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Abstract—This paper surveys recent progress and discusses future
opportunities for Simultaneous Localization And Mapping (SLAM) in
extreme underground environments. SLAM in subterranean environ-
ments, from tunnels, caves, and man-made underground structures on
Earth, to lava tubes on Mars, is a key enabler for a range of applications,
such as planetary exploration, search and rescue, disaster response,
and automated mining, among others. SLAM in underground environ-
ments has recently received substantial attention, thanks to the DARPA
Subterranean (SubT) Challenge, a global robotics competition aimed at
assessing and pushing the state of the art in autonomous robotic explo-
ration and mapping in complex underground environments. This paper
reports on the state of the art in underground SLAM by discussing dif-
ferent SLAM strategies and results across six teams that participated in
the three-year-long SubT competition. In particular, the paper has four
main goals. First, we review the algorithms, architectures, and systems
adopted by the teams; particular emphasis is put on LIDAR-centric
SLAM solutions (the go-to approach for virtually all teams in the com-
petition), heterogeneous multi-robot operation (including both aerial
and ground robots), and real-world underground operation (from
the presence of obscurants to the need to handle tight computational
constraints). We do not shy away from discussing the “dirty details”
behind the different SubT SLAM systems, which are often omitted
from technical papers. Second, we discuss the maturity of the field
by highlighting what is possible with the current SLAM systems and
what we believe is within reach with some good systems engineering.
Third, we outline what we believe are fundamental open problems,
that are likely to require further research to break through. Finally,
we provide a list of open-source SLAM implementations and datasets
that have been produced during the SubT challenge and related efforts,
and constitute a useful resource for researchers and practitioners.

I. INTRODUCTION

Simultaneous Localization and Mapping (SLAM) remains at the
center stage of robotics research, after more than 30 years since its
inception. SLAM is without a doubt a mature field of research, and
the advances over the last three decades keep steadily transitioning
into industrial applications, from domestic robotics [1]–[3], to
self-driving cars [4] and virtual and augmented reality goggles [5],
[6]. At the same time, its pervasive nature and its blurry boundaries
as a robotics subfield still leave space for exciting research progress.
While previous survey efforts have targeted SLAM in general [7],
SLAM is also actively investigated in specific subdomains, from
deployment on nano-drones [8] to city-scale mapping [9], to
deployment in perceptually challenging conditions. This paper
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surveys algorithms and systems for LIDAR-centric SLAM in
extreme underground environments.

Present and Future of SLAM in Underground Worlds. The
past two decades have seen a growing demand for autonomous
exploration and mapping of diverse subterranean environments,
from tunnels and urban underground environments, to complex cave
networks. This has led to an increasing attention towards SLAM,
which is a key enabler for navigation in GPS-denied underground
environments where a-priori maps are unavailable. Mature SLAM
systems for subterranean mapping have the potential to enable
a range of terrestrial and planetary applications, from surveying,
search and rescue, disaster response, and automated mining, to
exploration of planetary caverns that could hold clues about the
evolution and habitability of the early Solar System.

Progress in underground SLAM has been particularly catalyzed
by the recent DARPA Subterranean (SubT) Challenge [10], [11],
a three-year-long global competition ended in 2021, and having the
goal of demonstrating and advancing the state of the art in mapping
and exploration of complex underground environments. The
competition had a systems track and a virtual track, and included
three main events: the Tunnel circuit event, the Urban circuit event,
and the Finals. The teams competing in the systems track had the
goal of deploying a team of robots to map a sequence of large-scale,
unknown underground environments (including caves, tunnels,
and subways), detect artifacts (i.e., objects of interest, including
survivors, mobile phones, fire extinguishers, etc.), and report their
locations with stringent performance requirements (i.e., within 5m
errors, in underground networks branching for hundreds of meters
to kilometers). While the team of robots was supervised by a single
human operator, communication constraints as well as the fast-pace
of the competition (the robots had to complete the exploration
in under 1 hour) pushed the teams to develop robust and highly
autonomous solutions that required minimal human intervention.

Technical Challenges for Underground SLAM. Robots ex-
ploring underground environments typically do not have access
to sources of absolute positioning (e.g., GNSS) and rarely have
access to prior maps of the environment. While in many cases
(e.g., search and rescue) building a map is not the goal of the
deployment, mapping remains a crucial prerequisite for successful
operation. Mapping these environments is challenging. Poor lighting
conditions make it challenging to deploy visual and visual-inertial
SLAM solutions; while the lack of illumination can be partially
compensated by onboard light sources, the resulting illumination
is either tenuous or creates specular reflections that interfere with
visual feature tracking. Beyond cameras, the potential presence of
dense obscurants, such as fog, whirling dust clouds, and smoke,
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challenges the use of LIDARs, while the use of fast-moving
platforms on rough terrains induces noise in inertial sensors, due to
the aggressive 6-DoF motion and high-frequency vibrations.

The challenging and ambiguous terrain topography is further
complicated by sudden changes in the scale of the environment,
such as a small tunnel leading to a large cave, which conflicts with
potential scenario-dependent parameter tuning in SLAM algorithms.

The challenges of underground SLAM extend to system engineer-
ing. SLAM algorithms must operate on-board under computational
constraints, which are particularly stringent on aerial platforms, and
also require careful parameter tuning and code optimizations on
wheeled and legged robots. Moreover, these SLAM systems are
required to withstand intermittent and faulty sensor measurements,
as well as unexpected motions and shocks due to potential robot
falls and collisions. Finally, the communication difficulties inherent
to harsh and complex subterranean environments present a critical
obstacle to SLAM systems, in particular for the case when
collaborative multi-robot mapping solutions are adopted.

Related Surveys. Progress in SLAM research has been reviewed
by Durrant–Whyte and Bailey [12], [13] and more recently by
Cadena et al. [7]. Other relevant surveys have recently focused on
multi-robot SLAM and related applications. Kegeleirs et al. [14]
and Dorigo et al. [15] provide an overview of challenges in
SLAM with robotic swarms and their application for gathering,
sharing, and retrieving information. Halsted et al. [16] survey
distributed optimization algorithms for multi-robot applications.
Parker et al. [17] examine multi-robot SLAM architectures with
focus on communication issues and their impact on multi-robot
teams. Lajoie et al. [18] provide a literature review of collaborative
SLAM with focus on robustness, communication, and resource
management. Zhou et al. [19] review algorithmic developments in
making multi-robot systems robust to environmental uncertainties,
failures, and adversarial attacks. Prorok et al. [20] discuss resilience
in multi-robot systems. None of these surveys focus on SLAM in
underground environments.

Contribution. This paper reports on the state of the art and state
of practice in underground SLAM by discussing different SLAM
strategies across six teams that participated in the three-year-long
SubT challenge and evaluating the effectiveness of the adopted
SLAM architectures against the manually surveyed DARPA ground
truth maps. In particular, the paper has four main goals. First, we
provide a broad review of related work (Section II) and then delve
into the single- and multi-robot SLAM architectures adopted by
six teams that participated in the systems track of the DARPA
SubT challenge (Section III); particular emphasis is put on multi-
modal LIDAR-centric SLAM solutions, heterogeneous multi-robot
operation, and real-world underground operation. We also discuss
the “dirty details” behind the different SubT SLAM systems, which
are often omitted from technical papers. Second, we discuss the
maturity of the field by highlighting what is possible with the current
SLAM systems and what we believe is within reach with some
good system engineering (Section IV). Third, we outline what we
believe are fundamental open problems, that are likely to require
further research to break through (Section V). Finally, we provide a
list of open-source SLAM implementations and datasets that have
been produced during the SubT challenge and related efforts, and
constitute a useful resource for researchers and practitioners. These
are summarized in Table I.

II. OVERVIEW OF RELATED WORK

This section provides a brief overview of related work on SLAM
systems for subterranean environments and multi-robot teams,
before delving into the details of modern systems in Section III.

Traditionally, underground surveying has relied on humans, with
established surveying instruments, such as theodolites and total
stations [21], [22], and later 3D LIDARs, being the go-to solution
for positioning and mapping. These instruments, while effective
and still commonly used in practice, require extensive human labor.
Early efforts on SLAM in subterranean environments trace back
to the work of Thrun et al. [23] and Nuchter et al. [24], which
highlighted the importance of underground mapping and introduced
early solutions involving a cart pushed by a human operator, or
teleoperated robots equipped with laser range finders to acquire
volumetric maps of underground mines. Tardioli et al. [25], [26]
present a SLAM system for exploration of underground tunnels
using a team of robots. The system comprised of a navigation control
module, a feature-based robot localization module, a communication
module, and a supervisor module for multi-robot collaborative
exploration in a tunnel. Zlot et al. [27] propose a 3D SLAM system
consisting of a 2D spinning lidar and an industrial-grade MEMS
IMU to map over 17km of an underground mine. Kohlbrecher et
al. [28] present Hector SLAM, a flexible and scalable SLAM
system with full 3D motion estimation developed specifically for
urban search and rescue. The system consists of a navigation filter
that uses an IMU for attitude estimation, and a 2D SLAM system
for position and heading estimation within the ground plane.

Despite LIDARs being commonly used for underground SLAM,
their measurements can be impacted by factors like smoke, dust, or
fire, as laser beams cannot penetrate through dense obscurants. On
the other hand, radars are more resilient to such conditions, making
them a suitable option for ensuring robust localization in various
scenarios [29], [30].

Lajoie et al. [31] present DOOR-SLAM, a multi-robot SLAM
system which consists of two key modules, a pose graph optimizer
(combined with a distributed pairwise consistent measurement set
maximization algorithm to reject spurious inter-robot loop closures),
and a distributed SLAM front-end that detects inter-robot loop clo-
sures without exchanging raw sensor data. Chang, Tian, et al. [32],
[33] present Kimera-Multi, a distributed multi-robot system for
dense metric-semantic SLAM. Each robot builds a local trajectory
estimate and a 3D mesh. When robots are within communication
range, they initiate a distributed place recognition and robust pose
graph optimization protocol based on graduated non-convexity.

Autonomous exploration of extreme underground environments
has received significant attention in the context of the DARPA SubT
Challenge. The competition gave rise to and inspired breakthrough
technologies and capabilities in the field of underground SLAM
[34]–[59]. We review the details of key (multi-robot) SLAM
systems developed in the context of the DARPA SubT challenge
in the next section.

