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Abstract

The potential of EEG-based automatic emotion recognition is immense, from improvement in the treatment of
mental health and mental disorders to advancements in the entertainment domain or improving the knowledge of
emotional processing in humans. In my specialization project last fall, two quite simple machine-learning models
were proposed for emotion recognition. Other researchers have obtained very positive results for EEG-based
emotion recognition using complex deep-learning models. The models proposed in the specialization project were
comparable with regard to the performance of the more complex models.

The proposed models utilize the features Hjorth mobility and Hjorth complexity in the time and power spectrum
domain, frequency band energy, and differential entropy. One of the proposed models has a support vector machine
classifier, while the other uses logistic regression. In both models, frequency sub-bands and baseline correction
was applied to the data.

This master’s thesis is a continuation of the work in my specialization project, with the aim of further im-
proving my models and ensuring their generalization qualities. The hope for this project is to further simplify
the complexity of the models by exploring channel reduction using the Non-dominated Sorting Genetic Algorithm
(NSGA-II). A new dataset containing EEG recordings of participants that watch emotionally activating stimuli will
be collected in this project. There are only a few well-known datasets of this kind available at this time. Creating
a new dataset that can become publicly available is therefore a great benefit for the research community. The
new dataset will be used to check the generalization properties of the proposed models by analyzing the model’s
performance on unseen data.
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Sammendrag

Potensialet til EEG-basert automatisk gjenkjenning av følelser er enormt, fra å kunne forbedre behandlingen av
mentale lidelser og utvide kunnskapen om følelsesprossesering hos mennesker til fremskritt innen underholdning
eller å faslilitetere for bedre læringsmiljøer. I mitt spesialiseringsprosjekt høsten 2022 ble det foreslått to relativt
enkle maskinlæringsmodeller for følelsesgjenkjenning. Andre forskere har tidligere oppnådd svært positive resul-
tater for EEG-basert følelsesgjenkjenning ved hjelp av komplekse modeller som bruker dyp læring. Ytelsen til
modellene som ble foreslått i mitt spesialiseringsprosjekt var sammenlignbar med ytelsen til de beste dyp læring
modellene foreslått av andre.

Mine foreslåtte modeller benytter seg av egenskapene Hjorth-mobilitet og Hjorth-kompleksitet i tids- og frekvens-
domenet, energi i frekvensbåndet, og differensiell entropi. En av de foreslåtte modellene bruker en ”support vector
machine”-klassifisering, mens den andre bruker logistisk regresjon med L2-regularisering. I begge modellene er
frekvensundergrupper og grunnlinjekorreksjon anvendt på dataen.

Denne masteroppgaven er en fortsettelse av arbeidet i mitt spesialiseringsprosjekt, med mål om å videre
forbedre mine modeller og sikre deres generaliseringskvaliteter. Håpet for dette prosjektet er å ytterligere forenkle
kompleksiteten til modellene ved å utforske kanalreduksjon ved hjelp av Non-dominated Sorting Genetic Algo-
rithm (NSGA-II). Et nytt datasett som inneholder EEG-opptak av deltakere som ser emosjonelt aktiverende stimuli,
vil bli samlet inn i dette prosjektet. Det er for tiden bare noen få velkjente datasett av denne typen tilgjengelig. Å
opprette et nytt datasett som kan bli offentlig tilgjengelig er derfor til stor fordel for forskersamfunnet. Det nye
datasettet vil bli brukt til å teste generaliseringsegenskapene til de foreslåtte modellene ved å analysere modellens
ytelse på usett data.
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1
Introduction

1.1 Problem Description
This thesis aims to improve the prediction accuracy of the EEG-based emotion recognition models proposed in the
specialization project [18] by reducing the number of electrodes. With a decrease in the number of channels, the
complexity of the model will decrease further. This thesis will also investigate the generalization properties of the
proposed models by running them on brand-new data.

1.2 Motivation
Today’s focus on human-computer interaction (HCI) is an essential part of the improvement of existing and new
technology. Computers and other technological devices are integrated into our daily lives to improve life quality
in minor and major ways. In order to extract the maximum potential from computers, the communication between
the user and the computer needs to be seamless. Automatic emotion recognition implemented on a computer could
improve and even revolutionize HCI.

As humans, we are not always the best at recognizing our own emotional needs. Emotion recognition systems
could help provide useful information in order to expand our understanding of ourselves. By studying compu-
tational emotion decoding, we can increase our knowledge of how emotions are processed in the brain. There
are many possible use cases for this type of technology. A big driving factor is its potential within the field of
healthcare. An emotion recognition device could be used to monitor and treat patients with depression, help com-
municate with and treat patients who are not able to communicate in ordinary ways, help recognize early signs
of post-traumatic stress disorder (PTSD), etc. It could be a tool for developing good teaching environments or
workspaces where the well-being of all parties is better preserved. And it could be used as a safety mechanism
during tasks where the emotional state of a person might affect the risks involved, for example, while driving.

Electroencephalogram (EEG) is a noninvasive, simple method for recording brain signals. From the outside,
emotions might present in different ways depending on the person and the culture, but an EEG-based emotion
recognition system presents a more universal way of decoding emotions as everybody processes emotions in the
brain. Therefore, the possibilities with EEG-based automatic emotion recognition devices are enormous if we are
able to create simple, robust, and wearable systems.

An essential part of a simple and wearable system is to develop a simple algorithm that does not need high
computational power. To make the device wearable in more everyday scenarios, it should be quite small and
comfortable. In order to achieve this, it would be beneficial to minimize the number of electrodes being used.
It is also important that the system is able to adapt to different people, so any models created must have good
generalization properties across devices and participants.

There are some very well-known datasets in EEG-based emotion recognition research like the SEED (Zheng
and Lu [24]] and DEAP (Koelstra et al. [11]) datasets. Many recent papers propose models that achieve great
accuracy when working on these datasets. When a dataset has been worked on for too long, there is always the fear
of overfitting. A new dataset will provide more data from a different set of participants that experience different
kinds of emotional stimuli. By having multiple datasets, researchers can check the generalization properties of

1



1 Introduction 1.3 Related Work

their models further.

1.3 Related Work
As mentioned, the work presented in this master thesis is a continuation of the work in the specialization project
[18]. In that work, the features Hjorth complexity in time domain (HC) and as derived from the power spectrum
(HCS), Hjorth mobility in time domain (HM) and as derived from the power spectrum (HMS), differential entropy
(DE) and frequency band energy (FBE) were explored. The effect of decomposing the signal into sub-bands theta
(4-8 Hz), alpha (8-14 Hz), beta (14-31 Hz), and gamma (31-45 Hz) was explored. Information from baseline
recordings was also used to correct features in each trial. The project showed that decomposing the signal into fre-
quency sub-bands and later subtracting baseline information from the trial data was very beneficial to the emotion
recognition model. The best-performing model consisted of the features HC, HM, DE, FBE, and HMS in combi-
nation with the support vector machine classifier (SVC). This model achieved accuracies of 96.50% for high/low
valence predictions and 96.71% for high/low arousal predictions with 5-fold cross-validation. Another proposed
model utilized all six features with L2 regularized logistic regression used as the classifier. This model achieved
accuracies of 96.26% for valence and 96.61% for arousal, also with 5-fold cross-validation. Related works that
justify the choices made in the specialization project can be found in Chapter 1 in [18].

Studies have shown that brain activity in different emotional states behaves very differently from each other and
that the activity is individual for each person (Huang et al. [9], Kragel et al. [13], Lindquist et al. [14], Zilio [25]).
These individual differences make it so that there is no global optimal selection of electrodes to use. To obtain the
best possible solutions, the choice of utilized electrodes should be optimized for each person. This is exactly what
Gannouni et al. [7] aimed for in their paper. They improved the performance of the emotion recognition model by
implementing an adaptive channel selection method.

Pane et al. [19] used Stepwise Discriminant Analysis (SDA) for channel selection purposes in EEG-based
emotion recognition. The 62-channel SEED dataset (created by Zheng and Lu [24]) was utilized in that paper.
Pane et al. attempted to locate the 3, 4, 7, and 15 most important channels in each frequency band. The highest
accuracy was obtained using 15 channels in each frequency band. They concluded that you can in fact increase the
prediction accuracies by decreasing the number of channels. They also concluded that the alpha, beta, and gamma
bands are most important for emotion classification.

Moctezuma et al. [17] used the Non-dominated sorting algorithm (NSGA-II) for channel reduction with their
two-dimensional CNN model on the well-known DEAP dataset (Koelstra et al. [11]). Using NSGA-II they
achieved close to 100% accuracy for some participants using 8 channels for high/low arousal classification and
two channels for high/low valence classification.

1.4 Structure of the Report
Chapter 1 has introduced the problem description and motivation for the work in this master’s thesis. Related work
on which this thesis is built can be read in section 1.3. In chapter 2 the theory behind the methods used in this thesis
is explained. The materials used in this project can be found in chapter 3. Chapter 3 also describes the methods in
this work. A summary of important results of the specialization thesis and all results of this thesis can be found in
chapter 4. The results are further discussed in chapter 5. Finally, the work is summarized and some conclusions
are drawn in chapter 6.

2



2
Theory

2.1 Non-Dominated Sorting Algorithm
The Non-Dominated Sorting Algorithm (NSGA) is an evolutionary sorting algorithm created to solve multi-
objective optimization problems, proposed by Srinivas and Deb [21]. NSGA was a computationally expensive
algorithm with cost O(MN3) where M and N is the number of objectives and the population size, respectively.
Additionally, the algorithm does not utilize elitism properties and calls for a specified sharing parameter in order
to ensure diversity in the population. An improved version of the algorithm was developed by Deb et al. [5] to
overcome these obstacles, NSGA-II. With the second version the computational cost is reduced to O(MN2), the
elitism approach is introduced, and the need for setting extra sharing parameters is removed. The elitism approach
compares the current population to the best non-dominated solutions found so far. NSGA-II is one of the most
widely used algorithms for multi-objective optimization.

The algorithm consists of three steps; non-dominated sorting, crowding distance storing, and tournament mat-
ing selection. These steps are repeated until a specified termination criteria is reached.

Firstly the algorithm initializes a population of a specified size N containing N random individuals with differ-
ent genes. In this project, the genes contain what electrodes are utilized. The M specified objective functions are
calculated for each of the N individuals. The two objectives of this project are to maximize the model accuracy and
simultaneously minimize the number of electrodes utilized. The non-dominated sorting is performed next. Each
solution is put into a rank where rank 1 contains the solutions that are not dominated by any other individuals, rank
2 contains solutions that are dominated by one other solution, and so on. The solution X1 dominates X2 if X1 is
no worse than X2 for all objectives and X1 is strictly better than X2 in at least one objective.

The individuals for the next generation are chosen according to their rank and will make up a mating pool.
First, the solutions of rank 1 are included, followed by rank 2, and so on until a mating pool of size N is reached.
If a full rank can not fit in the mating pool without the population exceeding N, crowding distance sorting will be
performed to select what individuals in that rank to include in the mating pool.

Crowding distance provides an estimate of the density of solutions around a given solution. Solutions that are
less dense are preferred. The algorithm for crowding distance sorting works the following way. First, the solutions
are sorted in ascending order in terms of the objective function value. The crowding distance value, which is the
average distance between the two neighboring solutions, is calculated for each solution. The upper and lower
boundary solutions are given an infinite crowding distance value to always be included in the mating pool for the
next generation. This process is repeated for all objective functions. A solution’s final crowding distance value is
found by adding the crowding distance values of all the objectives for that solution. The solutions with the highest
crowding distance are chosen to be included in the mating pool until the population of size N is reached. Crowding
distance sorting is done to ensure a big spread in the solutions.

From the mating pool, some off-spring individuals are created by means of binary tournament selection,
crossover, and mutation. In the tournament selection, two random individuals are compared in terms of their
rank and crowding distance. The individual with the lower rank is passed on to be a parent. The individual with the
higher crowding distance is chosen if their rank is equal. This process is repeated with two new random individuals
to find the second parent. Crossover is performed between the two parents in order to combine their genes. This
results in two off-spring individuals, one off-spring having half of each parent’s genes and the other having the
remaining half’s. Additionally, a specified type of mutation of the genes will occur with a specified probability

3



2 Theory 2.2 Independent Component analysis

pm.
This process will repeat until a termination criteria is reached. In summary, the pseudo-code for the process is:

1. Set hyperparameters: population size N, mutation probability pm, crossover rate pc, and termination param-
eters.

• N: the size of the population in each generation.

• pm: the probability that an individual will undergo mutation.

• pc: the probability that two individuals will swap bits.

• The termination parameters can be defined many ways, but is defined as a set number of generations in
this project.

2. Randomly initialize a population of size N.

3. Non-dominated sorting of the individuals into rank.

4. Crowding distance sorting to ensure spread in the solutions.

5. Binary tournament selection in order to select the preferred parents.

6. Crossover and polynomial mutation to create off-spring.

7. Step 3-6 is repeated in a manner that always keeps the mating pool at size N until the termination criteria are
met.

The goal of NSGA-II is to find the Pareto optimal solutions, i.e. the solutions in which you can not improve
one objective function without degrading one or more other objective values. The algorithm can not differentiate
between these Pareto optimal solutions in terms of which is better to solve your problem. The multi-objective
optimization problem presented in this project will maximize the accuracy of the emotion recognition model while
minimizing the number of electrodes utilized. This will present a trade-off scenario between the number of elec-
trodes and the obtainable model accuracy.

2.2 Independent Component analysis
The objective of the independent component analysis (ICA) is to separate a mixture of signals into its pure signal
sources. The method is often explained with the cocktail party problem where you wish to separate the speech
of one person from the room noise. After separating the signal sources one might inspect the information con-
tained in each of these sources, and consider keeping or disregarding that signal. This way ICA can be used for
dimensionality reduction or to filter out artifacts.

There are many algorithms that perform ICA in different ways. The one used in this project is the FastICA
algorithm, which was developed by Hyvärinen and Oja [10]. This algorithm for ICA works by maximizing the
non-Gaussianity. This is a measure of how far a random variable is from being Gaussian distributed. It can be
measured by the Kurtosis and negative entropy. The independent source signals can be found by maximizing the
Kurtosis. The Kurtosis (K) of x is defined as in eq. (2.1).

K(x) = E[x4]− 3E[E[x2]]2 (2.1)

, where x is assumed to be of unit variance, so the equation simplifies to eq. (2.2).

K(x) = E(x4)− 3 (2.2)

Kurtosis is very simple to calculate, but it is unfortunately very sensitive to outliers and therefore is not a robust
measure of non-Gaussianity.

The negative entropy is, unsurprisingly, related to entropy. Entropy is a measure of the degree of information a
random variable gives. A variable that is very unpredictable and unstructured will have high entropy. The entropy
(H) for a discrete random variable X is defined as eq. (2.3).

H(X) = −
∑
i

P (X = ai) logP (X = ai) (2.3)
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Figure 2.1: PCA (left) maximizes the variation along the axes. ICA (right) minimizes the mutual information across axes. The
picture is taken from Unho Choi [23].

, where ai are the possible values of X. When the definition is generalized for continuous-valued variables or
vectors it is usually called differential entropy (H). eq. (2.4) gives the definition of the differential entropy of a
random vector x with density f (x).

H(x) = −
∫

f(x) log f(x)dx (2.4)

Since a more ”random” variable will have higher entropy, a Gaussian variable will have the largest entropy of
variables of equal variance. The entropy will be large for the Gaussian distribution and small for variables that are
clearly clustered or have a very ”spiky” probability density function”. The negative entropy J, defined in ?? is used
for the non-Gaussianity variable as this will always be non-negative and be zero if and only if x has a Gaussian
distribution.

