
N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Fa

cu
lty

 o
f I

nf
or

m
at

io
n

Te
ch

no
lo

gy
 a

nd
 E

le
ct

ric
al

 E
ng

in
ee

rin
g

D
ep

ar
tm

en
t o

f C
om

pu
te

r S
ci

en
ce

M
as

te
r’s

 th
es

is

Iver Håkonsen

GPU-enabled Laplace-Dirichlet Rule-
Based Method for Cardiac Fiber
Computations

Master’s thesis in Computer Science
Supervisor: Prof. Anne C. Elster
Co-supervisor: James D. Trotter, PhD, Simula Research Laboratory
February 2023

Iver Håkonsen

GPU-enabled Laplace-Dirichlet Rule-
Based Method for Cardiac Fiber
Computations

Master’s thesis in Computer Science
Supervisor: Prof. Anne C. Elster
Co-supervisor: James D. Trotter, PhD, Simula Research Laboratory
February 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

Project description

Computer simulations of cardiac physiology includes studying underlying mecha-
nisms of the heart under normal as well as diseased conditions. However, a realis-
tic and relevant model of cardiac tissue must include anisotropic features. More-
over, the anisotropy depends on the orientations of cardiac fibres, which are typ-
ically obtained by some form of preprocessing before simulations can be carried
out. To deduce cardiac fibre orientations, recent approaches employ established
facts about the heart’s overall structure and geometry and apply rule-based meth-
ods. Rule-based methods are, however, very computationally demanding.

The goal of this project is to develop and implement a GPU-accelerated version
of the LDRB (Laplace-Dirichlet Rule-Based) method. This is an important step to-
ward simulations of cardiac electrophysiology and mechanics with more elaborate
detail in terms of geometry as well as cellular and subcellular details.

The work is to be based on an existing implementation of the algorithm ldrb
(https://github.com/finsberg/ldrb), which is uses FEniCS, an open-source
platform for solving partial differential equations. It uses a direct solver, SuperLU,
on the Laplace equations that are part of the LDRB algorithm, which works fine
for smaller meshes, but does not scale to larger meshes.

The subgoals of the project are as follows:

• Benchmark the existing CPU based implementations of the LDRB algorithm
on a selection of heart meshes.
• Write an implementation of the LDRB algorithm using the HIP programming

environment such that it can be run on AMD GPUs, and hopefully NVIDIA
GPUs as well. Initially the goal is only to look at running the LDRB algorithm
itself on GPU, and not the FEM assembly that is required in advance.
• Use the GPU based numerical solvers and preconditioners offered by the

hypre software library to solve the differential equations, in a hope that it
will be both faster, as well as making it possible to use finer grained meshes.
• Finally, as time permits, we wish to look at a GPU based assembly of the

finite element matrices, such that the whole computation can be performed
on GPU.

iii

https://github.com/finsberg/ldrb

Abstract

Cardiology is a major field in medicine, where the ability to model and simulate
cardiac functions accurately is of great interest. Knowledge about cardiac fiber
orientations is essential in many computational cardiac models. One of the most
widely used methods for deriving these cardiac fiber orientations is the Laplace-
Dirichlet Rule-Based method (LDRB). The main advantage of this method is that
it utilizes partial differential equations (PDEs) to properly capture the complex
geometry of the heart. This allows for more anatomically correct fiber orientations
than other methods, but it is also computationally intensive.

This thesis describes how we implemented a distributed-memory parallel ver-
sion of the LDRB algorithm for computing myocardial fiber orientations. The pre-
sented implementation also leverages the processing power of one or more many-
core GPUs to improve performance compared to only using a high-end multi-core
CPU. In addition to being able to use GPUs to solve the PDEs involved in the algo-
rithm, we show how the subsequent steps needed to define fiber orientation can be
offloaded to GPU. By limiting ourselves to tetrahedral meshes, we are able to find
closed-form solutions for the gradient calculation, projection, and interpolations
needed, such that a GPU kernel can efficiently compute them.

Further, we present extensive benchmarking of our implementation of the
LDRB algorithm. In comparison with an existing Python-based implementation
of LDRB, we show a minimal speedup of 15x on a single CPU core. The perfor-
mance of our implementation is studied further by scaling it up to 512 CPU cores
and by using 1 to 4 GPUs. Our benchmarks show that the PDEs may be solved
∼ 1.5x faster on a GPU compared to a 64-core CPU. In the other parts of the al-
gorithm we offloaded to GPU, we show between 1.75x and 19x speedup on one
GPU compared to a 64-core CPU. In both cases, it is shown that increasing the
number of GPUs results in a close-to-linear speedup. In addition, we compare the
performance using GPUs from AMD and NVIDIA. All these results are obtained
by processing a set of high-resolution computational meshes with up to 255 mil-
lion elements, created using an open dataset from a study on acute myocardial
ischemia.

Finally, an addition to the method is presented in the form of a heuristic that
allows for more accurate reasoning about where in the heart geometry an arbi-
trary point is, which makes it possible to more robustly define fiber orientations.
Directions for future work is also included.

v

Sammendrag

Kardiologi er et viktig felt innenfor medisin, og muligheten til å presist simulere
hjertefunksjoner er av stor interesse i modellering av hjerte. Informasjon om ori-
enteringen til hjertefibre er en essensiell del av mange beregningsbaserte hjerte-
modeller. En av de mest brukte metodene for å utlede orienteringen til hjertefi-
bre er Laplace-Dirichlet Rule-Based metoden (LDRB). Hovedfordelen ved å bruke
denne metoden er at den benytter seg av partielle differensiallikninger (PDEer)
for å fange opp den komplekse hjertegeometrien. Dette muliggjør mer anatomisk
korrekte hjertefiberorienteringer enn andre metoder, men er også beregningsin-
tensivt.

Denne oppgaven beskriver hvordan vi har implementert en distribuert-minne-
parallell versjon av LDRB algoritmen for beregning av hjertefiberorienteringer.
Den presentere implementasjonen benytter seg også av beregningskraften til en
eller flere GPUer for å øke ytelsen sammenliknet med å kun bruke en flerkjern-
ers CPU. I tillegg til at være stand til å bruke GPUer for å løse PDE’ene som er
involvert i algoritmen, viser vi også hvordan de påfølgende stegene som trengs
for å definere hjertefiberorienteringer kan flyttes over til GPUer. Ved å begrense
oss til tetraediske mesh, er vi i stand til å utlede lukkede løsninger for gradient-
beregningene, projeksjonen, og interpolasjonen som kreves, slik at de effektivt
kan beregnes i en GPU-kernel.

Videre presenterer vi omfattende referansemåling av vår implementasjon av
LDRB algoritmen. I en sammenlikning med en eksisterende Python-basert imple-
mentasjon av LDRB viser vi en minimal speedup på 15x på en enkel CPU-kjerne.
Ytelsen til vår implementation er studert videre ved å skalere opp til 512 CPU-
kjerner, og ved å bruke 1 til 4 GPUer. Våre referansemålinger viser at PDE’ene kan
løses ∼ 1.5x raskere på én GPU sammenliknet med en CPU med 64 kjerner. I de
andre delene av algoritmen var har flyttet over på GPU, viser vi en speedup på mel-
lom 1.75x og 19x på én GPU, sammenliknet med en CPU med 64 kjerner. I begge
tilfeller viser vi at når vi øker antall GPUer som tas i bruk, så får vi en tilnærmet lin-
ear speedup. I tillegg sammenliker vi ytelsen til GPUer fra både AMD og NVIDIA.
Alle disse resultatene er samlet ved å prosessere et sett med høyoppløste mesh
med opp til 255 millioner elementer, laget ved bruk av et åpent datasett fra en
studie om akutt myokardiskemi.

Til slutt presenter vi et tillegg til metoden i form av en heuristikk som gjør det
enklere å presist kunne resonnere om hvor hjertegeometrien et vilkårlig punkt

vii

viii Iver Håkonsen: GPU-enabled LDRB

ligger, som gjør det mulig å definere hjertefiberorienteringer på en mer robust
måte. Forslag til fremtidig arbeid blir også presentert.

Acknowledgments

I would first like to thank my supervisor, Professor Anne C. Elster, for her guidance,
encouragement, and support, primarily in virtual form from Trondheim. Thank
you also for taking your time to visit me on your way through Oslo.

I would like to thank Simula for providing me with a place to work and write
after moving back to Oslo, and for giving me access to all the hardware I could
ever want from the eX3 cluster, which has been vital to this thesis.

I would like to express my sincere gratitude to my co-supervisor from Simula
Research Laboratory, James D. Trotter. Thank you for tailoring this project for
specifically for me, and for spending hours discussing, debugging, and explaining.
Thank you for showing a genuine interest in me and my work, first throughout
my internships at Simula, and now throughout this thesis.

I would also like to thank Henrik Finsberg, for helping me fill the significant
gaps in my knowledge of cardiac physiology in the beginning of this thesis project,
and for giving me valuable input on both my work and in the writing of this thesis.

Finally, I want to show gratitude to my family and to my significant other, Oda
Wagle, for being my main source of support throughout the entire duration of the
five and a half years it took to complete this degree.

ix

Contents

Project description . iii
Abstract . v
Sammendrag . vii
Acknowledgments . ix
Contents . xi
Figures . xiii
Tables . xv
Code Listings . xvii
1 Introduction . 1

1.1 Goals and contributions . 2
1.2 Related works . 3
1.3 Thesis outline . 4

2 Background . 5
2.1 Myocardial fiber orientations . 5
2.2 Quaternions . 7
2.3 The Laplace-Dirichlet Rule-Based method (LDRB) 8

2.3.1 Creating an axis system . 10
2.3.2 Orienting the axis system . 12
2.3.3 Interpolating between two axis systems 13
2.3.4 Defining the fibers . 14

2.4 The Finite Element Method . 15
2.4.1 MFEM . 17

2.5 GPU programming . 18
3 cardiac-fibers: LDRB on GPU . 21

3.1 Defining the input meshes . 21
3.2 Selecting a solution space and outlining the approach 22
3.3 Solving the Laplace-Dirichlet equations 23

3.3.1 Constructing the linear systems of equations 23
3.3.2 Solving the linear systems . 26

3.4 Calculating the gradients of the scalar fields 26
3.5 Transferring the fields to the solution space 30

3.5.1 Per-element: Project scalar fields to L2 30
3.5.2 Per-vertex: Interpolate gradients to H1 33

3.6 Computing the fiber orientations . 35

xi

xii Iver Håkonsen: GPU-enabled LDRB

3.6.1 Implementing the axis and orient functions 35
3.6.2 Implementing the bislerp function 35

3.7 Heuristics for a more robust definition of fiber orientations 38
4 Results . 45

4.1 Experimental data and environment 45
4.1.1 Experimental data . 45
4.1.2 Hardware and software configuration 45
4.1.3 Timing . 48
4.1.4 Job setup . 48

4.2 Numerical results . 49
4.2.1 Performance of the full algorithm 49
4.2.2 Forming of linear systems . 50
4.2.3 Solving the linear systems . 52
4.2.4 Computing gradients . 53
4.2.5 Projecting the solutions . 55
4.2.6 Defining the fibers . 57
4.2.7 Multiple processes per GPU . 57
4.2.8 Comparing performance between AMD and NVIDIA GPUs . 59

5 Discussion . 61
5.1 Assembly of the linear systems . 61
5.2 Solving the linear systems . 62
5.3 Effects of moving gradient computation and projection to GPU . . . 63
5.4 Evaluation of the gradient, projection, and fiber computation kernels 64

5.4.1 The gradient kernel . 64
5.4.2 The projection kernel . 65
5.4.3 The fiber computation kernel 66

5.5 Limitations on the maximal mesh size 66
6 Conclusions and Future Work . 69

6.1 Future work . 71
6.1.1 GPU-based assembly . 71
6.1.2 Tuning of the preconditioner and solver 71
6.1.3 Profiling and optimization of GPU kernels 71
6.1.4 Algorithmic additions . 71
6.1.5 Further investigation of the region heuristic 72

Bibliography . 73
A Additional code listings . 79
B MFEM build scripts . 87

Figures

2.1 Diagram of the human heart . 6
2.2 The orthogonal (F, S, T) axis system visualized on a section of the

sheet laminar structure of the myocardium. 7
2.3 The boundary surfaces of interest to the LDRB algorithm 9
2.4 Our visualizations of the scalar field solutions φepi, φlv, and φrv. . . 11
2.5 The axis system (ê0, ê1, ê2) visualized on the plane of a ventricular

wall . 13
2.6 Visualization of the gradients in a point that lies in the junction

between the septum, LV free wall and RV free wall 14

3.1 The execution flow when generating fibers either on a per-element
or a per-vertex basis . 23

3.2 The execution and data transfer pattern when calculating fiber ori-
entations on a per-element basis and offloading the solving of linear
systems and the fiber calculation to GPU. 24

3.3 Visualization of gradients ∇φepi, ∇φlv, ∇φrv, and ∇ψab 28
3.4 The affine transformations between the reference element, T̂ , and

an arbitrary element, Ti . 32
3.5 The execution and data transfer pattern when calculating fiber ori-

entations on a per-element basis, and offloading solving of the lin-
ear systems, gradient computation, projection, and fiber calculation
to the GPU . 33

3.6 The fibers generated with and without using region heuristics, on
the section of the RV free wall furthest away from the septum. . . . 38

3.7 A visualization of the regions formed when limiting the magnitude
of the gradients . 40

3.8 Fiber orientations generated by cardiac-fibers. 41
3.9 Streamlined visualization of fibers generated by cardiac-fibers . 44

4.1 Speedup of CPU solve times on heart09 compared to one core. . . 53
4.2 Speedup of CPU and GPU solve times on heart09 compared to one

socket (64 cores). 54
4.3 Speedup of CPU and GPU gradient computations on heart09 com-

pared to one socket (64 cores). 55

xiii

xiv Iver Håkonsen: GPU-enabled LDRB

4.4 Speedup of CPU and GPU projections on heart09 compared to one
socket (64 cores). 56

Tables

4.1 Meshes used in the numerical experiments, which are generated
from the dataset published alongside [49]. 46

4.2 Peak operations per second for the different floating point data
types on the AMD MI210 GPU . 47

4.3 Peak operations per second for the different floating point data
types on the NVIDIA A100 GPU . 48

4.4 Comparison of the single core performance of ldrb and cardiac-
fibers on the Epyc 7763 processor. 50

4.5 Run time of separate parts of the full algorithm on heart09 when
using a single core and when using a single MI210 GPU. 51

4.6 Strong scaling of the full algorithm on heart09. 51
4.7 Time spent in forming of the four linear systems 52
4.8 Naive versus improved implementation of calculation of ∇φrv on

heart09. 54
4.9 Naive versus improved implementation of the projection of φrv on

heart09. 56
4.10 CPU and GPU performance of definefibers on heart09. 57
4.11 Run time of separate parts of the full algorithm on heart09 when

using multiple processes sharing one GPU. 58
4.12 Run time of the main GPU-enabled parts of the program when run-

ning on heart07 with one AMD MI210 GPU versus one NVIDIA
A100 GPU. 59

xv

Code Listings

2.1 Example use of the MFEM_FORALL macro used for offloading to GPU 20

3.1 GPU-enabled kernel for gradient computation 29
3.2 GPU-enabled kernel for projection of scalar field from H1 to L2. . . 32
3.3 GPU-enabled kernel interpolating a vector field from L2 to H1. . . . 34
3.4 Implementation ofslerp . 36
3.5 Implementation of bislerp . 37
3.6 Implementation of definefibers . 42

4.1 Timing technique used in numerical experiments 48

A.1 Example of setting up the linear system for φepi in MFEM. 80
A.2 Setting up boundary conditons and linear system for ψab 81
A.3 Computing a gradient of a scalar field using MFEM 82
A.4 Projecting a scalar field from H1 to L2 using MFEM 82
A.5 Implementation of the axis function 83
A.6 Implementation of the orient function 83
A.7 Implementation of the quat2rot function 84
A.8 Implementation of the rot2quat function 85
A.9 Source code used for baseline benchmark of ldrb. 86
B.1 MFEM build script for the mi210q partition on eX3 87
B.2 MFEM build script for the hgx2q partition on eX3 88
B.3 MFEM build script for the defq and milanq partitions on eX3 89

xvii

Chapter 1

Introduction

Computer simulations of cardiac physiology are used to study the mechanics of the
heart. Many of these models require accurate information about the anisotropic
features of cardiac tissue, one of the most important of which is the cardiac fiber
orientations. Knowledge about cardiac fiber orientations is, therefore, an impor-
tant prerequisite when running these models. However, patient-specific cardiac
fiber orientations can not be gathered in routine clinical practice and therefore
have to be estimated if they are to be included in individualized heart models.
There are two main approaches for estimating fiber orientations. The first is an
atlas-based approach, where ex vivo MRI and diffusion tensor imaging (DTI) is
used to generate an estimated model of a patient’s cardiac fiber orientation[1,
2]. The second is a rule-based approach, which uses a set of mathematical rules
derived from observations made from existing histological and DTI data in order
to generate the fiber orientations for a patient-specific anatomical geometry [3].
The rule-based approaches are often used when the DTI data is either missing or
lossy. Rule-based methods are also used when the individualized models are cre-
ated from geometrical data obtained in vivo, using methods that do not capture
fiber orientation.

Several rule-based methods have been proposed [4, 5], but the most widely
used is the Laplace-Dirichlet Rule-Based method (LDRB) [6]. One of the distin-
guishing features of this method is that it uses partial differential equations (PDEs)
to capture the complex geometry of patient-specific anatomical models properly.
These PDEs can be solved numerically by using discretization methods such as
the finite element method (FEM). This enables the computation of cardiac fibers
that are very close to those captured by DTI data. However, solving these PDEs
using FEM is very computationally intensive, especially as the granularity of the
anatomical model is increased.

One way to reduce computational time is to use hardware accelerators, such
as the graphics processing unit (GPU). The use of GPUs is becoming increasingly
popular in scientific computing, and the use is especially prevalent in simulations
involving finite element methods. Due to their ubiquity and constant need for
reduction in simulation time, FEM simulations were one of the first areas where

1

2 Iver Håkonsen: GPU-enabled LDRB

GPUs were used for general-purpose computing [7].
Recently, focus is also put on being able to utilize hardware from both of

the major graphics card vendors, namely NVIDIA and AMD. For the last decade,
NVIDIA has been the leading contender when it comes to GPUs in the scientific
and high-performance computing world, both on the hardware side and on the
software side. The space is, however, changing, and vendors such as AMD are start-
ing to release hardware that is comparable with that of NVIDIA when it comes to
performance. While nearly all the top supercomputers in the world use NVIDIA
hardware, new supercomputers such as the LUMI system in Finland have chosen
to use GPUs from AMD [8]. Being able to support hardware from different ven-
dors is therefore important if we want to keep utilizing the full potential of these
hardware accelerators in the future.

1.1 Goals and contributions

In this section, we present the main goals that were outlined at the start of this
thesis project, as well as some contributions made beyond the project goals.

The additional sub-goal of doing assembly of the FEM-matrices on the GPU
was not carried out due to a lack of time. We do, however, show a way to reduce
the time spent in this CPU-bound assembly step when running the rest of the
algorithm on GPUs (see Subsection 4.2.7), as well as some discussion of the topic
(see Section 5.1).

Goal 1: Benchmarking the existing CPU-based implementations of the LDRB
algorithm on a selection of heart meshes.

We show that we successfully run the Python and FEniCS-based [9] ldrb [10]
implementation of the LDRB algorithm and compare it to our own implementa-
tion on a series of meshes. Attempts are made at building other implementations,
namely lifex and cardioid (see Section 1.2). However, strict requirements for
dependencies and an outdated build system prevented us from achieving note-
worthy results.

Goal 2: Writing an implementation of the LDRB algorithm using the HIP pro-
gramming environment such that it can be run on AMD GPUs, and hopefully
NVIDIA GPUs as well.

We are able to offload all parts of the LDRB algorithm to one or more GPUs, except
the final assembly of the FEM matrices. By using the extended GPU programming
model offered by the MFEM [11] library, we are able to target both AMD and
NVIDIA GPUs through their native HIP and CUDA programming models, respec-
tively.

Chapter 1: Introduction 3

Goal 3: Using the GPU-based numerical solvers and preconditioners
offered by the hypre software library to solve the differential equa-
tions, to see if it will be both faster, as well as making it possible to
use finer-grained meshes.

We show how we utilize the PCG solver and BoomerAMG preconditioner from
the hypre library to efficiently solve the PDEs that make up the most computa-
tionally intensive parts of the LDRB algorithm, both using GPUs and many-core
CPUs. The speedups we get from solving these PDEs on GPUs are presented in
Subsection 4.2.3.

Additional Contribution: A region-heuristic for LDRB

In addition to fulfilling the original goals for this thesis project, we also created
a heuristic that can be added to the LDRB algorithm so that we are able to more
accurately reason about where in the myocardium an arbitrary point is, thereby
allowing for the definition of more robust fiber orientations (see Section 3.7).

1.2 Related works

The Laplace-Dirichlet Rule-Based method was originally presented in [6] and
since then, several open-source implementations of the method have been devel-
oped. One example is ldrb [10], which is written in Python and utilizes the finite
element platform FEniCS [9, 12]. Another example is the Cardioid project [13],
an open-source cardiac multiscale simulation suite developed at Lawrence Liver-
more National Laboratories, which has an implementation of the LDRB algorithm
written in C++ that utilizes the MFEM [11] finite element library. The most recent
implementation is part of lifex [14, 15], a library for mathematical problems and
numerical methods related to cardiac applications, which is also written in C++
and uses the deal.II [16] finite element core.

In addition to several implementations, there are several published works
that investigate alterations or improvements to the method. In [17], the authors
present a revised rule-based method called the outflow tract rule-based method
(OT-RBM), also referred to as the Doste RBM, which uses separate rules for each
ventricle that allows for fiber generation that not only matches histological data in
the left ventricle but also in other regions such as the right ventricle endocardium,
the septum, and in outflow tracts. In [18], the authors present a version of LDRB
that targets fiber generation in the atrium of the heart, an area of the heart not
covered by the original algorithm.

To our knowledge, none of these existing implementations or published works
have investigated GPU acceleration of the LDRB algorithm.

4 Iver Håkonsen: GPU-enabled LDRB

1.3 Thesis outline

The rest of this thesis is structured as follows:

• Chapter 2: Provides background information on myocardial fiber orienta-
tions, quaternions, the LDRB method, GPU programming, and FEM.
• Chapter 3: Presents the implementation of the algorithm, the approaches

taken to offload the individual parts of the algorithm to the GPU, as well as
outlining the heuristic we have developed.
• Chapter 4: Presents the numerical results from benchmarking of the pre-

sented implementation by comparing with an existing implementation and
by comparing CPU and GPU performance.
• Chapter 5: Discusses the numerical results, as well as some other aspects

of the presented implementation of the algorithm.
• Chapter 6: Concludes the work and outlines suggested future work.
• Appendix A: Contains extra code listings.
• Appendix B: Contains the build scripts for the libraries used.

Chapter 2

Background

This chapter contains the background knowledge needed for the rest of this thesis.
First, we look at what myocardial fibers are and some of the computational models
they are used in. Then we will dive into the theoretical background for the Laplace-
Dirichlet Rule-Based method. Next, we will look at the most important parts of the
finite element method and the MFEM finite-element library in the context of how
they are used to solve the differential equations in the LDRB algorithm. Finally,
we will look at the main building blocks and programming models of GPUs, which
we will be using to speed up the fiber computations.

