2
2
=
2

o
o
cC

c
o

~

el
cC
©
]
[}
C
2L
(%4

%]

[
o

2
(%]
o
[

=
C

]
cC

R
o
%
o

z

o
c
-
[J]
(7]
£
o
cC
V7]
©
o
=
fras}
|9}
i
w
el
C
©
L
o
c
c
o
[t
C
o
=
©
£
o
L
<
[
o
=
1o
©
[V

]
[}
c
2L
(%)
%]
-
[
=
3
Q
£
(e}
)
Y
o
=
cC
[J]
£
fras}
-
©
Q.
<
[a]

Tjol Ravndal
Anders Solberg

State Management in Web
Applications

Master’s thesis in Computer Science
Supervisor: Trond Aalberg

June 2023

@ NTNU

Norwegian University of
Science and Technology

Tjel Ravndal
Anders Solberg

State Management in Web
Applications

Master’s thesis in Computer Science
Supervisor: Trond Aalberg
June 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Computer Science

@ NTNU

Norwegian University of
Science and Technology

Abstract

State management in JavaScript front-end frameworks is a critical yet complex aspect of web
development, and is considered a major pain point for many developers. Despite its significance,
there exists a considerable gap in the academic literature on the field of state management, which
this thesis seeks to address. It is hypothesized that an implicit theory of state management exists
within third-party libraries created to tackle the issue, and that through a detailed examination,
this theory can be made explicit. To accomplish this, a qualitative literature analysis of selected
state management libraries is conducted, split into the areas of client state management and server
state management. The outcome of these analyses is the formulation of two theories consisting
of key concepts and methodologies of client state management and server state management.
These theories are then verified by being applied in three different scenarios, demonstrating their
practical relevance. This process also shows how the theories facilitate an enhanced understanding
of state management by providing a descriptive language that promotes discussion and reasoning.
Ultimately, this thesis contributes to the body of knowledge in JavaScript front-end development,
offering practical insights to assist developers in tackling the complexity of state management.

Sammendrag

Denne masteroppgaven tar sikte pa a utforske og forsta et viktig, men komplekst, aspekt ved
webutvikling: tilstandshandtering i JavaScript front-end-rammeverk. Til tross for at mange utvik-
lere anser tilstandshandtering som en stor utfordring, finnes det lite forskning pa omradet. Opp-
gaven sgker a adressere dette hullet i litteraturen, med en hypotese om at det finnes en underlig-
gende teori om tilstandshandtering i tredjepartsbiblioteker som forsgker a lgse problemet. Ved hjelp
av en omfattende analyse av disse bibliotekene, er malet & avdekke denne teorien. Denne oppgave
inneholder en kvalitativ litteraturanalyse av utvalgte biblioteker for tilstandshandtering, inndelt
i de to hovedomradene klient- og server-tilstandshandtering. Analysene resulterer i utformingen
av to teorier, som hver for seg inneholder sentrale begreper og metoder for henholdsvis klient- og
server-tilstandshandtering. For & verifisere teorienes praktiske relevans, blir disse deretter anvendt
i tre ulike scenarioer. Disse anvendelsene viser ogsa hvordan teoriene bidrar til en bedre forstaelse
av tilstandshandtering ved & gi et beskrivende sprak som fremmer diskusjon og resonnering rundt
emnet. Denne oppgaven tilfgrer verdifull innsikt og kunnskap til feltet, og tilbyr praktiske verktay
til utviklere for a takle utfordringene knyttet til kompleksiteten i tilstandshandtering.

Table of Contents

List of Figures

List of Tables

1

2

Introduction
1.1 Research Objective e
1.2 Methodology and Limitations
1.3 Thesis Structure L
Preliminaries
2.1 React e e
2.2 React State L
2.3 Pure Functions e
2.4 Declarative and Imperative
2.5 Immutability
2.6 Normalization L
2.7 Finite State Machineso
2.8 Server APIs e
2.8.1 REST
2.8.2 GraphQL
2.9 Asynchronous JavaScript
2.10 Cache e
2.11 Networking L e
2.11.1 Retry . . . oo o
2.11.2 Offline Features
2.12 Streaming Data L
2.13 Pagination
2.14 Research in Web Development L.

vii

NoREN¢ JIEEN BN« NG SN

3 Method

3.1 Research Design e
3.2 Selection of Libraries

3.2.1 Client State Management Libraries

3.2.2 Server State Management Libraries
3.3 Grey Literature in Library Analysis 0oL
3.4 What is Documentation L o
3.5 Library Analysis Approach
3.6 Formulating the Theory

4 Client State Management Libraries

4.1 React Core e
4.2 Redux
4.3 MobX . .o
4.4 XState e
4.5 Zustando e
4.6 Recoll o e
4.7 Jotal . ..o
4.8 Valtio L
4.9 EIf . .

5 Server State Management Libraries

5.1 Tanstack Query
52 RTK Query e
5.3 SWR . .o e
54 Apollo Client
55 URQL e

6 A Theory of Client State Management

6.1 State Types e
6.1.1 Business State and Presentation State
6.1.2 Qualitative State and Quantitative State
6.1.3 Server State

6.2 State Reach
6.2.1 Local e
6.2.2 Global Inside React

ii

6.2.3 Global Outside React e 52

6.3 State Composition Models e 52
6.3.1 Single Tree e 52
6.3.2 Atomic 53
6.3.3 Fragmented Store. 53

6.4 Derived State L 54

6.5 State Selection 55
6.5.1 Selector Functions 56
6.5.2 Derived Selector Functions L. 56
6.5.3 Atomic 57
6.5.4 Automatic Based on Access oo 58

6.6 State Modification 59
6.6.1 Mutable and Immutable o oo o 59
6.6.2 Local and Global State Modification Logic 59

6.7 SUMMATY oo e e 60

A Theory of Server State Management 61

7.1 Server API Compatibility 61
7.1.1 General 61
7.1.2 Specialized 62

7.2 Operations e e 62
7.2.1 Queries 62
7.22 Mutations e 63
7.2.3 Subscriptions 64

7.3 Cache e 65
7.3.1 Query Cache 65
7.3.2 Normalized Cache 67

7.4 Organization of queries. L L e 70
7.4.1 Decentralized 70
7.4.2 Centralized 72

7.5 Asynchronous Metadata 73
7.5.1 DataStatus 74
7.5.2 Fetch Status 75

7.6 Integrated Client State 76

7.7 Server State Features 7

iii

7.7.1 Prefetching
7.7.2 Pagination
7.7.3 Fetch Policy
7.7.4 Middleware
7.7.5 Offline Mode
T8 Summary e e

8 Verification

8.1 Categorizing State Management Libraries
8.1.1 Client State Management Libraries
8.1.2 Server State Management Libraries
8.1.3 Evaluation

8.2 State Management in a Project Management Tool
8.2.1 Client State Only
8.2.2 Client and Server State o
8.2.3 Evaluation

8.3 Understanding Server State Management through
Client State Management o
8.3.1 Atomic Query Cache
8.3.2 Query Cache as Fragmented Stores
8.3.3 Atomic Normalized Cache
8.3.4 Evaluation

9 Conclusion and Further Work

9.1 Conclusion

9.2 Further Work e

Library Documentations

Bibliography

81
81
82
83
84
84
85
90
94

95
95
96
96
97

98
98
99

100

102

iv

List of Figures

2.1 React Component Tree L 5
2.2 React State Overview e 6
2.3 Finite State Machine 10
2.4 Client-Server Interactiono 11
2.5 Cache Types Overview o e 16
3.1 Topic Segmentation Sample Screenshot 0oL 25
6.1 Single Tree Composition Model L. 53
6.2 Atomic Composition Model 53
6.3 Fragmented Store Composition Model 54
6.4 Derived State L 55
6.5 Selector Function 56
6.6 Derived Selector Function 57
6.7 Atomic Derived State 58
6.8 Access Based Selector 58
7.1 Query Operation e 63
7.2 Mutation Operation L 63
7.3 Subscription Operationo 64
74 Query Cache e 66
7.5 Normalized Cache 68
7.6 Normalized Cache Missing Reference 70
7.7 Decentralized Query Organization 71
7.8 Centralized Query Organization 72
7.9 Data Status 74
7.10 Fetch Status L 75
8.1 Project Management Tool Prototype 85

8.2 State Typesin CannyBan Lo 86
8.3 CannyBan State Resembling a Tree Structure 87
8.4 Selected and Derived State in CannyBan 88
8.5 State Modification in CannyBan oo 89
8.6 Client State in CannyBan 2 L L 90
8.7 Query Cache in CannyBan 2 L 91
8.8 Decentralized Query Organization in CannyBan 2 92
8.9 Asynchronous Metadata in CannyBan 2 93
8.10 Client State Integration in CannyBan 2 94

vi

List of Tables

3.1 Client State Management Libraries 22
3.2 Server State Management Libraries 0oL 23
8.1 Categorization of Client State Management Libraries 82
8.2 Categorization of Server State Management Libraries 83

vii

Chapter 1

Introduction

JavaScript front-end frameworks, like React [1], have empowered developers to build more dynamic
and responsive web applications. An essential aspect of these frameworks is state management,
dictating how data flows and changes over time in applications. However, the field of state man-
agement presents considerable complexities. According to Pete Hunt, a former member of the
React core team, state management can be one of the hardest parts of building applications [2].
The State of JavaScript 2021 survey, which had over 16,000 developer respondents, ranked state
management as the third highest pain point for JavaScript web developers [3].

Although the field ranks high among pain points, there is not much scientific literature on the
topic. In a review article from 2018, Sun and Ryu reviewed the research done in the last decade
on client-side JavaScript programs, and state management was not mentioned [4]. When selecting
metrics for measuring code quality in React-based applications, Lin et.al. included various metrics
related to state, but no discussion on state management in and of itself [5]. State management
was addressed as an important topic by Novac et.al. when comparing React to Vue, another
JavaScript front-end framework, but it was only briefly considered and without details [6]. In a
paper describing the decision-process and lessons learned when migrating an application from old
technology to React, Roby et.al. mentioned the choice of state management solution and reflected
upon the learning curve of using the solution they chose, but the decision-process of why they
chose it, and how it relates to other state management solutions, was not discussed [7].

1.1 Research Objective

We can clearly see that there exists a gap in the literature, and in their paper regarding adoption of
JavaScript front-end frameworks, Ferreira, Borges, and Valente even calls out for more research on
JavaScript front-end frameworks [8]. The objective of this thesis is thus to heed this call and offer a
thorough exploration of the topic of state management in JavaScript front-end frameworks. While
the aim of this thesis is not to look at what makes state management frustrating for developers,
the hope is that this theory can work to ease this frustration by giving a clearer understanding of
the topic.

Due to the limited research on state management, there is currently no formalized and established
general theory of state management. However, it is a practical problem that has been solved many
times by different companies and individuals. The solutions are usually published as third-party
libraries, which can be included in any suitable project. These libraries often tackle different aspects
of state management, with some focusing on client state management and others on server state
management. Client state management refers to handling the state information that is stored and
managed on the client side, while server state management involves the caching and re-validating
of state that is fetched from a server.

The hypothesis guiding this research is that a general theory of state management implicitly exists

within the third-party libraries created to address this issue, and that by performing a thorough
examination of these libraries, this implicit theory can be formulated and made explicit. By
“theory” we mean the generalized concepts and terms used to describe state management as a
whole. Thus, the research questions for this thesis are as follows:

e RQ1: What are the main concepts and methodologies in the field of state management, and
how can they be formed into a generalized theory?

— RQ1.1: What are the main concepts and methods in client state management

— RQ1.2: What are the main concepts and methods in server state management

e RQ2: What are the potential scenarios where a generalized theory of state management can
be employed, and how might these enhance understanding and practice in this field?

1.2 Methodology and Limitations

The methodology of this research involves a thorough literature analysis of some selected state
management libraries. The analysis focuses on understanding the underlying principles and prac-
tises of the libraries, which is then used to construct a generalized theory of state management,
encompassing the key concepts and terms that can describe state management as a whole.

To provide a focused perspective for this research, we look at state management primarily from
the perspective of React [1]. The ecosystem of available front-end frameworks is diverse, and many
of the state management libraries are made specifically for one framework. We base the thesis
on React because of its standing as the most used front-end framework [9], making the resulting
theoretical framework relevant for as many developers as possible. Although we are going to talk
about state management from the perspective of React, several of the state management libraries
we review are independent of any specific framework. Consequently, we believe that parts of the
theory will be useful for developers utilizing other frameworks as well.

The included libraries are free, publicly available state management libraries, accessible via Node
Package Manager (npm)?!, the largest open source package manager for the JavaScript ecosystem.
The selection of which libraries to include in this thesis is primarily based on their popularity
and usage within the developer community, and the potential insight they could offer towards
constructing a generalized theory of state management.

1.3 Thesis Structure

The introductory chapter you are currently reading is the first of nine chapters in this thesis. This
section presents a brief overview of the following eight chapters. The thesis is primarily focused on
the two research sub-questions RQ1.1 and RQ1.2, respectively concerning client state management
and server state management. Consequently, the research is divided into two parts, one for each
research sub-question. This is reflected in the chapter structure, specifically chapters 4-7, where
each pair covers a respective part of the research question.

Chapter 2: Preliminaries describes and presents key concepts and theories that are advant-
ageous to understand when reading this thesis. Among other things, preliminaries includes a brief
description of React, relevant concepts from functional programming, normalization from database
theory, and an introduction to key concepts related to client-server interactions over a network.

Chapter 3: Method outlines our research methodology. It describes the selection process of
which third-party state management libraries to include, and how they are analyzed. To provide
clarity on our approach, we summarize the most important steps in our research process.

Thttps://www.npmjs.com/

Chapter 4/5: Client/Server State Management Libraries consists of summaries of the
client and server state management libraries, as part of the literature analysis. All included libraries
are presented, with a focus on the underlying principles and practices of the libraries.

Chapter 6/7: A Theory of Client/Server State Management are the main products of this
thesis. These chapters present formulated theories of what client state management and server state
management are, based on their respective literature analyses. The theories entail key concepts
and terms of client state management and server state management.

Chapter 8: Verification examines three use-cases for the formulated theories. Whether or not
the theories can be said to answer RQ2 is the main area of investigation in this chapter.

Chapter 9: Conclusion gives a brief overview of our process and main findings, and we conclude
whether the thesis answers the research questions. We also present our proposals for further work
in the area of state management.

Chapter 2

Preliminaries

State is a term that encapsulates a multitude of definitions. A broad definition of state is “[...]
data that is stored in memory” [10], but for our purposes it does not really help us any more
than getting a gist of what we are talking about. Data - of some kind - that is stored - somehow
and somewhere. It is hard to define state without explicitly specifying the context in which it is
being discussed. Therefore, in this thesis, we focus on state management within the context of web
applications.

To fully understand the issues related to state management in web applications, foundational
concepts of the topic is presented. Grasping these core concepts will be beneficial in order to accept
our reasoning regarding the theories presented in chapter 6 and chapter 7. The first sections in this
chapter are universally applicable to state management, while the latter part specifically relates to
server state.

The chapter begins with a description of the React framework, facilitating a solid understanding of
its component structure and state. The core concepts of state management rely on methodologies
such as pure functions, imperative and declarative programming, and immutability, hence they are
covered. An examination of normalization, a concept from database theory, is included due to its
relevance to how state should be stored. Additionally, the chapter briefly delves into Finite State
Machines, owing to its valuable application in the realm of state management.

Following this, we go through RESTful APIs and GraphQL APIs, which are widely utilized for
communication between client and server, and introduce asynchronous programming in JavaS-
cript. As client-server communication often must consider caching, an introduction on the topic is
provided, before discussing networking-related concepts like retrying requests and offline features.
The concept of streaming data is introduced, a more advanced form of network communication
often supported by server state management libraries, as well as pagination, another widely sup-
ported feature. To wrap up, we look at some of the research being done in web development,
related to the field of state management.

Because we base the thesis on state management for React, which is a JavaScript framework, all
code examples are written in JavaScript.

2.1 React

React is a JavaScript library, primarily used for building user interfaces [1]. It had its first public
release back in 2013', and is now the most used JavaScript front-end framework? [9]. React can
be used to build user interfaces for both web and mobile applications, and is maintained as an

Lhttps://github.com/facebook/react/releases/tag/v0.3.0

2Strictly speaking, React is not a framework, but a library. However, we will not delve into the difference between
a library and a framework in this thesis. One reason for the confusion, is that other, actual frameworks, such as
NextJS (https://nextjs.org/) and Remix (https://remix.run/), utilize React as their foundational library.

https://github.com/facebook/react/releases/tag/v0.3.0
https://nextjs.org/
https://remix.run/

open-source project by Facebook.

React embraces a declarative paradigm (further elaborated in section 2.4), enabling developers
to define what the user interface should look like for various application states. When this state
changes, React initiates a re-rendering process, updating and refreshing the user interface to ac-
curately reflect the changes that have occurred in the state. To describe the user interface, React
utilizes JSX, a syntax extension for JavaScript that looks like a blend of HTML and JavaScript.

The architecture of React is built around components, which are self-sustaining, independent en-
tities that encapsulate the state and logic required to output a piece of the user interface. User
interfaces built with React are a composition of components, assembled into a component tree.
While each component manages its own state, it is possible to pass properties from one component
down to its children, facilitating a unidirectional data flow, ensuring consistency and predictability.

Figure 2.1 illustrates a component tree that demonstrates a simplified version of Facebook. The
top level component in this tree is the <Facebook /> component. Its immediate child components
are <NewsFeed /> and <Profile />. Furthermore, each of these child components have their own
child components. The dashed lines extending downwards from the leaf components indicate that
these components may have additional children components. While the complete component tree
is probably larger and more complex than shown, the figure adequately represents the hierarchical
structure of a component tree.

Figure 2.1: The component tree depicts a simplified version of Facebook, with
<Facebook /> as the top-level component. Immediate child components in-
clude <NewsFeed /> and <Profile />, while additional nested child compon-
ents exist within each of them. The dashed lines suggest that there could be
more child components deeper in the tree.

2.2 React State

State in React acts as the component’s memory, and it has the ability to hold any data type in
JavaScript [11]. By leveraging state, components can dynamically update the displayed content
within a user interface. This becomes particularly useful in various scenarios, such as tracking the
state of a button click or capturing the current value in a search field. The utilization of state
empowers React components to effectively manage and update their internal data in response to
user actions.

State in React as described above is usually referred to as local state, meaning it is owned by a
specific component. Nonetheless, components have the option to share their state directly with
their children components if desired. Local state by itself does not have a simple or efficient way
to share state with components that are far away from itself in the component tree. On the

other hand, global state is state that is globally available to all components in the component tree.
Global state can either be owned by single component, or be localized outside of the component
tree. With global state, components can both read and update its values from anywhere within
the application.

In figure 2.2, a component tree including both local and global state is shown. The <NewsFeed />
component utilizes local state, visualized in the green font color. The grey circle including the
global state indicates that the global state in this example is located outside of the component
tree. The blue lines represent the utilization of the global state by the <Profile /> and <Posts />
components, highlighting the efficient sharing of state between components that are located at
significant distances from each other within the component tree.

N
SN N

global state

Figure 2.2: illustrates a component tree with both local and global state. The
<NewsFeed /> component utilizes local state (green font color), while the gray circle
represents the global state located outside the component tree. Blue lines indicate
the utilization of global state by the <Profile /> and <Posts /> components,
showcasing efficient state sharing across distant components.

2.3 Pure Functions

To explain pure functions we will use the definition of referential transparency from functional
programming. Referential transparency means that an expression can always be substituted with
its evaluated value without changing the behavior of the program [12]. To further clarify this
notion, let us consider a scenario where it is advantageous to isolate specific functionality into
separate functions. For instance, in an application there might be a need to frequently concatenate
the first and last name of a user, in order to display the user’s full name. To avoid code repetition,
one approach is to create a dedicated function specifically designed to handle this concatenation.
The function might be implemented as follows:

const getFullName = (firstName, lastName) => firstName + " " + lastName;

Now you can replace all the parts in your code where you previously concatenated the names,
with your new function getFullName. The reason that this works as expected is because of
the property of referential transparency. The function getFullName is referentially transparent
because substituting the function with its evaluated return value will not change the behaviour of
the program.

Pure functions are essentially understood from the concept of referential transparency. These are
functions that will consistently produce the same result when provided with the same inputs, and

importantly, they do not trigger any side effects. A trivial example that illustrates the concept of
pure functions is the square function:

const square = (number) => number ** 2;

If our program calls square(3), it will return the number 9. If we repeat the call to the square
function multiple times, passing it the argument of 3, we will get 9 as return value every time.
Since the square function is referentially transparent we could replace the call to the square
function with its evaluated value number *#* 2 (assuming the variable number is the same as the
argument given to the square function) any place it was previously referenced, and the program
would produce the same result as before. The square function does not modify or use any state
variables outside its local scope, and therefore the function does not have any side effects. Hence,
we classify the square function as a pure function.

2.4 Declarative and Imperative

To understand the difference between imperative and declarative programming, we can imagine
giving instructions to someone. By telling them step-by-step what to do, we are giving imperative
instructions. Similarly, in imperative programming, we tell the computer exactly what sequence
of commands it needs to execute in order to achieve a specific goal [13]. This often involves giving
explicit commands that modify variables over time. As an example of imperative programming in
JavaScript, consider a program that uses the square function, discussed in section 2.3, to square
a list of numbers:

// IMPERATIVE
const numbers = [1, 2, 3];
const squared = [];

for (let i = 0; i < numbers.length; i++) {
squared.push(square (numbers[i]));

}

In this example, we tell the computer exactly how to square the numbers: by looping over them
one by one and modifying the squared array in each step.

However, when simply describing what the end result should look like, we are giving declarative
instructions. In declarative programming, instead of specifying each step, we describe what the
outcome should be. We can recreate the example from above, but this time in a declarative style:

// DECLARATIVE
const numbers = [1, 2, 3];
const squared = numbers.map(n => square(n));

In the declarative version, we describe what we want: a new array where each number is the
squared of the corresponding number in the original array. We do not specify how to get there, we
just describe the outcome, and the Array.prototype.map() method takes care of the details.

To summarize, imperative programming involves giving the computer a sequence of steps to execute,
whereas declarative programming involves describing the desired result, and the specific steps are
abstracted away.

2.5 Immutability

In the context of computer science, immutability refers to the characteristic of a value or object
that restricts it from being modified once it has been created [10]. Essentially, an object is said to
be immutable, if any modification to it requires the creation of a new object, instead of altering the
existing one. This is in contrast to mutable updates, where a value or object is modified directly.

In JavaScript, primitive data types, such as strings, numbers and booleans are inherently im-
mutable [14]. When updating a primitive value, the assignment operator (“=") is utilized, which
essentially discards the old value and assigns a new value to the variable. Every change in primitive
types results in a new value, with no mechanism to alter the original value directly.

On the other hand, non-primitive data types such as objects and arrays are mutable. Mutable
data types have an object reference, and even though the individual properties can change, the
reference stays the same. To immutably modify a mutable data type in JavaScript, a new instance
of the data type must be created, resulting in a new reference. The new instance is created with
a copy of the original data, along with the intended modifications. Thus, the original variable is
not actually modified, but rather replaced with a new instance containing the modifications.

Programs relying on immutable updates expect a new object reference every time a change occurs,
whereas programs relying on mutable updates expect the object reference to be static, despite
changes in value. The expected behaviour of a program can break if the type of updates does not
align with the program’s expectation of mutability or immutability. Because of this, a program
that relies on immutable updates will need to be careful not to perform mutable updates, but
ensure that updates are performed immutably.

We will show how mutable and immutable updates are performed on the non-primitive data types
Array and Object. For example, the Array.prototype.push() method can be used to update an
array mutably. This will maintain the same reference for the array, and mutate the array directly.
Updating an object mutably is done by using the assignment operator on one of the properties of
the object. This will also not change the object reference, but mutate the object directly.

On the other hand, changing an array immutably is done by defining a new array, optionally adding
the previous items of the array, and optionally removing items. Let’s look at some examples of
how this can be done in JavaScript, using the spread syntax (...) to copy elements from the old
array into the new array:

// Original array
const oldArr = ["apple", "banana", "mango"l];

// Add item to end of array
const newArr = [...oldArr, "kiwi"];

Changing a mutable object immutably is similar to an array. First, we create a new object, copy
the previous values as needed, and then add or remove values. Once again, we will use the spread
syntax (...) to copy values from the old object into the newly created object:

const personObj = {
name: "Charlie",
age: 16,

I

// Increment age after birthday
const newPersonObj = {
...personObj,
age: personObj.age + 1

};

Since the two objects personObj and newPerson0bj have different object references, newPersonObj
can be said to be an immutable modification of personObj. As shown, updating objects which
are one level deep is pretty simple. However, dealing with nested objects is more complex as it
requires the creation of a copy of each level of the object, and pasting it into the corresponding
object level in the new object. Let us look at an example:

const nestedObj = {
firstLevel: {
secondLevel: {
thirdLevel: {
property: "I am a leaf node"

}

};

// Change property
const newNestedObj = {
...nested0bj,
firstLevel: {
...nested0Obj.firstLevel,
secondLevel: {
...nested0bj.firstLevel.secondlLevel,
thirdLevel: {
...nested0bj.firstLevel.secondLevel.thirdLevel,
property: "I have changed"

};

Updating nested objects can be error-prone, and the code can quickly become verbose and cumber-
some, especially when making changes to deeply nested objects. There exist multiple third-party

libraries that greatly simplify this process, a notable example being Immer3.

2.6 Normalization

The concept of normalization is a technique from relational database theory. It can be described
as a step-by-step process of organizing data in a database, with the primary goal of maintaining
atomicity, eliminating data redundancy and inconsistency, and ensuring logical data dependency
among attributes [15]. Atomicity implies that each value should be indivisible, not consisting of
multiple smaller values. For example, the full name of a user should not be stored as a single entity,
but rather be divided into first name, middle name, and last name. Data redundancy occurs if the
same data is stored in more than one place. If data redundancy is present in a database, it can
lead to data inconsistency, which means that the same piece of data is stored in different places
with differing values, potentially due to being updated in one location but not in another.

The goal of normalizing a database is to optimize its structure to allow efficient execution of
database operations such as insert, update and delete, without causing data anomalies, such as
inconsistency. Through normalization, a database becomes more maintainable, often more efficient,
and less prone to data anomalies. However, it is worth noting that the impacts on performance
can vary depending on the specific database workload and use-case. Sometimes, de-normalized
databases can result in more efficient reads, as all data needed to answer a query might be located
in a single location. Because of this, a normalized database is not preferable in all scenarios, and
has to be considered on a case by case basis.

3https://immerjs.github.io/immer/

https://immerjs.github.io/immer/

2.7 Finite State Machines

Arthur Gill presented a model of the finite state machines in 1962 [16]. It is a mathematical
model that serves as an abstract representation of a system, consisting of a finite set of states,
and rules for transitions between these states. Gill remarks that the theory itself does not belong
to any particular scientific area, but is practically applicable to a wide variety of fields, such
as communication, psychology and business administration, to name a few. Additionally, finite
state machines are highly relevant to computer science and networking, including the field of state
management.

The basic model of a finite state machine presented by Gill consists of a finite input alphabet, a
finite output alphabet, a finite set of possible states and characterizing functions [16]. To further
clarify the concept, an example of a finite state machine representing a coffee machine is presented.
The coffee machine consists of the finite set of possible states: idle, brewing and done. The finite
input alphabet refers to the set of possible inputs or events that a finite state machine can receive.
In our example, the coffee machine can be started by someone turning on the power. Additionally,
the completion of brewing is signaled when there is no water remaining in the container. To prepare
the machine for reuse, the used coffee beans must be removed. These events serve as inputs in our
finite state machine, hence, our input alphabet is start, complete and cleanup.

The characterizing functions in a finite state machine determine the next state based on a given
input. These transitions between states are visualized as directed edges. By utilizing these charac-
terizing functions, a transition table can be constructed to provide an overview of each input and
its corresponding next state. In the example of the coffee machine, the emphasis is solely on the
states and their transitions, without considering any potential outputs that might be generated.
Therefore, the example does not incorporate a finite output alphabet.

A finite state machine illustrating the example about the coffee machine is visualized in figure 2.3.
The three states idle, brewing and done are represented as blue, orange and green nodes respect-
ively. Furthermore, the edges start, complete and cleanup represents the possible state transitions.
In addition, the figure includes a transition table, showing an overview of the next state based on
a given input.

start | complete | cleanup | complete

| Input:

| Next: | | DONE | IDLE |

Figure 2.3: Overview of a finite state machine representing a coffee machine.
The states, idle, brewing, and done, are depicted as blue, orange, and green
nodes, respectively. The labeled edges indicate the possible state transitions:
start, complete, and cleanup. The figure also includes a transition table sum-
marizing the next state based on the given input.

10

2.8 Server APIs

All data that is not co-located with the client is seen as server data. The server may be a local
server running in your basement, a server located on the other side of the world or it might be a
cluster of servers in the cloud. Where and how data is stored does not have any significant impact
on the content of this thesis, since the thesis is mostly concerned with how we manage the server
data once it reaches the client. Thus, we can look at how the data is stored on the server as a
“black box”, indicating that we will not discuss it in detail, as illustrated in figure 2.4. This thesis
primarily focuses on the client. The communication between the client and server is facilitated
through an Application Programming Interface (API).

Client Ll Server

/

Figure 2.4: The figure illustrates the conceptual representation of the server
as a ”black box”, indicating that its internal workings are not discussed in
detail in this thesis. The primary focus of this thesis is on the client, with
communication facilitated through an API.

Communication between a client and a server is done through an API, which is like a specification
for the set of operations the client can perform on the server’s resources. This API is what the
client uses to interact with the server, making requests and updates in the specified manner. While
this thesis is only focused on the client side of this interaction, it is necessary to know what type
of API the server is using, as this affects how the client should request its data. We will cover two
different architectural models for server API’s, namely Representational State Transfer (REST)
and GraphQL. These are two common types of server APIs [17], but they work in very different
ways. In the examples of API provided, GitHub’s API is used, as they have exposed both a REST
API* and a GraphQL API°.

2.8.1 REST

REST is an architectural style which is used to build RESTful APIs [18]. REST uses resources as
its key abstraction of information, and a resource can be anything nameable, including server state.
Resources can be static, all the time pointing to the same entity, or they can be dynamic, pointing
to different entities depending on when it is requested. Let us say you want to find information
about a release of a program that is on GitHub. You could request “the release with the given
tag”. This would be a static resource, always pointing to the specific release with that given release
ID. On the other hand, you could request “the latest release” of the program, and this would be
a dynamic resource, always pointing to the currently latest release.

Resources in REST are identified with resource identifiers, which for the examples above from
GitHub’s REST API is structured like this:

// the release with the given tag
/repos/{owner}/{repo}/releases/tags/{tag}

// the latest release
/repos/{owner}/{repo}t/releases/latest

4Documented at https://docs.github.com/en/rest
5Documented at https://docs.github.com/en/graphql

11

https://docs.github.com/en/rest
https://docs.github.com/en/graphql

The “{}” are used to represent variables, which would be substituted with the specific owner,
repository and tag for a specific resource. For example, the resource identifiers for React version
v18.2.0, or the latest React release would look like this:

// the react release with the v18.2.0 tag
/repos/facebook/react/releases/tags/v18.2.0

// the latest release of React
/repos/facebook/react/releases/latest

So far we have only talked about resources in a REST architecture and how to identify them, not
how they are exposed to a client. RESTful APIs allow clients to access and manipulate resources
on a server, using standard HTTP methods like GET, POST and DELETE. When creating a
RESTful API you would define a set of endpoints to expose your resources, using the HTTP
method and resource identifier. Such endpoints for the GitHub releases could for example be:

// GET the latest release
GET /repos/{owner}/{repo}/releases/latest

// DELETE the release with the given release ID
DELETE /repos/{owner}/{repo}/releases/{release_id}

The endpoints may return data in the form of representations of the resource they point to. In
the case of GitHub’s API (and often when it comes to JavaScript APIs) the representations are
returned in the form of JSON objects. Not all endpoints return representations. For example, the
DELETE endpoint above only returns a status code to indicate success or error. Some endpoints
require that you send a representation of a resource with the request, for example if you want to
add a new entity to a resource. If we wanted to create a new release of React, we would make a
request to the corresponding endpoint, and pass along a JSON representation of the new release
in the request body:

// POST (create) a release
POST /repos/facebook/react/releases
// JSON representation of the new release passed along in the request body

As every resource is exposed through its own endpoint, there will be a lot of endpoints. In cases
where the data you need is not exposed through an existing endpoint, you could create a new
resource on the server, which contains exactly the data you need, and then expose this through
a new endpoint. However this is not always an option, as in many cases you do not have access
to the server. This approach could also lead to the API having a plethora of different endpoints,
each covering a very specific use-case. To get around this, you could combine the results from
the different existing endpoints to gather the sufficient amount of data. This may affect efficiency,
as each request to the server involves a round-trip, resulting in a certain amount of time and
bandwidth cost. This potential inefficiency is a result of REST being a generalized interface,
instead of tailored to the application’s needs [18].

