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Abstract— This paper presents a method for the autonomous
exploration of multiple compartments of a Ballast Water
Tank inside a vessel using Micro Aerial Vehicles. Navigation
across the compartments of ballast tanks often requires the
robot to pass through narrow cross-section “manholes” (e.g.,
0.8×0.6m). Hence, this work presents an algorithm to explicitly
detect and localize such manholes using 3D LiDAR data
and a strategy to reliably navigate through them to enable
autonomous exploration of multiple compartments of the tank.
Two ablation studies are presented analyzing the effective 3D
space with respect to the manhole in which reliable detection
takes place. Furthermore, the method is evaluated onboard a
collision-tolerant aerial robot in two autonomous exploration
experiments in relevant mock-up scenarios.

I. INTRODUCTION
In recent years robotic systems have been deployed in

a variety of industrial and natural environments [1–12].
Building upon this, several researchers along with companies
are investigating methods to automate the inspection and
surveillance process across industries. Among many, a highly
challenging and demanding application is the inspection of
Ballast Water Tank (BWTs) inside vessels. These facilities
need to be inspected periodically to identify, assess and fix
possible corrosion, cracks, and deformations. However, such
environments can present varied geometry and scale. Specif-
ically, BWTs can present highly confined geometries, are
completely dark, hard to access, and might contain pockets
of low/no oxygen and harmful gasses. Furthermore, BWTs
consist of several compartments often connected by narrow
openings called “Manholes”, navigation through which is
necessary for accessing all the compartments. Currently, the
inspection is mostly done by humans who need to enter
these challenging settings posing risk to them, while some
teleoperated use of drones and other robots has been used
by the industry but without advanced autonomy [13–15].
Simultaneously, apart from the risk to the inspectors’ life,
the vessel owners suffer heavy economic losses due to the
down time during the inspection process. In response, several
research groups develop robotic systems and algorithms for
the inspection of vessels and tanks inside them [16–22].
These include aerial, crawling and swimming systems, path
planning for exploration and inspection, defect detection, and
methods for localization inside ballast tanks.

Motivated by the above, in this paper, we present a method
for autonomous exploration and mapping of compartments
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Fig. 1. Instance in one of the experiments showing the robot passing
through the manhole along with the final map built and the path traversed by
the robot from the mission. On the right, the manhole is shown in the point
cloud data and occupancy map, along with its detected pose and boundary.

of the ballast tanks using a Micro Aerial Vehicle (MAV).
Traditional path planning methods utilize some form of
map representation, with volumetric maps like [23, 24] being
employed. However, the small size of the manholes (e.g.,
height×width = 0.8m×0.6m) make finding a path through
them using volumetric maps of real-time tractable resolution
significantly harder. Hence, in this work, we take the ap-
proach of explicitly detecting the manholes and localizing
their pose which enables the MAV to traverse them. Both
for Manhole Detection and Localization (MDL), our method
uses the instantaneous point cloud and corresponding depth
image data from a 3D LiDAR. In combination with our
previous path planning work in [7, 8], the method aims to
explore one BWT compartment at a time while detecting and
traversing the manholes to navigate between compartments.

To verify the MDL method, we present a study analyzing
the effective 3D space, with respect to the manhole, in which
reliable detection can happen. We study the effect of the
viewing angle of the LiDAR relative to the manhole using
a) a handheld sensing setup with a LiDAR, and b) with a
real robot. Moreover, we deploy our method on a collision-
tolerant aerial robot [25] in experiments for the exploration of
mock-ups of multiple horizontally-connected compartments
as in BWTs.

In the remaining paper, Section II presents related work,
followed by the system overview in III, the approach in
Section IV, evaluation studies in Section V and conclusions
in Section VI.



II. RELATED WORK

A niche community of researchers has investigated de-
tection and navigation across manholes or similar narrow
openings. The authors in [26] present a deep learning-
based method for manhole detection using depth data. The
method uses a convolutional neural network to detect the
manhole in the depth image and temporal filtering to remove
false positives. [27, 28] presents a system for navigation in
confined environments including manhole-sized corridors.
The method in [27] detects manholes in a stereo-rectified
monochromatic image from a fish-eye camera by first ex-
tracting regions below a darkness threshold followed by
performing a set of morphological operations to remove
noise and small dark regions. The manhole is assumed to
be rectangular and hence rectangular closed contours among
these are selected. In [29], a window detection method
using LiDAR as well as a depth camera is proposed. The
LiDAR detection method identifies candidate window edge
points and associates them with existing edges or uses
prior knowledge about the window dimensions to classify a
window. The work in [30] presents a system that can navigate
sewer pipes following high-level human operator commands.
A set of works have investigated flying through narrow gaps
using active vision. [31] presents an aggressive trajectory
planning method for navigating across narrow gaps that is
independent of the underlying gap detection method used.
[32] proposes a novel method for flying through arbitrarily
shaped narrow openings using purely monocular vision.