2.1 Myocardial fiber orientations

A diagram showing the main components of the heart can be found in Figure 2.1.
The regions of interest in the context of this thesis are the ones marked in blue,
namely the two lower chambers of the heart (the left and right ventricle), the sep-
tum, and the epicardium. The left ventricle is the heart’s main pumping chamber,
which is responsible for transporting oxygen-rich blood to the rest of the body. The
main responsibility of the right ventricle is to pump oxygen-depleted blood to the
lungs. The septum is the wall that separates the left ventricle and the right ven-
tricle. In between the left ventricle endocardium and the epicardium is the wall
which is often referred to as the “LV free wall”, and similarly the wall between
the right ventricle endocardium and the epicardium is referred to as the “RV free
wall” [19]. We are especially interested in the myocardium, colloquially known as
the cardiac muscle, that forms these walls.

The myocardium consists of layers of interconnected sheets of tissue. The
cardiac muscle fibers lie on the plane of these sheets, and each sheet is loosely
connected to other sheets on either side. For this reason, the myocardium is of-
ten referred to as having a sheet laminar structure. A direct result of this is that
the fibers that are adjacent in the same plane, i.e., on the same sheet, are more
strongly coupled together than those in the plane of the sheet facing it [21]. These
observations form the background for the following axis system of the sheet mi-
crostructure. There is one axis pointing in the longitudinal direction of the fibers,

5

6 Iver Håkonsen: GPU-enabled LDRB

Superior
vena cava

Aorta Pulmonary
artery

Pulmonary
vein

Right
ventricle

Left

ventricle

Right
atrium

Left atrium

Inferior vena cava

Mitral
valve

Aortic
valve

Tricuspid
valve

Pulmanory
valve Septum

Epicardium

Right ventricle
endocardium

Left ventricle
endocardium

Figure 2.1: Diagram of the human heart, with the parts of interest to this thesis
work outlined and marked in blue. Source: Adapted from [20], ©Creative Com-
mons.

the fiber axis, denoted by F . Orthogonal to F , but still in the plane of the same
sheet, is the sheet axis, often also called the transverse axis, denoted by T . The
final axis is orthogonal to the latter two and is directed normal to the sheet plane,
known as the sheet normal axis, and is denoted by S [22]. The orientation of the
(F, S, T) axis system in a section of myocardial tissue is illustrated in Figure 2.2.1

As mentioned in Chapter 1, knowledge about the myocardial fiber orientations
for a given heart model, which is often based on patient-specific data, is important
in several computational models aiming to describe how the heart functions. One
use case is in passive mechanical models of the myocardium, which aim to deter-
mine how the myocardial tissue behaves under mechanical stress [23]. A second
use case is in the modeling of how the muscle fibers in the heart contract [22, 24].
A third use case is in the modeling of the action potential, as the electrical conduc-
tivity is stronger in the longitudinal direction of fibers compared to the cross-fiber
direction. The conductivity is also affected by the sheet structure of the fibers, as
the conductivity is higher in the sheet-parallel direction [25].

1In the literature the axes are often denoted f0, n0 and s0, but we will stick to the F , S, and T
notation as used in [6].

Chapter 2: Background 7

S

T

F

Figure 2.2: The orthogonal (F, S, T) axis system visualized on a section of the
sheet laminar structure of the myocardium. The F axis points in the longitudinal
direction of the myocardial fibers. The T axis point across the sheets, orthogonal
to the length of the fibers. The S axis point in the sheet normal direction.

2.2 Quaternions

Before diving into the LDRB algorithm, we will first take a small detour to explain
some key mathematical aspects of quaternions. As we will see in Subsection 2.3.3,
the LDRB algorithm uses quaternions to represent the orientations of axis systems.

A quaternion q is often represented in the form

q = a+ bi+ cj+ dk,

where a, b, c, and d are real numbers, and i, j, k are the basic quaternions. The
basic quaternions can be interpreted as unit vectors that point in the direction of
three spatial axes. Further, a is often referred to as the scalar component, and b, c,
and d as the vector components. Quaternions can be used to represent rotations in
3D space, just like the more commonly used rotation matrices. Quaternions can
be used in place of rotation matrices, with the added advantage of being more
compact, efficient, and numerically stable. As quaternions and rotation matrices
represent the same actions, we can trivially convert a rotation represented by a
matrix to a quaternion and vice versa.

The product, often called the Hamilton product, of two quaternions, q1 and
q2, is defined as

q1q2 = a1a2 − b1 b2 − c1c2 − d1d2

+ (a1 b2 + b1a2 + c1d2 − d1c2)i

+ (a1c2 − b1d2 + c1a2 + d1 b2)j

+ (a1d2 + b1c2 − c1v2 + d1a2)k.

8 Iver Håkonsen: GPU-enabled LDRB

The quaternion product is non-commutative. The resulting quaternion of the prod-
uct q1q2 represents the rotation equivalent to a rotation q2 followed by a rotation
q1.

The dot product between two quaternions, q1 and q2, is essentially the same
as the 4D Euclidean dot product of the scalar components, and is defined as

q1 · q2 = a1a2 + b1 b2 + c1c2 + d1d2.

Just as vectors in Euclidean space, the quaternion dot product relates to the angle
between the two quaternions. Let θ be the angle between the quaternions q1 and
q2 treated as 4D vectors, then cosθ = q1 · q2.

2.3 The Laplace-Dirichlet Rule-Based method (LDRB)

In this section, we present an explanation of the LDRB algorithm from the point of
view of how to implement it. We do not go into the physiological theory on which
it is based. For the full theory, background, and explanation of the algorithm,
see the original paper [6]. The rules that the algorithm is formulated upon are
observational and of the form “The longitudinal fiber direction in the ventricular
walls is parallel to the endocardial and epicardial surfaces”. For the full set of
rules, see [6]. Throughout this section, we will define a series of functions that,
when combined, make up the full algorithm, which is shown in Algorithm 1. Note
that all the presented function definitions (Function 1, 2, 3, 4, and 5), as well as
the full algorithm (Algorithm 1), are adapted from the definitions made in the
supplementary material of [6].

Algorithm 1: Laplace-Dirichlet Rule-Based method (LDRB)
Input: Ω – Mesh
Input: αendo, αepi, βendo, βepi – Fiber (α) and sheet angles (β)
Output: F – Fiber orientations along longitudinal axis
Output: S – Fiber orientations along sheet normal axis
Output: T – Fiber orientations along transverse axis

1 Define surfaces ∂Ωlv, ∂Ωrv, ∂Ωepi, ∂Ωbase,∂Ωapex

2 φepi = laplace(Ω,∂Ωepi,∂Ωlv ∪ ∂Ωrv)
3 φlv = laplace(Ω,∂Ωlv,∂Ωepi ∪ ∂Ωrv)
4 φrv = laplace(Ω,∂Ωrv,∂Ωepi ∪ ∂Ωlv)
5 ψab = laplace(Ω,∂Ωbase,∂Ωapex)

6
(F S T) = definefibers(Ω,φepi,φlv,φrv,∇φepi,∇φlv,∇φrv,∇ψab,

αendo,αepi,βendo,βepi)

Let Ω be a cardiac mesh made up of the two lower chambers of the heart,
namely the left and the right ventricle, including also the septum and the epi-
cardium. To determine the fiber orientation in an arbitrary point x ∈ Ω, we first

Chapter 2: Background 9

need to know which ventricular wall x lies in, and how deep into the wall it lies.
This information is determined by solving the Laplace equation,

∇2u= 0, (2.1)

with different sets of Dirichlet boundary conditions applied to the boundary sur-
faces of the cardiac geometry. We set the boundary condition u= 1 on one part of
the boundary, denoted Γ1, and the boundary condition u = 0 on another part of
the boundary, denoted Γ0. The boundaries Γ1 and Γ0, along with the mesh Ω, form
the inputs of the laplace function, which is defined in Function 1 (page 10).

The first step of the LDRB algorithm is therefore to define the surfaces upon
which the boundary conditions are applied. The mesh domain Ω is defined by the
volume bounded by four surfaces: The epicardium (∂Ωepi), the left ventricle en-
docardium (∂Ωlv), the right ventricle endocardium (∂Ωrv), and the base (∂Ωbase).
In addition to the boundary surfaces, we are also interested in the point lying on
the ventricular apex (∂Ωapex). The boundary surfaces and the ventricular apex are
visualized in Figure 2.3.

∂Ωrv

∂Ωbase

∂Ωlv

∂Ωepi

∂Ωapex

Figure 2.3: The boundary surfaces of interest to the LDRB algorithm marked on
a biventricular mesh. The epicardium (∂Ωepi) in green, the left ventricle endo-
cardium (∂Ωlv) in orange, the right ventricle endocardium (∂Ωrv) in purple, and
the base (∂Ωbase) in blue. Also marked is the ventricular apex of the epicardium
(∂Ωapex).

10 Iver Håkonsen: GPU-enabled LDRB

With the boundary surfaces defined, the next steps of the algorithm concern
establishing where every point of interest in the mesh is relative to these boundary
surfaces. We need four individual pieces of information:

1. The distance from the epicardium to the left and right ventricle endocardi-
ums, denoted φepi. This is found by solving the Laplace-Dirichlet equation
with Γ1 = ∂Ωepi and Γ0 = ∂Ωlv ∪ ∂Ωrv.

2. The distance from the left ventricle endocardium to the epicardium and
right ventricle endocardium, denoted φlv. This is found by setting Γ1 = ∂Ωlv
and Γ0 = ∂Ωepi ∪ ∂Ωrv.

3. The distance from the right ventricle endocardium to the epicardium and
left ventricle endocardium, denoted φrv. This is found by setting Γ1 = ∂Ωrv
and Γ0 = ∂Ωepi ∪ ∂Ωlv.

4. The “potential energy” between the apex and the base, denoted ψab. This
is found by setting Γ1 = ∂Ωbase and Γ0 = ∂Ωapex.

The solutions φepi, φlv, φrv, their gradients, and the gradient of ψab is all the
information that is needed about a particular mesh to be able to compute its fiber
orientations. A visualization of the resulting scalar solutions of φepi, φlv, and φrv
on a biventricular mesh is shown in Figure 2.4. In addition to the scalar solutions,
two sets of input angles are also needed. The first is the angle of the fiber direction
F on the epicardium and on the endocardium, denoted αepi and αendo. The second
is the angle of the sheet direction, T , on the epicardium and on the endocardium,
denoted βepi and βendo. The choice of angles is normally made to fit histological
data.

Function 1: laplace(Ω, Γ1, Γ0)
Input: Ω – A biventricular mesh
Input: Γ1 – Boundary surfaces with boundary condition u= 1
Input: Γ0 – Boundary surfaces with boundary condition u= 0
Output: u – Solution of the Laplace-Dirichlet equation

1 Solve

∇2u= 0 in Ω,

u= 1 on Γ1,

u= 0 on Γ0,

∇u · n= 0 on ∂Ω− Γ1 − Γ0

2 return u

2.3.1 Creating an axis system

Given the information needed to know the distance to each boundary, the next step
is to define an axis system in which we can later define the fiber orientations. The

Chapter 2: Background 11

(a) φepi

(b) φlv (c) φrv

Figure 2.4: Our visualizations of the scalar field solutions, φepi, φlv, and φrv, of
the Laplace-Dirichlet equation on the mesh heart02 (see Section 4.1). The scalar
fields are used in the LDRB algorithm to determine where in the myocardium an
arbitrary point of interest is. All scalar fields have values ranging from 0 (blue)
to 1 (red). (a) shows φepi, the solution used to determine the distance from the
left and right ventricle endocardiums to the epicardium. (b) shows φlv, the solu-
tion used to determine the distance from the right ventricle endocardium and the
epicardium to the left ventricle endocardium. (c) shows φrv, the solution used to
determine the distance from the left ventricle endocardium and the epicardium
to the right ventricle endocardium. The data used for this visualization is gen-
erated using cardiac-fibers, which is presented in Chapter 3. Visualized using
ParaView [26].

12 Iver Håkonsen: GPU-enabled LDRB

function axis, defined in Function 2, is responsible for creating this axis system.
The axes in the resulting right-handed axis system point in the circumferential,
apicobasal, and transmural directions. The apicobasal component points, as the
name implies, from the apex towards the base, following the shape of the ventric-
ular walls. The transmural component points through the ventricular wall. The
circumferential component is orthogonal to the latter two.

Two vectors are needed to construct this axis system. The first vector, ∇ψ,
points in the apicobasal direction and is derived by taking the gradient of the
solution ψab. The second vector, ∇φ, points in the transmural direction, and is
set to the gradient of either φepi, φlv, or φrv, dependent on which ventricular wall
we are defining an axis system for.

The first axis, ê1, of the resulting orthonormal axis system is set to the normal-
ized apicobasal vector. The next axis, ê2, should point in the general direction of
the transmural vector, but it is adjusted so that it is orthogonal to the apicobasal
vector by taking the orthogonal projection of the transmural vector onto the plane
orthogonal to ê1. ê2 is also normalized. The final axis, ê0, is set to the cross product
of the apicobasal vector∇ψ and the transmural vector∇φ, and ends up pointing
in the circumferential direction. The axis system is visualized in Figure 2.5. 2

Function 2: axis(∇ψ,∇φ)
Input: ∇ψ – Vector pointing in the apicobasal direction.
Input: ∇φ – Vector pointing in the transmural direction.
Output: Q – A 3× 3 orthonormal matrix representing the axis system for

assigning fiber orientations.

1 ê1 =
∇ψ
||∇ψ||

2 ê2 =
∇φ − (ê1 · ∇φ)ê1

||∇φ − (ê1 · ∇φ)ê1||
3 ê0 = ê1 × ê2

4 return Q = (ê0 ê1 ê2)

2.3.2 Orienting the axis system

The next step is to take the axis system created by axis, and rotate it such that
it fits with the angle of longitudinal fiber orientation, α, and the transverse fiber
orientation, β . This is handled by the function orient, defined in Function 3.
The axes of the resulting orthonormal coordinate system Q′ = (F S T) point in
the longitudinal direction (F), the sheet normal direction (S), and the transverse

2In [6], the second axis of the orthonormal axis system is determined by the expression
ê2 =

∇φ−(ê0 ·∇φ)ê0
||∇φ−(ê0 ·∇φ)ê0 ||

. However, ê0 is undefined at this point. As the goal is to create an axis orthogonal
to ê0 by removing the components of the transmural vector that point in the apicobasal direction,
we assume that this is a typo, and that the ê0 in the expression for ê2 actually should be ê1 .

Chapter 2: Background 13

direction (T). The rotations applied to produce the longitudinal fiber direction
(F) and the transverse direction (T) are visualized in Figure 2.5.

Function 3: orient(Q,α,β)
Input: Q – An orthonormal axis system.
Input: α, β – Fiber orientation angles.
Output: Q′ – An orthonormal axis system, (F S T).

1 return Q′ =Q

cosα − sinα 0
sinα cosα 0

0 0 1

1 0 0
0 cosβ sinβ
0 − sinβ cosβ

ê0

ê2

ê1

α

β

F

T

∇ψ

∇φ

Figure 2.5: The axis system (ê0, ê1, ê2) visualized on the plane of a ventricular
wall, along with the longitudinal (F) and transverse (T) orientations produced
from applying rotations of α and β . Not shown is the third fiber orientation, the
sheet normal direction S, which is orthogonal to F and T .

2.3.3 Interpolating between two axis systems

In some regions of the myocardium, where the point x is close to all three ven-
tricular walls, each of the gradients, ∇φ, will serve as a transmural vector in its
own axis system. This is visualized in Figure 2.6. To find the proper fiber orienta-
tion, we need to blend these axis systems, which is done by interpolation. This is
performed by the bislerp function, defined in Function 4 (page 14).

To interpolate between two axis systems, we first convert them from 3 × 3
rotation matrices to quaternions. With the axis systems in quaternion form, we
perform a spherical linear interpolation (Slerp) [27] between the two. Slerp is
used in place of normal linear interpolation, as it guarantees smooth interpolation
between two quaternions by rotating with uniform angular velocity. When we
interpolate between two quaternions, qA and qB, we want to rotate the smallest
angle possible. Because the fibers are bidirectional, a quaternion qM is selected
from all the rotations of qA that are bidirectionally equivalent, such that the chosen

14 Iver Håkonsen: GPU-enabled LDRB

quaternion qM is the smallest rotation away from qB. This is taken care of on line 3
in Function 4 (page 14).3 By bidirectional equivalence, we mean that any rotation
of the fiber axis system by 180◦ around any of its primary axes corresponds to the
same fiber orientation. The factor of interpolation is decided by a value t ∈ [0,1].
After interpolation, the resulting quaternion is converted back to a 3× 3 matrix.

Function 4: bislerp(QA,Qb, t)
Input: QA, QB – 3× 3 orthogonal matrices.
Input: t ∈ [0,1] – Interpolation factor.
Output: QAB – Resulting matrix of interpolation between QA and QB.

1 qA = rot2quat(QA)
2 qB = rot2quat(QB)
3 Find qM ∈ {±qA, ±i qA, ±j qA, ±k qA} that maximizes |qM · qB|
4 return QAB = quat2rot(slerp(qM , qB, t))

∇φlv ∇φrv

∇φepi

Figure 2.6: Visualization of the gradients in a point that lies in the junction be-
tween the septum, LV free wall and RV free wall. Here, there is more than one
gradient (transmural vector) contributing, and we have to interpolate between
the resulting axis systems to derive the final fiber orientation.

2.3.4 Defining the fibers

With the functions axis, orient, and bislerp defined, we have all the functions
that are needed to explain the function definefibers, which makes up the last
step of Algorithm 1. It is defined in Function 5.

The function loops over every point x in a mesh Ω for which we want to
compute the fiber orientations. First, the depth into the septum is determined,
denoted by d, which ranges from 0 on the left ventricle endocardium to 1 on

3In [6], line 3 of Function 4 is formulated as “Find qM ∈ {±qA, ±i · qA, ±j · qA, ±k · qA} that max-
imizes ||qM · qB ||”, which causes some ambiguity in what the (·)-operator refers to. In the cases like
“±i · qa”, it is to be understood as a Hamilton product. In “||qM · qB ||”, however, it refers to a dot
product, and the norm || . . . || is to be interpreted as an absolute value. To get rid of this ambiguity,
we have restated the bislerp function using the notation established in Section 2.2, where the
(·)-operator refers to the dot product, and the concatenation q1 q2 refers to the Hamilton product.

Chapter 2: Background 15

the right ventricle endocardium. This is used to determine the α and β angles,
denoted αs and βs, at this depth in the septum. Likewise, the value of φepi in this
point is used to determine the same angles for the LV and RV free walls, denoted
αw and βw.

axis is then used to create axis systems for the left ventricle endocardium
by using ∇φlv as the transmural vector, which is given the correct orientation by
orient using the angles αs and βs, producing the matrix Qlv. The same is done for
the right ventricle endocardium by using φrv as the transmural vector, producing
the matrix Qrv. bislerp is then used to determine the final matrix representing the
endocardium, by interpolating between Qlv and Qrv, using d as the interpolation
factor. The same approach is used to define Qepi, which defines the orientation in
relation to the epicardium, by using∇φepi as the transmural vector and orienting
with αw and βw. Finally, the fiber orientations are found by interpolating between
Qendo and Qepi by a factor determined by the value of φepi.

Function 5: definefibers(Ω,φepi, . . . ,∇φepi, . . . ,∇ψab,αendo,αepi,βendo,βepi)

Input: Ω – A biventricular mesh

Input: φepi, φlv, φrv – Scalar fields

Input: ∇φepi, ∇φlv, ∇φrv, ∇ψab – Vector fields

Input: αendo, αepi, βendo, βepi – Fiber (α) and sheet (β) angles

Output: F, S, T – Fiber orientations

1 for each point x in Ω do

2 d = φrv(x)
φlv(x)+φrv(x)

{Septum depth }

3 αs = αendo(1− d)−αendod {Fiber angle in septum}

4 βs = βendo(1− d)− βendod {Sheet angle in septum}

5 αw = αendo(1−φepi(x)) +αepiφepi(x) {Fiber angle in wall}

6 βw = βendo(1−φepi(x)) + βepiφepi(x) {Sheet angle in wall}

7 Qlv = orient (axis(∇ψab(x), −∇φlv(x)), αs, βs)

8 Qrv = orient (axis(∇ψab(x), ∇φrv(x)), αs, βs)

9 Qendo = bislerp(Qlv, Qrv, d)

10 Qepi = orient(axis(∇ψab(x), ∇φepi(x)), αw, βw)

11 (F(x) S(x) T (x)) = bislerp(Qendo, Qepi, φepi(x))

12 end

2.4 The Finite Element Method

In this section, we will go through some key aspects of the finite element method,
which we will be using for discretization of the Laplace-Dirichlet equations when

16 Iver Håkonsen: GPU-enabled LDRB

implementing the LDRB algorithm. The details of how it is used are left to Chap-
ter 3. We will then describe the MFEM software library, which will be used to
program the FEM-related parts. For an in-depth explanation of the finite element
method, see for instance [28] or [29].

Finite element methods are one of the most important and commonly used
tools for solving partial differential equations. It is especially powerful when it is
applied to problems in which the domain is an unstructured mesh. In FEM, partial
differential equations are restated to what is known as a weak formulation. We will
explain this by deriving the weak formulation of the Laplace-Dirichlet equation
presented in Function 1. The following explanation is an adaption of [11, Section
2].

To simplify, we assume that the Dirichlet boundary conditions are zero on
both Γ0 and Γ1, and we assume a homogeneous Neumann boundary condition, i.e.,
∇u·n= 0, on ∂Ω−Γ0−Γ1. The implications of having non-zero Dirichlet boundary
conditions will be explained at the end. The weak formulation of the Laplace-
Dirichlet equation is obtained by multiplying Equation 2.1 by a test function v,
and integrating over the domain Ω:

∫

Ω

∇2u · v d x =

∫

Ω

0 · v d x = 0. (2.2)

Integration by parts gives
∫

Ω

∇u·∇vd x−
∫

Γ0

(∇u·n)vdS−
∫

Γ1

(∇u·n)vdS−
∫

∂Ω−Γ1−Γ0

(∇u·n)·vdS = 0, (2.3)

where Γ0 and Γ1 are the boundaries with boundary condition u = 0, and n is the
outward normal on the boundary ∂Ω. By imposing v = 0 on Γ0∪ Γ1, and knowing
that ∇u · n = 0 on ∂Ω− Γ1 − Γ0, the related terms disappear and we end up with
the weakly formulated boundary value problem

∫

Ω

∇u · ∇v d x = 0. (2.4)

The goal is to find u ∈ V such that Equation 2.4 holds for all test functions v ∈
V , where V is the space of admissible functions. In this example, V consists of
functions that fulfill the requirements that v = 0 on Γ0∪Γ1, and have well-defined
first order derivatives. This turns out to be what is known as the H1 space [28].
The space of admissible functions can then be defined as

V =
�

v ∈ H1(Ω), v = 0 on Γ0 ∪ Γ1
	

. (2.5)

The weak formulation in Equation 2.4 can further be rewritten as a combina-
tion of a bilinear form,

a(u, v) =

∫

Ω

∇u · ∇v, (2.6)

Chapter 2: Background 17

and the linear form
l(v) = 0. (2.7)

The problem can then be described as finding u ∈ V such that

a(u, v) = l(v) ∀v ∈ V. (2.8)

The weak formulation in Equation 2.4 is continuous, so to be able to approxi-
mate the solution on a computer we approximate the solution by the discretization

u≈ uh =
N
∑

j

c jφ j .

Here, φ j are the basis functions of the discrete subspace Vh ⊂ V , called trial ba-
sis functions, and c j are scalar unknowns, called degrees of freedom (DoFs). By
substituting uh into Equation 2.4, we get

∑

j

c j

∫

Ω

∇φ j · ∇v = 0, ∀v ∈ V. (2.9)

By selecting test functions φi ∈ Vh, we get the final finite-dimensional problem

∑

j

c j

∫

Ω

∇φ j · ∇φi = 0, ∀φi ∈ Vh. (2.10)

The finite-dimensional problem can then be formulated as a discrete linear algebra
problem, Ax = b, by setting

Ai j =

∫

Ω

∇φ j · ∇φi ,

bi = 0,

x j = c j .

