain expert. As with all

1https://github.com/ekpete/masterthesis
2https://pypi.org/project/scikit-learn/
3https://pypi.org/project/scikit-image/
4https://github.com/lovro-i/CIEDE2000/tree/master

72

7.1. Evaluation Method

art forms, pixel art quality is subjective, and more than one expert should be consulted
to ensure unbiased evaluations.

Professional pixel artists can be considered experts in the pixel art domain. To gather
domain experts for evaluating the results in this thesis, the online marketplace for
freelance services, Fiverr5, was used. Several top-rated pixel artists on the site were
contacted, and two agreed to evaluate the results. The first was Italivy Cortes, a pixel
artist with five years of experience and an average rating of 4.9/5 stars from 533 reviewers
on Fiverr. Some of their artwork is shown in Figure 7.3. The second was Nicola Di
Concilio, a pixel artist with four years of experience and an average rating of 5/5 stars
from 923 reviewers. Some of their artwork is shown in Figure 7.4.

Figure 7.3.: Pixel art created by artist Italivy Cortes. Printed with permission from the
artist.

Figure 7.4.: Pixel art created by artist Nicola Di Concilio. Printed with permission from
the artist.

The expert evaluation survey aims to determine the overall quality of the generated
artwork concerning the stylistic rules of pixel art. For evaluation, the 180 generated
images from the test set will be presented, and the following questions will be asked:

1. Overall, how well do these artworks follow the rules of the pixel art style (regarding
line art, color use, shading, dithering, aliasing, etc.)?

5https://www.fiverr.com

73

7. Evaluation and Discussion

2. Overall, are these artworks believable to be created by a human artist? Why, why
not?

3. Do any of the images stand out as high quality, and do any stand out as low quality?

4. Do you have any additional comments about the pixel art presented?

The experts will be told that the artwork was computer generated and instructed to
focus on the overall impression and quality of the pixel art. The answers to the questions
will be presented in Section 7.2.4.

7.2. Evaluation

This section presents the evaluations of the sub-experiments with the best results from
each of the four experiments in Chapter 6. The best sub-experiments are selected
based on their respective sections’ discussions and visual outcomes. For Experiment
0 (Section 6.3.1), the base CycleGAN model with the full collected dataset is selected
and is termed “Base CycleGAN” in the comparisons in this section. For Experiment 1
(Section 6.3.2), Experiment 1.4 with 9 residual blocks and nearest-neighbor upsampling
in the generator, and spectral normalization in the discriminator is selected and is termed
“ResNet9 + NNG + SND”. For Experiment 2 (Section 6.3.3), Experiment 2.4 with the
U-NET generator, spectral normalized discriminator and SSIM loss function is selected
and is termed “U-NET + SND + LSSIM ”. For Experiment 3 (Section 6.3.4), Experiment
3.1 with added Self-Attention layers is selected and is termed “Self-Attention”. The results
from the chosen sub-experiments will be compared using visual inspection, statistical
evaluation, color evaluation, and domain expert evaluation. The presented generated
images are the model outputs with no modifications or corrections.

7.2.1. Visual Inspection

Randomly chosen samples from the results are shown in Figure 7.5. To show how
downsampling techniques are insufficient to create pixel art, nearest-neighbor interpolation
is included. From all samples, it is evident that interpolation does not result in consistent
line art, and details are often lost. Other downsampling techniques, such as bilinear
interpolation (not included in the comparison), result in blurry images with no form of
line art.

The base CycleGAN model has more consistent line art than nearest-neighbor interpol-
ation, as evident in sample (b) in Figure 7.5. However, black lines usually fade with their
surrounding colors, as seen in samples (b) and (c). Furthermore, checkerboard artifacts
can be seen on closer inspection, as discussed in Section 6.3.2.

ResNet9 + NNG + SND is a significant improvement over the base model in that
the black line art is clear and consistent, with a uniform black color. This is evident in
the contour lines of the objects in samples (b), (c), and (d) in Figure 7.5. Furthermore,
the colors are better retained, no visible artifacts are present and essential details are

74

7.2. Evaluation

Figure 7.5.: Results from the four models from Experiments 0, 1, 2 and 3. The results
of downsampling the input image with nearest-neighbor interpolation is
included.

translated. Equal objects in the input image have an equivalent translation, evident in
the eyes in sample (c) and the curved edges in sample (d). One issue can be seen in
sample (a), where the thin black line at the bottom of the object is not kept. This can
also be seen in the top-right balloons of sample (e). However, this issue only occurs in a
few instances throughout the test set, where some indistinct narrow lines are affected.

U-NET + SND + LSSIM is also an improvement over the base model because of more
consistent black lines and better color retention. In addition, this model includes narrow
lines, as seen in samples (a) and (e) in Figure 7.5. This may be because of the skip
connections in the U-NET generator, which can transfer more features from the input
image than the ResNet generator. Despite this, the translation of equal objects from
the input image is inconsistent. The eyes in sample (c) are of different shapes, while
the vertical edges in sample (d) have different curves. Despite not being evident in
the samples presented in Figure 7.5, several generated images from the test set have

75

7. Evaluation and Discussion

unwanted artifacts around the objects. An example of this was shown in Figure 6.11 in
Section 6.3.3.

Adding Self-Attention layers did not improve the results of Experiments 2 and 3. As
seen in sample (a) in Figure 7.5, colors are distorted, and artifacts are added. Objects
and details are translated similarly to the base model, but samples (b) and (c) show
checkerboard artifacts and inconsistent line art. In addition, for many images in the
remainder of the test set, the self-attention mechanism often caused light colors in images
to be translated darker.

7.2.2. Statistical Metrics

To further compare the selected models, the statistics of the results from the experiments
will be compared to the statistics of the real test samples from the pixel domain using
FID and KID (Section 2.7.8). Since the dataset is unpaired, the statistics of the images
as a whole will be compared, not individually. The results from the two metrics are
shown in Table 7.2.

