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Abstract: The global climate is changing. Predicting the impacts this will have on buildings is the
first step in the process of finding suitable building adaptation measures. Future climate adaptation
of buildings and infrastructure is a growing field of research, relying on both socio-economical
and meteorological research for input values to the simulation models. Models producing hourly
future weather data rely on global climate models which are based on emission scenarios made from
assumptions of future political, social, and economic developments. Accounting for the uncertainties
from these underlying models as much as possible, and communicating the uncertainties in the results,
is obviously paramount for reliable conclusions from the building simulation models. This paper is
a scoping review, investigating how 132 studies treat and communicate the string of uncertainties
from underlying models connected to future weather file generation in the scientific literature on
building adaptation research. The findings suggest that climate-model-induced uncertainties are
often under-communicated, due to either insufficient analysis or neglect. The studies that included
the most comprehensive analyses of the uncertainties frequently concluded that treatment of these is
important for the reliability of the results, and neglecting this could lead to misleading conclusions.
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1. Introduction
1.1. Background

Climate change is one of the main challenges we are facing in the 21st century, with
wide-spanning environmental, economic, and health related consequences [1]. The built
environment is a considerable contributor to greenhouse gas emissions by being responsible
for 25–40% of world-wide emissions [2]. It is also a victim of the consequences, as climate
effects are expected to lead to costly damages to buildings and infrastructure in the years
to come [3]. Reliable tools for assessing building performance under future climatic strains
are needed if we are to adapt to the future climate [4]. Research into building adaptation
measures using future climate scenarios is paramount in such a tool kit, requiring input
contributions from socio-economical and meteorological research for production of emis-
sion scenarios and climate models. However, these underlying models will introduce a
higher level of uncertainty to the results when compared to using the present-day climate
as the model input. Assessment of how future climate-induced uncertainties may influence
the results in such studies places extra demands on the comprehensiveness of the method.
Further, implementing uncertainty evaluations into the presentation of results complicates
conclusions, distracts from the main findings, and are challenging to communicate in a clear
way. For these reasons, implementation of uncertainty evaluations in the methodology
may be neglected in many cases. Uncertainty is a wide-ranging concept which comes
in many forms, and methods for managing it will be decided by the properties of the
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particular uncertainty. Perceptions of risk and uncertainty are subjective in nature, and as
such they will be formed by the attributes of the perceiver, and the characteristics of the
risk. There are two fundamental pathways in which human beings comprehend risk and
uncertainty, namely the analytic system and the experiential system [5]. The analytic system
is characterized by using algorithms and normative rules, while the experiential system
relies on associations, emotions, and affect. The analytic system for uncertainty treatment
requires the creation of a model of the problem at hand, and Riesch et al. have proposed
to categorize uncertainties related to such a model into five distinct levels, as outlined in
Table 1 [6]. Note that the term “model” in Table 1 refers to any model of empirical reality,
and not climate models or emission scenario models specifically.

Table 1. Hierarchical levels of uncertainty in prospects [6].

Category Description

Level 1 Uncertainty about the outcome: The model is known, the parameters are known, and it predicts a certain
outcome with a probability p.

Level 2 Uncertainty about the parameters: The model is known, but its parameters are not known. A lack of empirical
information leads to uncertainties in the probability of the outcome.

Level 3 Uncertainty about the model choice: There are several models to choose from, and we have an idea of how
likely each competing model reflects reality.

Level 4 Uncertainty about acknowledged inadequacies and our implicitly-made assumptions in the chosen model:
The validity of the assumptions is questioned, both omitted and included in the model.

Level 5 Uncertainty about unknown inadequacies: There is uncertainty as to whether a high impact parameter in the
model is lacking because the parameter is unknown.

Uncertainties in emission scenarios and future climate modelling are dominated by
levels 4 and 5. There are several models to choose from, but the model that most accurately
represents reality cannot be verified because of the vast complexity of the parameters and
assumptions [6]. Some of the uncertainties in the global climate simulation models are
quantifiable and manageable by means of empirical and computational improvements,
while others represent unquantifiable, irreducible epistemological limits related to inductive
reasoning and to the nature of model-based global science [7]. To mitigate this problem,
a parameter of uncertainty can be introduced that may provide the ground for practical
decision making by incorporating the uncertainties in such a way that quantitative estimates
may be given [8]. Ignoring this uncertainty when using future climate models, on the other
hand, will carry the higher-level uncertainties of Table 1 from the climate models into
the results.

This study seeks to map the extent to which climate-scenario-induced uncertainties are
evaluated and communicated in building climate adaptation research through a scoping
review of the published literature in the field of climate adaptation measures for buildings
from 2014 to 2021. Building climate adaptation is defined in this study as measures taken
to prepare buildings for future changes in climatic strains, including their effects on indoor
climate and energy use. The selection of studies is based on the findings from a previous
scoping review performed by Stagrum [9,10], where the extent of scientific publications
on climate adaptation within the field of building physics was mapped. The literature
found by Stagrum is updated here with the published research from 2019–2021, using the
same search method. The selection of studies is restricted by only considering the literature
that employ the use of future climate scenarios for adaptation measures of a building and
its parts against climatic strains, including future climate effects on indoor climate and
building energy use.

The purpose of this work is to first map the methods used for creating future climate
scenarios in building adaptation research, and then review how sources of uncertainties
related to future climate estimation are principally treated and communicated. The focus
of the study is the awareness, and ultimate communication, of the uncertainties generated
through future climate modelling. The following research questions are addressed:
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1. Which methods are used for producing future climate scenarios in research concerning
future climate adaptation measures for buildings?

2. How are climate-model-induced uncertainties influencing the results evaluated
and communicated?

This study is directed towards scientists within the field of building climate adap-
tations, aiming to increase awareness of the underlying uncertainties involved in future
climate projections. Treatment and communication of these uncertainties are important
and, as the results will show, often neglected or underestimated. Specific methods for nu-
merically treating and mitigating uncertainties in future climate models is outside the scope
of this review, as the focus is to see the extent to which they are principally treated through
methodological choices and ultimately communicated through the results. Fortunately,
there are several excellent works addressing the technical challenges in mitigating uncer-
tainties in future weather file synthesis, some of which are presented in Sections 1.2–1.4.
The reader is encouraged to look through the referred studies in this section to find specific
methods and tools for mitigating the uncertainty when using future climate models in
building adaptation studies.

In the following sections, an overview of the field of future climate modelling is
presented, with an emphasis on the uncertainties induced by the models, as a theoretical
framework for the subsequent discussion of the review findings.

1.2. Emission Scenarios

In 2000, the Intergovernmental Panel on Climate Change (IPCC) published a set of
future emission scenarios in their Special Report on Emission Scenarios (SRES) [11], in
connection to their 4th assessment report (AR4). In 2014, these were revised in the IPCC’s
5th assessment report (AR5) [12], with a set of Representative Concentration Pathways
(RCP). The SRES scenarios from the 4th assessment report are named by family (A1, A2,
B1, and B2), where each family is designed around a set of consistent assumptions, such
as a world that is more integrated or more divided [13]. The RCP scenarios from the 5th
assessment report, on the other hand, are named for the resulting change in radiative
forcing in 2100, from +2.6 W/m2 to +8.5 W/m2. Comparing the CO2 concentrations and
the resulting global temperature change between the SRES and RCP scenarios, the SRES
A1F1 is comparable to RCP 8.5; the SRES A1B to RCP 6.0; and the SRES B1 to RCP 4.5.
The RCP 2.6 scenario is much lower than any SRES scenario because it includes policies to
achieve net negative carbon dioxide emissions before the end of the century, while SRES
scenarios do not [13]. The SSP scenarios used in CMIP6 and IPCC-AR6 are not relevant
here since the cut-off for papers evaluated is prior to the launch of IPCC-AR6-WG1.

The emission scenarios have been used for the past decade by the scientific community
for creating projections of future climate changes, as well as assessing the consequences for
a given object of study. Numerous Global Circulation Model (GCM) projections based on
these emission scenarios have been produced by different scientific communities across the
globe [14–16].

1.3. Climate Models, Downscaling Methods, and Weather File Synthesis

The global models, as those used in the IPCC, give a good representation of possible
futures at a global and regional level, but is far too coarse a tool on a national and sub
national level; here, the various techniques for downscaling come into play. The core
idea of downscaling climate projections is to combine the coarse regional/global results
with more localized information, e.g., topography. There are in principle three approaches
to this: (1) change factor method where one, e.g., scales the known climate at a location
with the projected global change, (2) statistical downscaling, where the basic idea is to use
statistical methods to connect global/regional weather patterns to a local response, and
(3) dynamical downscaling, where one uses regional climate models to project the local
climate and weather with border conditions from the global climate model [17]. All of these
methods have advantages and disadvantages. The advantage of dynamic downscaling is
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to be able to create datasets where extraction of, e.g., physically consistent time series is
possible. The advantage of statistical downscaling, which produces a statistical distribution
and needs a weather generator to create time series if that is required, is that speed and
low cost facilitate a broader exploration of the full range of possible outcomes [18]. For a
comprehensive review of the details in climate modelling methods Ekstrøm et al. [19] and
Rummukainen [17] are recommended reads.

In order to translate future climate projections into a usable format for building
climate adaptation studies, synthesis of weather files based on the climate models becomes
necessary. A common method is to create a typical meteorological year, a method developed
by Hall et al. in 1978 [20], where representative months from several years of observation
or climate model output are selected and compiled. These are then broken down into daily
and hourly values, relying on observed statistical distributions of daily indices such as
minimum, mean, and maximum values of the climate variables. A major disadvantage to
this method is that extreme conditions are underestimated due to the nature of averages.
This disadvantage is even more prevalent when considering future climate changes, due to
the increased occurrence and severity of extreme weather expected [21]. There are several
propositions to mitigate this problem in the literature, e.g., using more than one synthesized
weather file [22,23], where extreme conditions are taken into account. Comprehensive
predeveloped data sets exist for many areas, such as in the UK where the UKP09 weather
generator [24,25] provides a range of possible climate change projections based on 100 sets
of 30-year-long synthetic weather data, thus providing probabilistic distributions for risk
assessments [26].