J(x) = H(xgauss)−H(x) (2.5)

, where xgauss is a Gaussian random variable of the same covariance matrix as x. The negative entropy is a
very good estimator of non-Gaussianity, but it is very computationally difficult as it requires an estimate of the
probability density function. Because of this, the negative entropy is not directly used as a measurement of the
non-Gaussianity. Hyvärinen and Oja [10] found that for practically all non-quadratic functions G, the negative
entropy of x could be approximated eq. (2.6)

J(x) ∝ [EG(x)− EG(v)]2 (2.6)

, where v is a standardized Gaussian variable, i.e. it has zero mean and unit variance. Since FastICA works by
maximizing the non-Gaussianity, it can not separate Gaussian signals. Therefore, at most one of the mixed signals
can be Gaussian distributed.

ICA can also be performed by minimizing the mutual information or with maximum likelihood estimation.
Some whitening of the signals (often through Principal component analysis (PCA) is first applied in order to
remove correlations before performing ICA.

While PCA finds the axes in which the variation of the input data is maximized, ICA minimizes the mutual
information. See

In short, ICA works under the assumption that the mixture of two independent random variables will be more
Gaussian than the original variables. Visually, ICA can be explained to perform a rotation of the whitened mixture
of signals in order to minimize the Gaussian distribution along the axes. This will provide the most independent
signals, that are most likely the sources. This is visualized in fig. 2.2.

Because of these properties, ICA is a good tool for locating for example blinking artifacts in EEG signals.
Blinking will show up clearly in the EEG signals, but is usually not of interest when analyzing EEG. Eye blinks
happens independently of any emotion one might feel. The blinking rate might change somewhat depending on
the emotional state, but the epochs one look at during automatic emotion recognition will not be long enough to
capture this. Because eye blinks come from an independent source, their signal contribution can be located and
removed with ICA.
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(a) Whitened linear mixture of two sources. The distribution
along both axes looks quite similar to the Gaussian distribution.

(b) After ICA has performed a rotation in order to minimize the
Gaussianity of the projection.

Figure 2.2: ICA minimizes the Gaussianity along the axes. The pictures are taken from Arnaud Delrome [1].

2.3 Generalization
The generalization quality of a model is the model’s ability to perform well on unseen data. When a machine
learning model is created it is very easy to overfit the model to the data it is trained on. The data available might
also be ”too clean” compared to real-world scenarios, or only capture a few of many instances that might occur. It
is therefore important to check the generalization qualities of the model, to ensure that the performance is expected
to be about the same in real-world scenarios.

One way to do this is by extracting a test set from the data, that is not used on the model before the final testing
of the performance. If the model performance on the test set is about the same as during training and tuning, this
is a good indication that the model has learned the underlying patterns for accurate predictions.

In this project, EEG data has been collected. This is explained further in section 3.5. Up until this point, only
the preprocessed DEAP dataset has been used. The new data is collected on another system, which is a good test
for generalization. It is desirable for the model to work well on all EEG data, no matter the EEG recording system,
so that the model can be used on all kinds of systems around the world. Additionally, the new dataset is collected
from new participants. It is well-known that emotional processing is very individual, so having more people to test
the model on ensures that is it quite robust for these individual differences.
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3
Materials and Methods

The model used and further developed in this thesis is built upon the work done in TTK4550 - Engineering Cyber-
netics, Specialization Project [18] at the Norwegian University of Science and Technology. Section 3.2 summarizes
the methods used in that project. For a more in-depth explanation, see Chapter 3 ”Materials and Methods” in the
report [18].

3.1 DEAP dataset
The dataset utilized in the specialization project was the preprocessed publicly available DEAP dataset Koelstra
et al. [11]. The dataset contains recordings with a sampling rate of 512 Hz of 8 peripheral physiological signals and
32 EEG channels. The data was collected during an experiment in which participants would watch 40 one-minute
music videos, selected to evoke emotions that would span the arousal-valence plane.

The music videos used as stimuli in the recordings were chosen through analysis of affective tags found on the
website Last.fm1 followed by video highlight detection, and lastly an online self-assessment method.

The preprocessed EEG data has been downsampled to 128Hz and have EOG artifacts removed. A 4.0-45.0Hz
bandpass frequency filter has been applied to the signals and the data has been averaged to the common reference.

The EEG channels were placed according to the international 10-20 system. The 32 EEG channels present in
the dataset are depicted in fig. 3.1.

During the experiment, the participants would watch a music video followed by a self-assessment of their levels
of arousal, valence, dominance, and liking. A five-second baseline recording was collected before every trial, in
which three seconds are included in the preprocessed dataset.

3.2 Building the model
The EEG data was imported and segmented into one-second epochs. This resulted in trial data on the structure
2400x32x128 (epoch x channel x data point) and baseline data of size 120x32x128 (epoch x channel x data point).
Next, the signals were decomposed into the four frequency sub-bands theta (4-8Hz), alpha (8-14Hz), beta (14-
31Hz), and gamma (31-45Hz). The effect of implementing these sub-bands was explored.

Six features were extracted from every epoch in each sub-band. These features were Hjorth complexity cal-
culated in time domain (HC) and from the power spectrum (HCS), Hjorth mobility calculated in the time domain
(HM) and from the power spectrum (HMS), frequency-band energy (FBE), and differential entropy (DE). This
process produced feature matrices for the trial data of size 2400x128 (epoch x feature). The benefits of baseline
correction were investigated in the following way. Baseline features were extracted from the three baseline epochs
before each trial. All trial features were baseline corrected by subtracting the average value of the corresponding
three baseline features.

Lastly, the effects of combining multiple features in one model were explored with multiple classifiers: Support
Vector Machine Classifier (SVC), k-Nearest Neighbor (k-NN), logistic regression (LR) with L1 and L2 regular-
ization, decision tree, and random forest. The two best-performing models in the specialization project utilized

1http://last.fm
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Figure 3.1: Location of the electrodes utilized (marked with blue outline) in the DEAP dataset.

SVC and L2-regularized LR with multiple features and are listed with more specifics in table 3.1. These models
are further investigated in this project. See section 4.1 for important results from the specialization project.

Classifier Hyperparameter Features

Support vector machine Kernel= ’rbf’ HC, HM, DE, FBE, HMS

Logistic regression with penalty L2 C = 1 HC, HM, DE, FBE, HMS, HCS

Table 3.1: Specification for the two best-performing models from the specialization project.

3.3 Non-dominated Sorting Genetic Algorithm on DEAP dataset
The DEAP dataset consists of EEG recordings from 32 electrodes. In the proposed models five or six types
of features are used for classification. Additionally, all signals are decomposed into four frequency bands. This
results in 640 features in total for the SVC model and 768 features for the (LR) model. The Non-dominated Sorting
Genetic Algorithm (NSGA-II) is applied to the data to see if the same or better performance can be achieved with
fewer channels.

The NSGA-II is implemented using the pymoo framework for multi-objective optimization in Python created
by Blank and Deb [3]. The objectives of the optimization problem were defined to maximize the accuracy of the
model while minimizing the number of utilized electrodes. Different settings were explored for the population and
number of generations, and the most important are listed in table 3.2. The NSGA-II is run for high/low arousal
and high/low valence classification separately. This is done to examine the difference in electrode placement to
achieve good arousal predictions and good valence predictions.

Having a large population size and a large number of generations simultaneously was not possible because of
the time constraints of the project. As the algorithm explores many possible solutions, the algorithm is quite com-
putationally heavy. The importance of having a larger population or running for more generations was explored.

The variables in the NSGA-II are defined as an array of 32 binary values, one for each electrode, called
array channels. If the value of the first element is 1, then the first channel is utilized in the model. If it is 0,
it is removed from the data. As mentioned, one objective of the NSGA-II was to minimize

∑
array channels.
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The accuracy of the model, model accuracy, is computed for every configuration of the array channels in the
population. The second objective of the NSGA-II is then to minimize 1−model accuracy.

The optimization problem is then defined as in eq. (3.1).

min inaccuracy = 1−model accuracy(array channels)

min number of channels =
∑

array channels

array channels ϵ {0, 1}
(3.1)

,where iϵ[1 .. 32] is the index of the i’th channel in array channels.
Polynomial mutation with probability = 1

number of objectives = 1
2 was implemented. A rounding repair char-

acteristic was added to the mutation in order to keep the variables in array channels binary. The sampling of
the population was chosen randomly with values 0 or 1 for all elements in all array channels. Additionally, a
two-point crossover with probability = 1

2 was performed.
The algorithm was tried without any constraints, and also with a constraint of a defined number of channels.

The constrained problem is defined as eq. (3.2):

min inaccuracy = 1−model accuracy(array channels)∑
array channels = x

array channels[i] ϵ {0, 1}
(3.2)

, where xϵ[0 .. 32] defines the number of channels in the solutions. This optimization problem only has one
objective, so the probability of the polynomial mutation is changed to 1.

Population size Number of generations Constraints

50 50 -

20 120 -

35 70 -

70 35 -

50 50
∑

array channels = 16

35 70
∑

array channels = 16

50 50
∑

array channels = 25

50 50
∑

array channels = 29

Table 3.2: Settings for population and generation size that were explored in NSGA-II.

Test and validation sets, each of sizes 15%, were extracted randomly from the data before running the NSGA-
II. The NSGA-II was run participant-wise and for high/low arousal and high/low valence classification separately
but with the same settings. All solutions in the Pareto front were saved for each participant. For the unconstrained
problems, the five solutions with the highest accuracies were tested on the test set. For the constrained problems,
the first five solutions in the Pareto front were tested using the test set. In both cases, the channel selection that
provided the best accuracy was saved alongside the accuracies. Finally, the channel specifications that provided
the best accuracy on the test set were run on the validation set. This is done in order to check that the model is not
overfitted to the data. The channel selection process is visualized in fig. 3.2. A 5-fold cross-validation was also
run over all the data with the same settings, to have results that could be compared to the results obtained in the
specialization project. The mean accuracies for each participant were then used to analyze the effect of the channel
reduction.
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Figure 3.2: The three steps for channel selection with NSGA-II. This process was run participant-wise.

3.4 The Emotional Movie Database
In this project, the Emotional Movie Database (EMDB) is utilized as stimuli during data collection. The database
was created by Carvalho et al. [4] in their efforts to create a collection of affective non-auditory movie clips which
would evoke emotions that would span the multidimensional space of emotions consisting of valence, arousal,
and dominance. The EMDB contains 40-second movie clips in six different genres: horror, erotic, social positive,
social negative, scenery, and object manipulation. All categories contain ten videos, except object manipulations
which only consist of two movie clips, i.e. the database consist of 52 clips in total.

The study consisted of three steps: (1) selection of movie clips, followed by film clip validation through (2)
self-assessment and (3) psychophysiological signals. First, 127 film clips that fulfilled some criteria were selected
by researchers. The clips had to portray a stable context, have a continuous presence of any people in the scene, and
elicit constant valence throughout the scene (i.e. no scene should evoke both positive and negative feelings). The
40-second film clips were edited to ensure that these criteria were followed as closely as possible. 11 participants
rated the film clips using the Self-Assessment Manikin (SAM) method. The SAM rating system describes feelings
on a 1-9 scale for arousal, valence, and dominance. Arousal describes the intensity of the feeling, valence describes
the pleasantness of the feeling, and dominance is a measurement of whether the participant feels in control of the
feeling or not. The SAM scales are pictured in Based on these ratings, 52 movie clips were selected. The movie
clips were selected based on (I) the variability in the rating scores, (II) the average valence score being high (close
to 9), neutral (close to 5), or low (close to 1), and (III) the average arousal score being high (close to 9) or low
(close to 1).
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Figure 3.3: The scales in Self-Assessment Manikin. (Upper) valence, (middle) arousal, (lower) dominance.

The horror clips depict people in horrifying, life-threatening situations, the erotic clips showcase heterosexual
sex (with no genitalia exposure), the social positive and social negative clips consist of happy and sad/angry social
interactions respectively, the scenery clips showcase natural scenery or landscapes and the object manipulation
category are clips show a hand pushing small objects on a table.

For phase (2), 113 participants (75 female and 38 male) watched the movie clips. After each movie clip self-
assessment using SAM was conducted, in which the participants rated the experience using the SAM method.
Additionally, they had to answer the questions ”Have you watched this movie before?” and ”Have you closed your
eyes or looked away during the clip presentation?”. If a movie clip had previously been seen by more than 30%
of the participants, the clip would be discarded. The movie clips were shown in a pseudo-random order so that no
two consecutive clips were from the same category.

Phase (3) was performed to assess the skin conductance level (SCL) and heart rate (HR) response the chosen
clips would elicit. SCL and HR were recorded from 32 right-handed healthy participants (16 females, 16 males)
who watched the 52 movie clips.

3.5 Data collection
For this part of the project, I collaborated with another Master’s student that is working on a similar thesis. The
main objective of the data collection is to create a new dataset that can be used for EEG-based emotion recognition.
The collected dataset will be used to test the model molded thus far on new unseen data. The performance of the
model on this new dataset will give a good indication of its generalization properties.

The participants watched the 52 videos contained in the EMDB. This movie database was chosen as the movies
should elicit emotions spanning the arousal/valence/dominance space, see section 3.4 for an explanation. After
each video, the participants are asked to rate their emotions using the widely known self-assessment manikin
(SAM) scale. EEG is collected during the entire experiment.

Before enlisting participants, they received an information letter attached in ?? . The information letter ex-
plained the procedures of the experiments, the purpose of the data collection, information about handling personal
information, and the criteria you must fulfill to volunteer as a participant. It also stated that you are free to with-
draw at any time without giving a reason, free of penalty. Each participant was compensated with a gift card. After
reading the information letter the participants signed a letter of consent.

All participants had to be between the age of 20 and 30 years old. We determined that it would be beneficial to
limit the age range as the brain changes throughout a person’s lifespan, and we do not want to introduce too many
unknown variables. This interval was chosen specifically because it is similar to the ages of the participants in the
DEAP and SEED dataset and therefore makes for a good comparison to these well-known datasets. People were
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also asked to avoid participating if they have neurological diseases or use strong medicine or drugs as this affects
the emotional response.

The data collected in this project was recorded on two devices: the Mentalab Explore+ 32 and the Unicorn
Hybrid Black. 7 people (4 female and 3 male) participated in the data collection with the Mentalab system. The
average age of these participants was 25,3 with a standard deviation of 1,3. Data from 20 participants (10 female
and 10 male) was collected for the Unicorn system. The average age of these participants was 23,8 with a standard
deviation of 0,9.

3.5.1 Experimental protocol
The experimental protocol was written by F. Arevalo (M. Molinas 2023, personal communication, 10 February)
in Python and run on PsychoPy 2. Markers (1: fixation-cross start, 2: video start, 3: video end) were added to
the original protocol and sent to Lab Recorder via the Python to the Lab Streaming Layer (LSL) interface created
mainly by Kothe [12]. The experiment would start with some information about the scales of arousal, valence,
and dominance. The participants were specifically asked to give an honest rating of their experienced emotions
during the stimuli, without being influenced by what they think they should feel. The protocol consists of 52 trials
where each trial starts with 8 seconds of cross-fixation. This was followed by one 40-second video. Lastly, the
participants would rate emotions on the SAM scale. The trial would end with 15 seconds of rest before the next
trial started. The participants were informed not to move during the cross-fixation and the video stimuli. They
were allowed to move and ask practical questions during the self-evaluation and break.

The experiment was conducted on a Dell UltraSharp 38” Curved Monitor. The screen was quite reflective, so
we dimmed the lights in order to decrease this problem. The participants sat centered in front of the screen, at a
distance they felt comfortable (around one meter). The height of the screen was adjusted to 90 degrees in relation
to their eyes.

Two EEG recording devices were used in order to collect the data in this project, due to some unexpected
problems. For the first seven participants, the Mentalab Explore+ 32 amplifier with wet electrodes was used. The
rest of the recording was done using two 8-channel Unicorn Hybrid Black devices with dry electrodes. The setup
process for the two systems was quite different, so both processes are explained in below.