2.8.2 GraphQL

GraphQL is a query language used to define data requirements and interactions in user inter-
faces [19]. A GraphQL service offers a GraphQL API that client applications can leverage to
precisely query the data they need. The GraphQL service endeavors to create a tailored API that
matches the specific needs of the application, making GraphQL a product-centric query language.
GraphQL was built by Facebook in 2012 and released as an open-source project in 2015. The
GraphQL specification is currently maintained by the GraphQL Foundation which was formed in
2019.

12

Every GraphQL service defines a type schema [19]. The type schema ensures that types in a query
are correct before code execution, and enable type validation in development time. The schema
of a GraphQL API can be queried directly, enabled by GraphQL’s introspection system. This
enables the creation of powerful developer tools, and allows clients to dynamically discover and
query the GraphQL service without any prior knowledge to the server’s implementation. The type
system and introspection capability of GraphQL also makes it self-documenting and viewable by
a GraphQL schema viewer.

To send a GraphQL request, we write a GraphQL query string. First we define what type of request
it is by specifying an execution operator, which can be one of query, mutation or subscription.
Queries are for fetching data, mutations are for modifying data, and subscriptions are for real-time
updates. After choosing execution operator, we specify the desired data, down to the individual
field level. The client interacts with the GraphQL API by making requests to a single endpoint,
and the GraphQL query string is added to the request body. An example query string for fetching
the latest React release from GitHub is shown below:

query {
repository(owner: "facebook", name: "react") {
latestRelease {
tagName
publishedAt
}
}
}

The client is responsible for deciding the format returned from a request. The client can specify
for exactly what fields it needs in a GraphQL query, resulting in only the data that were necessary.
One of the benefits of using GraphQL is that the shape of the response data is the same as the
shape of our query, as shown in the query response below.

{
"data": {
"repository": {
"latestRelease": {
"tagName": "v18.2.0",
"publishedAt": "2022-06-14T19:54:217Z"
}
}
}
3

GraphQL execution operators supports Variables as input to parameterize queries. Some use cases
for Variables are to filter what data should be returned from a query, or to pass along data that
should be stored on the server in a mutation. Furthermore, GraphQL Directives can be used to add
conditional logic at runtime to alternate the query format, based on input Variables. A common
use case of Directives is to determine whether a field should be included in the query or not.

An example mutation for creating a new repository is shown below. The repository data is passed
in as Variables to the mutation function. We can also define what data should be returned from
the mutation. In this example we want to receive the id of the newly created repository as response
data.

13

// Mutation
mutation ($name: String!, $visibility: RepositoryVisibility!) {
createRepository(input: {name: $name, visibility: $visibility}) {
repository {
id // returned from server after mutation

}
}
}
// Query vartables
{
"name": "learnGraphQL",
"visibility": "PUBLIC",
}
// Response
{
"data": {
"createRepository": {
"repository": {
"id": "MDEw01J1lcGO9zaXRvcnkxMjM4NTkxNjE="
}
¥
}
}

A GraphQL service exposes all of its data to the client, and the client can query exactly the data
needed. RESTful APIs exposes resources through predefined endpoints determined by the server.
If a client needs data from multiple endpoints, it can either fetch data from multiple endpoints and
combine the data on the client, or create a new endpoint on the server that contains the desired
data. The server is responsible for determining what data is exposed in a RESTful API, whereas
a GraphQL API allows the client to determine what data it needs.

According to the 2021 State of the API report by Postman with over 28 000 respondents, 94%
reported that they had used REST APIs, whereas 31% reported that they had used GraphQL
APIs [17]. However, GraphQL has grown rapidly since it was released as open source in 2015,
compared to REST that was formalized by Fielding in 2000 [18].

2.9 Asynchronous JavaScript

Making a request to a server over the network takes time. If we do it synchronously, meaning
we perform one task at a time, it would lead to a lot of stale time waiting for the requests to
complete. To avoid this, we use asynchronous programming, enabling us to write code that can
do multiple tasks simultaneously, without blocking the main thread. In JavaScript, asynchronous
programming would traditionally be done using callbacks. The callback pattern entails that you
register a function (a callback function) that should run when an event occurs. For example, if you
call a request to a server using the http.get () method in Node.js, you have to register a callback
function if you want to perform logic with the result of that request.

http.get (' /repos/facebook/react/releases/latest', (result) => {
// this ts the callback function that will
// run when the request ts complete

b

Callbacks are practical, but could in many cases result in messy, error-prone code, especially when
needing to register callbacks inside other callbacks, creating a nested “callback hell” that is difficult

14

to reason about [20]. As a response, the built-in JavaScript interface Promise emerged, a tool for
managing asynchronous operations in a clean and efficient way. Promises serve as an abstraction
for the result of an asynchronous operation, and can be in one of three different states: fulfilled,
rejected, or pending if it is neither fulfilled nor rejected [21]. The Promise constructor is given two
functions: one to fulfill the Promise and another to reject it:

const myPromise = new Promise((fulfill, reject) => {
fulfill("Hello");
// Promise is already fulfilled,
// but if we wanted to reject we would use this:
reject("Oh no!");

)

To get the value that a Promise fulfills to, you attach reactions to the promise using the .then()
method, which you pass an onFulfilled handler, and optionally an onRejected handler. If you
return anything in the onFulfilled handler, it is automatically wrapped in a new Promise, making
it possible to chain multiple Promises.

myPromise

.then((fulfilledValue) => {
console.log(fulfilledValue); // "Hello" from myPromise defined above
return fulfilledValue.toUpperCase();

b

.then((chainedValue) => {
console.log(chainedValue); // "HELLO", chained result

1))

By using Promises, you don’t have to register callback functions next to functions performing
asynchronous logic, but the asynchronous function can instead just return a Promise. Using this
returned Promise you can chain reactions that handle fulfillment and rejection. The standard
fetch() method, implemented by all modern browsers, utilize Promises. Instead of registering
callbacks, fetch() returns a Promise that you can chain reactions to by using .then(). If we
take the example with the server request, it could look like this:

fetch('/repos/facebook/react/releases/latest')
.then((serverResponse) => {
// this function will run when the promise fulfilles
b
.catch((rejectedValue) => {
// this function will run when the fetch promise rejects

b

Nowadays it is even easier to work with asynchronous code, thanks to the async/await pattern,
allowing you to seemingly synchronously wait on a Promise to complete. For our purposes how-
ever, the most important thing to know is that the Promise interface is what most server state
management libraries use to implement its fetching mechanisms.

15

2.10 Cache

Cache is widely used in multiple contexts in computer science, and there exist a wide variety of
cache types. Some of these are CPU cache, SSD cache, DNS cache, database cache or memory
cache. The main feature of a cache is to store a copy of some data in a temporary storage, such
that future requests can return the copy, instead of requesting the main storage. The relevance
of cache in this thesis is targeted towards the web. The HTTP specification defines cache like the
following: “A cache is a local store of previous response messages and the subsystem that controls
its message storage, retrieval, and deletion. A cache stores cacheable responses in order to reduce
the response time and network bandwidth consumption on future, equivalent requests. Any client
or server MAY employ a cache” [22]. From this definition, a cache is not only the data in the
temporary storage, but the term also includes the system for retrieving, updating and deleting the
temporary storage.

Figure 2.5 shows an overview of a possible combination of cache types in a software system. Proxy
and CDN caches are examples of shared caches [23], which can store responses that can be shared
among users on a network. Browser cache is a type of private cache which is not shared, and is
useful when for example storing authentication credentials. The primary focus in this thesis is
the cache type found within the application data of a web application. Software systems may use
a multitude of cache types, and figure 2.5 is an example illustrating a software system utilizing
multiple types of cache.

Browser
Web App Proxy CDN
Cache Cache Cache

Cache

Figure 2.5: Overview of cache types in a software system, including shared caches
and private cache. This thesis primarily focuses on the application data cache within
a web application.

When referring to the term cache in the context of this thesis, we mean server state cache. Put
simply, we refer to the process of storing a copy of server data on the client in hope of reusing this
data in the future, instead of making a redundant network request. The location of server state
cache can be seen in figure 2.5 inside the “Web App” container. This cache is stored in-memory
as application data of a web application. Cache that is stored in-memory is physically located in
Random Access Memory (RAM). RAM is by its nature a temporary storage, and it offers fast and
direct access. An important note is that the term server state cache does not mean cache stored
on the server, but rather a copy of the server data, stored on the client as server state cache.

When an application requests some data to present in the user interface, it can first ask the server
state cache, and return the data if present. However, if the data is not present, the client must
perform a full HTTP request targeting the server for data. The request might find the desired
data in for example a proxy cache or in a CDN, thus returning the data without even touching
the server. However, the different types of cache are built for different purposes and complements
each other in order to build an efficient software system. We do not want requests to propagate
farther than necessary, thus it is optimal to return data from the first available cache that match
a requests’ criteria.

Using data returned from any cache includes the risk of the data being outdated. Data that is
outdated is often referred to as stale, in the context of cache. Nguyen et al. define stale cache as
“resources which are out of date with respect to their master copies on the origin server” [24]. On
the other hand, cached data that is not marked as out of date are referred to as fresh. How long
cache is considered fresh, and the freshness of cache data are calculated can be determined in both
the cache system utilized and developer configurations. The challenge of assessing whether data is

16

fresh or stale is referred to as Cache Coherence [25]. This is important for server state management
because we want to keep the server state that is cached on the client as fresh as possible, without
making redundant network requests.

One of the main purposes of a cache system is to reduce superfluous request, while still presenting
fresh data. However, a cache system can not guarantee that data considered as fresh, will always
be up to date with the server, and neither that there will be no redundant requests. Thus, using a
cache system can be seen as a compromise between having up to date data and system efficiency.

2.11 Networking

Utilizing cache effectively and communication with a server through an API require using network
requests. Some of the advanced features implemented in server state management libraries are
dependent on common patterns regarding networking. This section will describe the most common
networking topics that are used in server state management libraries.

2.11.1 Retry

We are not always guaranteed to receive a successful response when sending network requests.
There are many things that can go wrong when two parts are communicating over a network.
However, retrying a failed request shortly after its failure does not necessarily ensure that the
request will continue to fail. Retry functionality in networking have some commonalities with
retrying in human interactions as well. Let us explain this with an analogy. You spontaneously
visit a friends house and start knocking on the door, hoping that your friend is at home and able
to hear you knocking. If your friend does not open, you would probably try to knock once again
in case he hears you knocking this time. After a couple of failed tries you probably walk home,
thinking to yourself that your friend is most likely not at home. Retrying network requests works
much like retry in the real world.

When the client does not receive an answer from the server, we has to decide if it should try again,
and how long to wait before retrying. The simplest option is to retry the request with a fixed time
interval. As we would not want to retry forever if the request continues to fail, we usually specify
a certain limit for the maximum number of retries. Alternatively, more sophisticated techniques
can be employed to calculate the wait time, like utilizing an exponential backoff algorithm, where
the interval between attempts is not constant but grows exponentially [26]. Fixed interval and
exponential backoff are deterministic algorithms, but you could also use randomness to decide the
time interval. A retry approach is not bound to use just one type of backoff algorithm deciding
wait time. It is also a viable option to use a combination of backoff algorithms, like the Semi
Distributed Backoff mechanism, which uses a combination of random backoff and deterministic
backoff [27].

Retry functionality is very useful in server state management libraries, since the retry algorithm can
be added as a configuration in the client responsible for fetching data. We will see later how different
server state management libraries utilize retry functionality and what backoff configurations they
provide.

2.11.2 Offline Features

Offline features in applications can enable additional features and use cases regardless of network
connection. A common offline feature is to download media files onto a device enabling users to
view the files later on without the need for a network connection. For example, music applications
usually allows for downloading songs onto your device, which makes it possible to listen to your
favorite music anywhere you go without requiring a network connection. Even though you have
network connection, listening to a song that is already downloaded can possibly reduce network
traffic by not needing to download the song again. However, downloading many songs that you

17

do not listen to can result in excessive network traffic and unnecessary consumption of memory
resources.

Advanced offline features can go beyond simply downloading files onto a device. They might allow
users to perform actions that actually require network connection while still being offline. The
actions might be perceived by the user as successful actions, but in reality the actions are saved on
the client device, and will execute the actual network request once the client is back online. Let
us look at some examples of such behaviour. Gmail enable users to send emails even though they
are actually offline. The email is stored on the users device in the outbox, and sent automatically
once the device reconnects to the internet. In a similar manner, Instagram allows users to post
photos while offline.

Offline features are convenient for users, as it allows them to continue using the application even
without a network connection, in contrast to applications that require an online status for all
interactions. For example, people are empowered to spend time responding to emails while sitting
on an airplane, or utilize applications in a parking basement with no or little network connection.
Furthermore, offline capabilities can give very fast response times, since user triggered events
does not require a network round trip. Mobile devices using a cellular network connection could
possibly save money by downloading data when using a stationary network, like Wi-Fi, instead of
their cellular network connection. There are many good things about an application supporting
offline features, but it also requires careful planning ahead of implementation. An issue that quickly
arises when discussing offline capabilities is “what should happen if the synchronization fails?”.
Before adding offline features, developers should consider whether they are worth the complexity
and time investment required for implementation.

2.12 Streaming Data

Some applications has to present data that is changing frequently. These applications are dependent
on showing up-to-date data, and will therefore not delay presenting the newest data. This type of
data is usually labeled real-time data, and should reflect what the real value is as of this moment.
Examples of applications depending on real-time data are chat, gaming, and IoT applications.
What they have in common is that some of the value of their application lays in the freshness of
the data. In multiplayer gaming, real-time data is crucial in order to obtain a sufficient gaming
experience. Furthermore, there is not much value in a temperature sensor showing the temperature
from hours ago, when the user is interested in knowing the temperature right now.

Streaming data refers to the processing of real-time data with low latency [28]. Streaming data
has infinite length and is transmitted continuously in ordered sequences [29]. Due to the nature
of streaming data being sent continuously, two communicating parts need a protocol supporting
an ongoing connection. A notable example of such a communication protocol is WebSocket [30].
WebSockets enable real-time data exchange between client and server over a persistent connection,
and is built into the Web API.

2.13 Pagination

A concept that quickly becomes relevant when dealing with server data is pagination, which simply
means to manage large sets of data by dividing them into smaller portions. Pagination refers both
to a Ul design pattern and a server side pattern. Pagination as a Ul design pattern involves
building a user interface that does not show all the data at once. Instead one divides the data
into smaller, more user friendly portions. A common trope is to have these portions be navigable
by pages, hence the name pagination, but it is also possible to for example implement infinite
scrolling. When using infinite scrolling, the “pages” are sowed together, perceived as a continuous
list. Scrolling to the end of the list triggers the fetching of a new “page”, just like an Instagram
feed.

18

Ul pagination is mostly concerned with the client user experience, and it can be implemented
independent of where the data is stored. All the data can be on the client, with the pagination
just taking care of showing it in a user friendly way. The implementation of Ul pagination is not
very relevant for this thesis. However, when the data is stored on a server, and fetched one “page”
at a time, the server needs to implement server side pagination.

Server side pagination entails that the client only asks the server for the first portion of the data
at first, and then for the next portion only if it becomes relevant. For example, a search result
can show the 10 most relevant items, and maybe the user finds what it is looking for among these
10 first results. Only if the user clicks the next page will the client send a request for the next 10
items. This can help save bandwidth in cases where there is a lot of data on the server, but the
client most likely just needs the first few items, or at least not all the data at once.

Implementing server side pagination demands collaborative effort from both the server and the
client. The server has to implement a pagination pattern in the first place, enabling it to serve the
data one portion at a time. The client need to ask for these portions in the correct way. There are
different server side pagination patterns, two common ones being index-based and cursor-based.
In index-based pagination, a request will contain the page number, and the server returns the data
for this page. With cursor-based pagination, a pointer to the last item retrieved is given, indicating
the current position in the data set. Subsequent queries can then use this position to serve the
next portion of the data.

We will not delve deep into the different implementation details of the different patterns of server
side pagination in this thesis. However, it is beneficial to have a grasp of what it is, as it is such
a common data fetching pattern, and most server state management libraries will make a point of
supporting it.

2.14 Research in Web Development

While the specific area of state management in JavaScript front-end frameworks has not been of
much interest to researchers, as mentioned in chapter 1, there has been more investigations into the
broader, related areas of web development, including JavaScript and its associated libraries and
frameworks. In this section we will briefly touch upon some of this research. However, it should
be noted that most of the research we will mention here is not directly relevant to our thesis, and
this section will thus work to further point out the gap that exists in research regarding state
management.

We can start by looking at some of the research that is being done in the field of JavaScript front-end
frameworks. Lee and Busch examines how JavaScript front-end frameworks meets the requirements
of modern web applications [31]. They found that the frameworks did not provide any performance
boosts, but still managed to reduce the complexity of the code, easing their maintainability. On
the other hand, sometimes frameworks may introduce complexity. Ferriera and Valente performed
a study on the usage of React, and common bad practice code-patterns introduced in complex
applications. Their research aims to assist in increasing the code quality of React applications [32].
Diniz et.al conducts a study to compare the performance of three JavaScript front-end frameworks:
React, Vue and Angular, in an effort to aid the decision of choosing the right framework in web
projects [33]. Still, as was pointed out in chapter 1, comparisons of state management libraries or
examinations of the topic of state management is lacking.

Caching is a major area of computer science, and it is a reoccurring subject of research. As shown
in section 2.10, caching encompasses multiple types of cache, each being the main subject of a field
of research. Flores and Bedi explores the effectiveness of different caching policies in large-scale
CDNs [34], and Ben-Ammar and Ghamri-Doudane investigate a new artificial intelligence-based
caching scheme for CDNs to keep only the content that is expected to be of use in the near
future [35]. Chhangte et.al. design a new method of caching on the edge, getting even closer to the
user than CDN cache [36]. An attempt at introducing a new type of cache next to the browser is
made by Heo et.al. to cache JavaScript bytecode, improving the performance of dynamic JavaScript
web applications [37]. Given that caching is such an active topic in computer science research, we

19

would think that caching in server state management libraries in JavaScript would also receive
some attention, but alas, it does not.

This has only been a brief look at some of the research being done in the broader field of web
development, and there is a wealth of research here. However, there is a noticeable gap when it
comes to the specific area of state management, both directly, and indirectly via fields like caching,
that otherwise is a thriving area of research. This is despite the fact that state management is
a critical component of developing dynamic web applications, and that it is, as we have seen,
cited as a major pain point for developers [2], [3]. This is the gap this thesis aims to address by
providing a comprehensive exploration of state management in JavaScript front-end frameworks,
with a particular focus on React.

20

Chapter 3

Method

The aim of this thesis is to explore the topic of state management in JavaScript front-end frame-
works. Even though state management is a field that lacks a formalized general theory and scientific
research, it is a practical problem developers face every day. There are many third-party libraries
that attempt to offer practical methods for managing state effectively. These libraries might look
different in syntax, architecture and functionalities, but they all converge towards a common goal:
state management. The hypothesis this thesis is built upon is that a theory of state management
exists implicitly within these libraries, and that it can be extracted, formulated, and made explicit
through detailed analysis. Therefore, our research methodology consists of conducting a qualitat-
ive literature analysis of some selected state management libraries, before we try to generalize our
findings to formulate a general theory of state management. This chapter presents and justifies the
research design and methods employed. It details our process of library selection, our approach to
the literature analysis of these libraries and the formulation of the general theory.

3.1 Research Design

Our methodology is inspired by Grounded Theory, a qualitative research methodology intended to
generate new theories [38], [39]. Grounded Theory is relevant for this project, because our aim is
to create a new theory of state management. You could say that we want to uncover the hidden
theory that lies implicitly inside the different state management libraries, which makes Grounded
Theory relevant, as it intends to ground its theories in the data.

However, Grounded Theory is a rigorous methodology with strict procedures and stages, leading to
the generation of a theoretical framework. While we appreciate the guiding principles of Grounded
Theory and its emphasis on letting theory emerge from the data, we found it not entirely practical
or beneficial to adhere strictly to its methodology. Therefore, while our research methodology
bears resemblance to Grounded Theory, it does not strictly follow it. A more detailed description
of how Grounded Theory served as an inspiration for our methodology can be found in section 3.5.

3.2 Selection of Libraries

To ensure the theory we create is credible and relevant for as many developers as possible, we
want to include the most used and popular state management libraries as part of our data set.
Unfortunately, there does not exist any public record of all the available state management libraries.
One reason for this is that most state management libraries are open source projects, published as
npm! packages. Some libraries are created by companies, like Recoil [40] created by Meta, while
others are created by individual developers, like Zustand [41] created by Daishi Kato. While this

Thttps://www.npmjs.com/

21

https://www.npmjs.com/

generates a lot of creative solutions for state management, it can also work to make the landscape
of state management libraries unmanageable, and susceptible to rapid changes. Technically, there
is no way to make sure we include every relevant library. Practically however, we can get a good
indication by relying on weekly downloads, developer ratings and curated lists.

Some metrics that we used as a guidance to measure popularity of the libraries were GitHub Stars
and npm downloads. GitHub Stars is a way for GitHub users to mark a project as something they
like, and can give an indication to how popular a library is. Npm downloads represents how many
times a library has been downloaded from npm?.

3.2.1 Client State Management Libraries

Some client state management libraries has been around for a long time, and have been widely used
for many years, often indicated by a large number of Stars and downloads. These libraries also
often makes it into blog posts and curated lists of the “best” client state management libraries. We
included three of these libraries: Redux [42], MobX [43] and XState [44]. However, recently there
has been a surge of new state management libraries, that is often marketed as replacements for
these “old” libraries. Jotai [45] and Zustand [41] are two popular examples, with Zustand actually
acquiring more GitHub Stars than XState, and is still climbing. Other new libraries gain a lot of
traction by being backed by big companies, like the aforementioned Recoil [40] by Meta.

While researching what libraries to include, we also decided to accept two libraries which did not
mark themselves with a high number of Stars or downloads. Valtio [46] is another library by
Daishi Kato, the author of both Jotai and Zustand. The reason we include Valtio as well is that
it marks itself from the crowd by being one of the few state management libraries that handles
state mutably. MobX is the only other library from our list that also does this, and we think that
it is beneficial to include another library with mutable state. Being written by the same author as
Jotai and Zustand also gives it some credibility. The other library was Elf [47]. Elf differentiates
itself from the other libraries, as it bases itself on the principles of ReactiveX?®, elaborated further
in section 4.9. Thus we think that EIf adds value, by making sure we include a certain amount of
variety to the theory, even though it is rather new, and do not have the same amount of Stars or
downloads as the rest?. The full list of the included libraries is shown in table 3.1.

Library | GitHub Stars (thousands) | Monthly downloads (millions)
Redux 58.9 36
MobX 25.9 4.5
XState 21.8 5.2
Zustand 23.8 3.2
Recoil 18.0 1.5
Jotai 10.9 0.79
Valtio 5.8 0.14
Elf 1.2 0.04

Table 3.1: Client state management libraries included in the project, along
with their GitHub Stars® and monthly downloads®. Star count was recor-

ded in November 2022, and monthly downloads were gathered in Septem-
ber 2022.

2This number includes automated build servers, downloads by mirrors and robots, and omit all the times a
cached version was used instead of a fresh download. However, it still gives a good indicator of how many
developers actually use the library. More details can be found here: https://blog.npmjs.org/post/92574016600/
numeric- precision- matters-how-npm-download-counts-work.html

Shttps://reactivex.io/

4 Akita is a library based on ReactiveX that has been around for a longer time and have more stars than EIf,
but because they themselves recommends Elf in their documentation we decided to choose Elf: https://github.com/
salesforce/akita/.

5Star count for the respective libraries were gathered from Github: https://github.com/

6Data on npm downloads were gathered from npm-stat: https://npm-stat.com/

22

https://blog.npmjs.org/post/92574016600/numeric-precision-matters-how-npm-download-counts-work.html
https://blog.npmjs.org/post/92574016600/numeric-precision-matters-how-npm-download-counts-work.html
https://github.com/salesforce/akita/
https://github.com/salesforce/akita/
https://github.com/
https://npm-stat.com/

3.2.2 Server State Management Libraries

One of the oldest and most used server state management libraries is Apollo Client [48], which
had its initial major release back in 20177. This was a couple of years after the open sourcing
of GraphQL in 2015, and Apollo Client was primarily built to manage GraphQL APIs. During
the same period, Meta developed their own library called Relay [49]. Relay is not included, as we
wanted a newer GraphQL-based library in addition to Apollo. Therefore, URQL [50] is included,
which was released later in 20198.

While Apollo, Relay and URQL are some of the earliest attempts at server state management
libraries, they all focus on making GraphQL requests. They are possible to use without GraphQL,
but this is their main area of focus. It was not until 2020 that we saw the rise of server state
management libraries that were not primarily aimed at GraphQL. Tanstack Query [51] were one
of the first?, and it gained a lot of traction. It has the most GitHub Stars out of all the server state
management libraries we have considered, hence it was natural to include it. Redux, the most
used client state management library, released RTK Query [52] in 20211°. This is their answer to
managing server state, and it was released as part of their Redux Toolkit library. It is difficult to
get a realistic image of how many actually utilize RTK Query, since the number of downloads will
include Redux users who does not use RTK Query as well, but we include it nonetheless. Lastly,
we include SWR [53] on the basis of it being a very popular alternative, which also had its first

major release in 202111, The full list of the included server state management libraries is shown
in table 3.2.
Library GitHub Stars (thousands) | Monthly downloads (millions)
Tanstack Query 33.8 4.4
RTK Query 9.3 9.4
SWR 26.1 4.7
Apollo Client 18.6 10.9
URQL 7.9 0.9

Table 3.2: Server state management libraries included in the project, along with
their GitHub Stars'? and monthly downloads!'3. Star count was recorded in March
2023, and monthly downloads were gathered in February 2023.

3.3 Grey Literature in Library Analysis

In order to derive an implicit theory from the state management libraries, a systematic analysis of
each selected library was conducted. Our purpose was to gain a comprehensive understanding of
each library’s features, principles and best practices. To best achieve this, the documentation of
the libraries was used as the primary material for the review. These are “wiki-like” pages where
library authors and contributors explain how to use the library and its underlying principles.

Library documentation falls into the category often referred to as “grey literature”. As defined
by Garousi et.al., grey literature encompasses materials “that are not formally peer-reviewed nor
formally published” within the field of software engineering [54]. This type of literature is often
overlooked in academic research, which traditionally favors peer-reviewed, published papers. Yet,
it is precisely this category of grey literature that most practitioners in the field engage with,
creating a distinct divide between academia and industry. Garousi et.al. encourage an increased
use of grey literature in scientific research as a means to bridge this gap [54]. In computer science

"https://github.com/apollographql/apollo-client/pull /1519
8https://github.com/urql-graphql/urql/releases/tag/v1.0.0
9https://github.com/TanStack/query/pull /150

10https: //github.com /reduxjs/redux-toolkit/releases/tag/v1.6.0

M https://github.com /vercel /swr/releases/tag/1.0.0

12Gtar count recorded from Github: https://github.com/

13Data on npm downloads were gathered from npm-stat: https://npm-stat.com/.

23

https://github.com/apollographql/apollo-client/pull/1519
https://github.com/urql-graphql/urql/releases/tag/v1.0.0
https://github.com/TanStack/query/pull/150
https://github.com/reduxjs/redux-toolkit/releases/tag/v1.6.0
https://github.com/vercel/swr/releases/tag/1.0.0
https://github.com/
https://npm-stat.com/

research, utilizing grey literature can be beneficial in gaining contemporary insights relevant to
both practice and research, as highlighted by Williams and Reiner [55].

Given the nature of our subject - uncovering the implicit theory behind these libraries - we found it
necessary to leverage grey literature for our analysis. While library documentation is not traditional
academic literature, these documents are produced by experts in their field, offering invaluable
insights into the current practices of each library. This approach provides us with an thorough
understanding of the reasoning and principles guiding the library authors. Thus, the utilization of
grey literature allows us to gain a realistic comprehension of the nuances of state management.

3.4 What is Documentation

Our main data source of the qualitative analysis is the official documentation of the libraries.
However, there are no formal definition of what a library documentation should include or what
structure should be used. This is one of the reasons that the format of the documentation of the
different libraries can vary to a great extent. The topic of state management evolves rapidly, and
there are new state management libraries being released almost every year. The format of the
documentation is to some degree influenced by the other available libraries at the moment, and
what their strengths and weaknesses are. Some libraries are created because of the lack of features
in current libraries, or by a belief that the problem of state management could be solved in a better
way. It is for this reason that the documentation format can differ based on the year they were
released, what other libraries, concepts or principles they build upon, or what has changed in the
technology itself. This section clarifies some of the different aspects of the documentation.

Redux and MobX are two of the oldest and most used state management libraries. They have in
common that they have a comprehensive documentation. They provide thorough descriptions of
the core principles and concepts of the library, and give clear answers to why, what and how the
library solves the issue of state management. These libraries were some of the first to introduce their
naming of the principles and share a wider understanding of the necessity of state management.
One example is the concept of mutability. Redux uses an immutable data model, and MobX uses
a mutable data model. Their documentation describes what mutability is, why they think it is
advantageous to use and how it is implemented in practice.

Libraries released in later years often builds upon the same principles and concepts of previously
released libraries. A library may use some of the same principles popularized by Redux for example,
add a new principle or two, and create its own implementation of it. If a library practices concepts
that are already known in the developer community, there is less of a need to extensively describe
the core principles in the documentation. A common pattern in documentations of newer libraries
is therefore an increased focus on how the library is easier to implement, have a better developer
experience, and solves the problem of state management in a better way. This shift places greater
emphasis on implementation and reduces the focus on principles.

Some documentations have a larger part of implementation, and a small part about principles.
Others have very much about principles and less about implementation. Our research tries to
create a theory of state management which describes what state management is, why it is needed
and to a lesser degree describe how it is solved. Therefore in our data analysis we have included
data about why, what and something about how. Thus, code examples have been mostly omitted
for our research, unless the code examples to a great extent shows or underpins the principles. We
found that doing this abstraction was necessary to be able to create a generalized theory of state
management, with informal data sources that have different documentation formats.

24

3.5 Library Analysis Approach

This section presents our analytical method, which we believe strikes a balance between thorough-
ness and efficiency. As mentioned in section 3.1, our method draws inspiration from Grounded
Theory, particularly the process of coding - labeling segments of data into topics, which are then
processed further to generate the theory.

Our approach unfolded in several steps. First, we briefly went through each library’s entire docu-
mentation, to acquire an overview without delving too deeply into the details. Afterward, a more
detailed examination was initiated, systematically coding segments of the text. A segment could
range from a piece of a sentence to multiple sentences. The coding was done by copying the seg-
ments into a shared document, under a topic header. One segment could be copied into multiple
topic headers, and sometimes the topics could be renamed during the process, to better describe
the content. A screenshot of a few segments from the analysis of one of the client state libraries is
shown in figure 3.1.

¥ Topics
> Motivation
> Finite State Machine
¥ States
¢ A state describes the status of the machine.
o A state is an abstract representation of a system (such as an application) at a specific point in time.
* This status defines how the machine behaves when it receives an event.
o These states are finite; the machine can only move through the predefined states.
o Machines can only be in one state at a time.
o When a state machine starts, it enters the initial state first.

= A machine can only have one top-level initial state.

Figure 3.1: A screenshot of some of the segments that were copied under the
topic of “states” in the XState client state management library.

This coding process was akin to the open coding phase in Grounded Theory. The essence of open
coding is to remove preconceptions about the data, and extract concepts directly from the data
itself. Given that our research consists of analyzing multiple libraries that all solve the problem of
state management in different ways, we conducted the open coding phase for each library separately.
This allowed us to capture the unique attributes and mechanisms of each library before drawing
inter-library comparisons.