III. SYSTEM OVERVIEW

The overall aim of the system is to explore and map a
ballast water tank using a MAV. This task typically requires
the robot to navigate and explore multiple compartments
of the tank connected by manholes. These can be quite
narrow (e.g., height×width = 0.8m×0.6m) therefore, they
may be omitted or under-represented size-wise in occupancy
mapping frameworks (Figure 1) and other representations
with finite resolution. Thus, finding a path through them
is statistically unlikely using a sampling-based path planner
employing uniform random sampling. Hence, in this work,
we focus on explicitly detecting the pose of the manhole to
calculate a path to pass through it. This process is detailed
in Sections IV-A and IV-B. The logical flow diagram of
the overall method is shown in Figure 2. The robot starts
in one compartment of the BWT and begins exploring that
compartment. During exploration, it finds manholes that lead
to further compartments and stores their poses. When the
exploration is completed, the robot aligns itself in front of
the closest not-yet traversed manhole, triggers re-detection
to confirm that the manhole selected for traversal is not
a false detection, and traverses through it by calculating
a straight line path through the center of the manhole
along the direction perpendicular to its plane. Subsequently,
exploration of the next compartment takes place and the
process continues iteratively. In this work, we use our pre-
vious open-sourced work on Graph-based exploration path

planning (GBPlanner) [7, 8], summarized in Section IV-C as
the exploration planner.

IV. APPROACH

This section presents details on the manhole detection
and localization, traversal, and exploration path planning
algorithms.
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Fig. 2. This figure shows the flow diagram of the method. The robot
starts in one compartment and begins the exploration of it. During this
time, it detects and stores the poses of all the manholes observed. Upon
exploration completion of the current compartment, the planner finds a path
to align the robot in front of the closest, previously untraversed, manhole.
Once executed, the MDL is re-triggered to verify that the manhole under
consideration is not a false detection. If a minimum of nmin detections are
received, a straight line path through the center of the manhole along its
orientation is calculated and commanded to the robot. After traversing the
manhole, the exploration planner is triggered and the process is repeated.

A. Manhole Detection and Localization (MDL)

As previously described, navigation across a manhole is
statistically unlikely to be successful using a sampling-based
planner employing uniform random sampling on an occu-
pancy map in reasonable computation time on the MAV’s
onboard computer. Hence, our method aims to explicitly
detect the 3D position p = [x, y, z] and orientation q of
each of these manholes to find a path through them.

The detection takes place on the instantaneous point cloud
measurements Pt and the corresponding depth image It
obtained from the onboard LiDAR sensor SD (the method
can in principle be used with any depth sensor). The MDL
algorithm is described in Algorithm 1, and Figure 3 shows
the steps involved in the MDL algorithm on real data. It is
noted that BWT manholes employ standard dimensions with
the most typical being that of height × width = 0.8m ×
0.6m [33, 34].

At a time instance t, the depth image It is processed to
remove occlusions to the LiDAR caused by the robot frame.
As these appear at fixed pixel locations in the depth image,
they are removed simply through a fixed mask. After that,
we find all the closed contours Ct (the subscript t is dropped
hereafter for clarity) in the depth image using Canny Edge
Detection [35] (Figure 3.1).