III. STATE OF THE ART IN UNDERGROUND SLAM

This section examines the SLAM architectures adopted by six of
the teams that participated in the systems track of the DARPA SubT
Challenge, and highlights the important design choices, differences,
and common themes that emerged from the teams’ approaches.
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Moreover, this section provides a table of open-source implementa-
tions and datasets that are made publicly available by each team. In
particular, Section III-A reviews the standard architecture of a multi-
robot SLAM system and provides basic terminology. Section III-B
to Section III-G describe the specific SLAM architectures adopted
by the six SubT teams and highlight key design choices and “dirty
details”. Section III-H discusses common themes, and includes a
table of open-source implementations and datasets (Table I).

A. Anatomy of Single- and Multi-Robot SLAM Systems

The architecture of a SLAM system typically includes two main
components: the front-end and back-end [7];

The SLAM front-end is in charge of abstracting the raw sensor
data into more compact intermediate representations (e.g., odometry,
loop closures, landmark observations). For instance, a LIDAR-based
SLAM front-end may process LIDAR scans into odometry estimates
either by registering salient features extracted from consecutive
LIDAR scans —an approach adopted by teams CERBERUS (Sec-
tion III-B) and Explorer (Section III-F)— or by dense registration
of LIDAR point clouds (or surfels) using ICP or its variants —as
adopted by teams CoSTAR (Section III-C), CSIRO (Section III-D),
CTU-CRAS-Norlab (Section III-E), and MARBLE (Section III-G).

The SLAM back-end is in charge of building robot trajectory and
map estimates by fusing the intermediate representations produced
by the front-end. The back-end typically includes a nonlinear
estimator, with the de-facto standard approach being maximum
a-posteriori estimation via factor graph optimization [7]; this indeed
has been adopted by virtually all teams below. A popular instance
of factor graph optimization is pose graph optimization, where one
optimizes the robot trajectory using relative pose measurements. The
SLAM back-end can perform tightly-coupled and loosely-coupled
sensor fusion, where the former fuses fine-grained measurements
by different sensors (e.g., 2D image features and inertial data),
while the latter fuses intermediate estimates (e.g., relative poses
produced by a LIDAR and camera). Tightly-coupled approaches are
generally more accurate, as they rely on more precise models of the
sensor data and its noise. Loosely-coupled approaches are easier to
implement (i.e., they are more modular) and often more convenient
(e.g., they give access to standard tools for outlier-rejection and
health monitoring [60], [61]), but at the cost of decreased accuracy.

Multi-robot SLAM systems are characterized by the fact that
sensor data is simultaneously collected by multiple robots, which
are in charge of building a consistent map of the environment.
Multi-robot SLAM architectures can be centralized, decentralized,
or distributed. In centralized architectures, a base station collects
data from all the robots (e.g., raw sensor data or intermediate
representations from the single robot front-ends) and then computes
optimal trajectory and map estimates for the entire team. Each robot
typically runs a local SLAM front-end (and possibly a local back-
end) to pre-process the sensor data — this reduces the amount of
data to be transmitted and the subsequent computation at the base
station; then, the base station may implement a multi-robot front-
end, which is in charge of detecting inter-robot loop closures, and a
multi-robot back-end, that estimates the robots’ trajectories and map.
In this paper, we call a multi-robot architecture decentralized if each
robot is treated as a base station: it collects all the data from the other
robots and performs joint estimation of the trajectory and global

map of the entire team. Finally, we call an architecture distributed
if each robot only exchanges partial information with its neighbors
and only estimates its own map by relying on distributed inter-robot
loop closure detection and distributed optimization protocols [33],
[62]–[65]. The following sections describe the SLAM architectures
for each SubT team.

B. Team CERBERUS

Team CERBERUS won the Final event of the DARPA SubT
Challenge; their SLAM architecture is given in Figure 1. The
architecture is powered by CompSLAM [51], a complementary
multi-modal odometry and local mapping approach running at
each (walking, flying, or roving) robot, and M3RM, a multi-modal,
multi-robot mapping server running at the base station.

Onboard Odometry and Mapping via CompSLAM. Comp-
SLAM [51] is a loosely-coupled approach that allows hierarchical
fusion of a set of sensor-specific pose estimators as each estimate
is refined by the next estimator. This enables operating in parallel
into a single odometry estimate, while performing data- and process-
level health checks [66]. In particular, CompSLAM performs a
coarse-to-fine fusion of independent pose estimates including visual,
thermal, depth, inertial, and possibly kinematic odometry sources.
This loosely-coupled methodology provides redundancy and ensures
robustness against perceptually degraded conditions, including self-
similar geometries, low-light and low-texture scenes, and obscurants-
filled environments (e.g., fog, dust, smoke), assuming that each
condition only affects a subset of sensors.

The visual- and thermal-inertial fusion (VTIO) components of
CompSLAM build upon the work [67] and extends it to exploit
16-bit raw data from LongWave InfraRed cameras [68], [69] and
depth from LIDAR. Furthermore, the depth data from the LIDAR
is utilized to initialize or improve depth estimates of features
tracked in visual and thermal imagery, providing robustness for
scale estimation without the need for computationally expensive
stereo-matching.

The LIDAR Odometry And Mapping component of CompSLAM
develops on top of LOAM [70]. This component, along with VTIO
priors, utilizes LIDAR point clouds to perform a LIDAR Odometry
(LO) scan-to-scan matching and scan-to-submap matching LIDAR
Mapping (LM) step. Accordingly, the robot estimates its pose in the
map and simultaneously constructs a local map of the environment.
Following the hierarchical fusion approach, the estimates of the
LO module are utilized by and refined upon by the LM module.
To assess the quality at each iterative optimization step, the system
utilizes a threshold on the eigenvalues of the underlying approximate
Hessian [36], [71], to identify the degrees of freedom that are possi-
bly ill-conditioned due to geometric self-similarity. In case certain di-
rections are determined to be ill-conditioned, the pose estimates from
the previous estimator in the hierarchy (e.g., visual-inertial odom-
etry) are propagated forward, skipping the ill-conditioned module.

Finally, to produce smooth and consistent pose estimates, Comp-
SLAM uses a factor-graph-based fixed-lag smoother, implemented
as part of the LO module, with a smoothing horizon of 3 seconds.
The factor graph is implemented using GTSAM [72] and integrates
relative LO estimates with IMU pre-integration factors [73].

To reduce pose drift and improve IMU bias estimation, zero-
velocity factors are added when more than one sensing modality
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Figure 1: Overview of team CERBERUS’ SLAM architecture. Each robot estimates and operates on its own individual map. Periodically,
these maps are sent to the mapping server on the base station for accumulation and for global multi-robot optimization.

reports no motion for 0.5 (consecutive) seconds. Moreover, during
periods of no motion, roll and pitch estimates —calculated directly
from bias-compensated IMU measurements— are added as prior
factors.

Multi-Robot Mapping and Optimization (M3RM). The core
component of the CERBERUS multi-modal and multi-robot map-
ping (M3RM) approach is a centralized mapping server that utilizes
multiple modalities such as LIDAR, vision, IMU, wheel encoders,
etc., in a single factor graph optimization. The deployed M3RM
approach is based on the existing framework maplab [74] and can
generally be subdivided into two components, namely the M3RM
node and server.

The M3RM node runs onboard each robot and is in charge of
creating a local factor graph capturing multi-sensor data collected
and pre-processed by the robot, e.g., odometry factors from Comp-
SLAM. The node also tracks BRISK [75] features and triangulates
the features to a visual map using the CompSLAM pose estimates.
Additionally, the LIDAR scans (as well as the corresponding
timestamps and extrinsic calibration) are attached to the factor graph.
The factor graph is broken into submaps. To reduce bandwidth,
each LIDAR scan is compressed using DRACO [76] before
transmission, reaching a total size of approximately 2megabytes
per submap. When robots establish a connection to the base station,
the M3RM node transmits the completed submaps to the M3RM
server. A synchronization logic ensures that only a completed
submap transmission will be integrated into the multi-robot map.

The M3RM server runs at the base station and is in-charge of
keeping track of all individual submaps for each robot and integrat-
ing them into a globally consistent multi-robot map. During the
mission, the M3RM server allows a human operator to visualize the
individual maps as well as the globally optimized multi-robot map
which enables mission planning. Moreover, the server has certain
management functions such as removal of maps, performance
profiles, and allows switching between CompSLAM and M3RM
map per robot. The CompSLAM maps are not attached to the global
multi-robot map but can be visualized using an overlay. To integrate
the individual robot submaps into a single multi-robot map, the
M3RM server first processes each incoming submap using a set of
operations, namely (i) visual landmark quality check, (ii) visual loop
closure detection, (iii) LIDAR registrations, and (iv) submap opti-
mization. Since each submap’s processing is independent of the pro-
cessing of other submaps, the mapping server can process up to four
submaps in parallel. For visual loop closure detection, the method
presented in [77] is performed using the tracked BRISK features and

an inverted multi-index. Correctly identified visual loop closures
within a submap are implemented by merging the corresponding
landmarks and are then integrated during the submap optimization.
Moreover, additional LIDAR constraints are added to the factor
graph by aligning consecutive scans within a submap using ICP.
Since the onboard odometry and mapping pipeline already provides
an estimate of the poses, a prior transformation is readily available
for each registration. However, if the resulting transformation differs
significantly from the prior, it is rejected for robustness reasons as we
expect that the drift between consecutive nodes is relatively small.

After individual submaps processing, they are merged into the
global multi-robot map, which is continuously optimized by the
M3RM server. A predefined set of operations are executed in an
endless loop on the global multi-robot map, i.e., (i) multi-robot
visual loop closure detection, (ii) multi-robot LIDAR registrations,
and (iii) factor graph optimization. In this case, these operations
are performed on the entire multi-robot map, and have the goal of
detecting intra- and inter-robot loop closures and performing a joint
optimization.

Due to the challenging nature of wireless communication in
subterranean environments, CERBERUS implemented a mesh
communication architecture, with ground robots serving as vertices
and “breadcrumb” droppable nodes acting as access points for flying
robots. The team utilized 5.8GHz WiFi communications, specifically
the Rajant DX2 radios on board the ground robots and nodes.