Following this, we read through the segments under each topic, checking for consistency, removing
duplicates, and identifying whether additional data was needed to get a complete picture of the
relevance of different topics. This phase deviated from the second phase of coding in Grounded
Theory, axial coding, which seeks connections among codes and to identify common themes. In-
stead, we continued to treat the libraries separately, and summarized the theory of each specific
library. By getting an overview of each library, we found it clearer to see which elements should
be part of the general theory. These summaries will be listed in chapter 4 and chapter 5.

In brief, our library analysis approach are as follows:

1. Briefly review the library’s entire documentation for a general understanding.
2. Perform a detailed reading, identifying key segments.

3. Transfer the identified segments into a shared document, categorizing them under appropriate
topic headers.

4. Review the categorized segments, ensuring consistency, removing duplicates, and adding any
necessary supplementary information.

5. Summarize the key points into an overview of the library.

25

3.6 Formulating the Theory

The final phase of our analytical process was the formulation of the theory. This drew inspiration
from the selective coding phase of Grounded Theory, which aims to identify the codes that are
essential to the theory being generated. Here we compared the different libraries while looking for
connections to discern which topics were essential for the general theory of state management.

The result of this process is a pair of theories that formulates the core principles and methodologies
employed in state management. These theories embody our response to the first research question,
RQ1 - the formulation of a general theory of state management. The theories are presented in
chapter 6 and chapter 7, where we detail the main concepts and methodologies discovered through
our analysis. We differentiate between those related to client state management, addressing RQ1.1,
and those related to server state management, addressing RQ1.2.

Overall, this approach, inspired by Grounded Theory, facilitated a thorough understanding of the
field of state management from the bottom-up, starting from the concrete implementations in each
library and gradually building towards a generalized theory.

26

Chapter 4

Client State Management
Libraries

In this chapter, we present summaries on our data on the selected client state management libraries
for React. Our aim is to provide a comprehensive overview of each library’s unique features,
advantages, and limitations. As a starting point, we discuss state management with just React
core. After this follows the client state management libraries, which include Redux, MobX, XState,
Zustand, Recoil, Jotai, Valtio, and Elf. The methodology of our study, and the reasoning behind
this selection, was covered in chapter 3.

We present a summary of each library, gathered by reading the respective documentations of the
different state management libraries. These summaries primarily focus on how state is modelled,
updated, and consumed by components. We hope to provide readers with a thorough under-
standing of the state management landscape for React applications. Our aim in presenting this
information is to provide the reader with the basis of our data material, which will be integrated
in chapter 6 to create an overall theory of client state management.

Unless otherwise stated, all information in the following sections are based upon the relevant library
documentation. Additionally, the logo of each library is displayed in their respective sections.

4.1 React Core

Before entering the world of different state management libraries, it is
necessary to understand what features React core offers regarding state
management. Almost all of the state management solutions utilizes
React state management in one way or another. The solutions that are
closely coupled with React often utilize React’s own features internally,
and the solutions more loosely coupled with React do have to rely on
React’s hooks to access the state from within the components.

Managing State with Hooks

React’s built in state management relies on hooks. Hooks are special functions that lets React
function components access advanced React features. Whenever a React component re-renders,
the whole component function is re-run. This means that any values that are defined inside the
component function will be re-created for each render. This is a problem if you need some values,
i.e. state, to be preserved between renders. This is where hooks come into play, and in the following
sections, we look at some of the most important hooks provided by React to manage state.

27

The most basic hook is useState. useState takes an initial value as a argument, and returns
an array with two elements. The first element is the current state, and the second element is a
setter function that lets you change the state immutably. This state value is managed by React
behind the scenes, instead of being stored inside the component. It is stored in a Ul tree managed
by React, which resembles the HTML Document Object Model. The state is connected to the
components location in the Ul tree. As long as the component is rendered at its location in the
UI tree, React preserves the state. When the component unmounts, React discards the state.

One important thing to know about useState is that the current state value returned from the
hook is not a dynamic value, but is captured as a closure. This means that the value is not
connected to the “real” state, but is only a copy of the state value at the time of render. This is
why you cannot modify the state directly, but have to use the setter function provided by useState,
as this gives access to the real state and current value. It can also be confusing if you try to use
the state value directly after setting it, since for the rest of that render, the value will be the same
as it was at the start of the render. It is only after the component function is done executing, that
the change of state will trigger the re-render, which will then collect the newest value of the state
from the useState hook.

useState lets us preserve state between renders. For simple state management useState may be
all you need, but in some situations you might want more control. The hook useReducer also
returns an array with two elements, where the first element is the current state value. The second
element however is not a state setter, but a dispatch function. In addition, useReducer requires
two arguments, an initial value and a reducer function, which is in charge of managing the state
updates. Instead of changing the state using a state setter, you modify the state by dispatching
actions, which then gets handled by the reducer function. This approach is highly inspired by
Redux which we cover in greater detail in section 4.2.

State Sharing

A problem that quickly reveals itself when you use these hooks for more than simple example
projects is the need for sharing state between components. While some state only exist in a
local scope, often the same piece of state is used in many different places. On the surface this is
no problem for useState and useReducer, as both the state value and the setter, or dispatch,
function can be passed to child components using props. This way you can just lift the state to the
highest common ancestor component, and pass them down from there. Lifting state up to highest
common ancestor often results in what we call prop drilling, as it can result in props being passed
many layers of components because you need it at two different components low in the component
hierarchy.

To address the aforementioned concerns, useContext and global state is introduced. With this you
can define state values that you want multiple components to have access to, and then provide that
value with a higher order component, which is a component wrapped around another component.
Every descendant of the higher order component can access this state value using the useContext
hook. If this higher order component is a top level component, the state becomes global to the
entire application. You can also update this global state from the components, as the useContext
hook returns two elements in an array, where the second element is a state updater function, just
like with useState. Even though useContext gives you this state setter function, it is not intended
to use with state that changes frequently. Whenever the value provided to the context is changed,
React will automatically re-render all components that read this context. This may lead to a lot
of re-renders, even though all components that listen to the context may not be affected by the
change. This is why useContext is often recommended for values that are relatively stable.

28

4.2 Redux

Redux describes itself as “[...] a pattern and library for managing and
updating application state, using events called ‘actions’. It serves as
a centralized store for state that needs to be used across your entire
application, with rules ensuring that the state can only be updated in
[’ a predictable fashion” [42]. The foundational building blocks of Redux
are state, actions and reducers. Redux is a standalone library that can
be used independently of which UI layer is used. This section will give

deeper insights into how Redux stores data, and how data is updated
and consumed.

The Redux pattern is supposed to enhance an understanding of when, where, why, and how the
state in an application is being updated. The basic idea behind Redux is summarized as “...]
a single centralized place to contain the global state in your application, and specific patterns to
follow when updating that state to make the code predictable” [42]. The centralized global app
state is kept in a single store, and the store state is read-only for the rest of the application. The
only way to update the global store is to dispatch an event called an action. Reducer functions
are called in response to an action in order to update the global store.

State Updates

Actions can be thought of as events that occur in the app, which trigger an update in the state.
Something happened, and we want the store to know about it. Dispatching an action is exclus-
ively the only allowed way of updating state in Redux. Moreover, all components are allowed
to dispatch actions. Actions are plain objects, containing the minimum amount of information
needed to describe what happened. This is typically done with a type field - a unique name for
the action - and an optional payload field that contains other values to be passed with the action.

Reducers are responsible for managing state updates in a Redux store, triggered by actions being
dispatched. We can think of them as event listeners where the dispatched actions are the events.
When an action is dispatched to the store, the store runs the reducer and checks to see if it cares
about this action. If it does, it modifies the state accordingly. Reducers are pure functions that
receive the current state and an action object as arguments. They determine how to modify the
state, if necessary, and then return the new state.

Every Redux store has a single root reducer function that is responsible for handling all of the
actions that are dispatched, and calculating the entire new state every time. Moreover, Redux
recommends organizing your app folders and files based on features - code that relates to a specific
feature or concept in your app should be co-located. This can be done by splitting the root-reducer
into smaller reducer functions, based on the piece of the state they update. This makes the reducers
easier to read and maintain, but they have to be combined into a single root-reducer at the creation
of the store.

The reducer function can contain all necessary logic for calculating the next state, but since one
of the goals of Redux is to make your code predictable, reducers cannot use asynchronous logic,
have any side effects, or produce random values. This also makes the reducers simpler to test. If
you need side effects you must introduce middlewares.

State Model

A store is a “container that holds your application’s global state” [42], and it is the center of every
Redux application. A Redux app always have a single store, and every store has a single root
reducer function. For small apps, it may be sufficient with a single root reducer, but in larger apps
it is common to split logic into separate reducers. The root reducer can be composed of multiple
reducers through reducer composition. Composing reducers into one root reducer preserves the
rule of only having one root reducer function in a store, and also enables the possibility of splitting

29

responsibilities into separate modules.

State, actions and reducers are united through the store, and the store has several responsibilities:

Hold the current application state inside

Allow access to the current state

Allow state to be updated via store.dispatch

Register and un-register listener callbacks via store.subscribe

In a React application, any component are allowed to read from the Redux store. However, the only
approved approach to cause an update to the state is through dispatching an action. Redux actions
are defined declaratively - the action can describe and tell the store what event has happened in
the application, and the store will update the state accordingly to the action. After a state update
has happened, the store will notify all components that are listening for a specific part of the store.

State Consumption

Selectors are functions that extract specific pieces of information from the store state. A selector
takes the root state as input argument, and returns the specific part of the store that is needed.
Selectors can also return derived values based on the current state. If the derived selectors are
doing processor-heavy computations, it can be an advantage to use a memoized selector, which
will memorize previously calculated results. Redux Toolkit includes memoized selectors based on
the library Reselect!. This accepts selector functions as inputs, and uses the result from the input
selectors to calculate the output. If the result from the input selectors has not changed, it just
returns the memoized value instead of recalculating the output selector.

Redux uses a uni-directional data flow. An example of Redux’ uni-directional data flow would be
like this: a component dispatches an action. The store runs the reducers, and the state is updated
based on what occurred. The store notifies the subscribed components, causing the components
to re-render based on the new state.

Middlewares and Enhancers

The functionality of the Redux store can be extended using middlewares or store enhancers. Mid-
dlewares form a kind of pipe around the dispatch method, which means when we call dispatch, we
call the first middleware in the pipeline. This means you can extend the store to accept actions that
are not plain objects. Middlewares can also introduce side effects, for example by dispatching ac-
tions through thunks. A Redux thunk is a piece of code that does some delayed work, which means
it can contain asynchronous logic. A thunk function returns a Promise, which our components
can wait for if they depend on the thunk result.

Compared to middlewares, enhancers are even more powerful as they wrap around the entire store
instead of just the dispatch method. An example of a store enhancer is developer tools, for example
allowing us to replay actions manually without the app being aware of it happening. The Redux
ecosystem includes the browser addon Redux DevTools, which shows a history of what actions
were dispatched, what payload were sent with the action and how the state changed after each
dispatched action. Redux DevTools also contains the powerful feature of time travel debugging,
which gives developers the possibility to restore the state to any given point in time and manually
replay actions.

Thttps://github.com/reduxjs/reselect

30

https://github.com/reduxjs/reselect

Toolkit

The recommended way of writing and using Redux has evolved over the years. In 2019, Redux
Toolkit was released, and it is described as “The official, opinionated, ‘batteries included’ toolset for
efficient Redux development”. Redux Toolkit was created to specifically eliminate the “boilerplate”
from hand-written Redux logic, simplify standard Redux tasks and includes recommended packages
and functions that are essential for building Redux apps.

Immutability and Normalization

Redux reducers are not allowed to directly mutate the state, and has to perform immutable updates.
Redux depends on immutable state updates for its features to work properly. There are several
reasons for why mutable updates cannot be performed:

e It breaks the ability to use time travel debugging.
e [t causes bugs such as the user interface not updating properly to show the latest values.

e It makes it harder to write tests.

It is harder to understand why and how the state has been updated.

It goes against the intended spirit and usage patterns for Redux.

When the size of a Redux application grows, it is normal to store data in a normalized form. This
makes sure there is only one copy of each piece of data, and makes it easier to lookup specific
items, as each item is stored in an object with an ID as key. This way you can also refer to other
items by ID instead of copying the entire item. To help with this, Redux Toolkit has built-in utility
functions to manage normalized data.

4.3 MobX

MobX goes against the grain by using mutable data as the basis of
their state. They use a reactivity system to track and react to state
changes. This system is designed to make sure calculations and data is
] V [updated automatically, only when the state it depends upon is updated.
This enables you to have centralized data that you can use to derive
everything you need. As is their philosophy: “Anything that can be
derived from the application state, should be. Automatically” [43].

State Consumption

To enable MobX to track your state, it has to be marked as observable. However, MobX do
not track unused properties. Consequently, you have to read the property inside one of MobX’s
tracked functions to make it start tracking the property. MobX tracks value access, not values.
An example of one of these tracked functions is autorun, which accepts a function as argument.
autorun re-runs this function every time something it observes changes. These observed properties
are tracked automatically by MobX just by reading one of the properties of the observable state
inside this tracked function.

State Model

Since the state of MobX are just properties that in one way or another are marked as observable,
it does not matter where your state lives. You can define local observable objects inside your

31

components far down the component tree, or you can create big classes as stores at the top, and
pass them down as props or using React Context. While the team behind MobX promotes an
object-oriented approach to designing the state, MobX itself is unopinonated, and everything can
be made observable.

Derived state can be achieved by utilizing what MobX calls computed values. These are values
calculated from pure functions, based on the current state. The computed values are updated
automatically and synchronously, which makes it close to impossible to observe values that are out
of sync, as long as MobX is used as intended. You can even inspect values directly after modifying
them.

State Updates

To modify the state you run an action. An action is a function that changes the state, and makes
sure MobX propagates those changes to all the tracked functions, synchronously. MobX batches
state updates that happen inside an action, so the observers are not notified until after the action
has finished, and all state updates are complete.

Usage with React

MobX is independent of the Ul layer, and you could theoretically implement much of the application
logic before you start developing the user interface. When using MobX with React, you wrap the
components that consume state in a higher order component, called an observer. This is almost
the same as wrapping the component in autorun. Now MobX tracks which observable properties
are accessed in the component, and re-renders when the accessed value changes. To share state
globally you can pass observable objects or classes using React Context. Since you're not changing
the object references, just the properties directly, this will not cause un-necessary re-renders, but
instead lean on MobX to keep track of the changes.

To summarize, MobX uses mutable, observable state. MobX keeps track of who is reading the state
properties, and makes sure to notify observers whenever the value changes. To update the state
you execute pure functions marked as actions. React consumes the data by wrapping components
in a higher order component, which makes sure MobX keeps track of the data that is read, and
causes re-renders accordingly.

4.4 XState

When we talk about state in relation to state management, we often

mean the values that are stored, accessed and manipulated. In XState,
' this is referred to as extended state, or context, and is not the main area

of concern. When we talk about state in XState, we refer to the status
of finite state machines that describe our data. Instead of having a state
variable called “loading”, and another called “data”, XState could have
a state node called “loading” and another state node called “loaded”,
with the data inside the context of the “loaded” state. This makes it
impossible to access the data before the loading is completed and the machine is in the “loaded”
state. Because of this, XState can be used to achieve a greater control of your application, making
sure to avoid for example contradictory state, which could result in reading data that is not loaded.

XState adheres to the official W3C State Charts XML Specification [56], and David Harel’s state-
charts formalism [57]. This makes XState one of the few libraries that actually build upon formal
definitions and standards.

32

Finite State Machines

By defining finite state machines for an application, explicit definition and specification of intended
behavior is required. This can be accomplished visually using the XState visualizer, or by coding it
manually. Instead of defining one large machine for the application, XState recommends defining
multiple smaller machines to avoid complexity. It is also possible to nest machines, and have
certain machines that activates only when in a specific state of another machine.

The states of the Finite State Machines are defined as state nodes. These can be atomic state
nodes, compound states that have child states, or parallel states that have child states that can be
active simultaneously. It is also possible to define final state nodes that represent a terminal state,
and history state nodes that can help implement history features with the machine.

State Updates

The change from one state to another state is called a transition, and transitions are always caused
by what XState calls events. Events are objects, containing a type property to signal what type
of event it is. Events can also contain other properties with data relevant for the event. Events
and transitions are deterministic, meaning that a specific event combined with a specific state will
always trigger a specific transition, leading to a specific new state.

There are different types of transitions, depending on how you configure them. One of these types
are guarded transitions. Guarded transitions contains guard conditions that have to be true for
the transition to work. If the condition return false, then the machine will not transition to the
new state. Another type of transition are delayed transitions. This transition will happen after a
specified amount of time being in one state, without being triggered by an event.

Side Effects

To achieve side effects using XState you use actions, which are functions you can trigger on entering
or exiting a state, or during a transition. Actions should not have any impact on the machine itself,
and once the machine has fired an action it will just move on.

XState encourages the use of multiple state machines, but sometimes you may want to have
these machines interact with each other. Machines can communicate with each other by sending
messages. The messages are in the form of events, and can be sent using special actions provided
by XState.

State Model

All this talk of transitions and state nodes and actions might almost make you forget about the
state values themselves, which XState calls extended state. When describing the qualitative state
of the system using XState, you still need to handle application data, and this can be stored inside
the context property of the machine. To update the context data you use a special action from
XState called assign. This way you should never update the context externally from the machine,
and every context change happens in response to an event.

Usage with React

XState is independent of Ul layer. To use a machine inside a React component, XState provides
custom hooks. XState provides a hook to get a stable reference to a machine, which lets you pass
it around using React Context without causing unnecessary re-renders. To use this machine in a
component you could use the useActor hook, to listen to changes to the whole machine, or the
useSelector hook to only listen to a part of the machine. It is also possible to start a machine
directly inside a component using the useMachine hook, to manage local state.

33

4.5 Zustand

Zustand is supposed to be a state management solution that is small,
fast and use the minimal amount of features to fulfill application needs:
“A small, fast and scalable bearbones state-management solution” [41].
Zustand claims not to demand much boilerplate code, and is very un-
opinionated.

State Updates

An action is a function that is defined on the root level of a store. The actions change the state by
using a custom setter function from Zustand. Actions are the only way to update the state in a
Zustand store. Asynchronous actions works just the same way as synchronous actions. If an action
is marked as asynchronous, the action will wait to execute the state update until all promises in
the action are fulfilled. Actions also have a method to read from the current state in the store.
This is useful when a state update is relying on the current state to determine the next state.

Zustand updates state immutably. The method for updating state in Zustand merges state, but
the built-in merge method only works when merging state in one level. If the state is a deeply
nested object, one have to merge the values explicitly. Zustand have made Immer? available as a
middleware to simplify the process of updating deeply nested state.

State Model

Zustand stores data in a centralized store. The store supports any data type, like primitives, objects
and functions. It is recommended to co-locate actions and states within the store, to create a self-
contained store with data and actions together. Although co-location is recommended, Zustand is
unopinionated, and another approach is to define actions external to the store. This makes actions
callable without a hook, and it facilitates code splitting. An application can have a single or
multiple stores. If you have multiple stores, the main store can be divided into smaller individual
stores to acquire modularity.

State Consumption

State in a Zustand store is accessed with a hook, that takes a selector as input, and returns the
selected piece of state. A selector in Zustand is a function that takes a store state as input, and
returns a property of that state as output. Selectors can either be defined inline inside the store
hook, or defined outside of the component. In addition, Zustand also provides a function that
auto-generates selectors from a store, called createSelectors, removing the need to manually
write selectors. When a property in the state is selected inside the store hook, the component
will re-render when the selected property changes. By default, Zustand detects state changes with
strict equality, which is efficient for atomic state picks. One can also provide the selector with any
custom equality function to gain more control over re-rendering.

Middleware

A Zustand store can be functionally composed any way you like with middlewares, which can give
custom functionality to setters and getters in a store. State and actions in a store can be wrapped
inside a chain of middlewares. An example of a middleware is the persist middleware, which can
store the data through any kind of storage, such as localStorage or sessionStorage.

2https://immerjs.github.io/immer/

34

https://immerjs.github.io/immer/

4.6 Recoil

Recoil was created by Facebook, and it is today marketed as a project in
Meta Open Source?. Recoil is simply described as a state management
library for React, and its intention is that the API and semantics should
\ be as closely related to React core as possible. React’s built in state
\ management has some limitations which Recoil tries to solve, such as
unnecessary re-renders through prop drilling and that it is “[...] diffi-
cult to code-split the top of the tree (where the state has to live) from
the leaves of the tree (where the state is used)” [40].

State Model

Atoms are units of state in Recoil, and they contain the source of truth for the application state.
An atom has a default value which is used as initial state the first time the atom is used. A
component can read the value of an atom with custom Recoil hooks, which implicitly subscribes
the component to the atom. Any updates to that atom will result in a re-render of the component.
The hook useRecoilState returns the state and also a method for updating the atom, just like
useState in React. Each atom needs to be given a unique key among all atoms in the application,
which is used for things like debugging and persistence.

State Consumption

Selectors are pure functions that accepts atoms or other selectors as input, and outputs a trans-
formed state based on its input. Components can subscribe to selectors in just the same way as
they subscribe to an atom. When the value of any input to a selector changes, the selector will be
re-evaluated and update all components subscribing to the selector if the value changes. Derived
state in Recoil is achieved through selectors. Since selectors accepts both atoms and selectors as
input, they can be used to create nested derived state. A selector may do its state transformation
both synchronously or asynchronously, and the latter option make selectors a great way to incor-
porate asynchronous data in the Recoil’s data flow graph. The data flow in Recoil is described as
a directed graph, where state changes flow from atoms through selectors into components.

Side Effects

An atom can be created with an array of effects, which is called atom effects. Initialization,
synchronization and administering side effects are some features of atom effects. Each atom can
define and compose their own policies of how the effects should behave, and some use cases for
effects are logging, history, persistence or state synchronization.

3https://opensource.fb.com/projects/

35

https://opensource.fb.com/projects/

4.7 Jotai

Jotai uses an atomic data model inspired by Recoil, and takes a bottom-
up approach to React state management. State is made by combin-
ing atoms, and atom dependency is the way Jotai optimizes rendering
in React. Jotai can work as a replacement for React useState and
useContext. Its API is designed to be primitive for ease of learning,
and is unopinionated and flexible

State Model

A piece of state is represented by an atom in Jotai. Atoms are considered to be the building blocks
of your app state. To create a primitive atom, an initial value is provided to an atom config. Atoms
in an application will be distinguished and identified by their object referential identity.

Jotai supports derived state with derived atoms. Derived atoms are divided into three different
categories: read-only, write-only, and read-write. Since atoms are building blocks, we can imple-
ment complex and complicated logic by composing atoms as derived state. Derived atoms are
reactive, and will be refreshed any time one of their tracked dependencies changes.

State Consumption

Atoms are shared globally through providers. A provider component contains a store, and it
provides atom values for its child components, functioning similarly to React Context providers. A
component can read and update state from an atom with the useAtom hook, which returns a tuple
with the atom value and an update function. This looks very similar to React useState hook.

When an atom is created through an atom config, there is no value associated with the atom.
The initial value only gets stored in a provider state once the atom is consumed in a mounted
component through custom Jotai hooks. On the other hand, when all components consuming an
atom are unmounted, the value in the state is garbage collected and removed from the provider.

One of the main goals of Jotai is optimize re-renders in React. Combining atoms and creating
dependant atoms are a way to enforce that a component only have access to the least amount of
data it needs: “Optimized renders are based on atom dependency” [45]. Unnecessary re-renders
are reduced by having a component only being subscribed to the least amount of state it actually
needs.

Asynchronous Data

Atoms in Jotai can be both asynchronous and synchronous. Atoms become asynchronous if either
the read function or one of its dependants are asynchronous. Jotai leverages React Suspense to
handle asynchronous data flows. However, one can also avoid using React suspense and manage
asynchronous data flows by using Jotai’s loadable utility function. Loadable wraps an atom inside
a finite state machine, containing information about whether the atom is currently loading, if a
request was successful and contains data, or if the request encountered an error response.

Jotai supports debugging through either React DevTools or Redux DevTools. React DevTools is
suitable for simple debugging such as reading atom values. For complex debugging requirements
such as time travel debugging and setting values, Redux DevTools would have to be used. Atoms
can be persisted with a custom storage function, and it supports different storage types such as
sessionStorage, localStorage, or the URL hash.

36

4.8 Valtio

Valtio is a state management library that aims
to have a minimal API, and uses Proxies [58]
to keep track of state. It is one of the newer lib-
raries, and its documentation is pretty scarce.
Because of this we supplemented with a couple
of blog-posts by Daishi Kato, the creator of
Valtio [59], [60]. Valtio uses mutable state, and
when you create a proxy object with Valtio, the
object knows when it has been updated. You
can subscribe to pieces of this object, and Valtio takes care to notify listeners on changes. This
works to make sure Valtio has render optimization out of the box.

State Model

In Valtio, state is stored as objects which are wrapped inside proxy objects. The proxy objects can
mostly be treated as normal objects, but behind the scenes they will keep track of changes using
a version number. You cannot store whatever you want inside these proxy objects, but “normal”
data types and serializable objects are generally good. Since the state is just objects, you can
choose whether to define it outside or inside a React component. When defined inside React, it
can be shared among components using React Context.

State Updates

To modify the proxied object you modify the object directly. Nothing special is needed to make
this work, as the proxies takes care to notify listeners on modification. The team behind Valtio
does, however, recommend placing the code to modify state inside functions you can call actions,
for code splitting. There is some form of batching to make sure the changes inside the same event
loop are batched.

State Consumption

To read the state you can just read from the object directly. If you want to read it inside the
render-function of React you use the hook useSnapshot. This returns a snapshot of the state,
keeps track of which properties of the state you read, and triggers re-renders when those values
changes. The fine-grained render optimalization is thus achieved by this hook, not by Valtio’s
proxies alone, as these only track version number of the object as a whole.

Valtio also supports derived data by custom derived proxies. Both in the form of computed values,
that use the proxies own properties to compute new values, and in the form of derived proxies, that
can get the values of other proxies, and re-run it’s own computation when those values changes.

Properties in the proxy objects can have Promises as values, which means Valtio comes with
asynchronous support. These Promises will resolve in snapshots, which makes it compatible with
React Suspense.

37

4.9 EIf

Elf is a state management solution that builds upon RxJS?*, which is
the official implementation of ReactiveX® for JavaScript. ReactiveX
is an API for managing asynchronous streams of data or events using
observables, which notifies subscribers of any new data or event. The
store in Elf is a subject, which is a special kind of observable that can
both publish changes, and listen to other observables. EIf provides
custom RxJS operators to query and update the store. EIf also comes
with customization options for the store to easily use design patterns like
entity store, which simplifies the process of doing create, read, update
and delete operations on a normalized store.

State Model

You can create multiple stores, and they exist outside of the React component tree. You initialize
the store with an initial value, and then specify features you want to configure the store with.
Here you can specify that you want it to be an entity store for example. Since an entity store uses
a predictable structure for the data, it is possible to use pre-made queries and updater functions
to select, update and delete entities in the store. You can also specify that you want the store to
contain Ul state. This makes Elf create Ul entities in the same store, but separate from the normal
entities, so you don’t have to crowd the entity store with data that is not relevant for the business
state. Elf also provide functions to further extend the store with related data for the entities.

State Updates

Elf uses an immutable data model, and to update the store you can use the update method of the
store. This takes an updater function, which receives the state as a parameter, and returns the
updated state immutably. Elf provides some pre-made updater functions, like the entity updaters
already mentioned, and also a couple to simplify immutable updates to objects.

State Consumption

To listen to the whole store you can subscribe directly to the store, or you can create custom
observables that select a part of the store to listen to. These observables will only fire when
there is a new reference, and they can be customized with the full extent of RxJS operators. It
is through these custom observables you create derived data. In React components, you listen to
these observables by using the provided useObservable hook. When the observable receives a new
value, the component will re-render, which means that by optimizing the observables you minimize
re-renders of the component.

Side Effects

Elf does not enforce one style when it comes to side effects, but it does provide a separate package
to manage this, called effects. With the effect package there are two different approaches you can
take, one using actions and effects, and the other using effect functions. With actions and effects
you define actions that can be dispatched, and register effect functions that gets triggered when
you dispatch certain actions. The other approach utilizes effect functions, which can be triggered
without using actions.

Elf provides pre-built solutions for common features such as persisting the store, for example to
localStorage, and a history function with the ability of undoing and redoing store modifications.

“https://rxjs.dev/
Shttps://reactivex.io/

38

https://rxjs.dev/
https://reactivex.io/

Chapter 5

Server State Management
Libraries

Following our summaries on the client state management libraries, we now present summaries
on our data on each of the server state management libraries. Again, our aim is to provide a
comprehensive overview of each library’s unique features, advantages, and limitations, as well as
similarities. The libraries include Tanstack Query, RTK Query, SWR, Apollo Client, and URQL.
The methodology of our study, and the reasoning behind this selection, was covered in chapter 3.

We present a summary of each library, gathered by reading the respective documentations of the
different server state management libraries. Qur aim in presenting this information is to provide
the reader with the basis of our data material, which will be integrated in chapter 7 to create an
overall theory of server state management.

All information in the following sections are based upon the relevant library documentation. Ad-
ditionally, the logo of each library is displayed in their respective sections.

5.1 Tanstack Query

Tanstack Query markets itself as “the missing data-fetching library for
React” [51]. It provides a simple and declarative approach to fetching,
caching, synchronizing, and updating server state in an application.
Queries and mutations can be monitored with detailed status inform-
ation, including the ability to differentiate between loading, error, and
success states, in addition to a separate fetch status to track currently
ongoing fetch operations.

Querying Data

When it comes to querying data, Tanstack Query does not have a built in method for fetching your
data, but instead lets you pass in a query function per query, or globally. The query function makes
the request, using for example the browser fetch, and Tanstack Query takes care of “the rest”.
This includes caching, de-duplicating requests, re-fetching stale data, query retries, cancellations,
and more. The query function can use any asynchronous data fetching client, as long as it returns
a Promise. This means you can use Tanstack Query for both REST APIs and GraphQL APIs, or
anything else, as long as the query function returns a Promise.

Every query in Tanstack Query has a status, which gives information about whether or not the
query have any data. The status state can have one of three different values: loading, when we
do not have any data yet, error, if an error has occurred, or success, when we have successfully

39

received data from the request. status can be used to check if we can show the data in the user
interface, or if we instead should show for example a loading spinner. After we have received data,
and status is in the success state, it will stay in the success state going forward, as long as we do
not remove the data from the cache, or change the query key.

While status gives information about whether or not we currently have any data, sometimes we
want information about whether or not we currently are fetching. We can use the loading status
to indicate that we are performing the initial fetch, but after we have received the initial data,
status will just stay in success, not giving us any more information. Because of this, Tanstack
Query exposes another status element, namely fetchStatus. fetchStatus tells us whether the
query function is currently running or not. It too can be in one of three different states: fetching,
paused or idle. Using the combination of status and fetchStatus, it is possible to get detailed
information about the status of the query, and give appropriate feedback to the user.

In addition to a query function, every query needs a query key. Queries are uniquely tied to a
query key, and you can configure queries per key or on a global level. The query key of a query
have to be an array, and may consist of everything from a single string to complex nested objects.
Query keys uniquely describe the data it is fetching, and the queries are cached by the query keys.
By default, if you have a query that fetches a list, and another query that fetches one element of
that list (using two different query keys), Tanstack Query stores them as separate entries in the
cache. However, it is possible to to circumvent this by providing initial data to a query, and use
the cache of another query to provide this initial data. You can access and edit the data in the
cache using the query keys.

Mutating Data

Queries are generally used for requesting data, and if you want to edit data on the server, Tanstack
Query offers mutations. Mutations are similar to queries, but they do not need a query key,
as they are not cached automatically or connected to any queries. Where queries are triggered
automatically on render, mutation gives you a function to call when you want to perform the
mutation. The mutation also has a status state, which can be either idle, loading, error or
success. Mutations also allow you to define lifecycle methods to configure additional behaviour.
These are onMutate, onError, onSuccess and onSettled. With these you can implement features
like optimistic updates or logging. Even though the mutation itself does not need a query key, it
can use query keys to invalidate queries that are affected by the mutation to ensure that the user
interface reflects the changes.

