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A B S T R A C T   

Human activities increasingly threaten the highly biodiverse freshwater ecosystems. Life Cycle Assessment (LCA) 
is a useful tool to quantify the impacts of products and services on freshwater biodiversity. Current methodol-
ogies in LCA address the impact of climate change on freshwater fish diversity by changes in average river 
discharge only. Given the ectothermic nature of fish, previous studies have highlighted the importance of 
including water temperature changes as a driver of species loss. Moreover, the impact of climate extremes might 
be more important than changes in average conditions. In this study, we derived new characterization factors for 
207 individual greenhouse gas (GHG) emissions that quantify the impact of an emission change on freshwater 
fish, accounting for climate-driven changes in both streamflow and water temperature extremes. We combined a 
novel dataset of fish range climate threats with a newly developed species-area relationship to quantify global 
freshwater fish extinction risks at various global warming levels. The global characterization factors range from 
0.00 to 4.56·10− 10 Potentially Disappeared Fraction (PDF)·yr·kg− 1. Our results imply that freshwater fish di-
versity impacts per kg of GHG emission have been underestimated in previous LCA methods that excluded the 
impact of water temperature and climate extremes, as the newly developed effect factor is higher by 172%. 
Future contributions should focus on increasing taxonomic coverage (e.g., by including lentic fish species and 
macro-invertebrates) and developing complementary models to reflect other aspects of biodiversity in LCA.   

1. Introduction 

Freshwater ecosystems are characterized by a high diversity of spe-
cies and habitats. While they span only 2.3% of the global surface, they 
accommodate 9.5% of the total animal species (Reid et al., 2019). 
However, freshwater biodiversity is more threatened than terrestrial and 
marine biodiversity (Collen et al., 2014; Wiens and Barnosky, 2016). 
Freshwater species populations declined by 84% between 1970 and 
2016, a remarkably higher percentage than the average of 68% for all 
species (World Wildlife Fund, 2020). Multiple human-induced drivers 
are responsible for this plunge: over-exploitation, pollution, flow regu-
lation, land-use change, invasive species, and climate change (Dudgeon, 
2019; Reid et al., 2019). Climate change is considered a rising threat to 
freshwater species and can exacerbate these already existing threats 
(World Wildlife Fund, 2018; Intergovernmental Science-Policy Platform 

on Biodiversity and Ecosystem Services, 2019). 
A freshwater biodiversity crisis can have large consequences on 

water and food availability for humans, human health, resilience to 
natural hazards, and even climate change (Cowx and Portocarrero Aya, 
2011). The ecosystem services provided by freshwater ecosystems 
exceed a value of 4 trillion US dollar annually (Flitcroft et al., 2019). 
There is a high urgency for society to maintain healthy freshwater 
ecosystems as they are essential to human well-being and sustain live-
lihoods. Integrating freshwater biodiversity into decision-making pro-
cesses is paramount to solving the freshwater biodiversity crisis (Darwall 
et al., 2018). 

Life Cycle Assessment (LCA) is an important decision-making tool to 
guide the transition toward more sustainable products and services 
(Guinée et al., 2002). It offers a standardized approach to quantify 
environmental sustainability and to identify hotspots (large impacts) 
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across the life-cycle of products, processes, or supply chains (Hellweg 
and Milà i Canals, 2014). LCA is an inclusive tool, as it can address 
multiple impact categories (e.g., climate change, eutrophication, and 
land use; Ciacci and Passarini, 2020). However, the inclusion of biodi-
versity in LCA is incomplete, as several pressures on biodiversity are not 
fully covered in LCA, especially related to the freshwater realm (Curran 
et al., 2016; Winter et al., 2017). Within the LC-IMPACT and ReCiPe 
impact families, freshwater ecosystems damage pathways are identified 
for global warming, water consumption, ecotoxicity, and eutrophication 
(Huijbregts et al., 2016; Verones et al., 2020). In both impact families, 
the global warming impact category is modeled by Hanafiah et al. 
(2011). Hanafiah et al. (2011) developed a methodology that builds 
upon the species-discharge relationship, which predicts species richness 
from the average discharge at the mouth of a river basin. Based on this 
relationship, they estimate the Potentially Disappeared Fraction (PDF) 
of freshwater fish species per change in average discharge, which, in 
turn, is driven by a change in global mean temperature. Changes in 
water temperature due to climate change are not included in this 
method. Yet, fish are ectothermic organisms (i.e., they cannot self- 
regulate their body temperature) and therefore their habitat is con-
strained by water temperature and its related changes (Comte and 
Olden, 2017; Knouft and Ficklin, 2017). Furthermore, the geographic 
coverage in Hanafiah et al. (2011) is limited, as river basins above 42◦N 
were excluded due to limitations in the applicability domain of the 
species-discharge relationship. 