The EEG recording devices were connected to the computer via Bluetooth, and the EEG signals were pushed
to Lab Streaming Layer (LSL). The Psychopy protocol was also pushed to LSL. Everything was recorded through
the Lab Recorder in order to synchronize the signals and the stimuli.

Mentalab Explore+ 32

The BrainCap-SL created by EASYCAP and wet electrodes were utilized with the 32-channel Mentalab Explore+
amplifier. Pictures of the electrodes and the cap can be found in fig. 3.4. The amplifier is pictured in fig. 3.5. A
conductive gel must be used with the wet electrodes. The Signa Gel by Parker Labs (fig. 3.6b) was used on all
electrodes around the scalp. The reference node was placed on the ear lobe, and for this electrode, the Electro-Gel
produced by Electro-Cap International (fig. 3.6a) was used. The placements of the electrodes follow the 10-10
system. The channel to electrode position mapping can be found in table 3.3 and the electrode positions are
visualized in fig. 3.8. The cap utilized in this setup had these 32 electrode positions. The electrodes span most of
the scalp, which is beneficial for emotion recognition purposes.

2https://psychopy.org/index.html
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(a) Picture of the wet electrodes used with the Menta-
lab Explore+ 32 system. Picture is taken from Menta-
lab [16]

(b) The BrainCap-SL is created by EASYCAP. Here it
is pictured with the electrodes inserted.

Figure 3.4: Cap and electrodes used in the Mentalab Explore+ 32 setup.

(a) (b)

Figure 3.5: Pictures of the Mentalab Explore+ 32 amplifier. The pictures are taken from Mentalab [15].

The procedure for putting on the EEG cap was as follows:

1. Measure the distance over the scalp from Nz to Iz and mark the middle of this distance, see fig. 3.7. Measure
the distance between the ears across the marked point. The middle of this distance will be the center of the
scalp. The cap is placed with the electrode Cz at the center of the scalp.

2. Remove electrodes and prep the skin/scalp with alcohol at each electrode position. Clean the ear lobe with
alcohol. Reattach the electrodes.

3. Apply gel to the ear lobe. We experienced that the signals would become better as the gel started to give
moisture to the skin, so it was beneficial to do this early.

4. Apply gel to all electrodes on the scalp.

5. Tape the reference electrode to the ear lobe. From our experience, very light pressure on the reference
electrode was preferable.

6. Try to optimize and then assess the impedance of the electrodes placed on the forehead. This was a good
indicator of what kind of impedance we could expect to achieve on the other electrodes.

7. Improve the impedance on the rest of the electrodes such that they are all within the same range. This was
done by moving the gel around and sometimes applying more.
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8. Check if we could improve the connection at the reference, as the resistance at this location will affect the
impedance measured at all locations.

9. Lastly, we check the signals visually. The participants were asked to sit still and blink a few times and
scrunch their faces. This is what we expected to see:

• The amplitude of the signals where around 100 mV.

• The blinking showed up in the signals, especially at the channels located at the front of the head.

• The scrunching of the face showed up in the signals on all channels.

If the signals behaved as expected at all channels, we started the experiment. If not, we would try to improve
the connections between the electrodes and the scalp.

(a) Picture of the conductive Electro-Cap Interna-
tional Electro-Gel used on the reference electrode.
Picture taken from bio-medical [2]

(b) Picture of the conductive Parker Labs
Signa gel used on the scalp electrodes. Pic-
ture taken from TerniMed [22]

Figure 3.6: Pictres of the conducive gels used with the Mentalab Explore+ 32 setup.
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Figure 3.7: Nz is right above the bridge of the nose and Iz is on the back of the head. The distance between the points is
measured across the scalp.

Channel no. Location Channel no. Location

1 Fp1 17 CP1

2 F8 18 CP2

3 FT10 19 Pz

4 F4 20 O1

5 FC6 21 Oz

6 T8 22 O2

7 C4 23 Fp1

8 CP6 24 F7

9 P9 25 FT9

10 P4 26 F3

11 AFz 27 FC5

12 Fz 28 T8

13 FC1 29 C3

14 FCz 30 CP5

15 FC2 31 P7

16 Cz 32 P3

Table 3.3: The overview of what EEG channel is connected to each location for the Mentalab Explore+ 32 setup.
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Figure 3.8: The figure shows the extended 10-20 EEG location system. The locations marked in blue are utilized in the
experiments with the Mentalab Explore+ 32 setup. Picture source for unedited version [20].

Unicorn Hybrid Black

The Unicorn Hybrid Black EEG headset with hybrid EEG electrodes was utilized for the last 20 participants. The
electrodes allow for recording dry or with gel and we opted for dry recordings. The amplifier and electrodes are
pictured in fig. 3.10. This system has 8 channels, so we combined two devices in order to record at 16 channels
in each experiment. This was done simply by stacking the devices at the back of the head using an elastic. The
devices are called ’68’ and ’69’. In order to utilize 16 channels simultaneously, the Unicorn Hybrid Black devices
were connected to the g.GAMMAcap2 created by g.tec. A picture of g.GAMMAcap2 can be found in fig. 3.11.
Both the amplifier and cap are created by g.tec medical engineering. Since the number of electrodes utilized in the
experiment decreased from 32 to 16 channels, some related works about channel selection in EEG-based emotion
recognition were examined. Pane et al. [19] used stepwise discrimination analysis to find the 15 most important
channels for emotion recognition in each frequency sub-band delta, theta, alpha, beta, and gamma in the SEED
dataset [24]. As gamma is the most important frequency band to classify emotions, the 15 electrode positions
found to be most important in this band were chosen for our experiment. Additionally, the location Cz at the center
of the head was included, in order to have 16 channels in total. The electrode positions are visualized in fig. 3.11.
The mapping of the channels to electrode positions can be found in table 3.4.
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Figure 3.9: The g.GAMMAcap2 was used with the Unicorn Hybrid Black system in order to record on 16 channels simultane-
ously. The picture is taken from g.tec medical engineering [6].

(a) Picture of Unicorn Hybrid Black amplifier. (b) Picture of the hybrid electrodes used with the Unicorn Hy-
brid Black system and how they are connected to the amplifier.

Figure 3.10: Pictures are taken from g.tec medical engineering [8].

The setup procedure was as follows:

1. Place the cap on the participant’s head with Cz at the center of the scalp.

2. Massage all electrodes into the scalp so the teeth on the electrodes can get past the hair and be in contact
with the scalp.

3. Clean the earlobes with alcohol, apply conductive gel, and attach the reference electrodes. Each device has
one right and one left reference. One reference electrode was placed at the front and one at the back of the
earlobe, at both ears.

4. There is no way to check the channel impedances with this system, so the EEG signals were examined
visually in the same manner as with the Mentalab Explore+ system. If any channels behaved differently than
expected, we tried to achieve better contact between the electrode and the scalp.
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3 Materials and Methods 3.5.1 Experimental protocol

5. When the signals looked as expected at all channels, we started the experiment.

Device ’68’ Device ’69’

Channel no. Location Channel no. Location

1 Fp1 1 FP2

2 Fpz 2 F8

3 F5 3 F4

4 FC1 4 FC6

5 CP1 5 FC4

6 P1 6 CP6

7 PO3 7 P8

8 PO5 8 Cz

Table 3.4: The overview of what EEG channel is connected to each location for the Unicorn Hybrid Black setup.

Figure 3.11: The figure shows the extended 10-20 EEG location system. The locations marked in blue are connected to device
’68’ and the electrodes marked in red are connected to device ’69’, with the Unicorn Hybrid Black setup.
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Figure 3.12: Picture of the experimental setup. The lights were turned off before the experiment began to minimize glare on
the computer screen. This picture shows the Unicorn Hybrid Black system, but the setup was the same for both devices.

3.5.2 Problems and limitations
The problems and limitations that affected the data collection are mentioned in this section.

For the Mentalab Explore 32+ system, the setup time before the experiment could begin was 30 minutes. This
was due to the tedious steps of prepping the skin, applying the gel, and improving the impedance at all 32 channels
and the reference. The 30-minute setup time was not a problem in itself, but it contributed to the participants getting
tired of the experiment a bit faster, as the protocol lasted for about another 75 minutes after setup. At the beginning
of the experiments, the participants were quite excited and interested, but after approximately 30 minutes most
of the participants started to feel bored and found it harder to concentrate on the experiment. The stimuli were
only 40-second movie clips out of context without any sounds, so the participants found it a bit difficult to feel
really immersed in the stimuli for all other categories than horror or erotic clips. The lights were turned off during
the experiments to reduce the glare on the computer screen. This might have also contributed to the participants
starting to feel kind of drowsy and more bored.

We had to set the maximum length of the set-up time to 30 minutes in order to keep the participants engaged
with the experiment. This, together with the fact that the natural impedance of the skin is participant-dependent,
resulted in quite a high impedance in the device with big variation across participants. In fig. 3.13 the impedance
on the 32 channels right before the experiment started are shown for participant no. 4 and participant no. 6, i.e. the
participants with the lowest and highest impedance. The lowest impedance obtained at any electrode was 22kΩ.
The average impedance for participant no.4 over all channels was 29,5kΩ with a standard deviation of 3,5kΩ. For
participant no. 6 it was 91,8±6, 2kΩ.
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(a) Impedance on all channels for participant no. 4. This participant had the lowest impedance after the set-up time of 30 min.

(b) Impedance on all channels for participant no. 6. This participant had the highest impedance after the set-up time of 30 min.

Figure 3.13: Impedance at all channels before experiments started with Mentalab Explore+ 32 device. The pictures are taken
from the Mentalab desktop interface. The circle is black for channels with impedance≥ 50kΩ, red for impedance≥ 30kΩ, and
orange for impedance≥ 20kΩ.

The Mentalab Explore 32+ device stopped recording data halfway through the experiments for all the partici-
pants. Unfortunately, this error was not detected until seven participants had gone through the experiment. Because
of this, the data from these subjects only contain recording for 33-45 trials. The device stopped working altogether
during the recordings of the 7th participant. It was concluded that we unfortunately had received a malfunctioning
device. Some of the channels also introduced a lot of noise at all frequencies during some trials. Because of these
issues, another full dataset of 20 participants was collected with the Unicorn Hybrid Black device.

The set-up time with the Unicorn Hybrid Black device was very short, and only took about 5 minutes. This
was beneficial because the participants did not get bored with the experiment as quickly. A drawback with this
system was the fact that the cap and the electrodes were not very comfortable. Even though the electrodes used
with this device are far from the most uncomfortable electrodes on the market, the participants would complain
especially about the electrodes pressing on the forehead towards the end of the experiments. This unpleasantness
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might affect the emotions the participants are experiencing, which is somewhat of a drawback. Still, this should
not be a problem as long as the feeling is not too distracting and the participants rate the feelings they are actually
experiencing.

Another thing to keep in mind is the fact that people are somewhat excited to be part of the experiment,
which affects their emotional state. For example, participant no. 14 with the Unicorn Hybrid Black device rated
their arousal to be between 6 and 9, i.e. high, for all videos. For this one participant, this was simply dealt
with by changing the definition of high arousal to values above 6 instead of 5, like for the other participants.
Understandably, the data from each participant is not balanced even though the stimuli were chosen to create
close-to-balanced datasets.

For participant no. 3 with the Unicorn Hybrid Black system, one of the EEG amplifiers stopped recording
halfway through the experiment. The data collected from this participant was not used in this project.

The Mentalab Explore+ 32 device has wet electrodes, while dry electrodes were used with the Unicorn Hybrid
Black device. Wet electrodes as a much higher signal-to-noise ratio compared to dry electrodes. Additionally, the
impedance in the Unicorn Hybrid Black device could not be controlled.

3.6 Preprocessing data

3.6.1 Mentalab Explore+ 32
The power spectral density was investigated for each trial. This way the bad channels could be located and removed
from the dataset for this participant. Because of this, it varies how many channels are present for each participant
in the preprocessed data.

The EEG data and events were extracted. A few things were explored as possibilities in preprocessing:

1. No preprocessing

2. Downsampling (128 Hz)

3. ICA

4. Notch filter (50 and 100 Hz)

5. Downsampling (128 Hz) and notch filter (50 and 100 Hz)

MNE-Python’s ICA function is used. The FastICA method is used in this project as it is more stable for not
completely independent signals, which is often the case for EEG signals. A process diagram of how it works is
shown in fig. 3.14. Before ICA was applied, the breaks during the experiments were annotated.

Figure 3.14: The process of the mne.preprocessing.ICA function implemented in MNE-Python.

When ICA was applied to the signal, the independent components signals and topographic maps were examined
visually. The component(s) corresponding to eye blinks were tried located and removed. fig. 3.15 shows the
topographic map of component 5 for participant no. 7. The activity is located at the forehead, around the eyes. The
signal of component 5 is shown in fig. 3.16b. By inspecting the topographic plot and the signal, the component is
determined to be eye blinks. In fig. 3.16a and fig. 3.16c the signals at the channels O2, Fp1, F7, FT9, F3, and FC5
are shown before and after removing component 5, respectively. The blinking could be seen most clearly in Fp1,
as this channel is located at the forehead.
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Figure 3.15: Topographic map of component 5 from ICA on participant no. 7. The component is located at the forehead of the
participant, the electrodes closest to the eyes. This suggests that the component describes eye artifacts.

(a) Original EEG signals. The amplitude of the Fp1 signals is around 600µV .

(b) Component 5 found with ICA. See fig. 3.15 for a topographic map of the source.

(c) EEG signal after removing component 5. The amplitude of the Fp1 signal is around 230µV .

Figure 3.16: Removing blinking artifacts from EEG recordings of participant no. 7 with ICA. The electrode Fp1 is located on
the forehead, i.e. close to the eyes. The blinking is most visible in this channel. The scale of the axes in plots (a) and (c) are the
same.
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The effect of applying the notch filter of 50 and 100 Hz can be seen in fig. 3.17. The big peak at 50 Hz and the
small peak at 100 Hz in the PSD plot in fig. 3.17a are due to the frequency of the power line.

(a) Original power spectral density plot.

(b) Power spectral density after applying a notch filter at 50 and 100 Hz.

Figure 3.17: The PSD of trial 3 for participant number 6 using the Mentalab Explore+ 32 dataset.

After the preprocessing, 5-sec baseline signals and the 40-sec trials were extracted using the event markers.
One second after the ”cross-fixation start” marker was located, the 5-second baseline was extracted. 40 seconds
of recording was extracted starting from the ”video start” marker. The intervals are visualized in fig. 3.18. As
mentioned in section 3.5.2, the equipment was somewhat malfunctioning, so some trials from the experiments
were lost for each participant. Therefore, each participant has a different number of EEG-recorded trials.

Figure 3.18: The 5-second baseline and the 40-second trial data was extracted using the marker events. The baseline data starts
one second after the participants had looked at the cross-fixation for one second. The trial data last the entire length of the
stimuli.

3.6.2 Unicorn Hybrid Black
The EEG data recorded on the Unicorn Hybrid Black also includes some signals from the power line. In Norway,
the power line frequency is 50 Hz and can clearly be seen as peaks at 50 Hz and 100 Hz in the power spectral
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(a) Original power spectral density plot.

(b) Power spectral density after applying a notch filter at 50 and 100 Hz.

Figure 3.19: The PSD of trial 3 for participant number 10 using the Unicorn Hybrid Black dataset. (a) is the original PSD and
(b) is the PSD after applying a notch filter.

density (PSD) plot in fig. 3.19a. The noise contributed by the power line can be removed by applying a notch filter
at these frequencies, resulting in the PSD plot in fig. 3.19.

The same preprocessing steps as above were also tried for the Unicorn Hybrid Black. With ICA, it was difficult
to separate only the eye blinks from all other sources, so the model was not tried on ICA-processed data.