Model IS FID KID

Base CycleGAN 3.958±0.569 162.447 0.048± 0.010
ResNet9 + NNG + SND 3.679± 0.600 132.492 0.019±0.006
U-NET + SND + LSSIM 3.726± 0.649 132.783 0.020± 0.006
Self-Attention 3.682± 0.276 162.329 0.056± 0.010

Table 7.2.: Inception Score (IS), Fréchet Inception Distance (FID) and Kernel Inception
Distance (KID) of the generated test set images from four models. IS computes
statistics of only the generated images. KID and FID compute and compare
the statistics of generated images to images from the real domain. FID
show the total score, while IS and KID show the mean scores with standard
deviation (variability around the mean).

Inception Score (Section 2.7.8) was included as a supplement to FID and KID but
has been considered unreliable for evaluating GANs (Barratt and Sharma, 2018). Since
IS stems from the Inception network trained in the ImageNet dataset, applying it to
GANs trained on other datasets gives misleading results. As shown in Table 7.2, the base
CycleGAN model achieves the highest Inception Score, which contradicts the discussion
in the visual inspection. The score for the real (non-generated) images from the pixel art
domain is 3.515 (lower than all the generated images), which suggests that IS is not a
suitable metric for this task. Because of this, more focus should be given to the FID and
KID scores.

Similar to IS, FID is not without limitations. As stated in Section 2.7.8, the minimum
amount of test images is usually above 10,000 for evaluation with FID. The test set
used in this thesis only contains 180 images. Because of this, the FID results may be
misleading. KID does not have a recommended minimum but may suffer from high

76

7.2. Evaluation

variance when evaluating a small number of images. However, it is still possible that
FID and KID can indicate the level of similarity between the generated and the real
images. As shown in Table 7.2, ResNet9 + NNG + SND achieves the lowest KID and
FID scores, while U-NET + SND + LSSIM has only marginally higher scores for both
metrics. The base and Self-Attention models have significantly higher scores, indicating
a larger deviation from the real domain. These results agree with the results from the
discussion in the visual inspection, and suggest that the ResNet9 model outperforms the
other models in generating pixel art images that resemble real-life artwork.

7.2.3. Color Palette Evaluation

Table 7.3 shows the MCPD score of the models for different values of k. k is the number
of colors in the palettes being compared, and more than one value is shown to test
whether the scores vary depending on k. As shown in the table, the scores are consistent.
As shown in Section 7.1.1, a score close to 0 indicates good color retention. A score
between 0 and 2 indicates that the generated images have colors perceptually identical
to the source images. Images with scores around 2-3 begin to have slightly perceivable
color deviations, while images with scores around 5 have visible color deviations.

Model MCPD k = 5 MCPD k = 10 MCPD k = 20

Base CycleGAN 5.650±1.909 5.799±1.244 5.3218±1.031
ResNet9 + NNG + SND 5.435±2.181 5.546±1.273 5.137±1.012
U-NET + SND + LSSIM 4.665±2.069 5.025±1.142 4.828±1.026
Self-Attention 7.254±2.408 7.239±1.961 6.912±1.764

Table 7.3.: Minimum Color Palette Distance (MCDP) for all four models with three
different palette lengths. Standard deviation (variability around the mean) is
included.

As a baseline, the MCPD score (k=5) for nearest-neighbor interpolation is 1.21. No
colors are changed during the interpolation, apart from the ones lost in the down-sampling.
Ideally, the style transfer models should achieve an equal score. However, the results
in Table 7.3 show that even though the overall color retention is adequate, it is still
perceptually visible. U-NET + SND + LSSIM achieves the lowest scores for all palette
lengths. This may be because of the skip connections in the U-NET, as colors are more
consistently transferred from the input to the output. ResNet9 + NNG + SND scores
moderately worse than the U-NET model, while the base CycleGAN model scores slightly
worse than the ResNet9 model. The scores of around 4-5 indicate visible color differences
between the input and the generated images. The Self-Attention model has the worst
scores of around 7 across the values of k, which indicate obvious color variations between
the input and the output.

77

7. Evaluation and Discussion

7.2.4. Domain Expert Evaluation

The U-Net and ResNet9 models perform best out of the four models by the valuations
in the previous sections. Furthermore, color retention was better in the results from
the U-NET model than the ResNet9 model. However, the ResNet9 model performed
slightly better than the U-NET model by visual inspection and statistics. In addition, the
ResNet9 model did not have any visible artifacts in any generated images from the test
set. Artifacts occurred in some generated samples from the U-NET model. As a result,
ResNet9 + NNG + SND is selected as the best-performing model from the experiments,
and the generated images will be further evaluated using domain experts. Only one
model is chosen because the goal of the expert evaluation is to compare the generated
images to real pixel art and not to compare the models against each other, which was
done in the previous sections. The pixel art experts were given the 180 generated images
from the test set and answered the survey presented in Section 7.1.2. A summary of
the responses is presented in this section, and the complete survey answers are given in
Appendix A.

The two experts provided their observations and opinions regarding the generated
pixel art. In response to the first question about how well the artworks followed the rules
of the pixel art style (such as line art color use, shading, dithering, anti-aliasing, etc.),
they pointed out several issues. The first expert stated that the line art was uneven for
the most part, similar to basic outlines when starting a rough draft of an illustration.
Anti-aliasing was sometimes used to smooth out the line art, but it was misapplied
in many examples. Sometimes it was applied to the outside objects, which gave an
unfortunate “glow” effect. The color palette was kept to a minimum for most examples,
which was positive, but shading techniques were not applied correctly, making the images
look flat. In the examples where shading techniques were applied, many only had a
gradient effect, usually known as pillow shading and banding. Beginner-level pixel artists
often use these shading techniques, and more advanced techniques, such as dithering,
were not applied to any of the presented images.

The second expert gave ratings for the techniques used. They gave an overall adherence
to the rules as 5 out of 10, with shading receiving a rating of 3, using colors a rating
of 5, and line art a rating of 8. They also commented on shading, similar to the first
expert. They stated that using gradients is against the pixel art guidelines, especially
when applied to characters and smaller objects. Gradients should instead be applied
to backgrounds. They commented that the usage of colors was excessive and wanted
smaller color palettes. Regarding anti-aliasing, they stated that a darker shade of the
line should be used rather than only gray colors.