Tanstack Query aims to give pagination features that just works out of the box. By includ-
ing page information in the query key, every page is cached separately, giving you working pa-
gination. However, this would lead to the query status jumping between loading and success,
since the key changes and it requests new data. Tanstack Query fixes this with an option called
keepPreviousData, that will make the query use the data from the last page, until the data from
the new page has arrived. Tanstack Query also enables you to define functions for calculating the
parameters for the next page. You can populate the cache with data before any components are
reading a query by using prefetching. Prefetching can for example be used together with pagination
to request data for the next page before the user actually has requested the page.

When it comes to render optimization, Tanstack Query tracks which fields you access, and only
re-render if those fields changes. When multiple components use the same query, the updates are
batched, resulting in just one re-render. Also, Tanstack provides dedicated DevTools that enable
developers to view queries, mutations and check what data is currently cached.

40

5.2 RTK Query

Redux Toolkit, as described in section 4.2, ships with an optional addon
for data fetching and caching, called RTK Query. RTK Query is Ul-
agnostic, which means that similar to Redux Toolkit, you can use it with
any Ul layer. The fetching function used to perform network requests
is flexible, enabling developers to use RTK Query with both RESTful
APIs and GraphQL APIs.

Querying Data

As the name implies, querying data is the most common use case for RTK Query. It ships with
a default fetch-wrapper called fetchBaseQuery, but this can be replaced by any data fetching
library to support data fetching from any back-end service. The fetcher that is used can be defined
either per API-slice, or per query endpoint if necessary, which empowers developers to seamlessly
integrate data from different urls, fetcher methods and back-end services.

RTK Query allows for separation of concerns by defining the API ahead of time in a centralized
API-slice outside of the components. This enable components to easily reuse data queries since they
are not owned by any component. An RTK Query API slice is created with various configuration
options and an endpoints object. For smaller applications it may be sufficient to have all query
endpoints inside one API-slice. However, to maintain control and structure for larger applications
it may be useful to split API requests into multiple different API-slices. RTK Query encourages to
split endpoints into different API-slices based on features, similar to the slice-pattern from Redux
Toolkit.

Each specific endpoint is defined inside the endpoints object in an API-slice, by using a builder
function to return an endpoint object. This object must contain either a query callback to construct
the URL from the given parameters, or a query function that can perform custom asynchronous
logic. In addition, you can provide additional options to configure the endpoint behavior such
as transforming request responses, handle errors, or tag the data from the endpoint to enable
automatic invalidation of the request. You can also define custom lifecycle callbacks for when the
query is started and when a cache entry is added.

In addition to being Ul-agnostic, RTK Query provide additional hooks for React. These hooks are
automatically generated with custom names based on the endpoints definitions in the API. For
example, an endpoint field named getPayment will generate a hook named useGetPaymentQuery.
Inside the component, using the generated hooks, you can pass additional query options, like
skipping automatic execution of a query, setting a fixed polling interval, selecting only a subset
of the query data or overwriting the re-fetching rules of the endpoint. The query hook return the
values data, error and the status of the request. The request status is given by derived booleans
such as isUninitialized, isLoading, isFetching, isSuccess and isError. These booleans are
useful for informing the users about the status of the data, whether it is loading, re-fetching, or if
an error occurred.

Mutating Data

Mutations are used to send data updates to the server and reflect the changes in the local
cache. Similar to queries, mutations accept a query callback constructed of the mutation URL
and query parameters. In contrast to queries, mutations are usually not automatically triggered
when a component first mounts. Therefore, the mutation hook returns a tuple, consisting of a
triggerFunction and the mutation result. When the triggerFunction is called, the muta-
tion is executed. The result object contains the data returned from the last trigger response,
errors, and derived booleans regarding the request lifecycle such as isUninitialized, isLoading,
isSuccess and isError. As mentioned earlier, query endpoints are tagged with a tagType, which
commonly represents an entity in the database, e.g payments. The mutation definition also accepts
a list of tagTypes so that a successful mutation can invalidate queries with matching tagTypes.

41

Caching

One of the main features of RTK Query is its management of cached data. Data returned from
a query will be stored as cache in a Redux store. The endpoint definitions and query parameters
automatically derive the queryCacheKey, which is an identifier for the data in the cache.

The data will remain in the cache as long as there is at least one active subscriber to the data. When
there are no active subscribers, the corresponding section of the cache will expire, and automat-
ically be removed after a certain period of time. This period of time can be configured manually.
Moreover, the cache can be manipulated manually by using the utility function updateQueryData.
In combination with the lifecycle methods, this can be used to achieve optimistic or pessimistic
updates

When a new component subscribes to an endpoint, a new cache entry is added based on the given
queryCacheKey. If another component subscribes to the same queryCacheKey, it will return the
data from the corresponding cache entry. RTK Query provides an onCacheEntryAdded lifecycle
callback for individual endpoints. This contains information about whether the cache data is loaded
or not, and information about when a cache entry is removed due to no components subscribing to
that data. Using the information provided in the lifecycle callback, you can implement streaming
updates, using for example WebSockets [30], that will subscribe to the data as long as there are
components subscribing to the cache entry. When there are no components subscribing to the
cache entry, the onCacheEntryAdded callback is notified and you may safely close the WebSocket
connection.

The most common features in RTK Query are described above, but it also includes a variety of
other features like prefetching, request deduplication and automatic code generation. RTK Query
is built upon the core modules from Redux, making it very easy to integrate RTK Query with
Redux or Redux Toolkit. For example, you can catch and handle errors from all requests in an
RTK Query API by creating a traditional Redux middleware. However, it is important to note
that RTK Query can also be used as a standalone service for managing server state, without using
Redux for managing client state.

5.3 SWR

SWR is an abbreviation for Stale-While-Revalidate, which is a HTTP

cache invalidation strategy [61]. When using the SWR-strategy, you

first return the “stale” data from the cache, before you send a revalid-

-~ n ‘ : d a reval

¢A ation fetch request to the server, and then update the application with
the “fresh” data. Using this strategy by default, the SWR library aims

to give you a user interface that is always fast and reactive. By defin-

ing reusable data hooks with SWR, you can use these hooks in your

components, making them declarative, and keeping the business logic outside of the components.

Different components making the same requests will automatically be deduplicated, cached and
shared by SWR.

Querying Data

SWR utilizes a simple API, and for the most part you will use one of two hooks: useSWR for
queries and useSWRMutation for mutations. When querying data with useSWR you pass it a key
and a fetcher function, as well as an optional options object. The key, serving as an identifier for
the data, can take the form of an array encompassing potential parameters for the query. This
key is then passed into the fetcher function, which can then use these parameters, and whatever
asynchronous fetching library desired, and return some data. The useSWR hook return value also
keeps things simple. It returns the data, the error if an error occured, and two status-booleans:
isLoading and isValidating. isLoading is true when there is an ongoing request and there is
no current data. isValidating is true whenever there is an ongoing request. This simple setup

42

still enables you to show different Ul indicators when there is no data, and when it is revalidating.
useSWR also returns a fifth value, which is a mutate function.

Mutating Data

When you want to perform mutations you use the useSWRMutation hook. This hook accepts a key,
which tells SWR to invalidate the cache of that key after the mutation. This way SWR will make
sure to automatically revalidate queries with that key. Instead of a single key, you can pass in a
predicate function to invalidate all keys that match the predicate. useSWRMutation also takes in
a fetcher function, commonly implemented to make some mutation on the server, and return the
modified data. The hook returns the data and error, same as useSWR, but just one status boolean,
isMutating, which is true if there is an ongoing mutation. It also returns a trigger function, to
actually trigger the mutation, as it does not fire automatically when the component mounts. You
can pass options both to the hook and the trigger function.

As mentioned, the useSWR hook returns a mutate function, and SWR also includes a global mutate
function. You can achieve much of the same using any of these, but one way to think about it is
that mutate is used to manually update the cache. With the global mutate you can pass any key
or predicate, but the one returned from useSWR is bound to its key. Furthermore, if you mutate
one or more keys without any data, SWR will revalidate those keys. useSWRMutation on the other
hand, is used to make a mutation request to a server. useSWRMutation will not automatically
modify the cache, but instead invalidate the keys on a successful mutation. While this description
fits with their default behaviour, both mutate and useSWRMutation can be configured to work
much like each other. mutate and useSWRMutation share many of the same options, like whether
to use some optimistic data while waiting for the async mutation, and if the cache should rollback
on an error. In addition to some shared options, useSWRMutation has some lifecycle callbacks,
where you can specify behaviour if the mutation is successful, or if the mutation results in an error.

Configuration and Advanced Usage

While you can configure SWR on a hook by hook basis, it is also possible to provide some global
configurations, using an SWRConfig context. You can for example specify a default fetcher so you
do not have to pass it for every hook. If you want to override some global settings in a hook you can
just pass the specific setting to the hook. It is also possible to have multiple SWRConfig contexts in
your application, and the lower configs in the tree will merge its settings with the parent configs.
SWR uses a global cache, but also allows you to customize it by passing a different cache to the
SWRConfig.

It is possible to achieve simple pagination using the normal useSWR hook, along with an option
to keepPreviousData. If you want to implement infinite loading, SWR provides a custom hook
for this called useSWRInfinite, which gives the ability to trigger a number of requests with one
hook. It also accepts a key and a fetcher, and some pagination specific options. You must also
pass it a function that will accept the current page and previous data, and return the next key.
This enables useSWRInfinite to work nicely with both index based and cursor based pagination.
Pagination is a typical place where prefetching data can be beneficial, and to do this SWR, provides
a prefetch-function, that accepts a key and a fetcher as arguments, and populates the cache with
its result.

SWR allows for middlewares, and you can pass in an array of middlewares to either the global
configuration, or in a specific hook. Middlewares facilitate the execution of custom logic before
sending a request, and after receiving a response from the server.

As mentioned, SWR keeps its API minimal, but still allows you to achieve most of what you
want to do with this minimal API. You can do conditional fetching by passing null as the key
to useSWR, and update the key when you want to fetch. Or you can implement lazy loading by
passing a fetcher instead of a mutator to useSWRMutation, which gives you a trigger function to
call when you want to load the data. You can reset the cache by using the global mutate function,

43

and just pass in true as the predicate, and null as the data, making it clear the whole cache.

5.4 Apollo Client

Apollo Client is a library that empower developers to handle remote
and local data using GraphQL. It provides a normalized cache which
supports features like optimistic updates, automatic re-fetching, sub-
scriptions and pagination. In addition to remote data, the cache can
be used to store local data, which can automatically update the user
interface, or re-fetch dependent queries on changes. Advanced network
configurations can be achieved by using a chain of middlewares called
links. Apollo Client has many features, and we describe these in the
following sections.

Querying Data

Querying a back-end service with Apollo Client can be accomplished using the useQuery hook. The
useQuery hook accepts a GraphQL query string and additional query variables as arguments. The
hook returns properties such as loading, error and data. Query results are automatically stored
in the cache. To retain a cache that is up to date with the back-end, Apollo Client supports polling
and refetching. The former execute the query periodically, while the latter give developers control
to manually execute the query, for example after a user interaction or an event was performed.
It is possible to execute queries lazily by using the useLazyQuery hook, which only executes the
query when triggered manually.

Apollo Client needs to know whether it should look for data in the cache, query the network for
data or use a combination of the two when deciding what data should be returned by the query. By
default, Apollo Client will primarily try to check the cache for data, and perform a fetch request
to the server if the data is not in the cache. However, you can also configure it to always ask
the server, and bypass the cache. You can configure what strategy to use by setting it as default
options in the client configuration, or per query by passing an argument to the useQuery hook.

Subscriptions and Links

Apollo Client also supports subscriptions, which can be achieved utilizing the useSubscription
hook. This facilitates the implementation of streaming data. In addition, the useQuery hook
returns a callback function, subscribeToMore, which can be used to subscribe to subsequent
updates to the query result. Subscriptions and queries usually use different endpoints, and using
Links, you can redirect a request to the correct endpoint based on the given GraphQL operation
type. Links give developers fine grained control of HTTP requests. They are commonly organized
into a chain of link-objects, executing in a sequential manner. Apollo provides a variety of links
for special use cases, such as the WebSocketLink for configuring subscriptions, and you can also
create your own custom links to achieve advanced networking behavior.

Modifying Data

Performing updates to a back-end service can be done using the useMutation hook. A GraphQL
mutation string is passed as an argument to the hook, and it returns a tuple, containing a muta-
tion trigger function, and an object representing the current status of the mutation’s execution.
Additional options can be passed to both the mutation hook and the mutation trigger function
to customize mutation behavior. A successful mutation usually results in some parts of the cache
becoming stale. The simplest way of achieving fresh data after a mutation is to re-fetch all affected
queries by using the refetchQueries array. Here, the affected queries are manually passed in, and
these queries will be re-fetched after a successful mutation.

44

If the response of the mutation contains all the data we need, we can remove unnecessary network
requests by directly updating the cache instead of re-fetching affected queries. Using the identi-
fication field and the GraphQL typename we can use the update function from Apollo Client to
update the cache. The update enable developers to perform GraphQL operations on the cache in
a similar way as it would when interacting with a GraphQL server. All changes done inside the
update function will be advertised to other queries listening to that data. To ensure that your
direct cache modification is corresponding with your GraphQL server, the onQueryUpdated call-
back can be used to query the server to verify that the mutation result complies with the back-end
service.

When we know the response of a successful mutation beforehand, we can perform an optimistic
update by providing an optimistic response to a mutation. This will not be put directly into
cache, but will be placed in its own optimistic layer. This will not affect the real cache, but will
still be broadcasted to all subscribed queries. When real data is returned from the mutation, the
optimistic layer is discarded. Managing optimistic updates this way makes it easy to rollback in
case of errors, as it only affects the isolated optimistic layer, and not the rest of the cache.

Caching

Apollo Client employs a normalized cache, meaning that individual queries are not stored as is,
but go through a normalization process before entering the cache. The cache uses a flat lookup
table of objects, where the different objects can reference each other, using a cache ID. The cache
ID is generated by Apollo using the GraphQL typename and ID of the object. This means that
two different queries, asking for the same object, can share that object in the cache. Additionally,
the queries themselves get stored in the cache, using the query name and its arguments to compose
the cache ID. Every combination of arguments will normally result in a new cache ID. However,
you can specify which exact arguments should be included or excluded in the derivation of the
cache ID. The queries are cached with references to all the normalized objects that were the result
of the query. The cache is configurable, and you can instruct it not to normalize certain objects.
Non-normalized objects are stored directly inside their parent object.

The cache also lets you customize the behaviour of types and fields. As mentioned, Apollo Client
automatically infers the cache ID from the typename and ID field. However, in certain cases an ID
field is not applicable to an object type. For objects like these, the cache lets you configure which
field or fields should be considered the identification of the type, enabling it to still correctly infer
the cache ID. The cache also lets you configure how fields are read and written to the cache. By
defining a read function, you can perform data transformations on the data before it is retrieved
from the cache. Likewise, you can define a write function that runs whenever you are writing
something to the cache, either from a server response or when writing directly to the cache.

Apollo Client lets you define a merge function, where you can decide how the cache should merge
incoming data with existing data. For example, in a paginated field, maybe you want to append the
new data to the existing data. Using different definitions and combinations of the read, write and
merge functions, you can enable Apollo Client to support different pagination strategies. Apollo
also provides helper functions for standard patterns like offset-based pagination, saving you the
trouble of implementing it yourself.

The cache read function can be utilized to retrieve data from a source outside of the cache. This
can be utilized to create local-only fields. When writing a query to the server, it is possible to
include these local-only fields in the query, by applying the @client directive to these fields. This
tells Apollo that it should not include these fields in the server request, but instead just fetch
them directly from the cache. Because of this, local-only fields can go beyond the server schema
definition. Apollo includes its own local state solution called reactive variables, which enable you
to store, manage and share client state throughout your application, resembling an atomic state
pattern. How local only fields are modified depends on the way they are stored. If reactive variables
are used, they can be directly modified, because Apollo detects these changes and updates queries
that depend on those variables automatically.

45

Error Handling and Developer Tools

A request executed in Apollo Client may result in a variety of errors. The errors are categorized
as either GraphQL errors or network errors. A GraphQL error might be syntax errors caused by
a malformed query, querying a field that does not exist on the schema or resolver errors which
may occur while attempting to populate a field. Network Errors, usually resulting in 4xx or 5xx
status codes, are put into its own object in the error response. An error policy can be defined
on the useQuery hook. In Addition, links can be utilized to achieve advanced error handling like
automatically retrying requests, or fetching a fresh access token when the current one is stale.

Apollo Client includes advanced DevTools, where you can watch active queries and mutations,
inspect the cache, and explore the schema. If you have local-only fields in your application, you
can create a local schema definition, and pass it to the Apollo Client to have them show up in
the DevTools, alongside the server schema. This also makes it possible to mock schema fields, if
the back-end has not implemented them yet. Apollo Client allows you to batch multiple requests
together, or to split one query into multiple requests by deferring certain fields, allowing you to
show a subset of the data before the whole dataset is loaded. Normalized cache and support
for storing and manipulating both remote and local data makes Apollo Client a flexible library,
covering many aspects of state management in complex applications.

5.5 URQL

URQL is a lightweight alternative for a GraphQL server state manage-
ment library, that prioritizes usability and adaptability. It aims to give
a simple starting point with the bare necessities to build an applica-
tion, and then offer extensions of functionality through what they call
erchanges. These exchanges offer additional features such as caching,
error handling, and optimistic updates, enabling developers to tailor
URQL to meet specific project requirements.

Querying and Mutating Data

To query the GraphQL API from a component you use the useQuery hook. The hook takes an
options object, and returns a result object along with a function to re-execute the query. The
result object contains the data, and also a status boolean called fetching to indicate whether the
data is loading. fetching will only be true if there is no data, which means it will be false when
you perform a re-validation request to the server, while showing possibly stale data from the cache.
Because of this the result object also contains a stale boolean, to indicate that a re-validation
request is ongoing. The result object also contains properties like error that is populated with
potential errors.

The options object that is passed to the useQuery hook requires a GraphQL query string, as well
as a few optional properties that can be used to configure the query. These options include possible
variables and a requestPolicy that determines how results are retrieved from the cache, which
defaults to performing a request to the server only if the data is not already in the cache. You
can pass in a pause flag to the hook, to indicate that the query should not execute automatically
once the component mounts. You may perform logic to dynamically flip this flag back to re-enable
automatic execution, or use the returned re-execute function to trigger the query lazily.

For mutations, URQL exposes a useMutation hook that works similarly to the useQuery hook.
However, useMutation does not need an options object, only a GraphQL mutation string. It
returns the same result object, along with a function to execute the mutation. This execute
function takes the GraphQL variables as arguments, and returns a Promise wrapped around the
result.

46

Exchanges

URQL does not support subscriptions out-of-the-box, but this is one of the features that can be
achieved using exchanges. When configured, you can use the useSubscription hook, which also
is very similar to useQuery. It differs in that it takes an optional second argument: a reducer
function that can be used to accumulate the data from the subscription over time.

The URQL Client is configured globally, and manages all requests and results. It accepts the API
URL, among other configuration options as arguments. Some of these additional configuration
options include a custom fetch function and a global requestPolicy. It is also possible to override
these settings by using the context parameter in the options object of the useQuery hook.

The URQL Client treats all GraphQL requests as unique objects, identified by the query string and
variables. Internally these objects are managed as operations, and each operation will result in an
operation result. The client does not actually perform the request, but instead sends the operations
through exchanges. Different exchanges are chained after each other, each sending the operation to
the next exchange in the line. The last exchange is responsible for performing the network request,
before returning the operation result, which then travels back through the exchanges in opposite
order. Thus, exchanges can perform logic both on operations and operation results. The order of
exchanges are important. For example, you would not want to fetch results from the cache before
the request is deduplicated.

The default exchanges takes care of deduplicaction of requests, setting up the default cache, and
actually performing the request using fetch. There are many pre-built exchanges provided by
URQL, like the previously mentioned subscriptionExchange enabling you to perform subscrip-
tions. There is an authExchange for setting up complex authentication flows, a retryExchange
for retrying failed operations and a refocusExchange to re-fetch open queries when the window
regains focus. In addition to the pre-built exchanges, you can also create your own.

Document cache

The default cache in URQL is called Document Caching. A key is generated for each request,
using the query string and variables, and the results are cached on this key. When we perform a
mutation, this may potentially invalidate results from previous queries. If we mutate an entity of
a specific type and another query containing an entity of the same type exists, the cache entry for
the latter query is removed. This happens regardless of whether the exact entity that was affected
by the mutation was stored in it. You can also supply additional typenames to a mutation, to
force it to invalidate queries that contains objects of those additional types.

Document Caching can work well for content-driven sites, however, as an app grows more complex
and interdependencies between data increase, you could benefit from having a normalized cache.
URQL provides their own normalized cache called Graphcache. The normalized cache is used to
create an in-memory representation of a relational database, and it ensures that our user interface
is fresh when queries, mutations and subscriptions are sharing the same relational data.

Graphcache

Graphcache is able to automatically normalize the data from the GraphQL server, as long as the
data contains a __typename and a keyable field like id, which composes what URQL calls the
entity key. The normalized Graphcache utilizes two tables: a Link table for storing relations to
other entities, and a Records table which actually store the values. Graphcache use the entity keys
to enable a GraphQL query to traverse these tables to return the queried data. If a given entity
is not identified by an id field, we can provide a custom keys configuration to ensure the entity
key will be generated correctly. When Graphcache encounters un-keyable types they will be stored

alongside the parent entity.

47

By utilizing the resolvers configuration, you can leverage Graphcache to transform or modify
the values of cache fields when queried. For example, when working with dates, resolvers can
be used to transform a date string from a database into a JavaScript Date object. The resolver
functions may be generalized and reused on multiple fields, but the returned fields have to match
the fields defined in the schema. In addition, resolver functions may also obtain data from other
records in the cache which can be used to achieve advanced resolver logic.

Manual updates of the cache can be achieved by utilizing update functions. These are usually used
to modify the cache on specific events, or defining how mutations and subscriptions should modify
the cache. For example, when a successful mutation create a new entity, an update function can
be used to add this entity to the cache of other queries. update functions are flexible and useful to
ensure the cache is reflecting changes that has happened on the server, without needing to re-fetch
queries. The API of resolver and update functions looks similar, but they differ in use-cases:
resolvers transforms data, and updates removes, updates or deletes data and relations.

You can configure optimistic updates with optimistic functions. Data from the mutation is
received as arguments to the optimistic function, which can be used to create an optimistic
result that is returned to the consumer immediately after a mutation has been fired. When the
real result is successfully returned from the server, the optimistic result is safely deleted.

To obtain full functionality of the Graphcache, you can utilize schema awareness. The GraphQL
schema can be passed as an argument to the Graphcache configuration, allowing for advanced fea-
tures like returning partial results, deterministically matched fragments and checking existence of
fields and options inside resolver, optimistic and update functions. In addition, URQL provides
an enhanced cache named offlineExchange which can be used to achieve offline functionalities.

As we have seen, URQL may start off as a simple and lightweight GraphQL client, but offers
enough extendability to get it to fit your needs. It provides a simple Document Cache out-of-the-
box, but allows you to replace it with the more sophisticated, normalized Graphcache, if you want
more advanced features for complex applications.

48

Chapter 6

A Theory of Client State
Management

With the overview over the different client state management libraries from chapter 4, we are now
ready to formulate a theory on client state management based on these libraries. We will start
by categorizing state into different State Types, as it can be useful to specify precisely what we
mean when we are talking about state. Furthermore, there are five main areas we have identified
regarding client state management, the first being State Reach. This concerns where the state is
located, and what components have access to it. The second area is State Composition Model,
which considers whether the state management utilizes a single top-down store, many atomic state
parts, or something in between. After we have a grip on the location and structure of the state
we briefly describe State Derivation, before we consider how to get only the state we want from
the store, with State Selection. Lastly will go through the different ways of handling State
Modification.

6.1 State Types

The state we want to manage can be information whether the user has clicked a button or not. Or
it can be data that the user has typed into a form. It can be information that is downloaded from
a server, or it can be the result of complex calculations performed in the background. It may be
information about the status of such a calculation, whether it is still calculating, or if it is finished.
And more often than not it is a combination of all the above. It is clear that state is more than
just state, and from how the different libraries talk about state we have categorized two important
distinctions when it comes to state, which are business and presentation state and qualitative and
quantitative state. We will also mention server state, but as it belongs to the domain of the server
state management libraries, we will not cover it in depth in this chapter.

6.1.1 Business State and Presentation State

We start by creating a distinction between two kinds of state which we will refer to as business
state and presentation state. This distinction comes from the desire to clearly separate the state
that is relevant for the business itself, and state that is just relevant for one specific implementation
of the application, i.e. the presentation. It is clear that information whether a user prefers dark
mode or light mode, although important to the presentation of the application, is not relevant for
the business logic of the application. One way to think about this, is that business state is state
that drives the application. You might think of it as a kind of back-end. If you implement the
application both as a mobile application and a web application, the user interface would differ,
resulting in different presentation state in the two apps. However, the business state would be the
same.

49

6.1.2 Qualitative State and Quantitative State

There is a difference between the state that stores what a user has typed into a form, and the
state that stores if the user is currently typing into the form. In the same way there is a difference
between the status of a request for data to a server, and the resulting data when it is loaded. One
is finite, the user is either “typing” or “not typing”. On the other hand we have the state that is
infinite, in the sense that the user can write whatever he or she wants'. Another way to look at
it, and the way we choose to distinguish between these types of states, is that one is qualitative
and the other is quantitative. Qualitative state is almost like meta-state, state about the state, or
about the status of a process or the entire application. Quantitative state is the raw data, the
values we store. In one case the qualitative state can help us decide what to show to the user, and
the quantitative state could be what we are showing to the user. The terms qualitative state and
quantitative state are inspired by XState [44], which we covered in section 4.4.

6.1.3 Server State

One last term that is relevant to mention is server state. In applications today the state often
resides on a server somewhere in the cloud [62]. This means that the state of the application is
downloaded from the server, either all at once from the start, or whenever a piece of the state
is required. This makes managing state more complex, as we now have to consider keeping the
local, downloaded version of the state up to date with the server, and consider other concepts like
caching, pagination, prefetching and more.

There are some client state management libraries that have integrated methods to deal with server
state, such as Redux and Recoil. However, these approaches for managing server state are compar-
atively basic and limited in contrast to designated server state management libraries as described
in chapter 5. Recall that RQ1 is divided into two distinct aspects: RQ1.1 explores client state
management, while RQ1.2 delves into server state management. Consequently, server state man-
agement is comprehensively addressed in chapter 7, and the discussion of server state is therefore
omitted in this particular chapter.

To summarize, when we talk about state we can mean many different things. Therefore we intro-
duce some distinctions and definitions to help us understand exactly what we are talking about:

e business state and presentation state
e qualitative state and quantitative state

e server state

These types of state are not mutually exclusive, and some piece of state that is qualitative may
very well be business state, or some other piece that are quantitative may very well be presentation
state. These definitions and distinctions can help us to talk about state in a more specific way, also
helping us understand how to approach it. When we simply refer to the state as state, we refer to
the overall combination of all the types of state, or simply “data that is stored in memory”.

6.2 State Reach

State can exist in various locations, and the different locations has implications for which compon-
ents can access or reach the state. Therefore, it is important to understand what we call State
Reach. Some state is just relevant for a small part of the application, maybe a single component,
and can thus be stored locally inside the component. We call this state local, and local state needs
to be passed around as props if other components needs access to it. Other state is relevant for

1Strictly speaking it is not infinite, but it would be meaningless to enumerate all the different possible variations
of input the user could choose to type, unless there is a really small set of input options.

50

the whole application or are used by many components, and thus needs to be global. Global state
are accessible by all components, without using props.

There is also a difference in whether the state lives inside or outside React. All state that lives
inside React is tied to a component. This is true for both local and global state; at the root it is
always linked to one component. When it comes to global state, the component it is tied to is often
a provider-component, which is a higher order component. Alternatively you can choose to store
the state outside of any components, i.e. outside React, and reference them inside components
when needed. This way your state can become entirely independent of React.

This gives us two distinctions for state reach: local or global state, and whether the state lives
inside or outside React. Because state outside of React becomes global to the React application,
we can define three main categories:

e Local
e Global inside React

e Global outside React

We will go through the different options in turn.

6.2.1 Local

Local state is just accessible by the component the state is defined inside, or the components you
pass the state to, using props. Theoretically, this can be implemented directly in components as
variables, but as discussed in section 4.1, useState is Reacts way of making sure this state persists
between renders. Other libraries has to take advantage of useState under the hood to provide
persistence between renders.

For quantitative state there is not much for the state management libraries to do, other than what
React already has built into their hooks. MobX has a custom hook to create a local observable,
but they even argue themselves that it is often preferable to use useState instead. Qualitative
state on the other hand, can be useful as local state. For example, XState allows you to create a
local finite state machine inside a component.

One thing to be aware of when it comes to local state is that while useState allows state to be
preserved between renders, it does not preserve the state when the component unmounts. This is
because useState ties the state to the component, so when the component disappears, the state
disappears as well. For presentation state this will usually not be a problem, because when the
component is unmounted, there is nothing to present. For business state however, it is rarely the
case that you want the state to disappear just because a component is not mounted. To avoid this
you would have to turn your state global.

6.2.2 Global Inside React

Global state is especially useful when there are multiple components that need the same state,
and the components are located far away from each other in the component-tree. As mentioned
in section 4.1, React Context is used to make state accessible by all child components, by putting
it inside a higher order component. This component is called a provider, and by putting it at the
top level of the application, the state can be available globally.

Two examples of state management libraries that does this is Recoil and Jotai. They are very
similar in that they both use atoms, and that they are used very much like useState inside
components. However, they both supports global state, because the actual value is not tied to the
component where it is used, but stored inside a top-level provider. When different components
access the same atom, they are actually collecting the value from that provider. Of course, if the

o1

provider component is unmounted, the state will disappear, but by placing the provider at the
top-level of the application this is rarely the case.

6.2.3 Global Outside React

Lastly we have the state that is stored outside of React itself. The thing that distinguishes these
libraries is that they can be used without React at all. It is possible to define the state and manage
business logic in MobX, even before you create a single component. Same with Redux, XState,
Zustand and Valtio. You could theoretically switch front-end framework and still use the same
state management library, without changing the logic.

The problem when using React with these state management libraries is how to integrate the state
with the components. For example, if you directly import the Redux store from a component, the
component would get the right values from the store when rendering, but the component would
not automatically re-render when the state changed. Redux has solved this by using a provider
component to provide the store at the top-level of the application, and then use custom hooks to
access the store from the components. This way the components are kept in sync with the store.

There are different approaches for achieving this synchronization between the components and the
state. As we talked about in section 4.3, MobX uses a higher order component wrapper to make it
react to changes in the MobX observables. This way MobX do not need to use a provider to pass
the state, but it can also use React Context if desirable.

6.3 State Composition Models

The state of an application needs to be composed in a certain way in order to remain structured, and
there are fundamentally different ways of composing state. For example, state can be divided into
small, indivisible units of data, which acts like building blocks that can be combined to construct
complex state. On the other hand, state can be composed of one large object that may be divided
into smaller parts when needed. The following section presents different State Composition
Models and discuss their characteristics and properties.

6.3.1 Single Tree

State that is organized in a tree structure, with one root node on top of the tree and edges to
children nodes employs a single tree composition model. Accessing a particular part of the state is
achieved by traversing the tree starting from the root node and traversing down to the particular
node. There are no nodes in the single tree that are isolated or disconnected. Applications using
the single tree composition model only have one single state tree. Figure 6.1 shows a visual example
of a single tree composition model. The root node is on top of the tree, and the leaf nodes are on
the bottom of the tree.

Redux is an example of a library using the single tree composition model. A Redux application
has only one single store organized in a tree structure. Accessing state is done by traversing the
state tree from the root node and further down the edges until the requested state is obtained.
Zustand enables using a single tree composition model, but is highly unopinionated, thus allowing
other state composition models as well.

52

Figure 6.1: Illustration of the single tree composition model, where the state
is organized as a tree data structure. Traversing the tree from the root node
allows accessing specific parts of the state, and no isolated or disconnected
nodes exist within the single tree.

6.3.2 Atomic

In an atomic composition model, state is supposed to be stored as indivisible units of data that
are completely independent of each other. It is recommended to try to keep each unit of state as
small as possible in an atomic composition, using these units to compose larger and more complex
state. Figure 6.2 shows an overview of an atomic composition model. The nodes on the top row
represents atomic state, which can be composed together with each other to create more complex
state. The directed edges in the figure represent the one-way operation of composing atomic units,
with the edges pointing downwards from the atomic nodes.