A recent study by Barbarossa et al. (2021) showed that freshwater 
fish species at the global scale are more severely threatened by water 
temperature alterations than streamflow alterations. An impact pathway 
solely considering reduced river discharge may thus underestimate 
extinction risk. Further, extreme events have been shown to be better 
predictors for estimating extinction risk than long-term averages (Liu 
et al., 2015; Román-Palacios and Wiens, 2020). Therefore, the inclusion 
of climate extremes’ impacts might lead to improved accuracy in the 
estimation of extinction probabilities and unveil hidden impacts. In 
addition, novel datasets on the spatial distribution of freshwater species 
have recently become available to increase geographical and taxonomic 
coverage (Barbarossa et al., 2021). 

Here, we develop novel characterization factors for the impact of 
climate change extremes on freshwater fish biodiversity. We used a new 
dataset by Barbarossa et al. (2021) on fish range threats due to climate- 
driven changes in streamflow and water temperature extremes for 
11,425 riverine fish species, or 76% of the total freshwater fish species. 
We translated the range threats to extinction risk by developing a 
species-area relationship for riverine fish species. We converted global 
extinction risk to characterization factors for 207 greenhouse gases 
(GHGs). The characterization factors can be used in the impact assess-
ment phase of LCA studies to convert inventory data on GHG emissions 
into an estimate of the impact on freshwater fish biodiversity. Finally, 
we apply the newly developed characterization factors in a case study on 
the transportation fuels petrol and diesel and their equivalents biopetrol 
and biodiesel to demonstrate their use. We compare the freshwater 
biodiversity impacts through means of the newly derived characteriza-
tion factors as well as the LC-impact categories on climate change, water 
stress, and eutrophication. 

2. Methodology 

The characterization factors developed in this study report fresh-
water species extinction risk, expressed as PDF of species, due to global 
warming. Woods et al. (2018) recommend the unit of PDF to stimulate 
consistency among LCA studies. Extinction risk is defined as the pro-
portion of species that are committed to extinction (Thomas et al., 
2004). Characterization factors consist of fate factors and effect factors 
and are calculated as follows: 

CFx,w = FFx,w • EFw =
dTx

dGHGx
•

dEw

dTw
(1)  

Where CF is the global characterization factor [PDF⋅yr⋅kg− 1] for the type 
of GHG × and the warming level w, FF is the global fate factor 
[◦C⋅yr⋅kg− 1], and EF is the global effect factor [PDF⋅◦C− 1]. Fate factors 
translate the impact of GHGs emitted to the atmosphere dGHG [kg⋅yr− 1] 
to an increase in global air temperature dT [◦C]. Effect factors translate 
the increase in global air temperature dT [◦C] to global extinction risk dE 
[PDF]. The characterization and the effect factors are defined for the 
global scale since the fate factors are global by definition. This is due to 
the short tropospheric mixing time of one year, ensuring that GHGs 
spread globally during their lifetime (De Schryver et al., 2010; Hauschild 
and Huijbregts, 2015). The steps required to calculate the character-
ization factors are summarized in Fig. 1. 

2.1. Fate factor 

We employed fate factors according to ReCiPe (Huijbregts et al., 
2016) for 207 GHGs. The fate factors are calculated as follows: 

FF.x,w = GWPx,w • IAGTPCO2 ,w (2)  

Where FF is the global fate factor, GWP is the global warming potential 
(dimensionless) [-], and IAGTP is the integrated absolute global mean 
temperature change potential relative to CO2 [◦C⋅yr⋅kg− 1]. GWPs are 
provided by Huijbregts et al. (2016) and the IAGTP by Joos et al. (2013). 
A critical value choice is the time horizon. Extended characterization 
factors in LC-IMPACT are based on a time horizon of 100–1000 years to 
reflect long-term impacts. 