The ground station integrated a Rajant ES1 module, which
directly meshed with the DX2s. The breadcrumb nodes were
equipped with a battery pack lasting 2 hours and had a patch antenna
installed on a compliant part that was released at deployment time
to enhance the antenna positioning. The team used ROS to network
the robots, with each system running its own onboard rosmaster
and a rosmaster running on the base station. The Nimbro Network
was employed to facilitate this architecture. To optimize data
transmission, telemetry and health messages were persistently sent,
while non-essential topics such as camera frames were selectively
sent based on the human supervisor decisions.

Dirty Details. Parameter tuning: As for many other systems
reviewed in this paper, the top performance of team CERBERUS’
SLAM solution requires a careful fine-tuning of all available
parameters. For example, the degeneracy detection relies on a
hand-tuned set of parameters and is robot-dependent. The tuning is
performed by using a grid search over several clusters of parameters
and measuring their performance across relevant environments.
To complicate things further, the configurable parameters for the
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Figure 2: Overview of team CoSTAR’s SLAM architecture (LAMP). Each robot runs a local front-end and communicates to the base
station, which runs a multi-robot front-end (for loop closure detection) and back-end (for pose graph optimization).

M3RM server have to be consistently applied to all robots in the
multi-robot map, making fine-tuning for specific robot types (e.g.,
flying and legged systems) as well as sensors (e.g., various camera
and LIDAR systems) difficult at the stage of global mapping.

Covariances: While it is desirable to dynamically adjust the
covariances in the factor graphs depending on the quality of the
sensor data, it proved challenging to balance the uncertainty of the
visual and LIDAR factors; therefore, the system relied on static
(manually tuned) covariances for the latter.

Loop closures: None of the deployed robots performed onboard
loop closure detection. Thus, in scenarios where robots stay
out of range from the base station for a considerable time, the
CompSLAM errors may accumulate, making it harder for the
M3RM server to correct the estimates. Moreover, an incorrect robot
map can “break” the whole global multi-robot map, which is why a
human operator is needed to monitor and possibly remove specific
robots from the multi-robot map.

C. Team CoSTAR

Team CoSTAR won the Urban event of the DARPA SubT
Challenge. An overview of team CoSTAR’s SLAM system, namely,
Large-scale Autonomous Mapping and Positioning (LAMP), is pro-
vided in Figure 2. LAMP is a key component of NeBula [78], team
CoSTAR’s overall autonomy solution. LAMP relies on data from dif-
ferent odometry sources (i.e., LIDAR, visual-inertial, wheel-inertial,
and IMU) to estimate the robot trajectories, as well as a point cloud
map of the environment. The system consists of (i) a single-robot
front-end interface that runs locally onboard each robot to produce
an estimated robot trajectory and a point cloud map of the environ-
ment explored by each robot, (ii) a multi-robot front-end, running on
the base station, which receives the robots’ local odometry and maps
and performs multi-robot loop closure detection, and (iii) a multi-
robot back-end, that uses odometry (from all robots) and intra- and
inter-robot loop closures from the multi-robot front-end to perform a
joint pose graph optimization; the multi-robot back-end runs on the
base station and simultaneously optimizes all the robot trajectories.

Single-Robot Front-End Interface. LAMP relies on a multi-
sensor front-end interface that enables the use of robots with
different sensor configurations and odometry sources, including LO-
CUS [79] and Hovermap [80]. The front-end produces an odometric
estimate of each robot’s trajectory, and stores the corresponding

information in a factor graph, where each node corresponds to
an estimated pose, while an edge connecting two nodes encodes
the relative motion between the corresponding timestamps. Each
odometry node is associated with a keyed-scan, a pre-processed
point cloud obtained at the corresponding timestamp. The keyed-
scan are used for loop closure detection and to form a 3D map of
the environment.

Within the single-robot front-end, LOCUS [79] is CoSTAR’s
LIDAR-centric odometry estimator. LOCUS starts with a
pre-processing step, where —after removing motion-induced
distortions in point clouds— scans from multiple onboard
LIDARs are merged into a unified point cloud given the extrinsic
calibration between LIDARs. An adaptive voxelization filter is
then applied to ensure a constant number of points are retained
independent of the environment geometry, point cloud density, and
number of onboard LIDARs. This helps reduce the computation,
memory usage, and communication bandwidth associated with the
subsequent processing. Odometric estimates are obtained using a
two-stage scan-to-scan and scan-to-submap registration process; the
registration relies on a fast implementation of point-to-plane ICP,
initialized using IMU measurements or other odometry sources.

Scalable Multi-robot Front-end. The multi-robot front-end is in
charge of intra- and inter-robot loop closure detection by leveraging
a three-step process: loop closure generation, prioritization, and
computation as outlined below.

The Loop Closure Generation module relies on a modular design,
where loop closure candidates can be identified using different meth-
ods and environment representations (i.e., Bag-of-visual-words [81],
junctions extracted from 2D occupancy grid maps [36]). The go-
to loop closure generation approach within SubT has been based
on LIDAR point clouds. In particular, loop closure candidates are
simply identified from nodes in the factor graph that lie within a
certain Euclidean distance from the current node; the distance is dy-
namically adjusted to account for the odometry drift between nodes.

The Loop Closure Prioritization module [82] selects the most
promising loop closures for processing. While loop closures are
crucial for map merging and drift reduction in the estimated robot
trajectory, it is equally crucial to avoid closing loops in ambiguous
areas with high degree of geometric degeneracy [36], as it could
lead to spurious loop closure detections. Furthermore, loop closure
detection in large-scale environments, and with large number of
robots, becomes increasingly more computationally expensive as the
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density of nodes in the pose graph, and subsequently the number of
loop closure candidates, increases. The purpose of this module is to
prioritize loop closure candidates inserted in the computation queue
by evaluating their likelihood of improving the trajectory estimate.
This is achieved through a three-step process of (i) observability
prioritization, where similar to the works presented in [36], [83],
[84], eigenvalue analysis is performed to detect degenerate scan
geometries, in order to prioritize loop closures in feature-rich areas,
(ii) graph information prioritization, where a Graph Neural Network
(GNN) [85] based on a Gaussian Mixture model layer is used to
predict the impact of a loop closure on pose graph optimization,
and (iii) Receiver Signal Strength Indication (RSSI) prioritization
to prioritize loop closures based on known locations indicated by
RSSI beacons —whenever a robot is within range of an RSSI
beacon. The prioritized loop closure candidates are inserted into
a queue for the computation step in a round-robin fashion.

The Loop Closure Computation module estimates the relative
pose between a pair of loop closure candidate nodes in the queue
using a two-stage process. First, an initial estimate of the relative
pose is computed using TEASER++ [86] or SAmple Consensus
Initial Alignment (SAC-IA) [87]. Then the Generalized Iterative
Closest Point (GICP) algorithm [88] is initialized with the obtained
solution to refine the relative pose and evaluate the quality of the
LIDAR scan alignment.

Robust Multi-robot Back-end. LAMP uses a centralized multi-
robot architecture, where a central base station receives the odometry
measurements and keyed scans from each robot, along with loop
closures from the multi-robot front-end, and performs pose graph
optimization to obtain the optimized trajectory for the entire team.
The optimized map is then generated by transforming the keyed
scans to the global frame using the optimized trajectory. To safeguard
against erroneous loop closures, the multi-robot back-end includes
two outlier rejection options: Incremental Consistency Maximization
(ICM) [34], which checks detected loop closures for consistency
with each other and the odometry before they are added to the
pose graph, and Graduated Non-Convexity (GNC) [60], which
is used in conjunction with the Levenberg-Marquardt solver to
perform an outlier-robust pose graph optimization and obtain both
the trajectory estimates and inlier/outlier decisions on the loop
closure not discarded by ICM. Pose Graph Optimization and GNC
are implemented using GTSAM [72].

Team CoSTAR utilized a commercial mesh communication
system from Silvus systems and a communications data
management system [89] to track data transmission between agents
and the base station. The system prioritized messages based on
their content and ensured data was sent without relay/storage on
interim agents. To manage data rate, the robots exchanged sparse
pose-graph information, where each pose in the pose graph was
attached a combined and down-sampled version of the nearby 3D
scans. Communication data rates typically spiked when a robot
tried to send stored information after being out of communication
range for an extended period of time, which also required LAMP
to handle large amounts of potentially out-of-order data, including
missing data. We addressed this challenge through engineering and
our loop closure prioritization algorithm, as well as multi-threading
to process loop closure candidates quickly [82].

Dirty Details. Parameter tuning: While LAMP provides a robust
localization and mapping framework, it is difficult to find a set

of parameters for the front-end and back-end modules that leads
to nominal performance consistently across environments with
different topography and geometry. In order to have a more sys-
tematic approach to parameter tuning, CoSTAR curated 12 SLAM
datasets across multiple challenging underground environments for
evaluation and benchmarking, with the goal of obtaining at a set
of parameters that gave the best performance across all domains.
The parameter tuning was mostly manual, and was restricted to a
small subset of parameters which had higher impact on the system’s
performance. One area where parameter tuning was successful was
LIDAR-based loop closure detection. Here, the dataset consisted of
pairs of point clouds from a variety of environments, with 80% of
the pairs being true loop closures, with known relative poses, and
the rest being outliers.

D. Team CSIRO

Team CSIRO Data61 tied for the top score and won the second
place at the Final event of the DARPA SubT challenge after
the tiebreaker rules were invoked. The team also won the single
most accurate artifact report award in the Urban and Final events.
An overview of Wildcat [90], [91], CSIRO’s LIDAR-inertial
decentralized multi-robot SLAM system, is given in Figure 3. We
first review CSIRO’s distinctive sensing strategy, and then introduce
the key modules in the Wildcat architecture: surfel generation,
LIDAR-inertial odometry, frame generation and sharing, and pose
graph optimization.