Figure 6.2: Overview of the atomic composition model, where state is stored
as independent and indivisible units. Atomic states can be combined to create
larger, more complex states using one-way operations, visualized by the directed
edges.

Recoil use an atomic composition of state, where units of state are called atoms. Atoms in Recoil
are supposed to be unique units of state that can be accessed directly, or used as building blocks
in a collection of atoms to represent more complex state. Jotai is inspired by the atomic model
from Recoil, and state is built by combining atoms.

6.3.3 Fragmented Store

The last composition model we will present is the fragmented store composition model. In a
fragmented store composition, there are multiple stores that are globally available. There is no
global state tree with a root node like in the single tree composition, and neither any demands
for only storing as small units of state as possible, like in the atomic composition. The way the

53

state inside the fragmented store is composed may vary. This can for example be a tree structure,
atomic state or a combination of both.

Since the state of an application is fragmented into multiple stores, you will need to decide how and
when to split different parts of the state into a new fragmented store. One possible fragmentation is
to divide the state based on application features. Such a store may be responsible for all state about
a certain feature in the application. For example, in a blog website, there could be a fragmented
store that owned the state that has to do with all the posts, and another fragmented store containing
all state about the user. Figure 6.3 illustrates an application state that is fragmented into three
different stores. The tree structures, single tree composition model in this case, are representing
the particular state of the fragmented store.

Figure 6.3: Illustration of the fragmented store composition model, where the
application state is divided into three fragmented stores. The fragmented store
can consist of tree structures, atomic states, or a combination of both.

MobX, Elf and XState all utilizes the fragmented store composition model. For example a class
in MobX can represent a fragmented store, because the class contains a part of the state that is
independent of other classes containing state. Elf proposes to organize the state using either the
repository or the facade design pattern. Using both of these patterns would result in each repository
or facade representing a fragmented store. In XState, the machines represent the fragmented stores,
which consists of an finite state machine containing the qualitative state, and a tree state holding
the quantitative state. As previously mentioned, Zustand facilitates for a single tree composition
model, but also supports a fragmented store model, where the state in the fragmented store can
be stored for example as a tree structure.

6.4 Derived State

In chapter 2 we described that normalization is about maintaining atomicity and removing data
redundancy. If our state is modelled to ensure atomicity, we might encounter the issue where
the state we want to consume is too detailed or too specific. We might up end combining mul-
tiple atomic units of state to be able to obtain a sufficient amount of data. Let us explain this
with an example about user information. We start by storing a users full name as one unit of
state: user: { name: "John Doe" }. This might work as expected, but it will break the rule of
atomicity, since the name property could be divided into the two units firstName and lastName.
However, it feels kind of unnecessary to have to access two variables if our components need to

54

display the users full name. This is where derived state is useful.

Derived state is state that is derived from existing state. Also, derived state is fully depend-
ent on existing state as input to produce its output. Furthermore, derived state is always en-
abled through the usage of pure functions. Given our example in the paragraph above, we
should store the user info within the variables first name and last name to maintain atomicity:
user: { firstName: "John", lastName: "Doe" }, and use derived state to calculate the users
full name when necessary. Recall the pure function getFullName shown in section 2.3. This can
be used to create a derived state of the user’s full name that extensively depends on the existing
states firstName and lastName.

One advantage of utilizing derived state is that it can possibly enable future application require-
ments to be implemented without modifying the existing state. This is demonstrated in the
example application Fakebook, shown in figure 6.4. Some of the requirements in Fakebook is that
it must display the user’s first name, full name and initials. Given that our existing state includes
firstName and lastName, the aforementioned requirements can be fulfilled by deriving the rest of
the state. Therefore, the first name can be consumed as is, while the full name and initials should
be derived from the existing state. The resulting derived state for the user will be initials: "JD"
and fullName: "John Doe". The figure illustrates the relation between existing and derived state,
and where these are displayed within the Fakebook user interface.

fakebook (-}

lastName

JD what are you thinking of

S

initials fullName &

Derived state

Figure 6.4: Visualization of derived state in Fakebook. The first and last name
of the user John Doe are used to derive his initials and full name. The location
of where these are displayed within the Fakebook user interfase is shown.

6.5 State Selection

The problem of using React Context for global state is that whenever the Context value is changed,
every component that depend on that Context will re-render, even if they do not depend upon the
part of the state that changed. This is not optimal behavior, and what we want are components
that re-render only when the piece of state they depend upon has been updated. The same is true
for derived state; we want derived state to re-calculate only when the specific piece of the state it
depend upon is changed.

This is one of the central problems of state management which we call State Selection, and the
libraries solve it in a few different ways. Selector functions are pure functions that takes the whole

55

state object or a fragment of the state and returns a specified piece of state. This enables the
components, or the derived state to depend upon this specific piece of the state. Another approach
available to the atomic state management libraries is to use the smallest amount of state possible by
carefully selecting atoms. Lastly we have the mutable way. These libraries can not simply compare
object reference, because the reference stays the same when they mutate the object. Because of
this they have implemented automatic optimization based on state access, meaning they track
which piece of state is depended upon in the background, and causes re-render, or re-calculation,
only when necessary.

6.5.1 Selector Functions

Selector functions are based on the premise of pure functions that takes the whole state object as
input, and returns a piece of state, as illustrated in figure 6.5. This is relevant if the composition
model of your state is a single tree or a fragmented store, since the state object in these cases
presumably is bigger than what you need in a single component. This way, when the state objects
changes we do not have to assume that every component that utilizes a part of the state has to
re-render. Instead all the selector functions are run, and only if the result is different from the last
time will it trigger a re-render, or re-calculation in the case of derived state.

The different libraries can differ in how they compare the old and new result from the selector
function. For primitive values it is enough with a simple equality check, and for objects and
arrays it is often used a shallow equality check. This is one of the reasons that state management
libraries often utilizes an immutable update model, because then they only have to check the object
references to verify if the result from a selector function has changed. Most libraries also give the
option of providing a custom equality function next to the selector function.

Redux, which uses single tree composition, is an example of a library that uses selector functions
to optimize state access. Zustand, which utilizes a fragmented store, also use selector functions.
XState uses what they call selectors, but with our classification it is actually what we will call a
derived selector function.

f Path to state

/

Figure 6.5: Selector functions accepts a state object, traverses the path to the
selected state, and return the selected state. The nodes and edges that are
outlined represents the traversed path.

6.5.2 Derived Selector Functions

In some cases it would be desirable to apply another level of optimization to the selection of state.
Let us say we want to re-render a component whenever the length of a list changes. If we select
the list from the state using a selector function, the component would re-render every time the list
changed, regardless of whether the length actually changed. In this example it would be preferable

56

to utilize what we call a derived selector function, which is a combination of State Derivation
and selector functions. One can think of the derived selector function as a layer wrapped outside a
selector function. First, the selector function gets a piece of the state, and then the derived selector
function performs some logic with this state, returning this instead of the state. For example the
derived selector function could take the selector function for the list as an input, and then return
the length of the list. This way the component has only selected the length of the list, and will
only re-render when the derived selector function returns a different length.

In the case of XState, what they call selectors are what we call derived selector functions, because
the function takes the state of the machine and a specific state we want to check against as
input, and returns a boolean indicating whether the machine is in the specific state. This way the
component will only re-render when the machine enters or leaves the specified state, not every time
the state changes. Redux also has support for advanced derived selector functions, using Reselect?.

Figure 6.6 shows an illustration of a derived selector function in a single tree composition model.
Two different selector functions are selecting one leaf node each in this example, which are used
as inputs to the derived selector function. The derived selector function outputs a new derived
state, shown in a green color, that is fully dependent on the two selector functions used as its
inputs. Additionally, derived selector functions are consumed the same way as selector functions
are consumed within components.

/Q

—
Y

Figure 6.6: The figure illustrates a derived selector function that receives two
selector functions as inputs and utilizes their results to produce its derived
state.

State

Path to state

Derived State

6.5.3 Atomic

One of the benefits of an atomic State Composition Model is that the state is already nicely
packaged for state optimization. You do not need to use any special tricks to depend upon the
smallest amount of state possible, as you can just select the smallest atom you need. If you need
data from multiple atoms combined, create and use a derived atom, similar in fashion to how you
would use derived selector functions.

It may be noted that in the case of atomic libraries like Jotai and Recoil, as we mentioned in
section 6.2 the state is actually stored inside a provider. This means that under the hood, using
an atom is actually the same as using a selector function, and using a derived atom is the same
as using a derived selector function. However, for the developer, working with the two models are

2https://github.com/reduxjs/reselect

https://github.com/reduxjs/reselect

very distinct experiences, requiring different mental models, so we still think it makes sense to have
an own category for atomic.

Tllustration of derived state used in atomic composition model are shown in figure 6.7. The atomic
units of state are shown in grey color. These can be composed together in order to create derived

state, which is shown as green circles in the figure.

Derived State

Figure 6.7: Ilustration of atomic derived state. The grey nodes are atomic
units of state, and the green nodes represents derived state.

6.5.4 Automatic Based on Access

A completely different approach to the problem of depending upon as little state as possible, is to
do it automatically behind the scenes. MobX and Valtio automatically tracks dependency based
on state access. This way, if you have a big state object you can pass the whole object into the
relevant component, as long as you access only the values you depend upon inside the component.
Then the libraries will notice this state access, and keep track of the dependency, and automatically
trigger re-render when the accessed value changes. This approach fits nicely with the mutable state

types, which is what MobX and Valtio uses.

Figure 6.8 illustrates access based selectors, which represents a fragmented store with a single tree
composition inside. The whole fragmented store is sent to the component, and the component
itself accesses part of the store that it should depend upon. In the illustration only one leaf node
is accessed, thus making the component only depend upon that leaf node even though the whole

fragmented store is passed to the component.

@

[}
[y
_ N p
Path to state v
[
.
\ ;

1 ¥

[

0y
Y
Y

LY

Figure 6.8: Overview of an access based selector. A fragmented store is passed
into a component, but the component only depends upon the part of the frag-

mented store that is accessed.

58

6.6 State Modification

So far we have described what state is, how state is composed and how to select part of the state
that a component need. In this section, we will explore the concept of State Modification and
examine the various approaches and techniques used to achieve it. To begin with, we introduce the
characteristics and properties of mutability in the context of state modification. Following that,
we discus the location of the state modification logic itself.

6.6.1 Mutable and Immutable

There are two ways to modify state - mutably or immutably. As we have seen in chapter 2,
mutable updates in non-primitive data types are done by directly manipulating a variable, while
an immutable update require that you create a new variable and copy the previous values to
the new variable. Mixing these methods might lead to unintended behaviour. Modifying state
in a library that are using immutable state updates with a mutable update will not show visual
change in the application because the shallow equality check will say that the reference is the
same and therefore no change is made. Moreover, if a we perform an immutable update to a state
management library that expects mutable updates, the code still works, however, it can result in
unnecessary computations and performance drop.

When state is changed mutably, the object reference holding the state will never change no matter
how many times the state values is changed. When a consumer of the state wants to know if the
state has changed, the current value of the state is used to compare with the new state value. Of
the state management libraries we have looked at, MobX and Valtio are the only ones that updates
the state mutably. In MobX, functions that modifies the state are called actions, which directly
mutates the state. State in Valtio is stored inside an enhanced version of the JavaScript Proxy [58]
object, that enables batched updates, ignores duplicate changes, and allows the mutation of the
proxy state.

On the other hand, when using immutable state modification, the object reference should never
remain the same after a state change has occurred. The main reason for doing immutable state
updates is because this allows for consumers of state to check if the state has changed by only
comparing object references, and not by its values like in mutable updates. If the state contains
deeply nested object or a large array, it is much faster to compare states by its reference, than
recursively traversing all values in a deeply nested object.

All libraries from our data set, except the two mentioned above, use immutable state modifications.
Many of them use an external library as a dependency, or recommends using a library to simplify
the issue of updating deeply nested objects immutably. For example, Redux, Zustand, Jotai,
XState and EIf explicitly recommends Immer® to solve the issue of immutably updating nested
objects.

Immutable state updates have the benefits of making it easier to implement undo-redo functionality
or time travel debugging, since every state change results in a completely new object, hence you
can go back or forth between previous versions of the state. Checking if a deeply nested object
has changed by comparing object references is faster than recursively traversing the object and
checking all its values. However, mutable updates are usually simpler to perform because you can
directly mutate the state.

6.6.2 Local and Global State Modification Logic

When talking about global state as described in section 6.2, we refer to state that is located outside
of components, and is globally available. All components should be able to read and update global
state. However, there are differing practices for where the logic for updating state should be

3https://immerjs.github.io/immer/

59

https://immerjs.github.io/immer/

located. One approach situates this logic within the components themselves, while an alternative
method positions the logic for updating global state externally, detached from the components.

Logic for how the state is modified or changed is hereby labeled as modification logic. The modi-
fication logic contains instructions about how the state is changed. Examples of modification logic
might be to increment the value of a counter state, or update user-related state about a newly
authenticated user with first name, last name and email address. Modification logic also include
rules for how state is modified based on potential previous values. For example, modification logic
for incrementing a counter needs to know the previous counter value to be able to increment it by
one. Modification logic varies from very simple to highly complex state modifications.

When the modification logic is placed inside a component, we say that it uses a local modification
logic pattern to modify state. This gives the component responsibility for how the global state
is changing. Some libraries that use local modification logic are Recoil and Jotai. In Recoil, the
component has full control over how a globally available atom is updated.

On the contrary, global modification logic is defined as modification logic that is placed outside of
the components, and is globally available to all components. This enables the reuse of modification
logic because multiple components can request state changes from the global modification logic when
an event occurres. Examples of libraries that are practicing the global modification logic pattern
are Redux, MobX, Zustand, XState and Elf. In Redux, global modification logic are placed inside
reducers which are located outside of the components. MobX uses a fragmented store composition
model, and actions containing modification logic that changes the state are globally available and
decoupled from components. Elf proposes two different design patterns which both apply the global
modification logic pattern. Zustand recommends to store modification logic inside actions that are
siblings to the global state, thus it uses the global modification logic pattern as well.

6.7 Summary

In this chapter we have presented a general theory of client state management, based upon the
client state management libraries described in chapter 4. We have distinguished between different
State Types, namely business and presentation state and qualitative and quantitative state. The
State Reach describes where the state is located, and as a result, who can reach it. Local state
is only reachable by the component it is defined in, and the components it is passed to as props.
Global state can be available to the whole application, but we also have to distinguish between
the global state that is tied to a higher order component inside React, and the global state that
resides outside React, and thus is independent of front-end framework.

Further on we saw that the State Composition Model can differ, either being stored in a
single tree, a combination of fragmented stores or as individual atoms. This greatly influences how
you do State Selection to optimize performance in the components. When working with state
that is bigger than single units, namely single tree or fragmented store composition, one would
normally have to use a selector function to get the piece of state you want to depend upon. It
is also possible to use in combination with Derived State, and use derived selector functions. If
you have composed the state in an atomic manner, you can just choose the minimal atom. It is
also possible to go a completely different route using automatic tracking based on state access, to
make the library handle the optimization for you behind the scenes. Lastly we saw that State
Modification can happen mutably or immutably, and that the modification logic happens either
locally inside the components or globally inside the library.

60

Chapter 7

A Theory of Server State
Management

Based on the server state management libraries included in our literature analysis from chapter 5,
a theory of server state management is presented. To begin with, the concept of Server API
Compatibility involves examining whether server state management libraries are tailored towards
a specific server API, or enable the integration with various APIs. The Operations section
outlines the main query operations that are performed against a server: queries, mutations and
subscriptions. Moving forward, the topic of Cache entails a thorough discussion of the two primary
cache strategies in server state management: the query cache and the normalized cache. Following
that, Organization of Queries discuss two approaches for structuring queries in an application,
and Asynchronous Metadata provides an overview of metadata that can be used to monitor
network requests. Many applications have a need for utilizing both server state and client state.,
and for this reason, Integrated Client State discuss how client state can be integrated into
server state management libraries. Lastly, Server State Features delve into some advanced
features that can be efficiently enabled by server state management libraries, such as prefetching,
pagination and offline mode.

7.1 Server API Compatibility

In section 2.8 we looked at two different types of server APIs, namely RESTful APIs and GraphQL
APIs. One of the first distinctions we could make in a theory of server state management is thus
what type of server API the libraries support. However, while libraries such as Apollo Client
and URQL markets themselves as GraphQL clients, libraries like Tanstack Query, RTK Query
and SWR do not mention anything about being directed towards RESTful APIs. In some cases
they even go so far as to call themselves back-end agnostic. Differentiating on what server API
is supported is thus not a precise differentiation, although not so far off the mark. While there
are some libraries without any constraints on the type of server API, two of the libraries we have
studied are aimed at GraphQL APIs. Although you can configure Apollo Client to use a RESTful
API endpoint, this is not the intended use-case. And herein lies the key, the intended use-case.
Some libraries are specialized for one specific type of server API, while other libraries are general,
usable with a larger variety of server APIs.

7.1.1 General

General server state management libraries are flexible and adaptable when it comes to the type of
server API you use to interact with your server. These libraries serve to manage the server state
effectively, but do not really care where that server state originates. Because they do not know
what type of API you want to use to fetch your data, general server state management libraries

61

typically do not include pre-existing features for data fetching. They delegate this implementation
to you. This enables you to implement a custom fetcher that sends a GET request to a RESTful
API endpoint, a GraphQL query string to a GraphQL server API, or even return some local data.
Although RTK Query does include a default fetcher suitable for RESTful APIs, we would not call
it a specialized library, given that the fetcher is easily replaced, and the library does not include
any other RESTful-specific features.

7.1.2 Specialized

Specialized server state management libraries are intended to use in combination with a specific
server API. We have looked at two libraries specialized for GraphQL APIs, but there is nothing in
the way of having specialized server state management libraries intended for other types of server
APIs, like RESTful APIs. Specializing at one server API means you loose flexibility, but you gain
a streamlined experience in working with this type of server API. For example, since the GraphQL
specialized libraries can assume that we are going to talk to a GraphQL server API, they can
provide a built-in fetcher, saving us the trouble of implementing a fetcher ourselves.

Depending on the nature of the specific type of server API, this streamlined experience may give
you various technical advantages and features that would not be possible with general libraries.
One of the advantages of using a GraphQL-specific library is knowledge of the structure of the
data, allowing more advanced caching features, which is covered in more detail in section 7.3.

7.2 Operations

A crucial aspect of server state management libraries is the ability to interact with a server.
However, there are different types of interactions that can be performed, different Operations. An
analogy can be drawn to database theory, where there are four fundamental database-operations
that can be performed on a database. These four database-operations are encompassed in the
acronym CRUD, which stands for Create, Read, Update and Delete. We can use the fundamental
database-operations to explain the three fundamental Operations a server state management
library can perform.

First we have queries, which corresponds to read for databases, where a client requests some data,
and receives the result of the requested data from the server. For databases, create, update and
delete all make changes to the database. In server state management, the mutation operation
encompasses all the interactions that modifies data on the server. The last operation is called
subscriptions, which is comparable to the read database-operation, like queries. However, sub-
scriptions differs from queries in that instead of sending a request and receiving a response once, it
subscribes to some data and gets notified whenever there are any changes to that data. Subscrip-
tions are especially useful when presenting rapidly changing real-time data. This section presents
the three Operations queries, mutations and subscriptions and how they are applied in server
state management libraries.

7.2.1 Queries

A query operation refers to the process of requesting information from a data source. Queries
are used to perform the equivalent of a read database-operation on a server, and will not make
alterations to the server data. A query is a one-time request for data, although most implementa-
tions of queries include a method for re-fetching the query in order to send the same request again
manually. Figure 7.1 illustrates a query operation, where the client sends a query request to the
server, and the server responds with the requested data.

In React, server state management libraries usually lets you execute queries using hooks. By
default, the query hook normally trigger the query automatically on mount. You can however
disable the automatic execution of a query, and rather control the query execution by an external

62

Client

(Il

—

Figure 7.1: Overview of a query operation. The client sends a query to the
server requesting specific data, and the server responds with the requested data.

state. This can be useful when a query depends on result data from a former query, or when data
should not be fetched until a certain event has happened.

7.2.2 Mutations

Mutations are employed to make changes to the data on a server, just like create, update or
delete for databases. In contrast to queries, mutations are not automatically executed when the
component mounts. Usually, a mutation is triggered by a user event, such as clicking a button
after filling in a form. For this reason, mutation hooks normally return a trigger function that
is used to execute the mutation. The manual triggering of mutations give developers control of
when, and whether a mutation should be executed or not.

Every mutation require some type of data to be sent along with the mutation. For example when
creating a new entity, the data describing the entity needs to be passed along with the mutation.
When deleting or updating an entity, at a minimum, an identification needs to be included in order
to know what entity should be deleted or updated. A properly designed application should ensure
that all the required data for the given mutation are present before executing it. Figure 7.2 shows
a client sending a mutation request including mutation data. The modification is illustrated by the
orange line. In response, the server potentially responds with the same data, as it is after being
modified on the server, indicated by the green line.

1

Client

(1]

—

Figure 7.2: Overview of a mutation operation. The client initiates a mutation
request, denoted by the orange line, indicating mutated data. The server, in
response, potentially provides the modified version of the same data, represen-
ted by the green line.

7.2.3 Subscriptions

Like queries, subscriptions performs the equivalent of a read database-operation. In contrast to
queries, that reads the data once, the subscribe operation initiate a subscription for a set of data,
and gets notified whenever there has been a change to that data. Subscriptions can be applied
in order to implement streaming data, as described in section 2.12, and a successful subscription
between a client and a server facilitates the exchange of data streams between the two parties.
Figure 7.3 shows an overview of a subscription, where the client initiates a subscription to some
data on the server, and any occurring changes to that data on the server is pushed to the client.
Compared to queries and mutations, the subscription operation is more complex because it includes
multiple events over a longer period of time.

Client

[
[
[

Figure 7.3: Overview of a subscription operation. The client initiates a sub-
scription to the server, and the server pushes changes to the client as they occur
on the server.

A common approach when using subscriptions is to start subscribing on initial mount. The data
returned when a subscription starts is usually the whole set of data. Eventually, when the data
changes on the server, the client may receive only the part of the data that changed. Let us explain
how subscriptions can be used to achieve real-time updates in a chat application. When you first
enter the chat with your friend, your device will initiate a subscription to your messages. The
initial data received when subscribing is most likely a set of recent messages between you and your
friend. After some time, your friend may send you a new message, which you will receive as a
payload containing only the new message. This message will then be added to the message thread
and included in the user interface. If you respond to the message, your friend that is actively
subscribing to the same message thread will receive the message you just sent. After chatting
with your friend for a while, you exit the chat. In order to stop listening for future messages,
it is important to unsubscribe properly. Forgetting to unsubscribe from the data might cause
superfluous network traffic and unnecessary memory consumption.

A successful implementation of subscriptions not only depends on the client accepting it, but
also on the server’s ability to enable it, since it is the one actually pushing new changes to all the
currently subscribed clients. For this reason, server state management libraries that are specialized,
implements subscriptions different than the ones who are generalized.

Specialized server state management libraries can assume detailed information about the commu-
nication protocol utilized because it is target towards a single server API. For example, specialized
server state management libraries target towards GraphQL APIs can apply the GraphQL operation
type subscription, defined by the query language GraphQL [19]. This in turn enables specialized
server state management libraries to configure subscriptions globally for all queries. Once the
subscription is configured, subscriptions can be employed anywhere in the application which all
implements the globally configured subscription settings.

Generalized server state management libraries can make no assumptions on communication proto-
cols, since it allows for multiple server APIs. In comparison to specialized server state management
libraries, the generalized ones leaves more room for developers to decide how the implementation of
subscriptions are carried out. Hence, implementation require more work by developers, but it also

64

offers greater flexibility. In addition, applications can use different communication protocols for
subscriptions per individual endpoint or query. For example, an application can use WebSocket [30]
for one query, and Socket IO! for another query.

7.3 Cache

One of the most central concepts when it comes to server state management is Caching. Caching
plays a critical role in optimizing the performance of web applications, and server state manage-
ment libraries use caching to minimize the amount of requests made to the server. Due to the
essential role of caching in server state management, many of the features provided by server state
management libraries interact with the cache, either directly or indirectly.

Cached data are structured in what we call cache entries, which can be thought of as a unit of
cache. A cache entry consists of an identifier we call cache key, and the cached data. The cache
key enables direct access to its corresponding cache entry, resulting in fast retrieval of cached data.

There are two main approaches for organizing cached data in server state management: query
caching and normalized caching. Query caching stores the result of one specific query in the cache
as a cache entry, using query keys as cache keys. Normalized caching, on the other hand, transforms
the returned data into a normalized form before storing it in the cache as multiple cache entries,
using both query keys and entity keys as cache keys. This section looks at both approaches in
more detail, including how the different types of cache keys are generated, and how the approaches
differ in managing stale data.

7.3.1 Query Cache

Query caching is the most basic form of caching in server state management, but it is not necessarily
less efficient or useful than more complex approaches. When executing a query, the server state
management library stores the response to that query in the cache as a cache entry. The server
state management libraries use query identification mechanisms that allows them to differentiate
between queries and create separate cache entries for each. The query identification, which we call
query key, is used as the cache key for the cache entry. The response data from a query is stored in
the cache using its query key as cache key. If the same query is executed multiple times, it will be
identified with the same query key, and can thus use the data from the same cache entry instead
of performing a new network request.

Query Keys

There are two important elements to consider when creating a query key. The first is what is being
queried. For example, we would probably want different cache entries for fetching a Facebook feed,
and fetching a user profile. The second important element is the parameters of the query, if any.
We want to be able to cache a query for one specific user profile separately from a different user
profile. Using these two elements, what is being queried and the parameters of the query, you can
create unique query keys for each distinct query. For example, in the query key getPost(id: 1),
getPost () refers to the what, and id:1 is a parameter.

Figure 7.4 shows the structure of a cache for querying posts in a Facebook feed. The cache
has two cache entries, one for each query. The query keys of the two queries, getPosts() and
getPost(id: 1), are used as cache keys for the two cache entries. The cache data is placed along-
side the cache keys in the respective cache entries, including both post-information and author-
information.

Some libraries lets you define query keys yourself. Others will infer it based on the query config-
uration. General server state management libraries will often give you more manual control over

Lhttps://socket.io/

65

https://socket.io/

“Excited to dive into Apollo Client today!”,

: 101,
“John Doe”,
profilePictureUrl: “https://example.com/profile_picture_john.jpg”

postId: 2,
content: “Just started using SWR. The caching mechanism is fantastic!”,
author: {

userId: 202,

name: “Jane Smith”,

profilePictureUrl: “https://example.com/profile_picture_jane.jpg”

getPosts()

postId: 3,
content: “Wow. Implementing cache reduced network requests by 40%!”,
author: {

userId: 101,

name: “John Doe”,

profilePictureUrl: “https://example.com/profile_picture_john.jpg”

postId: 1,
content: “Excited to dive into Apollo Client today!”,
author: {
userId: 101,
name: “John Doe”,
profilePictureUrl: “https://example.com/profile_picture_john.jpg”

getPost(id:1)

Cache Data

Cache Entry

Figure 7.4: Overview of a query cache. The cache consists of two cache entries,
each corresponding to a specific query. The cache keys used are getPosts() and
getPost (id: 1) for their respective queries. Cache data, including post-information
and author-information, is stored inside the cache entries.

the query key, as they assume less about how you retrieve your data. This is true for Tanstack
Query and SWR, which both require you to define the query key manually. On the other hand,
specialized libraries that know the structure of the query can infer the query key to a greater extent.
For example, Apollo and URQL use the GraphQL query name and query string to identify what,
and then combine it with the parameters to infer the query key. Although RTK Query is a general
library, it also generates the query keys automatically. It can do this, because it requires you to
name all queries, enabling RTK Query to use this name, alongside the parameters, to generate the
query key.

Query Invalidation

Let us say you query a list of all your Facebook friends. Then you make a new friend, and this
new friend sends a friend request, so you perform a mutation accepting the request. The list of
friends in the cache is now outdated, as it does not contain your newest friend. You know that the
cache entry of the Facebook friends query will be outdated after you perform a mutation adding
a friend, but the server state management library does not. Hence, you need a way to tell it that
the query has become stale, and this is what query invalidations are for.

Query invalidation is simply the process of telling the server state management library that one
or more queries has become stale, and needs to be re-fetched. There are different approaches
to accomplish this, but they all aim to establish a relationship between a mutation and one or
more queries. In the case of the libraries that utilize a manual cache key, you invalidate queries

66

by using the cache key directly. RTK Query lets you attach tags to queries and mutations, and
when a mutation is triggered, all queries containing the same tags are invalidated. URQL uses an
automatic approach, where all queries containing an entity of the same type as an entity in the
mutation are invalidated.

7.3.2 Normalized Cache

As discussed in section 2.6, properties of a normalized database are atomicity and no data redund-
ancy or inconsistency. Even though the cache is not a database, it shares some of the properties
of a database such as data storage, modification and retrieval. If the cache is structured in a
normalized form, it can be classified as a normalized cache. However, data that we request from a
server is not automatically stored in a way that enable the cache itself to be normalized. Hence,
employing a normalized cache require some manual work and assumptions about the data returned
from the server.

The non-normalized cache illustrated in figure 7.4 shows examples of data redundancy. The post
with postId: 1 is stored twice, both within the getPosts() and getPost(id:1) cache entries.
Furthermore, the data about the author John Doe exist three times. If the author John Doe
changes profilePictureUrl, all queries that contains the affected url needs to be re-fetched. On
the other hand, if the same data were stored in a normalized cache, the author John Doe would
only be stored once. In order to store entities only once in our cache, each entity needs a unique
cache key. In the same way that unique query keys are used as cache keys for queries, we need
unique entity keys to use as cache keys for entities.

Entity Keys

Entity keys are used to uniquely distinguish entities from each other, and they are used as cache
keys in the cache. An entity key consists of an entity type and id. For this reason, a requirement
for creating a normalized cache is that the server API provide an entity type and id. Because the
general server state management libraries does not assume anything about the server API, they
cannot assume that this information is provided. Consequently, to enable a normalized cache, it
becomes necessary to utilize a server API that offers this information, along with a server state
management library specialized for this type of server API.

A type is metadata about an entity, and in our Facebook feed example, the types could be Post
and User. The entity i¢d need to uniquely distinguish the entity from other entities of the same
type. An entity key for the author John Doe could be User:101, consisting of the type User and
id 101.

Once the entity keys are established, we can start structuring our cache in a normalized form. For
queries, the query key is used as cache key, and for entities, the entity key is used as cache key. If
an entity contains another entity, this other entity is stored in the cache as its own cache entry,
and its entity key is used as a reference in the consuming entity. This way, each entity is only
stored once in our cache, and redundant data is removed.

Figure 7.5 shows an overview of a normalized cache. Each query and entity has its own cache entry,
consisting of a cache key and associated cache data. The cache data in the queries getPosts()
and getPost(id:1) contains entity keys which are references to other entites, such as Post:1.
The cache entries with entity keys as cache keys store the actual data of the entity. These cache
entries may also include references to other related entities, such as Post:1, authored by the user
with entity key User:101, representing John Doe in this example.

A normalized cache only stores one object for every entity received from the server. As shown
in figure 7.5, the author John Doe with userId: 101 is only stored once, compared to the non-
normalized cache shown in figure 7.4 where the author John Doe was stored three times. This
example illustrates how data duplication is removed in a normalized cache.

67

getPosts()

getPost(id:1)

content: “Excited to dive into Apollo Client today!”,

author: User:101

content: “Just started using SWR. The caching mechanism is fantastic!”,
normalized

cache author: User:202

content: “Wow. Implementing cache reduced network requests by 40%!”,

author: User:101

name: “John Doe”
profilePictureUrl: "https://example.com/profile_picture_john.jpg"

Entity Key

name: “Jane Smith”

Cache Data profilePictureurl: "https://example.com/profile_picture_jane.jpg"

Cache Entry

Figure 7.5: Overview of a normalized cache. Each query and entity is represented
by a dedicated cache entry consisting of a cache key and associated cache data. The
cache data within the queries getPosts () and getPost(id:1) contains entity keys,
serving as references to other entities, such as Post:1. The cache entries that has
entity keys as cache keys, store the actual entity data. Additionally, these cache
entries can include references to related entities, such as Post:1 authored by the
user with entity key User:101, John Doe in this example.

