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Aims To improve monitoring of cardiac function during major surgery and intensive care, we have developed a method for fully 
automatic estimation of mitral annular plane systolic excursion (auto-MAPSE) using deep learning in transoesophageal echo-
cardiography (TOE). The aim of this study was a clinical validation of auto-MAPSE in patients with heart disease.

Methods 
and results

TOE recordings were collected from 185 consecutive patients without selection on image quality. Deep-learning-based 
auto-MAPSE was trained and optimized from 105 patient recordings. We assessed auto-MAPSE feasibility, and agreement 
and inter-rater reliability with manual reference in 80 patients with and without electrocardiogram (ECG) tracings. Mean 
processing time for auto-MAPSE was 0.3 s per cardiac cycle/view. Overall feasibility was >90% for manual MAPSE and 
ECG-enabled auto-MAPSE and 82% for ECG-disabled auto-MAPSE. Feasibility in at least two walls was ≥95% for all meth-
ods. Compared with manual reference, bias [95% limits of agreement (LoA)] was −0.5 [−4.0, 3.1] mm for ECG-enabled 
auto-MAPSE and −0.2 [−4.2, 3.6] mm for ECG-disabled auto-MAPSE. Intra-class correlation coefficient (ICC) for consist-
ency was 0.90 and 0.88, respectively. Manual inter-observer bias [95% LoA] was −0.9 [−4.7, 3.0] mm, and ICC was 0.86.

Conclusion Auto-MAPSE was fast and highly feasible. Inter-rater reliability between auto-MAPSE and manual reference was good. 
Agreement between auto-MAPSE and manual reference did not differ from manual inter-observer agreement. As the prin-
cipal advantages of deep-learning-based assessment are speed and reproducibility, auto-MAPSE has the potential to improve 
real-time monitoring of left ventricular function. This should be investigated in relevant clinical settings.
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Patient data were recorded at St Olavs Hospital, Trondheim University Hospital, Trondheim, Norway. Method development and data analysis were performed at Norwegian University of 
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Graphical Abstract

Auto-MAPSE, automatic estimation of mitral annular plane systolic excursion; CNN, convolutional neural network; ECG, electrocardiogram; ICC, intra- 
class correlation coefficient; LoA, limits of agreement; MAPSE, mitral annular plane systolic excursion; SD, standard deviation; TOE, transoesophageal 
echocardiography.
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Introduction
Cardiac complications in relation to major surgery and intensive care 
are common.1–4 Prompt detection and characterization of cardiac dys-
function is essential for optimal handling.

Echocardiography is of great value in intensive care.5 This includes first- 
line echocardiography to identify mechanisms of shock.3 Moreover, mon-
itoring with transoesophageal echocardiography (TOE) is recommended 
in high-risk perioperative settings.6,7 Simplified intermittent TOE has 
been studied with promising results.8,9 However, true monitoring by 
TOE requires either continuous manual interaction or fully automatic 
methods. To date, such methods have not been readily available for TOE.

Deep learning, an advancement of artificial intelligence that deploys 
artificial neural networks, has held great promise for the automatic as-
sessment of left ventricular (LV) systolic function in transthoracic echo-
cardiography. Generally, the fundamental step for these methods has 
been LV segmentation.10,11 However, in TOE-based monitoring, the 
probe should be kept unlocked to minimize patient hazard.

Without active handling, this typically leads to foreshortened views 
of the cardiac chambers. The presence of air between the probe and 
the oesophageal wall, LV shadowing from mitral annular calcifications, 
and depth attenuation may be additional challenges. All these factors 
impair LV segmentation. Therefore, adaption of previously developed 
segmentation-based deep learning methods may not function optimally 
in TOE-based monitoring.