A common method for enforcing non-zero Dirichlet boundary conditions, as
we actually have on Γ1, is to modify the linear system so that the related compo-
nents of the right-hand side b have a given value, in our case one, rather than zero,
and to modify the corresponding row of the matrix A to be one on the diagonal
and zero on the off-diagonal.

2.4.1 MFEM

MFEM [11] is a C++ library for finite element methods. According to its develop-
ers, the distinguishing features of MFEM are “massively parallel scalability, HPC
efficiency, support for arbitrary high-order finite elements, generality in mesh type
and discretization methods, and the focus on maintaining a clean, lightweight

18 Iver Håkonsen: GPU-enabled LDRB

code base” [11]. The serial version of MFEM only relies on a (modern) C++ com-
piler. The parallelized version minimally depends on an MPI C++ compiler, as well
as the hypre [30] and Metis [31] libraries. It has support for several mesh formats,
including VTK [32], Gmsh [33], and a native MFEM format. MFEM supports a
wide range of mesh elements, including segments, triangles, quadrilaterals, tetra-
hedra, hexahedra, prisms, and pyramids. Parallelism is mainly targeted through
MPI, and automatic parallel mesh partitioning is supported through Metis.

Finite element model

MFEM has a series of objects and methods that use the concepts of the finite
element method presented at the beginning of this section, which ties together to
produce a linear system of equations. The overall structure is as follows:

• A Mesh object is used to hold the elements that make up the domain Ω, and
the physical coordinates of all the vertices.
• A FiniteElementCollection object is used to define the type of basis func-

tions to use on the reference element.
• A FiniteElementSpace object gives the mapping between the reference el-

ement and each of the physical elements from the mesh.
• Given a finite element space, a LinearForm object is used to describe the

right-hand side linear form, l(·).
• Similarly, a BilinearForm object is used to describe the left-hand side bilin-

ear form, a(·, ·).
• Transitioning to the linear algebra side, a GridFunction is used to hold the

initial guess of the solution vector x with the known essential boundary
conditions.
• Finally, the linear system Ax = b can be formed with the FormLinearSystem

method of BilinearForm, which produces the left-hand side matrix A and
the right-hand side vector b, which can be passed to a solver along with the
GridFunction.

2.5 GPU programming

A graphics processing unit is a hardware accelerator designed for high bandwidth
and instruction throughput. Compared to a CPU, the transistors in a GPU are
mainly used for data processing, rather than complex layers of caches and flow
control. Instead, GPUs try to hide memory latency by using a high number of
threads. As a result of this, it has a much higher parallel performance than that
of a traditional CPU, but also a much lower sequential performance. This kind
of hardware architecture fits well with computations where the same operation
is applied to a large number of individual elements, as takes place in the finite
element method.

There are several programming models used to program GPUs, some of which
are able to run on hardware from different vendors, such as OpenCL [34], and

Chapter 2: Background 19

some of which are targeted for a single vendor, such as CUDA. The most commonly
used programming models for GPUs in scientific computing are CUDA [35] for
NVIDIA hardware and HIP [36] for AMD hardware.4

In the HIP and CUDA programming models, a parallel workload is divided
into fine-grained tasks, each of which is assigned to a thread. The workload is
defined by a small program called a kernel, which is formulated as a C++ or
Fortran function that has a set of inputs and outputs. A group of threads then
executes the kernel in a lock-step fashion, with each thread working on some
individual or shared piece of data. This approach to parallelism is often referred
to as single instruction, multiple threads (SIMT). SIMT allows a combination of
both the multithreading and single instruction, multiple data (SIMD) execution
models.

When GPUs are used in general-purpose, heterogeneous computations, we
refer to the CPU as the host and the GPU as the device. The two have separate
memory regions, which are referred to as the host memory and device memory,
respectively. If we want to offload some computation to the device, and the data
to be processed resides on the host, we first have to allocate space for the data
in device memory. Then, the data is transferred to the device. When the data has
arrived, a kernel can be launched to process the data on the device. When the
data is processed, the result can be transferred back to the host, or be kept on the
device for further processing.

GPU programming in MFEM

As well as serving as an abstraction layer that allows for easily formulating fi-
nite element problems in code, the MFEM library also has some well-established
support for executing parts of these problems on GPUs.

MFEM supports GPU execution mainly through two interfaces: an internal
memory manager and the MFEM_FORALL macro. The main goal of these two in-
terfaces is to enable performance portability by hiding device-specific code. The
internal memory manager wraps all pointers of type T* in a Memory<T> object,
which handles both host and device side pointers, as well as memory allocation
and data synchronization. If the memory object is intended to reside on the de-
vice, the void UseDevice(bool) method can be called on the object. To access
the underlying type, T*, the Read(), Write() and ReadWrite() methods provide
a read-only pointer, a write-only pointer, and a read-and-write pointer to the un-
derlying memory, respectively. The location of the returned pointers (i.e. on the
host or device) will depend on how UseDevice was called in advance (true for
device, false for host).

Given a pointer to the underlying type, the MFEM_FORALL macro serves as a
wrapper around a regular for-loop. If the pointers being manipulated reside on
the host, the macro expands to a for-loop. That is, MFEM_FORALL(i, n,{ ...
}); expands to for (int i = 0; i < n; i++) {...}. But, if the pointers reside

4HIP code can also be compiled for NVIDIA hardware through a CUDA backend.

20 Iver Håkonsen: GPU-enabled LDRB

Code listing 2.1: Example use of the MFEM_FORALL macro used for offloading to
GPU. Adapted from [37].

Vector u;
Vector v;
// ...
auto u_data = u.Read(); // Express the intent to read u
auto v_data = v.ReadWrite(); // Express the intent to read and write v
MFEM_FORALL(i, u.Size(), // Abstract the loop: for(int i=0; i<u.Size(); i++)
{

v_data[i] *= u_data[i]; // This block of code is executed on the chosen device
});

on the device, the macro will expand to either a HIP or CUDA kernel which is
launched on the device with n threads. The MFEM_FORALL macro also allows for
thread-level parallelized execution on the host through OpenMP. An example use
pattern is shown in Code listing 2.1. The macro expects a lambda, i.e., an anony-
mous function, as its third argument, but it is also possible to call a function di-
rectly by marking it with either the MFEM_HOST_DEVICE or MFEM_DEVICE macros,
which makes sure that said functions are compiled for host and device execution
or device execution only, by expanding to the __host__ __device__ and __de-
vice__ function attributes. These attributes tell the compiler whether a function
should be compiled to host or device execution, or both.

The upside of this approach to GPU execution is that these two interfaces make
it easy for MFEM users to introduce GPU execution into their programs, and allows
for highly portable code between different hardware configurations. For example,
if some piece of code is developed to target NVIDIA GPUs, a port of said code
to target AMD GPUs should be as simple as building the MFEM library with HIP
support, and changing the compiler from nvcc to hipcc. If MFEM is built without
any GPU support at all, the code still works and will be executed on the host.

The downside of this approach is that it hides all the data transfers between
the host and device in the internal memory manager. Since such data transfers are
expensive, they are often carefully and explicitly managed by the developer. Mak-
ing the memory allocation, transfers, and deallocation opaque to the developer
may therefore hide bottlenecks.

In addition to supporting both CUDA and HIP execution natively, MFEM also
offers an interface for the hypre [30] software library, which delivers high-performance
preconditioners and solvers for linear systems, some of which are implemented
with GPU support.

Chapter 3

cardiac-fibers: LDRB on GPU

In this chapter, we describe cardiac-fibers, our GPU-enabled implementation of
the LDRB algorithm developed as a part of this thesis. One of the goals of cardiac-
fibers is to improve upon the existing ldrb [10] implementation, to be able to
process larger meshes and to use GPUs in an attempt to do it faster. As alluded to in
Chapter 2, we utilize the finite element method and use the MFEM finite element
library to do much of the heavy lifting. The full source code of cardiac-fibers is
available in a repository on the author’s GitHub [38].

This chapter is structured as follows. In Section 3.1 we will explain what the
input meshes to the program look like. In Section 3.2, we will explain some con-
siderations that have to be made about the space in which the computed fibers
live, and formulate the approach taken from input mesh to output fibers. In Sec-
tion 3.3, we look at how we get the scalar field solutions to the Laplace-Dirichlet
equations. In Section 3.4, we explain how the gradients of the scalar fields are
computed. In Section 3.5, we look at how the space considerations introduced in
Section 3.2 are applied to the scalar and vector fields. In Section 3.6 we describe
how the functions that make up the actual fiber computation are implemented.
Finally, in Section 3.7, we describe the heuristic we have developed that allows
for a more robust fiber definition.

Note that this chapter contains a number of listings that are adapted from the
implementation code, but that are slightly altered for clarity or brevity. Refer to
the source code for the actual implementation [38].

3.1 Defining the input meshes

The finite element mesh generator software Gmsh [33] is used to generate the
tetrahedral meshes. The legacy Gmsh binary format 2.2 is used, as it is the only
Gmsh file format that is supported by MFEM [11].

The input mesh for the program contains all the vertices and tetrahedral ele-
ments that form either a single- or biventricular mesh, Ω. The boundary surfaces
base (∂Ωbase), left ventricle endocardium (∂Ωlv), right ventricle endocardium

21

22 Iver Håkonsen: GPU-enabled LDRB

(∂Ωrv) and epicardium (∂Ωepi) are given an ID in the $PhysicalNames section
of the mesh file, and all boundary elements (triangles) that are part of one of
the boundary surfaces are marked with the respective ID. In the case of a single
ventricle mesh, the ID of the right ventricle endocardium is left unset.

With a mesh in this format, we have covered the first step of the LDRB algo-
rithm (Algorithm 1), namely the definition of the boundary surfaces. Note that
the apex (∂Ωapex) is not defined in the input mesh. How we handle the apex is
explained in Subsection 3.3.1.

Although MFEM supports a wide variety of element types, we limit ourselves to
only considering tetrahedrons, first and foremost because the irregular structure
of the biventricular heart meshes are best represented by tetrahedral elements,
but also because it allows for optimizations that will become evident later in this
chapter.

3.2 Selecting a solution space and outlining the approach

Before diving into the next steps of the LDRB algorithm (Algorithm 1), which
involves solving the Laplace-Dirichlet equations, we have to make some choices
about what sort of space we want the final fiber orientations to be defined in.
When this is decided, we can outline the rest of the approach.

As described in Section 2.4, the weak formulation of the Laplace-Dirichlet
equation has its trial basis functions, φ j , and the degrees of freedom, c j , in a
discrete subspace of H1. In our implementation, we will only be considering first-
order linear basis functions, i.e., φ j ∈ P1. For piecewise linear elements in H1,
the degrees of freedom are located in the nodes (vertices) of the domain Ω. If
we were to apply the LDRB algorithm directly on the scalar field solutions to the
Laplace-Dirichlet equation, we would end up with fibers that are also defined in
the vertices of Ω. However, there are many use cases for the fiber orientations
where we would much rather have them be defined per-element than per-vertex.
One of the goals of the implementation was, therefore, to be able to generate
fibers both per-element and per-vertex.

If we want the fibers to be defined per-element, we have to make sure that both
the scalar fields and the gradient vector fields are defined per-element. In the case
of the gradients, this simplifies things because the gradients of the H1 space are,
by definition, defined in the L2 space, a space in which the degrees of freedom
are located in the center of each element. The gradient calculation is explained
in Section 3.4. The scalar fields, however, have to be evaluated at the center of
each element. This can be viewed as projecting each field onto a space spanned
by piecewise constant elements. This is further explained in Subsection 3.5.1.

If we want the fibers to be defined per-vertex, the scalar fields are already
defined in the correct space. However, as we just explained, the gradients are not.
When the gradients have been calculated, they then have to be interpolated from
L2 to H1. This is further explained in Subsection 3.5.2.

Chapter 3: cardiac-fibers: LDRB on GPU 23

With a solution space selected, we can define all the steps that need to take
place from when the input mesh is loaded to the resulting fiber orientations. For
each of the Laplace-Dirichlet equations, φepi, φlv, φrv, and ψab, we first have to
assemble the linear system of equations corresponding to the weak formulation,
as described in Section 2.4. We then have to solve the linear system of equations
to produce a scalar field. Next, we calculate the gradients of the scalar fields. If we
choose to have the final fibers on a per-element basis, we project the scalar fields
to L2. If we instead want the fiber per-vertex, we interpolate the gradients to H1.
Finally, we compute the fiber orientations using definefibers (Function 5, page
15). The execution flow is outlined in Figure 3.1

Assemble
Aφ = b

Solve Aφ = b Compute ∇φ

Project φ
from H1 to L2

Interpolate
∇φ from
L2 to H1

definefibers,
per-element

definefibers,
per-vertex

Figure 3.1: The execution flow when generating fibers either on a per-element or
a per-vertex basis. For clarity, only one of the four solutions is considered, denoted
by φ. In the case of ψab, the projection from H1 to L2 is not necessary.

Out of all the steps presented in Figure 3.1, two were initially targeted for
offloading to GPU. The first is the solving of the linear systems, which is offloaded
by using a GPU-enabled solver. This is discussed in Subsection 3.3.2. The second
is the fiber computation performed by the definefibers function, the implemen-
tation of which is discussed is Section 3.6. If these two are the only parts offloaded
to the GPU, the execution and transfer pattern between the host and the device
will be as shown in Figure 3.2, in the case where fibers are computed per-element.

3.3 Solving the Laplace-Dirichlet equations

With the input mesh and the surfaces defined and the solution space taken into
consideration, we can start solving the Laplace-Dirichlet equations. As Figure 3.1
shows, getting the solutions of the Laplace-Dirichlet equations is a two-step pro-
cess. First, we have to construct a linear system of equations; then we have to
solve it.

3.3.1 Constructing the linear systems of equations

For each of the four Laplace-Dirichlet equations we want the solution of, we have
to do the following:

1. Determine the list of essential degrees of freedom.

24 Iver Håkonsen: GPU-enabled LDRB

Assemble
Aφ = b

Copy A and
b to device

Solve
AφH1 = b

Copy φH1

to host

Calculate ∇φ

Copy ∇φ
to device

Project
φH1 → φL2

Copy φL2

to host

definefibers

Copy F , S,
and T to host

H
os

t
Tr

an
sf

er
D

ev
ic

e

Figure 3.2: The execution and data transfer pattern when calculating fiber ori-
entations on a per-element basis and offloading the solving of linear systems and
fiber calculation to GPU. For clarity, only one of the four solutions is considered,
denoted by φ. In the case of ψab, the projection from H1 to L2 is not necessary.

2. Assemble the right-hand side linear form, l(·).
3. Assemble the left-hand side bilinear form, a(·, ·).
4. Set the values of the essential DoFs as an initial guess to the solution, x .
5. Form the linear system of equations, Ax = b.

The first step is to determine what kind of basis functions are to be used when
mapping to a reference element. As we just saw, the weak form of the Laplace
equation has solutions in the H1 space, so that is the space we choose. The next
step is to define a mapping between each element in the mesh to the reference
element. With the space and the mapping defined, we have to figure out which
degrees of freedom on the boundary are essential, i.e. have a known value. This
is done by selecting the DoFs that, in our case, are part of either Γ0 or Γ1. Next,
we define the linear and bilinear forms, as per Equation 2.7 and Equation 2.8.
The initial guess to the solution, x , is then defined, which is of the length defined
by the number of essential DoFs. The known values x = 0 on Γ0 and x = 1 on
Γ1 are set in the respective DoFs. Given the bilinear and linear forms, as well as
the vector x , we can finally form the linear system Ax = b. Some example code
showing how this is done in MFEM, exemplified for creating the linear system to
solve φepi, is shown in Code listing A.1

Handling of the boundary conditions for ψab

The last set of boundary conditions is used to find the solution of the Laplace-
Dirichlet equation between the base and the apex,ψab. This case is different from
the previous three in that the apex is a single point on the epicardium surface,
rather than a disjoint surface. This makes the enforcement of the boundary con-

Chapter 3: cardiac-fibers: LDRB on GPU 25

ditions a little different.
The first step is to find the actual apex, which is loosely defined to be the point

on the epicardium that is the furthest from the base. Different approaches can be
taken to find this apex. ldrb[10] takes the approach of solving a Laplace-Dirichlet
equation similar to the ones used in Algorithm 1, namely

¨

∇2u= 1 in Ω,

u= 0 on ∂Ωbase,
(3.1)

to create a heuristic for where the apex is. The heuristic has the apex in the de-
gree of freedom (vertex) with maximal value in the solution to Equation 3.1. The
upside of this approach is that no preprocessing has to take place to find the apex.
The downside is that an additional Laplace-Dirichlet equation has to be solved,
which is costly, and the location of the apex can not be manually selected.

The approach taken in our implementation is to take in a user-specified apex
coordinate and then find the vertex closest to said coordinate. In practice, this
is done by having each MPI rank go through its submesh and find its local apex
candidate, which is the vertex in its submesh which has the smallest Euclidean
distance from the prescribed apex. Then the global apex is found by selecting the
local apex candidate with the smallest Euclidean distance.

MFEM does not directly support enforcing boundary conditions in a single
vertex, so some fiddling with the DoFs has to happen to make it work. Since the
Laplace-Dirichlet equation is being solved in H1, we know that there is a DoF for
each vertex, and hence there is a DoF in the apex vertex. The rank which has the
apex in its submesh does a lookup to find the local id of the apex DoF, which is
then added to the list of essential DoFs. The value in this DoF is then set to 0.
Some example code showing how this is done is shown in Code listing A.2.

Reusing the linear and bilinear forms

Since the left-hand sides and right-hand sides which are formed for φepi, φlv and
φrv are based on the same list of essential DoFs, namely from the boundary sur-
faces ∂Ωepi, ∂Ωlv, and ∂Ωrv, these actually end up being identical for all three
linear systems. The only thing that changes between the three is what the value
on each surface is set to, but this does not change which DoFs end up in the re-
sulting linear system. This means the linear form, l, and bilinear form, a, can be
reused for the three, and the Assemble() method only has to be called once for
each form.

As the essential boundaries are different in ψab, the list essential of essential
DoFs change as well. This means that the assembled linear form and bilinear form
can not be reused, and they both have to be reassembled with the new list of
essential DoFs.

By only having to assemble two sets of bilinear and linear forms instead of four,
we effectively reduce the work and the time spent doing assembly by a factor of
two.

26 Iver Håkonsen: GPU-enabled LDRB

3.3.2 Solving the linear systems

When solving a sparse linear system of equations, Ax = b, there are two main
approaches: A direct solver or an iterative solver. When using an iterative solver,
it is common to also make use of a preconditioner. A preconditioner performs either
an implicit or explicit modification of the linear system, which makes it easier to
solve with an iterative method afterward [39].

In [6], the method used for solving the linear systems is the conjugate gradi-
ent method (CG) [40], preconditioned with block-Jacobi method and incomplete
factorization (ILU(0)) to solve each block.

In ldrb, the Laplace-Dirichlet equations are solved using SuperLU [41], specif-
ically the SuperLU_DIST version for distributed memory systems [42]. SuperLU
is a direct solver, which solves a sparse linear system Ax = b using Gaussian
elimination with partial pivoting (GEPP), and is made primarily to solve sparse
unsymmetric linear systems.

Like the authors of [6], we choose to use the conjugate gradient method (CG)
as the solver of choice for the linear systems. The conjugate gradient method is
an iterative algorithm that is designed to solve linear systems where the left-hand
side matrix A is symmetric, positive definite (SPD). It is part of a family of methods
known as Krylov subspace methods. We also choose to employ a preconditioner,
but our preconditioner of choice is algebraic multigrid (AMG) [43, 44]. Using a
combination of CG and AMG, we can expect that the number of iterations needed
to solve the linear systems is independent of the problem size [44]. Specifically, we
choose to use the preconditioned conjugate gradient (PCG) solver implemented in
the hypre library. We combine the PCG solver with hypre’s implementation of the
algebraic multigrid (AMG) method [43, 44], BoomerAMG, as the preconditioner.
The choice of this combination of solver and preconditioner is twofold. First, the
algebraic multigrid method ensures that the number of iterations required in the
solver remains more or less constant as the problem size increases. Second, both
PCG and BoomerAMG have GPU support, meaning that the whole solve step can
be offloaded to GPU. Using this combination of solver and preconditioner for solv-
ing linear systems on GPU has been shown to perform well, both for NVIDIA and
AMD hardware [45, 46].

3.4 Calculating the gradients of the scalar fields

Given the resulting scalar field solutions to the Laplace-Dirichlet equations, the
next step is to find the gradients. In this section, we look at how the gradients are
calculated, and how the calculations are offloaded to the GPU.

We could use functionality built into MFEM to calculate the gradients, as
shown in Code listing A.3, but we run into the issue of having to perform the com-
putations on the host, as shown in Figure 3.2. Instead, we can use some knowledge
about the finite element space we are working with, combined with the fact that
we are considering strictly tetrahedral meshes, to calculate the gradients using a

Chapter 3: cardiac-fibers: LDRB on GPU 27

simple formula instead.
We know that the gradient of a scalar field in H1 is, by definition, a vector

field in L2. In L2, it is possible to use a single degree of freedom for each el-
ement, placed in the centroid of the element. As mentioned in Section 3.2, we
have chosen to use first-order basis functions, φi ∈ P1, and we, therefore, know
that the basis functions in the gradient space have to be constant. So, there has to
be one gradient per element, and the value is constant over the whole element.
This also means that we are able to calculate the value of the gradient in each
element purely based on the scalar field values in each of its vertices. We have
also restricted the input to only consist of tetrahedral meshes.

With these observations and restrictions in control, we choose to use the method
of per-cell linear estimation (PCE) of the gradient in a tetrahedron. This method
is outlined in Equation 2 in Section 3.1 of [47]. Given vertices pi,0, pi,1, pi,2 and
pi,3 that form a tetrahedron Ti , with known, constant values at each vertex, ui,0,
ui,1, ui,2 and ui,3, the gradient can be shown to be

∇uTi
=(ui,1 − ui,0)

(pi,0 − pi,2)× (pi,3 − pi,2)

6VTi

+(ui,2 − ui,0)
(pi,0 − pi,3)× (pi,1 − pi,3)

6VTi

+(ui,3 − ui,0)
(pi,2 − pi,0)× (pi,1 − pi,0)

6VTi

,

(3.2)

where VTi
is the volume of Ti .

1

The formula for the gradient requires the H1 DoFs, from which we get ui, j ,
and the L2 DoF, where we store the result ∇uTi

, for each element. The function
FiniteElementSpace::GetElementToDofTable() is used to retrieve a mapping
from the index i of each element Ti in a given space, to the DoFs associated with
said element. Additionally, the physical coordinates of each vertex pi, j of Ti are
needed. For this, we use Mesh::GetVertices(), which gives an array of the co-
ordinates of every vertex in the input mesh. Both the element-to-DoF tables and
vertices are transferred to the GPU. A straightforward kernel that computes the
gradient according to Equation 3.2 is then used, with one thread assigned per el-
ement. The implementation is shown in Code listing 3.1. Note that the code uses
the same notation as in [47, Equation 2], where the vertices of the tetrahedron are
denoted by vi , v j , vk, and vk, with scalar values fi , f j , fk, and fh. A visualization
of the resulting gradients is shown in Figure 3.3. Each gradient is visualized as
a vector field (in yellow), on top of the scalar field it is a gradient of. For clarity,
only a subset of the vector field is shown, and the vectors are normalized.

independent and no communication between ranks is necessary.
1In [47, Equation 2], the denominator is set to 2V rather than 6V . When using said formula,

the gradients produced were off by a factor of three when compared to the gradients produced
by MFEM (as calculated with the approach shown in Code listing A.3). After our correspondence
with the authors of [47], it was discovered that the original formula was incorrect and that the
denominator should in fact be 6V . A correction has since been published in [48].