2.2. Effect factor 

2.2.1. From threatened ranges to extinction risk 
The global extinction risk needed for the numerator of the effect 

factor in Eq. (1) is calculated based on data on the species-specific 
percentage of range threatened by climate extremes (Barbarossa et al., 
2021). The dataset comprises the percentage of range threatened at 
different warming levels for 11,425 riverine fish species. The portion of 
range threatened is calculated from the sum of the area of the five arc- 
minute grid cells in which at least one or more thresholds for water 
temperature or streamflow extremes are exceeded. Thresholds are set for 
minimum and maximum weekly flow, the number of zero flow weeks, 
and the minimum and maximum weekly water temperature. Scenarios 
are created by combining five global climate models and four repre-
sentative concentration pathways, aggregated to the warming levels 1.5, 
2.0, 3.2 and, 4.5 ◦C. There are two dispersal scenarios: the no-dispersal 
scenario and the maximal-dispersal scenario. 

We converted the threatened ranges into global extinction risk at 
each warming level using an extinction metric (Thomas et al., 2004). 
There are three extinction metrics. The first metric (Eq. (3)) incorporates 
the classic species-area relationship and analyses the overall changes in 
area distributions across all species. This metric is biased towards spe-
cies with large distributional areas. The second metric (Eq. (4)) ad-
dresses the bias of the first metric by calculating the change in 
distribution area averaged across species. The third metric (Eq. (5)) 
takes this a step further by calculating the extinction risk of each species 
before averaging across species. This metric assumes that the extinction 
risk of each species weighs equally, which is particularly relevant for 
endemic species that are prone to extinction and tend to have small 
geographic ranges (Lewis, 2006; Parmesan, 2006). Given the more even 
weighting, we adopted the third metric in the calculation of our effect 
factors (Eq. (5), and in this comparison, we refer to it as the benchmark 
metric. Also, we compare the extinction risk of single species using the 
species-specific part of the benchmark extinction metric and an average 
of the warming level and dispersal scenarios. 
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Ew = 1 −
( ∑

Anew,w
∑

Aoriginal,w

)z

(3)  

Ew = 1 −
{

1
n

[
Anew,w

Aoriginal,w

]}z

(4)  

Ew =
1
n

∑
[

1 −
(

Anew,w

Aoriginal,w

)z ]

(5) 

The extinction risk E for each warming level w is expressed in PDF. 
The n refers to the number of species [number of species], and z is a 
coefficient [-] derived from the species-area relationship (SAR). Aoriginal, 

w refers to the initial area available and Anew,w refers to the area which 
remains available under the threat of global warming, both expressed in 
km2. Aoriginal,w and Anew,w were derived from Barbarossa et al. (2021). 
To derive the z coefficient for freshwater fish for Eqs. (3)–(5), we 
developed a SAR using the power relationship in Eq. (6) as the SAR 
currently only exists for terrestrial species. The classic SAR is linearized 
by double-logarithmic transformation to derive the slope, i.e., the z 
coefficient. We extracted riverine fish species richness and drainage area 
for 14,953 diadromous and non-diadromous species and 3,119 river 
basins from Tedesco et al. (2017), which cover more than 80% of the 
earth’s surface. We summed the different species per river basin based 
on occurrence data at the river basin level. Only native freshwater 
species were considered since exotic species can influence the slope of 
the relationship (Baiser and Li, 2018). 

S = cAz (6)  

where S is species richness [number of species], A is the area [km2], and 
c and z are constants [-]. 

2.2.2. From extinction risk to effect factor 
Four effect factors are calculated for the warming levels 1.5, 2.0, 3.2 

and 4.5 ◦C and for both dispersal scenarios. The calculation follows the 
average approach, where the current state and the prospective future 
state of the extinction risk and temperature are required to calculate the 
effect factors (Hanafiah et al., 2011). 

To calculate the current global warming level, we used data from the 

World Meteorological Organization (2022), which annually reports the 
global mean temperature increase compared to the pre-industrial 
baseline (1850–1900), averaged from six datasets. We considered a 
long-term average of 10 years, specifically the years 2013 to 2022, to 
account for inter-annual fluctuations, remain close to the current situ-
ation, and reflect the recent stark increase in global mean temperatures 
(World Meteorological Organization, 2022). This results in a global 
mean temperature increase of 1.14 ◦C. 