Importantly, mitral annular plane systolic excursion (MAPSE) does not 
rely on LV segmentation. Moreover, it contributes to 60–75% of the LV 
stroke volume.12,13 MAPSE is strongly correlated to global longitudinal 
strain14 and has a high feasibility, even in suboptimal image quality.15,16

MAPSE from TOE reliably detected LV dysfunction during off-pump car-
diac surgery and intensive care.17,18 To improve monitoring of cardiac func-
tion during major surgery and intensive care, we have developed a method 
for fully automatic estimation of MAPSE (auto-MAPSE) by TOE using deep 
learning. The method has been developed to run both with and without 
electrocardiogram (ECG) tracings, as diathermy distorts the ECG.

Accordingly, the aim of this study was a clinical validation of 
auto-MAPSE in patients with heart disease. This included assessments 
of feasibility, reliability and agreement with manual reference, and the 
importance of ECG tracings.

Methods
Study population
We included TOE recordings from 185 patients investigated as part of 
standard clinical care at St Olavs Hospital (Trondheim, Norway), a 

secondary university hospital with services in interventional cardiology, 
electrophysiology, and cardiothoracic surgery. Standard clinical contraindi-
cations to TOE applied. There was no selection based on image quality. 
Patient tolerance to withstand a full TOE examination was the only selec-
tion criterium for inclusion.

A total of 180 examinations were performed consecutively by 4 experts 
at an echocardiography laboratory accredited by the European Association 
of Cardiovascular Imaging. Five examinations were recorded during open 
heart surgery by an experienced thoracic anaesthesiologist. The recordings 
were split into training, pilot validation, and clinical validation data sets 
(Table 1). Clinical validation was performed on the final 80 consecutive ex-
aminations, all recorded at the echocardiography laboratory. From these, 
inter-observer assessment was performed on a randomly drawn subset 
of 30 examinations. The sample size was defined based on our research 
group’s experience with the development of deep learning methods for 
similar applications. In this manuscript, the term validation is used synonym-
ously to testing, of which the latter is more typically used in technical deep 
learning literature.

Data acquisition
Table 2 displays recording equipment and settings. To mimic monitoring 
settings, the examiners were encouraged to obtain the relevant recordings 
with the probe unlocked without forced flex or tilt. The patients were posi-
tioned according to the clinical setting and the preference of the examiner. 
No specific instructions on respiration were given. Only anonymized ultra-
sound data and corresponding ECG tracings were collected.

Automatic MAPSE estimation
The pipeline for auto-MAPSE consists of deep-learning-based landmark lo-
calization, and algorithms for post processing and filtering (Figure 1). We 
ran auto-MAPSE on portable commercial hardware (11th Gen Intel® 
Core™ i7-11850H @ 2.50 GHz CPU and NVIDIA RTX A3000 Mobile 
GPU).

Mitral annular localization
Localization of the mitral annulus from mid-oesophageal two- and four- 
chamber view recordings was performed by a convolutional neural net-
work (CNN) trained in a supervised manner. Localization was based on 
the identification of the mitral annular landmarks and their coordinate loca-
tions. We manually annotated the mitral annulus frame-by-frame in all 
10 302 frames used for CNN training. Aiming for the mitral valve hinge 
points, this work was performed by two master’s students under expert 
guidance. Invisible mitral annular landmarks were marked ‘invisible due to 
noise’. To limit annotation workload, CNN training was performed on 
low-frame-rate B-mode extractions from tissue Doppler imaging, averaging 
19 frames per second, without any visible difference in image quality from 
standard B-mode recordings.

A distinction between imaging views was not made during training. The 
CNN simply learned the mitral annular landmarks as ‘right’ and ‘left’ 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Table 1 Data overview

Data set Patients, n Frames total, n Frames 4-chamber view, % Frames 2-chamber view, %

Training 66 8520 50.2 49.8

Validation during training 16 1782 50.1 49.9
Pilot validation and filter customization 23 2879 49.8 50.2

Clinical validationa 80 17 317 50.0 50.0

Total 185 30 498 50.0 50.0

aA random sample of 30 patients was used for inter-observer assessment.
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independent of the view, without any view detection. This was employed to 
reduce complexity and increase the ability to generalize. By adding random 
rotation and cropping, the data were augmented to effectively increase the 
data set size and prevent overfitting. This also prevented the CNN from 
learning landmark positions relative to the image sector.