Lastly, the 5-sec baseline signals and 40-sec trials were extracted for each of the preprocessing options.
The frequency of the power line is very apparent in the PSD plots from the Unicorn Hybrid Black data. The

big peaks at 50 Hz and 100 Hz can be seen in fig. 3.19b. The effect applying the notch filter of 50 and 100 Hz has
on the PSD can be seen in ??.

3.7 Feature extraction
The feature extraction was done in the same manner as in the project thesis. Below is a summary, see [18] for a
closer explanation. The baseline and trial data of size trial x channels x data points was segmented into one-second
epochs and decomposed into the five frequency sub-bands delta (1-4Hz), theta (4-8Hz), alpha (8-14Hz), beta (14-
31Hz), and gamma (31-45Hz). Each sub-band contains data of size seconds x channels x sample frequency. Next,
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Figure 3.20: The diagram explains the process from raw data to the final feature matrix for one feature. In this instance, the
preprocessing is notch filtering and downsampling.

the features HM, HC, HMS, HCS, FBE, and DE were extracted for each epoch. The mean value of the features
extracted from the baseline epochs (now called the baseline feature) was calculated for each feature. Baseline
correction was done by subtracting the baseline features from all the features (under stimuli) in the corresponding
trial. The process is explained visually in fig. 3.20.

The original SVC model proposed in the specialization project utilized only five features: HC, HM, DE, FBE,
and HMS. HCS was also explored in this combination of features but for the DEAP dataset, the model performance
decreased by 0,1 percentage points for valence and 0,2 percentage points for arousal. The difference in participant-
wise accuracy is however not statistically significant, i.e. the p-value is above 0.05. Because of this, the effect of
including the HCS feature together with the other five in the SVC model was explored on the new datasets.

3.8 Test generalization qualities of model
Finally, the proposed models could be tested on brand-new, unseen data. Firstly, 20% of the data was extracted in
a random manner and kept as a test set. 5-fold cross-validation was used to test the SVC and LR models proposed
in the project [18] on the remaining data. The results from the cross-validation were used in an effort to improve
the performance of the model by applying more/different preprocessing.

In addition to testing the classification qualities of the model on high/low classification for arousal and valence,
the model’s prediction qualities on the original labels reported by the participants were also tested. The original
labels reported by the participants are discrete values from 1 to 9 for both arousal and valence. The predictions of
the original labels could then be mapped to high/low values for arousal and valence. So three ways of classifying
the data were tested: (1) predict high/low labels, (2) predict original (discrete 1-9) labels, and (3) predict original
(discrete 1-9) labels and convert to high/low afterward.

Finally, the test set was used to validate the performance of the best combinations of preprocessing and model
choice on unseen data.
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Results

4.1 Important results from the specialization project
In the specialization project [18], a model was created for the DEAP dataset. Table 4.1 displays the model perfor-
mance of 4 cases:

1. Classifying from epochs extracted from original data

2. Classifying from epochs that are decomposed into frequency sub-bands theta, alpha, beta, gamma

3. Classifying from epochs that are baseline corrected

4. Classifying from epochs that are decomposed into frequency sub-bands and are baseline corrected

,for the two best single features, HC and HM. It was clear that implementing frequency sub-bands and baseline
correction was very important for the model performance.

Combining multiple features into the model further improved performance. For the SVC model, the use of five
features (HC, HM, DE, FBE, HMS) performed best. The same was checked for the LR model, where the use of
HCS in addition to the other five features was the best option. In table 4.2 the average accuracies obtained from
5-fold cross-validation on the SVC model with five and six features and the LR model with six features are listed.

Feature Feature options
Valence

Average accuracy
± STD

Arousal
Average accuracy

± STD

Hjorth
complexity

Original data 63.63% ± 6.26% 67.25% ± 7.99%

Sub-bands 60.85% ± 6.10% 65.60% ± 8.88%

Baseline removal 77.91% ± 5.83% 79.50% ± 6.26%

Sub-bands + baseline removal 88.63%±3.92% 89.28%±4.36%

Hjorth
mobility

Original data 65.60% ± 5.68% 68.15% ± 7.78%

Sub-bands 64.01% ± 5.53% 66.71% ± 8.36%

Baseline removal 73.85% ± 6.67% 76.68% ± 6.08%

Sub-bands + baseline removal 88.38%±4.70% 88.54%±5.88%

Table 4.1: Average accuracies of the proposed SVC model with randomly divided training set (66%) and test set (33%). HC
and HM were the two best-performing single features. The table shows the effect implementing sub-bands and baseline removal
had on the model performance.
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Classifier Features
Valence

Average accuracy ± STD
Arousal

Average accuracy ± STD

SVC
HC, HM, DE,

FBE, HMS
96.50% ± 2.10% 96.71% ± 2.06%

SVC
HC, HM, DE,

FBE, HMS, HCS
96.43% ± 2.08% 96.58% ± 2.12%

LR
HC, HM, DE,

FBE, HMS, HCS
96.26% ± 1.41% 96.61% ± 1.54%

Table 4.2: The performance of the proposed models and the six-feature SVC from the specialization project. The reported
average accuracy is the average accuracy of all participants after 5-fold cross-validation. The kernel in the SVC model is ’rbf’.
The logistic regression is L2-regularized and has C=1.

4.2 Feature selection
In the original SVC model proposed in the specialization project, only five features were utilized. The average
accuracies obtained with 5-fold cross-validation of the 32-channel SVC model on the new datasets with the original
five and all six features are listed in table 4.3. Utilizing all six features (HM, HC, HMS, HCS, DE, and FBE) seems
to increase the accuracy somewhat. The difference is not big, but since the extra information shows signs that
it might improve the model somewhat, the HCS feature was included in the rest of the project. However, the
improvement is not statistically significant.

Dataset Features
Valence

Average accuracy ± STD
Arousal

Average accuracy ± STD

Mentalab
Explore+ 32

HC, HM, DE,
FBE, HMS

92.89% ± 3.97% 92.79% ± 3.98%

HC, HM, DE,
FBE, HMS, HCS

93.10% ± 3.99% 93.10% ± 3.97%

Unicorn
Hybrid
Black

HC, HM, DE,
FBE, HMS

91.26% ± 3.16% 90.61% ± 4.31%

HC, HM, DE,
FBE, HMS, HCS

91.53% ± 2.97% 91.00% ± 4.20%

Table 4.3: Average accuracies obtained from the SVC model when using five features (like the proposed model in the special-
ization project) or using all six features on the newly collected datasets.

4.3 Channel Selection

4.3.1 Non-dominated Sorting Algorithm on DEAP dataset
In this section, the results derived from applying the NSGA-II in an attempt to reduce the number of electrodes
needed for emotion recognition with the SVC model, are presented. The channel selection is done individually for
arousal and valence and participants-wise. Therefore, the number of channels might be varying across participants,
so the average number of channels across participants is reported. The column ”average total number of channels”
in table 4.4-table 4.6 is the total number of channels needed in one device to fulfill the optimal channels selection
found for both arousal and valence. The total number of channels will be higher than the number of channels
chosen for arousal or valence classification individually, as the channels selection for arousal and valence do not
have all channels in common.

The prediction accuracies on the validation set using the unconstrained NSGA-II are shown in table 4.4. Setting
both the population size and the number of generations equal to 50 provides the best solution for channel selection.
The mean accuracy achieved on the validation set using the unconstrained NSGA-II was 95.35% ± 2.15% and
95.71% ± 2.48% for valence and arousal, respectively. On average, around 11.0-11.5 channels are needed for
the classification of arousal and for valence. Many of these channels are however unique for the classification of
either valence or arousal. Therefore, the average number of electrodes a device would need to have to achieve this
prediction accuracy for both valence and arousal would on average be around 17.5.

The accuracy decreases when the population size is smaller than the number of generations. However, the
solution with the lowest number of channels is found with the NSGA-II with population size=20 and a number
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of generations=120. In this instance, we are able to obtain a mean accuracy of 95.02% ± 2.69% for high/low
valence classification and 95.04% ± 2.60% for high/low valence classification using around 16 electrodes for each
participant.

Average number of channels ± STD
Specifications

Valence Arousal Total

Valence
Average accuracy ± STD

Arousal
Average accuracy ± STD

Population:50
Generations:50 11.53±2.33 11.09±3.26 17.53±3.71 95.35% ± 2.15% 95.71%±2.48%

Population:35
Generations:70 10.03±1.96 10.16±2.76 16.16±3.41 95.08%±2.3% 95.51% ± 2.37%

Population:20
Generations:120 9.81±2.73 10.47±2.49 16.13±3.06 95.02% ± 2.69% 95.04% ± 2.60%

Population:70
Generations:35 9.28±2.96 9.88±2.33 15.06±3.25 95.31% ± 2.35% 95.42% ± 2.34%

Table 4.4: Average classification accuracies on the validation set using unconstrained NSGA-II on the DEAP dataset with the
SVC model. The average number of channels needed for high/low arousal and valence classification and both at the same time
is reported.

For the constrained problem the constraint is on the number of channels used for one type of classification,
i.e. valence or arousal. This means that the total number of electrodes used to classify both valence and arousal
from the same device will usually be bigger than that constraint. The average accuracy was about the same for
all hyperparameter settings, with only one percentage point differentiating between the best and worst average
accuracy for valence and arousal classification. This can be seen in table 4.5. In terms of accuracy, the best
hyperparameters were again a population size and number of generations equal to 50, and now constraining the
problem to use 29 electrodes. The average of the total channels used for this solution would however be 31.25
electrodes, which is basically using all 32 electrodes as original.

One solution only uses on average 22.5 channels in total on average. This solution is found with the population
size set to 35 and running this for 70 generations. The average accuracy for valence and arousal respectively is
95.02% ± 2.39% and 96.12% ± 2.08%.

Specifications
Average total number
of channels ± STD

Valence
Average accuracy ± STD

Arousal
Average accuracy ± STD

Population:50
Generations:50

Channel constraint:16
23.25±1.66 96.02% ± 2.35% 95.92% ± 2.25%

Population:35
Generations:70

Channel constraint:16
22.53±1.50 95.02% ± 2.39% 96.12% ± 2.08%

Population:50
Generations:50

Channel constraint:25
30.25±1.03 96.60%±2.12% 96.41%±2.43%

Population:50
Generations:50

Channel constraint:29
31.25±0.71 96.76%± 2.19% 96.51%± 2.51%

Table 4.5: Average classification accuracies on the validation set using constrained NSGA-II on the DEAP dataset with the
SVC model. The average number of channels is the average number of channels used in total for both arousal and valence
classification.

The solutions with the highest accuracy and with the lowest number of utilized channels were also tested with
the 5-fold cross-validation so that they can more easily be compared to the values in table 4.2. The results from the
5-fold cross-validation can be found in table 4.6.

The average accuracies of the solutions are again quite similar, with the difference between the lowest and the
highest accuracy being less than 1.5 percentage points for both arousal and valence. The solution with the highest
accuracy is the solution that utilizes the most electrodes. The more channels the solution utilizes. The highest
achieved accuracy is 96.52% and 96.63% for valence and arousal classification. In this solution, 31.3 channels
are used on average. The accuracy achieved with 16.2 channels on average is 95.26% for valence and 95.60% for
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arousal. As seen in table 4.2, accuracies of 96.50% for the valence and 96.71% for arousal were achieved using
all 32 channels, with 5-fold cross-validation. There are slight variations in the achieved average accuracies in the
different solutions. However, the difference in the participant-wise achieved accuracy is not statistically significant
between any of the proposed solutions listed in table 4.2, i.e. the p-value is above 0.05.

The solution with an average of 16.2 channels is statistically significant with regard to the participant-wise
accuracy compared to the solution without any channel reduction. None of the other solutions listed in table 4.6
are statistically significant with regards to the participant-wise accuracy compared to the 32-channel model.

Specifications
Average total number
of channels ± STD

Valence
Average accuracy ± STD

Arousal
Average accuracy ± STD

Population:70
Generations:35
Unconstrained

15.06±3.25 95.31%±2.35% 95.42%± 2.34%

Population:50
Generations:50
Unconstrained

17.53±3.71 95.45%± 2.04% 95.95%± 1.94%

Population:50
Generations:50

Channel constraint:25
30.25±1.03 96.42%±1.97% 96.57%±2.06%

Population:50
Generations:50

Channel constraint:29
31.25±0.71 96.52%± 1.96% 96.63%± 2.13%

Table 4.6: Average accuracies obtained when running 5-fold cross-validation over the entire dataset with the best-performing
channel selections. This was calculated for the sake of comparing the results to those obtained in the specialization project.

4.4 Power spectral density plots
Figure 4.1 shows the PSD of two trials (low valance/low arousal and low valance/high arousal) for participant no.
4. This participant had 19 good channels across the head. The topological plots of the PSD in the five frequency
bands are also shown. ICA has been applied in order to remove noise from eye blinks, see more about this further
down. Looking at the graphs, one can see differences in which channels stand out as the most active ones, but they
are difficult to decipher. This is easier in the topographic plots. The plots do however not have the same scale, so
the comparison is only about where the activity is located. One can clearly see differences in brain activity in the
low and high arousal situations. The activity in the delta band in the high arousal situation is likely not from brain
activity, and will be ignored for this purpose. The activity changes most in the alpha, beta, and gamma bands. For
alpha and beta, the activity mostly spreads to a bigger part of the left side and the occipital part of the brain. In the
gamma band, the activity is more or less mirrored in the high-arousal trial compared to the low-arousal trial.

The effect ICA has as a preprocessing method is shown in fig. 4.2. The plot shows the topological map of the
PSD in the five frequency bands before and after using ICA to remove eye blinks. The data was downsampled
in both plots. The eye blinks introduce a lot of noise to the data, this is apparent when looking at the topological
plots. The eye blinks are so overpowering in the delta, theta, and alpha frequency bands that any other activity in
the brain is not visible. After removing the eye blinks from the EEG data through ICA, the interesting activity is
very clear.
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(a) Trial 21: valence=3 and arousal=4 in this trial, i.e. low valence and low arousal.

(b) Trial 23: valence=3 and arousal=8 in this trial, i.e. low valence and high arousal.

Figure 4.1: PSD plot and corresponding topological map for participant no. 4 with the Mentalab Explore+ 32 device. The data
has been downsampled and ICA has been applied to remove eye blinks.
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(a) Before ICA is applied there is a lot of activity at the forehead in the lower frequency bands.

(b) The overpowering activity at the forehead had been removed through ICA. Now the other activity in the brain is visible.

Figure 4.2: PSD topological map of trial 21 for participant no. 4 with the Mentalab Explore+ 32 device before and after
removing eye blinks with ICA. The data had been downsampled in both instances. Please note that the topological plots are not
on the same scale.

4.5 Preprocessing new data
The model performance on the new datasets will be presented in this section.

4.5.1 Mentalab Explore+ 32
Removing bad channels

Any channels that were bad during one trial were removed from the entire dataset for that participant. As seen in
table 4.7, this resulted in a varying number of channels for each participant ranging from 8 to 19 usable channels.
The good channels are plotted for each participant in fig. 4.3. In table 4.7, participant-wise average accuracy
achieved from the 5-fold cross-validation is presented. The accuracy does decrease somewhat for most of the
participants, where the worst case is with participant no. 7. This participant had only 8 good channels, but the
model still manages to predict 85.03% of the instances correct for high/low arousal and 85.28% for valence. Using
all channels, the model achieved accuracies of 93.92% and 93.09% for arousal and valence respectively for the
same participant. The channel reduction due to bad channels resulted in a decrease in accuracy of 8-9 percentage
points.

For participant 6 the channel reduction was actually beneficial as the prediction accuracy for arousal stayed the
same, while the accuracy for valence predictions increased by 0.16%. This increase might just be due to change,
but the channel reduction does not have seems to have harmed the model.