Automatic Cache Updates

Having a normalized cache enables new options for managing outdated data caused by mutations.
As we have seen, a simple way to handle outdated data is to re-fetch all queries affected by the
mutation, using query invalidation. In the case of a query cache, this is often the preferred approach,
as the modified entity may be stored at multiple locations in the cache, making it complicated to
edit all these places manually after a mutation. However, with a normalized cache, all entities are
only stored once. This means that after a mutation we only have to modify this single entity in
this single location, which is a much simpler operation.

68

Let us say that John Doe changes his profile picture, making the previous profilePictureUrl on
his User entity outdated. Because the entity is stored only once, we only need to modify the single
John Doe entity in the cache to correct the outdated data. Post:1 includes a reference to John
Doe’s entity, with the entity key User:101. When John Doe’s entity is modified, the entity key
stays the same, as entity keys are stable. Post:1 does not need to change its reference to John
Doe’s entity, as it is the entity itself that has been modified, not the reference.

Furthermore, if the server returns the modified entity from the mutation, including its type, id and
the modified fields, the library can construct an entity key using this information, and use it to
modify the entity in the cache automatically. Due to the cache being normalized, no queries may
need to be re-fetched. However, this approach would only work for updating entities that already
exist in the cache. If the mutation for example creates a new entity, some manual work may be
required.

Manual Cache Updates

In the example above with John Doe changing his profile picture, the cache was updated automat-
ically. This is because the mutation on the server only modified a field in a single entity. However,
updating a normalized cache is not as straightforward when creating or deleting entities. In fig-
ure 7.5, we can see that the cache stores the individual Post entities using their corresponding
entity keys. Additionally, it also stores the query getPosts() associated with its respective query
key, which contains a list of posts. If we execute a mutation that creates a new Post, the new
Post entity will be stored automatically in the cache by the server state management library, but
it will not be added automatically to the list in the getPosts() query. A newly created entity
will itself be added automatically to the cache, but developers need to manually add or remove
a reference to the entity in every cached query that contains a list that should include the newly
created entity.

The aforementioned problem of updating references in cached queries is demonstrated in figure 7.6.
The figure shows a representation of a normalized cacheafter a new post with the entity key Post:4
is created. The entity data is stored automatically as a cache entry alongside the corresponding
cache key. However, the getPosts() query does not contain a reference to Post:4. Furthermore,
there is no way for the server state management library to know that getPosts() should contain
Post:4. Thus, we need a way to reflect the modifications done on the server in our cache as
well. There are two possible solutions for this: query invalidation or manual cache update. Query
invalidation was covered in section 7.3.1 and denotes the process of marking the affected queries
as invalid, triggering a re-fetch.

Manual cache updates is employed with the single purpose of updating all affected queries when an
entity is added or removed. Assuming that the successful mutation returns, at a minimum, the en-
tity type and id, we can construct the entity key, which can be added as a reference to all the affected
queries. Nevertheless, the cache can not infer where, if, or whether an entity reference should be ad-
ded or removed from a cached query. Thus, it is required by the developers to know when and where
to add a reference from an entity to a cached query. Figure 7.6 shows that the query getPosts()
is missing the post Post:4, hence a manual cache update would add a reference for Post:4 to the
list of posts. Once a manual cache update has been executed successfully, the cache entry for the
query should appear as follows: getPosts(): [Post:1, Post:2, Post:3, Post:4].

To summarize, updating an entity requires neither manual cache updates or invalidation because the
reference to the current entity is already present in the cached queries. If the author of Post: 1 edits
the content of the post, only the entity itself is updated in the cache, and the query getPosts()
will not need to be updated because the entity key Post: 1 is stable and does not change even when
the entity data changes. However, when you create or delete entities, there may be queries and
entities that should contain references to these new entities. Server state management libraries are
unable to infer these modifications automatically, thus, query invalidation or manual cache updates
are required in order to keep data updated.

69

getPosts()

content: “Excited to dive into Apollo Client today!”,

normalized
cache

author: User:101

content: “Migrating to RTK Query!”,

author: User:202

Entity Key

Cache Data

Cache Entry

Figure 7.6: Representation of a normalized cache after the creation of a new post.
The entity data for the new Post:4 is automatically stored in a cache entry along-
side its corresponding cache key. However, the getPosts () query does not include
a reference to Post:4. The server state management library lacks the knowledge
that getPosts() should include a reference to the entity Post:4. Manual cache
updates are necessary in order to add Post:4 to the cached data of getPosts().

7.4 Organization of queries

An important consideration when working with server state management is how to organize and
configure queries. The organization of queries refers to where queries are defined within the code-
base, while query configuration is about defining the specifics for a given query, such as endpoint
and parameters. There are two main approaches to the configuration and organization: central-
ized or decentralized. In centralized organization, queries are defined in one single location and
then imported and used wherever needed. In contrast, decentralized organization involves defining
queries directly in the components or hooks that use them.

7.4.1 Decentralized

In the decentralized approach, queries are configured directly in the hook that execute them. There
is no centralized entity where you would pre-define all the different queries, just the query hooks
being used in multiple locations. For example, in a library that has a query hook called useQuery,
the query could be configured like this:

const Component = () => {
const { data } = useQuery(
// query configuration
)3

/.

70

The hook can be encapsulated inside your own custom hooks, enabling the reuse of queries and
locating the hook outside the component. For example, a query to fetch your friends on Facebook
could look like this:

const useFriendsQuery = () =>
useQuery(
// query configuration
)

const Component = () => {
const { data } = useFriendsQuery(Q);

/Zame

Using this approach, it is possible to create custom hooks for all different queries. For example, you
could have another custom hook called useFeedQuery, that executes a query to fetch your Facebook
news feed. In that case, useFriendsQuery and useFeedQuery would be unrelated, possibly defined
in different files, and not have anything in common other than being managed and cached by the
same server state management library. Figure 7.7 shows an illustration of how the aforementioned
hooks may be organized. In the figure, the hooks are not located at the same place, indicating
a decentralized organization of queries. The reuse of the useFeedQuery in both the <Profile />
and <Messenger /> components highlights the possibility of reusing queries when defined outside
components. An important characteristic of decentralized queries is their independence from each
other, enabling their decentralized placement.

useFeedQuery() friends useFriendsQuery()

’
.

feed friends

Figure 7.7: The figure illustrates a decentralized organization of queries, with
the hooks useFriendsQuery and useFeedQuery located separately. This high-
lights an important characteristic of a decentralized organization, which is the
queries’ independence from each other, allowing for a decentralized placement.

Due to the absence of constraints on where the custom hooks are located, the decentralized libraries
allows the co-location of custom hooks with the components that use them, or extracting them
somewhere else. While it is possible to mimic a centralized organization by grouping all queries
into the same file, each query would still need to be configured individually.

Decentralized organization offers flexibility and modularity, but it can also present challenges when
it comes to managing your queries. Although the server state management library would manage
and cache all queries being executed, it would not know anything about your custom hooks you
use to encapsulate the queries. For example, the server state management library cannot know the
names of these custom hooks. It is for this reason that the decentralized libraries require manual
query keys to identify queries, as discussed in section 7.3.1.

71

While decentralized organization requires configuring each query individually, it also allows de-
fining global default configurations. For example, fetcher functions are configured per query, but
developers can provide a global default fetcher function that will be used if no fetcher is provided
to a given query.

7.4.2 Centralized

In contrast, the centralized approach configures all queries in the same location. Using the example
of a Facebook friends query and a feed query, these query configurations would be co-located, for
example in the same configuration object that might look something like this:

const queries = {

friendsQuery: {

// query configuration
},
feedQuery: {

// query configuration
},
/.

Due to the queries being configured in a centralized location, they have to be uniquely identified
to enable the server state management library to keep them apart. When you want to execute the
queries from a component, you would use the query identifier to identify the query to be executed.
For example, a centralized server state management library may provide a query hook that takes
the query identifier as argument and executes the associated query. RTK Query solves this by
providing custom generated hooks for each query that you can use in the components.

Figure 7.8 shows how queries are co-located using the centralized approach. The <Profile /> and
<Messenger /> components use the same query for fetching friends. The <NewsFeed /> component
use the feed query, and because of the nature of the centralized approach, it is retrieved from the
same location as the friends query.

Server State Manager

friends @ ——4) useFriendsQuery()

useFeedQuery()

etc

feed

Figure 7.8: Overview of the centralized approach, where queries are co-
located. The <Profile /> and <Messenger /> components both con-
sume the useFriendsQuery, and the <NewsFeed /> component retrieves the
useFeedQuery from the same, centralized location.

72

Because a centralized approach requires identifying the queries to keep track of them, they enable
things like automatic generation of query keys using the specified query identifier. This is the
reason that RTK Query, which is an example of a centralized server state management library, can
automatically generate query keys, even though it is a general library, as discussed in section 7.3.1.

While the centralized approach to query organization may be less modular and flexible than a
decentralized approach, it provides a clear overview of all queries, helping to maintain consistency
across an application. The libraries can provide options of splitting the configuration into separate
sections, enabling you to provide different default values for different types of queries. For example,
while the fetcher function could be centralized for all queries, it is possible to allow the creation
of separate sections that utilizes other fetcher functions. Often it is also possible to provide
configuration options when you execute the query in the component, giving further individual
customization options.

In summary, the centralized and decentralized approaches to query organization are a more nu-
anced distinction than they may appear. The decentralized approach starts as individual query
configurations, defined in the components that use them. However, they may be extracted into
custom hooks, co-located with other queries, and utilize defined global default values. Conversely,
the centralized approach initially involves all queries being configured in a single location, but
can still offer modularity by the separation of queries into different sections with different default
values, and individual configuration on execution. Decentralized and Centralized can be viewed
as two ends of a continuum. While individual configuration gives flexibility, default settings en-
sure consistency across queries. Server state management libraries may start at one end of the
continuum, but they often allow you to take steps in the other direction, enabling you to find the
balance between structure and customization that fits your needs.

7.5 Asynchronous Metadata

Performing a network request from client to server usually takes some time. For this reason, net-
work requests are executed using asynchronous JavaScript, as discussed in section 2.9. However,
the client requesting the data from the server needs a way to monitor the process of the asynchron-
ous request. Consequently, server state management libraries provide asynchronous metadata to
let the consuming components know the current status of a network request.

Asynchronous metadata can be utilized to determine what interactions should be enabled or dis-
abled, or what is shown as a response to the user while there is an ongoing asynchronous request.
Furthermore, an asynchronous request over a network might fail due to a network fault, server
error or other various reasons. Hence, asynchronous metadata should also specify whether the
request was a success or a failure.

For example, when a user submits a form for signing up as a new user on a website, it would be
appropriate to indicate to the user that the system s currently processing the request. The button
label could transition from “Sign up” to “Signing up”, and potentially show a spinner animation.
In addition, the button could be disabled, in order to prevent subsequent form submits. After some
time, when the request is fulfilled, the system should clearly display whether the request resulted
in a success or an error. An error could show a notification on the top of the screen, containing
a description of the error, while a successful result should clearly indicate that the user has been
registered successfully.

Determining how the user interface changes during an asynchronous request is a topic that belongs
in the field of user experience, and it is out of scope for this thesis. Nevertheless, an essential
aspect of asynchronous metadata is that it can enable the user interface to show these changes. To
retrieve and obtain information about an asynchronous request, two complementary statuses are
introduced: data status and fetch status.

73

7.5.1 Data Status

Data status indicates whether an asynchronous request is in progress, was successful, or encountered
an error. The fundamental states of data status are loading, success and error, but more states
could be added if needed. The states in a data status are mutually exclusive, meaning they cannot
exist concurrently. For example, a system should not allow the states success and error to exist at
the same time. Consequently, data status is qualitative, as described in section 6.1.2. Finite state
machines can be used to represent qualitative states such as data status, and figure 7.9 presents a
finite state machine with the three states loading, success and error.

success

loading

Figure 7.9: Finite state machine representing data status with the states load-
ing, success and error. Transitions between all states are possible.

The data status is frequently utilized to determine, based on the current state, what information
should be displayed in a user interface. Often, booleans like isLoading, isSuccess and isError
are derived from data status to provide convenient access to the status information. An example
employing data status to conditionally render elements to a user interface is shown below. The
component queries a list of Facebook friends, and manages loading and error states for the corres-
ponding query.

const Component = () => {
const { data, isLoading, isError } = useFriendsQuery()

if (isLoading) return <Loading />
if (isError) return <Error />

return <div>{data.map((friend) => <Friend friend={friend} />)}</div>

In this code example, the component starts by checking whether isLoading or isError are true, and
shows an appropriate feedback. Due to the nature of qualitative state being mutually exclusive,
conditionally checking and excluding two out of the three possible states will imply that the current
state is the last one. Hence, we know that data status is success whenever the two former are false,
and a list of friends is displayed.

As discussed in section 7.2, queries are usually executed automatically when a component mounts,
whereas mutations are triggered manually by an event or a user input. Accordingly, data status

74

of mutations are a bit different from data status of queries, and should include a state for when
it is uninitialized as well. Thus, the state uninitialized is employed in mutations, and it is true
as long as the mutation has not yet been executed. Some server state management libraries also
include the uninitialized state on queries as well, which can be useful if the query is configured not
to execute automatically on component mount.

7.5.2 Fetch Status

Recall the HTTP cache invalidation strategy Stale-While-Revalidate [61]. The re-validation of
data in this strategy implies that there is data already present in the cache. If not, there would
be no data to actually re-validate. This shows that when utilizing cached data, there is a need to
distinguish between querying data to an empty cache entry, or querying data when we already have
data present in the cache entry. For this reason, among others, fetch status is introduced. Fetch
status contains information about the most recent query operation, and its fundamental states are
fetching, idle and paused. Figure 7.10 illustrates fetch status as a finite state machine containing
the aforementioned states. The following sections will describe the characteristics of fetch status,
why it is useful and how it complements data status in various ways.

fetching

Figure 7.10: Finite state machine representing fetch status with the states idle,
fetching and paused. Transitions between all states are possible.

Data status and fetch status are qualitative states that exist in parallel and change independently.
Fetch status differs from data status because it does not take into account whether there is existing
data in the cache or not. Fetch status can be employed in order to implement an indication of a
background re-fetch in an application, such as a Facebook feed. On initial load of the Facebook
feed, data status will be loading, and fetch status will be fetching. When the feed is loaded, data
status will be success, and fetch status will be idle. After this, a user can force a refresh of the feed,
which will show a spinner animation while still showing the current feed data. In this case, data
status will still be in the success state, because the initial load was successful, but fetch status will
be in the fetching state once again. This refresh of the feed triggered by the user is an example of
a re-validation of ezisting data in the cache. If there were no new posts to show in the feed, the
data already present in the cache were valid, but if the latest fetch returned new posts, these are
added to the feed, and the re-validation resulted in an update of the Facebook feed.

The idle state indicates that there is currently no ongoing requests, and the query is ready to be
executed. By default, fetch status of a query is set to the idle state when initialized. The idle
state can be described as a state where the query is passive and not doing anything.

(0]

The last state of fetch status is the paused state. It indicates that a request is prevented from
execution, or that an ongoing request has been stopped. A handy utilization of the paused state is
related to network connectivity. Let us say that a user is uploading some files to a web service, but
during the upload, network connectivity is lost. Consequently, the network request for uploading
files is aborted, resulting in fetch status being set to paused. The paused state can for example be
utilized to show an appropriate message to the user regarding the paused file uploads, and it might
encourage the user to take actions to restore network connectivity. Whenever network connectivity
is restored, fetch status transitions from paused to fetching, and the user can be informed that the
upload has been resumed.

Leveraging both data status and fetch status can provide valuable information to applications re-
garding network and data requests in various scenarios. Data status provide information about
whether there are any data available at the moment, and whether a request was successful or
resulted in an error. Fetch status, on the other hand, complements data status because it contains
details about whether or not there are any active requests. This can be utilized to provide indica-
tions of background re-fetches or a loss of network connectivity. Data status and fetch status work
together to keep users informed about ongoing requests in an application, enhancing overall user
experience.

7.6 Integrated Client State

The main focus of this chapter is server state. It is important to note, however, that many
applications need to manage both server state and client state. Server state originates from a
server, and modifications to the state are usually related to an asynchronous network request.
On the other hand, client state originates on the client itself, and modifications are performed
synchronously. Consequently, the approach for managing client state and server state differ due to
their distinct natures and characteristics. However, some server state management libraries choose
to integrate client state management as part of their solution, and this section will explore this
aspect in more detail.

If the application requires little or no client state, utilizing the internal state management provided
by React might be satisfactory. Otherwise, if the internal state management provided by React
is not suitable, an external library can be employed, resulting in separate libraries for client state
and server state. However, utilizing this approach require cautiousness regarding the consolidation
between client state and server state. For example, it becomes easier to unintentionally duplicate
state by storing the same data as both client state and server state. Also, client state reacting to
changes in server state, and conversely, might be sources of unnecessary re-renders if not managed

properly.

In response to these challenges, among others, some server state management libraries provide
internal methods for managing client state, hereby referred to as an integrated approach. With
this approach, it is possible to manage both client state and server state with a single library.
The integrated approach also allows the sharing of concepts and potential custom features between
client state and server state, as the management strategies reside within the same library. The
integrated approach facilitates the co-location of state, enabling client state to react directly to
modifications on the server state. While the possibility of data duplication still exists, it is greatly
reduced, as the server state and client state can directly depend on each other, eliminating the
need to store a duplicate when a combination of the two is required.

Managing both client state and server state is crucial in many applications. For minimal client
state requirements, React’s internal state management suffices, but for more complex requirements,
external libraries may be necessary. In the integrated approach, a server state management library
handles client state internally. This enables co-location of state, allowing client state to react to
server state modifications. Additionally, it facilitates the sharing of concepts and potential custom
features between the two.

76

7.7 Server State Features

Now we have a basic understanding of the cache and its main functionality. However, as mentioned
when introducing the cache, caching is a central concept when it comes to server state management,
and basic caching mechanics will not cut it. What follows are some of the configurations and
features of server state management libraries, enabled by the cache.

7.7.1 Prefetching

The idea behind prefetching is to anticipate what data will be accessed next and to load it into
the cache before it is actually needed. This can significantly reduce the amount of time that would
otherwise be spent waiting for data to be loaded from the server. For example when displaying a
paginated list to the user, we might assume that the user will navigate to the next page. Without
prefetching, a user navigating to the next page would need to wait some amount of time for the
page data to load. However, if the data for the next page was prefetched, a navigation to the next
page would show its content instantly, providing a better user experience.

One might be tempted to prefetch everything, but it is not without its costs. Prefetching uses
network bandwidth and memory resources for data that the user potentially might not need. If
the user decides not to navigate to the next page for example, the prefetched data would just
have resulted in an unnecessary network request. A lot of unnecessary network request can put
the server under an unnecessary heavy load, slowing down the requests even more. Other times,
it might not even be relevant to prefetch data, simply because the data may change quickly, and
already be stale by the time it is needed. These are some of the reasons it is a good idea to think
through where and when prefetching actually makes sense to use.

Prefetching data is not very different from running a normal query, except that it can be performed
in the background, as nothing on the current page should depend on what we prefetch for the next
page. While Tanstack, SWR and RTK Query all provide a custom method for prefetching data,
Apollo and URQL simply has you performing a manual request through the client directly.

7.7.2 Pagination

As discussed in section 2.13, pagination is a common data fetching pattern. For this reason, most
server state management libraries aim to simplify and optimize pagination by providing built-in
support for it. In this section, we will discuss the general concepts and strategies used by these
libraries to handle pagination.

When performing a request for paginated data, it is necessary to specify what part of the data to
retrieve, or, in some cases, what page. This is achieved by including special pagination parameters,
such as page number, limit, offset, or cursor, that specify exactly what data you want. The
pagination parameters are included in the query parameters along with other relevant parameters.
Server state management libraries provide mechanisms to update the pagination parameters, such
as the page number or cursor, for example when a user clicks on the next page in the user interface.
Upon updating the pagination parameters, the library will trigger a new fetch request, fetch the
next set of data, and update the user interface accordingly. This ensures a seamless user experience
while navigating through the paginated data.

Different combinations of pagination parameters will result in different cache entries. In some cases,
you may not want to have different cache entries for different pages, but keep all the data together.
This may be relevant when showing more than one page at a time, for example when implementing
an infinitely scrolling list, like a Facebook feed. For such cases, regular query hooks will not suffice,
as they will create new cache entries for all different pagination parameters. Instead of loading
a new page, you want to load more data. The server state management libraries often provides
custom hooks that handle this kind of pagination, or enable the specification of how results from
requests with different pagination parameters should be merged together.

7

It is worth noting that pagination is a scenario where both data status and fetch status can provide
valuable information. When navigating to a new page, you might want to still show the previous
data, while also showing an indication that the new page is loading.

In conclusion, server state management libraries effectively handle pagination by utilizing pagin-
ation parameters, cache management, and data and fetch status. When working with pages that
are shown separately, it is often enough for the libraries to provide a seamless way to update the
pagination parameters. However, when working with paginated data that should be loaded into
the same list, things are not that simple. To manage this, the libraries can implement custom
hooks, or enable ways of merging the results. By offering support for various pagination scenarios,
the server state management libraries enable smooth navigation through large datasets, resulting
in an enhanced user experience.

7.7.3 Fetch Policy

When you execute a query, it populates the cache with the response. When you execute the same
query again later, it does not need to perform a new network request, as it can find the data in
the cache. This illustrates a basic usage of the cache, but sometimes this is not the behaviour
you want. Maybe you may want to show the data from the cache, but perform a query in the
background, to verify that it has not become stale. Or the query may be of such a nature that
you do not want to use potentially stale data from the cache at all. This could for example be the
case when querying rapidly changing, real-time data.

This is where fetch policy comes in. We use the term fetch policy to talk about the strategy in use
when fetching data. The last paragraph outlined the most common strategies, and using Apollo
and URQL’s terminology, we call these strategies cache-first, cache-and-network and network-only.
While Apollo and URQL has abstracted these options into predefined categories, the other libraries
lets you configure the fetch policy using various timers for when cached data is to be considered
stale.

7.7.4 Middleware

Middleware is a powerful mechanism used to add custom behaviour to network requests sent from
a server state management library. It enables the interception and modification of these requests
before they reach the server, and the processing of the responses before they are returned to the
library. In addition to modifying requests, middlewares can be used to perform side effects, such
as logging. Typically, middlewares are composed in chains of middlewares that are executed in a
sequential manner. Therefore, a singular middleware in this chain often has a singular focus or
purpose, and a collection of middlewares can be chained in order to achieve advanced behaviour.

Similar to organization of queries as discussed in section 7.4.2, middlewares are centralized. There-
fore, middlewares are especially useful in situations where there is a need to incorporate custom
behaviour for potentially all requests. Some examples of such features are user authentication and
retrying failed requests. When it comes to user authentication, a middleware can be utilized to
initiate the process of refreshing an access token if the server returns an unauthorized message.
Moreover, retry behaviour as described in section 2.11.1 can be implemented using middlewares.
In the event of a request failure, a retry middleware will initiate a retry of the same request, given
that the maximum number of retries has not been reached. Retry is an example of a feature
that can be useful to apply to many requests in an application, making it an ideal use-case for a
middleware.

78

7.7.5 Offline Mode

Most applications require an active network connection in order to communicate with various
servers. When an application has an active network connection, we refer to the application as
being in online mode. On the other hand, a client without an active network connection is referred
to as being offfine. If an application supports offline mode, users are empowered to perform certain
operations even though there is no active network connection, as discussed in section 2.11.2.

In online mode, results from a successful query is stored in the cache. The result from the last
query can still be present in the cache when the client transitions from online mode to offline mode,
enabling the user to still view data that was fetched the last time it was online. Furthermore, some
mutations may also be performed while using offline mode. For example, in a Facebook chat app,
a user is able to send a message even though there is no active network connection. Whenever the
user’s network connection is restored, the message is sent as a network request to the server. As
shown, both queries and mutations can employed while in offline mode. However, it is important
to consider that not all operations are suitable to implement in offline mode. For example, when
placing a bid on a property, it is crucial to ensure that the mutation has been successfully processed
on the server.

Server state in the cache is stored in a temporary storage. To elaborate further, server state
management libraries utilize an in-memory cache, which is stored in a device’s Random Access
Memory (RAM). As discussed in section 2.10, one feature of an in-memory cache is its fast retrieval
speed. Because of its nature as a temporary storage, in-memory cache is deleted whenever the
corresponding application stops consuming the data.

A temporary storage stores data only for a limited amount of time. For this reason, an application
fully utilizing offline mode may also store cached server state in a permanent storage, in order
to keep data across sessions or reboots. For example, web applications may persist cached data
between sessions by utilizing browser-based WebStorage [63].

7.8 Summary

In this chapter we have presented a general theory of server state management, based upon the
server state management libraries described in chapter 5. We started by examining the type of
Server API the server state management libraries were aimed at, making a distinction between
general and specialized libraries. General libraries are flexible enough to be used with most APIs,
while specialized libraries tailor their experience toward a specific type of API. They may be less
flexible, but often comes with more specific features. We moved on to categorize the different
Operations a server state management library could perform when communicating with a server.
Briefly stated, queries ask for data, mutations make modifications to data, and subscriptions listens
to real-time-changes.

Cache is one of the major areas of server state management, and a substantial portion of the
theory is dedicated to exploring it. An important concept is cache keys, being the identifier of a
cache entry, containing the data in the cache. To cache queries, a query is identified by a query
key, which is then used as its cache key. This is the basic mechanism of the most basic type of
cache, which we call query cache. A more advanced form of caching can be achieved by utilizing
a normalized cache, involving the automatic normalization of the data. Here, the queries are still
cached using their query keys, but the individual entities of a query are cached separately. Entities
are identified with entity keys, which are used as their corresponding cache key. The normalization
approach is mostly used in specialized libraries, as its complexities can be more easily addressed
when the data structure is known.

The caching strategy also has consequences for the invalidation of data in the cache. Using query
cache the developer is responsible for invalidating certain queries when appropriate, to perform a
re-fetch. However, using normalized cache, it is possible to avoid much of the invalidation, with
the library automatically modifying relevant entities in the cache upon mutations. However, in

79

some cases a normalized cache demands more advanced forms of invalidation, specifically regarding
relations in lists, which requires manual cache modifications.

Moving on from the cache, we looked at the Organization of Queries, specifically whether
the queries are defined in one, centralized location, or rather decentralized, in multiple different
locations. Asynchronous Metadata is metadata on the status of a request. We divide it in two,
one part being data status, giving information whether the data is loading or present, and fetch
status, indicating whether or not a request is currently underway. We briefly mention how some
server state management libraries offers Integrated Client State, which allows the management
of client state within the same library as server state. We finish of the theory be going through some
central concepts to server state management, that are considered to be standard as a part of a server
state management library. This include the option of prefetching data, ways of efficiently handling
pagination, configuring the fetch policy strategy to use when fetching data, how middleware can
be used to enhance the features of a library, and lastly, how offline mode can enable using the
application without a network connection.

80

Chapter 8

Verification

Chapter 6 and 7 presented our generated theories of client and server state management, making
those chapters our attempt at answering RQ1. In this chapter, we turn our attention to the
verification of these theories. The theories are applied to different scenarios to evaluate their prac-
tical usefulness, thereby addressing our second research question, RQ2: “What are the potential
scenarios where a generalized theory of state management can be employed, and how might these
enhance understanding and practice in this field?”

Firstly, the theories are utilized to categorize and generate an overview of the different state man-
agement libraries used in their generation, as well as two libraries that were not present in the
original set. This demonstrates a practical scenario utilizing our theories, and verifying their
extendibility to other libraries. Next, the theories are applied to a typical real-world scenario,
modelling state management in a project management tool. This illustrates how our theories can
give developers a shared understanding of concepts and methods, enabling collaborative reasoning
about state modelling that remains applicable across various state management libraries. Lastly,
we explore how the theory of client state management can be utilized to gain an enhanced un-
derstanding on the field of server state management. In other words, the theory of client state
management is used to discuss server state management. This demonstrates the interplay between
the two theories of state management, and shows their versatility.

Through these verification exercises, we hope to demonstrate the value and effectiveness of our
theories as tools for enhancing understanding, discussing, and reasoning about topics related to
state management, effectively answering RQ2.

8.1 Categorizing State Management Libraries

The process of generating our theories involved a comprehensive review of various state manage-
ment libraries. In other words: the generalized theories were synthesized from specific libraries.
Therefore, a logical first step in validating the theories is to verify that they accurately describe the
libraries used as basis for their construction. This section will leverage our theories to categorize
and catalog the different state management libraries that contributed to their formulation. This ap-
proach also demonstrates the theories’ practical utility in understanding diverse state management
libraries.

As an extra step of verification, the categorization include two libraries that were not part of the
original list of libraries: a client state management library called Effector [64], and a server state
management library called Relay [49]. This is to evaluate the applicability and extendibility of our
theories to libraries beyond those from which it was initially derived. These new library additions
will appear at the bottom of their respective tables.

81

8.1.1 Client State Management Libraries

Table 8.1 shows all client state management libraries used when generating our theory of client
state management, in addition to the Effector library, categorized according to this theory. Not
all categories of our theory are relevant when categorizing the libraries, and as such, state type
and derived state are omitted from the table. State type is used to categorize state itself, and
thus does not significantly differentiate between the libraries. Even though server state could have
been included, we chose not to, as it is extensively covered in its own theory. Derived state is not
included as its own category, because the usage of derived atoms are implied from an atomic state
composition model, and derived selector function are included as a form of state selection.

Library State Reach State Composition Model State Selection State Modification
LOCAL IMMUTABLE
React Core ATOMIC
GLOBAL INSIDE REACT LOCAL MODIFICATION LOGIC
SELECTOR FUNCTION IMMUTABLE
Redux Toolkit GLOBAL OUTSIDE REACT SINGLE TREE
DERIVED SELECTOR FUNCTION GLOBAL MODIFICATION LOGIC
LOCAL MUTABLE
MobX FRAGMENTED STORE ACCESS BASED
GLOBAL OUTSIDE REACT GLOBAL MODIFICATION LOGIC
LOCAL IMMUTABLE
XState FRAGMENTED STORE DERIVED SELECTOR FUNCTION
GLOBAL OUTSIDE REACT GLOBAL MODIFICATION LOGIC
SINGLE TREE SELECTOR FUNCTION IMMUTABLE
Zustand GLOBAL OUTSIDE REACT
FRAGMENTED STORE DERIVED SELECTOR FUNCTION GLOBAL MODIFICATION LOGIC
IMMUTABLE
Recoil GLOBAL INSIDE REACT ATOMIC ATOMIC
LOCAL MODIFICATION LOGIC
. IMMUTABLE
Jotai GLOBAL INSIDE REACT ATOMIC ATOMIC
LOCAL MODIFICATION LOGIC
SELECTOR FUNCTION IMMUTABLE
ELf GLOBAL OUTSIDE REACT FRAGMENTED STORE
DERIVED SELECTOR FUNCTION GLOBAL MODIFICATION LOGIC
MUTABLE
valtio GLOBAL OUTSIDE REACT ATOMIC ACCESS BASED
LOCAL MODIFICATION LOGIC
SELECTOR FUNCTION IMMUTABLE
Effector GLOBAL OUTSIDE REACT FRAGMENTED STORE

DERIVED SELECTOR FUNCTION GLOBAL MODIFICATION LOGIC

Table 8.1: Overview of the client state management libraries utilized to gener-
ate our theory of client state management, in addition to the Effector library.
The libraries are categorized using our theory of client state management.

Categorizing the libraries can be challenging, as many libraries are designed to be highly flexible
and adaptable, making them hard to pin down into rigid categories. For example, when it comes to
State Composition Model, Zustand gives first class support for a fragmented store model, while
still facilitating for a single tree model. Consequently, our categories are not mutually exclusive,
and Zustand is listed as both single tree and fragmented store.

It is also crucial to mention that our categorizations are primarily based on the intended use of
the libraries, not on all possible ways of using it. Most libraries could technically be manipulated
to fit most categories. For example, Jotai, traditionally an atomic library, theoretically allows you
to put all state inside one giant atom, making it utilize a single tree model. However, categorizing
based on every potential usage would lead to a classification that is less meaningful and practical.
Therefore, our categorization represents the most fitting categories when using the libraries as they
are primarily intended to be used.