To calculate the extinction risk at the current state, the relationship 
between the extinction risk and global mean air temperature is deter-
mined (Fig. 2). We assumed linearity between the origin and the first 
considered warming level at 1.5 ◦C, given the few data points available 
to derive the relationship. 

As for the prospective future state, we consider the four different 
warming levels and calculate average effect factors according to Eq. (7). 

EFw =
E(w) − E(1.14)

w − 1.14
(7)  

where EF is the effect factor [PDF⋅◦C− 1] for each warming level w [◦C] 
and E is the global extinction risk [PDF]. 

Finally, an average is calculated from the effect factors for the four 
different warming levels and two dispersal scenarios. 

2.3. Grid-cell level contribution to global extinction risk 

To reveal hotspots of species loss, we determined the contribution of 
each grid cell to the global species extinction risk. For each species, the 
global extinction risk is partitioned across the grid cells where it occurs, 
proportionally to the area of the grid cell. For each grid cell, the parti-
tioned extinction risks are summed and divided by the total extinction 
risk to obtain the local contribution. The partitioned extinction risk (Ep) 
per species s and grid cell i is calculated according to Eq. (8). Eq. (8) is 
based on the extinction metrics from Eq. (5), which requires the global 
original and newly estimated areas (A) available for a species. 

Eps,i =

(

1 −
(

Anew,s,global

Aoriginal,s,global

)z )

• Ai (8) 

Finally, the percentage contribution per grid cell is determined by 

Fig. 1. Methodological framework for the calculation of the characterization factors. The dotted lines show background data, for which the sources are provided in 
the text below. 
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summing up the partitioned extinction risks for all species occurring in 
the grid cell and dividing by the cumulative sum of partitioned extinc-
tion risks (Eq. (9)). 

Epi =

∑n
s=1Eps,i∑n

i=1
∑n

s=1Eps,i
• 100% (9)  

2.4. Analysis of variance 

We performed a two-way analysis of variance (ANOVA) to identify 
which factors influence the effect factors. The first factor for the ANOVA 
is the choice for the extinction metrics. Three levels are compared: the 
benchmark metric in Eq. (5) and two alternative equations, Eq. (3) and 
(4), by Thomas et al. (2004). The second factor in the ANOVA analysis is 
the warming level, which has four values: 1.5, 2.0, 3.2, and 4.5 ◦C. The 
third factor is the dispersal scenario, with two levels: the no-dispersal 
scenario and the maximal-dispersal scenario. The effect factors are 
calculated for all the factors with equal levels to create a balanced 
design. Assumptions of equal variance have been assessed in Fig. S1. 

2.5. Biofuels case study 

We applied the newly developed characterization factors to a case 
study on transportation fuels. The conventional fuels diesel and petrol 
are compared against biodiesel and biopetrol for the functional unit of 1 
km of transport by a passenger car. The modelling is performed in 
CMLCA using data from Ecoinvent version 3.4 (Wernet et al., 2016). 
Inventory data is depicted in Tables S1 and S2. The fuel ratios in 
Table S1 are derived by scaling data from Pfister and Scherer (2015), 
who based their analysis on Ecoinvent version 2.2 data (Frischknecht 
et al., 2005). The other inventory processes listed in Table S2 are based 
on Ecoinvent version 3.4 data. 

Impact scores are obtained by multiplying the inventory data with 
characterization factors. The new characterization factors for the impact 

of climate change on freshwater ecosystems are compared with the LC- 
IMPACT freshwater ecosystem quality categories climate change, 
eutrophication, and water stress. Since the extended LC-IMPACT climate 
change category adopts a time horizon of 1,000 years and averages 
across multiple climate scenarios, the newly developed climate change 
characterization factors are calculated for the same time horizon and 
averaged for the warming levels to allow comparability. 

3. Results 

3.1. Effect factors 

The effect factors resulted in a range of 4.47·10− 3 – 7.02·10− 2 

PDF⋅◦C− 1 according to the warming levels assessed in this study (Fig. 3 
and Table S3). We used a z exponent (see Eqs. (3)–(6)) of 0.21, as 
resulting from the slope of the log-linear regression for the species-area 
relationship (Fig. S2; p-value < 0.001). 