Sensing Pack. The ground robots carried a CatPack sensing
payload designed by CSIRO. The CatPack uses an IMU and a
Velodyne VLP-16 LIDAR that is mounted at 45◦ off horizontal
and spins about the vertical axis of the CatPack. The CatPack also
has four RGB cameras, which were used for artifact detection, but
not for SLAM. The Emesent Hovermap [92] payload used on the
aerial robots is a similar sensing pack with a spinning Velodyne
VLP-16. Both the CatPack and Hovermap run the Wildcat SLAM
system onboard, on their NVIDIA Jetson AGX Xavier and Intel
NUC computers, respectively.

The spinning LIDAR configuration of CatPack provides dense
depth measurements with an effective 120◦ vertical field of view.
This played a major role in making CSIRO’s SLAM system robust
in subterranean environments, e.g., by providing improved visibility
of the floor and roof of narrow tunnels. It also enabled use of
surfel features, which exploit the dense depth measurements to
provide a stable, robust feature set that is effective in a wide range
of environments.

Surfel Generation. Wildcat uses planar surface elements (surfels)
as dense features for estimating robot trajectory. Surfels are created
every 0.5 s by spatial and temporal clustering of new LIDAR points.
Specifically, the space is voxelized at multiple resolutions and points
are clustered depending on their timestamp and the voxel they
fall in. Clusters smaller than a predefined threshold (in terms of
number of points) are discarded. An ellipsoid is then fit to each
remaining cluster by computing the first two moments of its 3D
points. The centroid (mean) of an ellipsoid specifies the position
of the corresponding surfel, while its covariance matrix determines
its shape. A planarity score [93, Eq. 4] is computed based on the
spectrum of the covariance, and only sufficiently planar surfels are
kept.
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Figure 3: Overview of CSIRO’s decentralized multi-robot SLAM system in SubT. Each robot runs its own Wildcat’s LIDAR-inertial
odometry module independently. The resulting locally-optimized odometry estimate and surfel submaps are used to generate Wildcat
frames. These frames are stored in a database and are shared with other robots and the base station. Robots and the base station then
use their collection of frames to independently build and optimize a pose graph.

LIDAR-Inertial Odometry. Wildcat’s LIDAR-inertial odometry
module processes surfels and IMU data in a sliding window. Within
a time window, the processing alternates between (i) matching active
surfel pairs and (ii) optimizing robot trajectory, for a predetermined
number of times or until satisfying a convergence criterion. Surfel
correspondences are established through k-nearest (reciprocal)
neighbor search in the descriptor space comprising estimated
surfel’s position, normal vector, and voxel size. The estimate of
the segment of the robot trajectory within the current time window
is then updated by minimizing a cost function mainly composed
of residual error functions associated to matched surfel pairs and
IMU measurements in the current time window. The cost function
is made robust to outliers (e.g., incorrect surfel correspondences) by
using the Cauchy M-estimator.

Frame Generation and Sharing. A Wildcat frame comprises
a six-second portion of surfel map and odometry produced by
each robot’s LIDAR-inertial odometry. Each robot generates frames
periodically and stores them in a database. A frame is discarded if
its surfel submap has very high overlap with that of the previous
frame. During the DARPA SubT Challenge, Team CSIRO Data61’s
UGVs deployed wireless communication nodes through the course
to build a mesh network; see [91], [94] for details. As shown
in Figure 3, Wildcat leverages CSIRO’s peer-to-peer ROS-based data
sharing system, Mule [91, Section 4.3], to synchronize robots’ frame
databases every time two agents (robot-robot or robot-base station)
are within communication range. Mule acts as a bridge, enabling
robots and the base station to share messages (i.e., Wildcat frames)
between their respective ROS systems. Periods of disconnection
would inevitably lead to temporary inconsistencies in SLAM results
between the agents (base station and the robots), thus necessitating
periodic rendezvous.

Pose Graph Optimization. Each robot uses its collection of
Wildcat frames —including those generated and shared by other
robots— to independently build and optimize the team’s collective
pose graph. Frames represent nodes of the pose graph. Each
robot’s odometry estimate is used to create odometry edges (i.e.,
relative pose measurements) between the robot’s consecutive frames.
Additionally, intra- and inter-robot loop-closure edges are created
by aligning frames’ surfel maps. This is done using ICP for nearby
frames (for which a good initial guess is available from odometry)
and global registration methods for distant ones. Pose graph nodes
with significant overlap in their local maps are merged together. As

a result, the computational complexity of the solver grows with the
size of the explored environment rather than mission duration. The
solver is made robust to outliers using Cauchy M-estimator. The
collective pose graph built and optimized by each robot is used to
render a surfel map of the environment.

Dirty Details. Parameter tuning: CSIRO’s solution uses a
single set of parameters tuned to perform across a wide range of
environments. However, ground robots and drones use different
parameters due to the independent tuning processes.

Calibration: CatPacks undergo extensive calibration on
production, comprising both LIDAR-IMU and LIDAR-camera
calibration. The incorporation of the cameras in the CatPack
successfully avoided the need for subsequent calibration, even when
packs are switched between platforms.

Loop closures: Complex LIDAR-based place recognition
techniques were rarely found to be necessary at the scale of SubT
environments, therefore team CSIRO found loop closures candidates
by searching for past poses within a Mahalanobis distance from the
current robot pose. In SubT, the first inter-robot loop closures were
created upon startup based on joint observation of the same starting
region. This process at startup was imperfect, but difficulties could
be addressed procedurally, e.g., by restarting the affected agent.
Since each agent also solves independently for its own multi-robot
solution, it was necessary to ensure that these inter-robot loop
closures are successfully detected not only on the base, but also on
each robot. After difficulties in the Urban Event of the competition,
user interface elements were introduced to prominently report the
connectivity status of the collective pose graph to detect anomalies.
By the Final event, these failures were rare.

Hardware robustness: While hardware robustness is seldom
discussed in the SLAM literature, it is a significant feature of the
CSIRO system’s maturity. On the rare occasions when Wildcat di-
verged in testing, almost all occurrences were found to coincide with
sensor dropouts caused by significant kinetic impacts of the platform,
or hardware failures, which typically start with intermittent errors.

E. Team CTU-CRAS-Norlab

The CTU-CRAS-Norlab team employed two separate
SLAM systems for their Unmanned Ground Vehicles (UGVs)
and Unmanned Aerial Vehicles (UAVs). The corresponding
architectures are given in Figure 4 and Figure 5, respectively.
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Figure 4: CTU-CRAS-Norlab UGV SLAM architecture (Norlab ICP Mapper). Green boxes correspond to the inputs, and the purple
ones represent submodules of the SLAM architecture.

UGV SLAM. The UGV SLAM architecture relies exclusively
on a LIDAR odometry system, Norlab ICP Mapper, that focuses on
reducing drift at the front-end level. The mapper operates as follows:
(A) first, the robot orientations during a LIDAR scan are estimated
by passing the IMU measurements through a Madgwick filter [95].
(B) then, this orientation information is fused with translation
estimates from wheel odometry to estimate the robot motion during
the scan. (C) the motion estimate allows to de-skew the current
LIDAR scan (i.e., motion correction). (D) once de-skewed, the
LIDAR scan is registered in the local map using ICP, taking the
robot pose as prior. A modified version of point-to-plane ICP [96] is
used, where only 4 degrees of freedom (3D position and yaw angle
of the scan) are optimized, while roll and pitch angles are directly
obtained from the IMU. (E) the robot pose found using registration,
is used by the voxel manager to load and unload voxels of the local
map to ensure it stays centered on the robot. (F) lastly, the registered
cloud is merged into the local map and maintenance operations are
performed. These maintenance operations include identifying and
removing points belonging to dynamic objects using the technique
described in [97]. The resulting map is then set as the new local map.
These steps are performed in different threads to allow the system
to localize at a higher rate than the rate at which the map is updated.

UAV SLAM. The UAV SLAM architecture relies on a LIDAR
sensor that is complemented by an IMU for precise roll-and-pitch
orientation estimation. While not necessary for localization, which
utilizes only LIDAR and IMU measurements, data from upward-
and downward-facing depth cameras are integrated into a dense
metric map to cover the blind spots of the LIDAR field of view. The
output of the system is a state estimate (i.e., robot poses in a gravity-
aligned reference frame, and their derivatives), and a volumetric
occupancy map.

The UAV SLAM pipeline (Figure 5) starts with pre-processing of
LIDAR scans. First, a range-clip filter is applied to the raw scans to
filter out the robot frame and distant measurements. Second, a local
intensity-threshold filter is applied to the data, which proved to be a
highly robust method for filtration of dust even in the harshest condi-
tions. Due to computational constraints, this pre-processing does not
involve LIDAR scan de-skewing; while this negatively impacts the
SLAM performance, it reduces the delay incurred by the pose esti-
mate. The processed data is passed to LOAM [70], which optimizes
the alignment of geometric features extracted from the data in a two-
step odometry process — fast scan-to-scan and slow scan-to-map
matching in the feature space. The team has adapted the advanced
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Figure 5: CTU-CRAS-Norlab UAV SLAM architecture. PD and
PL are the depth camera and 3D LIDAR point clouds. PDF and
PLF are the respective point clouds after filtration. The outputs are
the map M and the state s, which consists of position r, orientation
R, and their first derivatives ṙ and Ṙ. The Kalman filter corrections
z consist of r, Ṙ, and r̈.

implementation of LOAM (A-LOAM1) to be suitable for UAVs by
extending the method with platform-optimized parallelization. The
state estimation module (based on [40]) takes the LOAM pose esti-
mate and fuses it with the IMU measurements using a linear Kalman
filter to obtain a high-rate delay-compensated state estimate that is
suitable for the control system feedback loop [98]. The non-constant
delay introduced by LOAM negatively impacts the controller
performance and, most importantly, the control error. The idea of the
delay-compensation method [99] is to recompute the current state
if a measurement with a past timestamp arrives. When a delayed
measurement arrives, it is applied to the state in a circular buffer
with the nearest timestamp. The corrected state is then propagated to
the current time using the system model and other relevant updates.