28 Iver Håkonsen: GPU-enabled LDRB

(a) ∇φepi

(b) ∇φlv (c) ∇φrv

(d) ∇ψab

Figure 3.3: Visualization of gradients of the Laplace-Dirichlet scalar fields,∇φepi,
∇φlv, ∇φrv, and ∇ψab, on the mesh heart02. The gradients are used to create
axis systems for defining fiber orientations in the LDRB algorithm. Each gradient
is visualized as a vector field, in yellow, on top of the scalar field for which it is
a gradient. For clarity, only a subset of each vector field is shown, and all vectors
are normalized. The data is generated by using the compute_gradient function in
cardiac-fibers, shown in Code listing 3.1, and visualized using ParaView [26].

Chapter 3: cardiac-fibers: LDRB on GPU 29

Code listing 3.1: GPU-enabled kernel for gradient computation.

void compute_gradient(
double *gradient, // Gradient in L2
const double *laplace, // Laplace-Dirichlet solution in H1
const double *vert, // Vertex coordinates
const int ne, const int nv, // Number of elements and vertices
const int *h1_table_col, // H1 element-to-DoF table columns
const int *h1_table_row, // H1 element-to-DoF table rows
const int *l2_table_col, // L2 element-to-DoF table columns
const int *l2_table_row) // L2 element-to-DoF table rows

{
mfem::MFEM_FORALL(i, ne, {

const int *h1_dofs = &h1_table_row[h1_table_col[i]];

// The vertices are in SoA-format: x0 x1 ... xn y0 y1 ... yn z0 z1 ... zn
vec3 v_i, v_j, v_k, v_h;
v_j = {vert[0*nv+h1_dofs[0]], vert[1*nv+h1_dofs[0]], vert[2*nv+h1_dofs[0]]};
v_k = {vert[0*nv+h1_dofs[1]], vert[1*nv+h1_dofs[1]], vert[2*nv+h1_dofs[1]]};
v_h = {vert[0*nv+h1_dofs[2]], vert[1*nv+h1_dofs[2]], vert[2*nv+h1_dofs[2]]};
v_i = {vert[0*nv+h1_dofs[3]], vert[1*nv+h1_dofs[3]], vert[2*nv+h1_dofs[3]]};

// Get the values of the scalar H1 DoFs at each vertex of the tetrahedron.
const double f_j = laplace[h1_dofs[0]];
const double f_k = laplace[h1_dofs[1]];
const double f_h = laplace[h1_dofs[2]];
const double f_i = laplace[h1_dofs[3]];

// Get all the needed vertex-to-vertex vectors.
vec3 v_ik = v_i - v_k; vec3 v_hk = v_h - v_k;
vec3 v_ih = v_i - v_h; vec3 v_jh = v_j - v_h;
vec3 v_ki = v_k - v_i; vec3 v_ji = v_j - v_i;

// Calculate the three needed cross-products.
vec3 v_ik_x_v_hk; vec3_cross(v_ik_x_v_hk, v_ik, v_hk);
vec3 v_ih_x_v_jh; vec3_cross(v_ih_x_v_jh, v_ih, v_jh);
vec3 v_ki_x_v_ji; vec3_cross(v_ki_x_v_ji, v_ki, v_ji);

// For the volume we need one more vertex-to-vertex vector, v_hi.
// We divide the final gradient by six times the volume, so no need to
// do the division by six to get the real volume.
vec3 v_hi = v_h - v_i;
const double six_vol = abs(vec3_dot(v_hi, v_ki_x_v_ji));

// Scale each component by the difference in scalar values in the
// vertices.
v_ik_x_v_hk *= (f_j - f_i);
v_ih_x_v_jh *= (f_k - f_i);
v_ki_x_v_ji *= (f_h - f_i);

// Calculate the final gradient, which is the sum of each component
// divided by the six times the volume.
vec3 grad = v_ik_x_v_hk;
grad += v_ih_x_v_jh;
grad += v_ki_x_v_ji;
grad *= (1.0 / six_vol);

const int l2_dof = l2_table_row[l2_table_col[i]];
gradient[3*l2_dof+0] = grad[0];
gradient[3*l2_dof+1] = grad[1];
gradient[3*l2_dof+2] = grad[2];

});
}

30 Iver Håkonsen: GPU-enabled LDRB

3.5 Transferring the fields to the solution space

Having calculated the scalar field solutions to the Laplace-Dirichlet equations,
which live in H1, and their gradients, which live in L2, we have to make a choice
of which of these spaces the final fibers should be calculated in. As explained at
the beginning of this chapter, either the scalar fields have to be projected to L2,
or the gradient vector fields have to be interpolated to H1, depending on whether
we want the fibers to be defined per-element or per-vertex. We will now look at
the approach taken to make sure both cases are handled, and how we make sure
it is done on the GPU.

3.5.1 Per-element: Project scalar fields to L2

As outlined in Section 3.2, all the scalar fields that are needed in the LDRB al-
gorithm, that is φepi, φlv, and φrv, have to be projected from H1 to L2. Since we
only need the gradient of theψab, it does not have to be projected. Just like when
calculating the gradients, this could very simply be done by going the route of
using MFEMs functionality. An example of this is shown in Code listing A.4. The
problem with this approach is that this operation is (at the time of writing) not
implemented with GPU support. Therefore, we use a different approach. We know
that we are working with a tetrahedral mesh with first-order elements, i.e., four
DoFs per element with basis functions in P1, located in each vertex. We want to
transform a scalar field defined in each vertex to L2, i.e., one DoF in the cen-
troid of each element. Based on these restrictions, we can bypass the generalized
projection scheme used by MFEM, and instead, do the projection “by hand”.

Inside a tetrahedral element Ti , with vertices pi,0, pi,1, pi,2, and pi,3, all the
basis functions except the ones in its vertices will be zero. So the value in any
point (x , y, z) ∈ Ti is given by

u(x , y, z) = ci,0φi,0(x , y, z) + ci,1φi,1(x , y, z) + ci,2φi,2(x , y, z) + ci,3φi,3(x , y, z),
(3.3)

where φi, j is the basis function in vertex j. To evaluate u in the centroid of Ti , we
first look at the reference tetrahedron T̂ with vertices p̂0 = (0,0, 0), p̂1 = (1, 0,0),
p̂2 = (0, 1,0), and p̂3 = (0, 0,1). In the reference tetrahedron, it is straight forward
to show that the P1 basis functions are defined as

φ̂0(x̂ , ŷ , ẑ) = 1− x̂ − ŷ − ẑ,

φ̂1(x̂ , ŷ , ẑ) = x̂ ,

φ̂2(x̂ , ŷ , ẑ) = ŷ ,

φ̂3(x̂ , ŷ , ẑ) = ẑ.

(3.4)

See for example [29, Example 1.33]. To transfer from the reference tetrahedron
T̂ to Ti , the affine transformation operator

FTi
(x̂ , ŷ , ẑ) = pi,0 + x̂(pi,1 − pi,0) + ŷ(pi,2 − pi,0) + ẑ(pi,3 − pi,0) (3.5)

Chapter 3: cardiac-fibers: LDRB on GPU 31

is used to map a point (x̂ , ŷ , ẑ) ∈ T̂ to the corresponding point (x , y, z) ∈ Ti . The
transformation is visualized in Figure 3.4.

The expression for the value in a point (x , y, z) ∈ Ti in Equation 3.3 can then be
rewritten using a combination of the affine transformation in Equation 3.5 and an
application of the basis functions on the reference tetrahedron from Equation 3.4:

u(x , y, z) = ci,0(φ̂0 ◦ F−1
Ti
)(x , y, z)+ci,1(φ̂1 ◦ F−1

Ti
)(x , y, z)

+ci,2(φ̂2 ◦ F−1
Ti
)(x , y, z)+ci,3(φ̂3 ◦ F−1

Ti
)(x , y, z).

(3.6)

The affine transformation will “preserve” the centroid of the tetrahedron, so
instead of finding the centroid γ of Ti and mapping it to the reference tetrahedron,
we can just find the centroid γ̂ of the reference tetrahedron directly, which is at

γ̂=
p̂0 + p̂1 + p̂2 + p̂4

4
=
�

1
4

,
1
4

,
1
4

�

. (3.7)

Insertion into Equation 3.5 shows we in fact derive the definition of the centroid
γ of Ti , which is the average of the four vertices:

FTi
(γ̂) = pi,0 +

1
4
(pi,1 − pi,0) +

1
4
(pi,2 − pi,0) +

1
4
(pi,3 − pi,0)

=
1
4
(pi,0 + pi,1 + pi,2 + pi,3)

By using its definition we can unwrap the composition operator, and see that

(φ̂ j ◦ F−1
Ti
)(x , y, z) = φ̂ j(F

−1
Ti
(x , y, z)) = φ̂ j(x̂ , ŷ , ẑ). (3.8)

Finally, we can insert Equation 3.8 into Equation 3.3, and express the value in the
centroid γ of Ti as

u(γ) = ci,0 · φ̂0(γ̂) + ci,1 · φ̂1(γ̂) + ci,2 · φ̂2(γ̂) + ci,3 · φ̂3(γ̂)

= ci,0 ·
1
4

+ ci,1 ·
1
4

+ ci,2 ·
1
4

+ ci,3 ·
1
4

(3.9)

The conclusion is then that a projection from the finite element space H1 with
basis functions in P1 and DoFs in the vertices, to the finite element space L2 with
a DoF in the centroid, on a strictly tetrahedral mesh is simply an average of the
four H1 DoFs. So, to perform the projection, all that is needed is a mapping from
each element Ti to its H1 DoFs, and a mapping to its L2 DoF.

Using the same element-to-DoF tables as in the gradient computation, as well
as a read-only pointer to the H1 DoFs and a write-only pointer to the L2 DoFs,
the projection can be performed using the kernel shown in Code listing 3.2 and
assigning one thread to each element.

With both the projection and gradient computation offloaded to GPU, we have
moved all the steps of the program, outlined in Figure 3.1, that take place after
assembly of the linear systems to the GPU. Instead of having to move the solutions
and gradients to and from the GPU, as we had to in the baseline implementation
shown in Figure 3.2, they now remain on the device. The execution flow and data
transfer now look like what is shown in Figure 3.5.

32 Iver Håkonsen: GPU-enabled LDRB

ŷ

ẑ

x̂

p̂0 = (0,0, 0)

p̂1 = (1,0, 0)

p̂2 = (0,1, 0)

p̂3 = (0,0, 1)

pi,0

pi,1

pi,2

pi,3 FTi

F−1
Ti

Figure 3.4: The affine transformations between the reference element, T̂ , and an
arbitrary element, Ti . The FTi

operator maps a point inside an arbitrary element
Ti to the corresponding point on the reference element T̂ . The F−1

Ti
operator maps

the other way, from the reference element onto Ti .

Code listing 3.2: GPU-enabled kernel for projection of scalar field from H1 to L2.

void project_h1_to_l2(
double *l2_vals, // Solution in L2
const double *h1_vals, // Solution in H1
const int ne, // Number of elements
const int *h1_table_col, // H1 element-to-DoF table columns
const int *h1_table_row, // H1 element-to-DoF table rows
const int *l2_table_col, // L2 element-to-DoF table columns
const int *l2_table_row) // L2 element-to-DoF tableorows

{
mfem::MFEM_FORALL(i, ne, {

const int *h1_dofs = &h1_table_row[h1_table_col[i]];
double avg = h1_vals[h1_dofs[0]] + h1_vals[h1_dofs[1]]

+ h1_vals[h1_dofs[2]] + h1_vals[h1_dofs[3]];
avg *= 0.25;
l2_vals[l2_table_row[l2_table_col[i]]] = avg;

});
}

Chapter 3: cardiac-fibers: LDRB on GPU 33

Assemble
Aφ = b

Copy A and
b to device

Solve
AφH1 = b Calculate ∇φ

Transfer
element-to-
DoF tables

and vertices

Project
φH1 → φL2

definefibers

Copy F , S and
T to device

H
os

t
Tr

an
sf

er
D

ev
ic

e

Figure 3.5: The execution and data transfer pattern when calculating fiber ori-
entations on a per-element basis, and offloading solving of the linear systems,
gradient computation, projection, and fiber calculation to the GPU, compared to
the baseline shown in Figure 3.2. For clarity, only one of the four solutions is con-
sidered, denoted by φ. In the case of ψab, the projection from H1 to L2 is not
necessary.

3.5.2 Per-vertex: Interpolate gradients to H1

As explained in Section 3.2, we have to transfer the values of the gradients to
each vertex if we want the final fibers to be defined per-vertex. The problem with
getting the gradients into H1 is that they are not well-defined. The gradients are
constant over each element, but technically undefined in the nodes. For this rea-
son, we have to estimate.

For every node in the mesh (H1 DoF), we look up which elements have this
node as one of its vertices. Then, we loop over each of these elements and set
the gradient in the node to be the average of the gradients in each element. The
mapping from each node i to the elements that have this node as a vertex is
obtained by the method Mesh::GetVertexToElementTable(). In addition to the
vertex-to-element table, we also need the mapping between each element index
i and the corresponding L2 DoF. This is the same table as used in the gradient
computation kernel and is therefore already in the device memory. With all the
needed information, the interpolation is performed using the GPU-enabled kernel
that shown in Code listing 3.3, by assigning one thread to each node/vertex of
the mesh.

With this part offloaded to the GPU, we get the same execution and data trans-
fer pattern as we got when computing fibers per-element as shown in Figure 3.5,
with the only difference being that the projection step is swapped out for the in-
terpolation explained here.

34 Iver Håkonsen: GPU-enabled LDRB

Code listing 3.3: GPU-enabled kernel interpolating a vector field from L2 to H1.

void interpolate_gradient_to_h1(
double *h1_vals, // Gradient in H1
const double *l2_vals, // Gradient in L2
const int nv, // Number of vertices
const int *v2e_table_col, // Vertex-to-element table columns
const int *v2e_table_row, // Vertex-to-element table rows
const int *l2_table_col, // L2 element-to-DoF table columns
const int *l2_table_row) // L2 element-to-DoF table rows

{
// We interpolate the gradients in a DoF ‘i‘ in H1 by taking the average of
// the gradients in the elements that ‘i‘ is a part of.
mfem::MFEM_FORALL(i, nv, {

// Find the elements connected to vertex i
const int *element_indices = &v2e_table_row[v2e_table_col[i]];

// The number of elements associated with vertex ‘i‘ is given by the
// distance between the index to the first element associated with ‘i‘
// and the index to the first element associated with ‘i+1‘. No need to
// worry about overflowing, as there are ‘nv+1‘ columns in ‘v2e_table_col.
const int num_elements = v2e_table_col[i+1] - v2e_table_col[i];

// Loop over all the elements associated with vertex ‘i‘, and set the
// gradient to the average of the element gradients
vec3 grad = {0};
for (int j = 0; j < num_elements; j++) {

// Find the L2 DoF of this element
const int l2_dof = l2_table_row[l2_table_col[element_indices[j]]];

// Get the gradient of this element.
vec3 element_grad = {

l2_vals[3*l2_dof+0],
l2_vals[3*l2_dof+1],
l2_vals[3*l2_dof+2],

};
grad += element_grad;

}
grad *= (1.0 / (double) num_elements);

h1_vals[3*i+0] = grad[0];
h1_vals[3*i+1] = grad[1];
h1_vals[3*i+2] = grad[2];

});
}

Chapter 3: cardiac-fibers: LDRB on GPU 35

3.6 Computing the fiber orientations

When we have the scalar field solutions to the Laplace-Dirichlet equations and
their gradients, both on the same space, the fiber orientations can finally be cal-
culated. As mentioned in Section 3.2, the fiber computation, which is performed
by implementing the definefibers function (Function 5, page 15), was targeted
for offloading to the GPU from the start. The reason is that the computations
needed are exactly the kind that the GPU is designed to perform well on: The
same operations performed on a large number of independent values.

We will now look at how the subroutines of definefibers are implemented.

3.6.1 Implementing the axis and orient functions

The axis and orient functions, defined in Function 2 and Function 3, respec-
tively, are straight forward to implement in code. The only change made in the
implementation is that the two matrices that are multiplied in orient to orient the
axis system created by axis so that it has the correct fiber angle (α) and sheet an-
gle (β) are merged into a single matrix, as the matrices are “constant”, depending
only on the evaluation of cos and sin of the angles.

The code implementing axis and orient is shown in Code listing A.5 and
Code listing A.6, respectively.

3.6.2 Implementing the bislerp function

The implementation of the bidirectional spherical linear interpolation (bislerp)
is mostly a straightforward translation of the pseudocode (Function 4, page 14)
to C++. The implementation is shown in Code listing 3.5 (page 37). There are
however some functions called by bislerp that we have not yet explained, namely
quat2rot, rot2quat, and slerp. The implementation of these three functions is,
as is also suggested in [6], based on the seminal paper “Animating Rotation with
Quaternion Curves” by Ken Shoemake [27].

The quat2rot function is used, as the name implies, to convert a quaternion
to its corresponding 3 × 3 rotation matrix. The implementation is based on the
formula in Section I.1 in Appendix 1 of [27]. The code implementing this function
is shown in Code listing A.7.

The rot2quat function performs the inverse of quat2rot, by converting a 3×3
rotation matrix to its corresponding quaternion. The implementation is based on
the pseudocode in Section I.2 in Appendix 1 of [27]. The code implementing this
function is shown in Code listing A.8.

The slerp function is the spherical linear interpolation routine that bislerp
wraps with some logic to fulfill bi-directionality. The function takes two quater-
nions, q1 and q2, and produces a quaternion that is the result of spherically inter-
polating between the two by a factor t ∈ [0, 1]. The implementation is mostly a
straightforward adaption of the formula in Section 3.3 of [27]. The implementa-
tion is shown in Code listing 3.4.

36 Iver Håkonsen: GPU-enabled LDRB

Code listing 3.4: Implementation of slerp, based on the formula in [27].
MFEM_DEVICE
static void slerp(quat& q, quat& q1, quat& q2, double t)
{

double dot = quat_dot(q1, q2);
// If the dot product is close to one, the angle approaches zero, and slerp
// reduces to a regular linear interpolation.
if (dot > 1-1e-12) {

// Slerp(q1, q2, t) = ((sin(1-t)*theta)/sin(theta))q1
// + ((sin(t)*theta)/sin(theta))q2
// where theta = acos(q1 dot q2)
const double angle = acos(dot);
const double a = sin(angle * (1-t))/sin(angle);
const double b = sin(angle * t)/sin(angle);

q2b = q2
q2b *= b;
q = qa;
q *= a;
q += q2b;

} else {
q = q1;
q *= (1-t);
quat q2t = q2;
q2t *= t;
q += q2t;

}
}

Chapter 3: cardiac-fibers: LDRB on GPU 37

Code listing 3.5: Implementation of bislerp, as presented in Function 4.

MFEM_DEVICE
void bislerp(mat3x3& Qab, mat3x3& Qa, mat3x3& Qb, double t)
{

// Translate the rotation matrices Qa and Qb into quaternions
quat qa = {0}, qb = {0};
rot2quat(qa, Qa);
rot2quat(qb, Qb);

// Find qm in { +qa, -qa, +i*qa, -i*qa, +j*qa,-j*qa, +k*qa, -k*qa}
// that maximizes | qm dot qb |
const double a = qa[0], b = qa[1], c = qa[2], d = qa[3];

// Calculate the Hamilton products with the basic quaternions i,j, and k by
// hand.
quat i_qa = {-b, a, -d, c};
quat j_qa = {-c, d, a, -b};
quat k_qa = {-d, -c, b, a};
quat minus_qa = {-a, -b, -c, -d};
quat minus_i_qa = {-i_qa[0], -i_qa[1], -i_qa[2], -i_qa[3]};
quat minus_j_qa = {-j_qa[0], -j_qa[1], -j_qa[2], -j_qa[3]};
quat minus_k_qa = {-k_qa[0], -k_qa[1], -k_qa[2], -k_qa[3]};

quat *quat_array[8] = {
&qa, &minus_qa, &i_qa, &minus_i_qa,
&j_qa, &minus_j_qa, &k_qa, &minus_k_qa,

};

quat qm = {0};
double max_abs_dot = -1.0;
for (int i = 0; i < 8; i++) {

quat *v = quat_array[i];
const double abs_dot = abs(quat_dot(*v, qb));
if (abs_dot > max_abs_dot) {

max_abs_dot = abs_dot;
qm = *v;

}
}

// We have found the candiate qm that requires the smallest rotation angle.
// Interpolate with slerp.
quat q = {0};
slerp(q, qm, qb, t);
quat_normalize(q);
quat2rot(Qab, q);

}

38 Iver Håkonsen: GPU-enabled LDRB

3.7 Heuristics for a more robust definition of fiber orien-
tations

With all the subroutines defined, the definefibers function (Function 5, page
15), which makes up the last part of the LDRB algorithm, could be implemented by
copying the pseudocode verbatim. However, when doing so, we observe fibers in
some vertices/elements that do not match the rules defined in [6], and that are vis-
ibly “unsmooth”. This is especially visible in the center of the RV free wall, where
the fibers point in seemingly random directions, which is shown in Figure 3.6a.
We found that a probable cause of this is when a gradient with a magnitude that
is approaching zero is used as the transmural component in an axis system that is
input to bislerp. For example, the misdirected fibers in the RV free wall are pro-
duced by first performing a bislerp between Qlv and Qrv to produce Qendo, which
is then used in a bislerp with Qepi to produce the final Qfiber. In this area, the
depth variable holds a value very close to one, and the first bislerp should yield
Qendo = Qlv. However, the gradient ∇φlv, which is used as the transmural com-
ponent of Qlv, is very small and points in a seemingly arbitrary direction, which
will cause even the slightest interpolation factor in bislerp to produce a wrong
result. Based on this observation, we have created a set of heuristics that mitigate
the use of gradients with small magnitudes in the interpolations.

(a) Without region heuristics (b) With region heuristics

Figure 3.6: The fibers generated with and without using region heuristics, on the
section of the RV free wall furthest away from the septum of the mesh heart02.
(a) shows the fibers that are generated when implementing Function 5 verbatim,
where the fibers in the middle of the wall are directed in seemingly random direc-
tions. (b) shows the fibers generated when using the added heuristics presented
here, which are smoothly interpolated from an angle αepi on the epicardium to
αendo on the endocardium when increasing the distance from the epicardium.

Chapter 3: cardiac-fibers: LDRB on GPU 39

We observe that in the septum, ∇φepi has a magnitude that approaches zero,
an observation that is also noted in [6]. Based on this information, we can use
||∇φepi||< ϵepi as a heuristic for when we are in the septum, for some small value
ϵepi. An example of using ϵepi = 0.01 as a threshold for the septum is shown in
Figure 3.7, where the septum is highlighted in red. When the heuristic is fulfilled,
we can simply set Qfiber =Qendo. Furthermore, the transmural vectors for Qlv and
Qrv are the same in the septum, which means that the bislerp used to find Qendo
is not needed, and we can set Qfiber to either of Qlv or Qrv.

The same effects take place in both the LV and RV free walls. In the LV free
wall, the direction of ∇φrv, which determines the transmural component of Qrv,
has a magnitude that approaches zero, but a direction that may affect Qendo when
interpolating between Qlv and Qrv. We can use ||∇φlv|| > ϵlv, ||∇φrv|| < ϵrv, and
||∇φepi|| > ϵepi as a heuristic for when we are in the LV free wall. An example of
using this heuristic with the thresholds ϵepi = 0.01, and ϵlv = ϵrv = 0.05 is shown
in Figure 3.7, where the region that fulfills the heuristic is highlighted in green.
Furthermore, when ∇φrv approaches zero, ∇φlv and ∇φepi are equal, but with
opposite signs. So, we can simply set Qfiber =Qepi.