In table 4.8 the average accuracies from 5-fold cross-validation on the SVC and LR models before and after
channel reduction to remove bad channels are presented. For both models, the average accuracies decrease after
removing the bad channels, for both arousal and valence predictions. The biggest decrease is however just 2.6
percentage points, which is for the valence classification using the LR model.
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32 channels Bad channels removed

Participant Valence accuracy Arousal accuracy Valence accuracy Arousal accuracy Channels remaining

1 97,17% 96,09% 93,65% 96,29% 14

2 95,50% 94,76% 94,76% 92,46% 12

3 95,80% 95,23% 95,07% 94,33% 15

4 96,72% 96,09% 95,31% 93,52% 19

5 96,38% 93,89% 92,26% 90,34% 14

6 94,31% 94,47% 94,47% 94,47% 18

7 93,09% 93,92% 85,28% 85,03% 8

Table 4.7: Participant-wise effect of removing the bad channels in the Mentalab Explore+ 32 dataset. The accuracies are
obtained with the LR using 5-fold cross-validation.

32 channels
Average accuracy±STD

Bad channels removed
Average accuracy±STD

Classifier Valence Arousal Valence Arousal

SVC 93.10%±3.99% 93.10%±3.97% 91.96%±6.49% 91.70%±6.62%

LR 95.57%±1.33% 94.92%±8.57% 92.97%±3.28% 92.35%±3.44%

Table 4.8: Average accuracies before and after removing bad channels for the SVC and the LR models.

Preprocessing

The effects preprocessing has on the accuracy of the model in the Mentalab Explore + 32 dataset are reported in
table 4.9. The table shows the average accuracy of the 5-fold cross-validation on the training data with the LR and
SVC models using all six features HC, HM, DE, FBE, HMS, and HCS. For the three cases:

(1) Predicting high/low labels for arousal and valence

(2) Predicting the original (discrete 1-9) labels reported by participants for arousal and valence

(3) Converting the predicted 1-9 labels into high/low labels for arousal and valence

, table 4.9 covers the results of case (1). table 4.10 shows the results for cases (2) and table 4.11 for case (3).
For case (1), the SVC model achieves an accuracy of 93.10% ± 3.99% for valence and 93.10% ± 3.97% for

arousal without performing any preprocessing. The LR model achieves accuracies of 95.57% ± 1.33% and 94.92%
± 0.86% with no preprocessing for valence and arousal, respectively. The LR model performs better than the SVC
model for all types of preprocessing.

The best-performing preprocessing method is downsampling to 128Hz. With this method, the accuracy of
the LR model is increased to 93.33% ± 4.13% and 92.98% ± 3.47% for valence and arousal, respectively. The
introduction of the notch filter, in addition to downsampling, reduced accuracy by less than 0.2 percentage points
for both valence and arousal classification. The SVC model with downsampled and notch-filtered data obtains an
accuracy of 93.08% ± 5.12% for arousal, but the standard deviation is much higher than for the LR model with
downsampled data.

Removing eye blinks with ICA does not increase the accuracy of the LR model. In fact, it decreases it some-
what. For the SVC model, the accuracy decreases for valence classification but increases by one percentage point
for arousal classification when using ICA.

The notch filter reduces the accuracy of the valence predictions by less than one percentage point for both
models, while the arousal classification performance increases by around 0,5 percentage points.

For LR the standard deviation is about the same for all methods of preprocessing. For valence, it ranged from
3.28% with no preprocessing to 4.73% when notch filter and downsampling is applied. The standard deviation for
arousal is kept within 3.40%-3.47% for all the preprocessing methods for the LR model. The standard deviation
varies a bit more with the SVC model, but it follows the same trend for which preprocessing methods have the
most and least standard deviation.
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4 Results 4.5.1 Mentalab Explore+ 32

(a) Participant no. 1. (b) Participant no. 2. (c) Participant no. 3.

(d) Participant no. 4. (e) Participant no. 5. (f) Participant no. 6.

(g) Participant no. 7.

Figure 4.3: The good channels in the Mentalab Explore+ 32 dataset for each participant is plotted.
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4 Results 4.5.1 Mentalab Explore+ 32

Predicting high/low arousal and valence.

Features Classifier Preprocessing
Valence

Average accuracy ± STD
Arousal

Average accuracy ± STD

HC,
HM,
DE,

FBE,
HMS,
HCS

SVC

No preprocessing 91.96% ± 6.62% 91.70% ± 6.49%

Downsampling 91.49% ± 8.50% 92.84% ± 5.83%

ICA 91.22% ± 8.33% 92.03% ± 5.78%

Notch filter 91.27% ± 8.60% 92.41% ± 5.00%
Notch filter,
downsampling 91.41% ± 8.83% 93.08% ± 5.12%

LR

No preprocessing 92.97% ± 3.28% 92.35% ± 3.44%

Downsampling 93.33% ± 4.13% 92.98% ± 3.47%

ICA 92.57% ± 4.09% 92.30% ± 3.42%

Notch filter 92.47% ± 4.46% 92.52% ± 3.40%
Notch filter,
downsampling

93.16% ± 4.73% 92.81% ± 3.40%

Table 4.9: The results for high/low classification from 5-fold cross-validation over the training set on the Mentalab Explore+
32 dataset. The best mean accuracies obtained are marked with bold lettering.

As seen in table 4.10, the SVC model achieves an accuracy of 85.08% ± 13.71% and 84.69% ± 14.67% for
valence and arousal respectively when predicting the original labels ranging from 1-9. The SVC model is again
outperformed by the LR model in terms of average accuracy and standard deviation.

For the LR model, the average accuracy is 92.18% ± 5.41% for valence classification and 92.08% ± 6.08%
for arousal. As opposed to the case with the high/low labels, removing blinks through ICA increases the prediction
accuracy for the prediction of the original labels. For the other preprocessing methods, the methods increase and
decrease the accuracy in the same manner as for the high/low prediction. The best accuracy was achieved with
downsampling, resulting in 93.47% ± 4.73% for valence and 93.51% ± 5.71% for arousal. This accuracy is
about the same as the accuracy obtained from high/low classification with downsampling, even though there are
9 possible levels. Applying the notch filter in addition to the downsampling reduces the accuracy to 92.76% ±
6.62% and 92.81 ± 7.18.

Predicting the original (discrete 1-9) labels for arousal and valence.

Features Classifier Preprocessing
Valence

Average accuracy ± STD
Arousal

Average accuracy ± STD

HC,
HM,
DE,

FBE,
HMS,
HCS

SVC

No preprocessing 85.08% ± 13.71% 84.69% ± 14.67%

Downsampling 85.42% ± 15.68% 85.51% ± 14.91%

ICA 84.28% ± 15.51% 85.01% ± 14.96%

Notch filter 84.37% ± 16.01% 84.59% ± 14.97%
Notch filter,
downsampling

85.27% ± 16.01% 85.18% ± 15.33%

LR

No preprocessing 92.18% ± 5.41% 92.08% ± 6.08%

Downsampling 93.47% ± 4.73% 93.51% ± 5.71%

ICA 92.88% ± 4.61% 92.61% ± 5.49%

Notch filter 92.52% ± 3.40% 91.89% ± 6.77%
Notch filter,
downsampling

92.76% ± 6.62% 92.81% ± 7.18%

Table 4.10: The results for classification of the original labels from 5-fold cross-validation over the training set on the Mentalab
Explore+ 32 dataset. The best mean accuracies obtained are marked with bold lettering.

By converting the 1-9 label predictions to high/low labels, the accuracy increases to 96.43% ± 2.99% for
valence and 96.24% ± 3.04% for arousal after downsampling, see table 4.11.
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Predicting original labels and converting predicted labels to high/low arousal and valence.

Features Classifier Preprocessing
Valence

Average accuracy ± STD
Arousal

Average accuracy ± STD

HC,
HM,
DE,

FBE,
HMS,
HCS

SVC

No preprocessing 91.92% ± 6.08% 92.24% ± 6.76%

Downsampling 92.12% ± 8.54% 93.04% ± 5.66%

ICA 91.66% ± 8.39% 92.70% ± 5.85%

Notch filter 91.77% ± 8.76% 92.67% ± 5.80%
Notch filter,
downsampling

92.04% ± 8.85% 92.93% ± 5.78%

LR

No preprocessing 95.77% ± 3.17% 95.99% ± 2.70%

Downsampling 96.43% ± 2.99% 96.24% ± 3.04%

ICA 96.03% ± 2.87% 96.05% ± 3.04%

Notch filter 95.51% ± 4.18% 95.92% ± 3.46%
Notch filter,
downsampling

95.91% ± 4.21% 96.07% ± 3.69%

Table 4.11: The results for conversion into high/low labels from the prediction of the original labels from 5-fold cross-validation
over the training set on the Mentalab Explore+ 32 dataset. The best mean accuracies obtained are marked with bold lettering.

4.5.2 Unicorn Hybrid Black
In table 4.12 the average accuracies achieved by the two models using different preprocessing techniques are
reported. The performance is reported for the three cases (1), (2), and (3) mentioned in section 4.5.1.

The model’s performance is very similar on the Mentalab 32+ Explore dataset and the Unicorn Hybrid Black
dataset. The average accuracy is all over about one percentage point lower on the Unicorn Hybrid Black. The
effects of applying the preprocessing to the data results in the same type of changes in accuracy for both datasets.

Using the raw data, both the SVC and LR models are able to predict at least 91% of the valence and arousal
labels correctly for the high/low classification.

Downsampling is again the type of preprocessing that increases the accuracy the most. For case (1), the highest
achieved average accuracy is 92.72% ± %2.50% for valence and 92.64% ± 3.11% for arousal with the SVC model.
Using the approach of case (3) where you first classify the original (discrete 1-9) labels for valence and arousal
and afterward convert them to high/low labels the average accuracy is increased to 95.49% ± 1.78% and 95.03%
± 2.04% for valence and arousal, respectively, with the LR model.
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Features Classifier Preprocessing
Valence

Average accuracy ± STD
Arousal

Average accuracy ± STD

Predicting high/low arousal and valence.

HC,
HM,
DE,

FBE,
HMS,
HCS

SVC

No preprocessing 91.54% ± 2.97% 91.00% ± 4.20%

Notch Filter 90.45% ± 2.75% 90.45% ± 2.75%

Downsampling 92.72% ± 2.50% 92.64% ± 3.11%
Notch filter,

downsampling
90.71% ± 2.68% 91.04% ± 3.49%

LR

No preprocessing 91.27% ± 2.91% 91.32% ± 3.56%

Notch Filter 90.69% ± 2.74% 90.90% ± 3.04%

Downsampling 92.02% ±2.39% 92.11% ± 2.29%
Notch filter,

downsampling
90.96% ± 2.56% 91.16% ± 3.30%

Predicting the original (discrete 1-9) labels for arousal and valence.

HC,
HM,
DE,

FBE,
HMS,
HCS

SVC

No preprocessing 85.27% ± 5.38% 85.25% ± 5.87%

Notch Filter 82.60% ± 3.49% 83.36% ± 3.77%

Downsampling 87.16% ± 3.75% 87.91% ± 3.74%
Notch filter,

downsampling 91.05% ± 2.99% 92.25% ± 2.90%

LR

No preprocessing 90.19% ± 2.88% 90.37% ± 3.32%

Notch Filter 89.11% ± 2.57% 89.52% ± 2.71%

Downsampling 91.07% ±2.19% 91.72% ±2.46%
Notch filter,

downsampling
89.57% ± 2.71% 90.17% ± 2.80%

Predicting original labels and converting predicted labels to high/low arousal and valence.

HC,
HM,
DE,

FBE,
HMS,
HCS

SVC

No preprocessing 92.19% ± 3.17% 92.50% ± 3.92%

Notch Filter 90.56% ± 3.26% 91.94% ± 2.75%

Downsampling 93.17% ± 2.31% 93.99% ± 2.49%
Notch filter,

downsampling
83.43% ± 4.14% 84.28% ± 4.06%

LR

No preprocessing 94.99% ± 1.69% 95.21% ± 2.10%

Notch Filter 94.23% ± 1.74% 94.93% ± 1.77%

Downsampling 95.49% ± 1.37% 95.80% ± 1.66%
Notch filter,

downsampling
94.56% ± 1.78% 95.03% ± 2.04%

Table 4.12: The results from 5-fold cross-validation on the Unicorn Hybrid Black dataset. The best mean accuracies obtained
for each method are marked with bold lettering.

4.6 Generalization properties

4.6.1 Mentalab Explore+ 32
Table 4.13 presents the average accuracy of the models on the Mentalab Explore 32+ validation dataset. The models
are run on the raw data, the downsampled data, and the data that has been both notch filtered and downsampled.

For high/low classification, the average accuracy for valence classification is 85.08% ± 13.71% for the SVC
model and 93.85% ± 2.93% for the LR model. For high/low valence classification the average accuracy is 84.69%
± 14.67% for the SVC model and 93.33% ± 3.12% for the LR model. The average accuracy is quite a bit higher
for the LR model compared to the SVC, and the standard deviation is much lower.

The highest average accuracy in case (1) and (2) is achieved when applying only downsampling. For case
(1) with high/low classification, the accuracy is 93.91% ± 2.97% and 94.18% ± 2.72% for valence and arousal
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4 Results 4.6.1 Mentalab Explore+ 32

respectively. Interestingly, the accuracy of the model increases for the classification of the original (discrete 1-9)
labels. The average accuracy increases to 94.65% ± 2.92% for valence and 94.42% ± 4.19% for arousal. By then
converting the predicted 1-9 labels into high/low labels, an average prediction accuracy of 96.87% ± 2.11% and
96.95% ± 1.83% for valence and arousal is achieved with the downsampled data. For valence prediction in case
(3), the average accuracy is 0.7 percentage points higher with the unprocessed data than with the downsampled
data. The standard deviation is however 0.4 percentage points lower with the downsampled data.

The average accuracy of the model decreases to approximately 0.5-1 percentage point for all three cases when
the notch filter is applied in addition to the downsampling. Additionally, the standard deviation increases some-
what.

The confusion matrices for classification with the downsampled LR model on the validation set for the partic-
ipants with the most and least number of good channels are included in fig. 4.4 and fig. 4.5, respectively. In both
figures, the subfigures (a) and (b) show the confusion matrices for arousal and valence from high/low classifica-
tion, res (c) and (d) show confusion matrices for arousal and valence classification of the original (discrete 1-9)
labels. Lastly, subfigures (e) and (f) show the confusion matrices when the predicted 1-9 labels are converted into
high/low labels.

Participant no. 4 has 19 good channels. For this participant, the model works quite well. The high/low arousal
labels are practically balanced, and the model does well at predicting both. The model has a very light preference
toward predicting low arousal. The high/low valence labels are not balanced. There are a lot more instances of
low valence than high valence in the data. Even though the dataset is quite unbalanced, the model does not have
a strong preference for weather to predict high or low valence. It has 6 wrong high predictions and 8 wrong low
predictions.

When looking at the confusion matrices for prediction of the original labels, not all values from 1 to 9 are
present. For arousal, the labels are 3-9 and for valence, they range the interval 2-7. The datasets are not balanced
but in both cases, there are a fair amount of instances for each label. For arousal, the model classifies all label
classes wrong one or two times, except the label arousal=8. For valence, the model predicts arousal=2 correctly all
10 times and the label 6 correctly 29 out of 30 times. The model struggles most with classifying the instances with
arousal=7. In this case 3 out of 35 epochs are classified incorrectly.
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Features Classifier Preprocessing
Valence

Average accuracy ± STD
Arousal

Average accuracy ± STD

Predicting high/low arousal and valence.