The robots communicate using a fully-decentralized mesh
network created using commercially available 2.3GHz Mobilicom
radios and 868MHz or 915MHz custom-made motes for
redundancy. A bandwidth of 1 MB/s is available in the Mobilicom
network for sharing all data, including maps and images. Each
robot is equipped with a mote, and UGVs drop deployable range-
extending battery-powered modules to build the communication
mesh network. To share data efficiently, a lightweight Topological-
Volumetric Map (LTVMap) is used to carry mission-related
information; see [100] for details. To allow multi-robot cooperation,
the UAVs reference frames are initially aligned by one of the
following procedures. The reference frames are either given in
advance (e.g., from a total station) or their alignment is estimated
with respect to a leader-robot by scan matching using LIDAR data
shared among all the UAVs before takeoff.

1https://github.com/HKUST-Aerial-Robotics/A-LOAM
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Figure 6: Overview of team Explorer’s SLAM architecture. Each robot estimates and operates on its own individual map.

Dirty Details. The only tunable parameter of the UAV SLAM
method is the resolution of the feature map. For both SLAM systems,
it was found empirically that one set of parameters worked well in a
majority of scenarios; any changes to the parameters led to degraded
state estimation quality or slower-than-real-time performance. Not
adapting the parameters dynamically also ensured static assignment
of computational resources, which helped to predict and optimize
the system behavior.

Loop closures: Neither the UGV nor the UAV SLAM systems
detect loop closures; therefore, no pose graph optimization is used
to refine the odometric trajectories.

Computation prioritization: When the CPU is fully loaded,
critical components such as control and SLAM might have to wait
for CPU resources shared with non-flight-critical software such
as object detectors, which results in triggering failsafe recovery
behaviors. Prioritizing the critical modules at the process level by
reducing CPU affinity and using negative nice [101] values for
non-critical processes resulted in lower computation times, lower
jitter, and smoother flights. Additional performance was gained by
running the algorithms that process large amounts of data as nodelets
under a common ROS nodelet manager. This avoids the overhead
of copying large data structures by simply passing pointers instead.

F. Team Explorer

Team Explorer won the Tunnel event of the DARPA SubT
Challenge. Team Explorer’s SLAM architecture is given in Figure 6.
The architecture relies on Super Odometry [102] to fuse outputs of
multiple odometry sources including visual or thermal fusion [103]
using a probabilistic factor graph optimization, and a loop-closing
back-end.

Lidar-Inertial Localization Module for Odometry Estimation.
The lidar-inertial localization module relies on Super Odometry
(SO) [102]. In SO, a factor graph optimization performs estimation
over a sliding window of recent states by combining IMU pre-
integration factors with point-to-point, point-to-line, and point-to-
plane LIDAR factors. SO strikes a balance between loosely- and
tightly-coupled estimation methods. The IMU-centric sensor fusion
architecture does not combine all sensor data into a full-blown factor
graph. Instead, it breaks it down into several “sub-factor-graphs”,

with each one receiving the prediction from an IMU pre-integration
factor. The motion from each odometry factor is recovered in a
coarse-to-fine manner and in parallel, which significantly improves
real-time performance. SO enables achieving high accuracy and
operates with a low failure rate, since the IMU sensor is environment-
independent, and the architecture is highly redundant. As long as
other sensors can provide relative pose information to constrain the
IMU pre-integration results, these sensors will be fused into the
system successfully.

Loop-Closing Back-End. While SO is a low-drift odometry
algorithm, it is still important for the SLAM system to be able to
correct long-term drift. This is specially true when the traversed
distance is high. Considering that Explorer’s ground robots moved
at 0.5ms−1 and had an aggressive exploration style, it was not
uncommon to observe traversed distances larger than 1km in a
single test. Team Explorer’s solution reduces the drift by detecting
loop closures and performing pose graph optimization. In particular,
the back-end filters the poses and point clouds generated by the
front-end. It applies a heuristic method to accumulate these results
into a keyframe, which is composed by a key pose and a key cloud,
which is the point cloud generated by accumulating all the point
clouds generated since the last keyframe, and downsampling to
maintain a fixed size. The heuristic used is distance-based: a new
keyframe is created after the robot moves by 0.2m. Search for
loop closures is performed using a radius-search among the nearest
poses, or by querying a database of sensor data to find matches with
previously visited places.

Autocalibration. To achieve a common task, multiple robots need
to be able to establish and operate in a common frame of reference.
Towards this goal, team Explorer used Autocalibration, a process in
which a Total Station is used to obtain the pose of one robot with
respect to the fiducial markers with known positions in the world
frame set by DARPA. This robot shares its pose with respect to its
own map frame and the latest three keyframes it created. All the
following robots will then be placed near the calibration location
of the first robot; they receive the reference information from the
base station, and use GICP [88] to align their current keyframes to
establish their initial pose in the world frame.

Team Explorer’s communication subsystem played a crucial
role in the Final Challenge by facilitating artifact delivery to the
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bases station and human-robot coordination. However, it had
limited impact on the SLAM module since the team did not rely
on a multi-robot SLAM solution. The map-sharing that occurred
between the robots and the base station only affected the SLAM
result during the initial extrinsic auto-calibration, and key-pose maps
were shared between robots for planning and object detection. In the
SubT challenge, the team faced intermittent networking coverage
and a wide range of bandwidths, making it a challenge to leverage
intermittent and varying connectivity for their autonomy system.

Dirty Details. Loop closures: The most important parameters
tuned during testing were those related to the downsampling of the
point clouds before the scan-to-map registration. This downsampling
affected the number and the quality of features available to SO. In
particular, a key parameter is the voxel size used in the PCL library
voxel grid filter. When the robot traverses a narrow urban corridor, it
is desirable to use a smaller voxel size, to avoid decimating important
details in the point cloud. In contrast, in a large cave, a larger voxel
size is required, otherwise the processing becomes too slow due
to the large number of features. To solve this problem, we created
an heuristic method to switch voxel sizes in real-time. The method
consists in calculating, for each 3D axis separately, the average
distance to the points in the current point cloud. Then, we multiplied
the 3 values together to obtain an “average volume”. This volume
was thresholded to create 3 different modes, each associated to a
predefined voxel size.

Dust Filters: Team Explorer had a strong focus on UAVs. These
platforms bring their own unique challenges to the SLAM problem.
One that was particularly important for SubT was being able to
handle the dust that arises due to the robot’s propellers. The simple
solution that was implemented was to test if there was a minimum
number of features farther than 3m from the robot. If true, all the
other points inside this radius were ignored when performing pose es-
timation. This solution was based on the assumption that dust would
usually accumulate circularly around the robot, but usually there are
still other distant features in the environment that allow the robot to
solve the optimization correctly. If the robot were capable of perform-
ing estimation and continuing operation, it would usually escape
the dusty area in the environment. Otherwise, dust would eventually
cover the robot from all sides and a catastrophic failure would occur.

Robot-specific computational budget: Analysis of empirical
results showed that after a certain number, having more LIDAR
features does not necessarily translate to substantial accuracy gains.
Therefore, a threshold on the number of surface features is used.
If the current scan frame contains more than the threshold, the list
of features is sampled uniformly such that the number of features
does not exceed the threshold.

G. Team MARBLE

Team MARBLE’s SLAM architecture is given in Figure 7. The
core of MARBLE’s LIDAR-centric solution2 is the open-source

2Initially, MARBLE explored the use of onboard cameras and a visual-inertial
odometry system [43], namely, Compass [104]. While this solution was tenable
in some cases, changing lighting conditions and specular highlights caused by on
board illumination in dark scenes often lead to instability. This was especially true in
longer deployments, such as the hour-long runs necessitated by SubT. A dataset for
benchmarking visual-inertial SLAM systems with onboard illumination was released
as a part of these tests [105], however team MARBLE switched to a LIDAR based
architecture soon after.

LIO-SAM [106] package, which performs tightly-coupled fusion of
IMU data and LOAM-based LIDAR features [70]. The localization
results are then passed to MARBLE Mapping, that creates a voxel
map.

LIDAR Localization via LIO-SAM. Each robot in the
MARBLE system was responsible for its own localization, from
input (i.e., LIDAR scans at 20Hz and IMU data at 500Hz)
to optimization. The localization process includes multiple
subcomponents (Figure 7). In order to be processed by LIO-SAM,
each point in the LIDAR point cloud required two extra data fields
in addition to the standard x,y,z position: a timestamp, and a ring
number to provide their relative position in the vertical scan. This
additional data is used to de-skew the point clouds. While many
automotive-grade LIDARs now provide this information by default,
this is and has not always been the case, and care must be taken in
ensuring sensor drivers enable the conveying of this information. In
particular, timestamps were added to each vertical angle of arrival,
and rings were designated by their elevation angle.

Localization via LIO-SAM is based on factor graph optimization
and involves three types of factor. The first type consists in
IMU pre-integration factors [73]. The second type includes
LIDAR odometry factors; in particular, once the LIDAR has
been de-skewed, LIO-SAM extracts key features along lines and
edges (as in LOAM [70]). These features are then compared
and scan-matched along a subset of local key frames in a sliding
window filter. Lastly, loop closure factors are determined by a
naive Euclidean distance metric. Each time a new factor is added
to the graph, the iSAM2 solver [107] is applied to optimize the
graph using GTSAM [72]. After generating an odometry estimate,
LIO-SAM then estimates the IMU bias with the updated odometry.

Multi-Robot Mapping via Octomap. LIO-SAM outputs robot
pose estimates. A voxel based map can also be queried via a
ROS service call, however, MARBLE relied on a separate custom
package, MARBLE Mapping, a fork of Octomap [108], which
allowed creating voxel grid map differences with low data transfer
requirements. In particular, MARBLE Mapping uses the latest LIO-
SAM pose estimate and the corresponding LIDAR scan to update
the log-odds probability (occupancy) value inside an octomap with
voxel size of 0.15m. When enough voxels have been added or have
changed state, or if enough time or distance has been traversed, a
new map difference is created by the robot with the changed voxels.