For the second question, which addressed whether the generated images were believable
to be created by a human artist, the first expert noted that while the artworks resemble
pixel art, they appear to be the work of a beginner-level artist due to incorrect application
of techniques. The second expert stated that the images looked like they were taken from
the internet and made by beginner level pixel-artists. Furthermore, they had a “retro”
feel and looked good.

When asked to point out examples of high and low-quality images, the first expert

78

7.2. Evaluation

did not regard any of the images as high-quality pixel art. However, six of the images,
amongst others, were classified as illustrations of an improving beginner pixel artist. The
second expert observed that 44 of the images looked like they were created by a human
and classified six as high quality. The images that the experts rated highest are shown in
Figure 7.6.

Figure 7.6.: Domain experts’ selection of highly rated generated pixel art images.

Lastly, the first expert was impressed with the level of pixel art the model was able to
produce. They stated pixel art is often hard for beginners and even intermediate-level
pixel artists. Furthermore, they mentioned that other AI-generated pixel art they have
seen often looks computer generated. They expressed that the presented images were
perceived as art created by a beginner artist rather than a computer. The second expert
gave some final warnings on the choice of datasets since most pixel art available online
does not follow pixel art rules. They advised that more high-quality pixel art should be
located and used to get more professional-looking results.

79

7. Evaluation and Discussion

7.3. Discussion

The expert evaluators noted several shortcomings of the generated images regarding the
stylistic rules of pixel art. This was due to the absence of proper anti-aliasing, lack of
professional shading techniques, and inconsistent line art. They explained that the use
of gradients between colors in the generated images is rarely seen in professional pixel
art. The shortcomings can partly be explained by the fact that the model was trained
on relatively simple pixel art, with few occurrences of techniques such as anti-aliasing
and advanced shading. It is not possible for a model to learn techniques it has not been
exposed to. A training dataset with more details and advanced artwork may generate
higher-quality images. Still, a too complex dataset might inhibit the model from learning
the basic rules, such as equal-sized and distinguishable pixels. This was shown by Yang
et al. (2022), as described in Chapter 3, where the model was trained on large landscape
pixel art and could not learn the basic rules. Additionally, collecting a data set with
more images that use advanced techniques may be a solution, but locating high-quality
publicly available artwork may be difficult.

Furthermore, it is worth noting that the quality of a generated image (after training)
depends on the features learned by the model and the quality of the input image. A poor
input illustration might result in poor pixel art since the model only changes the style, not
the actual objects and other image content. One of the experts stated that the generated
pixel art appeared as if they were taken from the internet. This is partly correct since
the input images are simple illustrations scraped from an open-domain source. This may
suggest that the input’s simplicity dictates the output’s simplicity. Even though the
model was trained on simple illustrations, it can generate more advanced pixel art by
translating more advanced illustrations. An example of this is shown in Figure 7.7, where
a detailed painting is translated to pixel art.

In Figure 7.7, even though the model does not directly apply advanced techniques, the
generated image can be perceived as more complex pixel art caused by the complexity of
the input illustration. Furthermore, compared to downsampling, lines are more precise
and uniform in the generated image, as seen on the floor and stairs in the bottom left.
Colors are more uniform, as seen in the sky, and small objects are easier to discern, as
seen in the sailboats. Another thing to note in this example is that since the model is
fully convolutional, it can take images of any size as input. The image in Figure 7.7 is of
size 764x600, which is almost three times the size of the training images. Despite the
image’s increased resolution, the model can still produce square pixels of uniform size.

Despite the shortcomings in the use of advanced techniques, both expert evaluators
expressed that the model generated pixel art at a human beginner level. This shows that
the model can provide a starting point for an artwork, where only a sketch, a simple
cartoon, or a more complex illustration can be used as input. Drawing a simple cartoon
has a lower threshold than creating pixel art for inexperienced artists. The generated
pixel art can be further edited and cleaned up by, for example, adding anti-aliasing and
applying more advanced shading techniques. This can save time and effort in generating
artwork, which can be valuable when creating large quantities. This can, for example,

80

7.3. Discussion

Figure 7.7.: A comparison of the ResNet model and nearest-neighbor interpolation on a
input painting of size 764× 600.

be useful for video game developers as they often need to make many artworks when
creating assets for their games.

When manually editing or using the generated images for game assets, they should
be downscaled to their proper resolution. As explained in Section 6.2, when the model
was trained, the pixel art images were upscaled by a factor of 4 using nearest-neighbor
interpolation. This entails that one pixel is composed of four actual pixels. To get the
proper resolution of the generated image without the loss of information, such that each
pixel is composed of only one pixel, one can apply a nearest-neighbor downscaling with
a factor of 1/4. The images can also be upscaled to larger resolutions as long as the
factor is a multiple of 4. This ensures that all pixels are squares of equal sides. Another
advantage of the model is that it can generate pixel art of different detail levels depending

81

7. Evaluation and Discussion

on the size of the input image. By downscaling the input to a smaller size, fewer pixels
will represent the content. This is shown in Figure 7.8.

Figure 7.8.: Varying the resolution of the input image results in different pixel art styles.

Because of the cycle consistency concept, the model can translate pixel art into cartoons.
This feature is vital during training, but it does not have any practical applications
because of the low quality of the generated cartoons. Some examples are shown in
Figure 7.9.

Figure 7.9.: Pixel art translated to the cartoon domain. This is possible because of cycle
consistency.

As previously discussed, a limitation of the model is the inability to produce pixel art

82

7.3. Discussion

that uses advanced techniques. The model is trained on relatively simple pixel art, thus
outputting simple pixel art. Simple pixel art, however, is an entirely valid form of pixel
art. Pixel art can have different substyles, and the artwork in the training data only
has a few. The CycleGAN model may have issues learning more than one style, but an
alternative is to create several models trained on different datasets with different pixel
art styles. More alternatives are discussed in Chapter 8.