All species except for Ichthyscopus fasciatus show increased extinction 
risk. Three species, Amphilius opisthophthalmus, Thoracochromis moer-
uensis, and Sundadanio atomus, are expected to have zero new area 
available under the various scenarios and are thus expected to go 
extinct. The mean and median values for single species extinction risk 
are 8.49·10− 2 and 5.81·10− 2 (dimensionless unit) respectively. A full list 
of species-specific extinction risks can be found in Supporting Infor-
mation II. 

3.2. Spatial variation 

Spatially, the grid-cell level contribution to the global extinction risk 
was highly variable, reflected by a range spanning 7.36⋅10− 10 – 
6.62⋅10− 2 % across all warming levels. The pattern is similar for the 
different warming levels, with differences between grid cells increasing 
at higher warming levels (Figs. 4, S3, S4, and S5). The highest contrib-
uting grid cells are found in Mediterranean and tropical areas, while grid 
cells at higher altitudes show lower extinction risk contribution values. 
South America has the largest summed contribution on a continental 
scale. 

3.3. Analysis of variance 

The factor influencing the effect factors the most was the dispersal 
scenario, closely followed by the warming levels (Table 1). This shows 
that especially the modelling choices in the dispersal scenario and 
warming levels explain around 85% of the variation in the effect factors. 

3.4. Characterization factors 

The global characterization factors for the 207 GHGs considered in 
our study range 0 – 3.50·10− − 11 PDF·yr·kg− 1 for the 100-year time ho-
rizon and 0 – 4.56·10− 10 PDF·yr·kg− 1 for the 1000-year time horizon 
(Supporting Information III). These are based on effect factors calculated 
with the benchmark extinction metric and an average of all warming 
levels and dispersal scenarios. The characterization factors are higher 
for the 1000-year time horizon and vary amongst the GHGs (Fig. 5). The 
largest characterization factors found are for the GHG sulfur hexafluo-
ride, and the lowest characterization factors are zero for various GHGs 
(due to the fate factors). 

3.5. Biofuels case study 

In this case study, the newly developed characterization factors are 
applied to compare petrol, biopetrol, diesel, and biodiesel impact scores 
across various impact categories addressing freshwater ecosystem 
quality (Supporting Information IV). According to Fig. 6, there are large 
differences in the magnitude of the impact scores across the various 
impact categories. Water stress has a high order of magnitude of up to 

Fig. 2. Extinction risk [PDF] against increased global air temperature [◦C]. The 
current situation at 1.14 ◦C is plotted as a red asterisk and is derived using the 
slope between 0 and 1.5 ◦C. The four average effect factors are the distance 
between the current situation and the chosen warming level. The extinction risk 
values in this graph represent the zero-dispersal scenario. (For interpretation of 
the references to colour in this figure legend, the reader is referred to the web 
version of this article.) 
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10− 14, while eutrophication has a magnitude of 10− 19. The impact 
scores of the new climate change category increased approximately 
173% compared to the LC-IMPACT climate change category. The con-
ventional fuels are the better alternatives when considering eutrophi-
cation and water stress. For climate change, the impact score of biodiesel 
is the lowest, but biopetrol performs slightly worse than petrol. 

4. Discussion 

4.1. Comparison with other studies 

4.1.1. Freshwater effect factor 
Hanafiah et al. (2011) derived global effect factors via the species- 

discharge relationship, while the effect factors proposed in this study 
are derived via assessing species-specific threatened ranges due to 

Fig. 3. Effect factors in in PDF⋅◦C− 1 for the different extinction metrics by Thomas et al. (2004), dispersal scenarios and warming levels. Averages (av.) refer to the 
effect factor based on the average of the warming levels and both dispersal scenarios. 

Fig. 4. Grid-cell level contribution in percentage points (Ep) to global extinction risk at a warming level of 3.2 ◦C. Maps for the grid-cell level contribution of the 
warming levels 1.5, 2.0 and 4.5 ◦C can be found in Figs. S3 – S5. Gray shows missing values, either because there are no species occurring or there is no data available 
for this area. The inset shows the contribution per continent, obtained by summing the Ep values across the grid-cells of a continent. 
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exceeding extremes in water temperature and flow habitat factors. LC- 
IMPACT (Steinmann and Huijbregts, 2019) adapted the effect factor 
calculated by Hanafiah et al. (2011) to consider non-marginal changes 
and arrived at an effect factor of 1.15⋅10− 2 PDF⋅◦C− 1. The newly 
developed effect factor for the benchmark equation metrics in our study 
is 172% higher. Only a few effect factors based on the maximal-dispersal 
scenario and one effect factor based on a global warming level of 1.5 ◦C 
and the no-dispersal scenario were lower. 