For each ultrasound frame, the CNN generated two maps of mitral an-
nular landmark localization, one for each wall (Figure 2A). Each map included 
probability estimates (0–100%) for the landmark localization.

The CNN was designed with a ResNet50 architecture,19 which was 
slightly modified for mitral annular localization. For further details on 
CNN design and settings, we refer to Nordal.20

Post-precessing and filtering
The post-processing algorithm transformed frame-by-frame CNN land-
mark localization to MAPSE estimates (Figure 2).

Mitral annular coordinates were extracted from the landmark probability 
maps (Figure 2A).

Landmark localization with a CNN-estimated probability of at least 50% 
was considered valid. Correspondingly, <50% probability for the landmark 
localization led to the discard of the specific landmark in the specific frame. 
The fixed 50% probability threshold, independent of acquisition settings or 
image quality, was determined empirically from evaluation during CNN 
training and assessment of the pilot validation data set (Table 1). 
Moreover, by this definition, the CNN could return more than one valid 
landmark location for each frame/wall. The centre of mass of all valid loca-
tions provided the final landmark location coordinates (Figure 2B). After ro-
tation correction aligning mitral annular displacement to the y-axis, the 
y-coordinates of the estimated landmark locations were plotted over 
time (Figure 2C and D).

MAPSE was given by the y-coordinate distance between the maxima and 
minima peaks of the landmark y-coordinate plot, corresponding to end- 
diastole and end-systole, respectively (Figure 2D).

This was performed both with and without corresponding ECG tracings. 
For ECG-disabled auto-MAPSE, the cardiac cycle was defined by the peaks 
of the plot. MAPSE was estimated for each cardiac cycle and averaged over 
the number of valid cycles.

Customized from our investigation of the pilot validation data set 
(Table 1), we applied filters to exclude highly fragmentary landmark location 
plots and unphysiological frame-to-frame jumps (Figure 2E): 

• For each wall, data from a cardiac cycle were discarded if the CNN pro-
vided valid landmark localization in <60% of the frames of this cycle.

• For ECG-enabled auto-MAPSE, this was weighted around the R-wave by 
applying a normalized exponential distribution (weight(x) = λexp, λ =  
0.1).

• If the estimated frame-to-frame mitral annular displacement exceeded 
5 mm, the corresponding cardiac cycle (ECG-enabled auto-MAPSE) or 
peak (ECG-disabled auto-MAPSE) was discarded for this wall.

Feasibility of auto-MAPSE was determined automatically from several 
steps of the pipeline: CNN landmark localization probability >50% in at least 
60% of the frames in a cardiac cycle, automatically detectable peaks of the 
mitral annular plots, and absence of unphysiological auto-MAPSE estimates. 

Table 2 Recording settings

System GE Vivid E95/E9/S70a

Transducer GE 6VT-Da

Software 204.xx

Application Cardiac_E
Sector width 90 degrees

Image depth Include full view of left ventricle

Frame rate Default
Tilt/flex No interaction/neutral

Cycles 3

Views Mid-oesophageal 2- and 4-chamber views
Modes B-mode, tissue Doppler imaging

aGE Vingmed Ultrasound, Horten, Norway.

Figure 1 Overview of the auto-MAPSE pipeline. CNN-based landmark localization provides probability maps for the location of the mitral annulus in 
each frame. Following rotation correction, the landmark y-coordinates are plotted over time. End-diastole and end-systole are defined as the maxima 
and minima peaks of these plots. MAPSE is defined as the y-coordinate distance between these peaks. Filters are applied to discard MAPSE estimates 
from low-quality plots. 