1.4. Uncertainties in Climate Projections

Nils Bohr is commonly quoted with the words “Prediction is very difficult, especially
if it’s about the future!” and yet this is exactly what climate researchers try to do. The main
tool for this is earth system models and atmosphere–ocean general circulation models,
more commonly known as climate models. The aim of these models is to simulate the earth
climate system as it has been and as it may be in the future. The earth system is complex
and thus provides multiple sources of uncertainties. These uncertainties may originate in
the simplification of the earth to the finite grid and the physics to fit into this grid; sub grid
phenomena are usually implemented with statistics and parameterization. There is also
a distinct natural variability in the models. Another set of uncertainties when projecting
the future is which future to project. To compensate for the inherent uncertainties in the
choice of scenarios, biases in global models, and downscaling techniques, the use of broad
ensembles is common in climate research. A broader summary of the models’ uncertainties
may be found in the IPCC’s “Climate Change 2021: The Physical Science Basis”, especially
chapter 4 by Lee et al. [27].

Ekstrøm et al. [19] classify most of the uncertainties surrounding global climate pro-
jection into three types: (1) Choice of emission scenario. (2) Uncertainties in the system’s
response, and how well the model simplifications replicate the earth’s response. (3) Uncer-
tainties in natural variability due to the chaotic nature of weather patterns. The different
uncertainties introduced by emission scenario choices (type 1) and model selections (type 2)
are largely connected to levels 3 and 4 in Riesch’s categorization (see Table 1). Following the
value chain of the climate projections, the GCM contains both errors and simplifications that
may result in systematic biases. Choice of methods and domains for downscaling further
add potential uncertainties and biases, which may be partly compensated for through bias
corrections but will always include uncertainties due to natural variability (type 3). Besides
bias corrections, careful selection of models may compensate for some of the shortcomings.
The different uncertainties introduced in the methods used for creating future weather data
will thus be connected to all levels in Riesch’s categorization described in Table 1. However,
the ones that may be the most easily treated by a building adaptation researcher are con-
nected to levels 1–3, by model selection, model calibration, and model output treatment.
Ideally, the sample of underlying models used should be as wide as possible to cover the
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full range of possible futures under a chosen projection [28]. Figure 1 shows the effect of
subsampling, where the blue and red represent the national climate projections for Norway,
while the full range is presented in orange [28,29].
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Figure 1. Historic and future climate projections for Norway under scenario RCP4.5, by empirical
statistical downscaling. Blue represents nine projections for Norway that have been dynamically
downscaled and bias-corrected, red is the same models statistically downscaled, and orange presents
the full range of the GCMs statistically downscaled for Norway [28,29].

Considering RCP 4.5 and RCP 8.5, which are the two most frequently used scenarios
found in this review, the difference in precipitation and temperature predictions has been
shown to be larger between the scenarios than the variation between different GCMs for
considerations of the 2071–2100 climate [30]. This means that emission-scenario-related
uncertainties yield larger variation in final results than climate-model-related uncertainties.

All downscaling will carry the biases and errors of the respective GCM and add un-
certainty from other sources as well. Model structure uncertainty is the main source of
standard error in GCM simulation, and systematic bias correction by comparing model
outputs to observations will reduce this error [31]. Wu et al. [32] demonstrate the inherent
uncertainties from the driving conditions and the uncertainties in the RCM. Calculating
an expression for the inherent and added uncertainty from dynamic downscaling is both
difficult and valuable. Boundary conditions and initial conditions will both contribute to
the uncertainty level of the model. However, as simulation lengths increase, the contri-
bution from initial conditions will decrease and boundary condition contributions will
dominate [32]. In an ideal world, increasing the resolution of the models would decrease the
uncertainties in the output. However, increasing the resolution introduces new challenges,
such as accurate prediction of local precipitation intensity over shifting terrain, and thus a
careful evaluation of the required resolution for the problem at hand is necessary [32,33].

The GCM output of hydrological variables, such as precipitation levels and intensities,
is wide-spread due to several uncertainties introduced at multiple stages [34]. Extreme
rainfall can be particularly difficult to simulate on a local level because high resolution
models of cloud formations and air movements are complex, with a high variability between
the models, even on a global scale [32]. A comparison study of 20 GCMs under both RCP 4.5
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and RCP 8.5 scenarios showed that the projection uncertainty of precipitation predictions
reached 25.1% for RCP 4.5 and 33.5% for RCP 8.5 in 2071–2100 simulations. Overall, GCMs
forced by high-emission scenarios yield higher variations between the models than GCMs
forced by low-emission scenarios [30]. This emphasizes the importance of using multiple
GCMs when producing weather data for climate adaptation studies, to produce a more
complete description of possible futures that is not unnecessarily limited by subsampling.

The IPCC presents a common framework for presenting uncertainties in findings, to
ensure consistent treatment and communication of uncertainties [35]. They suggest using
a level of confidence scale based on a qualitative assessment of agreement and evidence
for the findings. The nine possible confidence categories are combinations of low-medium-
high agreement based on consistency and limited-medium-robust evidence based on type,
amount, quality, and consistency. If the confidence level is sufficiently high, a confidence
evaluation should be performed. If uncertainties can be quantified probabilistically, the
findings can be further characterized by using either a consistent language for likelihood
characterization suggested by the IPCC or probabilistic quantification of the uncertainties
whenever possible [35]. As both emission scenarios and GCMs are very complex, a system-
atic approach to generalize uncertainty levels across different types of studies and findings
proved to be difficult. A review of the papers using the IPCC guidance note highlighted
three problems in the application of the procedure: (1) procedural unreliability stemming
from nontransparent qualitative judgements with possible biases, (2) deep uncertainties
related to epistemic approaches, broad scope of diverse problems and complex systems,
and (3) communication of the uncertainties to users may be skewed, as information with
a high degree of certainty is focused on, while information concerning large negative
consequences is neglected if information uncertainty is high [36].

2. Materials and Methods
2.1. Overview

The scoping literature review presented in Sections 3 and 4 is conducted in accordance
with the methodological framework described by Arksey and O’Malley [37], which is a
six-step procedure: (1) identifying the research question, (2) identifying relevant studies,
(3) study selection, (4) charting data, (5) collating, summarizing, and reporting the results,
and (6) consultation.

2.2. Identifying and Selecting Relevant Studies

To ensure that the selection of literature from the last three years is compatible with
the original literature gathered by Stagrum, the same method was employed. A summary
of the search method used by Stagrum [9,10], modified to fit the added restrictions in scope
in this study, is presented below.

Two search processes were used, hand searching of selected key journals and struc-
tured key word searching of selected databases. The selected journals are listed in Table 2,
along with the selected key words and search engines used in the search. Searches were
structured by combining two or more key words in order to reduce the number of hits to
a manageable level (<200–300 approx.). Studies were first selected based on relevancy in
the title, and then either included or excluded based on abstract relevancy. The relevant
studies were limited to articles concerning adaptation measures in the field of building
physics employing future climate scenarios from 2014 to 2021. Articles concerning urban
and spatial planning, infrastructure, and governance were excluded. Articles where climate
model method development were the main focus were also excluded, although some of the
ultimately included articles were case studies with the aim of testing a newly developed
methodology. These “grey-area” articles were included or excluded on a case-by-case basis,
by determining whether the case study or the method development was the main focus of
the article.
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Table 2. Summary of journals, search engines, and key words used in the literature search.

Journals Search Engines Key Words

Building and Environment

Science Direct
Oria
Google Scholar

Climate change
Climate Services Adaptation
Energy and Buildings Impact
Building Research & Information Building
Journal of Climate Change Energy
Buildings Thermal comfort
Journal of Building Physics Cooling
Sustainable Cities and Society Overheating
International Journal of Climate Change
Strategies and Management

Measure
Retrofit

Stagrum identified 82 studies using future climate scenarios in the original search
from 2014–2018 [9,10]. Conducting the same search with the same limitations of scope
for 2019–2021 yielded a further 50 studies, making the total sum of identified studies 132.
The final selection of studies was processed in accordance with the method described by
Arksey and O’Malley [37], with an emphasis on climate modelling methods and uncertainty
assessments as per the research questions described in Section 1.1.

2.3. Charting Data

The methodology for producing the underlying climate models has been systematically
analyzed for all studies by answering a set of key questions: (1) which emission scenarios
are used, (2) what method is used for producing weather data, and (3) what climate
parameters are needed to produce the models.

The treatment of climate-related uncertainties has been systematically analyzed in
the same way by answering another set of key questions: (1) how is the emission scenario
chosen and are uncertainties related to the choice evaluated, (2) are uncertainties related to
the chosen climate-modelling procedure evaluated, and (3) are climate-related uncertainties
presented in the results, either as a qualitative evaluation or by statistical analysis.

In addition to the two sets of queries above, the field of research for each study has
been noted and categorized. Answers to the questions have been summed up and analyzed
for all studies and sub-divided into key categories.

Results from the charting of the data are presented in Section 3. The key findings from
the analysis are discussed further in Section 4.

3. Results
3.1. General Overview of the Identified Studies

In all, 132 studies were identified, and a summary of the different study categories
is presented in Figure 2. See Appendix A for a detailed list of the included studies and
Tables 3 and 4 for a summary of the review findings. As can be seen from Figure 2, the
selection is clearly dominated by studies concerning energy demand and HVAC. This is
partly an artifact of the chosen search terms, and partly because articles in these two fields
are published more frequently compared to the other research categories. Because of the
unknown size of the selection bias resulting from the chosen search terms, ratios between
the different categories in Figure 2 cannot be taken as the ratio of publishing frequency
between the fields. Approximately two thirds of the identified studies were within the
fields of energy demand (n = 49) and indoor climate evaluation (n = 38). The remaining
third was split between performance evaluations of materials and building parts (n = 15),
sustainability evaluations on a building level or above (n = 21), and studies estimating
future climate loads for buildings (n = 9).
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Table 3. Categorization of climate models used in the study selection, and identification of studies
included in each category (see Appendix A for study ID references).