Another limitation is that the model cannot ensure complete color retention. As
previously shown, the colors do not majorly deviate, but there are still visible differences.
Collecting a larger dataset with more diverse colors may further ensure color retention,
as discovered in the dataset experiment (Section 6.3.1). Another possible solution is to
extract the color palette from the input and generated images during training, compare
the two, and penalize large distances. This can be done using K-means clustering and
CIEDE2000 distance, effectively turning the MCPD algorithm (Section 7.1.1) into a loss
function. To do this, all the operations in the algorithm would need to be converted
into mathematically differentiable functions. This would, however, be a computationally
expensive operation, as palette extraction would need to be done for every iteration
during training. Even though the 1,620 input images’ palettes would only need to be
computed once and then saved, the palettes of the generated images would need to be
recomputed every epoch. This would amount to over 200,000 K-means clustering runs,
which may result in drastically longer training time. An alternative to this could be to
compare color histograms, as done by Coutinho and Chaimowicz (2022), presented in
Chapter 3.

83

8. Conclusion and Future Work
This chapter presents the main contributions of this thesis in relation to the field of pixel
art synthesis and to the research questions presented in Chapter 1. Lastly, suggestions
for extensions, improvements, and future work are presented.

8.1. Contributions

As discussed in Chapter 7, this thesis succeeds in synthesizing quality pixel art from
cartoons. CycleGAN with a ResNet generator with nine residual blocks, nearest-neighbor
upsampling, and a spectral normalized discriminator outperformed the other model
architectures from the experiments, as evidenced by the visual inspection and statistical
metrics. Pixel art experts further evaluated this model and concluded it could generate
pixel art on the same level as a beginner human pixel artist.

The work in this thesis contributes to the field of pixel synthesis by presenting sugges-
tions for viable architectures options for CycleGAN to generate pixel art. The results from
the experiments and sub-experiments answered the research question: “How can GAN
architectures be designed to be able to create pixel art effectively?”. The ResNet model
showed results with no artifacts, adherence to the basic stylistic rules, and adequate color
retention. The U-NET model was shown to generate quality pixel art with good color
retention, albeit with more artifacts than the ResNet model. This thesis also reveals that
adding additional loss functions, such as SSIM and perceptual losses, may sometimes help
with artifacts. More fine-tuning of the models with additional loss functions is needed
to determine if the functions steer the generation in the correct direction and produce
better results. Lastly, the experiments showed that adding Self-Attention layers to the
model resulted in worse results.

A common issue in the field of pixel art synthesis is the lack of large, high-quality
datasets. This thesis contributes to this issue by suggesting relevant data sources and
facilitating means to collect, parse, and process the data. This resulted in a dataset
with 1,800 cartoon illustrations and 1,800 pixel art images, all under a creative commons
license. In addition, this thesis showed that the collected dataset significantly improves
the CycleGAN model’s performance compared to the model trained on lower quantity
and quality datasets. This answers the research question: “What impacts do the datasets’
quality and quantity have on the generated artwork?”.

The last significant contribution to the field is a more comprehensive way of evaluating
the generated images. Most of the research in this field only evaluates results by visual
inspection. This thesis shows that metrics such as KID and FID can be relevant to
the quality of the generated images. In addition, consultation with domain experts can

85

8. Conclusion and Future Work

uncover more insights about the generated images than only statistical metrics and visual
inspection.

This thesis also introduces a new color palette evaluation metric. This metric extracts
dominant colors from images and scores how consistent the colors are with each other.
The approach of comparing color palettes is not new. Still, to the author’s knowledge, the
customization and use of this metric in image-to-image translation tasks have not been
done before. This metric applies to all style transfer tasks where the input and the output
images should have the same dominant colors. The combination of visual inspection,
statistical metrics, domain expert survey, and color palette evaluation sufficiently answers
the research question: “How can the performance of the models be measured and
evaluated?”.

8.2. Future Work
This thesis tried to accomplish the main goal: “Create a generative adversarial network
model capable of synthesizing high-quality pixel art.”. Even though the results were
not considered high quality, they were evaluated as of the quality of a beginner-level
pixel artist. Further work should be done to improve the results and ultimately create
high-quality pixel art.

More experiments with different combinations of loss functions and hyperparameters
may be conducted to improve the models further. Most of the hyperparameters used
for the experiments in this thesis were the default recommended parameters by Zhu
et al. (2017), but other combinations may have a positive effect on training. In addition,
complete color retention should be strived towards, and adding a color-related loss
function may improve this. This may include directly comparing colors of input and
output images or comparing color histograms or palettes.

Even though the model can create different pixel art variations of the same input image,
as shown in Figure 7.8 (page 82), details may be lost when downscaling images before
translation. Separate models can be trained on different datasets to alleviate this issue
and make the model effectively translate images to several pixel art styles. These can be
several datasets, each with a distinct pixel art style. One dataset may have low-resolution
pixel art with only a few pixels, while another can be highly detailed high-resolution
pixel art. Considerable effort must be taken to assemble such datasets, and many images
must be hand-picked. The availability of open-source pixel art online is scarce, and it
may be challenging to create several datasets, each consisting of thousands of images. If
such datasets are collected, separate CycleGAN models can be used. This also opens
the possibility of multimodal image-to-image translation using a single model, such as
MUNIT (Huang et al., 2018). MUNIT can train on more than one dataset, generating
more than one style for the input image. A suggestion for future work is to train the
MUNIT model on several datasets consisting of more than one pixel art style.

86

Bibliography
Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein generative adversarial

networks. In ICML, pages 214–223. PMLR, 2017.

Trevor Avant and Kristi A Morgansen. Analytical bounds on the local Lipschitz constants
of ReLU networks. arXiv preprint arXiv:2104.14672, 2021.

Hardik Bansal and Archit Rathore. Understanding and implementing cyclegan in
tensorflow, 2017. URL https://hardikbansal.github.io/CycleGANBlog/.