Map differences are then shared between robots in a peer-to-peer
fusion. Each robot tracks differences in a sequence tied to its own
identifier and that of their neighbors. Then when two robots connect
to each other or the base station via a deployed mesh network, they
request any differences not contained with their own maps, and pass
on any differences they had generated to the neighboring agent. To
minimize overhead, maps were transmitted in their binary state, after
thresholding the occupancy probability to an occupied/unoccupied
state. Team MARBLE deployed a dynamic mesh network using
custom beacons equipped with 2.4 GHz radios on their UGVs. The
mesh nodes were linked together using a mesh routing algorithm
that prioritizes fast reconnection times, provided by Meshmerize
GmBH [109]. To enable prioritization of data, a custom UDP
transport package (udp mesh) [110] was developed. However, map
differences were given the lowest priority in the network, as the LIO-
SAM-based SLAM solution followed a decentralized architecture,
and map differences were only used in downstream planning and
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Figure 7: Overview of team MARBLE’s SLAM architecture.

navigation tasks. We refer the reader to [111] for further details.
As each robot only optimized its own trajectory and map, any sig-

nificant drift or misalignment between robots could cause potential
downstream issues with multi-agent planning algorithms. To miti-
gate this issue, each robot prioritizes its own map, specifically during
the merging process, where free voxels in the parent robot were kept
free and the occupied voxels were merged together. The base station
operator also had the ability to remove or stop merging differences
from specific agents if significant tracking errors occurred.

Dirty Details. Parameter tuning and IMU: The IMU covariance
was found to have a substantial impact on the roll, pitch, and
yaw estimation. In constrained passage ways, rotation accuracy
significantly decreased as a result of a significant number of LIDAR
points falling below a minimum range threshold. Relying more
heavily on the IMU during these maneuvers improved rotation
accuracy substantially (although it did not fully eliminate the
problem). In this regard, using a good IMU is paramount: the
LORD Microstrain 3DM-GX5-15, provides exceptionally high
accuracy pitch and roll estimates of 0.4◦, along with a 0.3 °/

√
hr

gyro estimate [112], which allowed the MARBLE system to rely
on IMU-only measurements for extended periods of time.

A second key parameter in the system was the key-frame
search radius for loop closures. Given the localization maintained
qualitatively good accuracy, the Euclidean search distance was
continually reduced, resulting in a final distance of 2m for
loop closure constraints. As loop closure optimization were
computationally expensive, this saved on CPU cycles and
additionally helped avoid spurious loop closure between different
elevations of tunnels or floors in a building.

Hardware design: Team MARBLE relied on precision machining
to obtain (and preserve) an accurate extrinsic calibration between
LIDAR and IMU. Further calibration may have benefited the final
solution —specifically, improved IMU noise and bias estimation.
It was found that certain IMUs did not perform as well as others in
qualitative analysis of two robots traversing roughly the same trajec-
tories. The team opted to swap hardware over further exploration of
the cause of these errors. The chosen hardware likely had the closest
noise parameters to those provided by the IMU manufacturer.

LIO-SAM enhancements: Team MARBLE also made two
minor adjustments to LIO-SAM. During initialization, the team
chose to ignore measurements from the IMU until a point cloud

had been received, since the IMU was not a full AHRS unit and
did not have a heading compass. The second adjustment was
to the IMU timestamps, prior to integration. As a result of the
(ACM-based) USB driver used by the IMU, the measurements
did not have guaranteed priority on the kernel. This meant the
timestamps generated by the system were not always consistent,
which often caused negative timestamp values in the IMU
pre-integration, leading to instabilities. To avoid this issue, the
MARBLE implementation replaced the timestamps (using the
nominal IMU frequency) if they were outside an acceptable range.
While this method was less precise than a full hardware clock
sync, it was fairly easy to implement given the available onboard
connections (a full hardware sync would have required an extra
RS232 port). In practice, we noticed that the back-end optimizer
was able to mitigate the impact of minor timestamp mismatches.

H. Common Themes on the Path to Robustness

Despite the unique features that distinguish the architectures
adopted by the SubT teams, the previous sections reveal a
substantial convergence of technical approaches across teams.
This convergence is a testament of the maturity of multi-robot
LIDAR-centric SLAM, at least for small robot teams, (e.g., 5-10
robots). We discuss commonalities across systems below.

Sensing. Most teams relied on LIDAR and IMU as the dominant
sensing modalities; IMUs are not sensitive to perceptual aliasing (i.e.,
the case where different places have the same appearance/sensor
footprint) and environmental disturbances; LIDARs afford accurate
and long-range depth measurements even in the absence of external
illumination. At the same time, visual, thermal, and wheel/kinematic
odometry remain an important addition to LIDAR, especially in the
presence of obscurants and to increase redundancy. Many teams
(e.g., CSIRO, Explorer, MARBLE, CoSTAR) adopted a common
sensor payload to be mounted on the different robots. This modular
design allows standardizing calibration and testing procedures, and
partially decouples the development of the SLAM system from
other hardware choices.

SLAM Front-end and Back-end. All teams relied on local
(single-robot) front-ends to pre-process the LIDAR data. Such
pre-processing reduces the data volume communicated to the
base station or to the other robots. Moreover, it allows splitting
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computation across the robots, improving scalability. Most solutions
perform extensive point cloud pre-processing, including de-skewing
and voxel grid filtering. The front-ends then process the LIDAR
scans using feature-based (akin to LOAM [70]) or dense (e.g.,
ICP-based) matching. Regarding the SLAM back-end, virtually
all teams relied on factor graph or pose graph optimization (except
for the Kalman-filter-based odometry from CTU-CRAS-Norlab).
Several teams decided not to detect loop closures (e.g., CTU-CRAS-
Norlab, and partially CERBERUS), based on considerations about
the scale of the environment and the computational constraints at
the robots. Finally, most teams built on top of open-source libraries
for the LIDAR front-end and back-end, including GTSAM [72],
maplab [74], LOAM [70], LIO-SAM [106], Octomap [108], and
libpointmatcher [113].

Loosely-coupled vs. Tightly-coupled Architectures. Most
teams resorted to loosely-coupled sensor fusion techniques, where
estimates from multiple sensors are first fused into pose estimates
and then combined together. Loosely-coupled approaches enable
a more modular software design and make the implementation of
health checks for each data source and intermediate pose estimate
easier. This has been shown to largely increase robustness to
hardware and software failures, e.g., [35], [51], [102]. In addition,
tightly-coupled fusion leads to larger optimization problems, which
prevents scaling the multi-robot back-ends to large teams.

Centralized and Decentralized Architectures. CERBERUS
and CoSTAR adopted centralized architectures, where the base
station performs a joint optimization over the entire robot team. All
the other teams adopted a decentralized approach, where each robot
mostly operated on its own, with the occasional exchange of the
mapping results (see CTU-CRAS-Norlab, Explorer, and MARBLE)
or with a multi-robot pose graph optimization executed at each robot
(CSIRO). No team adopted a distributed architecture, which are still
the subject of active research [33] and were less amenable to the
rules of the SubT competition, which required collecting data at a
base station for visualization and scoring purposes.

IV. STATE OF PRACTICE AND
MATURITY OF UNDERGROUND SLAM

The previous section discussed state-of-the-art approaches for
SLAM in underground environments across six SubT teams. This
section reports on the practical performance that can be achieved
by these approaches, which provides useful data points to assess
the maturity of LIDAR-centric SLAM in underground worlds.

We focus on three dimensions —odometry, loop closures, and
multi-robot mapping— and for each we discuss performance and
key aspects impacting it. While the goal of this section is to show
what can be achieved across a variety of tests performed by the
teams and across different aspects of their SLAM systems, the
reader is referred to [115] for the results of the DARPA competion,
which reports a metric to measure the quality of the SLAM maps of
the different teams with respect to a manually surveyed map during
the SubT final event.

Odometry Estimation Accuracy. This section shows that mod-
ern LIDAR-centric odometry estimators can achieve a very low-drift
(0.1-0.5 % of the trajectory traveled) in challenging underground
environments. This enables impressive localization performance
over long distances. For instance, Figure 8 shows results from
team CTU-CRAS-Norlab’s unmanned aerial vehicles, achieving
localization error under 1m in the Bull Rock cave system with
flights reaching trajectory lengths of 600m and maximum velocities
up to 2ms−1.

Multi-modality: Multi-modal sensing enhances robustness in
challenging environmental conditions (e.g., darkness, fog, smoke,
dust, or feature-less scenes), as well as in the presence of hardware
and software failures. Figure 9 shows the map obtained by the
multi-modal, onboard CompSLAM approach by team CERBERUS;
CompSLAM achieves a low-drift trajectory estimate in extreme

Figure 8: CTU-CRAS-Norlab’s odometry accuracy for three
single-UAV deployments in the Bull Rock Cave system [114]

Table I: Open-source Datasets and Code Released by the SubT teams

Team Code Dataset
CERBERUS https://www.subt-cerberus.org/code--data.html

CoSTAR https://github.com/NeBula-Autonomy
CTU-CRAS-Norlab https://github.com/ctu-mrs/aloam

https://github.com/ctu-mrs/octomap mapping planning
https://github.com/ctu-mrs/mrs uav system

https://github.com/norlab-ulaval/norlab icp mapper https://github.com/ctu-mrs/slam datasets
https://github.com/norlab-ulaval/norlab icp mapper ros

https://github.com/ethz-asl/libpointmatcher
https://github.com/norlab-ulaval/libpointmatcher ros

https://github.com/ethz-asl/libnabo
Explorer https://www.superodometry.com/ https://theairlab.org/dataset/interestingness

https://theairlab.org/research/2022/05/02/subt code/ https://www.superodometry.com/datasets
MARBLE https://github.com/arpg/marble mapping https://arpg.github.io/coloradar

https://github.com/arpg/LIO-SAM https://arpg.github.io/oivio
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Figure 9: (Top) Autonomous exploration of a self-similar
environment making LIDAR only localization unreliable. (Middle)
Aerial exploration in a fog-filled environment using CompSLAM
and exploiting thermal vision. (Bottom) Underground tunnel
environment exploration in conditions of darkness and subject to
reflections due to mud/water puddles.

conditions with significant dust and obscurants. Although primarily
driven by LIDAR, CompSLAM also uses other modalities (e.g.,
kinematic odometry or thermal) that are less sensitive to dense
obscurants. This is still achieved on a modest computational budget:
CompSLAM has been deployed on both ANYmal C robots that are
equipped with powerful processors (i7-class systems), and on the
RMF-Owl aerial robot [116], that relies on a single-board computer.