HC,
HM,
DE,

FBE,
HMS,
HCS

SVC

No preprocessing 85.08% ± 13.71% 84.69% ± 14.67%

Downsampling 92.67% ± 7.44% 93.72% ± 5.42%
Notch filter,
downsampling

92.62% ± 7.66% 93.93% ± 5.01%

LR
No preprocessing 93.85% ± 2.93% 93.33% ± 3.12%

Downsampling 93.91% ± 2.97% 94.18% ± 2.72%
Notch filter,
downsampling

93.76% ± 3.76% 94.12% ± 3.00%

Predicting the original (discrete 1-9) labels.

HC,
HM,
DE,

FBE,
HMS,
HCS

SVC

No preprocessing 87.27% ± 12.81% 15.41% ± 4.15%

Downsampling 87.90% ± 14.22% 15.32% ± 4.80%
Notch filter,
downsampling

87.53% ± 15.28% 14.85% ± 4.86%

LR
No preprocessing 94.33% ± 4.11% 94.25% ± 5.14%

Downsampling 94.65% ± 2.92% 94.42% ± 4.19%
Notch filter,
downsampling

94.05% ± 4.31% 93.38% ± 6.10%

Predicting original labels and converting predicted labels to high/low arousal and valence.

HC,
HM,
DE,

FBE,
HMS,
HCS

SVC

No preprocessing 93.42% ± 6.34% 44.07% ± 9.09%

Downsampling 93.83% ± 6.91% 44.62% ± 9.29%
Notch filter,
downsampling

93.75% ± 7.07% 44.69% ± 9.49%

LR
No preprocessing 96.94% ± 2.51% 96.61% ± 2.43%

Downsampling 96.87% ± 2.11% 96.95% ± 1.83%
Notch filter,
downsampling

96.56% ± 2.48% 96.31% ± 2.75%

Table 4.13: Accuracies obtained on the validation set with the Mentalab Explore+ 32 dataset. The best mean accuracies are
marked with bold lettering.

Because the model usually predicts labels that are on or close to the true labels, converting the predicted 1-9
labels into high/low labels increases the accuracy further. For arousal, the predictions are very good. For valence,
it is now apparent that the fact that there is more low valence than high valence epochs, makes the model somewhat
prefer to predict low valence.

For participant no. 7, with only 8 good channels, the model predicts more false low instances than false high
instances for both valence and arousal for the high/low predictions. The arousal dataset is somewhat unbalanced,
whereas the valance dataset is very unbalanced. Both arousal and valence have more instances of low labels than
high. It is worth noting that the model has a stronger preference for low arousal than it has for low valence, even
though the arousal dataset is less balanced.

In the predictions of the original labels, the model falsely predicts label 4 for arousal especially many times.
In the valence confusion matrix, there is not much that stands out, the incorrect predictions are spread across
the board. When the predicted original labels are converted to high/low, half the false predictions are corrected
compared to case (1) for arousal classification. For valence, 70% of the false low predictions are corrected, but
only 12% of the false high predictions are corrected.
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(a) Classification of high-
/low arousal.

(b) Classification of high-
/low valence.

(c) Classification of orig-
inal (discrete 1-9) arousal
labels.

(d) Classification of orig-
inal (discrete 1-9) valence
labels.

(e) Converting the pre-
dicted 1-9 labels to high-
/low arousal.

(f) Converting the pre-
dicted 1-9 labels to high-
/low valence.

Figure 4.4: Confusion matrices for participant no. 4
with the downsampled Mentalab Explore+ 32 validation
dataset. Participant no. 4 had 19 good channels.

(a) Classification of high-
/low arousal.

(b) Classification of high-
/low valence.

(c) Classification of orig-
inal (discrete 1-9) arousal
labels.

(d) Classification of orig-
inal (discrete 1-9) valence
labels.

(e) Converting the pre-
dicted 1-9 labels to high-
/low arousal.

(f) Converting the pre-
dicted 1-9 labels to high-
/low valence.

Figure 4.5: Confusion matrices for participant no. 7
with the downsampled Mentalab Explore+ 32 validation
dataset. Participant no. 7 had 8 good channels.

4.6.2 Unicorn Hybrid Black
The model performances on the Unicorn Hybrid Black validation dataset are presented in table 4.14. The average
accuracy of the SVC and the LR models are presented for cases (1), (2), and (3).

As with the Mentalab Explore+ 32 dataset, the best results are obtained with the SVC model on the down-
sampled dataset. With high/low classification, average accuracies of 93.81% ± 2.54% and 93.80% ± 2.70%
are obtained for valence and arousal, respectively. The performance can be increased by using the classification
method of case (3) with the LR model. With that method, the accuracy increases to 96.60% ± 1.56% for valence
and 96.63% ± 1.53 for arousal.

The LR model is able to achieve an accuracy as high as 93.03% ± 2.58% for valence and 92.89% ± 2.38% for
arousal when predicting the original (discrete 1-9) labels from downsampled data.

The confusion matrices for the downsampled LR model on the validation set are included below. Figure 4.6
shows the confusion matrices for participant no. 11, which was one of the participants that achieved the lowest
accuracy with the model. Figure 4.7 shows the same matrices for the best-performing participant, no. 15.

The high/low classification for participant no. 11 is better for low arousal and valance than for high arousal
and valance epochs. The dataset is not balanced in a manner that there are more instances of low than high labels
for both valance and arousal. There are in total 104 epochs that have arousal labels equal to 5. This can be seen in
the confusion matrix for the classification of original labels. Labels 5 or smaller are defined as ”low”, and this has
a big impact on the fact that the low arousal category is so much bigger than the high arousal, even though arousal
equal 5 is very neutral. There are epochs with labels 1-8 for arousal and 1-9 for valance. Overall, the model does
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4 Results 4.6.2 Unicorn Hybrid Black

about the same for categorizing all of them.
Converting the predicted original labels to high/low increases the accuracy, as always. For arousal, the improve-

ment is about the same for both high and low instances. For valence, the improvement is biggest in predicting the
high valence epochs correctly.

The dataset is very unbalanced for participant no. 17, which affects the accuracy. For this participant, the cut-
off between high and low arousal had to be changed so that some of the epochs would be categorized as low arousal.
In this case, arousal ≤ 6 is defined as low arousal. For high/low arousal classification, the model categorizes all
instances correctly. But it is important to note that there are only 27 low arousal epochs. For valance, the model
predicts three labels incorrectly. What is interesting is that these three labels are falsely categorized as high, even
though the dataset is very unbalanced toward low valance.

Looking at the confusion matrices for classifying original labels, we see that there are only arousal labels from
6 to 9 and valence labels from 3 to 6. The participant mainly experienced that the video stimuli elicited an arousal
of 8 and a valence of 5. Even though the model did perfectly on high/low classification for arousal, there are some
mistakes when predicting the original labels.

For case (3) the mistakes made in the classification of the original arousal labels actually carry on into the
conversion to high/low labels, resulting in one false low arousal prediction. For valance, this method corrected the
errors in case (1), and now all epochs are predicted correctly.

Features Classifier Preprocessing
Valence

Average accuracy ± STD
Arousal

Average accuracy ± STD

Predicting high/low arousal and valence.

HC,
HM,
DE,

FBE,
HMS,
HCS

SVC
No preprocessing 92.15% ± 3.13% 92.13% ± 4.14%

Downsampling 93.81% ± 2.54% 93.80% ± 2.70%
Notch filter,
downsampling

91.88% ± 2.90% 92.23% ± 3.48%

LR

No preprocessing 92.13% ± 2.64% 92.23% ± 3.29%

Downsampling 93.26% ± 2.74% 93.05% ± 2.44%
Notch filter,
downsampling

91.90% ± 2.83% 92.32% ± 2.80%

Predicting the original (discrete 1-9) labels.

HC,
HM,
DE,

FBE,
HMS,
HCS

SVC

No preprocessing 87.78% ± 5.01% 17.13% ± 10.09%

Downsampling 89.46% ± 3.13% 16.83% ± 9.80%
Notch filter,
downsampling

86.64% ± 3.89% 17.02% ± 9.78%

LR
No preprocessing 92.00% ± 3.23% 92.31% ± 2.65%

Downsampling 93.03% ± 2.58% 92.89% ± 2.38%
Notch filter,
downsampling

92.08% ± 2.85% 91.47% ± 2.89%

Predicting original labels and converting predicted labels to high/low arousal and valence.

HC,
HM,
DE,

FBE,
HMS,
HCS

SVC

No preprocessing 93.45% ± 3.25% 45.24% ± 13.13%

Downsampling 94.50% ± 2.42% 45.51% ± 13.41%
Notch filter,
downsampling

92.95% ± 3.04% 45.76% ± 13.52%

LR
No preprocessing 95.82% ± 1.86% 96.09% ± 2.01%

Downsampling 96.60% ± 1.56% 96.63% ± 1.53%
Notch filter,
downsampling

96.03% ± 1.94% 95.98% ± 2.06%

Table 4.14: Accuracies obtained on the validation set with the Unicorn Hybrid Black dataset. The best mean accuracies are
marked with bold lettering.
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(a) Classification of high-
/low arousal.

(b) Classification of high-
/low valence.

(c) Classification of orig-
inal (discrete 1-9) arousal
labels.

(d) Classification of orig-
inal (discrete 1-9) valence
labels.

(e) Converting the pre-
dicted 1-9 labels to high-
/low arousal.

(f) Converting the pre-
dicted 1-9 labels to high-
/low valence.

Figure 4.6: Confusion matrices for participant no. 11
with the downsampled Unicorn Hybrid Black validation
dataset.

(a) Classification of high-
/low arousal.

(b) Classification of high-
/low valence.

(c) Classification of orig-
inal (discrete 1-9) arousal
labels.

(d) Classification of orig-
inal (discrete 1-9) valence
labels.

(e) Converting the pre-
dicted 1-9 labels to high-
/low arousal.

(f) Converting the pre-
dicted 1-9 labels to high-
/low valence.

Figure 4.7: Confusion matrices for participant no. 15
with the downsampled Unicorn Hybrid Black validation
dataset.
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5
Discussion

5.1 Channel selection
NSGA-II was able to improve the prediction accuracy of the SVC model marginally from 96.50%±2.10% to
96.52%±.96% for high/low valence classification by removing three channels. This improvement in accuracy is
however not statistically significant. The accuracy of the high/low arousal classification decreased from 96.71%±.54%
to 96.63%±.13% for the same solution.

It is however possible to reduce the number of channels drastically and still maintain a good emotion recogni-
tion performance. The model was able to predict on average over 95% of the labels correctly by using on average
15-16 electrodes. The original dataset has 32 electrodes, so this solution utilizes only half of that for a very small
trade-off in accuracy.

In this project, the focus during the NSGA-II stage was mostly on trying to improve prediction accuracy by
reducing the number of channels. When solutions were picked from the Pareto-front, the solutions with the highest
accuracy instead of the fewest channels were chosen. More solutions using fewer channels should have been looked
into but unfortunately, time did not allow for this. I hypothesize that it would have been possible to maintain almost
the same prediction accuracy with even fewer electrodes.

The Mentalab Explore+ 32 dataset and the Unicorn Hybrid Black datasets both have less than 32 electrodes.
The Mentalab Explore+ 32 dataset has from 8 to 19 channels, depending on the participant. Using 12 channels,
the model is still able to achieve an accuracy well above 90% for binary arousal and valence classification from
the raw data. It also has to be taken into account that the locations of these channels are not selected through any
channel selection algorithm, but were a random selection due to bad data at malfunctioning channels.

The Unicorn Hybrid Black dataset utilizes 16 channels whose locations were chosen in order to maximize the
emotion information in the recorded EEG data. In this dataset, an accuracy of almost 94% was obtained for binary
arousal and valence classification on the downsampled data.

5.2 Data collection
Even though the EMDB is created to elicit a close-to-balanced dataset in terms of arousal, valence, and dominance,
this is not necessarily the case with new participants. Some of the participants were very excited to be part of this
project, which affected their emotional state. One participant reported their state of arousal as 6 or higher during
all videos, even for the more calming videos like the landscape scenes.

The impedance of the channels was assessed before data collection with the Mentalab Explore+ 32 device. It
was very participant-dependent what impedance we were able to achieve on the channels. One participant had
impedance≤ 37kΩ on all channels, while another participant had an impedance equal to 104kΩ on one channel.
The difference in impedance did not seem to affect the emotion recognition ability of the models.

The DEAP dataset that was utilized in the specialization project used music videos as emotional stimuli. The
emotional stimuli during data collection in this project were non-auditory movie clips. If the model only worked
well for the DEAP dataset and not for the newly collected datasets, this could have been a sign that the models
actually decoded the brain processing the music and not actually the emotions. The fact that the proposed models
perform well for both types of stimuli suggests that the models decode emotions.
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5 Discussion 5.3 Number of features

The data collected in this project til be used in further work at NTNU. Hopefully, it will also be published
publicly online in the future. Collecting new data is quite time-consuming, and often takes more time than antic-
ipated due to unforeseen problems such as the ones mentioned in section 3.5.2, but it is a very important step in
improving the research. It is important to have different datasets in order to validate the robustness of the model.

5.3 Number of features
In the specialization project, it was determined that the five features HC, HM, DE, FBE, and HMS were preferable
as input into the SVC. At that point, the statistical significance between the accuracy of that model and the SVC
model with six features (HCS in addition to the other five) was not looked into. After working more with the SVC
models during this project, it seems like HCS has a positive effect on the robustness and generalization properties
of the model overall.

5.4 Data preprocessing
As seen in section 4.5, many of the preprocessing steps that were explored in this project did not necessarily in-
crease the accuracy. As discussed, the frequency of the power line is very visible in the power spectrum distribution
plot. This noise does not bring any useful information into the dataset, and it is, therefore, beneficial to remove
it. In this project, it was removed with the notch filter algorithm that is implemented in the MNE-Python package.
For valence predictions, applying the notch filter always lead to poorer classification accuracy. For arousal classi-
fication, the notch filter improved the accuracy somewhat in some of the situations with the LR model. The fact
that the notch filter mostly had a negative effect on the prediction accuracies of the model is a sign that the notch
filter removed some of the relevant information to emotion decoding.

Eye-blink removal proved itself to not be as straightforward as anticipated. ICA was only performed fully on
the Mentalab Explore+ 32 dataset because this dataset had enough channels to locate the source more precisely.
With the Unicorn Hybrid Black system, two 8-channel devices were used simultaneously to record the data. When
trying to apply ICA, the channels from each device were looked at independently. Because of the few numbers
of channels, ICA was not able to extract only the blinks in one source. I later realized the problem this caused
and should have combined the data from the two devices before running ICA. That way the algorithm would find
16 instead of 8 independent components/sources, and would have had a better chance of identifying the blinking
source.

For the Mentalab Explore+ 32 dataset, removing the sources that were determined to be eye blinks decreased
the prediction accuracies of the LR model. Again, one has to assume that this might be because some useful
information is removed from the model. The decrease is however so small that it might just be due to chance,
and should be looked further into. For the SVC model, ICA improved the arousal classification but weakened the
valence classification.

The models obtain good predictions with the eye blinks present. The electrooculography artifacts were removed
from the preprocessed DEAP dataset, but from the results obtained in this project, the models seem to be able to
look away from the eye blinks and not let that determine the predictions.

The preprocessing method that reliably improved the performance was downsampling. By downsampling
the data, only the bigger more impactful structures of the data are kept. Downsampling is a way of removing
less important data so that the model can focus on the important data structures. In this project, the data were
downsampled from 250 Hz to 128 Hz. The choice of the downsampled frequency was based on the downsampling
done in the DEAP dataset, as the model was trained on this data. Other downsampling rates should also be looked
into.

It is, however, positive that the model works quite well with the raw data. In a real-life situation where the
system is to be used in real-time, it is beneficial that not much processing of the data has to be done as this causes
latency.