These closed contours need to be filtered out to remove
contours that are not manholes. To do this, we use the follow-
ing two properties of the manholes: a) they are planar, and b)
they have standardized known dimensions. For each contour
c ∈ C, the points Pc in the point cloud P corresponding to



Algorithm 1 Manhole Detection and Localization
Inputs Pt, It

1: Dt ← ∅
2: C← detectClosedContours(It)
3: for ∀c ∈ C do
4: Pc ← 3DPoints(c,Pt)
5: kc ← fitPlane(Pc)
6: Pc ← removeOutliers(Pc,kc)
7: bc ← orientedBoundingBox(Pc)
8: if ∃k ∈ [1,m] : lkmin ≤ blc ≤ lkmax, l ∈ x, y, z then
9: pc ← mean(Pc)

10: qc ← getOrientation(kc)
11: pw

c ,q
w
c ← transformToFixedFrame(pc,qc)

12: Dt ← Dt

⋃
[pw

c ,q
w
c ]

the pixels in c are found. As illustrated in Figure 3.2 (image
on the left), points corresponding to some pixels in c might
lie on the surfaces seen through the manhole whereas some
lie on the same surface as the manhole. To correct this error,
for each pixel we check the pixels within a 3 × 3 window
around it to find the corresponding point that is closest to
the robot. The result of this is shown in the right side image
of Figure 3.2.

Even after the above step, certain points can still lie on
the surfaces seen through the manhole due to the noise
in the depth image (Figure 3.3, left image). To remove
them, we first find the best fitting plane to Pc. Let the
coefficients of this plane be kc = [αc, βc, γc, δc]. All points
whose perpendicular distance from this plane is more than
a threshold dthp are removed from Pc and we get the result
shown in the right side image of Figure 3.3.

Next, the point cloud sets Pc that do not satisfy the
dimension criteria, which relates to the minimum oriented
bounding box of Pc not belonging to any of the known
manhole dimensions, are rejected (Figure 3.4). Specifically, a
minimum oriented bounding box bc = [bxc , b

y
c , b

z
c ], (bxc , b

y
c , b

z
c

are the x, y, z dimensions of the bounding box respectively)
of Pc is calculated. As the manholes have standard dimen-
sions, the dimensions of bc are checked against a set of
possible known manhole dimensions. The contours c for
which the following criteria do not hold true are rejected:
lkmin ≤ blc ≤ lkmax, l ∈ {x, y, z}, k = 1...m, where m is
the number of possible manhole sizes against which bc is
checked. All contours c which satisfy the above criteria are
selected as valid manhole detections.

The position and orientation of these manholes are then
calculated as follows. The position pc of the manhole is
simply the geometric centroid of the points in Pc. The
orientation qc of the manhole is set to be along the normal
to the plane defined by kc. Note that both of these are in
the sensor’s frame and are transformed into the fixed frame
using the estimates from the robot’s onboard Simultaneous
Localization And Mapping (SLAM) solution to obtain the
position pw

c and orientation qw
c in the world frame. All such

detections are added to the set Dt.

Fig. 3. Steps involved in MDL from an instantaneous point cloud and
corresponding depth image. First, closed contours are detected in the depth
image. The points in the point cloud corresponding to these contours are
filtered to remove outliers as well as reject contours that do not correspond
to a manhole using the following two properties of the manholes: a) they
are planar, and b) they have standardized known dimensions.

Each detection Dc,t ∈ Dt is checked against the previously
detected manholes. A set H is maintained to store these
detections. Each element Hi ∈ H is a set of detections whose
positions are within a distance λth from their mean position
and whose orientations form an angle less than θth with the
mean orientation. Every new detection Dc,t is added to one
of the sets in H if it satisfies the above criteria otherwise, a
new set Hi is created for it. As the orientation is calculated
using the normal to the plane of the manhole, the orientation
of multiple detections of the same manhole might be flipped
by 180◦. Hence, we transform the orientation of each new
detection to lie within −90◦ to 90◦ of the mean orientation
of the set before comparing. Finally, only the manholes Hi

having at least nmin detections are used for navigation to
remove false detections.

B. Manhole Traversal

During the exploration step, the MDL module runs in
the background to identify the manholes that exist in the
compartment that the robot is exploring in. When the explo-
ration of the current compartment is completed, the planner
selects the closest not-yet traversed manhole to traverse to the
next compartment. Two points (p0,p1) on the line passing
through the center of the manhole and along its orientation,
both lying on the opposite sides of the manhole at a distance



ℓ from its center are selected. The planner then plans a path
to the point closest among the two, and the robot follows that
path to align itself in front of the manhole. The MDL step
is then run again for a fixed time tv . If within this time we
get nmin detections, then a straight line path connecting the
current location, the center of the manhole, and the selected
point on the other side is commanded to the robot. After
traversing this path, the corresponding manhole is marked
as traversed and not used for further exploration. Then the
exploration planner is triggered again and this process is
repeated. If we get less than nmin detections, then that
manhole is marked as a false manhole and the robot repeats
the process for the next closest manhole. This re-detection
step is done to ensure that the robot does not try to go through
an area that is not a manhole. As seen from Section V-A, the
highest probability of detection is when the robot is aligned
in front of the manhole at close proximity. Hence, we trust
the re-detection more than the original detection.