As we saw in the introduction to this issue, the exact same argument can be
used for the RV free wall, but in this case, it is ||∇φlv|| that approaches zero.
The heuristic for the RV free wall is then that ||∇φrv|| > ϵrv, ||∇φlv|| < ϵlv, and
||∇φepi||> ϵepi. An example of using this heuristic with the thresholds ϵepi = 0.01,
and ϵlv = ϵrv = 0.05 is shown in Figure 3.7, where the region that fulfills the
heuristic is highlighted in yellow. As for the LV free wall, we can set Qfiber =Qepi.

If none of the three aforementioned heuristics are satisfied, then the point lies
in the junction between the septum, the LV free wall, and the RV free wall. The
region is shown in blue in Figure 3.7. In the junction, all the gradients have a
magnitude above their respective thresholds. For points in this region, we have to
use the full LDRB algorithm. The observation that the weighted averaging of axis
systems primarily occurs in this junction is also noted in [6].

We have adapted the implementation of definefibers function to use these
heuristics and observations about simplifications that can be made in some of the
regions. The code is shown in Code listing 3.6. The fibers generated for the right
ventricle after adding this adaptation are shown in Figure 3.6b. Note that what
values to use for ϵepi, ϵlv, and ϵrv will vary based on the gradients, which in turn
is affected by factors such as input geometry and wall thicknesses. The values
presented here are what we found worked well for this specific mesh.

A visualization of the generated longitudinal (F), sheet normal (S), and trans-
verse (T) fiber orientations for a whole biventricular mesh are shown in Fig-
ure 3.8, and a streamlined visualization of the longitudinal fiber orientation (F)
is shown in Figure 3.9.

40 Iver Håkonsen: GPU-enabled LDRB

||∇φepi||> ϵepi, ||∇φlv||> ϵlv, ||∇φrv||< ϵrv

||∇φepi||> ϵepi, ||∇φlv||< ϵlv, ||∇φrv||> ϵrv

||∇φepi||> ϵepi, ||∇φlv||> ϵlv, ||∇φrv||> ϵrv

||∇φepi||< ϵepi,

Figure 3.7: A visualization of the regions that are formed when using different
combinations of thresholds on the magnitude of the gradients as a heuristic for
location, on the mesh heart02. Here, the values ϵepi = 0.01 and ϵlv = ϵrv = 0.05
are used as the thresholds.

Chapter 3: cardiac-fibers: LDRB on GPU 41

(a) Fiber, F

(b) Sheet normal, S (c) Transverse, T

Figure 3.8: Fiber orientations generated by cardiac-fibers, using the fiber an-
gles αendo = 60◦ and αepi = −60◦, and sheet angles βendo = βepi = 0◦, on the
mesh heart02. The tolerances used for the region heuristics are ϵepi = 0.01, and
ϵlv = ϵrv = 0.05. Visualized using ParaView [26].

42 Iver Håkonsen: GPU-enabled LDRB

Code listing 3.6: Implementation of definefibers, as presented in Function 5.

void define_fibers(
int n,
const double *phi_epi, const double *phi_lv, const double *phi_rv,
const double *grad_phi_epi, const double *grad_phi_lv,
const double *grad_phi_rv, const double *grad_psi_ab,
double alpha_endo, double alpha_epi, double beta_endo, double beta_epi,
double *F, double *S, double *T,
const double eps_epi, const double eps_lv, const double eps_rv)

{
MFEM_FORALL(i, n,
{

// Clamp the Laplace-Dirichlet solutions to make sure they are in the
// range [0,1]
const double epi = CLAMP(phi_epi[i], 0.0, 1.0);
const double lv = CLAMP(phi_lv[i], 0.0, 1.0);
const double rv = CLAMP(phi_rv[i], 0.0, 1.0);

// Convert the gradients to ‘vec3‘ from the input 1D arrays.
vec3 grad_epi, grad_lv, grad_rv, grad_ab;
vec3_set_from_ptr(grad_epi, &grad_phi_epi[3*i]);
vec3_set_from_ptr(grad_lv, &grad_phi_lv[3*i]);
vec3_set_from_ptr(grad_rv, &grad_phi_rv[3*i]);
vec3_set_from_ptr(grad_ab, &grad_psi_ab[3*i]);

// Calculate the magnitude of the gradients so that we can do the region
// heuristics.
const double grad_epi_mag = vec3_magnitude(grad_epi);
const double grad_lv_mag = vec3_magnitude(grad_lv);
const double grad_rv_mag = vec3_magnitude(grad_rv);

// Calculate the depth. In the cases where it is ill-defined, e.g. along
// the epicardium, we just set it to 0, as it will not be used anyway.
double depth = (lv > 0 || rv > 0) ? rv / (lv + rv) : 0.0;

// Calculate the fiber and sheet angles for the septum and outer walls
const double alpha_s = alpha_endo*(1.0-depth) - alpha_endo*depth;
const double alpha_w = alpha_endo*(1.0-epi) + alpha_epi*epi;
const double beta_s = beta_endo*(1.0-depth) - beta_endo*depth;
const double beta_w = beta_endo*(1.0-epi) + beta_epi*epi;

mat3x3 Q_lv = {{{0}}};
{

vec3 grad_lv_neg = grad_lv;
vec3_negate(grad_lv_neg);

mat3x3 T = {{{0}}};
axis(T, grad_ab, grad_lv_neg);
orient(Q_lv, T, alpha_s, beta_s);

}

mat3x3 Q_epi = {{{0}}};
{

mat3x3 T = {{{0}}};
axis(T, grad_ab, grad_epi);
orient(Q_epi, T, alpha_w, beta_w);

}

Chapter 3: cardiac-fibers: LDRB on GPU 43

mat3x3 Q_fiber = {{{0}}};
// Use the established heuristics to find out where in the geometry we are
if (grad_epi_mag < eps_epi) {

// We are in the septum. Since the magnitude of ‘grad_epi‘ is
// under the threshold, we can assume that ‘grad_lv‘ and ‘grad_rv‘
// are equal but oppositely directed. Can therefore set the fiber
// orientations to ‘Q_lv‘ directly.
Q_fiber = Q_lv;

} else if (grad_epi_mag >= eps_epi
&& grad_lv_mag >= eps_lv
&& grad_rv_mag < eps_rv) {

// We are in the LV free wall. Since the magnitude of ‘grad_rv‘ is
// under the threshold, we can assume that ‘grad_lv‘ and ‘grad_epi‘
// are equal but oppositely directed. We can not use ‘Q_lv‘ for the
// fibers, as it is not oriented with the epicardial angles, but
// ‘Q_epi‘ is.
Q_fiber = Q_epi;

} else if (grad_epi_mag >= eps_epi
&& grad_lv_mag < eps_lv
&& grad_rv_mag >= eps_rv) {

// We are in the RV free wall. Since the magnitude of ‘grad_lv‘ is
// under the threshold, we can assume that ‘grad_rv‘ and ‘grad_epi‘
// are equal but oppositely directed. We can not use ‘Q_rv‘ for the
// fibers, as it is not oriented with the epicardial angles, but
// ‘Q_epi‘ is.
Q_fiber = Q_epi;

} else {
// We are in the junction between the septum and the LV and RV free
// walls, or in some other place where the heuristics don’t apply.
// All the gradients (transmural) vectors are big enough to matter,
// so we have to apply the full algorithm.
mat3x3 Q_rv = {{{0}}};
{

mat3x3 T = {{{0}}};
axis(T, grad_ab, grad_rv);
orient(Q_rv, T, alpha_s, beta_s);

}
mat3x3 Q_endo = {{{0}}};
bislerp(Q_endo, Q_lv, Q_rv, depth);
bislerp(Q_fiber, Q_endo, Q_epi, epi);

}

// Set the output arrays (F S T) = Q_fiber
F[3*i+0] = Q_fiber[0][0];
F[3*i+1] = Q_fiber[1][0];
F[3*i+2] = Q_fiber[2][0];
S[3*i+0] = Q_fiber[0][1];
S[3*i+1] = Q_fiber[1][1];
S[3*i+2] = Q_fiber[2][1];
T[3*i+0] = Q_fiber[0][2];
T[3*i+1] = Q_fiber[1][2];
T[3*i+2] = Q_fiber[2][2];

});
}

44 Iver Håkonsen: GPU-enabled LDRB

Figure 3.9: Streamlined visualization of fibers generated by cardiac-fibers on
the mesh heart02. The fibers are the same as the ones shown in Figure 3.8a, but
are visualized using ParaView’s StreamTracer filter, which generates streamlines
from a vector field.

Chapter 4

Results

In this chapter, we will dive into the numerical results from benchmarking of
cardiac-fibers, the GPU-enabled implementation of the LDRB algorithm that
was presented in Chapter 3. We will begin by presenting the experimental data
that is used, as well as the hardware and software that is used. We will then look
at the numerical results related to the performance when processing the experi-
mental data.

4.1 Experimental data and environment

This section describes the data that is used in the experiments, what hardware
and software is used, how the timing of the experiments is performed, as well as
some information about the job setup.

4.1.1 Experimental data

The meshes used in the experiments were generated by using Gmsh [33]. The raw
data used to generate the meshes is from the dataset published alongside [49], a
study on acute myocardial ischemia. The meshes are generated with characteristic
length parameters from 5 mm down to 0.09 mm, which is used to set the desired
size for the mesh edges in Gmsh. In practice, Gmsh is not always able to produce
the desired edge lengths, but they will be close. The generated meshes are de-
scribed in Table 4.1, with information about the (desired) edge length, number
of vertices, and number of elements. The mesh named heart02 in the table is the
mesh that has been used in all the figures involving a biventricular heart shown
previously in this thesis.

4.1.2 Hardware and software configuration

To compare the performance of the fiber computation on the GPU with running
only on the CPU, three different setups were used, using either AMD GPUs, NVIDIA

45

46 Iver Håkonsen: GPU-enabled LDRB

Table 4.1: Meshes used in the numerical experiments, which are generated from
the dataset published alongside [49].

Mesh Edge length [mm] Vertices Elements

heart01 5.00 1571 4717
heart02 1.00 46421 210101
heart03 0.50 307679 1 607708
heart04 0.40 560180 3 031704
heart05 0.30 1288 388 7 205076
heart06 0.20 4066 503 23 595379
heart07 0.15 9400 914 55 603164
heart08 0.10 30865 049 186 274337
heart09 0.09 42093 384 255 047053

GPUs, or only CPUs. All benchmarks were run on eX3, an experimental, heteroge-
neous computational cluster for research in high-performance computing 1. The
same versions of libraries needed by cardiac-fibers are used in all three config-
urations. These are MFEM 4.5, hypre 2.25.0, METIS 5.1.0, and OpenMPI 4.1.4. We
compile cardiac-fibers with the -O3 and --march=native optimization flags for
the milanq and mi210q. Due to instabilities in the timing when using these flags
for the hgx2q build, they are omitted. Note that this only affects the host side code,
as the device code still gets the -O3 flag by default, and that the libraries are built
with the same optimization flags as for milanq and mi210q.

milanq on eX3

The four nodes of the milanq partition were used for the CPU-runs on eX3. Just
like the mi210q, each node has two AMD Epyc™ 7763 64-core processors, resulting
in a total of 512 available cores across the four nodes.

The 7763 processor is part of the Epyc™7003 series of processors. It is a 64-
core processor with 128 hardware threads. It has a base frequency of 2.45 GHz,
and a max boost frequency of 3.50 GHz. It has an L3 cache size of 256 MB, and
8 DDR channels. The per-socket theoretical memory bandwidth is 204.8 GB/s. It
has 128 PCIe Gen 4 lanes. [50]

In this configuration, cardiac-fibers is compiled with the mpic++ compiler
from OpenMPI 4.1.4. The MFEM build script for this configuration is shown in
Code listing B.3.

In the tables and figures following in the rest of this chapter, this configuration
will be referred to as CPU-*, where * is substituted with the number of cores used.

1https://www.ex3.simula.no/

https://www.ex3.simula.no/

Chapter 4: Results 47

mi210q on eX3

The two nodes of the mi210q partition were used for AMD GPU-runs on eX3. Each
node has two AMD Instinct™ MI210 GPUs and one AMD Epyc™ 7763 64-core
processor, for a total of 256 available cores and four available GPUs across the
two nodes.

The MI210 GPU has 104 compute units and 6656 stream processors. It has
64 GB of memory, a memory clock of 1.6 GHz, and a peak memory bandwidth
of 1.6 TB/s. The bus interface has both PCIe Gen 3 and Gen 4 support. The peak
operations per second for the different floating point data types on the MI210 GPU
are shown in Table 4.2. [51]

The achievable bandwidth, measured using the TRIAD benchmark in Babel-
Stream [52], is 1288 GB/s.

In this configuration, cardiac-fibers is compiled with hipcc and uses the
libraries from ROCm version 5.1.3. The MFEM build script for this configuration
is shown in Code listing B.1.

In the tables and figures following in the rest of this chapter, this configuration
will be referred to as MI210-*, where * is substituted with the number of GPUs
used.

Table 4.2: Peak operations per second for the different floating point data types
on the AMD MI210 GPU

Data type Peak ops/second

FP64/FP32 Vector 22.6 TFLOPS
FP64/FP32 Matrix 45.3 TFLOPS
FP16 181.0 TFLOPS

hgx2q on eX3

The single node of the hgx2q partition was used for NVIDIA GPU-runs on eX3. The
node has eight NVIDIA A100 GPUs and one AMD Epyc™ 7763 64-core processor,
for a total of 256 available cores. Due to availability, we only use up to four GPUs.

The A100 GPU has 80 GB of memory, a memory clock of 1.512 GHz, and a
peak memory bandwidth of 2.039 TB/s. The bus interface has both PCIe Gen 3
and Gen4 support. The peak operations per second for the different floating point
data types on the A100 GPU is shown in Table 4.3. [53]

The achievable bandwidth, measured using the TRIAD benchmark in Babel-
Stream [52], is 1768 GB/s.

In this configuration, cardiac-fibers is compiled with nvcc and uses the li-
braries from Cuda Toolkit version 11.8.0. The MFEM build script for this configu-
ration is shown in Code listing B.2.

In the tables and figures following in the rest of this chapter, this configuration
will be referred to as A100-*, where * is substituted with the number of GPUs used.

48 Iver Håkonsen: GPU-enabled LDRB

Table 4.3: Peak operations per second for the different floating point data types
on the NVIDIA A100 GPU

Data type Peak ops/second

FP64 9.7 TFLOPS
FP64 Tensor Core 19.5 TFLOPS
FP32 19.5 TFLOPS

Code listing 4.1: Timing technique used in numerical experiments, exemplified
with the pattern used when timing a function that launches a GPU kernel.

double duration(struct timespec t0, struct timespec t1)
{

return (t1.tv_sec - t0.tv_sec) + (t1.tv_nsec - t0.tv_nsec) * 1e-9;
}

void tick(struct timespec *t, bool barrier, bool device_barrier)
{

if (device_barrier)
MFEM_DEVICE_SYNC; // [cuda|hip]DeviceSynchronize

if (barrier)
MPI_Barrier(MPI_COMM_WORLD);

clock_gettime(CLOCK_MONOTONIC, t);
}

void foo(...)
{

struct timespec t0, t1;
tick(&t0, /* MPI barrier */ true, /* device barrier */ false);
this_function_launches_a_GPU_kernel(...);
tick(&t1, /* MPI barrier */ true, /* device barrier */ true);

}

4.1.3 Timing

When timing the sections of interest in the code, we have to make sure that any
kernel launched on a GPU is actually finished executing, not just finished launch-
ing. We also have to make sure that when we run in parallel with multiple MPI
processes, all the processes are done executing. Therefore, the timing of all code
that may launch a GPU kernel has an MFEM_DEVICE_SYNC after it, to make sure
that any launched kernels are done, and an MPI_Barrier, to make sure all ranks
have reached the same points. Timing is only reported by rank 0. The code used
to achieve this is illustrated in Code listing 4.1.

4.1.4 Job setup

All benchmarks were run using the SLURM [54] job scheduler. To make sure there
is as little interference from other processes as possible, all jobs were run with the
--exclusive flag to make sure no other jobs are running on the allocated nodes.

Chapter 4: Results 49

To make sure processes do not get moved between different physical cores by the
operating system scheduler during the run, all processes are bound to cores with
the --cpu-bind=rank flag, meaning rank 0 is bound to core 0, rank 1 to core 1,
and so on. This also has the effect of binding each rank to a physical core, so that
no two ranks use the two hardware threads of the same physical core, in the case
of the 7763 processor.

The binding of the available GPUs is done by setting the ROCR_VISIBLE_DEVICES
environment variable. In the case where multiple processes share a smaller num-
ber of GPUs, the GPUs are divided among the processes in such a way that the
first n = #Procs/#GPUs are assigned to the GPU with ID 0, the next n to the GPU
with ID 1, and so on.

4.2 Numerical results

In this section, we will look at the results of when running cardiac-fibers on
the presented experimental data in the different hardware configurations. We will
first look at the performance of the implementation of the algorithm as a whole.
We do not consider the time spent loading meshes from disk or saving the results.
We compare to an existing implementation, ldrb. After that, we look at where
time is spent when running cardiac-fibers on CPU versus on GPU. We then
consider what effect there is from increasing the number of cores in use. From
there on, focus is mainly put on the separate parts of the algorithm that have
been successfully transferred over to GPU, and compare the performance with
the results obtained when running on GPU versus CPU. We will be considering
fiber generation on a per-element basis in all experiments.

4.2.1 Performance of the full algorithm

As a baseline, we compare the single core performance of the full algorithm, be-
tween our implementation (cardiac-fibers) and ldrb. We do not consider the
time spent loading the input mesh, nor the time spent saving the results, only the
steps that are outlined in Algorithm 1. We use ldrb version 2022.5.0 with FEniCS
verison 2019.1.0.post0. Only heart01-06 are considered, as ldrb fails to process
any larger meshes. All runs are using a single core of the 7763 processor on the
milanq partition of eX3. The results are shown in Table 4.4. The source code used
for the ldrb runs is shown in Code listing A.9. The single-core performance of
cardiac-fibers is better than that of ldrb for all the considered meshes, with a
minimal speedup of ∼ 15x.

The factors that play into why our implementation is faster are many, but two
of the main ones are that ldrb is written in Python, an interpreted language,
and the fact that it uses a direct solver, SuperLU, to solve the Laplace-Dirichlet
equations.

If we consider the total run time of our implementation of the LDRB algorithm,
we can split it into seven parts. The first part is the time that is spent setting up

50 Iver Håkonsen: GPU-enabled LDRB

Table 4.4: Comparison of the single core performance of ldrb and cardiac-
fibers on the Epyc 7763 processor.

ldrb [s] cardiac-fibers [s] Speedup

heart01 3.74 0.05 74.8
heart02 47.60 1.96 24.29
heart03 404.57 26.74 15.13
heart04 859.70 57.16 15.04
heart05 2652.48 159.06 16.68
heart06 18910.68 757.38 24.97

finite element spaces, allocating buffers, and so forth. The second part is the time
spent assembling linear and bilinear forms of the Laplace-Dirichlet equations. The
third part is the time spent forming linear systems from the linear and bilinear
forms. The fourth part is the time spent solving the linear systems. The fifth part
is the time spent computing the gradients of the solutions. The sixth part is the
time spent projecting the solutions. The final part is the time spent doing the actual
fiber calculations.

Table 4.5 shows the portions of time that is spent in each of these seven parts
when processing heart09 on a single core. Most of the time is spent in the assem-
bly (35.03%) and solve (54.27 %) parts. The same table shows the time spent
in each part when running on a single core while also using one GPU. In that
case, the solve step has been offloaded to the GPU, and the time spent in solve is
therefore substantially reduced (2.18%). Most of the remaining time is spent in
assembly (85.25 %), a part of the program that is not offloaded to the GPU, and
the time spent in this step is more or less equal to what we get when running only
on a single core. We look at the solve step in more detail later in this section. Note
that had we not been reusing the linear and bilinear forms in the first three linear
systems, both the assemble part and form linear system part would take twice as
long.

Next, we look at the performance of the full algorithm when increasing the
number of cores used on milanq. For this, we consider the largest available mesh,
heart09. The run time, strong scaling, and efficiency when running on 1 through
512 cores is shown in Table 4.6. On one core the full algorithm takes 12059 sec-
onds, roughly 3 hours and 21 minutes. The fastest run, using 512 cores, takes
roughly 32 seconds, resulting in a speedup of ∼ 378x. Overall, the algorithm
shows good scalability, with a parallel efficiency ranging from 0.6 to 0.8 for all
core counts.

4.2.2 Forming of linear systems

As Table 4.6 shows, there is a speedup of 1.16 when going from one to two cores,
which equates to an efficiency of 0.66. Ideally, doubling the number of cores

Chapter 4: Results 51

Table 4.5: Run time of separate parts of the full algorithm on heart09 when using
a single core and when using a single MI210 GPU.

Part
CPU-1 MI210-1

Time [s] % of total Time [s] % of total

Setup 382.34 3.2 % 361.22 7.2 %
Assemble 4224.24 35.0 % 4276.67 85.3 %
Form 616.97 5.1 % 257.77 5.1 %
Solve 6544.12 54.3 % 109.47 2.2 %
Gradient 145.49 1.2 % 1.42 0.0 %
Projection 22.07 0.2 % 0.28 0.0 %
Fiber 111.79 0.9 % 0.11 0.0 %
Others 11.92 0.1 % 9.92 0.2 %
Total 12058.95 100 % 5016.86 100 %

Table 4.6: Strong scaling of the full algorithm on heart09.

Time [s] Speedup Efficiency

CPU-1 12058.95 1 1
CPU-2 9221.92 1.31 0.66
CPU-4 4724.00 2.55 0.64
CPU-8 2687.93 4.49 0.56
CPU-16 1243.71 9.70 0.61
CPU-32 576.81 20.91 0.65
CPU-64 295.45 40.82 0.64
CPU-128 134.78 89.47 0.70
CPU-256 56.14 214.80 0.84
CPU-512 31.84 378.73 0.74

52 Iver Håkonsen: GPU-enabled LDRB

should approximately halve the size of each process’ submesh, and we should see a
doubling in performance. In practice, however, we actually see a slowdown in some
parts of the algorithm when going parallel, which causes a far-from-ideal speedup.
The most significant slowdown is in the forming of the four linear systems. This is
done in the FormLinearSystem method of the left-hand side BilinearForm, which
applies transformations to the linear system, such as the elimination of boundary
conditions. When running on one core, approximately 5.25% of the time is spent
forming linear systems. When going to two cores, this portion bumps up to 40.4%,
and the time it takes to form all the linear systems increases almost by a factor of 6.
This portion is reduced as the number of cores is increased, as shown in Table 4.7.
Note that the forming of the linear systems for φlv and φrv are practically free, as
the already assembled left and right-hand sides are reused. This is the first part
where we see a proper gain from offloading to GPU. When running on GPU, there
is no reduction in performance when going from one to two processes/GPUs.