5.5 Generalization properties
The six-feature SVC model generalizes somewhat better to the new datasets than the five-feature model. In this
project, the extra feature was included in order to look at the best possible accuracies. Increasing the complexity
somewhat by adding this feature might not be necessary, as the increase in accuracy and robustness is not so big.
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5 Discussion 5.5 Generalization properties

Both the SVC and LR model generalizes quite well to the new datasets. The average accuracy of the SVC
model for binary classification on the downsampled Mentalab Explore+ 32 data is 92.67% ± 7.44% for valence
and 93.72% ± 5.42% for arousal. This is a decrease of 3,76 percentage points for valence classification and 2,86
percentage points for arousal compared to the six-feature SVC model on the DEAP dataset. With LR the model
achieved 93.91% ± 2.97% for binary valence classification and 94.18% ± 2.72% for arousal. Compared to the
LR on the DEAP dataset, this is a decrease of 2.35 and 2,43 percentage points for the classification of valence and
arousal, respectively. The decrease in accuracy is somewhat bigger with the SVC model than with the LR model,
which might be a sign that the LR model generalizes a bit better to unseen data.

With binary classification on the downsampled Unicorn Hybrid Black dataset, the SVC achieves 93.81% ±
2.54% for valence and 93.80% ± 2.70% for arousal. This accuracy is better than the ones obtained on the Mentalab
Explore+ 32 data. This is likely due to the fact that the latter dataset misses a lot of the recorded EEG data due to a
malfunctioning device. There are a lot fewer epochs for the model to be trained on, and the dataset might be very
unbalanced. It is however a very good sign that the model is able to achieve good predictions on both the Mentalab
Explore+ 32 data and the Unicorn Hybrid Black data. The model handles both the small and bigger dataset well,
which is a sign that it is quite robust and good at reading the underlying patterns of emotions. In addition to this,
the EEG data is recorded using different devices and even different types of electrodes (wet and dry), but the model
works well with both setups.

The LR model predicts 93.26% ± 2.74% of the valence labels correctly for the binary classification of the
Unicorn Hybrid Black dataset. The average accuracy of the arousal predictions is 93.05% ± 2.44. In this case, the
SVC model performs better than the LR model.

From the confusion matrices, we see that the LR model somewhat prefers to predict the labels that are most
highly represented in the dataset, but even with very unbalanced datasets the model usually makes the correct
predictions. This shows that the model is actually able to differentiate between the classes, even with few examples
for one class.

Both the LR model and the SVC model that were proposed in the specialization project perform well on the
two new datasets. Both the LR and the SVC model obtain accuracies around 93% on the downsampled datasets.
This shows that the good performance on the DEAP data was not just due to overfitting, but the fact that the model
is able to identify the important structures in the EEG data that correspond to emotions. It is not clear from the
results obtained in this project whether the SVC or LR model is better for binary classification as long as the
data is downsampled. The number of epochs, number of channels, and the channel locations are different in the
two datasets, which may influence what model is better for the classification. It may also be due to individual
differences in the participants.

The LR model also does quite a good job of predicting the original labels from the self-assessment. The LR
model is able to differentiate between smaller nuances between the different levels of arousal and valence. This
could be very useful for more practical uses of emotion recognition technology. During self-assessment in the
experiments, the participants also rated their experienced level of dominance. This was not looked into during the
project, but it would be interesting to see if also this could be predicted by the same model.

By letting the model train on the original labels, the model receives more information. If one still wants to
classify only high and low levels of arousal and valence, the model performances can be increased by letting the
model predict the original labels and converting these predicted labels into binary labels. This created an increase
in the average accuracy of about 2 percentage points for both datasets.
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6
Conclusion and Future work

6.1 Conclusion
This master’s thesis has been a continuation of the work done in my specialization project [18], and has further
explored the models proposed in that report. In this thesis, channel selection through NSGA-II has been explored
for the DEAP dataset. The design of experiments and collection of data for two new datasets has been carried
out. 52 40-second emotional movie clips were used as stimuli during experiments. The experiment was the
same for both datasets, but different EEG devices have been used to record the EEG data. One device had 32
electrodes, where some of the channels had to be removed during data processing, and the other had 16 channels.
Preprocessing as notch filtering (to remove noise from the power line), downsampling, and ICA (to remove eye
blinks) was applied to the data. Lastly, the generalization properties of the models were tested on the new datasets.

From the work in this thesis, it can be concluded that good emotion decoding can be done using way fewer
electrodes than 32. Using 16 channels, the average binary classification accuracy is above 93% for the Unicorn
Hybrid Black dataset. Through further investigation of the channels, and possibly having participant-wise channel
selection, the number of channels can probably be decreased even more without a big loss of accuracy.

Preprocessing the data can increase the prediction accuracy of the SVC model, but it is not necessary for the
LR model. Downsampling is however a good method for removing unnecessary information from the data.

Both the proposed SVC and LR models are stable and reliable on the new datasets, so it can be concluded
that the models are robust across recording devices, types of stimuli, and participants. The models are expected to
generalize well to more new data. Although the accuracy is somewhat lower than the reported accuracies of the
complex deep-learning state-of-the-art models, this shows that simple machine-learning models can be used for
good emotion recognition.

The findings in this thesis suggest that the simple logistic regression model using six features can produce good
emotion predictions with 16, maybe fewer, channels and without the need for preprocessing. The model is not only
able to differentiate between high/low arousal and valence, but it can predict much more nuanced levels of arousal
and valence with almost the same accuracy.

6.2 Future Work
Channel selection should be looked into even further. It would be beneficial to know more about the trade-off
between the number of channels and prediction accuracy. What is actually most important for practical use? A
system will not be used by patients if it is very big and uncomfortable, even if the accuracy is very good. Another
important part of the channel selection problem is the location of the channels. In this project, the NSGA-II
channel selection is done participant-wise but is there a universally good and stable channel selection for emotion
recognition?

For this technology to someday be used by patients in a medical setting, it would have to be reliable, accurate,
wearable for a long or semi-long period of time, and hopefully fast. The importance of each of these factors should
be defined more clearly. Is it most important that the emotion decoding is correct every time, or that the system
can read emotions close to instantly? If comfort level is the most important thing, how much accuracy are patients
willing to trade for fewer channels? The type of recording device would also be important, as some electrodes are
more comfortable than others, that way patients might accept more channels.
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Are you interested in taking part in the research project  

 “David and Goliath: single-channel EEG unravels its power 
through adaptive signal analysis:  

EEG-based emotion recognition study”? 
_______________________________________ ________________ 

 
We would like to invite you to take part in a research project where the main purpose is to develop 
models that can decode human emotions through the analysis of EEG signals by learning from 
experiments designed for emotion elicitation. In this letter we will give you information about the 
purpose of the project and what your participation will involve. 
 
Purpose of the project 
 
We are interested in understanding how human emotions function and promote effective communication 
among individuals and human-to-machine information exchange. Different emotions can activate the 
same brain location, or conversely, a single emotion can activate several brain structures. Therefore, 
there is no simple mapping between affective states and specific brain structures. We will investigate 
this using electroencephalography (EEG) signals, which is a safe and non-invasive technique to record 
brain signals. This project aims at creating an emotion-inducing database to help developing models that 
can decode human emotions through EEG signal analysis. The outcome of the study could be a helpful 
tool in the diagnosis of depression, PTSD, and other mental disorders. 
 
Who is responsible for the research project?  
Norwegian University of Science and Technology (NTNU) is the institution responsible for the project.  
 
Why are you being asked to participate?  
You have been invited to take part in this research because you are healthy and over 18 years of age. 
Please avoid participating if you have neurological diseases or use strong medicine or drugs.  
 
What does participation involve for you? 
If you chose to take part in the project, this involves participating in one session with data collection. 
One session lasts about 75 minutes. 35 of these minutes are for collection of EEG signals from your 
brain using the Mentalab system (https://mentalab.com/). During the session, you will watch 52 non-
auditory movie clips from 6 different categories: horror, erotic, social positive content, social negative 
content, scenery and object manipulation. After each movie clip, you will be asked to rate your elicited 
emotions following the SAM (Self-Assessment Manikin) scale description. SAM is a pictorial 
assessment technique that measures emotional reactions on three dimensions: valence, arousal and 
dominance. The valence dimension ranges from pleasure to displeasure, the arousal dimension ranges 
from excited to relaxed, and the dominance dimension ranges from submissiveness to dominance. You 
will get a thorough explanation before the recordings.  
 
Participation in this study will take approximately 2 hours of your time. You will not be given 
information about which movie clips you will be watching, as this may affect the results. We do not 
anticipate you to experience negative feelings when responding to items in this study, however, some 
of the movie clips might portray potentially shocking scenes. Your participation in this study is 
completely voluntary. Should you decide to discontinue participation or decline to answer any specific 
part of the study, you may do so without penalty. 
 

A Information and Consent form
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It is important to mention that we are using a device developed for recording brain signals in wet 
conditions. This means that we will apply electrode cap gel to your hair to increase conductivity 
between electrode and skin. But the gel is easily washed out with water and shampoo. We will also 
clean the areas of the scalp where the electrodes are placed with isopropyl alcohol. After the 
experiment we will ask you some question about how you feel (e.g., are you relaxed, tired or bored) 
and some feedback questions about the experiment (e.g., duration, procedure, and equipment). 
 
 
Participation is voluntary 
Participation in the project is voluntary. If you chose to participate, you can withdraw your consent at 
any time without giving a reason. All information about you will then be made anonymous. There will 
be no negative consequences for you if you chose not to participate or later decide to withdraw. 
Additionally, there are no risks associated with an EEG test. The test is non-invasive, painless, and safe. 
 
Your personal privacy – how we will store and use your personal data  
We will only use your personal data for the purpose(s) specified in this information letter. We will 
process your personal data confidentially and in accordance with data protection legislation (the 
General Data Protection Regulation and Personal Data Act).  

• To protect your privacy and confidentiality, PI Professor Marta Molinas and co-PI Dr Andres 
Soler and are going to have access to the personal data. 

• In addition, we will replace your name and contact details with a code. The list of names, contact 
details and respective codes will be stored separately from the rest of the collected data, we will 
store the collected data on a computer protected by the Norwegian University of Science and 
Technology security systems 

• Other group members of the research project will have access just to collected data that has been 
de-identified 

• No personal information will appear in any publication of the research project. The data will be 
reported in a way that will not identify you.  

 
What will happen to your personal data at the end of the research project?  
The project is scheduled to end on December 31, 2024. The personal data will be deleted and destroyed, 
including any digital recordings at the end of the project. However, we would like to make the recorded 
electroencephalographic data collected in this study available to other researchers after the study is 
completed. For this, the researcher will remove any identifying information. Researchers of future 
studies will not ask your permission for each new study. The other researcher will not have access to 
your name and other information that could potentially identify you nor will they attempt to identify 
you. 
 
Your rights  
So long as you can be identified in the collected data, you have the right to: 

- access the personal data that is being processed about you  
- request that your personal data is deleted 
- request that incorrect personal data about you is corrected/rectified 
- receive a copy of your personal data (data portability), and 
- send a complaint to the Data Protection Officer or The Norwegian Data Protection Authority 

regarding the processing of your personal data 
 

What gives us the right to process your personal data?  
We will process your personal data based on your consent.  
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EEG-based Automatic Emotion Recognition Using Machine Learning
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Introduction: The field of EEG-based emotion recognition has been widely explored in the last decade. Methods
proposed by recent literature mostly use complex deep learning methods to achieve good predictions. To obtain com-
parable results using simpler machine learning techniques would be preferable as these models are much more intuitive
to implement and understand. This work explores support vector machine (SVM) classifier on two datasets (DEAP
and SEED) and compares the performance with more complex models.

Dataset Feature Accuracy
DEAP
arousal

HC, HM, DE,
FBE, HMS

96.71 %

DEAP
valence

HC, HM, DE,
FBE, HMS

96.50 %

SEED HM 83.87 %

SEED
HC, HM, DE,

FBE, HMS
63.76 %

Table 1: Mean accuracies

Material, Methods and Results: This work uses the publicly available datasets,
DEAP [1] and SEED [2], to evaluate SVM. The preprocessed EEG data from
DEAP is segmented into one-second epochs without overlapping, resulting in
total 2400 epochs. Further, it is filtered into four frequency sub-bands using the
Butterworth bandpass filter. The data from SEED is also segmented into epochs
of one second without overlapping, resulting in a total of 3394 epochs. Several
features and their different combinations are extracted from each epoch of the
EEG signal. For DEAP, the same features are derived for each one-second
epoch in a three-second baseline recording. The computed features for each
trial are corrected by subtracting the average value of the baseline features. To
decipher the emotions, the extracted features are used as an input to SVM with
RBF kernel and K-nearest neighbor (KNN) classifiers. The performance of
SVM is found to be superior as compared to KNN. The best average accuracies achieved for each dataset are presented
in Table 1. For DEAP, the most suitable feature set is the combination of Hjorth mobility (HM), Hjorth complexity
(HC), differential entropy (DE), frequency bands energy (FBE), and Hjorth mobility spectrum (HMS). For SEED, the
feature HM is found to be more useful than the combination of several features in detecting human emotion. The
performance of the SVM on both datasets is verified using a 5-fold cross-validation approach.

Discussion: It can be observed from the obtained results that the simple machine-learning techniques can produce
satisfactory predictions for EEG-based emotion recognition. The obtained results for the model proposed for DEAP
are comparable to the ones obtained with deep learning [3]. For SEED, deep learning methods outperform the best-
performing proposed model by almost 11 percentage points [4]. Nevertheless, both the proposed models show promise
for utilizing simpler models in EEG-based emotion recognition. In future work, a new dataset will be developed to test
the generalization of the proposed machine-learning method. And, a channel selection approach will be adopted for
complexity reduction of the models. Related studies [2, 5] have shown that the number of electrodes can be reduced
significantly without decreasing the prediction accuracy of the model.

Significance: The potential for emotion recognition devices will be huge both medically and commercially given that
only a few electrodes in combination with simple and fast models perform well.
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Decoding Emotions From EEG Responses Elicited by Videos Using
Machine Learning Techniques on Two Datasets

Embla C. S. Neverlien*, Rose Lu, Mohit Kumar, and Marta Molinas

Abstract— In recent times, we have seen extensive research in
the field of EEG-based emotion identification. The majority of
solutions suggested by current literature use sophisticated deep
learning techniques for the identification of human emotions.
These models are very complex and need huge resources to
implement. Hence, in this work, a method for human emotion
recognition is proposed which is based on much simpler
architecture. For that, two publicly available datasets SEED
and DEAP are used to perform experiments. First, the EEG
signals of the two datasets are segmented into epochs of 1-
second duration. The epochs are also decomposed into different
brain rhythms. The features computation is performed in two
different ways, one is directly from the epochs and the other
way is from the brain rhythms obtained after the decomposition
of the epochs. Several features and their combination are
examined with different classifiers. For the DEAP dataset
baseline features are also utilised. It is observed that the support
vector machine (SVM) has shown the best performance for
the DEAP dataset when baseline feature correction and epoch
decomposition are implemented together. The best achieved
average accuracy is 96.50% and 96.71% for high versus low
valence classes and high versus low arousal classes, respectively.
For the SEED dataset, the best average accuracy of 86.89% is
achieved using the multilayer perceptron (MLP) with 2 hidden
layers.

Clinical relevance— This work can be further explored to
develop an automated mental health monitor which can assist
doctors in their primary screening.

I. INTRODUCTION

Human emotions are fundamental to non-verbal communi-
cation and play a significant role in our daily lives. Several
aspects of life are affected by the emotional state such as
decision-making, communication skills, behaviour, mental
and physical health. Automated emotion recognition can
improve the quality of service in these areas. The EEG-based
methods are the most reliable and common techniques as
these approaches are less vulnerable to imposters [1].