4                                                                                                                                                                                               E.A.R. Berg et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/ehjim
p/article/1/1/qyad007/7218980 by N

TN
U

 Library user on 20 N
ovem

ber 2023



A

B

C

D

E

Figure 2 (A–E) Auto-MAPSE: CNN output and post-processing chain. Scales of y-coordinate plots in (D) and (E) are not comparable. In (E), note the 
poor image quality related to atrial contraction and large estimated frame-to-frame jumps due to CNN misinterpretation of proximal clutter in a few 
frames. In this example (E), all estimates from both walls were discarded by the filter algorithms.
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Following these algorithms, non-feasibility was defined for each wall as failure 
to obtain at least one auto-MAPSE estimate per three-cycle recording.

Manual reference
Manual MAPSE reference was estimated using standard clinical software 
(EchoPac 204; GE Vingmed Ultrasound, Horten, Norway). MAPSE was de-
fined as the maximal displacement of the mitral annulus in each cardiac cy-
cle, measured directly on the 2D images (Figure 3), and averaged over the 
number of cycles. Invisible or indistinguishable mitral annular echo at end- 
diastole or end-systole was defined as non-feasibility for the specific cardiac 
cycle/wall. Observer 1 (E.A.R.B.) analysed the full data set and is referred to 
as the manual reference. Observer 2 (T.E.) analysed the inter-observer sub-
set exclusively.

Statistical analyses
We assessed feasibility, agreement, and inter-rater reliability for 
auto-MAPSE and manual observers. Residual plots and Bland–Altman plots 
were assessed for heteroscedasticity. Normality was investigated using his-
tograms, QQ plots, and the Shapiro–Wilk test. Minor deviation from nor-
mality due to outliers was accepted for parametric analysis. All outliers were 
included in the analyses.

Descriptive measures are reported in numbers (%) or mean (±standard 
deviation (SD)) unless otherwise specified. We report the bias and 95% lim-
its of agreement (LoA) of MAPSE estimates. Inter-rater reliability was as-
sessed by a mixed-model intra-class correlation of consistency. The 
intra-class correlation coefficient (ICC) is reported with a 95% confidence 
interval (CI). For linear correlation, we report Pearson’s correlation coeffi-
cient, r (95% CI). Fisher’s z-transformation was applied to compare correl-
ation coefficients. Differences in feasibility were assessed by Fisher’s exact 
test. For inter-rater reliability, linear correlation, and feasibility, P-values 
<0.05 were considered to represent statistically significant differences. 
Data were managed in IBM SPSS Statistics, v. 28 (IBM, New York, NY, USA).

Results
Data characteristics
For the clinical validation, we included mid-oesophageal 4- and 2-cham-
ber view recordings over 3 cardiac cycles from 80 patients. Data char-
acteristics are displayed in Table 3. Arrhythmia was present in 17 (21%) 
of the recordings. Heart rate ranged from 42 to 153 beats per minute. 
Single-wall MAPSE by manual reference ranged from 3.0 to 23.7 mm. 
Figure 4 displays correlation of manual reference MAPSE between views 
and walls. There was a strong correlation between mean four- and two- 

chamber view MAPSEs and between inferior and anterior MAPSEs. 
Processing time for auto-MAPSE averaged 0.3 s per cardiac cycle/view.

Feasibility
Feasibility of MAPSE estimation is presented in Table 4. Overall feasibil-
ity was 92% for manual reference and 91% for ECG-enabled 
auto-MAPSE. Overall feasibility for ECG-disabled auto-MAPSE was 
82%, which was significantly lower than for manual reference and 
ECG-enabled auto-MAPSE.

The feasibility of at least one wall was 96% for both ECG-enabled and 
ECG-disabled auto-MAPSE. Feasibility in at least two walls was 96 and 
95%, respectively. There were no statistically significant differences in 
auto-MAPSE feasibility between the individual walls.