Table 4.7: Time spent in forming of the four linear systems

Cores
Form linear system [s]

% of total
φepi φlv φrv ψab Sum

CPU-1 321.52 0.87 0.83 312.91 636.13 5.25 %
CPU-2 1867.92 0.43 0.43 1860.86 3729.64 40.44 %
CPU-4 970.52 0.23 0.24 968.19 1939.18 41.05 %
CPU-8 421.18 0.18 0.18 420.24 841.78 31.32 %
CPU-16 171.79 0.10 0.10 170.65 342.64 27.55 %
CPU-32 70.87 0.06 0.06 71.26 142.25 24.66 %
CPU-64 29.60 0.05 0.05 31.22 60.92 20.62 %
CPU-128 22.62 0.02 0.02 22.69 45.35 33.65 %
CPU-256 4.26 0.01 0.01 4.21 8.49 15.12 %
CPU-512 1.60 0.01 0.01 1.73 3.35 10.52 %

MI210-1 134.00 0.23 0.23 123.85 258.31 5.15 %
MI210-2 61.34 0.07 0.08 55.60 117.09 5.15 %
MI210-4 27.71 0.04 0.04 25.88 53.67 5.04 %

4.2.3 Solving the linear systems

The rest of this section will be spent on the results related to the parts of the
program that are GPU-enabled, starting with the solving of the linear systems
representing the Laplace-Dirichlet equations. First, we consider the speedup of
the solves when running on CPU on milanq, by looking at the speedup obtained
when increasing the number of cores compared to single-core performance, when
running on heart09. The results are shown in Figure 4.1. As the figure shows,
we get a linear speedup when increasing to two and four cores. From 8 through
64 cores, there is a sublinear speedup. For 128, 256, and 512 cores, the speedup

Chapter 4: Results 53

is close to linear again, at least for φlv and φrv. The superlinear speedup when
doubling from 64 to 128 cores could be attributed to the fact that we go from
using one to two sockets and therefore double the amount of available cache. The
faster solve times for φlv and φrv when using 256 and 512 cores may be related
to the fact that the left-hand side matrix from solving φepi is reused, and that we
have enough cache when using four and eight sockets so that it is already hot in
cache from solving φepi. As the left-hand side changes when solving forψab, there
is an expected reduction in performance.

1

2

4

8

16

32

64

128

256

512

1 2 4 8 16 32 64 128 256 512

Sp
ee

du
p

Number of cores

φepi
φlv
φrv
ψab

Figure 4.1: Speedup of CPU solve times on heart09 compared to one core.

Next, we look at the performance when solving the linear systems on GPU.
Again, we compare with one socket on heart09. The speedups are shown in Fig-
ure 4.2. When using one GPU, we see a speedup of ∼ 1.5x across all four linear
systems. When going to two GPUs, we get a speedup of ∼ 2.7x, and using four
GPUs we get ∼ 5.0x. So, we see a slightly sublinear speedup when increasing the
number of GPUs. This may be attributed to the fact that solving the linear systems
requires GPU-to-GPU communication. Unlike for the milanq runs with high core
counts, we do not see any large differences in the run times across the four linear
systems for any of the GPU runs, which makes sense when we consider the fact
that there is no global caching of the left and right-hand sides.

4.2.4 Computing gradients

We first compare the difference between the naive implementation, outlined in
Code listing A.3, and the kernel written with GPU execution in mind, Code list-
ing 3.1. Even though the reason for writing the gradient calculations by hand
rather than using the functionality MFEM was to run on the GPU, and not nec-
essarily to speed up the CPU version, we suspect that it will also be faster on the

54 Iver Håkonsen: GPU-enabled LDRB

1

2

4

8

16

CPU-64 CPU-128 CPU-256 CPU-512 MI210-1 MI210-2 MI210-4

Sp
ee

du
p

φepi
φlv
φrv
ψab

1

2.
86

3.
84 4.

84

1.
51

2.
64

5.
07

1

2.
90

6.
22

10
.5

7

1.
55

2.
71

5.
04

1

2.
79

6.
18

11
.1

9

1.
47

2.
67

5.
04

1

2.
84

4.
94

7.
21

1.
62

2.
84

5.
47

Figure 4.2: Speedup of CPU and GPU solve times on heart09 compared to one
socket (64 cores).

CPU. Table 4.8 shows the “naive” implementation compared to the handwritten
one when calculating the gradient ∇φrv, running on heart09 with 1 through 64
cores. As the table shows, the handwritten implementation has a minimal speedup
of∼ 2.6x. Backed by these results, we choose to use the handwritten gradient ker-
nel when running on the CPU only as well.

Table 4.8: Naive versus improved implementation of calculation of ∇φrv on
heart09.

Naive [s] Improved [s] Speedup

CPU-1 190.396 36.477 5.22
CPU-2 95.059 16.602 5.73
CPU-4 47.386 8.299 5.71
CPU-8 22.374 6.418 3.49
CPU-16 11.912 3.264 3.65
CPU-32 6.144 1.751 3.51
CPU-64 3.510 1.354 2.59

Next, we consider the performance when doing the gradient computations
on GPU. Again, we compare the performance of one through four MI210 GPUs
with multiples of the socket size of the Epyc 7763 processor, when running on
heart09. The speedups are shown in Figure 4.3. One MI210 GPU gets ∼ 3.75x
speedup compared to one socket, and when we increase the number of GPUs we
get a linear speedup. The speedup when increasing the number of CPU sockets is

Chapter 4: Results 55

superlinear, with eight sockets (512 cores) seeing a speedup of up to ∼ 41x. This
may be attributed to the increased cache size or the increased amount of memory.

1

2

4

8

16

32

64

CPU-64 CPU-128 CPU-256 CPU-512 MI210-1 MI210-2 MI210-4

Sp
ee

du
p

∇φepi
∇φlv
∇φrv
∇ψab

1

2.
67

9.
49

28
.9

3

3.
76

7.
46

15
.0

0

1

2.
67

10
.0

1

31
.6

3

3.
80

7.
50

15
.3

3

1

2.
66

9.
92

39
.9

6

3.
77

7.
49

15
.2

0

1

2.
66

10
.0

3

41
.2

6

3.
75

7.
56

15
.2

7

Figure 4.3: Speedup of CPU and GPU gradient computations on heart09 com-
pared to one socket (64 cores).

4.2.5 Projecting the solutions

Just like with the gradients, the reason for hand-writing a kernel to do projection
was not to get speedup on CPU, but rather to make it possible to run on GPU.
But, the same argument can be used as with the gradients, and we would expect
a speedup when compared to the “naive” implementation in MFEM. Table 4.9
shows the speedup of the handwritten kernel when performing the projection of
φrv, running on 1 through 64 cores on heart09. The handwritten implementation
has a minimal speedup of ∼ 10x compared to the naive. As with the gradient
kernel, we choose to use the handwritten projection kernel when running only on
the CPU as well.

Next, we consider the performance when doing the projections on GPU. Again,
we compare the performance of one through four MI210 GPUs with multiples
of the socket size of the Epyc 7763 processor, when running on heart09. The
speedups are shown in Figure 4.4. The speedup when increasing the number of
sockets used is superlinear, with eight sockets (512 cores) seeing a speedup of
up to 16x. This may be attributed to the increased cache size or the increased
amount of memory. One MI210 GPU gets 1.75x speedup compared to one socket,
and when we increase the number of GPUs we get a linear speedup.

56 Iver Håkonsen: GPU-enabled LDRB

Table 4.9: Naive versus improved implementation of the projection of φrv on
heart09.

Naive [s] Improved [s] Speedup

CPU-1 140.141 6.889 20.34
CPU-2 69.321 3.373 20.55
CPU-4 34.493 1.789 19.28
CPU-8 16.208 1.569 10.33
CPU-16 8.521 0.725 11.75
CPU-32 4.169 0.336 12.41
CPU-64 2.355 0.164 14.36

1

2

4

8

16

CPU-64 CPU-128 CPU-256 CPU-512 MI210-1 MI210-2 MI210-4

Sp
ee

du
p

φepi
φlv
φrv

1

2.
43

7.
04

16
.1

2

1.
75

3.
54

7.
35

1

3.
53

7.
46

12
.1

4

1.
75

3.
53

7.
32

1

3.
40

7.
28

11
.1

9

1.
74

3.
52

7.
24

Figure 4.4: Speedup of CPU and GPU projections on heart09 compared to one
socket (64 cores).

Chapter 4: Results 57

4.2.6 Defining the fibers

We now look to the final part of the algorithm, definefibers, which is where
the actual fiber computation takes place. Again, we compare the performance of
one through four MI210 GPUs with multiples of the socket size of the Epyc 7763
processor, when running on heart09. Table 4.10 shows the run time, number
of elements processed per second, and the speedup compared to one socket (64
cores).

The fastest CPU run, using 512 cores, obtains a peak throughput of 1039 ·106

elements per second, for a total run time of 0.246 seconds on heart09. Peak per-
formance is obtained when running on four MI210 GPUs, where we get a through-
put of 9073 · 106 elements per second, for a total run time of 0.028 seconds on
heart09.

Table 4.10: CPU and GPU performance of definefibers on heart09.

Time [s] Melem/s Speedup

CPU-64 2.062 123.67 1.00
CPU-128 0.988 258.15 2.09
CPU-256 0.518 492.35 3.98
CPU-512 0.246 1038.79 8.40

MI210-1 0.108 2367.40 19.14
MI210-2 0.054 4732.21 38.27
MI210-4 0.028 9073.18 73.37

4.2.7 Multiple processes per GPU

The results presented show that there is a performance gain running the parts
that are able to run on GPU. But, as Table 4.5 shows, the majority of the time
spent after offloading these parts to the GPU is in the assembly of the linear and
bilinear forms (85.25%), which still has to happen on the host. This would be a
natural part of the program to try to move to the GPU in an attempt to reduce the
run time of the full algorithm. But, MFEM does not currently support assembly on
GPU for simplex (tetrahedral) elements.

Another way to reduce the time spent in the parts of the program that run
host side is to increase the number of processes per GPU, where each process gets
a dedicated core. When increasing the number of processes, we hopefully get a
speedup of the parts of the program that run on the host (assembly, setup), and
at the same time not get a slow-down in the parts that run on the GPU. The run
time of the separate parts of the full algorithm on heart09 when using 1, 2, 4,
and 8 processes sharing one GPU are shown in Table 4.11. The table reflects what
we suspected. Setup, assembly, and forming of linear systems largely see an ideal
speedup when increasing the number of processes. In the case of assembly, it is

58 Iver Håkonsen: GPU-enabled LDRB

even superlinear, with 8 cores getting a speedup of 9.64x compared to one core.
At the same time, we see that the time spent on parts that are running on the GPU,
i.e., solve, gradient computation, projection, and fiber calculation, stays constant.
In some cases, like for the solve, there is even a slight speedup, which may be
attributed to the increased number of cores being able to hide the NUMA effects.

Table 4.11: Run time of separate parts of the full algorithm on heart09 when
using multiple processes sharing one GPU.

Part
MI210-1, 1 process MI210-1, 2 processes

Time [s] % of total Speedup Time [s] % of total Speedup

Setup 361.22 7.20 % 1 178.59 7.64 % 2.02

Assemble 4276.67 85.25 % 1 1921.84 82.23 % 2.23

Form 257.77 5.14 % 1 122.41 5.24 % 2.11

Solve 109.47 2.18 % 1 107.69 4.61 % 1.02

Gradient 1.42 0.03 % 1 1.42 0.06 % 1.00

Projection 0.28 0.01 % 1 0.29 0.01 % 0.97

Fiber 0.11 0.00 % 1 0.11 0.00 % 1.00

Others 9.92 0.20 % – 4.66 0.20 % –

Total 5016.86 100 % 1 2337.01 100 % 2.15

MI210-1, 4 processes MI210-1, 8 processes

Time [s] % of total Speedup Time [s] % of total Speedup

Setup 83.36 7.20 % 4.33 40.98 6.56 % 8.81

Assemble 902.19 77.89 % 4.74 443.7 71.04 % 9.64

Form 65.47 5.65 % 3.94 36.8 5.89 % 7.00

Solve 103.42 8.93 % 1.06 100.65 16.12 % 1.09

Gradient 1.33 0.11 % 1.07 1.30 0.21 % 1.09

Projection 0.27 0.02 % 1.04 0.26 0.04 % 1.08

Fiber 0.11 0.01 % 1.00 0.12 0.02 % 0.92

Others 2.10 0.18 % – 0.75 0.12 % –

Total 1158.25 100 % 4.33 624.56 100 % 8.03

Our experiments with increasing the number of processes per GPU show that
we can use two, four, or eight processes without any reductions in performance
in the parts of the program that are offloaded to the GPU, as shown in Table 4.11.
Attempts to double once more, for a total of 16 processes per GPU, effectively
stalls when solving the linear systems. No further investigation into the reason for
why this happens has been conducted.

Chapter 4: Results 59

4.2.8 Comparing performance between AMD and NVIDIA GPUs

Finally, we would like to see how the performance compares when using GPUs
from different vendors. For this, we compare the AMD MI210 GPUs from the
mi210q configuration with the NVIDIA A100 GPUs from the hgx2q configuration.

We compare the performance by looking at the run time of the main GPU-
enabled parts of the program. That is the solves, gradient computations, projec-
tions, and the final fiber computation. We run on heart07, using one GPU in each
run. The results are shown in Table 4.12. In the gradient, projection, and fiber
computation kernels, the performance of the A100 is close to that of the MI210,
with the A100 seeing an average speedup of ∼ 1.14x. Based purely on the hard-
ware specifications, we would expect the A100 to perform better than the MI210
on bandwidth-limited tasks, as it has a ∼ 30% higher theoretical maximum band-
width.

In solving of the linear systems, the A100 performs ∼ 2.2x better on average
in the solving of the linear systems. This may be partly attributed to the increased
bandwidth. Another reasonable cause is that the sparse linear algebra libraries
used on the A100, cuSPARSE, may be more highly optimized than rocSPARSE,
which is used on the MI210.

Table 4.12: Run time of the main GPU-enabled parts of the program when run-
ning on heart07 with one AMD MI210 GPU versus one NVIDIA A100 GPU.

Step MI210-1 [s] A100-1 [s] Speedup

Solve φepi 5.4447 2.2922 2.38
φlv 5.3836 2.3617 2.28
φrv 5.2754 2.1458 2.46
ψab 6.1407 3.6928 1.66

Gradient ∇φepi 0.0780 0.0719 1.08
∇φlv 0.0769 0.0533 1.44
∇φrv 0.0771 0.0610 1.26
∇ψab 0.0766 0.0691 1.11

Project φepi 0.0195 0.0177 1.10
φlv 0.0195 0.0199 0.98
φrv 0.0194 0.0200 0.97

definefibers 0.0244 0.0208 1.17

Chapter 5

Discussion

In this chapter, we will discuss some key numerical results presented in Chapter 4,
as well as some aspects of our implementation of the LDRB algorithm presented
in Chapter 3.

5.1 Assembly of the linear systems

As presented in Subsection 4.2.1, most of the time is spent in the assembly of the
linear systems after all the subsequent parts of the algorithm have been offloaded
to the GPU. In Subsection 4.2.7 we looked at how the time spent in the CPU-
bound assembly can be reduced by increasing the number of processes/cores and
having them share the GPU for the offloaded parts. The results show that we got
the expected speedup in the CPU-bound parts, and saw the same performance, or
even some speedup, in the parts running on the GPU. However, this is done only
because we try to mitigate the fact the assembly is not being done on the GPU.

MFEM does offer some assembly levels and techniques that can be performed
directly on the GPU. One such level is what is called “FULL” in the MFEM ter-
minology, where a global sparse matrix is assembled on the GPU. Another as-
sembly method is the “ELEMENT” form, where the left-hand side is stored as
element-level dense matrices, which supposedly should store the data in a more
GPU-friendly format. However, these techniques are currently only supported for
tensor-product elements (quads and hexes), and not for tetrahedral elements, as
we have limited ourselves to in our implementation. [55]

Theoretically, there is no requirement for the element type to support tensor
products in order for it to be possible to do the assembly on GPU, and research has
been published on efficient ways to do GPU-based assembly on simplex meshes.
For example, in [56] the authors present a technique for GPU-based assembly of
arbitrary polynomial order finite elements, which uses the restriction of simplex
elements to derive combinatorial equations that allow for exact allocation of the
sparse matrix, and directly assemble into the matrix on GPU.

61

62 Iver Håkonsen: GPU-enabled LDRB

5.2 Solving the linear systems

In Subsection 4.2.1 we compared the performance of the full algorithm when
using the ldrb implementation against our own implementation, where we saw
a minimal speedup of ∼ 15x. We briefly mention the use of the SuperLU solver in
ldrb as one of the possible reasons why our implementation is faster. Although we
do not have benchmarks of just the solve phase, we can assume that one of the
contributions to its lower performance is the solver,. Solving the linear systems
this way requires LU-factorization, which in turn requires fill-ins of the upper and
lower triangular factors. This fill-in may require an order of magnitude or more
memory than just storing the non-zeros, which may contribute to why ldrb is not
able to process meshes larger than heart06.

In Subsection 4.2.3 we saw the performance when using the BoomerAMG pre-
conditioner and PCG solver to solve the linear systems on one MI210 GPU is com-
parable to using between one and two sockets of the Epyc 7763 processor. We also
observed that when we increase the number of GPUs, we get a slightly sublinear
speedup, which we can attribute to the introduction of GPU-to-GPU communica-
tion needed when using more than one GPU. We will now look at the results in
light of what has been observed by others, and then look at some possible areas
of improvement.

In [45], the authors investigate the performance of using the BoomerAMG
preconditioner and PCG solver on a 7-point 3D finite difference Laplace problem.
The performance of four NVIDIA V100 GPUs is compared to 40 MPI tasks running
on IBM Power 9 CPUs. They find that on a 600× 600× 600 grid, the speedup of
the GPU run is 3.2x. Our experiments on heart09, a mesh with an element count
in that same order of magnitude, show that there is a∼ 5x speedup obtained from
using four MI210 GPUs over 64 cores. We, therefore, note that we have observed
a speedup on GPUs that is in the same order of magnitude as in [45], while also
taking into account that there is different hardware being used and that we are
comparing the performance of an unstructured problem with a structured one.

In [46], the authors investigate the use of BoomerAMG and PCG on two nodes
of the Spock early access system at Oak Ridge National Labs, where each node has
four AMD MI100 GPUs and one 64-core AMD Epyc 7702 (Rome) CPU. Architec-
turally, this is very similar to the mi210q node on eX3 used in our numerical ex-
periments. The authors use the same kind of 7-point 3D finite difference Laplace
problem as in [45]. A set of different parameter combinations are tested, but in
relation to our experiments we can focus only on the default one, where the au-
thors present an ∼ 8.4x speedup in the base configuration GPU runs compared
to the base configuration CPU runs, on a 400× 400× 400 grid. In this case, the
authors observe a speedup greater than we find here.

An aspect of the solving that we have not elaborated much on is the tuning of
the parameters. As shown by both [45] and [46], a lot of the performance of the
BoomerAMG preconditioner is found by tuning a number of parameters. In this
thesis, we have only considered the default parameters that are set in MFEM’s

Chapter 5: Discussion 63

bindings to hypre. An improvement in the performance of the solve may be found
by tuning the preconditioner and solver, for example by using the parameters
presented in [45] and [46].

One way to further reduce the time spent solving would be to reduce the
tolerance. All the linear systems are solved with a stop condition relative error of
10−20, which is a much stricter convergence requirement than, for example, the
10−7 used in [6]. Such a strict tolerance was chosen to reduce the likelihood of
wrong fiber generation as a result of numerical errors, such as the ones discussed
in Section 3.7.

.

5.3 Effects of moving gradient computation and projec-
tion to GPU

In Subsection 4.2.4 and Subsection 4.2.5 we saw that the gradient and projection
kernels perform well on the GPU, with gradient computations seeing a speedup of
∼ 4x per added MI210 GPU, compared to one socket (64 cores) of the Epic 7763
processor, and projection seeing a speedup of ∼ 1.7x per added GPU. There is
however a second aspect that we have not yet explored, which is the data transfers
that are mitigated.

In Section 3.2 we outlined the steps that need to take place from the input
mesh to the final fiber orientations, and we also flagged two primary parts which
we wanted to offload to the GPU, specifically the solving of linear systems and
the final fiber computation. This resulted in the baseline execution flow and data
transfer pattern presented in Figure 3.2 (page 24). In Section 3.4 and Subsec-
tion 3.5.1 we explained the methods used to offload both gradient computation
and projection to the GPU, which improves upon the baseline pattern from Fig-
ure 3.2 to the one presented in Figure 3.5. We have also seen from the numerical
results that both the gradient computation and projection benefits from being
offloaded to the GPU, but what we have not considered is the cost of the data
transfers that no longer need to take place.

We assume the solving of the linear systems has been performed on the GPU,
and the scalar field solutions to φepi, φlv, φrv, andψab reside in device memory. If
the gradient computation takes place on the host, all four have to be copied back
to the device. The total size of this transfer is 4 ·n ·sizeof(double), where n is the
number of vertices in the mesh. If we consider heart09, at 42 093384 vertices,
these transfers have a total size of 1.35 GB. All four of the computed gradients
then need to be transferred back to the host. There is one 3D vector per element,
so these have a total size of 4 · 3 ·m · sizeof(double), where m is the number of
elements. If we consider heart09, at 255047 053 elements, these transfers have a
total size of 24.48 GB. In addition, the projected solutions φepi, φlv, and φrv have
to be transferred to the device before the final fiber calculations can take place.
These have a total size of 3 ·m · sizeof(double), which for heart09 turns out to

64 Iver Håkonsen: GPU-enabled LDRB

be 6.12 GB. So to get the final gradients and projected scalar fields on the GPU,
we first have to transfer 1.35 GB of data back to the host, wait for the gradients to
be computed, and then receive a transfer of 24.48 GB back from the host, wait for
the projections to be calculated and then receive a transfer of 6.12 GB from the
host. The transferring of the gradients may of course overlap with the calculation
of the projections. The mi210q is configured with 16 PCIe lanes per GPU, for a
theoretical bandwidth of 32 GB/s. So the data transfers take roughly a second in
total. If we now compare this to the run times for one GPU shown in Table 4.5,
the data transfer becomes very significant.

If the gradient calculation and projection take place on the device, none of
the previously mentioned transfers have to take place. Instead, we only need to
transfer the element-to-DoF tables for H1 and L2, as well as the vertices. The H1

element-to-DoF table is of size m + 4 · m = 5m. The L2 element-to-DoF table is
of size m+m = 2m. The vertex table is of size n. In total, three transfers with a
total size of (7m + n) · sizeof(double) are needed before calculating gradients
and projections can take place on the device. For heart09, this results in a total
transfer of 14.62 GB. Ideally, if there is enough device memory, we would have the
transfer of the tables and vertices overlap with the solving of the linear system. If
we assume that they are masked and that the tables are available as soon as the
linear systems are solved, the combination of the four gradient computations and
projections take roughly 1.7 seconds (as per Table 4.5). This means that just the
data transfers needed to do gradient computation and projection on the host are
almost as expensive as doing the actual computations on the device.

5.4 Evaluation of the gradient, projection, and fiber com-
putation kernels

As shown in the results, the relative time spent transforming the scalar fields that
result from solving the Laplace-Dirichlet equations into the final fibers is small.
When doing fiber computation on one MI210 GPU, the total time spent in these
steps adds up to less than 2%, as is shown in Table 4.5. The results also show that
the performance of all these kernels scales well, both for the number of cores used
and for the number of GPUs used. With this in mind, no further effort has been
put into increasing the performance of these steps. However, it is worth discussing
how well these kernels actually perform in light of theoretical limitations, and
consider some possible improvements.

5.4.1 The gradient kernel

Each thread calculates the gradient in a single element. The first thing each thread
has to do is to look up in the H1 element-to-DoF table to find the indices of the four
vertices of this element. There is one lookup to find the row for this element and
one lookup for each vertex. The indices are stored as int, so the total read size is
5 ·sizeof(int)= 20 bytes. Each thread then has to read the physical coordinates

Chapter 5: Discussion 65

of each of the four vertices of the element, which are all doubles. This is a total
of 4 · 3 · sizeof(double) = 96 bytes. Each thread also has to read the values of
the scalar solution from each vertex. This is a total of 4 · sizeof(double) = 32
bytes. All these reads amount to a total of 148 bytes. When storing the resulting
gradient, one 3D vector is written, which is of size 3 ·sizeof(double)= 24 bytes.
The total read-write size for each element is 172 bytes. Using one MI210 GPU
on heart09, the fastest of the gradient computations takes 0.357 seconds, which
equates to an effective bandwidth of 122.9 GB/s, a mere 7.7% of the theoretical
bandwidth.