In literature, several researchers have focused on identi-
fying human emotions using EEG signals [2]–[4]. In [2],
various emotions such as, joy, pleasure, anger, and sadness
are separated using support vector machine (SVM) based
method. In [3], time-domain based features are used with
SVM classifier for the detection of different human emotions.
Fourier transform, wavelet transform, and power spectral
density, based method are found to be useful to distinguish
among the different human emotions [4]. A multiresolution
analysis based feature extraction method is proposed in [5].
Differential entropy (DE) is widely used for human emotions
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classification and has shown its effectiveness for emotional
states representation in EEG signals [1], [6]–[9].

In recent years, deep learning based methodologies are
widely explored for emotion detection using EEG signals [7],
[8], [10], [11]. DE is used with a deep belief network to
discriminate among positive, neutral, and negative emotional
states of humans [7], [10]. A long short-term memory
(LSTM) based method is explored to identify the temporal
information present in the EEG signals corresponding to
different emotions [11]. To identify the spatial relationship
among various channels in EEG signals related to different
emotional states, a convolution neural network (CNN) based
approach is suggested in [8]. In [1], a parallel convolution
recurrent neural network is proposed which utilized both
CNN and LSTM for discriminating the different human
emotions. The EEGNet is also explored for the classification
of different human emotions [12].

In this work, we aim to explore the less complex machine
learning techniques to design an automated method for
the identification of human emotions using EEG signals
as the current state-of-the-art methods [1], [9] are based
on very complex network architectures which require huge
computational resources. For that, we have explored various
machine learning methods on the two publicly available
datasets namely, SEED and DEAP.

II. MATERIALS AND METHODS

A. Description of dataset

The two publicly available datasets which are used to
evaluate the performance of the models are described below:

The DEAP dataset [13] describes emotions on a two-
dimensional spectrum spanning arousal and valence, i.e.
intensity and pleasantness of an emotional state. The dataset
contains 32-channel EEG recordings from 40 trials on each
of the 32 participants with a sampling frequency of 512 Hz.
These signals are downsampled to 128 Hz and preprocessed
using a bandpass filter (BPF) having a cutoff frequency of 4-
45 Hz. After preprocessing, the final data has 3 sec. baseline
and 60 sec. trial recordings. Further information regarding
the data is available in [13]

The SEED dataset [7] consists of 62-channel EEG signals
from 45 trials on 15 participants in three different sessions
with a sampling frequency of 1000 Hz. These signals are
downsampled to 200 Hz and preprocessed using a bandpass
filter of 0-75 Hz [14]. The emotions are categorized as
positive, negative and neutral. Further information regarding
the data is available in [7].
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B. Framework of the proposed method

The framework of the proposed method includes mainly
three parts: segmentation and decomposition of EEG signals
into epochs and sub-bands, feature extraction, and subject-
wise classification. The open-source MNE-Features module
is used for feature extraction [15].

1) DEAP dataset: The data is segmented into 2400 1-
second trial epochs and 120 1-second baseline epochs for
each participant. The epochs have no overlap. In the work
presented here, the effects on model performance are ex-
plored when introducing frequency sub-bands and baseline
removal through four different cases: 1. extraction of fea-
tures from the data without any decomposition and baseline
removal, 2. introduce frequency sub-bands before feature ex-
traction, 3. feature extraction followed by baseline removal,
and 4. introduce frequency sub-bands before both feature
extraction and baseline removal. For case 1, the features are
calculated for each channel and every epoch, leading to 32
features. In case 2, the data is filtered into frequency sub-
bands theta (4-8 Hz), alpha (8-14 Hz), beta (14-31 Hz), and
gamma (31-45 Hz) using the Butterworth band-pass filter.
These sub-bands are known to be strongly associated with
emotions [7], [16]. Feature extraction is then performed,
resulting in 128 features. For case 3, feature extraction is
performed on both the trial and baseline epochs. Next, the
average value (average over 3 epochs of 1-second) of the
baseline features is calculated for each trial. The average
baseline features are then subtracted from the corresponding
trial features. In case 4, the data is decomposed into sub-
bands before performing the feature extraction and baseline
removal. The features to be extracted are Hjorth mobility
in the time domain (HM) and Hjorth mobility derived from
the power spectrum (HMS), Hjorth complexity in the time
domain (HC), and Hjorth complexity derived from the power
spectrum (HCS), DE and frequency band energy (FBE).
These features are explored individually and in combination.
When features are combined, normalization is applied to the
feature matrix. Two independent classifiers are trained to
classify the two different sets of classification problems, one
is high versus low arousal (HLA) and the other is high versus
low valence (HLV) of human emotions for each participant.

2) SEED dataset: For each trial from the SEED dataset,
the provided data is segmented into 3394 1-second epochs
without overlapping. Unlike the DEAP dataset, the SEED
dataset has no baseline signals available. Three approaches
are investigated to evaluate the model performances. In the
first approach, individual features are calculated channel-
wise on each epoch. This leads to 62 features in total.
The second approach includes combining different features.
Features from the time domain, frequency domain, and also
nonlinear features are combined and explored. For the third
approach, decomposition into five sub-bands before feature
extraction is examined. The five sub-bands are delta (1-3
Hz), theta (4-7 Hz), alpha (8-13 Hz), beta (14-30 Hz), and
gamma (31-50 Hz) [14]. Features of interest in this work
are HM, HC, Katz fractal dimension (KFD), Higuchi fractal

dimensions (HFD), and power spectral density (PSD). In
addition, several combinations of them are also explored.

C. Classifiers

To classify the EEG signals, several classifiers have been
used in this work. Table I shows an overview of the classifiers
and the details of the used parameters. For KNN, K = {3,5}
is tested. For SVM, the radial basis function (RBF) kernel
is used.

For multilayer perceptron (MLP), three simple architec-
tures were tested, i.e. MLP-v1, MLP-v2, and MLP-v3. MLP-
v1 has two hidden layers with 100 and 50 nodes, respectively,
and a dropout rate of 0.1. MLP-v2 also consists of two
hidden layers, although the number of nodes is 500 and 300.
A dropout rate of 0.2 is applied as well. MLP-v3 has the
same dropout rate as MLP-v1 but consists of three hidden
layers of 2000, 1000 and 500 nodes instead. For all MLP, the
activation function used is ReLU and the output is fed into a
softmax classifier. The loss function is set to the categorical
cross-entropy loss and the Adam optimizer is used. The
number of nodes and dropout rate is selected through the
trial and experimentation method.

TABLE I: Details about the used classifiers

Classifier Parameter details

KNN K = {3,5}

SVM Kernel: RBF
Decision function: One-vs-One

MLP-v1 2 hidden layers with 100 and 50 nodes
dropout rate: 0.1

MLP-v2 2 hidden layers with 500 and 300 nodes
dropout rate: 0.2

MLP-v3 3 hidden layers with 2000, 1000 and 500 nodes
dropout rate: 0.1

III. RESULTS AND DISCUSSION

The obtained results in several experiments performed on
the DEAP and SEED datasets with different features and
classifiers are summarised below.

A. DEAP dataset

When assessing the individual features the data is split
into 67% training set and 33% test set. The performance of
each model was determined by the classification accuracy
on the test set. Table II contains the average accuracies of
the four cases mentioned in section II-B.1 for the two best-
performing features using the SVM classifier for HLV and
HLA category. The average accuracy of a model is the mean
value of the prediction accuracies of all 32 participants, using
that model. HC and HM were the two best-performing in-
dividual features, and are therefore presented here. Baseline
removal has improved the performance of the model.

The best-performing models are, however, obtained by em-
ploying both sub-bands and baseline removal. This was true
for all six features. For both HM and HC, the performance
has increased by over 20 percentage points as compared to
directly computing the features from the data. Using HC, the
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average accuracy is 88.63% for HLV and 89.28% for HLA.
The model performed best on participant nr. 23 achieving
prediction accuracies of 94.70% for HLV and 95.71% for
HLA. Participant nr. 22 got the worst prediction accuracies
with 76.52% for HLV and 74.87% for HLA.

The 5-fold cross-validation method was used to test the
best-performing combination of features for both HLV and
HLA categories. The average accuracies of the proposed
models are compared to state-of-the-art models [9], [17] in
Table III.
The inclusion of different types of features in the model
has improved the performance significantly. By combining
the five best-performing individual features (HC, HM, DE,
FBE and HMS), the average accuracy increased to 96.50%
for HLV and 96.71% for HLA with the SVM classifier. The
standard deviation simultaneously decreased.

TABLE II: Average accuracies for HLV and HLA prediction for the
two best-performing features using SVM classifier with RBF kernel.

Feature Feature extraction method Average accuracy±STD
HLV

Hjorth
complexity

Original data 63.63% ± 6.26%
Sub-bands 60.85% ± 6.10%

Baseline removal 77.91% ± 5.83%
Sub-bands + baseline removal 88.63% ± 3.92%

Hjorth
mobility

Original data 65.60% ± 5.68%
Sub-bands 64.01% ± 5.53%

Baseline removal 73.85% ± 6.67%
Sub-bands + baseline removal 88.38% ± 4.70%

HLA

Hjorth
complexity

Original data 67.25% ± 7.99%
Sub-bands 65.60% ± 8.88%

Baseline removal 79.50% ± 6.26%
Sub-bands + baseline removal 89.28% ± 4.36%

Hjorth
mobility

Original data 68.15% ± 7.78%
Sub-bands 66.71%± 8.36%

Baseline removal 76.68% ± 6.08%
Sub-bands + baseline removal 88.54% ± 5.88%

Using the same features combined with the KNN clas-
sifier also provided good predictions, but the classifier is
outperformed by SVM both in terms of average accuracy
and standard deviation. For the SVM model, participant nr. 1
achieved the best prediction accuracies with 99.21% for HLV
and 99.04% for HLA. The model had the worst performance
on participant nr. 11 with accuracies of 90.38% for HLV
and 92.17% for HLA. Performing the t-test on achieved
accuracies of the SVM and KNN models, p < 0.05 for both
HLA and HLV is obtained. This implies that the difference
in the model performances is statistically significant. The
proposed SVM model is outperformed with less than a
percentage point by the 4D-aNN model proposed in [17]
but outperforms the 4D-CRNN model presented in [9].

B. SEED dataset

The data was split into a training set and a testing set, in
addition to a validation set for multilayer perceptron (MLP).
For SVM and KNN, the split is kept at 80% for training
and 20% for testing, while for MLP the training, validation

and testing split percentage is kept at 60%, 20%, and 20%,
respectively.

TABLE III: Comparison of results for HLV and HLA prediction with
deep learning models and the proposed machine learning model using

5-fold cross-validation approach on DEAP dataset.

Features Methods Average accuracy±STD

HLV HLA

DE 4D-aNN [17] 96.90% ± 1.65% 97.39% ± 1.75%

DE 4D-CRNN [9] 94.22% ± 2.61% 94.58% ± 3.69%

HC,HM,DE,

FBE,HMS

SVM 96.50% ± 2.10% 96.71% ± 2.06%

KNN 94.63% ± 3.56% 94.70 % ± 3.66%

TABLE IV: Average accuracies for the best-performing features, i.e.
Hjorth mobility and complexity, and a combination of the two, on SEED

dataset

Feature Method used Average accuracy

Hjorth complexity

SVM 79.05% ± 7.38%

KNN 67.44% ± 8.88%

MLP-v1 84.24% ± 4.88%

MLP-v2 86.45% ± 3.45%

MLP-v3 83.95% ± 3.29%

Hjorth mobility

SVM 83.87% ± 8.75%

KNN 75.56% ± 10.87%

MLP-v1 83.65% ± 5.32%

MLP-v2 86.89% ± 4.20%

MLP-v3 83.95% ± 3.21%

Hjorth mobility,
Hjorth complexity

SVM 78.85% ± 7.48%

KNN 68.80% ± 8.68%

MLP-v1 85.57% ± 4.44%

MLP-v2 86.01% ± 3.29%

MLP-v3 85.71% ± 3.18%

Table IV presents the average accuracies for the three best-
performing features, namely HM, HC and a combination
of HM and HC. This is a result of channel-wise feature
extraction for each epoch. The average accuracies are the
average of the performance accuracies across all 45 trials
on 15 participants. The results obtained with KFD and HFD
features are poor as compared to the Hjorth parameters and
are therefore not included. The individual feature HM has
shown the best average accuracy of 86.89% when MLP-v2
is used as a classifier. This is just three percentage points
better than the classification with SVM. However, SVM has
slightly outperformed MLP-v3 for the HM feature. For HC
and the combinatorial features involving HM and HC, the
performance is improved by 7.40% and 7.16%, respectively,
when applying MLP-v2 instead of SVM. The improvement
in accuracy can be explained by the increased complexity
of the architecture. Compared to two even more complex
architectures, 4D-aNN model [17] and 4D-CRNN [9], the
results of MLP-v2 on HM are 9.36% and 7.85% lower,
respectively. The t-test was performed on the accuracies
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obtained with the SMV, KNN, and MLP-v2 models. The
difference in achieved accuracy of the KNN and SVM
models is statistically significant, and so is the difference
in accuracy between the MLP-v2 and KNN. However, the
difference in the performance of the SVM and MLP-v2
models is not significant with p = 0.355 > 0.05.

TABLE V: Comparison of the average accuracies for the
best-performing feature HM and deep learning models on SEED dataset

Feature Method used Average accuracy

DE 4D-aNN [17] 96.25% ± 1.86%

DE 4D-CRNN [9] 94.74% ± 2.32%

Hjorth mobility MLP-v2 86.89% ± 3.45%

Finally, Table VI shows prediction accuracies of the best-
performing model for the DEAP dataset when applied to
the SEED dataset and the other way around. The five-
feature SVM model on the SEED dataset has a performance
comparable to that of the MLP-v2 model using only HM.
The performance of the one-feature MLP-v2 model on the
DEAP dataset is somewhat worse than the five-feature SVM
model, but would probably be improved by including more
features.

The results presented above for SEED and DEAP datasets
suggest that it is possible to create models using less complex
machine-learning techniques that can achieve comparable
performance to the more complex deep learning architecture
reported in the state-of-the-art work.

TABLE VI: Average accuracies when the best-performing models on
DEAP and SEED dataset are applied to each other.

Dataset Feature Method Average accuracy

SEED
HC, HM, DE,

FBE, HMS
(sub-bands)

SVM 85.90% ± 6.19%

DEAP HLV
HM

(sub-bands,
baseline removal)

MLP-v2 91.19% ± 2.55%

DEAP HLA
HM

(sub-bands,
baseline removal)

MLP-v2 91.78% ± 3.33%

IV. CONCLUSION

In this work, an automated emotion recognition approach
is proposed and tested over two different publically available
datasets SEED and DEAP. Several features such as HM, HC,
DE, FBE, and HMS are computed from the epochs of 1-
second duration which are extracted from the EEG signals
of SEED and DEAP datasets. The HC and HM features have
achieved the best accuracy for DEAP and SEED datasets.
Further, we also computed the features from the different
brain rhythms and also tested the different combinations of
features. It is seen that combining features has improved the
classification performance for the DEAP dataset. However,
for the SEED dataset, the classification performance with
the combination of features is not improved compared to
that of the individual feature. With the incorporation of

baseline feature correction and brain rhythms, the classifica-
tion performance on the DEAP dataset is further improved.
The SVM classifier yielded the best accuracy of 96.5% and
96.71% for HLV and HLA classes. The best accuracy with
the MLP classifier is found to be 86.89% with the HM feature
on the SEED dataset. It is apparent that the implementation
of sub-bands and baseline removal are two important steps
in order to improve the performance of EEG-based emotion
recognition. Even though deep learning models are a small
step ahead of machine learning models, simpler machine
learning models might be a viable option to decode emotions
from EEG. In future work, channel selection methods will be
explored to reduce the complexity of the model even further.
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