C. Exploration Planner

In this work, the exploration path planning functionality is
implemented by interfacing with our previous open-sourced
work on Graph-based exploration path planning (GBPlan-
ner). This method is verified extensively in various subter-
ranean and industrial environments and was used by Team
CERBERUS in the DARPA Subterranean Challenge [5]. The
method utilizes Voxblox [23] as the underlying volumetric
mapping representation. It operates in a bifurcated local
and global planning architecture. The local planner provides
efficient paths for exploration around the robot whereas the
global planner is responsible for repositioning the robot to
unexplored areas of the map when the local planner cannot
find an informative path, as well as for calculating a safe
path for the robot to return to the home location. In this
work, as the compartments of the ballast tank are relatively
small, the local exploration mode is primarily used. In this
mode, the planner first builds an undirected graph GL along
with its vertex and edge sets V,E inside a local volume that
is adaptively calculated based on surrounding environment
geometry. An information gain ΓL, called VolumetricGain, is
calculated for each vertex ν ∈ V and relates to the amount of
unknown volume that will be mapped if the robot was to be
at that vertex. Next, the planner calculates the shortest paths
from the current robot location to all the vertices, aggregates
the ΓL of the vertices along the paths, and selects the path
with the highest cumulative gain. This path is commanded to
the robot, and upon execution, the above process is repeated
until in one of the planning iterations, all the vertices in GL

have ΓL below a threshold ΓL,th. At this point, the planner
declares that the local exploration is completed.

V. EVALUATION STUDIES

We verify our MDL algorithm through an ablation study
to find out the effective 3D space with respect to the manhole
in which reliable detection can take place. Furthermore, the
entire exploration system is verified through two experiments
in a mock ballast tank setup.

A. Ablation Study

The detection of the manhole primarily depends on the
viewing angle of the LiDAR sensor with respect to the
manhole. Hence, to evaluate the effective space in which
reliable detections can happen, we conducted two studies
analyzing the effect of the viewing angle on detection.

In the first study, a handheld sensing setup with an Ouster
OS0-64 LiDAR was used to collect data for MDL. The sens-
ing setup was moved in front of a stationary manhole with
the viewing angle of the LiDAR with respect to the manhole
varying in the range: azimuth angle: θazi ∈ [−70◦, 0◦],
elevation angle: θele ∈ [0◦, 40◦] and the distance from the
manhole in the range r ∈ [0.5m, 5.0m]. Figure 4(a) shows
the results of this study, whereas Figure 4(b) shows the
arrangement of the LiDAR with respect to the manhole. The
figure shows the percentage of successful detections as a
function of the azimuth and elevation angles with respect
to the manhole. The study shows that viewing angles close
to zero provide the highest percentage of detections. It is
highlighted that even though the data collected in this study
only covers one of the octants with respect to the manhole,
the symmetric nature of the manhole and the LiDAR implies
that similar results will be found in the remaining octants.
Furthermore, as the LiDAR is 360◦ its yaw is not considered
in the study.

Fig. 4. Quantitative results of the first ablation study conducted using a
handheld sensor setup. Sub-figure (a) shows the percentage of successful
detections as a function of the azimuth and elevation viewing angles of the
LiDAR sensor with respect to the manhole. It can be seen that the highest
percentage of detection is at viewing angles close to zero. It is noted that
as the LiDAR is 360◦ its yaw is not considered in the study. Sub-figure (b)
shows an illustration of the arrangement of the LiDAR with respect to the
manhole.



Fig. 5. Qualitative result of the second ablation study conducted using the
LiDAR onboard the robot. The robot was placed at different locations in 3D
space in front of the manhole and rotated around itself. The green arrows in
the figure indicate the robot poses from which the manhole was successfully
detected. This study helps understand the robot configuration space (relative
to the manhole) in which the manhole can be detected reliably. It also shows
the effects of occlusion from the robot frame to the LiDAR on MDL.