Categorization # Study ID (See Appendix A for Study Details)

Field of
research

Energy demand for heating and cooling 49
3, 4, 6, 12, 14, 15, 18, 21–24, 29, 31–33, 35, 36, 38, 41, 42, 44, 48, 50–54,
56, 65, 67, 71, 73, 76, 77, 80, 82–84, 86, 90, 94, 101, 110, 113, 120, 123,
126, 130, 132

HVAC, overheating, and indoor climate 38 1, 2, 5, 7, 9, 10, 13, 17, 19, 20, 28, 30, 37, 40, 55, 57, 59, 63, 66, 68–70,
74, 81, 85, 87, 92, 97, 100, 102, 112, 116, 121, 122, 124, 127, 129, 131

Future climate loads for buildings 9 72, 75, 79, 104–106, 115, 125, 128

Performance/sustainability (system level) 21 11, 16, 27, 39, 43, 45, 47, 49, 58, 60, 62, 64, 88, 89, 91, 95, 98, 103, 107,
109, 119

Performance/sustainability (material or
component level) 15 8, 25, 26, 34, 46, 61, 78, 93, 96, 99, 108, 111, 114, 117, 118

Climate
parameters

Temperature and solar radiation 130 1–98, 100–124, 126–132

Athmospheric conditions (humidity,
CO2-concentrations, pollutants) 72

1–6, 8, 12, 13, 21, 23, 25–28, 30, 33, 37, 38, 42, 44, 46–48, 52, 54, 55, 57,
60, 61, 65, 67,
70, 76–78, 80–85, 87, 89–92, 94–97, 99, 103, 104, 107–109, 112,
114–118, 121, 122, 126–128, 130–132

Precipitation 20 25, 46, 60, 61, 72, 75, 77, 79, 82, 93, 104, 105, 108, 111, 114, 115, 117,
118, 128, 131

Wind direction and wind speed 45
1, 2, 5, 6, 12, 13, 25, 27, 28, 30, 33, 47, 48, 54, 57, 60, 61, 65, 67, 70,
75–77, 79, 80, 82, 84, 85, 87, 89, 90, 92, 94, 95, 97, 105, 109, 112,
114–116, 118, 121, 126, 131

Frost cycles and snow loads 5 72, 75, 117, 126, 128

Model time
interval

Hourly values 98
1, 2, 4–7, 9–12, 17–25, 28–30, 32–34, 36–39, 41, 42, 44, 46–51, 54, 55,
57, 59, 61–67, 69, 70, 74, 76, 79–90, 92–98, 100–104, 107, 109, 111–118,
120–128, 131, 132

Daily values 15 14–16, 35, 40, 53, 58, 71–73, 77, 78, 91, 106, 129
Monthly values 18 3, 8, 13, 26, 27, 43, 45, 52, 56, 60, 68, 75, 99, 105, 108, 110, 119, 130

Emission
scenario

RCP 2.6/B1 14 51, 53, 67, 70, 91, 97, 99, 101, 106, 108–110, 117, 119

RCP 4.5/B2 46
7–9, 12, 20–23, 29, 30, 32–34, 36, 37, 47, 50, 53, 61, 66–68, 71–73, 75,
77, 80, 81, 84, 90, 91, 93, 97, 99, 101, 102, 106, 107, 109, 117, 120, 123,
125, 126, 132

RCP 6.0/A1B 30 1, 2, 6, 7, 10, 12, 14, 16, 20–22, 24, 25, 27, 29, 32, 34, 36, 37, 39, 40, 51,
57, 58, 70, 74, 87, 94, 109, 130

RCP 8.5/A1F1/A2 90
3–5, 7, 8, 12, 15, 17–21, 26, 28, 29, 32–39, 42–48, 50, 51, 53, 56, 59,
63–69, 71, 72, 75, 77, 79–86, 88–95, 97–99, 101, 103, 104, 107–111, 113,
115–124, 126–129, 131, 132

Non-IPCC scenario (i.e., +T temp. change) 7 52, 55, 61, 62, 105, 112, 114
Historical extreme 2 11, 49
Not specified 9 13, 31, 41, 54, 60, 76, 78, 96, 100
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Table 3. Cont.

Categorization # Study ID (See Appendix A for Study Details)

Climate model
to weather data

Dynamic downscaling, multiple GCM-RCM chains 23 5, 16, 24, 25, 33, 35, 36, 41, 61, 72, 75, 98, 101, 103–106, 109, 111, 114,
115, 118, 122

Dynamic downscaling, single GCM-RCM chain 16 1, 2, 6, 14, 23, 28, 30, 31, 34, 48, 57, 66, 81, 85, 117, 125
Statistical downscaling/morphing, multiple
GCM/RCM 23 8, 9, 18, 21, 37, 53, 56, 67, 79, 80, 82, 86, 90, 93, 97, 107, 108, 110, 124,

126, 128, 131, 132

Statistical downscaling/morphing, single
GCM/RCM 45

4, 7, 10, 12, 13, 17, 20, 22, 26, 27, 29, 32, 38–40, 42, 44, 46, 47, 51, 54,
58–60, 62–65, 76, 83, 84, 88, 89, 91, 92, 94–96, 100, 112, 113, 116, 120,
121, 129

Other 7 11, 15, 43, 49, 70, 71, 78
Not described 18 3, 19, 45, 50, 52, 55, 68, 69, 73, 74, 77, 87, 99, 102, 119, 123, 127, 130

Result
presentation

Probabilistic output (evaluation of climatic
uncertainties and/or variance) 27 3, 7, 10, 20, 21, 24, 25, 32, 40, 41, 53, 58, 59, 61, 79, 90, 93, 103, 104,

106, 107, 110, 114, 115, 118, 126, 128
Deterministic multiple output (alternative climatic
outcomes) 44 8, 12, 19, 29, 30, 33–37, 39, 47, 50–52, 55, 65–68, 70–72, 75, 80–82, 84,

91, 94, 97, 98, 101, 105, 108, 109, 111, 112, 117, 120, 122, 123, 131, 132

Deterministic single output (no alternative climatic
outcomes) 60

1, 2, 4–6, 9, 11, 13–18, 22, 23, 26–28, 31, 38, 42, 44–46, 48, 49, 54, 56,
57, 60, 62–64, 69, 73, 74, 76–78, 83, 85–89, 92, 95, 96, 99, 100, 102, 113,
116, 119, 121, 124, 125, 127, 129, 130

Table 4. Description of future climate uncertainty treatment in the study selection, and identification
of studies included in each category (see Appendix A for study ID references).

Description # Study ID (See Appendix A for Study Details)

Emission
scenario

Numerical analysis of scenario variations 24 4, 12, 14, 15, 17, 20, 36, 39, 50, 59, 64, 65, 83, 90, 93, 101, 105, 107, 108,
110, 114, 117, 123, 130

Description of scenario uncertainty/variation 73
5, 8, 11, 19, 21, 22, 25–30, 32–34, 37, 40–43, 46, 47, 49, 51–53,55, 58, 61,
62, 67, 68, 70–72, 74, 75, 77–81, 84–89, 91, 92, 94, 95, 97–99, 103, 104,
106, 109, 111, 113, 115, 116, 120–122, 124–129, 132

No description of scenario variations or scenario
related uncertainties 34 1–3, 6, 7, 9, 10, 13, 16, 18, 23, 24, 31, 35, 38, 44, 45, 48, 54, 56, 57, 60,

63, 66, 69, 73, 76, 82, 96, 100, 102, 112, 119, 131

Climate model
to weather data

Calculated climate model uncertainties or
variations 36 3, 6, 7, 9, 10, 20, 21, 24, 25, 29, 30, 32, 41, 58, 59, 61, 72, 75, 78, 79, 81,

90, 93, 103, 104, 106, 107, 109–111, 114, 115, 120, 126, 128, 132
Description of climate model uncertainties and
biases 30 16, 23, 35, 37, 40, 44, 46, 47, 51, 53, 57, 65, 67, 80, 88, 89, 91, 92, 94, 95,

97, 98, 100, 108, 113, 117, 121, 122, 124, 129

No description of climate model uncertainties and
biases 62

1, 2, 4, 5, 11–15, 17–19, 22, 26–28, 31, 33, 34, 36, 38, 39, 42, 43, 45,
48–50, 52, 54–56, 60, 62–64, 66, 68–71, 73, 74, 76, 77, 82–87, 96, 99,
101, 102, 105, 112, 116, 119, 123, 125, 130

Result
presentation

Calculation of climate model uncertainties or
variations 30 3, 7, 10, 20, 21, 24, 25, 32, 39, 41, 53, 58, 59, 61, 72, 79, 90, 93, 103, 106,

107, 109–111, 114, 115, 118, 122, 126, 128
Evaluation of climate model uncertainty as an
unknown factor 17 4, 15, 23, 29, 30, 40, 67, 75, 80, 81, 88, 97, 104, 105, 116, 121, 132

Explicit acknowledgement of climate model
uncertainty with no evaluation 29 8, 16, 17, 28, 33, 36, 38, 42, 43, 46, 47, 51, 62, 66, 68, 71, 77, 78, 83, 94,

102, 108, 112, 113, 117, 120, 123, 125, 127

No mention of climate model uncertainty 56
1, 2, 5, 6, 9, 11–14, 18, 19, 22, 26, 27, 31, 34, 35, 37, 44, 45, 48–50, 52,
54–57, 60, 63–65, 69, 70, 73, 74, 76, 82, 84–87, 89, 91, 92, 95, 96,
98–101, 119, 124, 129–131

Climate parameters for studies of future energy demand and HVAC performance are
mainly influenced by temperature forecasts, which means that the introduced uncertainty
is almost exclusively confined to the temperature dimension. This fact may also cause these
fields to employ future climate scenarios more frequently when compared to studies using,
e.g., models of future precipitation. Studies concerning performance or sustainability of
buildings against climate loading need to produce accurate models of multiple climate
parameters, two examples being precipitation in combination with temperature and subzero
temperatures in combination with recent rainfall. Such multidimensional climate models
place a high demand on the method for procuring future climate projections in order
to reduce the resulting uncertainties to an acceptable level. The same is true for the
studies estimating future climate loads for buildings, i.e., maps of wind-driven rain or
future snowfall.
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Studies of future energy demand for heating and cooling most frequently comprised
one or more case studies of specific buildings. Evaluation of performance after specific
retrofitting measures was also commonly found in this category. Some studies looked
at energy performance on a district level or higher, pointing out trends on a larger scale.
However, the vast majority of studies in this category were case studies of future energy
demands, sometimes evaluating other relevant factors in unison, e.g., LCA or cost.

For the studies in the category HVAC, overheating and indoor climate can be largely
divided into three categories. The first, and most frequent, was changes in future cooling
loads (energy point of view), the second, changes in internal temperatures and overheating
risks (comfort point of view), the third, and least frequent, performance of HVAC systems
(technical point of view).

The system-level performance category also largely comprised studies looking at
adaptation measures for reducing the risk of overheating, e.g., green roofs, thermal mass
and U-value of walls, and other passive design strategies. The majority of studies in this
category looked at temperature and temperature-related parameters such as solar radiation
and relative humidity, as was the case for the two previously described categories.