Agreement and inter-rater reliability
Agreement and inter-rater reliability between auto-MAPSE and manual 
reference are presented in Table 4 and Figure 5. Compared with manual 
reference, overall bias [95% LoA] was −0.5 [−4.0, 3.1] mm for 
ECG-enabled and −0.3 [−4.2, 3.6] mm for ECG-disabled 
auto-MAPSE. For anterolateral MAPSE, bias was −1.2 and −1.3 mm, 

Figure 3 Manual MAPSE estimation. Zoomed mid-oesophageal four-chamber view at end-diastole and end-systole. MAPSE was defined as the dis-
placement of the mitral annulus from end-diastole to end-systole for each wall.

Table 3 Data characteristicsa

Heart rate,/min 74 (±20)

Minimum—maximum 42–153

Arrhythmia during 
recordings

Atrial fibrillation 12 (15%)
Atrial flutter 4 (5%)

Premature ventricular 

complex

1 (1%)

Frame rate,/s 38 (±6)

Manual MAPSE, single wall, 

mm

10.7 (±4.0)

Minimum—maximum 3.0–23.7
Manual MAPSE processing 

time, s

Per 3-cycle recording 139 (±33)

Auto-MAPSE processing 
time, s

Per frame 0.009 (±0.0009)
Per 3-cycle recording 0.99 (±0.26)

aValues are reported as mean (±SD) or n (%) unless otherwise stated.

6                                                                                                                                                                                               E.A.R. Berg et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/ehjim
p/article/1/1/qyad007/7218980 by N

TN
U

 Library user on 20 N
ovem

ber 2023



Figure 4 Correlation between views and walls for manual reference MAPSE. Equality and regression (dashed) lines are displayed. Mean MAPSEs from 
mid-oesophageal four- and two-chamber views had a strong linear correlation, r = 0.87 (0.80–0.91). Inferior and anterior MAPSEs had a similarly strong 
linear correlation, r = 0.86 (0.78–0.91). Compared with these, the linear correlation between inferoseptal and anterolateral MAPSEs was more mod-
erate, r = 0.72 (0.58–0.82) (P = 0.013 and P = 0.025, respectively).
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respectively, while bias did not exceed ±0.4 mm in the other walls. 
Overall inter-rater reliability with manual reference did not differ signifi-
cantly between ECG-enabled and ECG-disabled auto-MAPSE, with an 
ICC for consistency of 0.90 and 0.88, respectively. Inter-rater reliability 
between ECG-disabled auto-MAPSE and manual reference was signifi-
cantly higher in the inferior wall compared with the other individual 
walls. Inter-rater reliability between ECG-enabled auto-MAPSE and 
manual reference did not differ significantly between the individual walls.

Inter-observer
Feasibility, agreement, and inter-rater reliability in the inter-observer 
subset are presented in Table 5.

Overall manual inter-observer bias (95% LoA) was −0.9 (−4.7, 3.0) 
mm with an ICC for consistency of 0.86. Inter-rater reliability between 
auto-MAPSE and manual reference did not differ significantly from 
manual inter-observer MAPSE.

Discussion
We have developed a method for automatic MAPSE estimation by 
TOE using deep learning. In this clinical validation, we included consecu-
tive TOE examinations performed as part of standard care in a specia-
lized echocardiography laboratory without selection based on image 
quality. Overall feasibility was >90% for both ECG-enabled 
auto-MAPSE and manual reference and 82% for ECG-disabled 

auto-MAPSE. Feasibility in at least two walls was ≥95% for all methods. 
Inter-rater reliability with manual reference was good with no signifi-
cant differences between ECG-enabled or ECG-disabled 
auto-MAPSE or manual inter-observer assessment. Moreover, agree-
ment between auto-MAPSE and manual reference did not differ from 
manual inter-observer agreement. However, although bias was negli-
gible, the 95% LoA exceeding ±3 mm suggests that auto-MAPSE and 
manual assessment should not be used interchangeably. Importantly, 
this also applies to manual inter-observer assessment. Using portable 
commercial hardware, auto-MAPSE processing time averaged only 
0.3 s per cardiac cycle/view, demonstrating that LV systolic function 
can be monitored in real-time by this method.