Shane Barratt and Rishi Sharma. A note on the inception score. arXiv preprint
arXiv:1801.01973, 2018.

Eyal Betzalel, Coby Penso, Aviv Navon, and Ethan Fetaya. A study on the evaluation of
generative models. arXiv preprint arXiv:2206.10935, 2022.

Nitin Bhatia and Vandana. Survey of nearest neighbor techniques. arXiv preprint
arXiv:1007.0085, 2010.

Mikołaj Bińkowski, Danica J Sutherland, Michael Arbel, and Arthur Gretton. Demysti-
fying MMD GANs. arXiv preprint arXiv:1801.01401, 2018.

Ali Borji. Pros and cons of GAN evaluation measures: New developments. Computer
Vision and Image Understanding, 215:103329, 2022.

Min Jin Chong and David Forsyth. Effectively unbiased FID and Inception Score and
where to find them. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 6070–6079, 2020.

S. Colton and Geraint Wiggins. Computational creativity: The final frontier? Frontiers
in Artificial Intelligence and Applications, 242:21–26, 01 2012. doi:10.3233/978-1-61499-
098-7-21.

Andrew Cotter, Ohad Shamir, Nati Srebro, and Karthik Sridharan. Better
mini-batch algorithms via accelerated gradient methods. In J. Shawe-Taylor,
R. Zemel, P. Bartlett, F. Pereira, and K.Q. Weinberger, editors, Advances
in Neural Information Processing Systems, volume 24. Curran Associates, Inc.,
2011. URL https://proceedings.neurips.cc/paper_files/paper/2011/file/
b55ec28c52d5f6205684a473a2193564-Paper.pdf.

87

https://hardikbansal.github.io/CycleGANBlog/
https://doi.org/10.3233/978-1-61499-098-7-21
https://doi.org/10.3233/978-1-61499-098-7-21
https://proceedings.neurips.cc/paper_files/paper/2011/file/b55ec28c52d5f6205684a473a2193564-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2011/file/b55ec28c52d5f6205684a473a2193564-Paper.pdf

Bibliography

Flávio Coutinho and Luiz Chaimowicz. On the challenges of generating pixel art character
sprites using GANs. Proceedings of the AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment, 18(1):87–94, 2022. doi:10.1609/aiide.v18i1.21951.

Nan Cui. Applying gradient descent in convolutional neural networks. Journal of Physics:
Conference Series, 1004:012027, 04 2018. doi:10.1088/1742-6596/1004/1/012027.

Emily L Denton, Soumith Chintala, Rob Fergus, and Arthur Szlam. Deep generative
image models using a Laplacian pyramid of adversarial networks. Advances in neural
information processing systems, 28, 2015.

Ahmed Elgammal, Bingchen Liu, Mohamed Elhoseiny, and Marian Mazzone. CAN:
Creative adversarial networks, generating art by learning about styles and deviating
from style norms. arXiv preprint arXiv:1706.07068, 2017.

Deniz Engin, Anil Genç, and Hazim Kemal Ekenel. Cycle-Dehaze: Enhanced CycleGAN
for single image dehazing. In Proceedings of the IEEE CVPR, pages 825–833, 2018.

Xuan Fei, Liang Xiao, Yubao Sun, and Zhihui Wei. Perceptual image qual-
ity assessment based on structural similarity and visual masking. Signal
Processing: Image Communication, 27(7):772–783, 2012. ISSN 0923-5965.
doi:https://doi.org/10.1016/j.image.2012.04.005.

François Rozet. PIQA: PyTorch Image Quality Assessement, 2020. URL https://pypi.
org/project/piqa.

Timothy Gerstner, Doug DeCarlo, Marc Alexa, Adam Finkelstein, Yotam Gingold, and
Andrew Nealen. Pixelated image abstraction. In NPAR 2012, Proceedings of the 10th
International Symposium on Non-photorealistic Animation and Rendering, June 2012.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets.
In Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K.Q. Weinberger, ed-
itors, Advances in Neural Information Processing Systems, volume 27. Curran As-
sociates, Inc., 2014. URL https://proceedings.neurips.cc/paper_files/paper/
2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf.

Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

Google. GAN structure, 2022a. URL https://developers.google.com/
machine-learning/gan/gan_structure.

Google. GAN problems, 2022b. URL https://developers.google.com/
machine-learning/gan/problems.

Alex Graves, Abdel-rahman Mohamed, and Geoffrey Hinton. Speech recognition with deep
recurrent neural networks. In 2013 IEEE International Conference on Acoustics, Speech
and Signal Processing, pages 6645–6649, 2013. doi:10.1109/ICASSP.2013.6638947.

88

https://doi.org/10.1609/aiide.v18i1.21951
https://doi.org/10.1088/1742-6596/1004/1/012027
https://doi.org/https://doi.org/10.1016/j.image.2012.04.005
https://pypi.org/project/piqa
https://pypi.org/project/piqa
https://proceedings.neurips.cc/paper_files/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2014/file/5ca3e9b122f61f8f06494c97b1afccf3-Paper.pdf
http://www.deeplearningbook.org
https://developers.google.com/machine-learning/gan/gan_structure
https://developers.google.com/machine-learning/gan/gan_structure
https://developers.google.com/machine-learning/gan/problems
https://developers.google.com/machine-learning/gan/problems
https://doi.org/10.1109/ICASSP.2013.6638947

Bibliography

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into rec-
tifiers: Surpassing human-level performance on ImageNet classification. In 2015
IEEE International Conference on Computer Vision (ICCV), pages 1026–1034, 2015.
doi:10.1109/ICCV.2015.123.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 770–778, 06 2016. doi:10.1109/CVPR.2016.90.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp
Hochreiter. Gans trained by a two time-scale update rule converge to a local Nash
equilibrium. Advances in neural information processing systems, 30, 2017.

Xun Huang, Ming-Yu Liu, Serge Belongie, and Jan Kautz. Multimodal unsupervised
image-to-image translation. In Proceedings of the European conference on computer
vision (ECCV), pages 172–189, 2018. doi:10.1007/978-3-030-01219-9_11.