The majority of studies in the category of future climate loads for buildings looked at
development of precipitation patterns, either rain, wind-driven rain, or snow loads. Two
studies looked at the development of extreme temperature events, one study climate loads
in general (for service-life predictions), while the rest concerned precipitation in some form.

The last category, performance/sustainability on a material or part level, was the most
diverse. A total of 6 out of the 15 studies categorized here looked at moisture safety in walls.
The most common materials studied were brick or wood (or a combination of the two) in
relation to moisture safety, and some studies looked into the carbonatization of concrete.
See Table 3 and Appendix A for the collection of studies in the different categories.

3.2. Use of Emission Scenarios in the Studies

Of the 132 studies reviewed, 47 studies calculated results from multiple future scenar-
ios. The remaining 85 used only one scenario in the calculations.

Some studies used the Arctic Climate Impact Assessment Report [38], which relies on
the A2 and B2 emission scenarios presented by the SRES. In Figure 3, the studies using
SRES-type scenarios and Arctic Climate Impact Assessment scenarios have been translated
to the equivalent RCP scenario for comparison, using the translation key in Table 5, in
accordance with the definitions from the US Global Change Research Program [13].

A total of 43 out of 47 studies utilizing multiple scenarios used RCP 8.5 or the equiv-
alent SRES scenarios (A1F1 or A2) as one of the alternative scenarios. Usually, this was
accompanied with RCP 4.5 or the equivalent SRES scenario (B1). In total, 47 of the 85 single-
scenario studies used the most severe emission scenario given by the IPCC directly (RCP
8.5 or SRES A1F1/A2), or the equivalent scenario given by the 2004 Arctic Climate Impact
Assessment. A total of 9 of the studies did not specify which emission scenario was used
to calculate the projected future climate, all of which belonged to the single-scenario cate-
gory. Few studies discussed reasons for scenario choices in detail, and most frequently the
choices seemed to be decided by the availability of relevant climate data in combination
with the comprehensiveness of the chosen study rather than active choice. The exception
was studies using only RCP 8.5, where the choice was explicitly justified as a comparison
between the worst-case future scenario and the present climate. In general, more discus-
sion around the choice of emission scenario was found in studies of multiple scenarios
than single, as the scenario variability was explicitly shown in the results when multiple
scenarios were calculated.
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Figure 3. Types of emission scenarios used in the studies, divided into studies of multiple sce-
narios and studies of single scenarios (see Table 3 and Appendix A for identification of studies in
each category).

Table 5. Comparison between the 2000 Special Report on Emission Scenarios (SRES) and the 2010
Representative Concentration Pathways (RCP).

SRES Scenario Equivalent RCP Scenario Emission Prediction

A1F1 RCP 8.5
A2 a RCP 8.5
A1B RCP 6.0
B2 RCP 6.0
B1 RCP 4.5

a The SRES A2 scenario is a less severe version of the A1F1 scenario, with a predicted atmospheric CO2 concentra-
tion in 2100 15% lower than A1F1, but still closer to RCP 8.5 than RCP 6.0.

A total of 17 of the 132 studies only looked at far-future periods (>2070), while the
vast majority either looked at near-future (n = 42) or development from the present up to
far-future (n = 68). The remaining 5 studies did not define the future period, but rather
defined the scenario as the time where, e.g., Tavg = +2 ◦C. No significant correlations were
found between choice of time-frames and emission scenario selection in the analysis of
the results.

3.3. Categorizing the Studies

For comparison purposes between different characteristics of the studies, the remain-
der of the review results will be displayed by dividing the studies into 11 subcategories.
The subcategories have been chosen based on methodology for producing future climate
models and fields of study. The subcategories, and number of studies in each subcategory,
is displayed in Figure 4.
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Figure 4. Chosen subcategories for the studies, and the number of studies in each subcategory (see
Table 3 and Appendix A for the identification of studies in each category).

3.4. Methods for Future Climate Data Generation in the Studies

Two principal ways of creating future climate data have been identified in the studies:
(1) dynamical downscaling of GCMs to RCMs (n = 39), and (2) statistical downscaling
of GCMs directly to local weather files (n = 68) by determining the relationship between
historical global weather patterns and local measurements. Of the remaining studies, 7 used
other methods (i.e., employed the use of a historical extreme year as a substitute for future
climate), and 18 studies did not specify how the future climate model was created. An
overview of the methods used is presented in Figure 5.
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Not described

Other

Statistical downscaling/morphing,
single GCM/RCM

Statistical downscaling/morphing,
multiple GCM/RCM

Dynamic downscaling, single GCM-
RCM chain

Dynamic downscaling, multiple GCM-
RCM chains or multiple runs

Figure 5. Methods for generating future climate models from GCMs (see Table 3 and Appendix A for
the identification of studies in each category).
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The computational work in statistical downscaling is low compared to dynamic
downscaling [17]. For the areas where comprehensive regional models are developed and
readily available, there is no need to produce a new model when needed in a new study,
and reviewing the studies revealed a close link between certain geographical locations, e.g.,
Canada, where comprehensible large-scale RCMs are available, and the chosen downscaling
method. Statistical downscaling from one GCM is the easiest way to produce local weather
data, and indeed 45 of the 68 studies that used statistical downscaling used only one GCM.
The ratio of statistical to dynamical downscaling found in this study selection is consistent
with findings from other studies, such as Moazami et al., who found that 42 of 111 studies
used either dynamical or hybrid downscaling methods [39]. Given that this method is the
least time-consuming and most attainable, it is likely that a high number of the studies not
specifying the method for climate modelling also used statistical downscaling from one
GCM. The availability of high-quality local models is therefore paramount to determine
and reduce uncertainties from climatic input values in climate adaptation research.

3.5. Uncertainty Assessments of Climate Model Influence on Output Values

To answer research question 2 (see Section 1.1), the studies have been sorted by how
uncertainties in the climate model are treated, and how they are presented in the results.
All studies have been characterized by uncertainty treatment in 3 steps: (1) treatment of
emission scenario uncertainties, (2) treatment of climate model uncertainty, and (3) pre-
sentation of result uncertainty with regard to future climate estimation. The results are
presented in Figures 6–8.
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Figure 6. Emission scenario uncertainty evaluation in method description (see Table 4 and
Appendix A for identification of the studies in each category).



Buildings 2023, 13, 1460 14 of 30
Buildings 2023, 13, x FOR PEER REVIEW 15 of 30 
 

 

 
Figure 7. Climate model uncertainty evaluation in method description (see Table 4 and Appendix A 
for identification of the studies in each category). 

 
Figure 8. Presentation of emission-scenario- and climate-model-induced uncertainty in study re-
sults, discussion, and conclusions (see Table 4 and Appendix A for identification of the studies in 
each category). 

In total, 30 out of 132 studies quantified some form of future-climate-related uncer-
tainty as a part of the climate model output and integrated it into the results. A further 17 

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Al
l s

tu
di

es
Sc

en
ar

io
 ch

oi
ce

: S
in

gl
e 

sc
en

ar
io

Sc
en

ar
io

 ch
oi

ce
: M

ul
tip

le
 sc

en
ar

io
s

M
od

el
 ch

oi
ce

: D
yn

am
ic 

do
w

ns
ca

lin
g

M
od

el
 ch

oi
ce

: s
ta

tis
tic

al
 d

ow
ns

ca
lin

g
M

od
el

 sc
op

e:
 M

ul
tip

le
 G

CM
 o

r i
ni

tia
l c

on
d.

M
od

el
 sc

op
e:

 S
in

gl
e 

GC
M

, s
in

gl
e 

in
iti

al
 co

nd
.

Fi
el

d:
 E

ne
rg

y 
ca

lc.
 (h

ea
tin

g 
an

d 
co

ol
in

g)
Fi

el
d:

 H
VA

C,
 o

ve
rh

ea
tin

g 
an

d 
in

do
or

 cl
.

Fi
el

d:
 F

ut
ur

e 
cli

m
at

e 
lo

ad
s f

or
 b

ui
ld

in
gs

Fi
el

d:
 P

er
f./

su
st

. (
sy

st
em

 le
ve

l)
Fi

el
d:

 P
er

f./
su

st
. (

m
at

er
ia

l/p
ar

t l
ev

el
)

M
od

el
s i

nc
lu

di
ng

 p
re

cip
ita

tio
n

No description of
climate model
uncertainties

Description of
climate model
uncertainties
(with no calc.
presentation)

Calculated
climate model
uncertainties or
variations

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

Al
l s

tu
di

es

Sc
en

ar
io

 ch
oi

ce
: S

in
gl

e 
sc

en
ar

io

Sc
en

ar
io

 ch
oi

ce
: M

ul
tip

le
sc

en
ar

io
s

M
od

el
 ch

oi
ce

: D
yn

am
ic

do
w

ns
ca

lin
g

M
od

el
 ch

oi
ce

: s
ta

tis
tic

al
do

w
ns

ca
lin

g
M

od
el

 sc
op

e:
 M

ul
tip

le
 G

CM
 o

r
in

iti
al

 co
nd

.
M

od
el

 sc
op

e:
 S

in
gl

e 
GC

M
, s

in
gl

e
in

iti
al

 co
nd

.
Fi

el
d:

 E
ne

rg
y 

ca
lc.

 (h
ea

tin
g 

an
d

co
ol

in
g)

Fi
el

d:
 H

VA
C,

 o
ve

rh
ea

tin
g 

an
d

in
do

or
 cl

.
Fi

el
d:

 F
ut

ur
e 

cli
m

at
e 

lo
ad

s f
or

bu
ild

in
gs

Fi
el

d:
 P

er
f./

su
st

. (
sy

st
em

 le
ve

l)

Fi
el

d:
 P

er
f./

su
st

. (
m

at
er

ia
l/p

ar
t

le
ve

l)

M
od

el
s i

nc
lu

di
ng

 p
re

cip
ita

tio
n

Calculated climate-model uncertainties or
variations

Evaluation of climate-model uncertainty as
an unknown factor

Acknowledged climate-model uncertainty
with no evaluation

No mention of climate-model uncertainty

Figure 7. Climate model uncertainty evaluation in method description (see Table 4 and Appendix A
for identification of the studies in each category).
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Figure 8. Presentation of emission-scenario- and climate-model-induced uncertainty in study re-
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each category).
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In total, 30 out of 132 studies quantified some form of future-climate-related uncer-
tainty as a part of the climate model output and integrated it into the results. A further
17 studies acknowledged the climate-model-induced uncertainties and discussed how they
might impact the results by qualitative analysis. In total, 29 studies acknowledged climate-
model-induced uncertainties with no further evaluation, and 56 studies did not mention
either climate-model-induced uncertainties or scenario choice as a source of uncertainty at
all in the presentation and discussion of the results and the following conclusions.