Previous work on deep-learning-based auto-MAPSE has been limited 
to transthoracic echocardiography. A segmentation-based real-time 
method using only the end-diastole and end-systole frames was impre-
cise with 95% LoA ±9 mm compared with manual reference.21 In 
healthy volunteers, a method using deep learning for frame-by-frame 
mitral annular tracking demonstrated better results with 95% LoA 
±4 mm compared with manual reference.22

CNN performance, i.e. landmark localization, is influenced by CNN 
architecture and training settings, and by the composition, magnitude, 
and annotations of the training data set.23,24 The magnitude of the train-
ing data set represents a reasonable trade-off between annotation 
workload and amount of training data. We have employed a standard 
‘off-the-shelf’ CNN that has been slightly modified for mitral annular lo-
calization.19,20 Developing a more specific CNN architecture for this 
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Table 4 Feasibility, agreement, and inter-rater reliability in full data set (n = 80)

Analysis Wall ECG-enabled 
auto-MAPSE

ECG-disabled 
auto-MAPSE

Manual 
reference

Feasibility, n (%) Overall (4 walls) 290 (91%)a 263 (82%)a,b 294 (92%)a,b

Inferoseptal 73 (91%) 64 (80%)c 77 (96%)c,d

Anterolateral 71 (89%) 63 (79%) 67 (84%)d,e

Inferior 74 (93%) 66 (83%) 74 (93%)
Anterior 72 (90%) 70 (88%) 76 (95%)e

≥1 wall feasible 77 (96%) 77 (96%) 78 (98%)

≥2 walls feasible 77 (96%) 76 (95%) 76 (95%)
≥1 view (both walls 

feasible)

72 (90%) 68 (85%) 74 (93%)

All 4 walls feasible 64 (80%)f 45 (56%)f,g 67 (84%)g

Feasibility provided feasible reference, n (%) Overall (4 walls) 276 (94%)h 256 (87%)h

Inferoseptal 71 (92%) 63 (82%)

Anterolateral 64 (96%) 58 (87%)
Inferior 71 (96%) 66 (89%)

Anterior 70 (92%) 69 (91%)

Bias [95% limits of agreement], mm* Overall (4 walls) −0.5 [−4.0, 3.1] −0.3 [−4.2, 3.6]
Inferoseptal −0.3 [−3.9, 3.3] −0.1 [−3.5, 3.4]

Anterolateral −1.3 [−4.7, 2.1] −1.2 [−6.1, 3.6]

Inferior −0.4 [−3.9, 3.1] −0.1 [−2.8, 2.6]
Anterior 0.1 [−3.3, 3.5] 0.3 [−3.6, 4.2]

Intra-class correlation coefficient for consistency 

(95% confidence interval)*

Overall (4 walls) 0.90 (0.87–0.92) 0.88 (0.85–0.90)

Inferoseptal 0.88 (0.81–0.92) 0.88 (0.82–0.93)i

Anterolateral 0.92 (0.86–0.95) 0.82 (0.72–0.89)j

Inferior 0.92 (0.87–0.95) 0.94 (0.91–0.96)i,j,k

Anterior 0.87 (0.81–0.92) 0.85 (0.77–0.90)k

Superscript letters denote pairwise statistically significant differences in feasibility or intra-class correlation between methods (same row) or between individual walls within each method 
(same column). a P = 0.003; b P < 0.001; cP = 0.003; dP = 0.015; eP = 0.038; fP = 0.002; gP < 0.001; hP = 0.007; iP = 0.045; jP = 0.002; kP = 0.006 (P ≥ 0.05 for all other comparisons). 
*Compared with manual reference.
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task may further improve performance.24 In selected cases, the CNN 
failed to identify the same landmark over time (Figure 2E). In addition 
to increased amount of training data, which is always advantageous in 
deep learning, this problem may be reduced by deploying more tem-
poral information and/or sequential landmark localization.22 Such fea-
tures may increase feasibility, accuracy, and precision at the cost of 
processing time.