The final entry in table 8.1 introduces the Effector client state management library. This library
was not included in the original collection used to develop the theory, thereby serving as a test of
our theory’s extendibility. It was categorized by conducting a brief review of its documentation.
Several of Effector’s characteristics easily align with the categories of our theory: it has a global
State Reach outside React, and employs selector functions that can also function as derived
selector functions. In terms of State Modification it leverages immutable updates and global
modification logic.

82

Effector’s State Composition Model proved to be less straightforward. As mentioned previously,
most libraries can be adapted to use most of the composition models. This can make the model
difficult to pinpoint, as an effort has to be made to discover the intended usage from the library
documentation. For example, Effector allows you to define state at a granular level, which could
potentially be employed to implement an atomic model. Nonetheless, as depicted in table 8.1, we
opted to categorize it as a fragmented store. This classification is due to its other library features
that facilitate building state beyond just atoms, such as the aforementioned selector functions.

8.1.2 Server State Management Libraries

Table 8.2 presents all the server state management libraries used in generating our theory of server
state management, in addition to the Relay library, categorized using this theory. However, as was
the case with the client state management library categorization, we have excluded certain cat-
egories from this classification. Operations is a category describing the different types of requests
a server state management library can execute, and is not relevant to the library categorization.
Similarly, we have excluded Asynchronous Metadata, along with the various server state fea-
tures covered in section 7.7. These are all features supported in various ways by the libraries.
Including them in our categorization would necessitate a detailed comparison of their respective
implementations, a level of granularity beyond the scope of our theories. Hence, we have chosen
to omit these categories as well.

Library Server API Cache Organization of Queries Integrated Client State

Tanstack Query GENERAL QUERY CACHE DECENTRALIZED NO
RTK Query GENERAL QUERY CACHE CENTRALIZED YES
SWR GENERAL QUERY CACHE DECENTRALIZED NO

Apollo Client SPECIALIZED NORMALIZED CACHE DECENTRALIZED YES

QUERY CACHE
URQL SPECIALIZED DECENTRALIZED NO
NORMALIZED CACHE

Relay SPECIALIZED NORMALIZED CACHE DECENTRALIZED YES

Table 8.2: Overview of the server state management libraries utilized to gen-
erate our theory of server state management, in addition to the Relay library.
The libraries are categorized using our theory of server state management.

The last library listed in the table is Relay, a server state management library not included in
the original libraries used to generate the theory. Its categorization was derived by a brief review
of its documentation. In contrast to the categorization of Effector in the client state libraries,
Relay was relatively straightforward to categorize using our server state management theory. It is
a specialized library, specifically tailored for a GraphQL API, just like Apollo Client and URQL. It
utilizes a normalized cache, employs a decentralized organization of queries, and offers an integrated
approach to client state.

It should be observed that Relay is categorized identically to Apollo Client, just like Tanstack Query
is to SWR, which raises interesting considerations. It might indicate that our theory should be
expanded to include categories that manage to differentiate between such libraries more effectively.
Alternatively, the identical categorization might just validate the similarity of their fundamental
models. It is worth noting, however, that despite identical categorization, each library’s specific
implementation details and functionalities still vary significantly. Rather than negating the indi-
viduality of each library, our theory provides a framework to understand the patterns and strategies
used across the various state management libraries.

83

8.1.3 Evaluation

This section applied our theories in order to categorize the state management libraries from which
they were derived. Even though not all concepts from the theories are relevant for such a cat-
egorization, we successfully managed to classify all libraries, which can be seen in table 8.1 and
table 8.2. In addition, we also extended the categorization by including two libraries that were not
part of the original set, demonstrating the extendibility of our theories.

The categorization of the client state management libraries presented some challenges when classify-
ing the State Composition Model, particularly in the case of Effector. The exercise highlighted
a possible weakness in our theory: this category might be too vague. The conceptual distinction
between an atomic and a fragmented store composition model is relatively clear, yet, in practice
these differences become blurred. In theory, atoms are indivisible units, the smallest unit of state.
However, atomic libraries often lets you store large objects. Questions arise concerning how large
atoms must be before they qualify as fragmented stores, and whether it is the size of the stored
object alone that determines this categorization. To enhance the precision of this category, it could
be beneficial to identify distinct features or characteristics that must be present before classifying
something as a fragmented store as opposed to an atom. Although we managed to categorize
Effector by considering the overall features of the library, our current theory does not sufficiently
address the distinction between an atomic and a fragmented store.

One observation from the categorization of the server state management libraries was that the
theory might lack sufficient categories to differentiate between certain libraries. Relay and Apollo
Client, as well as Tanstack Query and SWR, were identically categorized. This similarity might
indicate a need for additional categories within our theory to better distinguish between such
libraries. However, it is important to remember that our theory strives for broad generalizations,
and does not negate the individual strengths and nuances of each library. Rather, it attempts
to provide a framework to understand common patterns and strategies across the various state
management libraries.

In conclusion, applying the theories as a framework for categorizing different state management
libraries proved to be an insightful scenario, where our theories were effectively employed. This not
only enabled us to summarize the libraries in two concise tables, as shown in table 8.1 and table 8.2,
but also to highlight areas of our theories that could benefit from further refinement. By providing
an enhanced understanding of the different libraries, we have addressed RQ2. Simultaneously,
the exercise helped identify potential weak-spots within our theories, paving the way for further
refinement and improvement.

8.2 State Management in a Project Management Tool

This section models state management in a typical real-world web application: a project manage-
ment tool. This demonstrates how a generalized theory of state management can be employed
in order to model and reason about state management in real-world applications. Our example
is a project management tool that incorporates task management similar to a Kanban board. A
prototype of this tool, aptly named CannyBan is shown in figure 8.1. In the menu to the right, a
list of boards are shown, including the selected board named WebApp. In the main content of the
screen, a board for managing issues are shown. The board includes the stages: backlog, in progress
and done. Each stage comprises a list of issues, including a title, sprint and relevant domains such
as front-end or back-end. Core features of this tool is to create, edit and delete issues, and to move
them between the different stages. At the bottom, a line chart visualizes the distribution of issues
in the various stages. Furthermore, CannyBan offers functionalities such as the ability to select
an application theme, collapse stages (visually minimize to save space), and filter issues based on
selected domains.

Given the distinct division between client state management and server state management through-
out this thesis, the state modelling of CannyBan is no exception. Hence, section 8.2.1 contains
state modelling of CannyBan using only the theory of client state management, as defined in

84

CannyBan a2

BOARDS

WebApp Y DOMAIN
Database
Cloud Backlog 2 Qs 10 < In Progress 1 Qs 1 < Done O/ 1 <
WebApp
Mobtle app Add authentication e Design homepage pes Optimize queries e
=] =] a
Create settings e
a
. . N = TOTAL 4

Figure 8.1: Prototype of a project management tool called CannyBan, which
incorporates task management similar to a Kanban board. The tool demon-
strates core features such as issue creation, editing, deletion, and movement
between stages. Additionally, it offers functionalities like stage collapsing, and
issue filtering based on domains.

chapter 6. Subsequently, in section 8.2.2 we expand our model to incorporate elements of server
state management as defined in chapter 7. However, all state will not be moved to the server,
making this a demonstration of a more complex scenario where state is maintained both on the
client and the server. This illustrates the usefulness of utilizing a combination of our theories, and
how these can adapt and apply to different state management setups within the same application.

8.2.1 Client State Only

We begin by employing the theory of client state management to model the state management
of CannyBan. The categories defined in the theory are examined one by one in the context
of CannyBan. Before we delve into each category, it is worth noting that the choice of state
composition model will have a significant impact on following categories, such as state selection,
derivation and modification. Our thesis does not cover the question of when to use which model,
and while we could try to initiate a discussion on the matter, it is a complex question that would
rather warrant its own research and thesis to be answered. Consequently, while we utilize a single
tree composition model for this exercise, this is not an attempt at marking this as superior to the
other models for this application.

Another note is that while the focus of this exercise is on client state, and thus does not include any
server state, data can still be persisted to various storages. The ability to retrieve and populate
the client state with data from a persisted store is something that is often offered by the client
state management libraries, or you could alternatively implement it yourself. Examples of such
persisted stores include WebStorage [63], local databases or even remote servers. However, the
storage location of the state is irrelevant for this modelling exercise, which primarily focuses on
articulating state management within the client. Consequently, the client state modeling approach
for CannyBan remains consistent regardless of whether or where the client state is persisted.

85

State Types

Figure 8.2 illustrates the states in the CannyBan application. The figure distinguishes between
the different state types qualitative, quantitative, business and presentation. In this example,
qualitative state always appears in pair with presentation state, and quantitative state pairs with
business state. Nonetheless, it should be noted that this pattern is not given in all cases.

frontend

[(LLEYD)]

backend

filter

backlog

collapsed

done

dark

settings @

light

title WebApp

Add auth

backlog

boards

Create
settings

Design

stages inProgress N

Qualitative & Presentation

done Optimize
queries

Quantitative & Business

Figure 8.2: Overview of the state in CannyBan, composed using the single tree
composition model. The filter and settings nodes contain only qualitative &
presentation state, represented by the red nodes. The board node consist of
only quantitative & business state, recognized as blue nodes.

86

The list of issues serves as an example of business state because it is an essential part of the data
driving the application. This is relevant for all versions of the application, be it mobile or web. On
the other hand, an example of presentation state is whether any of the stages are collapsed. When
viewing CannyBan on a desktop there might be enough space to display all stages, but when using
CannyBan on a mobile, it might be useful to collapse some columns due to a reduced screen size.
The collapsed state, although not part of the driving data in the application, enhances the view
layer in a specific implementation of CannyBan, making it an example of a presentation state.

The title of an issue is preferably a non-empty, arbitrary string. Due to the title being infinite in
the sense that it can be any combination of characters, title is an example of a quantitative state.
The theme state do not have an infinite number of values, as CannyBan only supports a limited
number of themes. For this reason, the theme state is categorized as a qualitative state since it
supports a finite number of options, including dark, light, and system.

State Reach

CannyBan will most likely consist of numerous components organized in a hierarchical structure
within a component tree. State within the application might need to be shared with components
far away from each other in the component tree. This makes it advantageous to utilize state with
a global reach, facilitating the sharing of state between multiple components. For example, the
state containing the list of issues in a particular stage is required in at least three components: the
component responsible for displaying the actual issues, the component displaying the stage header
including the total number of issues within the stage, and the line chart showing distribution of
issues in stages. Moreover, expanding CannyBan with new features might also increase the distance
between the components sharing the same state. This further emphasizes the benefits of employing
a global state. However, the distinction between whether the state should be global inside React
or global outside React is not significant for this modelling exercise.

Employing global state does not imply that there there is no need for local state. There are
scenarios where local state is useful in CannyBan, such as a state for storing whether the settings
dialog is open or not. However, managing local state is trivial compared to managing global state
with its complexities and possibilities. For this reason, a discussion of local state in CannyBan is
omitted.

State Composition Model

In CannyBan, the state is modelled using the single tree composition model. This involves organ-
izing the state in a tree structure with a root node on top of the tree, where every child node is
accessible from the root node by traversing its edges. As shown in figure 8.2, state is the root
node, and its direct children are filter, settings, and boards. By continuing a tree traversal, sub-
sequent children nodes can be accessed. Figure 8.3 shows a less detailed version of the state tree
in figure 8.2, rotated to highlight its resemblance to a tree structure.

Figure 8.3: Illustrating the state in CannyBan resembling a tree structure.

87

State Selection

State selection enable components to listen to only the state that they require. Due to the
CannyBan application employing a single tree composition model, this is achieved using selector
functions. Figure 8.4 illustrates how a selector function can be utilized to select all the issues
currently present in the backlog stage. Such a selector function traverses the path from the state
node until it reaches the list of issues in the backlog, and outputs the issues in the backlog stage.
Additional examples of state selection that could utilize selector functions include selection of the
board’s title, the available stages, and the current theme.

In addition to employing regular state, CannyBan also benefits from utilizing derived state, which
can be achieved through the use of derived selector functions. Figure 8.1 shows that each stage
header includes a numerical representation indicating the number of issues within that particular
stage. This number can be derived from the state that contains the list of issues specific to each
respective stage. Assuming we have a selector function that selects the list of issues in a stage,
this can be used as input to a derived selector function that produce an output representing the
number of issues in each state. Figure 8.4 illustrates this, where the number of issues state is
derived from the list of issues in the backlog. Furthermore, derived state could be employed in the
line chart located at the bottom of figure 8.1, representing the distribution of issues between the
stages. The line chart could use corresponding derived states for each particular stage to create a
visual representation of the distribution.

settings systen

WebApp

number of

boards backlog issues

—_—
\

{ Path to state

Design

inProgress fosenage

Derived state

Figure 8.4: A derived selector function is utilized to obtain the number of issues
currently in the backlog stage. A selector function traverses from the root node
state to the list of issues in the backlog. The selector function is inputted to
the derived selector function, producing the derived number of issues.

88

State Modification

As discussed in section 8.2.1, CannyBan employs state with a global reach. Because of this, an
appropriate approach for modifying state is to use global modification logic. Consequently, the
modification logic for modifying the global state is co-located with the global state itself. The
components are not responsible for how the global state is modified, but they are empowered to
initiate certain modifications on the global state.

Figure 8.5 illustrates the data flow of a global modification logic which occurs when an issue is
moved from one stage to another in CannyBan. If the issue with the title “Add authentication”
is moved from the backlog stage to the in progress stage, the respective component initiates a
modification on the global state for moving the issue across those particular stages. It should
be emphasized that the component itself does not know how the global state is modified, it only
initiates a modification. Additionally, the global modification logic will be performed on the global
state. This modification may result in a change of the state, and if this is the case, all components
that has selected that particular state will be notified.

Component Tree Client State Manager

N
N N\

Figure 8.5: The figure illustrates a scenario where the issue titled “Add au-
thentication” is moved from the backlog stage into the in progress stage. The
respective component initiates a movelssue modification on the global state.
The modification is performed on the global state and the client state manager
notifies all components that have selected the affected state.

A quick note should be made on some of the simplifications of figure 8.5. In the component
tree, all stages use the JSX syntax for React components, such as <Backlog />, <InProgress />
and <Done />. In an actual implementation, these would not be static components, but rather
dynamically rendered with a generic <Stage /> component. For example, the number of stages
and their titles may change, making static components like this a fragile approach. The reason
for this simplification in the figure is to save space, make the figure more readable, and enable the
reader to easily differentiate between the various components. A similar simplification is applied
to the issues components, such as <AddAuth /> and <CreateSettings />.

Summary

The modelling of the client state management in CannyBan is explored in this section, facilit-
ated by the principles of the generalized theory of client state management, including state types,
reach, composition model, selection, derivation and modification. CannyBan adopts a single tree
composition model, which impacts subsequent state management aspects due to the way the state
is composed. In our modelling exercise of CannyBan, we demonstrated the advantages of incor-
porating both qualitative & presentation state, such as application theme, as well as quantitative
& presentation state such as the list of issues. The use of selector functions and derived selector

89

functions is presented as approaches for selecting a subset of the global state and utilizing derived
state, such as displaying the number of issues in the stage headers. Global modification logic enable
modifications to the global state, with components initiating these modifications, without directly
controlling them.

After exploring the client-only state model of CannyBan, we now turn our attention to an expanded
scenario that integrates server state, bringing an additional layer of complexity and capability to
our model.

8.2.2 Client and Server State

It is rather limited what we can do in an application such as CannyBan without introducing server
state. For example, in its current form, it would be difficult to use CannyBan cooperatively by
more than one user at a time, because different users would be using different, local copies of
the data. In this section, CannyBan is upgraded to CannyBan 2, incorporating server state.
Thus, the theory of server state management will be employed, and each category of the theory is
explored in the context of CannyBan 2.

However, it is important to note that CannyBan 2 will still preserve some of its client state. This
is mainly its presentation state, as seen in figure 8.2. Figure 8.6 shows the updated state tree,
containing only the client state of CannyBan 2. All business state will be moved to the server,
making sure all users work with the same driving data.

frontend

domain

backend

filter

backlog

collapsed inProgress

settings systen

Figure 8.6: Overview of the client state in CannyBan 2. This encompasses the
application theme, filtered domains and collapsed stages.

Operations

The operations in use in CannyBan 2 are queries and mutations. Queries are essential to the
application, as they enable it to read data from the server. Examples of queries in CannyBan 2 could
be getBoards, returning a list of all the boards the user has access to, and getBoard(WebApp),
returning the data for the WebApp-board. Modification of state, for example moving an issue
from one stage to the next, is enabled by mutations. Additional examples of mutations might be
to create, edit or delete issues. CannyBan 2 does not incorporate subscriptions at the moment.
Subscriptions enable you to listen to real-time data, which is not yet essential for the functionality
of CannyBan. In a potential future version, subscriptions can facilitate the introduction of features
like a live feed or displaying real-time activity. For this exercise though, CannyBan 2 will do with
just queries and mutations.

90

Cache

CannyBan 2 is rather limited in scope and complexity, and for this example we model it using
query cache, rather than a normalized cache. This means that each query will be stored with all
its data in the cache, under its own cache entry. An example of this is shown in figure 8.7, where
the cache entries for the two queries getBoards and getBoard(WebApp) are illustrated. In this
example, getBoards and getBoard (WebApp) are the query keys of the queries, and they are used
as cache keys to identify their respective cache entries. The response data of a query is stored as
cache data, inside its corresponding cache entry.

WebApp

Add auth

backlog

Create
440 H

s Desi
stages inProgress o

Optimize
queries

..-._....-._.._1'HHHH"
Cache Data
Database

Cache Entry

Figure 8.7: Demonstrates the use of a query cache in CannyBan 2. The figure
showcases the cache entries for the getBoards and getBoard(WebApp) queries,
alongside its corresponding cache data.

When CannyBan 2 performs a mutation, for example moving an issue from a stage to another, the
data inside the cache entry of getBoard (WebApp) will be stale. To update the stale data, mutations
in CannyBan 2 will mark affected queries as invalidated. Thus, the mutation that moves an issue,
will trigger a re-fetch of the getBoard (WebApp)-query.

It is important to note that the queries and resulting cache entries of CannyBan 2 does not need
to resemble figure 8.7. For example, the getBoard (WebApp) contains a big chunk of the state in
this model, and it might be reasonable to split it into multiple smaller queries. One query could

91

fetch the associated stages of a board, while another fetch the associated issues. This could reduce
the probability that a mutation invalidates a specific query, as the more data each query contains,
the higher the chances are that some of the data will be invalidated. Even though you utilize a
query cache, you are still free to decide whether you want big queries, containing lots of data, or
multiple smaller, more specific queries.

Query Organization

We use a decentralized approach to the query organization of CannyBan 2. This entails that
the different queries are defined separately, and not in a centralized location. Figure 8.8 shows
how this might look in a component tree. The useGetBoard(WebApp) and useGetBoards() query
hooks are defined right next to the components that uses them. Because there are no constraints
on where to define the queries in a decentralized approach, we could also have chosen to define all
the query hooks in a centralized location if we wanted.

./-. useGetBoard(WebApp)
board

- /N

boards

useGetBoards()

Figure 8.8: Illustration of the decentralized query organization approach in
CannyBan 2. The figure showcases the location of query hooks, such as
useGetBoard (WebApp) and useGetBoards (), adjacent to the components that
utilize them within the component tree.

Asynchronous Metadata

The asynchronous metadata of the queries in CannyBan 2 is used to show appropriate feedback
to the user when data is loading. For this purpose, it is primarily data status that is utilized.
An example of how the sidebar component of CannyBan 2 utilizes data status to determine what
to show to the user is shown in figure 8.9. When loading, a so-called “skeleton” of the data is
shown, indicating that something will appear here when it is done loading. If the loading completes
successfully, the sidebar is shown with the fetched links to corresponding boards. However, it might
happen that an error occurs while loading, and in that case, CannyBan 2 shows an appropriate
message to notify the user.

Another appropriate use case for data status might be in the <Board /> component, which uses
the getBoard (WebApp) query. During the loading state, a skeleton could be shown, if an error
occurs, an error message should be presented, and in the case of a successful query, the board is
displayed. Any other components using server state could also benefit from similar utilization of
data status. Currently, CannyBan 2 does not have a need for indicating that a background re-fetch
is happening, but if it did, the fetch status could be employed to achieve this.

92

loading success error

BOARDS BOARDS

BOARDS

Database

> Cloud &—>

WebApp

Error loading boards

Mobile app

Figure 8.9: Demonstrates how CannyBan 2 utilizes data status in its sidebar
component to provide appropriate user feedback during the asynchronous oper-
ation of fetching boards. During the loading state, a loading skeleton is shown,
in success state, the boards are displayed, and in the occurrence of an error,
an error symbol alongside an appropriate feedback message is presented.

Client State Integration

As mentioned when introducing CannyBan 2, the application still has some client state along with
its server state. Because CannyBan 2 is a direct upgrade of the original CannyBan, which only used
client state, we imagine that it can just continue using the original client state manager to manage
its client state. Consequently, we do not have to transition the client state into an integrated client
state solutions of one of the server state libraries.

The consequences of not using an integrated client state approach, is that whenever a compon-
ent needs a combination of server and client state, it has to take care of combining them itself.
Where an integrated solution might allow you to create derived state combining client state and
server state, the approach CannyBan 2 adopts is illustrated in figure 8.10. The <Board /> com-
ponent needs to combine the server state from useGetBoard(WebApp) and the client state from
selectCollapsedStages() to decide which of its stages should or should not be collapsed. To
achieve this, the component gets both of these states, before using their values to derive stage
data, including information on whether or not it should be collapsed. This can then be passed to
the appropriate <Stage />-component.

This example might be a bit convoluted, and in practice the selectCollapsedStages() would
probably just be used in the <Stage /> component itself. However, it was included to make a
point of how the server and client state would be combined in a scenario that does not utilize an
integrated approach to client state.

Summary

CannyBan has been upgraded to version 2, and this section explored the server state modelling
of the application, using the generalized theory of server state. CannyBan 2 uses queries to read
data from a server, and mutations ta make modifications to its data. At its current version it was
decided that it did not need any real-time data through the use of subscriptions. CannyBan 2 uses
a query cache, and all data from a query is stored inside its own cache entry. The query keys are
used as cache keys for the cache entries. When a mutation causes the data inside a cache entry to
become stale, the mutation marks the affected queries as invalidated, triggering a re-fetch of the
relevant query.

The organization of queries is done in a decentralized approach, allowing queries to be defined sep-
arately, for example along with the components that uses them. The application uses asynchronous
metadata to provide user feedback during data loading, utilizing data status. For example, in the
sidebar, a “skeleton” of the data is displayed while loading, a notification of an error in the case

93

SERVER STATE

useGetBoard(WebApp)

CLIENT STATE

selectCollapsedStages()

Figure 8.10: Illustrates how CannyBan 2 combines server and client state
in the <Board /> component. By utilizing both the server state ob-
tained from useGetBoard(WebApp) and the client state retrieved from
selectCollapsedStages(), the component determines the collapsed status
of each stage.

of a loading failure, and the links to the boards are displayed when it has successfully received its
data. Despite the inclusion of server state, CannyBan 2 continues to utilize some client state. This
is not transitioned into an integrated solution, but is still stored in the client state manager of the
original CannyBan. Consequently, components that need to combine server state and client state
must do the combination themselves inside the component.

8.2.3 Evaluation

The aim of this chapter is to explore the practical applicability of our theories of state management
in real-world scenarios, thereby addressing RQ2. The theories have in this section been used to
discuss the modelling of CannyBan, an example of a project management tool. The first modelling
exercise, involving only client state, demonstrated a clear and practical utilization of our theory.
CannyBan’s state was modelled using the key concepts of state types, reach, composition model,
selection, derivation, and modification. The modeling exercise facilitated an understanding of the
application state, without specifying a specific library to use for the implementation. It thus
highlights how the theory can be utilized to reason about client state management, independent
of a specific state management library.

In the second modelling exercise, CannyBan was extended to utilize server state, demonstrating
how our theories can adapt and be applied to more complex scenarios, including both client and
server state. Key concepts from our theory was discussed, like operations, cache, query organization,
asynchronous metadata, and client state integration. The theory simplified the process of gaining
a mental model of the server state management, and could facilitate discussions of topics like how
large the queries should be, or the consequences of dividing client and server state.

A significant limitation of our theories, however, is that they do not currently offer any guidance
with regards to the ideal modelling of an application. While our theory can be used to claim
that CannyBan 2 uses a single tree composition model and a query cache, it cannot be used to
claim that this was the optimal choice for this specific application. Thus, our theories can be said
to function more as a tool for describing rather than designing. That being said, possessing a

94

descriptive language is an essential component of designing, providing the vocabulary to articulate
and evaluate. Hence, despite the limitation, our theories still hold considerable value for modelling
and designing applications.

Overall, these modelling exercises have demonstrated the utility of our theories in enhancing under-
standing and facilitating informed discussions about state management in real-world applications.
The versatility of our theories has been demonstrated as they addressed different scenarios: first,
a client state-only application, and then an application leveraging both client and server state.
Despite not providing explicit guidance on the ideal state model for CannyBan, our theories facil-
itated discussions and informed reasoning, which in turn can lead to more optimal decision-making.
Thus, application modelling can be a fitting use-case for our theories, facilitating enhanced under-
standing by providing a descriptive language that promotes discussion and reasoning, potentially
resulting in more optimal design choices.

8.3 Understanding Server State Management through
Client State Management

Server state management is about managing server state. While server state originates from the
server, it is still stored and managed on the client. Therefore, all server state is also client state.
This may be confusing, but remember that the scope of this thesis is the client’s side, and that
server state refers to the state on the client that originates from, and should be kept up to date
with, the server. Thus, server state is state on the client that originates from a server.

We have spent chapter 7 describing what server state management entails. But because server state
is client state, as explained above, managing our server state is a sort of client state management.
This means that we can use our theory of client state management, postulated in chapter 6, to
reason about server state management as well. For example, let us take the topic of State Reach.
Server state is stored in the cache, and the cache should be reachable from the whole application, as
all components that use the same query should reuse the same cache entry. Thus, server state has a
global reach. Whether it is inside or outside React depends on the specific library implementation.

Having established that server state has a global reach, we turn our attention to the State Com-
position Model. When using query caching, we can say that an atomic model is used, where the
cache stores the entire result of a query as a single, indivisible unit. However, when considering
that each of these queries may contain a lot of nested data, it could be considered a fragmented
store, where each query represents one fragmented store. On the other hand, normalized caching
involves breaking the data from the server down into smaller entities before storing it in the cache,
which resembles an atomic composition model. Thus, we have three different ways of managing our
server state: atomic query cache, query cache as fragmented stores and atomic normalized cache.
Each of these three models of server state management will dictate how it is analyzed further,
using the categories of State Selection, Derived State and State Modification.

8.3.1 Atomic Query Cache

The atomic query cache model applies when using query cache, and each query is considered as
an indivisible unit, thus employing the atomic State Composition Model. In many cases it
might be a stretch to think of queries as atoms, as they may contain a lot of nested data. However,
embracing this perspective can simplify how we manage the server state, such as State Selection.
Recall from section 6.5 that State Selection is about selecting only a subset of the state in a store.
However, when utilizing an atomic model, there is no need to perform such selections, because the
atoms themselves already are the smallest piece of state. Consequently, employing an atomic query
cache model, State Selection simply entails using the queries directly.

It is possible to implement Derived State in the form of derived atoms, however, it is worth noting
that none of the libraries utilizing query cache included in this thesis implemented any advanced
form of derived data. A transformation of the data from one cache entry was employed by Tanstack

95

Query and RTK Query, but none offered the functionality of merging different cache entries into
more complex derived state. This could be attributed to the fact that it is not a common use-case
for server state, and could be implemented manually, albeit without render optimization.

Conceptualizing queries as atoms also simplifies the topic of State Modification. Since queries
are considered indivisible units, there is no need to partially modify them. Whenever we perform
a re-fetch, or manually modify state in the cache, the entire cache entry can just be replaced.
This makes it natural to use an immutable approach, where changes are detected by a new object
reference, instead of comparing individual values.

The atomic query cache is a simple, but efficient, approach to server state management. Tanstack
Query, RTK Query, SWR and URQL (with document cache) utilize query cache, and can be used
with the atomic query cache model. Unlike SWR and URQL, Tanstack and RTK Query allow you
to derive data from a query. This can also be used to implement more advanced selector functions,
but for that to be relevant we have to move away from thinking of the queries as atoms, and rather
as their own fragmented stores.

8.3.2 Query Cache as Fragmented Stores

As noted, in many cases it might be a stretch to think of the result of one query as one atom. Query
results may contain much data, and sometimes it would be preferable to think of the data from a
query as a store, rather than an indivisible unit. Thus, the fragmented store State Composition
Model can be utilized.

Using the model of query cache as fragmented stores, we can implement selector functions and
Derived State as derived selector functions, that retrieve and transforms lesser parts of the state
from cache entries. It is important, however, to remember that a key aspect of State Selection is
render optimization. To justify using a selector function instead of just selecting the whole query,
there should be situations where only certain parts of the query are updated, and you want to
re-render only if the part you have selected is updated. This can be the case if the cache selectively
updates only the modified parts of a cache entry during a re-fetch, making the optimizations of
selector functions effective.

It should be noted, here as well as with the atomic query cache model, that no query cache libraries
included in this thesis implement any advanced state derivation. Tanstack Query and RTK Query
allow you to implement the equivalent of derived selector functions for individual queries, but do
not offer the functionality of merging different queries into more complex derivations.

Thinking of queries as fragmented stores rather than indivisible atomic units enables more fine-
grained State Modification. Consequently, it becomes relevant to consider both mutable and
immutable approaches to modification. A possible mutable implementation for the cache is to use
a tracking method similar to Valtio or MobX to monitor accessed fields, while another option is
to leverage immutable state modification and track references. All of the server state management
libraries included in this thesis use an immutable approach to State Modification.

Using the query cache as fragmented stores model is a bit more complicated than atomic query
cache, but also offers more flexibility. You can choose to implement selector functions and derived
selector functions, or choose to utilize a mutable state modification approach, and use an access-
based selection like Valtio or MobX. Tanstack Query and RTK Query can be employed to utilize
this model.

8.3.3 Atomic Normalized Cache

The atomic normalized cache model applies when utilizing a normalized cache. As mentioned,
normalizing the cache entails breaking the data from the server down into entities before stor-
ing them. These entities can be conceptualized as atoms, consequently resembling the atomic
State Composition Model. In contrast to the atomic query cache model, it is not the queries

96

themselves that are considered atoms, but the entities that contrive them.

Queries are stored with references to the atomic entities. In other words, they are compositions of
different atoms, making them a form of State Derivation. It is also possible to implement other
derived atoms that selects atomic entities and performs derivations on these. For example, Apollo
Client allows you to create the equivalent of derived atoms by creating custom local-only fields.
These can read data from other entities in the cache, and perform derivations before returning the
result. Because we utilize the atomic composition model, State Selection just entails selecting
the right atom.

The entities, conceptualized as atoms, can actually contain multiple data fields, and the queries
that select atoms also has to select which of these fields to read. This means that strictly speaking
entities are not indivisible units, and you could argue that it is these fields that should be called
atoms. However, just like it sometimes is reasonable to store an object as an atom in libraries
like Jotai and Recoil, it is reasonable to conceptualize the entity as an atom, as it is the smallest
identifiable unit of a normalized cache. This separates the atomic normalized cache model from
the atomic query cache model, where we treated the atoms as indivisible units.

The possibility of individual fields inside the atoms makes State Modification more nuanced
than the straightforward approach of replacing the entire cache entry of the atomic query cache
model. It must be possible to modify individual fields of an atom. Just like the query cache as
fragmented stores model, we are free to choose an mutable or immutable State Modification
approach. It is feasible to imagine a mutable approach making sense in this case, as the queries
that select which fields to read can work as a dependency array for the fields. When a field is
modified, it can notify the queries that listen to it, which can trigger a re-render. However, both
Apollo Client and URQL opts for the immutable approach.

8.3.4 Evaluation

In this section, the theory of client state management from chapter 6 have been used to analyze
different approaches to server state management as described in chapter 7. By combining the
concept of State Composition Model from client state management and cache type from server
state management, three different models of server state management was identified: atomic query
cache, query cache as fragmented stores, and atomic normalized cache. Each of these server state
management models were analyzed further using the client state management concepts of State
Selection, Derived State, and State Modification.