LIDAR pre-processing: LIDAR data pre-processing is a key ingre-
dient for accurate odometry estimation. Figure 10 shows an ablation
study conducted by team CTU-CRAS-NORLAB on an unmanned
ground vehicle, which highlights the impact of de-skewing the
LIDAR scans, as well as the impact of constraining the roll and pitch
of the platform using IMU data during ICP (see Section III-E). The
path consists of a robot traveling through an unknown environment
up to 150m (the “exploration” phase), to which point it turned
around to come back to the base station (the “exploitation” phase).
Although CTU-CRAS-Norlab’s SLAM solution does not use loop
closures, it assumes low odometry drift and can reuse its global map
for scan-to-map matching when revisiting known environments.
All curves in Figure 10(a) exhibit increasing errors (drift) during
exploration but the de-skewing and roll-and-pitch-constrained
optimization lead to reduced errors. The result is confirmed by the
localization error box plots in Figure 10(b). LIDAR pre-processing
(e.g., point down sampling via voxel grid filtering) is also crucial to

reduce the computational burden, see the analysis in [79].
Importance of Loop Closures. While LIDAR-centric solutions

compute low-drift odometric trajectories, such trajectory estimates
keep accumulating error over time. With a 0.5% odometry drift,
a robot would have 5m error after 1km traverse. This stresses
the importance of detecting and enforcing loop closures to keep
the localization error bounded. Figure 11 provides an example
of accurate localization and mapping results by team Explorer,
achieved by successful detection of loop closures. The figure shows
mapping results in Brady’s Bend cave near Pittsburgh, PA, on a
wheeled ground robot. According to DARPA, team Explorer’s
SLAM system achieved a deviation of 6% in the grand finale of
the DARPA SubT challenge, a performance that is the second best
among all competing teams, behind CSIRO’s Wildcat.3

Robustness to outliers: LIDAR-based loop closure detection
is quite challenging in underground scenarios due to perceptual
aliasing. At larger scales, and with more robots, the chances of
false positive loop closures increase, especially in environments
with self-similar locations. False loop closures, if not rejected,
can have a negative impact on localization performance and lead
to dramatic distortions in the map. Figure 12 shows CoSTAR’s
SLAM results (a) without and (b) with outlier rejection. CoSTAR’s
GNC-enabled [60] approach has been shown to produce accurate
maps and reject up to 90% outlier loop closures during the
Final event of the DARPA SubT challenge [117]. As depicted
in Figure 13, CoSTAR’s outlier-robust loop closure detection
enables creating high-precision 3D maps from multi-level urban
environments with a combination of large rooms and small spaces,
to complex weaving lava tubes, to mines that are massive in scale,
and finally the narrow passages found in the SubT Final event.

Heterogeneous environments: Other examples of high precision
localization and mapping in a large-scale and long-duration
exploration are shown in Figure 14 and Figure 15 for the LIO-SAM
system adopted by team MARBLE. In these experiments, a
robot is teleoped from within the University of Colorado-Boulder
Engineering Center through all three levels of a parking garage
before returning to its approximate original location in an hour-long

3Team Explorer’s performance was also recognized with the “Most Sectors
Explored Award” by DARPA.

Figure 10: Localization error as a function of distance traveled. The
solid lines are the median error, and the colored areas represent
the first and third error quartiles. The dashed line delimits the
exploration phase, during which the robot explored new areas,
before returning to previously visited areas. Statistics are computed
over ten experiments.
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operation. The test spans heterogeneous environment types, from
tight urban indoor environments (with sharp turns, feature-less
and narrow corridors, and staircases) to wide-open outdoor
environments. The SLAM system accurately maintains elevation
estimation through multiple levels of the parking garage with high
level of geometric self-similarity while relying on only the OS1
LIDAR and IMU. The 2.2km long trajectory shows a position
difference of 0.31m from the start to the final position, which is
equivalent to an error (after loop closures) of just 0.014%.

Importance of Multi-robot Operation. Multi-robot SLAM
allows mapping larger areas while simultaneously reducing the
localization and mapping errors thanks to inter-robot loop closures.
Figure 16 shows the maps produced by CSIRO’s Wildcat decen-
tralized multi-robot SLAM system in two SubT events (Urban
and Final) and in a cave in Australia. The map in Figure 16(a)
is built by three ground robots, while the maps in Figure 16(b-
c) are created by four robots (including a UAV, in the cave case).
According to DARPA, in the Final SubT event Wildcat produced
the top map with less than 1% deviation from the ground truth
where they defined deviation as the percentage of points in the
submitted point cloud that are farther than one meter from the points
in the surveyed point cloud map. Wildcat also produced the single
most accurate reports in the Urban and Final events with 22 cm and
4.8 cm error, respectively. We refer the reader to [90] for a more
extensive experimental evaluation. Additional qualitative results
produced by Wildcat in perceptually challenging environments are
also available on the websites of two commercial partners of CSIRO,
Emesent [92] and Automap [118].

Inter-robot loop closures: Figure 17 shows the dramatic reduction
of the Absolute Pose Error (APE) in team CoSTAR’s SLAM
architecture due to inter-robot loop closures and multi-robot
pose graph optimization. As in the single-robot case, capitalizing
on inter-robot loop closures requires a good strategy for outlier
rejection, since many inter-robot loop closure detections will be
incorrect due to perceptual aliasing.

In the DARPA SubT finals event, team CERBERUS deployed
four ANYmal quadrupedal robots to autonomously navigate a
total distance of 1.75km. The maps generated by the onboard
solution, CompSLAM, along with scoring artifacts, are qualitatively
compared against the DARPA-provided ground truth map
in Figure 18. The individual robot results are made globally
consistent by M3RM by exploiting inter-robot loop closures; a
quantitative comparison between the onboard and global mapping
approaches is presented in Table II.

Robot CompSLAM (Onboard) M3RM (Server)

Rotation [°] Translation [m] Rotation [°] Translation [m]
ANYmal 1 2.45 (0.67) 0.72 (0.41) 1.59 (0.46) 0.25 (0.13)
ANYmal 2 3.97 (0.40) 1.29 (0.90) 0.96 (0.30) 0.36 (0.28)
ANYmal 3 0.89 (0.50) 0.23 (0.43) 2.30 (1.02) 0.20 (0.34)
ANYmal 4 2.22 (0.79) 1.00 (0.71) 2.16 (0.55) 0.24 (0.17)

Table II: Comparison of the mean and standard deviation of the
Absolute Pose Error (APE) for CERBERUS’ CompSLAM (each
robot) and M3RM (all robots considered together) approaches for
the DARPA SubT challenge Final Event.

Heterogeneous teams: We already commented on the benefit
of having heterogeneous sensing capabilities. Here, we discuss

Figure 11: Team Explorer mapping results in Brady’s Bend cave near Pittsburgh, PA, on a wheeled ground robot. The red dots represent
the key poses and yellow edges show potential loop closure edges.

Figure 12: CoSTAR’s SLAM results (a) without and (b) with the outlier rejection module during the preliminary run of the SubT Finals.
Each color represents the map of a different robot (four in total), blue lines represent accepted loop closures and gray lines represent
rejected loop closures. GNC is able to successfully reject numerous false loop closures (gray lines in (b)).
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Figure 13: A to-scale representation of the robot-produced maps
across a variety of environments team CoSTAR tested in. (a) a
3-level abandoned subway in Los Angeles. (b) A lava tube in Lava
Beds National Monument. (c) part of Kentucky Underground. (d)
DARPA-created SubT Finals course. (e) Bruceton Research Mine
(SubT Tunnel Competition). (f) Valentine cave (a lava tube) in Lava
Beds National Monument. (g) Satsop power plant (SubT Urban
Competition). All maps are the best runs from a single-robot.

Figure 14: LIO-SAM map generated by MARBLE’s Spot robot
traversing from the University of Colorado-Boulder Engineering
Center to the bottom of a nearby parking garage and back. The
trajectory is marked in pink, and the point cloud is colored by
elevation from red low to blue high.

the advantage of using heterogeneous platforms for exploration.
Indeed, most of the SubT teams used a combination of wheeled
and legged ground robots and UAVs. Figure 19(c) shows Explorer’s
mapping result in the Urban Challenge Alpha Course reconstructed
by multiple robots (UGV1, UAV1, and UAV2) operating in a dark
and foggy environment with a vertical shaft. Green, orange, and
red lines are the estimated trajectories of UGV1, UAV1, and UAV2
respectively. Figure 19(a) shows the mapping result in the SubT
Finals by a heterogeneous fleet. The blue, green and red lines are
the estimated trajectories of UGV1, UGV2, and UGV3 respectively.
The travel distance of UGV1, UGV2, and UGV3 are 445.2m,
499.8m, and 596.6m, respectively. Explorer’s SLAM solution
achieved accurate localization and mapping despite the challenging
environmental conditions, including low light, long corridors, heavy
dust/fog, and even dynamic scenes. Heterogeneity enables mapping
a broader variety of environments (e.g., UAVs enable exploring
vertical shafts) and allows richer exploration strategies (e.g., using
UAVs for fast exploration, and UGVs for more accurate mapping).

Figure 15: Position x,y,z trajectory data of path in Figure 14. The
final position offset from the initial starting location was, 0.31m
with a total trajectory length of 2.2km.

Figure 16: CSIRO’s Wildcat results: (a) Point cloud map produced
by three ground robots in the Beta Course of the Urban Event;
estimated map is color-coded by agent, while DARPA reference
point cloud is shown in gray. (b) Map produced during cave
testing at Capentaria Caves, Chillagoe, Queensland; the merged
agent-collected map is shown in gray, with agent trajectories in
colors (drone colored as yellow). (c) Merged point cloud map from
the Final Event, color-coded by agent, with DARPA reference cloud
in gray.

V. FUTURE RESEARCH DIRECTIONS
AND OPEN PROBLEMS

In the light of the results in Section IV and the outcome of the
DARPA SubT competition, this section provides a summary of
which problems in underground SLAM can be considered solved or
can be solved with some good engineering and what are still open
problems that will likely require more fundamental research.

LIDAR-centric SLAM solutions have become increasingly
robust to challenging environments. Feature detection or scan pre-
processing enable real-time point cloud alignment. Tight coupling
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Figure 17: CoSTAR results: improvement in Absolute Pose Error
(APE) due to inter-robot loop closures and multi-robot pose graph
optimization, with the resulting multi-robot map on the right. (a)
Test with three robots in the Satsop power plant. (b) Test with two
robots in the Bruceton Research Mine.