4.1.2. Terrestrial effect factor 
The global average effect factor of 3.7⋅10− 2 PDF⋅◦C− 1 for terrestrial 

species in the impact families ReCiPe (Huijbregts et al., 2016) and LC- 
IMPACT (Steinmann and Huijbregts, 2019) is lower than a selection of 
the new effect factors based on the no-dispersal scenario (namely for the 
warming levels 3.2 and 4.5 ◦C and all extinction metrics, and for the 
average warming level and the benchmark extinction metric). The 
general expectation that freshwater species are more severely threat-
ened by climate change than terrestrial species (Collen et al., 2014) may 
still hold if more anthropogenic pressures are included in the model. It is 
important to consider the methodological differences between the 
studies considering the assessed warming levels, as the ANOVA showed 
this is a highly influential parameter. While all studies used averages of 
multiple warming level scenarios, the terrestrial effect factor is based on 
extinction predictions for only two warming levels: 0.8 ◦C and 4.3 ◦C 
compared to pre-industrial levels (Urban, 2015). 

4.1.3. Characterization factors 
The global characterization factors across the various GHGs for the 

freshwater realm in LC-IMPACT range from 0.00 to 1.67⋅10− 10 

PDF⋅yr⋅kg− 1 for the 1000-year time horizon. These are 2.7 times lower 
than the ones calculated in this study for the same time horizon (0.00 – 
4.56⋅10− 10 PDF⋅yr⋅kg− 1). The inclusion of direct water temperature ef-
fects, not included in Hanafiah et al. (2011), can explain the higher 
values. Verones et al. (2010) found that seasonal temperature fluctua-
tions resulted in differences up to five orders of magnitude for the effect 
of thermal pollution on freshwater fish in the Rhine. Another difference 
between the study is the selection of river basins: this study calculated 
average effect factors for 9,176 river basins, while Hanafiah et al. (2011) 
limited the selection to 326 river basins. Fig. 4 has shown that certain 
areas have a larger contribution to the global extinction risk, e.g., the 
tropics. This means potential biodiversity hotspots might not have been 
included by Hanafiah et al. (2011). On the other hand, Hanafia et al. 
excluded river basins located below 42 ◦N, which have shown a rela-
tively small contribution to the global extinction risk according to our 
results (Fig. 4). 

4.1.4. Spatial and inter-species variability 
The spatial patterns of effect factors are similar to observed patterns 

for the potentially affected fraction of species reported by Barbarossa 
et al. (2021). They found that the spatial patterns reflect mostly an in-
crease in maximum water temperature. As for variations in fish species 
responses, these were found to be mostly related to habitat type, current 
range size, IUCN threat status and body length (Barbarossa et al., 2021). 

4.2. Limitations 

This study is based on the results of Barbarossa et al. (2021) which 
comprehensively assessed threats to geographic ranges of riverine fish 
species by examining hydrological extremes’ species-specific thresholds 
for five habitat parameters concerning water temperature and stream-
flow. Therefore, the modeling limitations of Barbarossa et al. (2021) also 

Table 1 
ANOVA for the various influencing factors, where the variance in percentage 
points is calculated based on the sum of squares. All factors were statistically 
significant at a significance level of 0.05.  

Factor Extinction 
metrics 

Warming 
level 

Dispersal Residuals 

Explained variance 
(%)  

6.6  41.2  43.5  8.6  

Fig. 5. Characterization factors in PDF⋅yr⋅kg− 1 for a selection of the green-
house gases and the various cultural perspectives. The characterization factors 
are based on the effect factor for the benchmark extinction metric and an 
average of the warming levels and dispersal scenarios. 

Fig. 6. Impact scores in PDF⋅yr⋅km− 1 for the LC-IMPACT freshwater ecosystem 
quality categories climate change, eutrophication, and water stress and the 
newly developed characterization factors (1000-year time horizon, mean value 
across the warming levels) for different types of fuel. The scale is logarithmic. 
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apply to this study. For example, seasonal effects are not considered in 
the set of variables used in their study but could be important, especially 
if species are adapted to specific water flow and temperature patterns 
(Barbarossa et al., 2021). 