One obvious limitation in the gradient computation is the reading of the vertex
coordinates, as the vertices that form an element are placed in an unstructured
manner in memory. To get a good bandwidth utilization, GPUs rely heavily on
coalescing. A coalesced memory access is one where consecutive threads read or
write to consecutive memory addresses, and the read/write can be combined into
a single transaction. In the case of the vertex reads, consecutive threads may have
vertex indices that are far away from each other in memory, and in the worst case,
we get no combination of reads into shared transactions.

A simple way to reduce the cost of the vertex lookups would be to fuse the
computation of the four gradients into a single kernel. This is possible because
the only thing that changes between the gradients is the value of the scalar solu-
tion in each vertex, and we can simply take all of the scalar solutions as the input
simultaneously. That is, instead of the single laplace array as input to the com-
pute_gradient function (Code listing 3.1, page 29), we would take all four scalar
fields, and have the output be all four gradients. This way, the expensive vertex
lookups for each element would only have to happen once. This would likely fur-
ther improve the performance of the gradient calculations, both on the CPU and
GPU.

5.4.2 The projection kernel

The projection kernel performs just a couple of additions and a multiply per ele-
ment and we, therefore, assume that it is bound by bandwidth. Six array lookups
of ints are needed to find the indices of the vertex values, and four doubles are
read with these indices. Before storing the interpolated value, two more ints have
to be read to find the index to store at. A total of 64 bytes are read by each thread.
Each thread then has to store one double, which gives a total read-write size of
72 bytes. On heart09, this results in a total of 1.84 ·1010 bytes. The fastest of the
projections on one MI210 GPU takes 0.0944 seconds, for an effective bandwidth
utilization of 12.2%.

The low bandwidth utilization may be caused by the series of dependent mem-
ory accesses. That is, we do a lookup in one array to find the index to use to do
a lookup in a second array. In the projection kernel, this is done in both the array
that is read from and the one written to. Just like with the gradient kernel, this
becomes a coalescing problem.

66 Iver Håkonsen: GPU-enabled LDRB

5.4.3 The fiber computation kernel

When running the fiber computation, we assign one thread to each element. Each
thread has to read in one scalar value from each ofφepi,φlv, andφrv, as well as one
3D vector from each of∇φepi,∇φlv,∇φrv, and∇ψab. Storing all values as double,
this means that each thread has to read (3+ 4 · 3) · sizeof(double)= 120 bytes.
Each thread also has to write one 3D vector into each of F , S, and T , for a total
write size of 3·3·sizeof(double)= 72 bytes. As a result, the total size of reads and
writes is 192 bytes. For heart09, which has 255047 053 elements, the total read-
write size of definefibers is 48.97 ·109 bytes. As per Table 4.10, the run time of
definefibers on heart09 using one MI210 GPU is 0.108s, for a resulting effective
bandwidth of ∼ 453 GB/s. This equates to 28.3% of the theoretical bandwidth of
the MI210 GPU. The same calculations show that the effective bandwidth when
using two and four GPUs is also∼ 28%. When running on CPU, we get an effective
bandwidth of ∼ 12% for one, two, four, and eight sockets.

Unlike the gradient and projection kernels, the reads and writes done in the
fiber computation kernel are easily coalesced, in that thread i reads at an offset i
in a number of input arrays, and writes at an offset i to a number of output arrays.

Determining why there is such a low bandwidth utilization would require pro-
filing of the kernel, which may show that the kernel is not bandwidth bound after
all, which we have assumed here.

5.5 Limitations on the maximal mesh size

In the current version of MFEM, the reading of serial meshes has to happen on ev-
ery rank when running in parallel. That is, every rank has to read the entire mesh
before performing a partitioning to find its submesh. This very quickly becomes a
memory problem, which increases both with the mesh size and the number of pro-
cesses. According to the MFEM developers, the rationale behind this is that each
rank should read a coarse mesh, partition it, and then perform uniform refinement
to increase the number of elements/DoFs.

To mitigate this, and be able to have the limiting factor of the maximal mesh
size instead be the amount of memory in the system, all the meshes were pre-
partitioned into submeshes of size 1,2, 4, . . . , 512 using a single process, and stored
in MFEM’s native v1.2 format which has support for parallel meshes. When run-
ning the fiber computation program, each process then only needs to read in
its submesh, which will lead to a total memory footprint which is more or less
equal to what you get when running in serial. The functionality of partitioning
on a single process is not part of any of the currently released major versions of
MFEM, so a separate build of MFEM based on the in-development branch mesh-
partitioner-dev1 was used, which adds this capability through the MeshPar-
titioner and MeshPart classes. According to the discussion in the pull request

1https://github.com/mfem/mfem/tree/mesh-partitioner-dev

https://github.com/mfem/mfem/tree/mesh-partitioner-dev

Chapter 5: Discussion 67

tracking this branch on GitHub2, this functionality is milestoned for the 5.0 re-
lease of MFEM.

There is still a roof for how big of a serial mesh we are able to pre-partition
using MFEM. MFEM uses 32-bit signed integers for indices, and in the process
of loading a serial mesh a new array will be allocated which is of length 6 · m,
where m is the number of elements in the mesh. This means that a mesh with
more than 231/6 elements will cause a signed integer overflow. A way around
this would be to use another parallel mesh format supported by MFEM, such as
PUMI [57]. Another workaround is to do as the MFEM developers intended and
load the coarsest possible mesh and perform refinement of the submeshes on each
rank. This is probably the best solution when working with simple geometries such
as regular cubes or beams, where the geometry itself is easily represented with a
low number of polygons, but it may not be viable for complex geometries such as
the biventricular heart models used in this project, especially if fiber generation
is done as a pre-processing step for other cardiac simulations that use the same
input mesh.

It is worth clarifying that this limitation only applies to the loading of the mesh,
and not necessarily to the rest of the program. It is possible to build hypre with 64-
bit indices, which allows for linear systems with billions of DoFs. The subsequent
parts of the algorithm that we have offloaded to the GPU also do not have an
inherent limit when it comes to the maximum number of elements/vertices that
are possible to process. As long as enough GPUs are available to cover the amount
of device memory needed, there should not be a problem.

2https://github.com/mfem/mfem/pull/2669

https://github.com/mfem/mfem/pull/2669

Chapter 6

Conclusions and Future Work

Being able to simulate cardiac functions accurately is of great interest to cardiol-
ogy, a major field in medicine. Many of these simulation models require accurate
information about cardiac fiber orientations. The most widely used rule-based
method for simulating this is the Laplace-Dirichlet Rule-Based method (LDRB) which
uses partial differential equations (PDEs) to capture the complex geometry of
patient-specific anatomical models properly. These PDEs can be solved numeri-
cally on a computer using the finite element method (FEM), which enables the
computation of cardiac fibers that are very close to those captured through atlas-
based approaches such as DTI. However, solving these FEM-based PDEs is very
computationally intensive, especially as the granularity of the anatomical model
is increased.

Modern GPUs offer great computational power but are more challenging to
program than CPUs. However, in FEM-based PDEs, the same operation is applied
to many individual elements. This makes them very suitable for GPUs.

In this thesis, we showed how the LDRB method for cardiac fiber computa-
tion could be successfully implemented for both multicore CPUs and be offloaded
to GPUs, and run in parallel in a distributed-memory fashion. This was done by
leveraging the GPU-enabled solvers and preconditoners from the hypre library to
solve the Laplace-Dirichlet equations that are involved in this method, as well as
writing GPU kernels to perform the operations on the solutions to these equations
that are needed to derive the final fiber orientations.

Specifically, we have used the MFEM software library to load a biventricular
mesh from a common mesh format and perform all the needed operations to de-
fine the linear systems based on the Laplace-Dirichlet equations. We have then
used the PCG solver and BoomerAMG preconditioner from hypre to efficiently
solve these linear systems, both on CPUs and on GPUs.

By limiting ourselves to tetrahedral meshes, we were able to find closed-form
solutions for the gradient calculation, projection, and interpolation that needed
to be performed on the Laplace-Dirichlet solutions before the final fiber compu-
tation could take place. We have implemented these formulas in GPU kernels, so
that also these operations can be performed on the GPU. In addition, we have

69

70 Iver Håkonsen: GPU-enabled LDRB

also implemented the final fiber computation as a GPU kernel. This way, all the
operations that have to take place on the GPU – ranging from the linear systems
have been assembled up until the fiber computation is finished, avoiding a lot of
CPU-GPU memory transfers.

Finally, we proposed a heuristic based on the magnitude of the gradients of the
solutions to the Laplace-Dirichlet equations, and showed that it could be used to
more precisely reason about what region of the myocardium an arbitrary point is,
which consequently makes it possible to define fiber orientations more robustly.
This is of great importance for cardiac simulations that depend on these fiber
orientations.

Performance results – summary

When comparing our LDRB algorithm implementation to an existing state-of-
the-art Python-based version that uses a SuperLU solver, we observed a minimal
speedup of∼ 15x when running both on a single CPU core. Furthermore, we were
also able to process larger meshes.

Our benchmarking results of the solver phase of the LDRB algorithm showed
that we were able to solve these linear systems∼ 1.5x faster using an AMD MI210
GPU, compared to using all 64 cores of an AMD Epyc 7763 CPU. We also saw that
when we increased the number of GPUs to two or four, we got close to linear
speedup. When comparing these results with work done by others who have used
the same solver and preconditioner to solve linear systems on GPUs, we observed
that the speedups we have seen are close to that found by others. Note that our
solve phase is not just a stand-alone code, but part of a more complex applica-
tion with real-world meshing and boundary conditions. Furthermore, we outlined
some areas of improvement that may lead to faster solve times.

Our benchmarks showed that the by doing gradient calculation and projec-
tion of the solutions to the Laplace-Dirichlet equations on GPU, we get speedups
between 1.5x and 3.8x when running on one AMD MI210 GPU, compared to all
64 cores of an AMD Epyc 7763 CPU. In addition, we showed that doing these
operations on GPU reduces the amount of data transfers when the final fiber com-
putation takes place on the GPU. Doing the final fiber computations on GPU also
showed great performance, with a 19x speedup on one MI210 GPU compared
to 64 cores. A discussion of the performance of these kernels compared to the
theoretical limitations was also included, and some possible improvements were
outlined.

We also compared the performance of our implementation on both AMD and
NVIDIA GPUs. We found that they were very similar, except that the NVIDIA A100
card we used showed to be significantly faster for the solve phase than the AMD
MI210 GPU, possibly due to the performance of underlying vendor libraries.

Chapter 6: Conclusions and Future Work 71

6.1 Future work

There are several ways to further improve the performance and usability of the
work presented. The following sections list several of these possible avenues.

6.1.1 GPU-based assembly

The numerical results when running on GPU show that most of the time is spent in
the CPU-bound assembly of the finite element matrices. Such assembly is currently
not possible to do on GPUs in MFEM when the mesh has simplex elements. Future
work may therefore involve either implementing GPU-based assembly for simplex
element in MFEM, or bypassing MFEM entirely and directly assemble matrices on
GPU that can be passed to hypre for solving.

6.1.2 Tuning of the preconditioner and solver

As discussed in Section 5.2, the PCG solver and BoomerAMG preconditioner we
use to solve the linear systems use the default parameters that are set in MFEM’s
binding to hypre. We also compared performance with some other works that have
investigated the tuning of these parameters. Future work could therefore include
the application and evaluation of the presented parameters to find out if this can
increase performance.

6.1.3 Profiling and optimization of GPU kernels

As discussed in Section 5.3 and Section 5.4, the offloading of the individual parts
of the program has mostly been explored in the sense of making them work, and
we also show that there are some clear areas of improvement when it comes to the
GPU kernels. Future work might therefore involve proper profiling and optimiza-
tions of these kernels. This work could also include an investigation into whether
the layer of convenience added by using the MFEM_FORALL macro has any negative
effect on performance.

6.1.4 Algorithmic additions

The ldrb implementation adds some extra logic that makes it possible to define
separate values of αendo and βendo for the left and right ventricle, which in turn
makes it possible for the resulting fibers to better fit histological data. Future work
might therefore involve adding this feature to cardiac-fibers. The heuristics
used for locating which part of the myocardium a point is in, which we presented
in Section 3.7, might help in this matter.

As mentioned in Section 1.2, recent works have investigated alterations to
the original LDRB algorithm which makes it better fit the histological data when
applied to other areas than the left ventricle, such as the septum, right ventricle,

72 Iver Håkonsen: GPU-enabled LDRB

outflow tracts, or even in the atrium. Future work might therefore include adding
support for these adapted algorithms.

6.1.5 Further investigation of the region heuristic

The region heuristic presented in Section 3.7 makes it possible to more accurately
identify where in the geometry an arbitrary point is, which makes the definition
of the fiber orientations more robust. In the same section, we presented some
threshold values for these heuristics which we found worked well for our spe-
cific mesh. Future work might therefore include analyzing other meshes based
on patient-specific data, and investigating whether the values used can be gen-
eralized. Future work might also include using fibers generated using the region
heuristics in some of the computational models that are dependent on the fiber
orientations, and see if there are benefits.

Bibliography

[1] D. Le Bihan, J.-F. Mangin, C. Poupon, C. A. Clark, S. Pappata, N. Molko, and
H. Chabriat, “Diffusion tensor imaging: Concepts and applications,” Jour-
nal of Magnetic Resonance Imaging: An Official Journal of the International
Society for Magnetic Resonance in Medicine, vol. 13, no. 4, pp. 534–546,
2001.

[2] D. F. Scollan, A. Holmes, R. Winslow, and J. Forder, “Histological valida-
tion of myocardial microstructure obtained from diffusion tensor magnetic
resonance imaging,” American Journal of Physiology-Heart and Circulatory
Physiology, vol. 275, no. 6, H2308–H2318, 1998.

[3] S. A. Niederer, J. Lumens, and N. A. Trayanova, “Computational models in
cardiology,” Nature Reviews Cardiology, vol. 16, no. 2, pp. 100–111, 2019.

[4] P. Nielsen, I. Le Grice, B. Smaill, and P. Hunter, “Mathematical model of ge-
ometry and fibrous structure of the heart,” American Journal of Physiology-
Heart and Circulatory Physiology, vol. 260, no. 4, H1365–H1378, 1991.

[5] J. Wong and E. Kuhl, “Generating fibre orientation maps in human heart
models using poisson interpolation,” Computer methods in biomechanics
and biomedical engineering, vol. 17, no. 11, pp. 1217–1226, 2014.

[6] J. D. Bayer, R. C. Blake, G. Plank, and N. A. Trayanova, “A novel rule-based
algorithm for assigning myocardial fiber orientation to computational heart
models,” Annals of biomedical engineering, vol. 40, no. 10, pp. 2243–2254,
2012.

[7] Y. Liu, S. Jiao, W. Wu, and S. De, “Gpu accelerated fast fem deformation
simulation,” in APCCAS 2008-2008 IEEE Asia Pacific Conference on Circuits
and Systems, IEEE, 2008, pp. 606–609.

[8] HPCG - June 2022, https://top500.org/lists/hpcg/2022/09/, Ac-
cessed: 2023-02-01.

[9] M. Alnæs, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richard-
son, J. Ring, M. E. Rognes, and G. N. Wells, “The fenics project version 1.5,”
Archive of Numerical Software, vol. 3, no. 100, 2015.

[10] H. Finsberg, Laplace-Dirichlet Rule-Based (LDRB) algorithm for assigning
myocardial fiber orientations, version 2022.5.0, Nov. 2022. [Online]. Avail-
able: https://github.com/finsberg/ldrb.

73

https://top500.org/lists/hpcg/2022/09/
https://github.com/finsberg/ldrb

74 Iver Håkonsen: GPU-enabled LDRB

[11] R. Anderson, J. Andrej, A. Barker, J. Bramwell, J.-S. Camier, J. Cerveny, V.
Dobrev, Y. Dudouit, A. Fisher, T. Kolev, et al., “Mfem: A modular finite ele-
ment methods library,” Computers & Mathematics with Applications, vol. 81,
pp. 42–74, 2021.

[12] A. Logg, K.-A. Mardal, and G. Wells, Automated solution of differential equa-
tions by the finite element method: The FEniCS book. Springer Science &
Business Media, 2012, vol. 84.

[13] J. Cranford, D. Richards, X. Zhang, S. Laudenschlager, J. Glosli, T. O’Hara,
A. Mirin, E. Draeger, J.-L. Fattebert, R. Blake, et al., “Cardioid,” Lawrence
Livermore National Lab.(LLNL), Livermore, CA (United States), Tech. Rep.,
2018.

[14] P. C. Africa, “: A flexible, high performance library for the numerical solution
of complex finite element problems,” SoftwareX, vol. 20, p. 101 252, 2022.

[15] P. C. Africa, R. Piersanti, M. Fedele, L. Dede’, and A. Quarteroni, An open
tool based on lifex for myofibers generation in cardiac computational models,
2022. DOI: 10.48550/ARXIV.2201.03303. [Online]. Available: https:
//arxiv.org/abs/2201.03303.

[16] D. Arndt, W. Bangerth, M. Feder, M. Fehling, R. Gassmöller, T. Heister, L.
Heltai, M. Kronbichler, M. Maier, P. Munch, J.-P. Pelteret, S. Sticko, B. Tur-
cksin, and D. Wells, “The deal.II library, version 9.4,” Journal of Numerical
Mathematics, vol. 30, no. 3, pp. 231–246, 2022. DOI: 10.1515/jnma-2022-
0054. [Online]. Available: https://dealii.org/deal94-preprint.pdf.

[17] R. Doste, D. Soto-Iglesias, G. Bernardino, A. Alcaine, R. Sebastian, S. Giffard-
Roisin, M. Sermesant, A. Berruezo, D. Sanchez-Quintana, and O. Camara,
“A rule-based method to model myocardial fiber orientation in cardiac
biventricular geometries with outflow tracts,” International journal for nu-
merical methods in biomedical engineering, vol. 35, no. 4, e3185, 2019.

[18] R. Piersanti, P. C. Africa, M. Fedele, C. Vergara, L. Dedè, A. F. Corno, and A.
Quarteroni, “Modeling cardiac muscle fibers in ventricular and atrial elec-
trophysiology simulations,” Computer Methods in Applied Mechanics and En-
gineering, vol. 373, p. 113 468, 2021.

[19] H. Zou, C. Xi, X. Zhao, A. S. Koh, F. Gao, Y. Su, R.-S. Tan, J. Allen, L. C. Lee,
M. Genet, et al., “Quantification of biventricular strains in heart failure with
preserved ejection fraction patient using hyperelastic warping method,”
Frontiers in physiology, vol. 9, p. 1295, 2018.

[20] W. Commons. “Diagram of the human heart.” File: Diagram of the human
heart.svg. (2003), [Online]. Available: https://commons.wikimedia.
org/wiki/File:Diagram_of_the_human_heart.svg.

https://doi.org/10.48550/ARXIV.2201.03303
https://arxiv.org/abs/2201.03303
https://arxiv.org/abs/2201.03303
https://doi.org/10.1515/jnma-2022-0054
https://doi.org/10.1515/jnma-2022-0054
https://dealii.org/deal94-preprint.pdf
https://commons.wikimedia.org/wiki/File:Diagram_of_the_human_heart.svg
https://commons.wikimedia.org/wiki/File:Diagram_of_the_human_heart.svg

Bibliography 75

[21] I. J. LeGrice, B. H. Smaill, L. Chai, S. Edgar, J. Gavin, and P. J. Hunter, “Lam-
inar structure of the heart: Ventricular myocyte arrangement and connec-
tive tissue architecture in the dog,” American Journal of Physiology-Heart
and Circulatory Physiology, vol. 269, no. 2, H571–H582, 1995.

[22] P. Hunter, A. D. McCulloch, and H. Ter Keurs, “Modelling the mechanical
properties of cardiac muscle,” Progress in biophysics and molecular biology,
vol. 69, no. 2-3, pp. 289–331, 1998.

[23] G. A. Holzapfel and R. W. Ogden, “Constitutive modelling of passive my-
ocardium: A structurally based framework for material characterization,”
Philosophical Transactions of the Royal Society A: Mathematical, Physical and
Engineering Sciences, vol. 367, no. 1902, pp. 3445–3475, 2009.

[24] S. Rossi, R. Ruiz-Baier, L. F. Pavarino, and A. Quarteroni, “Orthotropic ac-
tive strain models for the numerical simulation of cardiac biomechanics,”
International journal for numerical methods in biomedical engineering, vol. 28,
no. 6-7, pp. 761–788, 2012.

[25] J. Sundnes, G. T. Lines, X. Cai, B. F. Nielsen, K.-A. Mardal, and A. Tveito,
Computing the electrical activity in the heart. Springer Science & Business
Media, 2007, vol. 1.

[26] J. Ahrens, B. Geveci, and C. Law, “Paraview: An end-user tool for large data
visualization,” The visualization handbook, vol. 717, no. 8, 2005.

[27] K. Shoemake, “Animating rotation with quaternion curves,” in Proceedings
of the 12th annual conference on Computer graphics and interactive tech-
niques, 1985, pp. 245–254.

[28] P. G. Ciarlet, The finite element method for elliptic problems. SIAM, 2002.

[29] A. Ern and J.-L. Guermond, Theory and practice of finite elements. Springer,
2004, vol. 159.

[30] Hypre: High performance preconditioners, https://llnl.gov/casc/hypre,
https://github.com/hypre-space/hypre.

[31] G. Karypis and V. Kumar, “Metis: A software package for partitioning un-
structured graphs, partitioning meshes, and computing fill-reducing order-
ings of sparse matrices,” 1997.

[32] L. S. Avila, U. Ayachit, S. Barré, J. Baumes, F. Bertel, R. Blue, D. Cole, D.
DeMarle, B. Geveci, W. A. Hoffman, B. King, K. Krishnan, C. C. Law, K. M.
Martin, W. McLendon, P. Pebay, N. Russell, W. J. Schroeder, T. Shead, J.
Shepherd, A. Wilson, and B. Wylie, The VTK User’s Guide 11th Editition.
Kitware, Inc., 2011.

[33] C. Geuzaine and J.-F. Remacle, “Gmsh: A 3-d finite element mesh generator
with built-in pre-and post-processing facilities,” International journal for
numerical methods in engineering, vol. 79, no. 11, pp. 1309–1331, 2009.

https://llnl.gov/casc/hypre
https://github.com/hypre-space/hypre

76 Iver Håkonsen: GPU-enabled LDRB

[34] Khronos ©OpenCL Working Group, CUDA C++ Programming Guide, 2022.
[Online]. Available: https://registry.khronos.org/OpenCL/specs/3.
0-unified/pdf/OpenCL_API.pdf.

[35] NVIDIA Corporation, CUDA C++ Programming Guide, 2023. [Online]. Avail-
able: https://docs.nvidia.com/cuda/cuda-c-programming-guide/.

[36] Advanced Micro Devices, Inc., HIP Programming Guide v5.3, 2022. [On-
line]. Available: https://docs.amd.com/bundle/HIP- Programming-
Guide-v5.3/page/Introduction_to_HIP_Programming_Guide.html.

[37] MFEM, GPU support in MFEM, https://mfem.org/gpu- support/, Ac-
cessed: 2022-12-12.

[38] I. Håkonsen, A GPU-enabled implementation of the LDRB algorithm for com-
putation of cardiac fiber orientations, Nov. 2023. [Online]. Available: https:
//github.com/ivhak/cardiac-fibers.