The studies that evaluated climate model uncertainty as an unknown factor frequently
focused most on evaluating the scenario selection, typically calculating a worst-case sce-
nario followed by a discussion of how other scenarios might impact the results or by
discussing results from two or more calculated scenarios and evaluating the differences.
Evaluation of uncertainties induced by climate model choices also occurred but less fre-
quently, i.e., by evaluation of downscaling method, GCM selections, bias corrections, or
weather file generation.

Of the studies that go deeply into uncertainties, by including some form of uncertainty
calculation as a part of the results, most of them conclude that analysis and estimation
of the uncertainties in the climate model should be made. Further, they conclude that
the analyzed uncertainties have a significant impact on the results, connected to variance
in simulation output in producing weather files from GCMs/RCMs and the effect of
subsampling GCMs, and they do not recommend omitting this from the results as it could
lead to misleading conclusions.

3.6. Characterizing and Mitigating Uncertainties

Uncertainty comes in many different flavors, as the hierarchy proposed by Riesch et al.
illustrates [6]. The uncertainty level hierarchy proposed by Riesch et al. is an excellent
tool to break up and characterize a set of uncertainties in a given model, and the type
classification of uncertainties in climate modelling provided by Ekstrøm et al. [19] (see
Section 1.4) provides an excellent way to break up the different models required to make
future climate predictions. The mitigation methods for treating uncertainties related to
emission scenarios, climate models, and natural variability of weather patterns found in the
132 studies are presented in Table 6, using Riesch’s method for uncertainty characterization
and Ekstrøm’s classification of uncertainty types in future climate predictions. For a more
detailed description of the five uncertainty categories in the columns of Table 6, see Table 1.

Table 6 attempts to summarize the different strategies used for uncertainty mitigation.
Only mitigating measures found to be used in the studies are listed, and the table may
be viewed as a checklist with suggestions for mitigating measures with regard to final
uncertainty levels in the results.

The methodological steps necessary to mitigate all the different uncertainties presented
in Table 6 include selecting multiple scenarios, using multiple climate models, and calcu-
lating multiple final result outputs for statistical treatment, such as expressions of means
and spreads. In total, 11 of the studies in the selection (21, 53, 61, 72, 90, 93, 106, 107, 109,
110, 126 in Appendix A) were found to demonstrate this (see Figure 9). These studies were
characterized by having a comprehensive selection of GCMs/RCMs at their disposal, often
producing separate climate projections from each one. This enabled them to evaluate an
ensemble of climate outputs from different GCMs, thus carrying the GCM variance into the
final results of, e.g., the energy calculations. Some of the 11 studies were large-scale studies
of, e.g., future trends of energy use in Europe, using an ensemble of RCMs already gathered
through the EURO-CORDEX program [15], thus avoiding downscaling and creating hourly
weather file generation altogether. Morphing multiple types of weather years, e.g., typical,
extreme-low, and extreme-high, using Finkelstein–Schafer statistics was a frequent method
used to mitigate the uncertainties from natural variation (type 3).
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Table 6. Characterization of principal uncertainties found in climate modelling for building adapta-
tion measure purposes, and methods for mitigation. Mitigation measures are based on findings in
the study selection and are confined to measures controllable by methodological choices in building
adaptation measure research.

Level 1
(Uncertainty

about the
Outcome)

Level 2
(Uncertainty

about the
Parameters)

Level 3
(Uncertainty

about the Model
Choice)

Level 4
(Uncertainty

about
Acknowledged
Inadequacies in

the Chosen
Model)

Level 5
(Uncertainty

about Unknown
Inadequacies)
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(t
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e
1)

characterization

Non-
exhaustive
empirical
climate

information

Validity of
emission
scenarios

Complexity of
global climate

systems, effects of
high-impact
parameters

Future
socio-economic
conditions and

unknown climate
effects

mitigation N/A
Calculation of

multiple
scenarios

Evaluation of
selected scenario

validity
N/A

C
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e
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nt

y
(t
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e

2)

characterization

Downscaling
precision level,

topographic
influence

GCM variability,
choice of

downscaling
method

Non-perfect
climate

modelling and
weather file
generation

Unknown
high-impact
parameters

influenced by
increased

emission levels.

mitigation

Calibration of
the model to

empirical data,
bias correction

Calculation of
multiple

RCM-GCM
chains or
statistical

downscaling of
GCM ensemble.

Evaluation of
inadequacies in

the chosen
climate

modelling
method

N/A

R
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ul
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od
el

un
ce
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ai

nt
y

(t
yp

e
3)

characterization

Natural
variability in

stochastic
generation of
weather files

Non-perfect
input from

climate model
and stochastic
weather files

Variability
between emission

scenarios

Total
accumulated

uncertainty from
emission scenario

to result

mitigation

Generation of
multiple weather
files for statistical

analysis

Calculation of
the climate

model’s
influence on

result outcome
space

Calculation of
results from

multiple
scenarios

Evaluation of
result validity

The comprehensive methods discussed above for uncertainty treatment were pre-
sented with expressions of spreads, standard deviations, or variance in addition to an
average value in the results. Studies that did this often discussed the different sources
of uncertainties that created the result variance, and conclusions were made after careful
consideration of the climate projection validity.



Buildings 2023, 13, 1460 17 of 30Buildings 2023, 13, x FOR PEER REVIEW 18 of 30 
 

 

 
Figure 9. Stepwise loss of information about climate-model-induced uncertainties in results, de-
pending on methodological choices for future climate modelling. The numbers in each square rep-
resent the number of reviewed studies found to follow a particular path. 

4. Discussion 
Climate model comprehensiveness varies widely between studies, and ranges from 

bias-corrected dynamic downscaling of an ensemble of GCMs forced by multiple emission 
scenarios to a statistical downscaling of a single GCM from one emission scenario. Quan-
tification and assessment of model uncertainties is just as varied, although comprehensive 
climate models tend to correlate with a comprehensive analysis of uncertainties. In the 
following sections, a deeper dive into the relevant findings for the two research questions 
stated in Section 1.1 is presented, summing up with a proposed hierarchical description 
of climate model prediction uncertainties based on Ekstrøm et al.’s three climate model 
uncertainty types [19] as a tool for assessing the type and comprehensiveness of climate-
model-induced uncertainties accumulated in the results. 

4.1. Selecting Emission Scenarios 
More than half of the studies that used only one emission scenario used RCP 8.5 or 

the IPCC AR4 equivalents as the scenario of choice. Arguably, the choice of emission sce-
nario may have the greatest influence on the resulting future climate estimations, given 
longer timeframes (i.e., 2071–2100). The results show that 85 of the 132 studies reviewed 
either looked at future conditions in 2071–2100 or developments towards 2100 (see Section 
3.2). The difference in precipitation and temperature predictions between RCP 4.5 and 
RCP 8.5 has been shown to be larger than the variation between different GCMs for con-
siderations of 2071–2100 climate [30]. A study comparing different sources of uncertainties 
in climate modelling looked at how different initial conditions, different choice of GCM, 
and different spatial resolutions influenced rain intensities and found that these factors 
may induce 10–40% variance in the rain intensity output (30-year average and standard 
deviation) [40]. The choice of GCM was the largest source of uncertainty, given emission 
scenario A1B [40]. The same study found that different emission scenarios affected rain 
intensity uncertainty levels by as much as 80%. 

Compared to mapping the parameter variations for different GCMs, mapping pa-
rameter variations for different scenarios requires considerably less effort. In total, 47 out 
of 132 studies calculated multiple emission scenarios; 22 of these included multiple GCM 
inputs in their model, although only 11 used this to calculate the result variation caused 
by GCMs (see Figure 9). The most common pathway in the study selection was models 
using a single emission scenario (n = 85) with a single GCM input (n = 49), presenting no 
climate-induced variations in the results (n = 46). By choosing only one scenario, the re-
sults from the study will be uncertain by design, and the choice of scenario should 

Figure 9. Stepwise loss of information about climate-model-induced uncertainties in results, depend-
ing on methodological choices for future climate modelling. The numbers in each square represent
the number of reviewed studies found to follow a particular path.

4. Discussion

Climate model comprehensiveness varies widely between studies, and ranges from
bias-corrected dynamic downscaling of an ensemble of GCMs forced by multiple emis-
sion scenarios to a statistical downscaling of a single GCM from one emission scenario.
Quantification and assessment of model uncertainties is just as varied, although compre-
hensive climate models tend to correlate with a comprehensive analysis of uncertainties.
In the following sections, a deeper dive into the relevant findings for the two research
questions stated in Section 1.1 is presented, summing up with a proposed hierarchical
description of climate model prediction uncertainties based on Ekstrøm et al.’s three climate
model uncertainty types [19] as a tool for assessing the type and comprehensiveness of
climate-model-induced uncertainties accumulated in the results.

4.1. Selecting Emission Scenarios

More than half of the studies that used only one emission scenario used RCP 8.5 or the
IPCC AR4 equivalents as the scenario of choice. Arguably, the choice of emission scenario
may have the greatest influence on the resulting future climate estimations, given longer
timeframes (i.e., 2071–2100). The results show that 85 of the 132 studies reviewed either
looked at future conditions in 2071–2100 or developments towards 2100 (see Section 3.2).
The difference in precipitation and temperature predictions between RCP 4.5 and RCP 8.5
has been shown to be larger than the variation between different GCMs for considerations
of 2071–2100 climate [30]. A study comparing different sources of uncertainties in climate
modelling looked at how different initial conditions, different choice of GCM, and different
spatial resolutions influenced rain intensities and found that these factors may induce
10–40% variance in the rain intensity output (30-year average and standard deviation) [40].
The choice of GCM was the largest source of uncertainty, given emission scenario A1B [40].
The same study found that different emission scenarios affected rain intensity uncertainty
levels by as much as 80%.