To discard low-quality data that could potentially return erroneous 
MAPSE estimates, we applied filter algorithms customized from the pi-
lot validation data set (Table 1). Expectedly, this reduced outliers at the 
cost of feasibility. Optional adjustment of filter settings for the individual 
patient or clinical setting may be useful. Nevertheless, data quality, and 
hereby potentially erroneous estimates, is also obvious from the con-
tinuous plots of estimated mitral annular location (Figure 2D and E), 
which are available to the clinician.

The main cause of non-feasibility was noise at end-diastole following 
atrial contraction (Figure 2E). This phenomenon was likely exaggerated 
by the foreshortened view of the cardiac chambers, often seen leading 
to off-centred view of the posterior parts of the left atrium. Specific at-
tention to the challenge and optimization of probe positioning may 
mitigate this issue.

Mid-oesophageal view deviation from the LV long axis causes over-
estimation of the true MAPSE by the factor of one over the cosine of 
the deviation angle. In most cases, this impact is small due to the usually 

obtained minute angle. Moreover, for monitoring purposes, measure-
ment consistency over time and relative changes in magnitude are 
more important than absolute values. In this respect, MAPSE estimates 
are also likely to be less affected by minor probe-to-heart displacement 
than estimates of ventricular volumes and global longitudinal strain.

Several studies have demonstrated global reduction in MAPSE fol-
lowing myocardial infarction, including walls remote to the infarc-
tion.25–27 In other words, any regional MAPSE reflects global LV 
function and not only function in the adjacent wall. In the present 
data set, mean four- and two-chamber view MAPSEs were strongly 
correlated, as were anterior and inferior MAPSEs (Figure 4). Hence, 
for monitoring global LV function using MAPSE, one may probably 
opt for the view with the superior image quality. Moreover, single-wall 
monitoring from the two-chamber view may also be an option. This 
may further enhance feasibility (Table 4).

We found a larger bias for anterolateral MAPSE compared with 
other walls. Local differences in systolic excursion around the antero-
lateral annulus may be quite pronounced, typically increasing with a 
more lateral annotation. Thus, even minor systematic annotation differ-
ences between manual reference and auto-MAPSE may lead to bias. 
However, at just over 1 mm, this bias has little clinical significance, at 
least in a monitoring setting, and does not imply that the anterolateral 
wall should be avoided. Furthermore, although inter-rater reliability 
between ECG-disabled auto-MAPSE and manual reference was 

Figure 5 Correlation and Bland–Altman plots of ECG-enabled (left) and ECG-disabled (right) auto-MAPSE compared with manual reference. In the 
Bland–Altman plots (bottom), the dashed lines represent the bias (middle) and upper and lower 95% LoA (±1.96 SD).
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significantly higher in the inferior wall than the other walls, the amount 
of data behind this is limited, and similar findings were not seen for 
ECG-enabled analysis. Hence, we advise against generalizing this finding 
to a common recommendation.

Although CNN training was performed from four- and two- 
chamber views, auto-MAPSE provides ‘right’ and ‘left’ MAPSE estimates 
without view distinction. This means that auto-MAPSE may potentially 
function in non-standardized views, though, importantly, this is yet to 
be confirmed.

Limitations
A comprehensive discussion on inherent MAPSE limitations, which also 
apply to auto-MAPSE, is considered out of scope for this manuscript. 
MAPSE is insensitive to isolated changes in circumferential strain, which 
may be caused by alteration of LV circumferential contraction, myocar-
dial compressibility, or geometry. Moreover, the close relationship be-
tween MAPSE and global longitudinal strain may be disturbed by 
mechanical factors such as apical dyskinesia, pericardial adhesions, or 
external heart compression. However, when such phenomena are ei-
ther absent or constantly present, in principle, serial MAPSE should 
be sensitive to changes in LV systolic function.