Youyou Huang, Rencheng Song, Kuiwen Xu, Xiuzhu Ye, Chang Li, and Xun Chen.
Deep learning-based inverse scattering with structural similarity loss functions. IEEE
Sensors Journal, 21(4):4900–4907, 2021. doi:10.1109/JSEN.2020.3030321.

IBM. What is gradient descent?, 2022a. URL https://www.ibm.com/topics/
gradient-descent.

IBM. Machine learning, 2022b. URL https://www.ibm.com/topics/
machine-learning.

Tiffany C. Inglis and Craig S. Kaplan. Pixelating vector line art. In Proceedings of the
Symposium on Non-Photorealistic Animation and Rendering, page 21–28. Eurographics
Association, 2012. ISBN 9783905673906.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift. Proceedings of the 32nd In-
ternational Conference on Machine Learning, PMLR 37, pages 448–456, 02 2015.
doi:10.48550/arXiv.1502.03167.

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation
with conditional adversarial networks. CVPR, 2017.

Garrett M. Johnson and Mark D. Fairchild. A top down description of S-CIELAB and
CIEDE2000. Color Research & Application, 28(6):425–435, 2003. doi:10.1002/col.10195.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for
generative adversarial networks. In Proceedings of the IEEE/CVF CVPR, pages
4401–4410, 2019.

Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo
Aila. Analyzing and improving the image quality of stylegan. In Proceedings of the
IEEE/CVF CVPR, pages 8110–8119, 2020.

89

https://doi.org/10.1109/ICCV.2015.123
https://doi.org/10.1109/CVPR.2016.90
https://doi.org/10.1007/978-3-030-01219-9_11
https://doi.org/10.1109/JSEN.2020.3030321
https://www.ibm.com/topics/gradient-descent
https://www.ibm.com/topics/gradient-descent
https://www.ibm.com/topics/machine-learning
https://www.ibm.com/topics/machine-learning
https://doi.org/10.48550/arXiv.1502.03167
https://doi.org/10.1002/col.10195

Bibliography

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In
Yoshua Bengio and Yann LeCun, editors, 3rd International Conference on Learning
Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track
Proceedings, 2015. URL http://arxiv.org/abs/1412.6980.

Johannes Kopf, Ariel Shamir, and Pieter Peers. Content-adaptive image down-
scaling. ACM Transactions on Graphics, 32(6), 2013. ISSN 0730-0301.
doi:10.1145/2508363.2508370.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In F. Pereira, C.J. Burges, L. Bottou, and K.Q. Wein-
berger, editors, Advances in Neural Information Processing Systems, volume 25. Cur-
ran Associates, Inc., 2012. URL https://proceedings.neurips.cc/paper_files/
paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf.

Hailan Kuang, Nan Huang, Shuchang Xu, and Shunpeng Du. A pixel image generation
algorithm based on CycleGAN. In 2021 IEEE 4th Advanced Information Management,
Communicates, Electronic and Automation Control Conference (IMCEC), volume 4,
pages 476–480, 2021. doi:10.1109/IMCEC51613.2021.9482118.

Thitiporn Lertrusdachakul, Kanakarn Ruxpaitoon, and Kasem Thiptarajan. Color
palette extraction by using modified k-means clustering. In 2019 7th
International Electrical Engineering Congress (iEECON), pages 1–4, 2019.
doi:10.1109/iEECON45304.2019.8938867.

Chuan Li and Michael Wand. Precomputed real-time texture synthesis with Markovian
generative adversarial networks. In Computer Vision–ECCV 2016: 14th European
Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part III
14, pages 702–716. Springer, 2016.

Ming-Yu Liu, Thomas Breuel, and Jan Kautz. Unsupervised image-to-image translation
networks. Advances in neural information processing systems, 30, 2017.

Lu Lu, Yeonjong Shin, Yanhui Su, and George Em Karniadakis. Dying ReLU and
initialization: Theory and numerical examples. ArXiv, 1903.06733, 2019.

Jingqin Lv and Jiangxiong Fang. A color distance model based on visual recognition.
Mathematical Problems in Engineering, 2018, 2018. doi:10.1155/2018/4652526.

Xudong Mao, Qing Li, Haoran Xie, Raymond Y. K. Lau, and Zhen Wang. Multi-class
generative adversarial networks with the l2 loss function. ArXiv, 1611.04076, 2016.

Xudong Mao, Qing Li, Haoran Xie, Raymond YK Lau, Zhen Wang, and Stephen
Paul Smolley. Least squares generative adversarial networks. In Proceedings of the
IEEE ICCV, pages 2794–2802, 2017.

Lars Mescheder, Andreas Geiger, and Sebastian Nowozin. Which training methods for
gans do actually converge? In ICML, pages 3481–3490. PMLR, 2018.

90

http://arxiv.org/abs/1412.6980
https://doi.org/10.1145/2508363.2508370
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://doi.org/10.1109/IMCEC51613.2021.9482118
https://doi.org/10.1109/iEECON45304.2019.8938867
https://doi.org/10.1155/2018/4652526

Bibliography

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral
normalization for generative adversarial networks. arXiv preprint arXiv:1802.05957,
2018.

Shi Na, Liu Xumin, and Guan Yong. Research on k-means clustering algorithm: An
improved k-means clustering algorithm. In 2010 Third IITSI, pages 63–67. IEEE, 2010.
doi:10.1109/IITSI.2010.74.

Augustus Odena, Vincent Dumoulin, and Chris Olah. Deconvolution and checkerboard
artifacts. Distill, 2016. doi:10.23915/distill.00003. URL http://distill.pub/2016/
deconv-checkerboard.

A. Cengiz Öztireli and Markus Gross. Perceptually based downscaling of images. ACM
Transactions on Graphics, 34(4), 2015. ISSN 0730-0301. doi:10.1145/2766891.

Keiron O’Shea and Ryan Nash. An introduction to convolutional neural networks. ArXiv,
1511.08458, 2015.