Compared to mapping the parameter variations for different GCMs, mapping param-
eter variations for different scenarios requires considerably less effort. In total, 47 out of
132 studies calculated multiple emission scenarios; 22 of these included multiple GCM
inputs in their model, although only 11 used this to calculate the result variation caused
by GCMs (see Figure 9). The most common pathway in the study selection was models
using a single emission scenario (n = 85) with a single GCM input (n = 49), presenting no
climate-induced variations in the results (n = 46). By choosing only one scenario, the results
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from the study will be uncertain by design, and the choice of scenario should therefore
be considered carefully. If the study must be limited to one scenario because of, e.g., fi-
nancial constraints, it makes sense to use the most extreme scenario when compared to
the situation of today as most of the single-scenario studies in this review have done. In
such a study, today’s climate will constitute one outer extreme, and the most severe future
scenario will constitute the other outer extreme. Of course, global emissions may turn out
to exceed the RCP 8.5 scenario, but RCP 8.5 is the most severe scenario presented by the
IPCC in AR5, and as such it may be viewed as a representative worst-case scenario. The
advantage of knowing today’s situation and the most severe future scenario is that the
development direction is known. If the results of the research are to be used in building
design or maintenance, the reader can then evaluate how their given situation relates to the
two extremes. However, one important condition must be met for this method to be used:
some way of interpolating values between the two extremes must be available to the reader
if intermediate results are to be considered. Complex parameters such as rain intensity or
frost cycles may not easily lend themselves to such an approach, as the responses of both
to global climate changes have high uncertainties connected to them and they behave in
nonlinear ways.

4.2. Determining, Presenting, and Evaluating Uncertainties

There are two principal sources of uncertainties connected to future climate assess-
ments, in addition to natural variability caused by weather patterns. The first is connected
to the emission scenario itself, as determining future emission levels requires assumptions
of socio-economic character. The second is climatic response uncertainty due to imperfect
knowledge and models. Previous works have shown that these two different types of
uncertainties may be confounded in the final results [41], and expressions of uncertainty
are often attributed to the climate models only, ignoring scenario-related uncertainties. By
displaying results from only one emission scenario, this type of uncertainty is hidden from
view. As illustrated in Figure 3, more than half the studies using only one scenario used
RCP 8.5. If the uncertainties in the emission scenario are ignored, variations in future cli-
mate due to emission intensity are ignored. This may in turn lead to a falsely deterministic
view of the future. A further nine of the studies using only one scenario did not specify
which scenario was used and did not express any form of uncertainty in the results and
evaluations. Failure to evaluate the uncertainties altogether gives a false perception of
certainty, and failure to report what type of future scenario the results are based on leaves
the reader helpless to evaluate for themselves.

The studies presenting the most comprehensive evaluation of climate-related un-
certainties produced means and standard deviations for all used GCM-RCM chains and
evaluated the variations. The methods for downscaling and bias correcting the climate
models were well-documented in these studies, providing a transparent presentation of
the underlying uncertainties. Producing such results is demanding work and probabilistic
results may be more challenging to present in a clear way. However, presenting a compre-
hensive analysis of uncertainties greatly increases the quality of the results, and even more
importantly, it reminds the reader that assessments of complex systems far into the future
are not deterministic in nature.

Some uncertainties are easier to mitigate than others, and others again might be impos-
sible to mitigate due to the complexity of global climate modelling and unforeseen future
socio-economic developments. These higher-level uncertainties have been described by
researchers within the field of risk and uncertainty as unquantifiable, irreducible episte-
mological limits related to inductive reasoning and to the nature of model-based global
science [7]. However, lower-level uncertainties (see Table 1) may be mitigated either
through development of better models or through methodological choices in a particular
study (see Table 6).
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4.3. A proposed Hierarchy of Uncertainty in Climate Modelling

Uncertainties in climate modelling are connected to the whole chain, from emission
scenario to study-specific output. Many studies take uncertainties from one or more of
these links into consideration, but few studies attempt to quantify the total uncertainty
involved. Finding an expression for such a “total uncertainty” in the results is demanding
work, impractical, costly, and arguably ultimately impossible [7], as discussed in a guidance
note by the IPCC on uncertainty treatment in climate modelling [35]. However, there are
tools and methods available for calculating the quantifiable sources of uncertainties in an
adequate way, and yet other tools and methods for qualitatively analyzing the rest will
increase the reliability of the results, as most of the studies in the selection using such
tools and methods pointed out. In particular, (1) calculating different emission scenarios
and (2) analyzing variance in simulation output for weather files when downscaling from
GCM/RCM were frequently identified as important mitigation measures for large sources
of uncertainty [42–44]. Further mitigation measures may be implemented by increasing
the model quality, i.e., through bias corrections or by increasing the model fit, i.e., through
selecting an appropriate spatial resolution in dynamic downscaling.

The first two of the three principal types of uncertainty in future climate assessments
identified by Ekstrøm et al. [19] (see Section 1.4), scenario uncertainty and climate model
uncertainty, can be ranked hierarchically. The climate model output depends on the
emission scenario, and as previously shown, the scenario has a greater influence on output
values than variations in output between established GCMs [33]. Still, GCM uncertainties
have been shown to be large as well, as the example of temperature variation illustrated in
Figure 1 shows. Output values of parameters such as precipitation levels vary even more
significantly between GCMs [33], making use of multiple GCMs even more important for
studies of moisture safety design, etc. A dynamic downscaling of a GCM to RCM will carry
the biases of the GCM and add uncertainty from other sources as well. Using multiple
GCM-RCM chains and proper bias correction will reduce this source of uncertainty. By
displaying the sources of climate-related uncertainties discussed in this paper in a stepwise
fashion, a principal hierarchy of uncertainty describing the level of final uncertainty can
thus be proposed. The hierarchy is presented in Figure 9, and the number of studies
choosing the different paths are displayed inside the boxes.

The final level of uncertainty in the chain displayed in Figure 9 is related to the
presentation and assessment of the results. Including multiple outputs in the results
illustrates variance, and thus the uncertain nature of future climate predictions. The third
principal type of uncertainty identified by Ekstrøm et al. [19], natural variability in weather
patterns due to the chaotic nature of the climate system, may only be evaluated through
multiple outputs from the models, i.e., stochastic generation of multiple weather files.
The treatment quality of this type of uncertainty will be determined by the quality of
uncertainty treatment in the two upper levels of Figure 9. The studies that calculated
expressions of result uncertainties frequently communicated them using averages and
spreads (e.g., [43,45–47]). Other strategies included reporting variance and confidence
intervals through the creation of an ensemble of weather files. More often than not, these
studies concluded that such calculations should not be omitted. Approximately half of the
studies using multiple climate models calculated an expression of uncertainty in the results
(22 out of 46), whereas less than 10% of the remaining studies were able to do the same (8
out of 86).

When calculating expressions of result uncertainty, it is equally important to com-
municate what type of uncertainties are included in the calculations, as some methods
reduce uncertainties through multiple weather file creations (type 3), and some through
the use of multiple climate models (type 2). In total, 56 studies did not communicate any
uncertainties associated with future climate estimations at all (see Table 4). By omitting
information about the aggregated uncertainties from the chosen scenario and the model
used, the reader of the study will have no way of judging the reliability of the results. This
type of uncertainty is the only one that can be eliminated in full. By careful description of
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the methods used to produce the models and by evaluating the validity of the results, no
information is lost through communication failure.

The proposed hierarchy in Figure 9 does not differentiate between dynamic and
statistical downscaling approaches of global data. The uncertainties connected to the two
approaches are qualitatively different, but the quantified uncertainty level in the model
outputs will depend more on the quality of the downscaling than the type of approach.
Dynamic downscaling yields more precision relative to a GCM, but statistical downscaling
of multiple GCMs may in turn yield more information about the uncertainties and biases
induced by the particular GCMs. Multiple GCMs can be statistically downscaled and
compared with less effort than by the dynamic downscaling of a single GCM, thus revealing
the result variation induced by the GCM particularities. Dynamic downscaling from an
ensemble of GCMs or a combination of dynamic downscaling and multiple statistical
downscaling may be the best option for controlling model-induced uncertainties, albeit
also the most comprehensive and time consuming. If this option is unavailable due to,
e.g., economical constraints or lack of model availability, evaluating the unquantified
uncertainties in the results will at least increase result credibility and usability.

4.4. Future Needs for Tools in Building Climate Adaptation Research

Regarding treatment and communication of uncertainties in climate modelling, there
are two main points found in this study. The first is that awareness of uncertainty induced
by future climate estimation should be improved in building adaptation research. The
second is that, although methods and tools for estimating and mitigating uncertainties
exist, they are not yet widespread enough for common use.

Climate-model-induced uncertainties were completely neglected when estimating
future climate impacts on building adaptation measures in 56 out of 132 of the studies in
this selection. This may simply be due to lack of awareness in many cases, as many studies
treated model output from synthesized future weather files in the same way as model out-
put from historical measurements, with no mention of future climate estimation as a source
of uncertainty in the calculations. In total, 46 studies treated this source of uncertainty
through qualitative evaluation, but they suffered from a lack of uncertainty expressions in
the model outputs. Whether they lacked the necessary quality of data, or they lacked the
necessary tools to implement them, these studies did not employ any methods for mitigat-
ing or estimating the uncertainties induced by the models through calculations. This points
to a central fact, namely that researchers within the field of building adaptation research are
not meteorologists. As future climate modelling is complex, it is difficult to estimate, and
even be aware of, the different sources of uncertainties introduced by the future climate
models. The availability of high-quality climate models with probabilistic or statistical
descriptions of uncertainty is therefore paramount. The studies of areas where such models
exist, such as the UK and Canada, were found to have a more explicit relationship to
climate-model-induced uncertainties than studies of other areas (e.g., [42,47,48]).

A building physicist researching moisture problems for a solution, or a ventilation
researcher studying cooling demands in indoor climates, may not have the expertise to
know the inner workings of the climate model they are using as their tool. Likewise,
the meteorologist making the future climate model may not be aware of the building
adaptation researchers’ needs for uncertainty expressions, or which type of synthesized
weather files are most appropriate for the problem at hand. Thus, awareness and readily
available tools for treating uncertainties are paramount for both researchers. As briefly
presented in Sections 1.3 and 1.4, there are many excellent works in the literature looking
at methods for handling the technical challenges pertaining to future climate modelling
for use in building adaptation research, both for estimation and for mitigation of different
sources of uncertainty. Making such methods standard use, and finding good ways of
communicating the uncertainty evaluation, would enhance the quality and reliability of
the results in building climate adaptation research.
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Ekstrøm et al.’s differentiation of climate prediction uncertainty types [19] provides an
excellent basis for both the treatment and communication of uncertainties in future climate
calculations. By breaking up the uncertainties into three distinct sources; emission scenarios,
climate models, and natural variability in weather patterns; the types of uncertainties
may be treated separately. Discussing and communicating both treated and untreated
uncertainties then follows naturally.