Occasionally, pronounced lateral and/or elevational translation can 
make it impossible to align an M-mode or anatomical M-mode to the 
same mitral annular landmark throughout the cardiac cycle. The same 
problem does not apply to auto-MAPSE. However, as the 
auto-MAPSE method estimates total (not strictly longitudinal) mitral 
annular displacement, lateral translation will lead to an overestimation 
of MAPSE, which is not corrected by averaging over a full respiratory 
cycle. If pronounced, this may possibly attenuate auto-MAPSE detec-
tion of minor changes in LV function. On the contrary, any axial respira-
tory movement of the mitral annulus can be corrected by averaging 
MAPSE estimates over a full respiratory cycle.

By defining end-diastole and end-systole from the peaks of the land-
mark plots, auto-MAPSE may involve pre- or post-systolic displace-
ment. This may reduce sensitivity to minor alterations in LV systolic 
function. Image-based detection of end-diastole and end-systole28

may alleviate this.
Regardless, frame-to-frame assessment of full cardiac cycles im-

proves precision.22

Although recording settings have been mimicked to realistic moni-
toring situations, the present clinical validation has been performed 
from single-time-point recordings from an echocardiography labora-
tory. Auto-MAPSE will return the exact same MAPSE estimate on re-
peated assessment of the same recording, i.e. perfect reproducibility 
on identical data. This is a fundamental feature of artificial neural net-
works provided training mode is disabled and settings are unchanged. 
However, this study was not designed to determine the precision or 

least significant change of auto-MAPSE over numerous cardiac cycles 
and time. Further investigation and validation should be performed in 
relevant monitoring settings.

Conclusions
In patients with various heart diseases without selection on image qual-
ity, auto-MAPSE had an overall feasibility of 91% with ECG and 82% 
without ECG. The feasibility of at least two walls was 96% with ECG 
and 95% without ECG. Inter-rater reliability between auto-MAPSE 
and manual reference was good, with an overall ICC of 0.90 with 
ECG and 0.88 without ECG. The agreement between auto-MAPSE 
and manual reference did not differ from manual inter-observer 
assessment.

Auto-MAPSE has an ultra-short processing time and may be imple-
mented in modern ultrasound scanners for real-time monitoring of glo-
bal LV function. The usefulness of real-time application of auto-MAPSE 
in relevant clinical settings should be investigated, including the potential 
benefits from improved reproducibility compared with manual 
assessment.
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Table 5 Feasibility, agreement, and inter-rater reliability in inter-observer subset (n = 30)

Analysis Observer 2 ECG-enabled  
auto-MAPSE

ECG-disabled  
auto-MAPSE

Manual  
reference

Feasibility, n (%) 107 (89%)a 101 (84%) 93 (78%)a 105 (88%)
Feasibility provided feasible reference, n (%) 102 (97%)b,c 94 (90%)b 88 (84%)c

Bias [95% limits of agreement], mm* −0.9 [−4.7, 3.0] −0.6 [−4.3, 3.2] −0.2 [−4.2, 3.8]

Intra-class correlation coefficient for  
consistency (95% confidence interval)*

0.86 
(0.80–0.90)

0.88 
(0.83–0.92)

0.87 
(0.81–0.92)

Overall results from all 4 walls are displayed. Superscript letters denote pairwise statistically significant differences in feasibility or intra-class correlation between methods.  a P = 0.024; b P  
= 0.049; c P = 0.002 (P ≥ 0.05 for all other comparisons). 
*Compared with manual reference.
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Data availability
The data underlying this study cannot be shared publicly due to limitations 
in ethical approval and patient consent.

Consent
The study was approved by the regional committee for medical and 
health research ethics (REK 2017/900). It was based on anonymized re-
cordings from TOE performed as part of standard clinical care. The pa-
tients received written information on the study and could opt out at 
will.
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