The analysis allowed us to get a comprehensive understanding of the different models of server
state management, including their strengths and limitations. For example, while the atomic query
cache model is simple and efficient, query cache as fragmented stores offers greater flexibility in
terms of state selection and modification. We were also able to identify areas where some server
state management libraries lacked in features. For example, SWR employs a model resembling
that of atomic query cache, but they do not offer any way of deriving state from queries, which is
an essential feature of an atomic State Composition Model. Thus, our theory enabled us to
identify a potential area of improvement in a respected server state management library.

It is important to acknowledge that while state derivation is a part of our theory of client state
management, it does not necessitate that it should be included in server state management libraries.
Client state management and server state management aims to solve different problems, and even
though server state management must include some client state management, it does not necessarily
need all the advanced features of libraries dedicated to client state management. Such features
should be justified by satisfactory use-cases. In the case of SWR, it might very well be that the
team behind the library has discussed this feature, and concluded with them not seeing enough
significant use-cases to incorporate it into their library. While this may be a good decision that
may be right for SWR, it should not undermine the significance of using our theory to enable a
valuable discussion on the matter.

97

Chapter 9

Conclusion and Further Work

This thesis embarked on an exploration of the field of state management in JavaScript front-end
frameworks, with a specific focus on React. Although state management is a source of difficulties
for developers, it has largely been overlooked in scientific research. There exist a large number
of JavaScript third-party libraries attempting to address this problem, yet a formalized theory
of state management remains missing. Guided by the hypothesis that an implicit general theory
of state management exists within these third-party libraries, this thesis sought to extract and
formulate this theory. Thus, the following research questions were posed:

e RQ1: What are the main concepts and methodologies in the field of state management, and
how can they be formed into a generalized theory?

— RQ1.1: What are the main concepts and methods in client state management

— RQ1.2: What are the main concepts and methods in server state management

e RQ2: What are the potential scenarios where a generalized theory of state management can
be employed, and how might these enhance understanding and practice in this field?

9.1 Conclusion

To answer our research questions, we opted to do a qualitative literature analysis of a set of server
and client state management libraries. From these analyses, we extracted and generalized key
concepts and methodologies, resulting in two theories: a theory of client state management and a
theory of server state management. The formulation of these theories, including the proposed terms
and categories to differentiate and classify state management patterns, directly answers RQ1.

After defining these theories, we applied them to different scenarios, each constructed to demon-
strate practical use-cases. There were three scenarios: categorizing state management libraries
using the theories, modelling state management in a sample application, and using the theory of
client state to gain an enhanced understanding of server state. These applications not only show-
cased the practicality of the theories, but also facilitated more informed discussion on the various
models and libraries, thus effectively answering RQ2.

The aforementioned applications of our theories also served to highlight potential areas for improve-
ment in our theories, thus challenging the completeness of our answer to RQ1. However, given
the demonstrated usefulness of our theories across the different scenarios we conclude that both
RQ1 and RQ2 are sufficiently answered, while the theories still have room for further refinement
and improvement.

98

9.2 Further Work

There are multiple directions of future work that could build upon the work of this thesis. As
mentioned, potential areas of improvement of the theories themselves have been identified through
applying them in practical scenarios. Specifically, work could be done to further remove the
ambiguity from the concept of State Composition Model. As addressed in section 8.1, this
category can be too vague to effectively classify libraries. A more thorough examination of this
part of the theory could result in a more precise category, enhancing the usefulness of the theory.

Another direction for future research could be to expand upon the practicality of our theories by
examining how the different categories can assist in decision-making during application design. In
section 8.2 we discussed and modelled state management in CannyBan, a project management tool.
However, while our theories offered insightful discussion and enhanced understanding of the state
management in CannyBan, it did not offer direct guidance with regards to the design decisions
made. Therefore, a potential area of research is to explore and define the circumstances in which
certain composition models is to prefer over others, such as when to use a single tree model instead
of an atomic model. This type of research could potentially make the area of state management
even more approachable for developers.

Given that our thesis primarily focuses on the JavaScript front-end framework of React, future
work could potentially examine if and how our theories apply to other front-end frameworks, like
Vue, Angular and Svelte. Such explorations might work to further enhance the applicability and
universality of our theories. It is also worth investigating how newer advances and trends in front-
end development, like server-side rendering and React Server Components, might have an impact
on our theories.

While our research was motivated by an overarching frustration among web developers with the
field of state management, this thesis has not made any effort to investigate whether or not this
work actually eases this frustration. Do our theories of state management make the field of state
management more understandable for developers? This could be an exciting question to pursue,
potentially generating more specific feedback on how the theories could be improved.

A last compelling direction for further exploration we would like to propose, is to introduce this
theoretical framework into education and academia. Throughout the course of this thesis, our
understanding of state management in React has been substantially enriched, and we believe many
developers could similarly benefit from a wider understanding on the field of state management.
In particular, newcomers to the field of front-end web development, like students and self-learners,
could find such a structured presentation of state management very useful. This knowledge could
potentially reduce some of the initial frustrations associated with understanding state management.

99

Library Documentations

[1] Meta Platforms, Inc. ‘React - A JavaScript library for building user interfaces’. reactjs.org.
(n.d.), [Online]. Available: https://web.archive.org/web/20221114083752/https://reactjs.org/
(visited on 14th Nov. 2022).

[11] Meta Platforms, Inc. ‘React Docs Beta’. beta.reactjs.org. (n.d.), [Online]. Available: https:
//web.archive.org/web/20221115152433 /https:/ /beta.reactjs.org/ (visited on 15th Nov. 2022).

[40] Meta Platforms, Inc. ‘Recoil’. recoiljs.org. (n.d.), [Online]. Available: https://web.archive.
org/web/20221121215125/https:/ /recoiljs.org/ (visited on 21st Nov. 2022).

[41] Poimandres. ‘Zustand Documentation’. docs.pmnd.rs. (n.d.), [Online]. Available: https://
web . archive . org / web / 20221202010759 / https: / / docs. pmnd . rs / zustand / getting - started /
introduction (visited on 2nd Dec. 2022).

[42] D. Abramov and the Redux documentation authors. ‘Redux’. redux.js.org. (n.d.), [Online].
Available: https://web.archive.org/web/20221119041846 /https://redux.js.org/ (visited on
19th Nov. 2022).

[43] M. Weststrate and the MobX team. ‘MobX’. mobx.js.org. (n.d.), [Online]. Available: https:
/ /web . archive.org /web /20221121172353 / https: / / mobx.js.org /README . html (visited on
21st Nov. 2022).

[44] Stately. ‘XState’. xstate.js.org. (n.d.), [Online]. Available: https://web.archive.org/web /
20221121211233/https:/ /xstate.js.org/ (visited on 21st Nov. 2022).

[45] Poimandres. ‘Jotai’. jotai.org. (n.d.), [Online]. Available: https://web.archive.org/web/
20221121215301 /https://jotai.org/ (visited on 21st Nov. 2022).

[46] Poimandres. ‘Valtio’. valtio.pmnd.rs. (n.d.), [Online]. Available: https://web.archive.org/web/
20221103232506/https://valtio.pmnd.rs/ (visited on 3rd Nov. 2022).

[47] Elf, Inc. ‘Elf’. ngneat.github.io. (n.d.), [Online]. Available: https://web.archive.org/web /
20221208123051/https://ngneat.github.io/elf/ (visited on 8th Dec. 2022).

[48] Apollo Graph Inc. ‘Apollo Client’. apollographgl.com. (n.d.), [Online]. Available: https://
web.archive.org/web/20230327200133 /https: / /www.apollographqgl.com /docs/react/ (visited
on 27th Mar. 2023).

[49] Meta Platforms, Inc. ‘Relay’. relay.dev. (n.d.), [Online]. Available: https://web.archive.org/
web,/20230406013852/https://relay.dev/ (visited on 6th Apr. 2023).

[50] Formidable Labs. ‘URQL documentation’. formidable.com. (n.d.), [Online]. Available: https:
//formidable.com/open-source/urgl/ (visited on 8th Mar. 2023).

[61] T. Linsley. ‘Tanstack Query documentation’. (n.d.), [Online]. Available: https://tanstack.
com/query/latest (visited on 1st Feb. 2023).

[52] D. Abramov and the Redux documentation authors. ‘RTK Query Overview’. redux-toolkit.js.org.
(n.d.), [Online]. Available: https://web.archive.org/web /20230213212832 /https: / / redux-
toolkit.js.org/rtk-query/overview (visited on 13th Feb. 2023).

[63] Vercel Inc. ‘SWR’. swr.vercel.app. (n.d.), [Online]. Available: https://web.archive.org/web/
20230213170753/https:/ /swr.vercel.app/ (visited on 23rd Feb. 2023).

[59] D. Kato. ‘How Valtio Proxy State Works (Vanilla Part)’. blog.axlight.com. (Aug. 2021),

[Online]. Available: https://web.archive.org/web/20221103232754 /https://blog.axlight.com/
posts/how-valtio-proxy-state-works-vanilla-part/ (visited on 3rd Nov. 2022).

100

https://web.archive.org/web/20221114083752/https://reactjs.org/
https://web.archive.org/web/20221115152433/https://beta.reactjs.org/
https://web.archive.org/web/20221115152433/https://beta.reactjs.org/
https://web.archive.org/web/20221121215125/https://recoiljs.org/
https://web.archive.org/web/20221121215125/https://recoiljs.org/
https://web.archive.org/web/20221202010759/https://docs.pmnd.rs/zustand/getting-started/introduction
https://web.archive.org/web/20221202010759/https://docs.pmnd.rs/zustand/getting-started/introduction
https://web.archive.org/web/20221202010759/https://docs.pmnd.rs/zustand/getting-started/introduction
https://web.archive.org/web/20221119041846/https://redux.js.org/
https://web.archive.org/web/20221121172353/https://mobx.js.org/README.html
https://web.archive.org/web/20221121172353/https://mobx.js.org/README.html
https://web.archive.org/web/20221121211233/https://xstate.js.org/
https://web.archive.org/web/20221121211233/https://xstate.js.org/
https://web.archive.org/web/20221121215301/https://jotai.org/
https://web.archive.org/web/20221121215301/https://jotai.org/
https://web.archive.org/web/20221103232506/https://valtio.pmnd.rs/
https://web.archive.org/web/20221103232506/https://valtio.pmnd.rs/
https://web.archive.org/web/20221208123051/https://ngneat.github.io/elf/
https://web.archive.org/web/20221208123051/https://ngneat.github.io/elf/
https://web.archive.org/web/20230327200133/https://www.apollographql.com/docs/react/
https://web.archive.org/web/20230327200133/https://www.apollographql.com/docs/react/
https://web.archive.org/web/20230406013852/https://relay.dev/
https://web.archive.org/web/20230406013852/https://relay.dev/
https://formidable.com/open-source/urql/
https://formidable.com/open-source/urql/
https://tanstack.com/query/latest
https://tanstack.com/query/latest
https://web.archive.org/web/20230213212832/https://redux-toolkit.js.org/rtk-query/overview
https://web.archive.org/web/20230213212832/https://redux-toolkit.js.org/rtk-query/overview
https://web.archive.org/web/20230213170753/https://swr.vercel.app/
https://web.archive.org/web/20230213170753/https://swr.vercel.app/
https://web.archive.org/web/20221103232754/https://blog.axlight.com/posts/how-valtio-proxy-state-works-vanilla-part/
https://web.archive.org/web/20221103232754/https://blog.axlight.com/posts/how-valtio-proxy-state-works-vanilla-part/

[60] D. Kato. ‘How Valtio Proxy State Works (React Part)’. blog.axlight.com. (Dec. 2021), [On-
line]. Available: https://web.archive.org /web /20221127014744 / https: / / blog.axlight.com/
posts/how-valtio- proxy-state-works-react-part/ (visited on 27th Nov. 2022).

[64] zerobias & Effector Core team. ‘Effector’. effector.dev. (n.d.), [Online]. Available: https:
/ /web.archive.org/web/20230522011336/https://effector.dev/ (visited on 22nd May 2023).

101

https://web.archive.org/web/20221127014744/https://blog.axlight.com/posts/how-valtio-proxy-state-works-react-part/
https://web.archive.org/web/20221127014744/https://blog.axlight.com/posts/how-valtio-proxy-state-works-react-part/
https://web.archive.org/web/20230522011336/https://effector.dev/
https://web.archive.org/web/20230522011336/https://effector.dev/

Bibliography

[13]

[14]

CACM Staff, ‘React: Facebook’s functional turn on writing javascript’, Commun. ACM,
vol. 59, no. 12, pp. 56-62, Dec. 2016, 1SsN: 0001-0782. por: 10.1145 /2980991. [Online].
Available: https://doi.org/10.1145/2980991.

S. Greif. ‘The state of js 2021 - opinions’. 2021.stateofjs.com. (n.d.), [Online]. Available:
https://2021.stateofjs.com/en-US /opinions/ (visited on 27th Nov. 2022).

K. Sun and S. Ryu, ‘Analysis of javascript programs: Challenges and research trends’, ACM
Comput. Surv., vol. 50, no. 4, Aug. 2017, 1ssN: 0360-0300. por: 10.1145/3106741. [Online].
Available: https://doi.org/10.1145/3106741.

Y. Lin, M. Li, C. Yang and C. Yin, ‘A code quality metrics model for react-based web
applications’; in Intelligent Computing Methodologies, D.-S. Huang, A. Hussain, K. Han and
M. M. Gromiha, Eds., Cham: Springer International Publishing, 2017, pp. 215-226, ISBN:
978-3-319-63315-2.

C. M. Novag, O. C. Novac, R. M. Sferle, M. I. Gordan, G. BUJDOSé and C. M. Dindelegan,
‘Comparative study of some applications made in the vue.js and react.js frameworks’, in 2021
16th International Conference on Engineering of Modern Electric Systems (EMES), IEEE,
2021, pp. 1-4. por: 10.1109/EMES52337.2021.9484149.

W. Roby, X. Wu, T. Goldina et al., ‘Firefly: embracing future web technologies’, in Software
and Cyberinfrastructure for Astronomy IV, G. Chiozzi and J. C. Guzman, Eds., International
Society for Optics and Photonics, vol. 9913, SPIE, 2016, 99130Y. po1: 10.1117/12.2233042.
[Online]. Available: https://doi.org/10.1117/12.2233042.

F. Ferreira, H. S. Borges and M. T. Valente, ‘On the (un-)adoption of javascript front-end
frameworks’, Software: Practice and Experience, vol. 52, no. 4, pp. 947-966, 2022. DOT: https:
//doi.org/10.1002/spe.3044. eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.3044.
[Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.3044.

S. Greif. ‘The state of js 2021 - front-end frameworks’. 2021.stateofjs.com. (n.d.), [Online].
Available: https://2021.stateofjs.com /en-US /libraries / front- end- frameworks/ (visited on
27th Nov. 2022).

M. Coblenz, J. Sunshine, J. Aldrich, B. Myers, S. Weber and F. Shull, ‘Exploring lan-
guage support for immutability’, in Proceedings of the 38th International Conference on
Software Engineering, ser. ICSE 16, Austin, Texas: Association for Computing Machinery,
2016, pp. 736747, I1SBN: 9781450339001. DOI: 10.1145/2884781.2884798. [Online]. Available:
https://doi.org/10.1145/2884781.2884798.

H. Sgndergaard and P. Sestoft, ‘Referential transparency, definiteness and unfoldability’, Acta
Informatica, vol. 27, no. 6, pp. 505-517, 1990. por: 10.1007/BF00277387. [Online]. Available:
https://doi.org/10.1007 /BF00277387.

P. Hudak, ‘Conception, evolution, and application of functional programming languages’,
ACM Comput. Surv., vol. 21, no. 3, pp. 359411, Sep. 1989, 1ssN: 0360-0300. DOI: 10.1145/
72551.72554. [Online]. Available: https://doi.org/10.1145/72551.72554.

Mozilla Corporation. ‘Mutable - MDN Web Docs Glossary: Definitions of Web-related terms’.

developer.mozilla.org. (Sep. 2022), [Online]. Available: https://web.archive.org/web/20221107104640/

https://developer.mozilla.org/en-US /docs/Glossary/Mutable (visited on 7th Nov. 2022).

102

https://doi.org/10.1145/2980991
https://doi.org/10.1145/2980991
https://2021.stateofjs.com/en-US/opinions/
https://doi.org/10.1145/3106741
https://doi.org/10.1145/3106741
https://doi.org/10.1109/EMES52337.2021.9484149
https://doi.org/10.1117/12.2233042
https://doi.org/10.1117/12.2233042
https://doi.org/https://doi.org/10.1002/spe.3044
https://doi.org/https://doi.org/10.1002/spe.3044
https://onlinelibrary.wiley.com/doi/pdf/10.1002/spe.3044
https://onlinelibrary.wiley.com/doi/abs/10.1002/spe.3044
https://2021.stateofjs.com/en-US/libraries/front-end-frameworks/
https://doi.org/10.1145/2884781.2884798
https://doi.org/10.1145/2884781.2884798
https://doi.org/10.1007/BF00277387
https://doi.org/10.1007/BF00277387
https://doi.org/10.1145/72551.72554
https://doi.org/10.1145/72551.72554
https://doi.org/10.1145/72551.72554
https://web.archive.org/web/20221107104640/https://developer.mozilla.org/en-US/docs/Glossary/Mutable
https://web.archive.org/web/20221107104640/https://developer.mozilla.org/en-US/docs/Glossary/Mutable

[18]
[19]

[20]

[25]

[30]

[31]

K. Kumar and S. K. Azad, ‘Database normalization design pattern’, in 2017 4th IEEFE
Uttar Pradesh Section International Conference on FElectrical, Computer and FElectronics

(UPCON), 2017, pp. 318-322. por: 10.1109/UPCON.2017.8251067.

A. Gill, Introduction to the Theory of Finite-State Machines. NY, USA: McGraw-Hill Book
Company, 1962.

Postman, Inc. ‘2021 State of the API Report - API Technologies’. postman.com. (2021),
[Online]. Available: https://www.postman.com /state-of-api/2021/api-technologies/ (visited
on 24th Mar. 2023).

R. T. Fielding, ‘Architectural styles and the design of network-based software architectures’,
Ph.D. dissertation, University of California, Irvine, 2000.

The GraphQL Foundation. ‘GraphQL Specification’. spec.graphql.org. (Oct. 2021), [Online].
Available: https://spec.graphqgl.org/October2021/ (visited on 21st Mar. 2023).

S. Alimadadi, D. Zhong, M. Madsen and F. Tip, ‘Finding broken promises in asynchronous
javascript programs’, Proc. ACM Program. Lang., vol. 2, no. OOPSLA, Oct. 2018. DOTI:
10.1145/3276532. [Online]. Available: https://doi.org/10.1145/3276532.

Ecma International. ‘ECMAScript®) 2022 Language Specification - Promise Objects’. t¢39.es.
(Jun. 2022), [Online]. Available: https://tc39.es/ecma262/2022 /#sec-promise-objects (visited
on 24th Mar. 2023).

Fielding, Roy and Nottingham, Mark and Reschke, Julian. ‘RFC 9110 HTTP Semantics -
Caches’. rfc-editor.org. (Jun. 2022), [Online]. Available: https://www.rfc-editor.org/rfc/
rfc91104#name-caches (visited on 24th Mar. 2023).

Mozilla Corporation. ‘HTTP caching’. developer.mozilla.org. (Mar. 2023), [Online]. Avail-
able: https://web.archive.org /web /20230327131310 / https: / / developer . mozilla. org / en-
US/docs/Web/HTTP/Caching (visited on 27th Mar. 2023).

H. V. Nguyen, L. Lo Iacono and H. Federrath, ‘Systematic analysis of web browser caches’,
in Proceedings of the 2nd International Conference on Web Studies, ser. WS.2 2018, Paris,
France: Association for Computing Machinery, 2018, pp. 64—71, 1SBN: 9781450364386. DOI:
10.1145/3240431.3240443. [Online]. Available: https://doi.org/10.1145/3240431.3240443.

A. Dingle and T. Partl, “‘Web cache coherence’, Computer Networks and ISDN Systems,
vol. 28, no. 7, pp. 907-920, 1996, Proceedings of the Fifth International World Wide Web Con-
ference 6-10 May 1996, 1sSN: 0169-7552. DOI: https://doi.org/10.1016/0169-7552(96)00020-7.
[Online]. Available: https://www.sciencedirect.com/science/article/pii/0169755296000207.

B.-J. Kwak, N.-O. Song and L. Miller, ‘Performance analysis of exponential backoft’, IEEFE/ACM

Transactions on Networking, vol. 13, no. 2, pp. 343-355, 2005. po1: 10.1109/ TNET.2005.
845533.

S. Misra and M. Khatua, ‘Semi-distributed backoff: Collision-aware migration from random
to deterministic backoft’, IEEE Transactions on Mobile Computing, vol. 14, no. 5, pp. 1071—
1084, 2015. por: 10.1109/TMC.2014.2341613.

T. Kolajo, O. Daramola and A. Adebiyi, ‘Big data stream analysis: A systematic literature
review’, Journal of Big Data, vol. 6, no. 1, p. 47, Jun. 2019, 1ssN: 2196-1115. por: 10.1186/
s40537-019-0210-7. [Ounline|. Available: https://doi.org/10.1186/s40537-019-0210-7.

X. Zheng, P. Li and X. Wu, ‘Data stream classification based on extreme learning machine:
A review’, Big Data Research, vol. 30, p. 100356, 2022, 1SSN: 2214-5796. DOI: https://doi.
org/10.1016/j.bdr.2022.100356. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/$2214579622000508.

Mozilla Corporation. ‘WebSocket’. developer.mozilla.org. (Jun. 2023), [Online]. Available:
https://web.archive.org /web/20230407011110/ https: / /developer.mozilla.org /en-US /docs /
Web/API/WebSocket (visited on 7th Apr. 2023).

N. Lee and P. Busch, ‘User interface advances through the ajax javascript framework’, Eng-
lish, in Proceedings of the 35th International Business Information Management Association
Conference, K. Soliman, Ed., International Business Information Management Association
Conference (35th : 2020), IBIMA 35 ; Conference date: 01-04-2020 Through 02-04-2020,
International Business Information Management Association (IBIMA), 2020, pp. 236—247,
ISBN: 9780999855141.

103

https://doi.org/10.1109/UPCON.2017.8251067
https://www.postman.com/state-of-api/2021/api-technologies/
https://spec.graphql.org/October2021/
https://doi.org/10.1145/3276532
https://doi.org/10.1145/3276532
https://tc39.es/ecma262/2022/#sec-promise-objects
https://www.rfc-editor.org/rfc/rfc9110#name-caches
https://www.rfc-editor.org/rfc/rfc9110#name-caches
https://web.archive.org/web/20230327131310/https://developer.mozilla.org/en-US/docs/Web/HTTP/Caching
https://web.archive.org/web/20230327131310/https://developer.mozilla.org/en-US/docs/Web/HTTP/Caching
https://doi.org/10.1145/3240431.3240443
https://doi.org/10.1145/3240431.3240443
https://doi.org/https://doi.org/10.1016/0169-7552(96)00020-7
https://www.sciencedirect.com/science/article/pii/0169755296000207
https://doi.org/10.1109/TNET.2005.845533
https://doi.org/10.1109/TNET.2005.845533
https://doi.org/10.1109/TMC.2014.2341613
https://doi.org/10.1186/s40537-019-0210-7
https://doi.org/10.1186/s40537-019-0210-7
https://doi.org/10.1186/s40537-019-0210-7
https://doi.org/https://doi.org/10.1016/j.bdr.2022.100356
https://doi.org/https://doi.org/10.1016/j.bdr.2022.100356
https://www.sciencedirect.com/science/article/pii/S2214579622000508
https://www.sciencedirect.com/science/article/pii/S2214579622000508
https://web.archive.org/web/20230407011110/https://developer.mozilla.org/en-US/docs/Web/API/WebSocket
https://web.archive.org/web/20230407011110/https://developer.mozilla.org/en-US/docs/Web/API/WebSocket

[32]

[55]

F. Ferreira and M. T. Valente, ‘Detecting code smells in react-based web apps’, Information
and Software Technology, vol. 155, p. 107 111, 2023, 1sSN: 0950-5849. DOTI: https://doi.org/10.
1016/j.infsof.2022.107111. [Online]. Available: https://www.sciencedirect.com/science/article/
pii/S0950584922002208.

R. N. Diniz-Junior, C. C. L. Figueiredo, G. De S.Russo et al., ‘Evaluating the performance
of web rendering technologies based on javascript: Angular, react, and vue’, in 2022 XVLIII
Latin American Computer Conference (CLEI), 2022, pp. 1-9. por: 10.1109/CLEI56649.2022.
9959901.

M. Flores and H. Bedi, ‘Caching the internet: A view from a global multi-tenant cdn’, in
Passive and Active Measurement, D. Choffnes and M. Barcellos, Eds., Cham: Springer In-
ternational Publishing, 2019, pp. 68-81, 1SBN: 978-3-030-15986-3.

H. Ben-Ammar and Y. Ghamri-Doudane, ‘Revopt: An Istm-based efficient caching strategy
for cdn’, in 2021 IEEE Global Communications Conference (GLOBECOM), 2021, pp. 1-6.
DoI: 10.1109/GLOBECOM46510.2021.9685051.

L. Chhangte, N. Karamchandani, D. Manjunath and E. Viterbo, ‘Towards a distributed
caching service at the wifi edge using wi-cache’, IEEE Transactions on Network and Service
Management, vol. 18, no. 4, pp. 4489-4502, 2021. po1: 10.1109/TNSM.2021.3105496.

J. Heo, S. Woo, H. Jang, K. Yang and J. W. Lee, ‘Improving javascript performance via
efficient in-memory bytecode caching’, in 2016 IEEE International Conference on Consumer
Electronics-Asia (ICCE-Asia), 2016, pp. 1-4. poI: 10.1109/1CCE-Asia.2016.7804810.

B. G. Glaser and A. L. Strauss, The Discovery of Grounded Theory: Strategies for Qualitative
Research. Aldine Publishing Company, 1967.

B. J. Oates, Researching Information Systems and Computing. SAGE Publications Ltd.,
2006, 1SBN: 1412902231.

V. Garousi, M. Felderer, M. V. Mantyld and A. Rainer, ‘Benefitting from the grey literature
in software engineering research’, in Contemporary Empirical Methods in Software Engin-
eering, M. Felderer and G. H. Travassos, Eds. Cham: Springer International Publishing,
2020, pp. 385-413, 1SBN: 978-3-030-32489-6. poI: 10.1007/978-3-030-32489-6_14. [Online].
Available: https://doi.org/10.1007 /978-3-030-32489-6_14.

A. Rainer and A. Williams, ‘Using blog-like documents to investigate software practice:
Benefits, challenges, and research directions’, Journal of Software: Evolution and Process,
vol. 31, no. 11, 2197, 2019, €2197 smr.2197. DOL: https:/ /doi.org/10.1002 / smr.2197.
eprint: https:/ /onlinelibrary. wiley. com /doi / pdf /10.1002 /smr.2197. [Ounline]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2197.

World Wide Web Consortium. ‘State Chart XML (SCXML): State Machine Notation for
Control Abstraction’. w3.org. (Sep. 2015), [Online]. Available: https://www.w3.org/ TR/
2015/REC-scxml-20150901/ (visited on 14th Nov. 2022).

D. Harel, ‘Statecharts: A visual formalism for complex systems’, Science of Computer Pro-
gramming, vol. 8, no. 3, pp. 231-274, 1987, 1sSN: 0167-6423. DOL: https://doi.org/10.1016/
0167-6423(87)90035-9. [Online]. Available: https://www.sciencedirect.com /science/article /
pii/0167642387900359.

Ecma International. ‘ECMAScript®) 2022 Language Specification - Proxy Objects’. t¢39.es.
(Jun. 2022), [Online]. Available: https://tc39.es/ecma262/2022 /#sec- proxy-objects (visited
on 6th Dec. 2022).

Nottingham, Mark. ‘RFC 5861 HTTP Cache-Control Extensions for Stale Content’. rfc-
editor.org. (May 2010), [Online]. Available: https://www.rfc-editor.org/rfc/rfc5861. html
(visited on 18th Apr. 2023).

L. Bass, P. Clements and R. Kazman, Software Architecture in Practice, 3rd. Addison-Wesley
Professional, 2012, 1SBN: 0321815734.

Mozilla Corporation. “Web Storage APT’. developer.mozilla.org. (Mar. 2023), [Online]. Avail-
able: https:/ /web.archive.org /web /20230421003755 / https: / / developer. mozilla.org /en-
US/docs/Web/API/Web_Storage_API (visited on 21st Apr. 2023).

104

https://doi.org/https://doi.org/10.1016/j.infsof.2022.107111
https://doi.org/https://doi.org/10.1016/j.infsof.2022.107111
https://www.sciencedirect.com/science/article/pii/S0950584922002208
https://www.sciencedirect.com/science/article/pii/S0950584922002208
https://doi.org/10.1109/CLEI56649.2022.9959901
https://doi.org/10.1109/CLEI56649.2022.9959901
https://doi.org/10.1109/GLOBECOM46510.2021.9685051
https://doi.org/10.1109/TNSM.2021.3105496
https://doi.org/10.1109/ICCE-Asia.2016.7804810
https://doi.org/10.1007/978-3-030-32489-6_14
https://doi.org/10.1007/978-3-030-32489-6_14
https://doi.org/https://doi.org/10.1002/smr.2197
https://onlinelibrary.wiley.com/doi/pdf/10.1002/smr.2197
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2197
https://www.w3.org/TR/2015/REC-scxml-20150901/
https://www.w3.org/TR/2015/REC-scxml-20150901/
https://doi.org/https://doi.org/10.1016/0167-6423(87)90035-9
https://doi.org/https://doi.org/10.1016/0167-6423(87)90035-9
https://www.sciencedirect.com/science/article/pii/0167642387900359
https://www.sciencedirect.com/science/article/pii/0167642387900359
https://tc39.es/ecma262/2022/#sec-proxy-objects
https://www.rfc-editor.org/rfc/rfc5861.html
https://web.archive.org/web/20230421003755/https://developer.mozilla.org/en-US/docs/Web/API/Web_Storage_API
https://web.archive.org/web/20230421003755/https://developer.mozilla.org/en-US/docs/Web/API/Web_Storage_API

@ NTNU

Norwegian University of
Science and Technology

	List of Figures
	List of Tables
	Introduction
	Research Objective
	Methodology and Limitations
	Thesis Structure

	Preliminaries
	React
	React State
	Pure Functions
	Declarative and Imperative
	Immutability
	Normalization
	Finite State Machines
	Server APIs
	REST
	GraphQL

	Asynchronous JavaScript
	Cache
	Networking
	Retry
	Offline Features

	Streaming Data
	Pagination
	Research in Web Development

	Method
	Research Design
	Selection of Libraries
	Client State Management Libraries
	Server State Management Libraries

	Grey Literature in Library Analysis
	What is Documentation
	Library Analysis Approach
	Formulating the Theory

	Client State Management Libraries
	React Core
	Redux
	MobX
	XState
	Zustand
	Recoil
	Jotai
	Valtio
	Elf

	Server State Management Libraries
	Tanstack Query
	RTK Query
	SWR
	Apollo Client
	URQL

	A Theory of Client State Management
	State Types
	Business State and Presentation State
	Qualitative State and Quantitative State
	Server State

	State Reach
	Local
	Global Inside React
	Global Outside React

	State Composition Models
	Single Tree
	Atomic
	Fragmented Store

	Derived State
	State Selection
	Selector Functions
	Derived Selector Functions
	Atomic
	Automatic Based on Access

	State Modification
	Mutable and Immutable
	Local and Global State Modification Logic

	Summary

	A Theory of Server State Management
	Server API Compatibility
	General
	Specialized

	Operations
	Queries
	Mutations
	Subscriptions

	Cache
	Query Cache
	Normalized Cache

	Organization of queries
	Decentralized
	Centralized

	Asynchronous Metadata
	Data Status
	Fetch Status

	Integrated Client State
	Server State Features
	Prefetching
	Pagination
	Fetch Policy
	Middleware
	Offline Mode

	Summary

	Verification
	Categorizing State Management Libraries
	Client State Management Libraries
	Server State Management Libraries
	Evaluation

	State Management in a Project Management Tool
	Client State Only
	Client and Server State
	Evaluation

	Understanding Server State Management through Client State Management
	Atomic Query Cache
	Query Cache as Fragmented Stores
	Atomic Normalized Cache
	Evaluation

	Conclusion and Further Work
	Conclusion
	Further Work

	Library Documentations
	Bibliography