Figure 18: CERBERUS results: Onboard maps for all deployed
robots generated using CompSLAM are overlaid on top of the
DARPA provided ground truth for the final event of the DARPA
SubT Challenge. The scored artifacts are shown and are colored
to correspond with the reporting robot.

with inertial data enables more robust motion estimation, by allowing
de-skewing the LIDAR scans, bootstrapping ICP-based scan
matching, and potentially eliminating roll and pitch drift. Keyframe-
based or sub-map-based approaches, combined with a factor graph
framework, allow sparsifying the trajectory into a reduced set of
poses and enable online operation in large-scale, long-term, multi-
robot explorations with reduced computational complexity. The
addition of other sensing modalities further increases robustness.

Looking across the six solutions examined in Section III-IV,
there is reason to believe that the underground SLAM problem,
with high-quality multi-modal sensing suites, is a solved problem.
Yet only solved with sufficient qualifications of the environment,
the scale, the sensors, the parameter tuning, and the computation
power. We believe that in the context of extreme subterranean
environments, the majority of open problems defined in [7] still
applies. In the rest of this section, we highlight current challenges
and open problems in underground localization and mapping.

Robust and Resilient Perception. One of the common failure
modes observed across most of the presented architectures is local-

Figure 19: Testing sites and results of Explorer’s SLAM system.
(a) UAV, UGV, and legged robot exploration in the Final Circuit
of SubT, including urban, cave, and tunnel environments. (b) UAV
and UGV exploration in the Urban Circuit of SubT. (c) Tunnel
environments, test site with smoke. (d) Cave environment UAV test
site. (e) Urban environment with legged robot.

ization failure due to falls, drops, or collisions [119] when traversing
rough terrains in unstructured underground environments. These-
high frequency motions are not entirely captured by the onboard
perception system, e.g., due to the lower sampling frequency of
structured-light sensors [120]. This could lead to poor motion
estimates and eventually localization failure. With robotic systems
that can withstand a fall and continue to operate (e.g., Boston
Dynamics Spot, Flyability drones, BIA5 Titan, ANYmal, RMF-
Owl), a relatively under-explored area is reliable state estimation
under unexpected collisions and temporary interruptions of the
sensor streams. Although early work on localization subject to
collision shows promising results [121], better exploring the limita-
tions of different systems and algorithms in “crash tests” scenarios
would help improve all-round real-world robustness. Furthermore,
engineering work in incorporating velocity-based sensors (e.g.,
event-based cameras [122]) which might maintain ego-motion
tracking without saturation during adverse events could greatly
benefit SLAM systems.

At a more fundamental level, underground operation requires
redundancy and resourcefulness, but this needs to be achieved
beyond just “adding more sensors”. The SLAM literature is lacking
fundamental research in resilient algorithms and systems. While
robust systems are designed to withstand (often small) disturbances
(e.g., degraded sensing or environmental changes), resilient methods
dynamically reconfigure to regain performance in the face of
changing environmental stressors [20]. Moreover, a resilient system
would dynamically change its parameters (or even its algorithmic
components) depending on the scenario, contrarily to the current
SLAM systems, which are “rigid” and heavily rely on manual pa-
rameter tuning; see the comments about parameter tuning in the dirty
details subsections in Section III, as well as the discussion about the
“curse of parameter tuning” in [7]. Along these lines, active SLAM
remains a topic of interest to adapt to changes in the environment,
such as visibility conditions, with the aim of improving the SLAM
algorithm’s accuracy and efficiency; see [123] for a broader survey.

Beyond Traditional SLAM Sensors. Achieving robustness
under perceptual aliasing, dense obscurants, and severe environment
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degradation remains a challenge and can benefit from incorporating
non-traditional sensing modalities and designing methods for failure
detection and recovery. Thermal vision allows penetrating conditions
of visual degradation, where cameras and LIDARs fail due to
the presence of obscurants. Similarly, radar is able to maintain
localization [29], [30] despite the presence of fog, as the wavelengths
in commercial automotive millimeter-wave radars are large enough
to bypass particulate such as fog and dust that causes spurious
reflections that render LIDAR point clouds unusable for localization
and mapping purposes. While research into millimeter-wave radar-
based localization [124]–[128] and the creation of radar factors
for SLAM applications is ongoing, including the release of public
datasets such as [129], [130], the integration of these sensors is
not as established as other sensing modalities, due to complexity
of the corresponding sensor models and data association. Multi-
modal SLAM systems could also be pushed further by developing
failure detection and recovery methods. Autonomous exploration
of subterranean settings requires dynamically adaptive algorithmic
architectures to achieve solution resourcefulness. Still related to
resilient operation, it would be desirable to design approaches that
can detect failures of a sensing modality and reconfigure the system
accordingly. The importance of degeneracy detection in multi-modal
sensing is discussed in [36], while fault detection in perception
system is investigated in [131].

Scaling Up: Centralized vs. Distributed Systems. Multi-robot
LIDAR-centric SLAM is a mature research area. This paper showed
that centralized approaches can achieve accurate and real-time
performance for moderate team sizes (5-10 robots); moreover,
decentralized approaches attain small errors even without relying on
inter-robot loop closures in moderate-scale scenarios (e.g., <1km
traversal). However, scaling up SLAM solutions to very large
teams (e.g., >100 robots) and very large-scale scenarios (e.g., city-
scale [9] and forest-scale [132]) is likely to require a more distributed
approach. In centralized approaches, large team sizes would quickly
reach a bottleneck in terms of communication as well as processing
at the base station.4 Therefore, distributed architectures are likely to
be needed to scale up operation. For large fleets covering large-scale
geographic areas, it will be necessary to consider (i) resource-aware
collaborative inter-robot loop closure detection techniques [62]–[64]
that intelligently utilize limited mission-critical resources available
onboard (e.g., compute, battery, and bandwidth) and (ii) distributed
factor-graph and pose-graph optimization methods [32], [33], [65],
[133], both of which are active research areas. We also believe
that hierarchical map representations (e.g., [134]) will be needed
for large-scale environments where point-cloud or voxel-based
representations would clash with memory constraints.

In terms of engineering, it would be desirable to develop and
release open-source implementations of multi-robot SLAM systems.
As we observed, SLAM progress in SubT was also enabled by
the availability of high-quality open-source implementation for
SLAM components (e.g., the back-end provided by GTSAM) or
entire systems (e.g., LIO-SAM). Therefore, the development of
distributed SLAM systems will benefit from a similar open-source
infrastructure.

4The SubT teams carefully handled communication (e.g., via compression
and down-sampling) to meet the bandwidth constraints. Moreover, teams using
centralized solutions relied on powerful base stations, e.g., CoSTAR’ base station
relied on an AMD Ryzen Threadripper 3990X with 64 cores/128 threads at 2.9GHz.

Scaling Down: Miniaturization and Low-Cost Sensing. All
solutions examined in this paper leverage one or multiple LIDARs,
and powerful embedded computers. More work is required to
enable the capabilities presented in this paper, but with low-cost
components that might be suitable for smaller, cheaper, expendable
systems. For instance, it would be desirable to deploy a large
number of expendable robots for high-risk missions (e.g., search
& rescue, planetary exploration), or to design more affordable
robots to increase adoption by first responders. These platforms
would ideally have a small form factor to enable exploration of
narrow passages (e.g., pipes) while being easy to transport by human
operators. Achieving this goal entails both engineering efforts (e.g.,
development of novel sensors or specialized ASICs for on-chip
SLAM [8]) and more research on vision-based SLAM in degraded
perceptual conditions (e.g., dust or fog).

VI. CONCLUSION

While progress in SLAM research has been reviewed in prior
works, none of the previous surveys focus on underground SLAM.
Given the astonishing progress over the past several years, this
paper provided a survey of the state-of-the-art, and the state-of-
the-practice in SLAM in extreme subterranean environments and
reports on what can be considered solved problems, what can be
solved with some good systems engineering, and what is yet to be
solved and likely requires further research. We reviewed algorithms,
architectures, and systems adopted by six teams that participated in
the DARPA Subterranean (SubT) Challenge, with particular empha-
sis on LIDAR-centric SLAM solutions, heterogeneous multi-robot
operation (including both aerial and ground robots), and real-world
underground operation (from the presence of obscurants to the need
to handle tight computational constraints). Furthermore, we provided
a table of open-source SLAM implementations and datasets that
have been produced during the SubT challenge and related efforts,
and constitute a useful resource for researchers and practitioners.
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[45] V. Krátkỳ, P. Petráček, T. Báča, and M. Saska, “An autonomous unmanned
aerial vehicle system for fast exploration of large complex indoor
environments,” Journal of field robotics, vol. 38, no. 8, pp. 1036–1058, 2021.

[46] I. D. Miller, F. Cladera, A. Cowley, S. S. Shivakumar, E. S. Lee, L. Jarin-
Lipschitz, A. Bhat, N. Rodrigues, A. Zhou, A. Cohen et al., “Mine
tunnel exploration using multiple quadrupedal robots,” IEEE Robotics and
Automation Letters, vol. 5, no. 2, pp. 2840–2847, 2020.

[47] M. F. Ginting, K. Otsu, J. A. Edlund, J. Gao, and A.-A. Agha-Mohammadi,
“Chord: Distributed data-sharing via hybrid ros 1 and 2 for multi-robot
exploration of large-scale complex environments,” IEEE Robotics and
Automation Letters, vol. 6, no. 3, pp. 5064–5071, 2021.
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Martin Saska Ph.D., head of the Multi-robot Systems lab at the Czech Technical
University in Prague
Sebastian Scherer is an Associate Research Professor and leads the Air Lab at
Carnegie Mellon University.
Roland Siegwart Ph.D., Professor and Lab Director in Robotics at ETH Zurich
Jason L. Williams Ph.D., Principal Research Scientist, Robotic Perception and
Autonomy Group, CSIRO Data61.
Luca Carlone Ph.D., is the Boeing Career Development Associate Professor in
the Department of Aeronautics and Astronautics at the Massachusetts Institute of
Technology, and a Principal Investigator in the Laboratory for Information Decision
Systems (LIDS).