While we acknowledge that our study is limited only to riverine 
species due to modeling limitations in water temperature stratification 
of lakes, riverine species are considered a representative proxy for 
freshwater biodiversity (Izzo et al., 2016). Nevertheless, limiting 
biodiversity assessment to one taxon remains an important limitation in 
LCA, as highly sensitive species can be overlooked (Curran et al., 2011). 
For instance, Tendall et al. (2014) showed that macro-invertebrates 
might be more representative of the ecosystem quality status in 
smaller streams and more vulnerable to changes in discharge than fish 
species. Sensitive macro-invertebrate taxa such as Ephemeroptera, Ple-
coptera, and Trichoptera (EPT) decrease in richness in waters with 
increased temperatures (Karaouzas et al., 2019), while other macro- 
invertebrate taxa may experience increases in richness (Chessman, 
2009). 

According to the ANOVA, dispersal was the most influencing factor. 
Barbarossa et al. (2021) provided a zero- and a maximal-dispersal sce-
nario. Since these are both extreme scenarios, an average was calculated 
from both scenarios. Dispersal of riverine fish species is restricted due to 
the dendritic structure of river basins, natural barriers, and fragmenta-
tion, yet the extent to which dispersal occurs remains poorly understood 
(Harte and Kitzes, 2012; Barbarossa et al., 2020). Fragmentation is ex-
pected to increase due to drying impacts arising from climate change 
(Jaeger et al., 2014; Knouft and Ficklin, 2017). This might impair the 
ability of fish to combat climate change by dispersal. Range expansion 
can also occur due to potential positive effects of climate change, e.g., in 
cold waters. 

Yousefi et al. (2020) show that climate change has winners and 
losers; some species lose while others gain habitat. A trade-off here is 
that the winners of climate change could be invasive species, which can 
displace native species and alter trophic webs (Flitcroft et al., 2019). 
Hanafiah et al. (2013) developed characterization factors for the intro-
duction of exotic species for the transportation of goods through the 
Rhine-Main-Danube waterway. They assessed the relative contribution 
of the introduction of exotic species, global warming, and other impact 
categories by applying characterization factors (including the charac-
terization factors for global warming developed by Hanafiah et al. 
(2011)) to a case study of transported goods. The introduction of exotic 
fish species was found to explain 70–85% of the impact on freshwater 
biodiversity. Thus, range expansions might not necessarily yield positive 
effects on biodiversity. 

Extinction risk is a common way to estimate PDF in LCA (Curran 
et al., 2016). However, it introduces uncertainties related to the negli-
gence of ecological principles. Dynamics at the ecosystem level do not 
typically fit the stochastic processes leading to extinction (Curran et al., 
2011; Tedesco et al., 2013). The vulnerability of species to stochastic 
events is highly variable, due to different habitat preferences, small 
population sizes, or limited ranges (Moyle et al., 2013). Examples of 
stochastic events triggered due to global warming are large floods 
(Mirza, 2011). The extinction risk may be underestimated since sto-
chastic events are not included (Bellard et al., 2012). The negligence of 
species adaptation, on the other hand, is classified as a highly over-
estimated factor in the calculation of extinction risk (Bellard et al., 
2012). Species adaptation frequently occurs at the edge of species’ 
ranges and may be important for particular species (Knouft and Ficklin, 
2017), especially for those with short generation time (Radinger et al., 
2017). However, the speed of climate change is expected to exceed the 
adaptation or dispersal ability of freshwater species (Radinger and 
Wolter, 2015; Radinger et al., 2017; Reid et al., 2019). 

The extinction metrics are built upon the SAR. An assumption by the 
SAR is that species are equally distributed across space. This explains 
why the SAR is sensitive to the size of the area for data collection 
(Pereira, Borda-De-Água and Martins, 2012). The z coefficient is 

calculated based on the SAR drawn from the Tedesco et al. (2017) 
compilation of basins and species occurrences. However, this database 
retains many river basins with low species richness (e.g., below five 
species), which might be unrealistic. One reason for the low species 
richness is that all occurrences that were not identified at the species 
level were excluded (Tedesco et al., 2017). 