[39] Y. Saad, Iterative methods for sparse linear systems. SIAM, 2003.

[40] J. R. Shewchuk et al., An introduction to the conjugate gradient method with-
out the agonizing pain, 1994.

[41] X. Li, J. Demmel, J. Gilbert, iL. Grigori, M. Shao, and I. Yamazaki, “SuperLU
Users’ Guide,” Lawrence Berkeley National Laboratory, Tech. Rep., Sep.
1999, https://portal.nersc.gov/project/sparse/superlu/ug.pdf.

[42] X. S. Li and J. W. Demmel, “SuperLU_DIST: A scalable distributed-memory
sparse direct solver for unsymmetric linear systems,” ACM Trans. Mathe-
matical Software, vol. 29, no. 2, pp. 110–140, Jun. 2003.

[43] K. Stüben, “Algebraic multigrid: An introduction with applications,” Multi-
grid, Academic Press Inc., San Diego, CA, 2001.

[44] R. D. Falgout, “An introduction to algebraic multigrid,” Lawrence Liver-
more National Lab.(LLNL), Livermore, CA (United States), Tech. Rep., 2006.

[45] R. D. Falgout, R. Li, B. Sjögreen, L. Wang, and U. M. Yang, “Porting hypre to
heterogeneous computer architectures: Strategies and experiences,” Paral-
lel Computing, vol. 108, p. 102 840, 2021.

[46] P. Bauman, R. Li, and U. Yang, “Report on hypre performance on amd gpus,”
Lawrence Livermore National Lab.(LLNL), Livermore, CA (United States),
Tech. Rep., 2021.

[47] C. Mancinelli, M. Livesu, and E. Puppo, “A comparison of methods for gra-
dient field estimation on simplicial meshes,” Computers & Graphics, vol. 80,
pp. 37–50, 2019.

[48] C. Mancinelli, M. Livesu, and E. Puppo, “Errata corrige,” Computers & Graph-
ics, vol. 80, 2022. [Online]. Available: http://pers.ge.imati.cnr.it/
livesu/papers/MLP18/MLP18_extended_errata.pdf.

https://registry.khronos.org/OpenCL/specs/3.0-unified/pdf/OpenCL_API.pdf
https://registry.khronos.org/OpenCL/specs/3.0-unified/pdf/OpenCL_API.pdf
https://docs.nvidia.com/cuda/cuda-c-programming-guide/
https://docs.amd.com/bundle/HIP-Programming-Guide-v5.3/page/Introduction_to_HIP_Programming_Guide.html
https://docs.amd.com/bundle/HIP-Programming-Guide-v5.3/page/Introduction_to_HIP_Programming_Guide.html
https://mfem.org/gpu-support/
https://github.com/ivhak/cardiac-fibers
https://github.com/ivhak/cardiac-fibers
https://portal.nersc.gov/project/sparse/superlu/ug.pdf
http://pers.ge.imati.cnr.it/livesu/papers/MLP18/MLP18_extended_errata.pdf
http://pers.ge.imati.cnr.it/livesu/papers/MLP18/MLP18_extended_errata.pdf

Bibliography 77

[49] H. Martinez-Navarro, A. Mincholé, A. Bueno-Orovio, and B. Rodriguez,
“High arrhythmic risk in antero-septal acute myocardial ischemia is ex-
plained by increased transmural reentry occurrence,” Scientific reports, vol. 9,
no. 1, pp. 1–12, 2019.

[50] Advanced Micro Devices, Inc., AMD Epyc™ 7003 Series Processors, 2022.

[51] Advanced Micro Devices, Inc., AMD Instinct™ MI210 Accelerator, 2022.

[52] T. Deakin and S. McIntosh-Smith, BabelStream, version 3.4, Apr. 2019.

[53] NVIDIA Corporation, NVIDIA A100 Tensor Core GPU, 2021.

[54] A. B. Yoo, M. A. Jette, and M. Grondona, “Slurm: Simple linux utility for
resource management,” in Workshop on job scheduling strategies for parallel
processing, Springer, 2003, pp. 44–60.

[55] MFEM, HowTo: Use partial assembly and matrix-free assembly, https://
mfem.org/howto/assembly_levels/, Accessed: 2023-02-01.

[56] J. S. Mueller-Roemer and A. Stork, “Gpu-based polynomial finite element
matrix assembly for simplex meshes,” in Computer Graphics Forum, Wiley
Online Library, vol. 37, 2018, pp. 443–454.

[57] D. A. Ibanez, E. S. Seol, C. W. Smith, and M. S. Shephard, “Pumi: Paral-
lel unstructured mesh infrastructure,” ACM Transactions on Mathematical
Software (TOMS), vol. 42, no. 3, pp. 1–28, 2016.

https://mfem.org/howto/assembly_levels/
https://mfem.org/howto/assembly_levels/

Appendix A

Additional code listings

This appendix contains the extra listings that have been referenced in the main
parts of the text. Note that the listings that exemplify how some part of the pro-
gram is implemented often do not contain the actual implementation used, but
are rather meant to show the general approach. For the actual implementation,
see the source code [38].

79

80 Iver Håkonsen: GPU-enabled LDRB

Code listing A.1: Example of setting up the linear system for φepi in MFEM.

// Setup the finite element space.
ParFiniteElementColleciton *fec;
fec = new H1_FECollection(/* order */ 1, parmesh->Dimension());
ParFiniteElementSpace fespace(parmesh, fec);

int nattr = parmesh->bdr_attributes.Max();
Array<int> essential_boundaries(nattr); // Essential boundaries
Array<int> nonzero_essential_boundaries(nattr); // Boundaries with value 1.0
Array<int> zero_essential_boundaries(nattr); // Boundaries with value 0.0
Array<int> ess_tdof_list;

// Get a list of the essential (known value) DoFs.
essential_boundaries = 0;
essential_boundaries[EPI_ID-1] = 1;
essential_boundaries[LV_ID -1] = 1;
essential_boundaries[RV_ID -1] = 1;
fespace.GetEssentialTrueDofs(essential_boundaries, ess_tdof_list);

// Define the linear from (RHS) of the Laplace-Dirichlet equation
ParLinearForm *b = new ParLinearForm(&fespace);
ConstantCoefficient zero(0.0);
b->AddDomainIntegrator(new DomainLFIntegrator(zero));
b->Assemble();

// Define the bilinear form (LHS) of the Laplace-Dirichlet equation
ParBilinearForm *a = new ParBilinearForm(&fespace);
ConstantCoefficient one(1.0);
a->AddDomainIntegrator(new DiffusionIntegrator(one));
a->Assemble();

// Initialize x with initial guess of zero.
ParGridFunction *x_phi_epi = new ParGridFunction(&fespace);
*x_phi_epi = 0.0;

// The value is one on the epicardium.
nonzero_essential_boundaries = 0;
nonzero_essential_boundaries[EPI_ID-1] = 1;

// The value is zero on the left and right ventricle endocardiums.
zero_essential_boundaries = 0;
zero_essential_boundaries[LV_ID-1] = 1;
zero_essential_boundaries[RV_ID-1] = 1;

// Project the constant value 1.0 to all the essential boundaries marked as nonzero.
ConstantCoefficient nonzero_bdr(1.0);
x_phi_epi->ProjectBdrCoefficient(nonzero_bdr, nonzero_essential_boundaries);

// Project the constant value 0.0 to all the essential boundaries marked as zero.
ConstantCoefficient zero_bdr(0.0);
x_phi_epi->ProjectBdrCoefficient(zero_bdr, zero_essential_boundaries);

// Assemble the linear system.
OperatorPtr A;
Vector B, X;
a->FormLinearSystem(ess_tdof_list, *x_phi_epi, *b, A, X, B);

Appendix A: Additional code listings 81

Code listing A.2: The alternative method used when setting up the boundary
conditions and linear system for ψab, compared to the approach for φepi in Code
listing A.1. Read as a continuation of Code listing A.1.

// For apex to base, the base is the only essential boundary
essential_boundaries = 0;
essential_boundaries[BASE_ID-1] = 1;
fespace.GetEssentialTrueDofs(essential_boundaries, ess_tdof_list);

// If this rank has the apex in its submesh, add the DoF to the list of
// essential DoFs
int apex = find_apex();
int apex_dof = -1;
if (apex >= 0) {

// Initialize the internal data needed in the finite element space
fespace->BuildDofToArrays();
// Find the dof at the local apex vertex
apex_dof = fespace->GetLocalTDofNumber(apex);
// Make sure the apex is in the list of essential true Dofs
ess_tdof_list.Append(apex_dof);

}

// The DoFs have changed, reassemble the LHS and RHS.
b->Update();
b->Assemble();
a->Update();
a->Assemble();

// Initialize x with initial guess of zero.
ParGridFunction *x_psi_ab = new ParGridFunction(&fespace);
*x_psi_ab = 0.0;

// Set boundary condition 1.0 on the base surface
nonzero_essential_boundaries = 0;
nonzero_essential_boundaries[BASE_ID-1] = 1;
x_psi_ab->ProjectBdrCoefficient(nonzero_bdr, nonzero_essential_boundaries);

// Set the boundary condition 0.0 on the apex DoF
if (apex_dof >= 0) {

Array<int> node_disp(1);
node_disp[0] = apex_dof;
Vector node_disp_value(1);
node_disp_value[0] = 0.0;

VectorConstantCoefficient node_disp_value_coeff(node_disp_value);
x_psi_ab->ProjectCoefficient(node_disp_value_coeff, node_disp);

}

a->FormLinearSystem(ess_tdof_list, *x_psi_ab, *b, A, X, B);

82 Iver Håkonsen: GPU-enabled LDRB

Code listing A.3: Computing a gradient of a scalar field using MFEM, exemplified
with the calculation of ∇φepi.

H1_FECollection h1_fec(1, mesh->Dimension());
FiniteElementSpace fespace_scalar_h1(&mesh, &h1_fec);
GridFunction x_phi_epi(&fespace_scalar_h1);

// Solve the Laplace-Dirichlet equation, solution in x_phi_epi
laplace(&x_phi_epi, ...)

L2_FECollection l2_fec(0, mesh->Dimension());
FiniteElementSpace fespace_vector_l2(&mesh, &l2_fec, 3, Ordering:byVDIM);
GridFunction grad_phi_epi(&fespace_scalar_l2);

// Calculate gradients
GradientGridFunctionCoefficient gfc(&x_phi_epi);
grad_phi_epi.ProjectCoefficient(gfc);

Code listing A.4: Projecting a scalar field from H1 to L2 using MFEM, exemplified
with the projection of φepi.

H1_FECollection h1_fec(1, mesh.Dimension());
FiniteElementSpace fespace_scalar_h1(&mesh, &h1_fec);
GridFunction x_phi_epi(&fespace_scalar_h1);

// Solve the Laplace-Dirichlet equation, solution in x_phi_epi
laplace(&x_phi_epi, ...)

L2_FECollection l2_fec(0, mesh.Dimension());
FiniteElementSpace fespace_scalar_l2 (&mesh, &l2_fec);
GridFunction x_phi_epi_l2(&fespace_scalar_l2);

// Project the solution from H1 to L2
GridFunctionCoefficient gfc(&x_phi_epi);
x_phi_epi_l2.ProjectCoefficient(gfc);

Appendix A: Additional code listings 83

Code listing A.5: Implementation of the axis function, as defined in Function 2
(page 12).

MFEM_DEVICE
void axis(mat3x3& Q, vec3& u, vec3& v)
{

vec3 e0, e1, e2;

e1 = u;
vec3_normalize(e1);

e2 = v;
vec3 e1_dot_e2_e1;
{

const double e1_dot_v = vec3_dot(e1, v);
e1_dot_v_e1 = e1;
e1_dot_v_e1 *= e1_dot_v;

}
e2 -= e1_dot_v_e1;
vec3_normalize(e2);

// e0 = e1 x e2
vec3_cross(e0, e1, e2);

vec3_normalize(e0);

Q[0][0] = e0[0]; Q[0][1] = e1[0]; Q[0][2] = e2[0];
Q[1][0] = e0[1]; Q[1][1] = e1[1]; Q[1][2] = e2[1];
Q[2][0] = e0[2]; Q[2][1] = e1[2]; Q[2][2] = e2[2];

}

Code listing A.6: Implementation of the orient function, as defined in Function 3
(page 13).

MFEM_DEVICE
void orient(mat3x3& Q_out, mat3x3& Q, double a, double b)
{

const double sina = sin(a*PI/180.0);
const double sinb = sin(b*PI/180.0);
const double cosa = cos(a*PI/180.0);
const double cosb = cos(b*PI/180.0);

mat3x3 A;

A[0][0] = cosa; A[0][1] = -sina*cosb; A[0][2] = -sina*sinb;
A[1][0] = sina; A[1][1] = cosa*cosb; A[1][2] = cosa*sinb;
A[2][0] = 0; A[2][1] = -sinb; A[2][2] = cosb;

mat3x3_mul(Q_out, Q, A);
}

84 Iver Håkonsen: GPU-enabled LDRB

Code listing A.7: Implementation of the quat2rot function, used to convert a
quaternion to its corresponding rotation matrix. Based on the formula in Section
I.1 in Appendix 1 of [27].

MFEM_DEVICE
void quat2rot(mat3x3& Q, quat& q)
{

const double w = q[0], x = q[1], y = q[2], z = q[3];

const double x2 = x*x;
const double y2 = y*y;
const double z2 = z*z;

const double wx = w*x;
const double wy = w*y;
const double wz = w*z;

const double xy = x*y;
const double xz = x*z;

const double yz = y*z;

Q[0][0] = 1.0 - 2.0*y2 - 2.0*z2;
Q[1][0] = 2.0*xy + 2.0*wz;
Q[2][0] = 2.0*xz - 2.0*wy;

Q[0][1] = 2.0*xy - 2.0*wz;
Q[1][1] = 1.0 - 2.0*x2 - 2.0*z2;
Q[2][1] = 2.0*yz + 2.0*wx;

Q[0][2] = 2.0*xz + 2.0*wy;
Q[1][2] = 2.0*yz - 2.0*wx;
Q[2][2] = 1.0 - 2.0*x2 - 2.0*y2;

}

Appendix A: Additional code listings 85

Code listing A.8: Implementation of the rot2quat function, used to convert a
rotation matrix to its corresponding quaternion. Based on the pseducode in Ap-
pendix I.2 of [27].

MFEM_DEVICE
void rot2quat(quat& q, mat3x3& M)
{

const double M11=M[0][0], M12=M[1][0], M13=M[2][0];
const double M21=M[0][1], M22=M[1][1], M23=M[2][1];
const double M31=M[0][2], M32=M[1][2], M33=M[2][2];

const double w2 = 0.25 * (1 + M11 + M22 + M33);
const double err = 1e-15;

double w, x, y, z;

if (w2 > err) {
w = sqrt(w2);
x = (M23 - M32) / (4.0*w);
y = (M31 - M13) / (4.0*w);
z = (M12 - M21) / (4.0*w);

} else {
w = 0.0;
const double x2 = -0.5*(M22 + M33);
if (x2 > err) {

x = sqrt(x2);
y = M12 / (2.0*x);
z = M13 / (2.0*x);

} else {
x = 0.0;
const double y2 = 0.5*(1-M33);
if (y2 > err) {

y = sqrt(y2);
z = M23 / (2.0*y);

} else {
y = 0.0;
z = 1.0;

}
}

}
q[0] = w; q[1] = x; q[2] = y; q[3] = z;
quat_normalize(q);

}

86 Iver Håkonsen: GPU-enabled LDRB

Code listing A.9: Source code used for baseline benchmark of ldrb.

import dolfin
import ldrb
import sys
import os
import time

input_vol = sys.argv[1]
input_surf = sys.argv[2]

mesh = dolfin.Mesh()
with dolfin.XDMFFile(input_vol) as f:

f.read(mesh)

surface_marker_collection = dolfin.MeshValueCollection("size_t", mesh, 2)
with dolfin.XDMFFile(input_surf) as f:

f.read(surface_marker_collection, "markers")

ffun = dolfin.MeshFunction("size_t", mesh, surface_marker_collection)
ldrb_markers = { "base": 1, "epi": 2, "lv": 3, "rv": 4 }
fiber_space = "CG_1"

print(f"Calculating fibers for ’{input_vol}’.")
t0 = time.time()
fiber, sheet, sheet_normal = ldrb.dolfin_ldrb(

mesh=mesh,
fiber_space=fiber_space,
ffun=ffun,
markers=ldrb_markers,
alpha_endo_lv=60, # Fiber angle on the endocardium
alpha_epi_lv=-60, # Fiber angle on the epicardium
beta_endo_lv=0, # Sheet angle on the endocardium
beta_epi_lv=0, # Sheet angle on the epicardium

)
t1 = time.time()
print(’Time [ldrb.dolfin_ldrb]: {0}s’.format(t1-t0))

Appendix B

MFEM build scripts

This appendix contains listings with the scripts that were used to build MFEM for
the hardware and software configurations presented in Subsection 4.1.2.

Code listing B.1: MFEM build script for the mi210q partition on eX3

#!/usr/bin/env bash
#SBATCH --job-name=build-mfem-mi210q
#SBATCH --partition=mi210q
#SBATCH --nodes=1
#SBATCH --ntasks=4
#SBATCH --time=03:00:00

MFEM_BUILD_DIR=./build-mi210q
MFEM_INSTALL_DIR=/global/D1/homes/iverh/packages/mi210q/mfem-4.5

set -e
module purge
module use /global/D1/homes/james/ex3modules/mi210q/20221107/modulefiles

module load amd/rocm/5.1.3
module load hypre-32-2.25.0
module load openmpi-4.1.4
module load metis-32-5.1.0

make BUILD_DIR=${MFEM_BUILD_DIR} config \
MFEM_USE_MPI=YES \
MPICXX=mpic++ \
MFEM_USE_HIP=YES \
MFEM_USE_METIS=YES \
MFEM_USE_METIS_5=YES \
HYPRE_LIB="-L${HYPRE_LIBDIR} -lHYPRE" \
HYPRE_OPT="-I${HYPRE_INCDIR}" \
METIS_LIB="-L${METIS_LIBDIR} -lmetis" \
METIS_OPT="-I${METIS_INCDIR}" \
HIP_ARCH=gfx90a

make BUILD_DIR=${MFEM_BUILD_DIR} -j 4
make BUILD_DIR=${MFEM_BUILD_DIR} check
make BUILD_DIR=${MFEM_BUILD_DIR} install PREFIX=${MFEM_INSTALL_DIR}

87

88 Iver Håkonsen: GPU-enabled LDRB

Code listing B.2: MFEM build script for the hgx2q partition on eX3

#!/usr/bin/env bash
#SBATCH --job-name=build-mfem-hgx2q
#SBATCH --partition=hgx2q
#SBATCH --nodes=1
#SBATCH --ntasks=4
#SBATCH --time=03:00:00
#SBATCH --gres=gpu:1

Script for building mfem-4.5 on the hgx2q partition of eX3.
Assumes that it is run inside the root of the mfem source directory.
#
$ tar -xzvf mfem-4.5.tgz
$ cd mfem-4.5
$ # Copy this script in here
$ sbatch build_mfem_hgx2q.sbatch

MFEM_BUILD_DIR=./build-hgx2q
MFEM_INSTALL_DIR=/global/D1/homes/iverh/packages/hgx2q/mfem-4.5

set -e
module purge
module use /global/D1/homes/james/ex3modules/hgx2q/2022-08-17/modulefiles

module load cuda11.8/toolkit/11.8.0
module load hypre-32-2.25.0
module load openmpi-4.1.4
module load metis-32-5.1.0

make BUILD_DIR=${MFEM_BUILD_DIR} config \
MFEM_USE_MPI=YES \
MPICXX=mpic++ \
MFEM_USE_CUDA=YES \
MFEM_USE_METIS=YES \
MFEM_USE_METIS_5=YES \
HYPRE_LIB="-L${HYPRE_LIBDIR} -lHYPRE" \
HYPRE_OPT="-I${HYPRE_INCDIR}" \
METIS_LIB="-L${METIS_LIBDIR} -lmetis" \
METIS_OPT="-I${METIS_INCDIR}"\
CUDA_ARCH=sm_80

make BUILD_DIR=${MFEM_BUILD_DIR} -j 4
make BUILD_DIR=${MFEM_BUILD_DIR} check
make BUILD_DIR=${MFEM_BUILD_DIR} install PREFIX=${MFEM_INSTALL_DIR}

Appendix B: MFEM build scripts 89

Code listing B.3: MFEM build script for the defq and milanq partitions on eX3

#!/usr/bin/env bash
#SBATCH --job-name=build-mfem-defq
#SBATCH --partition=defq
#SBATCH --nodes=1
#SBATCH --ntasks=4
#SBATCH --time=03:00:00

MFEM_BUILD_DIR=./build-defq
MFEM_INSTALL_DIR=/global/D1/homes/iverh/packages/defq/mfem-4.5

set -e
module purge
module use /global/D1/homes/james/ex3modules/defq/1.0.0/modulefiles

module load hypre-32-2.25.0
module load openmpi-4.1.4
module load metis-32-5.1.0

make BUILD_DIR=${MFEM_BUILD_DIR} config \
MFEM_USE_MPI=YES \
MFEM_USE_OPENMP=YES \
MPICXX=mpic++ \
MFEM_USE_METIS=YES \
MFEM_USE_METIS_5=YES \
HYPRE_LIB="-L${HYPRE_LIBDIR} -lHYPRE" \
HYPRE_OPT="-I${HYPRE_INCDIR}" \
METIS_LIB="-L${METIS_LIBDIR} -lmetis" \
METIS_OPT="-I${METIS_INCDIR}"

make BUILD_DIR=${MFEM_BUILD_DIR} -j 4
make BUILD_DIR=${MFEM_BUILD_DIR} check
make BUILD_DIR=${MFEM_BUILD_DIR} install PREFIX=${MFEM_INSTALL_DIR}

	Project description
	Abstract
	Sammendrag
	Acknowledgments
	Contents
	Figures
	Tables
	Code Listings
	Introduction
	Goals and contributions
	Related works
	Thesis outline

	Background
	Myocardial fiber orientations
	Quaternions
	The Laplace-Dirichlet Rule-Based method (LDRB)
	Creating an axis system
	Orienting the axis system
	Interpolating between two axis systems
	Defining the fibers

	The Finite Element Method
	MFEM

	GPU programming

	cardiac-fibers: LDRB on GPU
	Defining the input meshes
	Selecting a solution space and outlining the approach
	Solving the Laplace-Dirichlet equations
	Constructing the linear systems of equations
	Solving the linear systems

	Calculating the gradients of the scalar fields
	Transferring the fields to the solution space
	Per-element: Project scalar fields to L2
	Per-vertex: Interpolate gradients to H1

	Computing the fiber orientations
	Implementing the axis and orient functions
	Implementing the bislerp function

	Heuristics for a more robust definition of fiber orientations

	Results
	Experimental data and environment
	Experimental data
	Hardware and software configuration
	Timing
	Job setup

	Numerical results
	Performance of the full algorithm
	Forming of linear systems
	Solving the linear systems
	Computing gradients
	Projecting the solutions
	Defining the fibers
	Multiple processes per GPU
	Comparing performance between AMD and NVIDIA GPUs

	Discussion
	Assembly of the linear systems
	Solving the linear systems
	Effects of moving gradient computation and projection to GPU
	Evaluation of the gradient, projection, and fiber computation kernels
	The gradient kernel
	The projection kernel
	The fiber computation kernel

	Limitations on the maximal mesh size

	Conclusions and Future Work
	Future work
	GPU-based assembly
	Tuning of the preconditioner and solver
	Profiling and optimization of GPU kernels
	Algorithmic additions
	Further investigation of the region heuristic

	Bibliography
	Additional code listings
	MFEM build scripts