5. Conclusions

The study selection comprised 132 research papers from 2014 to 2021, exploring
building adaptation measures using future climate scenarios.

The primary methods for producing future climate scenarios in research concerning
future climate adaptation measures for buildings are dynamic downscaling and statistical
downscaling of GCMs or RCMs. The comprehensiveness of the models varies, but the
most-used method in the study selection was statistical downscaling from a single GCM or
RCM. RCP 8.5 or the IPCC AR4 equivalent was the most frequently used emission scenario
for studies investigating a single scenario. Studies investigating multiple scenarios most
frequently compared RCP 8.5 and RCP 4.5 or the IPCC AR4 equivalent. The number of
studies in the selection found to be using a single scenario was 85, whereas 47 studies used
multiple scenarios.

Climate-model-induced uncertainties influencing the results were evaluated and
communicated to a varying extent in the study selection. Uncertainties were neglected
more frequently than not. In total, 56 of 132 studies did not mention future climate
modelling as a source of uncertainty at all, and a further 29 studies acknowledged future
climate modelling as a source of uncertainty without evaluating the influence this might
have on the results. Of the 47 studies that did evaluate future-climate-modelling-induced
uncertainties, 30 studies calculated an expression of uncertainty and integrated it as part
of the results, and the remaining 17 evaluated the uncertainties qualitatively. A frequent
conclusion found in the studies analyzing and estimating the uncertainties in the climate
models was that this should not be omitted, as it was found to have a great impact on
the results.

There is a growing number of studies describing methods and tools for mitigating
future-climate-model-induced uncertainties, but the tools are not yet widespread enough.
Uncertainties introduced by future climate estimation were in general under-communicated
in the study selection, commonly resulting from either lack of awareness or lack of suffi-
cient analysis of the result uncertainties. The availability of high-quality climate models
with probabilistic or statistical descriptions of uncertainty is an important prerequisite for
communicating uncertainties adequately, as is the awareness of uncertainties in future
climate estimation and the tools for mitigating them.
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Appendix A

Table A1. List of articles included in the study, with corresponding ID numbers for identification in
the analysis results of the main article.

ID # Author Year Journal Title

1 Berger et al. 2014 Building and
Environment

Impacts of urban location and climate change upon energy
demand of office buildings in Vienna, Austria

2 Berger et al. 2014 Energy and Builidings Impacts of climate change upon cooling and heating
energy demand of office buildings in Vienna, Austria

3 Braun et al. 2014 Applied Energy Using regression analysis to predict the future energy
consumption of a supermarket in the UK

4 Daly et al. 2014 Building and
Environment

Implications of global warming for comercial building
retrofitting in Australian cities

5 Kalvelage et al. 2014 Energy and Builidings Changing climate: The effects on energy demand and
human comfort

6 Orehounig et al. 2014 Sustainable Cities and
Society

Projections of design implications on energy performance
of future cities: a case study from Vienna

7 Patidar et al. 2014 Renewable Energy Simple statistical model for complex probabilistic climate
projections: Overheating risk and extreme events

8 Saha et al. 2014 Urban Climate Urban scale mapping of concrete degradation from
projected climate change

9 Sailor 2014 Building and
Environment

Risks of summertime extreme thermal conditions in
buildings as a result of climate change and xacerbation of
urban heat islands

10 Taylor et al. 2014 Building and
Environment

The relative importance of input weather data for indoor
overheating risk assessment in dwellings

11 van Hooff et al. 2014 Building and
Environment

On the predicted effectiveness of climate adaptation
measures for residential buildings

12 Wang et al. 2014 Energy and Builidings Impact of climate change heating and cooling energy use
in buildings in the United States

13 Yau et al. 2014 Energy and Builidings The performance study of a split type air conditioning
system in the tropics, as affected b weather

14 Zachariadis et al. 2014 Energy The effect of climate change on electricity needs- a case
study from Mediterranean Europe

15 Zhou et al. 2014 Applied Energy
Modeling the effect of climate change on US state-level
buildings energy demands in an integrated assessment
framework

16 Andersson-Sköld et al. 2015 Climate Risk
Management

An integrated method for assessing climate-related risks
and adaptation alternatives in urban areas

17 Barbosa et al. 2015 Building and
Environment

Chlimate change and thermal comfort in Southern Europe
housing: A case study from Lisbon

18 Dirks et al. 2015 Energy Impacts of climate change on energy consumption and
peak demand in buildings: A detailed regional approach

19 Guan 2015 Architectural Science
Review

The influence of internal load density on the energy and
thermal performance of air-conditioned office buildings in
the face of global warming

20 Jenkins et al. 2015 Buildings Quantifying change in buildings in a future climate and
their effect on energy systems

21 Jylhä et al. 2015 Energy and Builidings Energy demand for the heating and cooling of residential
houses in Finland in a changing climate
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22 Karimpour et al. 2015 Energy and Builidings Impact of climate change on the design of energy efficient
residential building envelopes

23 Kikumoto et al. 2015 Sustianable Cities and
Society

Study on the future weather data considering the global
and local climate change for building energy simulation

24 Nik et al. 2015 Energy and Builidings
A statistical method for assessing retrofitting measures of
buildings and ranking their robustness against climate
change

25 Nik et al. 2015 Building and
Environment

Future moisture loads for building facades in Sweden:
Climate change and wind-driven rain

26 Sajjadian et al. 2015 Energy and Builidings The potential of phase change materials to reduce domestic
cooling energy loads for current and future UK climates

27 Virk et al. 2015 Energy and Builidings Microclimatic effects of green and cool roofs in London and
their impacts on energy use for a typical office building

28 Alves et al. 2016 Energy and Builidings
Residential buildings’ thermal performance and comfort
for the elderly under climate changes context in the city of
São Paulo, Brazil

29 Andric et al. 2016 Energy and Builidings Modeling the long-term effect of climate change on
building heat demand: Case study on a district level

30 Arima et al. 2016 Energy and Builidings
Effect of climate change on building cooling loads in Tokyo
in the summers of the 2030s using dynamically
downscaled GCM data

31 Berger et al. 2016 Journal of Building
Engineering

Impacts of external insulation and reduced internal heat
loads upon energy demand of offices in the context of
climate change in Vienna, Austria

32 Braun et al. 2016 Energy and Builidings
Estimating the impact of climate change and local
operational procedures on the energy use in several
supermarkets throughout Great Britain

33 Dodoo et al. 2016 Energy Energy use and overheating risk of Swedish multi-storey
residential buildings under different climate scenarios

34 Fontanini et al. 2016 Energy and Builidings Exploring future climate trends on the thermal
performance of attics: Part 1–Standard roofs

35 Huang et al. 2016 Climatic Change
Impact of climate change on US building energy demand:
sensitivity to spatiotemporal scales, balance point
temperature, and population distribution

36 Huang et al. 2016 Energy The variation of climate change impact on building energy
consumption to building type and spatiotemporal scale

37 Huang et al. 2016 Applied Energy
Future trends of residential building cooling energy and
passive adaptation measures to counteract climate change:
The case of Taiwan

38 Invidiata et al. 2016 Energy and Builidings Impact of climate change on heating and cooling energy
demand in houses in Brazil

39 Makantasi et al. 2016 Advances in Building
Energy Research

Adaptation of London’s social housing to climate change
through retrofit: a holistic evaluation approach

40 Mulville et al. 2016 Building Research and
Information The impact of regulations on overheating risk in dwellings

41 Nik et al. 2016 Energy and Builidings
Effective and robust energy retrofitting measures for future
climatic conditions—Reduced heating demand of Swedish
households

42 Pagliano et al. 2016 Energy and Builidings Energy retrofit for a climate resilient child care centre
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43 Perreault et al. 2016 Cold Regions Science
and Technology

Seasonal thermal insulation to mitigate climate change
impacts on foundations in permafrost regions

44 Rubio-Bellido et al. 2016 Energy Optimization of annual energy demand in office buildings
under the influence of climate change in Chile

45 Santamouris 2016 Energy and Builidings Cooling the buildings–past, present and future

46 Sehizadeh et al. 2016 Building and
Environment

Impact of future climates on the durability of typical
residential wall assemblies retrofitted to the PassiveHaus
for the Eastern Canada region

47 Shen et al. 2016 Energy
Vulnerability to climate change impacts of present
renewable energy systems designed for achieving net-zero
energy buildings

48 Shibuya et al. 2016 Energy and Builidings The effect of climate change on office building energy
consumption in Japan

49 van Hooff et al. 2016 Energy
Analysis of the predicted effect of passive climate
adaptation measures on energy demand for cooling and
heating in a residential building

50 Waddicor et al. 2016 Building and
Environment

Climate change and building ageing impact on building
energy performance and mitigation measures application:
A case study in Turin, northern Italy

51 Andric et al. 2017 Energy and Builidings The impact of climate change on building heat demand in
different climate types

52 Ascione et al. 2017 Energy and Builidings
Resilience of robust cost-optimal energy retrofit of
buildings to global warming: A multi-stage,
multi-objective approach

53 Damm et al. 2017 Climate Services Impacts of +2 ◦C global warming on electricity demand in
Europe

54 Fahmy et al. 2017 Energy and Builidings
On the green adaptation of urban developments in Egypt;
predicting community future energy efficiency using
coupled outdoor-indoor simulations

55 Hamdy et al. 2017 Building and
Environment

The impact of climate change on the overheating risk in
dwellings—A Dutch case study

56 Huang et al. 2017 Energy and Builidings Impact of climate change on US building energy demand:
Financial implications for consumers and energy suppliers

57 Hwang et al. 2017 Energy and Builidings
Spatial and temporal analysis of urban heat island and
global warming on residential thermal comfort and
cooling energy in Taiwan

58 Kingsborough et al. 2017 Climate Risk
Management

Development and appraisal of long-term adaptation
pathways for managing heat-risk in London

59 Liu et al. 2017 Building and
Environment High resolution mapping of overheating and mortality risk

60 Mosoarca et al. 2017 Engineering Failure
Analysis

Failure analysis of historical buildings due to climate
change

61 Nik 2017 Energy and Builidings
Application of typical and extreme weather data sets in the
hygrothermal simulation of building components for
future climate—A case study for a wooden frame wall