In the previous experiment, the LiDAR sensor had no
occlusions in its Field of View (FoV). However, in reality,
when the sensor is mounted on a robot, the frame of the robot
can create occlusions to the sensor causing the detection to
fail at certain robot headings and viewing angles with respect
to the manhole. To study the effect of these occlusions, we
conducted a study similar to the above but considering the
yaw of the robot as well. The robot was placed at different
points in the 3D space in front of the manhole and rotated
360◦ around itself. Figure 5 shows a qualitative result of
the detections in this experiment. The green arrows indicate
the pose of the robot where the manhole was successfully
detected. This study shows the poses of the robot with respect
to the manhole from which reliable detection can happen. It
is important to conduct this study to select the parameters
such as ℓ, of the MDL algorithm. Figure 6 shows the depth
images captured on the robot during this study at the same
x,y location but two different heights and robot headings to
visualize what parts of the robot frame occlude the manhole
at what robot poses relative to the manhole. The colored
pixels in the depth images show the closed contours detected
by the method. As shown in the second last image (Yaw = 0),
the contour of the manhole is not detected due to occlusion.

B. Experimental Results

To verify the entire method on a real system we conducted
two experimental evaluations in a lab setting creating two
different configurations of compartments analogous in size
to those found in common ballast tanks. Both configurations

Fig. 6. Indicative depth images along with the detected contours for
the same location but different robot heights and headings. The effect of
occlusion from the robot frame can be clearly seen in this figure.

involved four compartments connected in different ways. The
size of the manholes used in the experiments was height ×
width = 0.8m×0.6m. The results of these tests can be seen
in Figure 7.

Both experiments were conducted using a custom-built
collision-tolerant aerial robot called RMF-Owl [25] (with
slight modifications from [25]). The robot integrates an
Ouster OS0-64 3D LiDAR with 64 channels (FoV [Fh, Fv] =
[360, 90]◦, maximum range dmax = 50m), a FLIR Blackfly
S 0.4MP visual camera, and a Vectornav VN100 IMU. The
path planning, SLAM, and control algorithms run onboard
the robot on a Khadas VIM4 Single Board Computer in-
corporating ×4 2.2Ghz Cortex-A73 cores, paired with ×4
1.8Ghz Cortex-A53 cores. The methods in [36] and [37] were
used for SLAM and position control respectively.

The first experiment involved the four compartments in
a straight line and all the manholes falling on the same
line. The dimensions of each compartment were length ×
width × height = 3.0m × 3.6m × 2.5m. The robot started
in a compartment at one end, explored each compartment,
traversing through the manholes as described in Section IV-
B, and finally landed in the last compartment. As seen in
Figure 7, the robot was able to detect and traverse through
all the manholes in the setup. For each compartment, au-
tonomous exploration took place with the planner switching
to this behavior for as long as necessary. Such a configuration
of compartments and manholes is common in vessels and
hence selected.

In the second experiment, the compartments were con-
nected at right angles to each other Figure 7. The dimensions
of each compartment were length × width × height =
3.0m× 2.4m× 2.5m. The robot started in one of the two
compartments that were not connected to each other via a
manhole and explored each compartment till it reached the
last one.

VI. CONCLUSIONS

In this paper a method for exploration of ballast water
tanks through the explicit detection, localization and traversal
of manholes using MAV is presented. The method utilizes



Fig. 7. Maps and paths traversed by the robot in the two experiments. The first experiment involved the four compartments in a straight line with all the
manholes falling on the same line. The dimensions of each compartment were length×width×height = 3.0m×3.6m×2.5m. In the second experiment, the
compartments were connected at right angles to each other, with the dimensions of each compartment being length×width×height = 3.0m×2.4m×2.5m.
The subfigures on the left show the final map and the path traversed by the robot during the missions. The remaining subfigures show indicative paths
during the exploration, manhole alignment, and manhole passing stages in one of the compartments.

a 3D LiDAR sensor for detection exploiting its instan-
teous point cloud. The manhole detection and localization
algorithm is able to provide reliable results in a large
set of robot poses relative to the manhole as verified in
the presented ablation study. Furthermore, two experiments
using a collision-tolerant aerial robot in mock-up scenarios
demonstrate the ability of the method to run on real robots
and enable them to perform exploration of multiple ballast
tank compartments connected through manholes in diverse
geometric configurations.
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