4.3. Outlook 

Future studies should focus on expanding taxonomic coverage to 
include lentic species and other taxonomic groups to improve the 
representativeness of species coverage for freshwater biodiversity. This 
study focuses on the species richness metric, which describes the com-
munity level and neglects the genetic and landscape levels of biodiver-
sity. Complementary models can be useful to compare other facets of 
biodiversity to describe ecosystem health more accurately (Curran et al., 
2011; Tendall et al., 2014). A valuable, complementary metric for LCA 
studies is functional diversity, which considers the functional traits of 
species and reflects ecosystem functioning better than species richness 
(Scherer et al., 2020). To further our understanding of the different 
impacts on freshwater biodiversity across the different life cycle stages 
of a product, future studies should focus on harmonizing impact cate-
gories within existing life cycle impact assessment families such as LC- 
IMPACT (Verones et al., 2020). For example, the characterization fac-
tors for the impact of the introduction of exotic species (Hanafiah et al., 
2013) on freshwater biodiversity can only be applied to the case of 
transported goods. Methods use differing units, and therefore conclu-
sions on the contribution of the different stressors cannot be established. 
Finally, numerous stressors are lacking in current LCIA methodologies, 
and more research is needed to address the complex interplay of threats 
to freshwater biodiversity (Dudgeon, 2019). 

5. Conclusion 

We developed a method to translate the impact of climate change on 
freshwater fish diversity into characterizations factors for LCA applica-
tions. Global extinction risks are quantified based on 11,425 riverine fish 
species-specific threatened ranges estimated by Barbarossa et al. (2021). 
The z coefficient needed for the extinction metrics is determined by 
developing, in this study, a species-area relationship specific to riverine 
fish species. Average effect factors are derived from mapping global 
extinction risk against corresponding global mean temperature in-
creases. Finally, characterization factors are derived by multiplying the 
effect factors with fate factors based on Huijbregts et al. (2016). 

LCA practitioners can use the characterization factors to translate 
inventory data on GHG emissions arising throughout the life cycle of a 
product into an estimate of the fraction of freshwater species extinction. 
The new set of characterization factors is 2.7 times higher than previ-
ously calculated ones, stressing the importance of considering extreme 
values and including water temperature variables besides streamflow 
variables when assessing the impacts of climate change in LCA. The new 
advances can contribute to a more comprehensive understanding of the 
environmental impact of products and services on freshwater fish 
biodiversity. 
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Holden, P.B., Jones, C., Kleinen, T., Mackenzie, F.T., Matsumoto, K., 
Meinshausen, M., Plattner, G.K., Reisinger, A., Segschneider, J., Shaffer, G., 
Steinacher, M., Strassmann, K., Tanaka, K., Timmerman, A., Weaver, A.J., 2013. 
Carbon dioxide and climate impulse response functions for the computation of 
greenhouse gas metrics: a multi-model analysis. Atmos. Chem. Phys. 13 (5), 
2793–2825. https://doi.org/10.5194/acp-13-2793-2013. 

Karaouzas, I., Theodoropoulos, C., Vourka, A., Gritzalis, K., Skoulikidis, N.T., 2019. 
Stream invertebrate communities are primarily shaped by hydrological factors and 
ultimately fine-tuned by local habitat conditions. Sci. Total Environ. 665, 290–299. 

Knouft, J.H., Ficklin, D.L., 2017. The potential impacts of climate change on biodiversity 
in flowing freshwater systems. Annu. Rev. Ecol. Evol. Syst. 48, 111–133. https://doi. 
org/10.1146/annurev- ecolsys-110316-022803. 

Lewis, O.T., 2006. Climate change, species-area curves and the extinction crisis. Philos. 
Trans. R. Soc. Lond., B, Biol. Sci. 361 (1465), 163–171. https://doi.org/10.1098/ 
rstb.2005.1712. 

Liu, J., Kattel, G., Arp, H.P.H., Yang, H., 2015. Towards threshold-based management of 
freshwater ecosystems in the context of climate change. Ecol. Modell. 318, 265–274. 
https://doi.org/10.1016/j.ecolmodel. 2014.09.010. 

Mirza, M.Q.M., 2011. Climate change, flooding in South Asia and implications. Reg. 
Environ. Change 11 (1), 95–107. https://doi.org/10.1007/s10113-010-0184-7. 

Moyle, P.B., Kiernan, J.D., Crain, P.K., Quiñones, R.M., Chapman, M.G., 2013. Climate 
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