62 Pierangioli et al. 2017 Building Simulation Effectiveness of passive measures against climate change:
Case studies in Central Italy

63 Rubio-Bellido et al. 2017 Building Simulation
Application of adaptive comfort behaviors in Chilean
social housing standards under the influence of climate
change
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64 Sajjadian 2017 Buildings
Performance Evaluation of Well-Insulated Versions of
Contemporary Wall Systems—A Case Study of London for
a Warmer Climate

65 Shen 2017 Energy and Builidings Impacts of climate change on US building energy use by
using downscaled hourly future weather data

66 Spandagos et al. 2017 Applied Energy
Equivalent full-load hours for assessing climate change
impact on building cooling and heating energy
consumption in large Asian cities

67 Wang et al. 2017 Energy and Builidings
Prediction of the impacts of climate change on energy
consumption for a medium-size office building with two
climate models

68 Yi et al. 2017 Sustainable Cities and
Society

Correlating cooling energy use with urban microclimate
data for projecting future peak cooling energy demands:
Residential neighbourhoods in Seoul

69 Chang et al. 2018 Building and
Environment

Development of a multimedia model (IIAQ-CC) to assess
climate change influences on volatile and semi-volatile
organic compounds in indoor environments

70 Chen et al. 2018 Polish Journal of
Environmental Studies

Future Climate Change on Energy Consumption of Office
Buildings in Different Climate Zones of China

71 Clarke et al. 2018 Energy Economics Effects of long-term climate change on global building
energy expenditures

72 Croce et al. 2018 Climate Risk
Management The snow load in Europe and the climate change

73 Filippin et al. 2018 Energy and Builidings
Improvement of energy performance metrics for the
retrofit of the built environment. Adaptation to climate
change and mitigation of energy poverty

74 Heracleous et al. 2018 Energy
Assessment of overheating risk and the impact of natural
ventilation in educational buildings of Southern Europe
under current and future climatic conditions

75 Jeong et al. 2018 Sustianable Cities and
Society

Projected changes to extreme wind and snow
environmental loads for buildings and infrastructure
across Canada

76 Jiang et al. 2018 Energy and Builidings
Accommodating thermal features of commercial building
systems to mitigate energy consumption in Florida due to
global climate change

77 Li 2018 Energy Linking residential electricity consumption and outdoor
climate in a tropical city

78 Lü et al. 2018 Building Simulation
A dynamic modelling approach for simulating climate
change impact on energy and hygrothermal performances
of wood buildings

79 Orr et al. 2018 Sci Total Environ
Wind-driven rain and future risk to built heritage in the
United Kingdom: Novel metrics for characterising rain
spells

80 Perez-Andreu et al. 2018 Energy
Impact of climate change on heating and cooling energy
demand in a residential building in a Mediterranean
climate

81 San Jose et al. 2018 Energy Effects of climate change on the health of citizens
modelling urban weather and air pollution
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82 Tarroja et al. 2018 Applied Energy

Translating climate change and heating system
electrification impacts on building energy use to future
greenhouse gas emissions and electric grid capacity
requirements in California

83 Triana et al. 2019 Energy and Builidings
Should we consider climate change for Brazilian social
housing? Assessment of energy efficiency adaptation
measures

84 Wang et al. 2019 Energy and Builidings
CESAR: A bottom-up building stock modelling tool for
Switzerland to address sustainable energy transformation
strategies

85 Campanico et al. 2019 Energy and Builidings
Impact of climate change on building cooling potential of
direct ventilation and evaporative cooling: A high
resolution view for the Iberian Peninsula

86 Dino et al. 2019 Renewable Energy
Impact of climate change on the existing residential
building stock in Turkey: An analysis on energy use,
greenhouse gas emissions and occupant comfort

87 Dodoo et al. 2019 Buildings
Effects of climate change for thermal comfort and energy
performance of residential buildings in a Sub-Saharan
African climate

88 Dominguez-Amarillo
et al. 2019 Energy and Builidings The performance of Mediterranean low-income housing in

scenarios involving climate change

89 Flores-Larsen et al. 2019 Energy and Builidings
Impact of climate change on energy use and bioclimatic
design of residential buildings in the 21st century in
Argentina

90 Guarino et al. 2019 Energy and Builidings
Data fusion analysis applied to different climate change
models: An application to the energy consumptions of a
building office

91 Roshan et al. 2019 Building and
Environment

Projecting the impact of climate change on design
recommendations for residential buildings in Iran

92 Sanchez-Garcia et al. 2019 Energy and Builidings
Towards the quantification of energy demand and
consumption through the adaptive comfort approach in
mixed mode office buildings considering climate change

93 Verstraten et al. 2019 Building and
Environment

Sensitivity of Australian roof drainage structures to design
rainfall variability and climatic change

94 Zheng et al. 2019 Energy
Modeling the effect of climate change on building energy
demand in Los Angeles county by using a GIS-based high
spatial-and temporal-resolution approach

95 Andric et al. 2020 Energy Reports
Efficiency of green roofs and green walls as climate change
mitigation measures in extremely hot and dry climate:
Case study of Qatar

96 Caldas et al. 2020 Construction and
Building Materials

Bamboo bio-concrete as an alternative for buildings
climate change mitigation and adaptaton

97 Chiesa et al. 2020 Energy and Builidings

Contrasting climate-based approaches and building
simulations for the investigation of Earth-to-air heat
exchanger (EAHE) cooling sensitivity to building
dimensions and future climate scenarios in North America

98 Dias et al. 2020 Building and
Environment

The shape of days to come: Effects of climate change on
low energy buildings

99 Ekolu 2020 Cement and Concrete
Composites

Implications of global CO2 emissions on natural
carbonation and service lifespan of concrete
infrastructures–Reliability analysis
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100 Elsharkawy et al. 2020 Building and
Environment

The significance of occupancy profiles in determining post
retrofit indoor thermal comfort, overheating risk and
building energy performance

101 Figueiredo et al. 2020 Energy and Builidings Country residential building stock electricity demand in
future climate–Portuguese case study

102 Garshasbi et al. 2020 Solar Energy Urban mitigation and building adaptation to minimize the
future cooling energy needs

103 Haddad et al. 2020 Energy and Builidings On the potential of building adaptation measures to
counterbalance the impact of climatic change in the tropics

104 Jeong et al. 2020 Building and
Environment

Projected changes to moisture loads for design and
management of building exteriors over Canada

105 Lacasse et al. 2020 Buildings Durability and Climate Change—Implications for Service
Life Prediction and the Maintainability of Buildings

106 Larsen et al. 2020 Energy and Builidings Climate change impacts on trends and extremes in future
heating and cooling demands over Europe

107 Liu et al. 2020 Energy and Builidings
Effectiveness of passive design strategies in responding to
future climate change for residential buildings in hot and
humid Hong Kong

108 Prieto et al. 2020 Building and
Environment

Heritage, resilience and climate change: A fuzzy logic
application in timber-framed masonry buildings in
Valparaíso, Chile

109 Shen et al. 2020 Journal of Building
Engineering

An early-stage analysis of climate-adaptive designs for
multi-family buildings under future climate scenario: Case
studies in Rome, Italy and Stockholm, Sweden

110 Verichev et al. 2020 Energy and Builidings
Effects of climate change on variations in climatic zones
and heating energy consumption of residential buildings
in the southern Chile

111 Zhou et al. 2020 Building and
Environment

Assessment of risk of freeze–thaw damage in internally
insulated masonry in a changing climate

112 Zune et al. 2020 Energy and Builidings
The vulnerability of homes to overheating in Myanmar
today and in the future: A heat index analysis of measured
and simulated data

113 Bamdad et al. 2021 Energy and Builidings Future energy-optimised buildings—Addressing the
impact of climate change on buildings

114 Defo et al. 2021 Buildings Effects of Climate Change on the Moisture Performance of
Tallwood Building Envelope

115 Dukhan et al. 2021 Building and
Environment

Understanding and modelling future wind-driven rain
loads on building envelopes for Canada

116 Rysanek et al. 2021 Building and
Environment

Forecasting the impact of climate change on thermal
comfort using a weighted ensemble of supervised learning
models

117 Vandemeulebroucke
et al. 2021 Buildings

Factorial Study on the Impact of Climate Change on
Freeze–thaw Damage, Mould Growth and Wood Decay in
Solid Masonry Walls in Brussels

118 Vandemeulebroucke
et al. 2021 Building and

Environment

Canadian initial-condition climate ensemble:
Hygrothermal simulation on wood-stud and retrofitted
historical masonry

119 Verichev et al. 2021 Energy and Builidings
Adaptation and mitigation to climate change of envelope
wall thermal insulation of residential buildings in a
temperate oceanic climate
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120 Zou et al. 2021 Building and
Environment

A simulation-based method to predict the life cycle energy
performance of residential buildings in different climate
zones of China

121 Akkose et al. 2021 Journal of Building
Engineering

Educational building retrofit under climate change and
urban heat island effect

122 Alves et al. 2021 Energy and Builidings
The recent residential apartment buildings’ thermal
performance under the combined effect of the global and
the local warming

123 Ascione et al. 2021 Energy and Builidings Effects of global warming on energy retrofit planning of
neighbourhoods under stochastic human behavior

124 Bienvenido-Huertas
et al. 2021 Building and

Environment

Analysis of climate change impact on the preservation of
heritage elements in historic buildings with a deficient
indoor microclimate in warm regions

125 Chen et al. 2021 Building and
Environment

Effects of climate change on the heating indices in central
heating zone of China

126 De Masi et al. 2021 Applied Energy
Impact of weather data and climate change projections in
the refurbishment design of residential buildings in
cooling dominated climate

127 Gamero-Salinas et al. 2021 Buildings
Passive cooling design strategies as adaptation measures
for lowering the indoor overheating risk in tropical
climates

128 Gaur et al. 2021 Building and
Environment Future projected changes in moisture index over Canada

129 Gilani et al. 2021 Building Research and
Information

Natural ventilation usability under climate change in
Canada and the United States

130 Heracleous et al. 2021 Journal of Building
Engineering

Climate change resilience of school premises in Cyprus:
An examination of retrofit approaches and their
implications on thermal and energy performance

131 Rahif et al. 2021 Building and
Environment

Simulation-based framework to evaluate resistivity of
cooling strategies in buildings against overheating impact
of climate change

132 Tootkaboni et al. 2021 Energy Reports
Analysing the future energy performance of residential
buildings in the most populated Italian climatic zone: A
study of climate change impacts
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