Qianqian Pan and Stephen Westland. Comparative evaluation of color differences between
color palettes. In Color and Imaging Conference, volume 2018, pages 110–115. Society
for Imaging Science and Technology, 2018.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation
learning with deep convolutional generative adversarial networks. arXiv preprint
arXiv:1511.06434, 2015.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-NET: Convolutional networks for
biomedical image segmentation. In Medical Image Computing and Computer-Assisted
Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, Octo-
ber 5-9, 2015, Proceedings, Part III 18, pages 234–241. Springer, 2015.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and
Xi Chen. Improved techniques for training gans. Advances in neural information
processing systems, 29, 2016.

Yunyi Shang and Hon-Cheng Wong. Automatic portrait image pixel-
ization. Computers Graphics, 95:47–59, 2021. ISSN 0097-8493.
doi:https://doi.org/10.1016/j.cag.2021.01.008. URL https://www.sciencedirect.
com/science/article/pii/S009784932100008X.

Gaurav Sharma, Wencheng Wu, and Edul N Dalal. The CIEDE2000 color-difference for-
mula: Implementation notes, supplementary test data, and mathematical observations.
Color Research & Application, 30(1):21–30, 2005. doi:10.1002/col.20070.

Ashish Shrivastava, Tomas Pfister, Oncel Tuzel, Joshua Susskind, Wenda Wang, and
Russell Webb. Learning from simulated and unsupervised images through adversarial
training. In Proceedings of the IEEE CVPR, pages 2107–2116, 2017.

91

https://doi.org/10.1109/IITSI.2010.74
https://doi.org/10.23915/distill.00003
http://distill.pub/2016/deconv-checkerboard
http://distill.pub/2016/deconv-checkerboard
https://doi.org/10.1145/2766891
https://doi.org/https://doi.org/10.1016/j.cag.2021.01.008
https://www.sciencedirect.com/science/article/pii/S009784932100008X
https://www.sciencedirect.com/science/article/pii/S009784932100008X
https://doi.org/10.1002/col.20070

Bibliography

Daniel Silber. Pixel Art for Game Developers. Taylor & Francis, 2015. ISBN
9781482252309. URL https://books.google.no/books?id=n0zRrQEACAAJ.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale
image recognition. 2014. doi:10.48550/arXiv.1409.1556.

Magnus Själander, Magnus Jahre, Gunnar Tufte, and Nico Reissmann. EPIC: An
energy-efficient, high-performance GPGPU computing research infrastructure, 2019.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: A simple way to prevent neural networks from over-
fitting. Journal of Machine Learning Research, 15(56):1929–1958, 2014. URL
http://jmlr.org/papers/v15/srivastava14a.html.

Ariawan Suwendi and Jan P Allebach. Nearest-neighbor and bilinear resampling factor
estimation to detect blockiness or blurriness of an image. Journal of Electronic Imaging,
17(2):023005–023005, 2008.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wojna.
Rethinking the inception architecture for computer vision. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 2818–2826, 2016.

Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Instance normalization: The
missing ingredient for fast stylization. 07 2016. doi:10.48550/arXiv.1607.08022.

Zhou Wang, Alan C. Bovik, Hamid R. Sheikh, and Eero P. Simoncelli. Image quality
assessment: from error visibility to structural similarity. IEEE Transactions on Image
Processing, 13(4):600–612, 2004. doi:10.1109/TIP.2003.819861.

Bin Yang, Yaguo Lei, Feng Jia, Naipeng Li, and Zhaojun Du. A polynomial kernel induced
distance metric to improve deep transfer learning for fault diagnosis of machines. IEEE
Transactions on Industrial Electronics, 67(11):9747–9757, 2019.

Runtian Yang, Yudi Wang, Yiran Wang, and Michelle Xu. Application of neural network in
pixel art creation: Bi-directional conversion between photo and pixel art with GAN base
model. In 2022 2nd International Conference on Consumer Electronics and Computer
Engineering (ICCECE), pages 855–858, 2022. doi:10.1109/ICCECE54139.2022.9712735.

Han Zhang, Ian Goodfellow, Dimitris Metaxas, and Augustus Odena. Self-Attention
generative adversarial networks. In ICML, pages 7354–7363. PMLR, 2019.

Zijun Zhang. Improved ADAM optimizer for deep neural networks. In 2018 IEEE/ACM
26th International Symposium on Quality of Service (IWQoS), pages 1–2, 2018.
doi:10.1109/IWQoS.2018.8624183.

Hang Zhao, Orazio Gallo, Iuri Frosio, and Jan Kautz. Loss functions for image restoration
with neural networks. IEEE Transactions on Computational Imaging, 3(1):47–57, 2017.
doi:10.1109/TCI.2016.2644865.

92

https://books.google.no/books?id=n0zRrQEACAAJ
https://doi.org/10.48550/arXiv.1409.1556
http://jmlr.org/papers/v15/srivastava14a.html
https://doi.org/10.48550/arXiv.1607.08022
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1109/ICCECE54139.2022.9712735
https://doi.org/10.1109/IWQoS.2018.8624183
https://doi.org/10.1109/TCI.2016.2644865

Bibliography

Zhong-Qiu Zhao, Peng Zheng, Shou-Tao Xu, and Xindong Wu. Object detection with
deep learning: A review. IEEE Transactions on Neural Networks and Learning Systems,
30(11):3212–3232, 2019. doi:10.1109/TNNLS.2018.2876865.

Zongwei Zhou, Md Mahfuzur Rahman Siddiquee, Nima Tajbakhsh, and Jianming Liang.
U-NET++: A nested U-NET architecture for medical image segmentation. In Danail
Stoyanov, Zeike Taylor, Gustavo Carneiro, Tanveer Syeda-Mahmood, Anne Martel,
Lena Maier-Hein, João Manuel R.S. Tavares, Andrew Bradley, João Paulo Papa,
Vasileios Belagiannis, Jacinto C. Nascimento, Zhi Lu, Sailesh Conjeti, Mehdi Moradi,
Hayit Greenspan, and Anant Madabhushi, editors, Deep Learning in Medical Image
Analysis and Multimodal Learning for Clinical Decision Support, pages 3–11, Cham,
2018. Springer International Publishing. ISBN 978-3-030-00889-5.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image
translation using cycle-consistent adversarial networks. In Computer Vision (ICCV),
2017 IEEE International Conference on, 2017.

93

https://doi.org/10.1109/TNNLS.2018.2876865

Appendix

95

A. Domain Expert Survey
Answers

Overall, how well do these artworks follow the rules of the pixel art style
(regarding line art, color use, shading, dithering, aliasing, etc.)?

Expert 1: "The line art is uneven for the most part. Similar to basic outlines when
starting a rough draft of an illustration. Anti-aliasing is used to smooth out the line art,
however, there are many examples where its being applied incorrectly, for instance there
are many examples where it is applied outside the outline of the illustration, giving a sort
of glow effect. This would be understandable for a lightbulb but not for the majority of
the images. The color pallette is kept to a minimum for most images, however theres not
much shading going on in those examples, making them look flat. The examples where
shading is being applied, a lot of them have a gradient effect applied, usually known as
pillow shading and banding. This type of shading is common when beginner pixel artists.
Dithering is not used in the vast majority of these examples, if at all."

Expert 2: "Starting with gradients which are not very welcome in the pixel art
guidelines, especially when it comes to characters and smaller sprites (could be ok for a
big background, for example). The shapes are still weird, but I believe it’s getting there.
The lines aren’t great but not so bad for an AI. The artworks follow the rules mentioned
with a rating of 5/10 overall. They’re not bad, but far from good. They look mostly
amateur-made. Shading 3/10, colors 5/10, and lines 8/10. The shadings are not being
applied to every image. I understand there are different styles, but it could be way better
overall. The colors are being too overused. You can see many different tones everywhere,
there’s no need for it. Anti-aliasing is kind of the same thing with the colors. It seems
like it’s using a black semi-transparent dot instead of a darker shade of that color."

Overall, are these artworks believable to be created by a human artist?
Why, why not?

Expert 1: "The artworks do resemble human created pixel art, however, a very
beginner level pixel artist. Even though pixel art techniques are visible, they are mostly
incorrectly applied."

Expert 2: "It has a feel that the images were taken from the internet. The anti-aliasing
and other stray pixels are inconsistent. It often looks like images that are shrunk down
resemble pixel art. Besides that, they look good. They have a retro feel, and look like
they are made by an entry-level pixel artist, but not bad."

Do any of the images stand out as high quality, and do any stand out as
low quality?

97

A. Domain Expert Survey Answers

Expert 1: "None of the images stand out as high quality. The vast majority are low
quality pixel art. Examples 124, 128, 144, 160, 115, 73, among others can be classified as
illustrations of an improving beginner pixel artist."

Expert 2: "Images 4, 7, and 16 look like a human’s first attempts at pixel art. Images
18 and 20 are really good, and I love images 6, 82, 160, and 165. 35 of the remaining
images look like a human being made them, styles considered."

Do you have any additional comments about the presented pixel art?
Expert 1: "Even though most images resemble beginner level pixel art, its impressive

that even AI can create these types of artworks that show some sort of technique being
applied. Pixel art is very tricky for beginners and can even be tricky for intermediate
level pixel artists. Very impressed with the AI. I’ve seen other AI generated pixel art
and you can tell right away they were computer generated. Your examples look more
beginner level pixel artist."

Expert 2: "In order to get something more professional, I wouldn’t recommend using
any database since you have to dig down deep on the internet to find good stuff. Most of
the pixel art posted online is absolutely amateur, not knowing any rules."

98

	Abstract
	Sammendrag
	Preface
	List of Figures
	List of Tables
	Introduction
	Background and Motivation
	Goals and Research Questions
	Research Method
	Contributions
	Thesis Structure

	Background Theory
	Machine Learning
	Neural Networks
	Forward Pass
	Activation Functions
	Loss Functions
	Backpropagation and Gradient Descent
	Weight Initialisation
	Hyperparameters
	Hidden Layers and Neurons
	Learning Rate
	Batches and Epochs

	Gradient Descent Variants
	Gradient Descent Optimisations
	Overfitting
	Normalization

	Representing Images
	Convolutional Neural Networks
	Residual Networks
	U-NET
	Generative Adversarial Networks
	GAN
	Failure Modes
	DCGAN
	Least Squares GAN
	Self-Attention GAN
	PatchGAN
	CycleGAN
	GAN Evaluation Metrics
	IS
	FID
	KID
	SSIM
	Human Evaluation

	Related Work
	Natural Computation
	Paired Image-to-Image Pixelization
	Unpaired Image-to-Image Pixelization

	Datasets
	Data Sources
	Dataset Size
	Dataset Acquisition
	Dataset Processing

	Architecture
	ResNet Generator
	PatchGAN Discriminator
	U-NET Generator
	Nearest-Neighbor Upsampling Layers
	Self-Attention Layers

	Experiments and Results
	Experimental Plan
	Experimental Setup
	Implementations
	Environment and Resources
	Parameters
	Data Preprocessing

	Experimental Results
	Experiment 0: Datasets
	Experiment 1: ResNet
	Experiment 1.1: Increasing id
	Experiment 1.2: Upsampling
	Experiment 1.3: Spectral Normalization
	Experiment 1.4: 9 ResNet Blocks

	Experiment 2 - U-NET
	Experiment 2.1: U-NET Generator
	Experiment 2.2: Spectral Normalization
	Experiment 2.3: Upsampling
	Experiment 2.4: SSIM Losses
	Experiment 2.5: Perceptual Losses

	Experiment 3: Self-Attention

	Evaluation and Discussion
	Evaluation Method
	Minimum Color Palette Distance
	Domain Expert Survey

	Evaluation
	Visual Inspection
	Statistical Metrics
	Color Palette Evaluation
	Domain Expert Evaluation

	Discussion

	Conclusion and Future Work
	Contributions
	Future Work

	Bibliography
	Appendix
	Domain Expert Survey Answers

