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A B S T R A C T   

It remains a challenge to obtain the desired phenotypic traits in aquacultural production of Atlantic salmon, and 
part of the challenge might come from the effect that host-associated microorganisms have on the fish phenotype. 
To manipulate the microbiota towards the desired host traits, it is critical to understand the factors that shape it. 
The bacterial gut microbiota composition can vary greatly among fish, even when reared in the same closed 
system. While such microbiota differences can be linked to diseases, the molecular effect of disease on host- 
microbiota interactions and the potential involvement of epigenetic factors remain largely unknown. 

The aim of this study was to investigate the DNA methylation differences associated with a tenacibaculosis 
outbreak and microbiota displacement in the gut of Atlantic salmon. Using Whole Genome Bisulfite Sequencing 
(WGBS) of distal gut tissue from 20 salmon, we compared the genome-wide DNA methylation levels between 
uninfected individuals and sick fish suffering from tenacibaculosis and microbiota displacement. We discovered 
>19,000 differentially methylated cytosine sites, often located in differentially methylated regions, and aggre
gated around genes. 

The 68 genes connected to the most significant regions had functions related to the ulcerous disease such as 
epor and slc48a1a but also included prkcda and LOC106590732 whose orthologs are linked to microbiota changes 
in other species. Although the expression level was not analysed, our epigenetic analysis suggests specific genes 
potentially involved in host-microbiota interactions and more broadly it highlights the value of considering 
epigenetic factors in efforts to manipulate the microbiota of farmed fish.   

1. Introduction 

It has become increasingly clear that host-associated microbes often 
play a central role in many aspects of the biology of their vertebrate 
hosts [1]. Besides contributing new elements to many of the classic 
questions in ecology and evolution, manipulation of host-microbiota 
interactions is expected to improve crop and animal health in produc
tion systems, including aquaculture [2,3]. However, we still lack a 
thorough understanding of which factors shape the microbiota, which is 
crucial for the successful exploitation of host-microbiota interactions in 
health and food sciences [2,4]. For advancing this field, a promising 
start is to study species harbouring simple microbiota communities in 

controlled settings. 
The Atlantic salmon (Salmo salar) is an important species in aqua

culture, and as with many other piscivorous fish species, the diversity of 
their gut microbiota community is relatively low [5–7]. Most bacteria in 
the salmon gut are considered transient bacteria, as their abundance in 
the gut microbiota follows their abundance in the surrounding envi
ronment [8,9]. However, intracellular bacteria of the genus Mycoplasma 
are consistently found in the gut microbiota of wild and farmed salmon 
and appear to be resident [9]. Recent studies have suggested a symbiotic 
relationship between salmonids and Mycoplasma spp. where a Myco
plasma-dominated microbiota is associated with increased host meta
bolism, micronutrient provisioning, and immune stimulation [10–13]. 
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However, it remains unclear why the salmon gut microbiota is often 
dominated by one or a few mycoplasma species. 

In salmon, the stability of the gut microbiota has been linked to 
intrinsic host factors such as the cortisol-related response to acute stress 
as well as diseases [14,15]. Specifically, two independent studies have 
reported a similar displacement of Mycoplasma sp. by the opportunistic 
pathogen Aliivibrio sp. in the gut of Atlantic salmon that suffered from 
the ulcerous disease tenacibaculosis, compared to unaffected fish 
confined in the same tanks [16–18]. The simple microbiota dynamics in 
Atlantic salmon and low environmental and genetic complexity in 
aquaculture production cohorts make such systems well-suited for 
studying host-microbiota interactions [1]. A recent theoretical investi
gation found that the displacement of Mycoplasma sp. with Aliivibrio sp. 
fits well in a mathematical model where a disease alters the salmon's 
interaction with its microbiota [19]. But it remains theoretical how 
intrinsic host factors associated with a disease can affect the microbiota 
at a molecular level. 

Epigenetic analyses can provide mechanistic insights into complex 
responses modulated through the epigenome-transcriptome-proteome 
axis, and different epigenetic marks can be studied using various tech
niques [20–22]. Methylation of the 5th carbon position in cytosine nu
cleotides (referred to as DNA methylation) is a common repressive 
epigenetic mechanism affecting gene expression levels in vertebrate 
species [23]. Previous studies in salmon have reported changes in DNA 
methylation related to temperature stress [24], general stress [25], 
micronutrient supplementation [26], and the bacterial disease piscir
ickettsiosis [27,28]. Among these studies, those that combined epi
genomic and transcriptomic data found that the methylation level, 
especially around transcription start sites and transcription termination 
sites, was negatively correlated with gene expression levels [25,28]. 
These findings suggest that DNA methylation links external stressors 
with intrinsic host responses, and that one may identify genes involved 
in complex responses by finding DNA methylation differences and 
placing them in a genetic context. However, the epigenotype is tissue- 
specific and since the connection is largely unexplored in the 

intestinal tissue, the potential role of host epigenetic factors on the 
microbiota remains theoretical. 

The aim of this study was to examine DNA methylation in the distal 
gut tissue in a cohort of Atlantic salmon, that differed in being either 
visibly affected or unaffected by a spontaneous tenacibaculosis outbreak 
previously linked to a wider-scale gut microbiota displacement [18]. 
These data offer the opportunity to study differences in the gut epi
genotype as a potential mechanism to understand how host organisms 
can affect their intestinal microbiota. 

2. Material and methods 

2.1. Experimental design and sample acquisition 

Bozzi et al. 2021 described an experimental cohort of salmon reared 
in a flow-through system at the LetSea land facility in Bjørn, Norway 
(lat: 66.080, long: 12.586) [18]. Two weeks before a planned growth 
trial salmon were transferred from a large holding tank with salinity 
around 18 ppt and randomly distributed into 12 smaller experimental 
tanks equilibrated to 34 ppt with water from the fjord next to the 
research facility. Transfer to seawater is a critical phase in the anadro
mous lifecycle of salmon associated with increased mortality in aqua
cultural production [29]. After the seawater transfer a subset of the fish 
developed tenacibaculosis, a skin ulcerative disease diagnosed by a 
bacteriological analysis to be caused by Tenacibaculum dicentrarchi in the 
investigated outbreak [18]. Critical to our study, and like in previous 
reports of tenacibaculosis, not all fish in each tank developed visible 
symptoms from the infection [16,30]. The difference in resiliency 
resulted in two groups of fish that had been reared in identical condi
tions but differed in disease status at the time of sampling; hereafter 
referred to as sick and healthy (Fig. 1A, Fig. 1B). 

Using bacterial 16S rRNA gene metabarcoding it was discovered that 
sick fish had not only a lower condition factor, but also a different gut 
microbiota composition as sick fish had a high relative abundance of 
Aliivibrio sp. in contrast to a high relative abundance of Mycoplasma sp. 

Fig. 1. Experimental setup; A) After adjusting 
salinity from 24 ppt to 34 ppt a subset of in
dividuals developed tenacibaculosis in an indus
trial trial (red-coloured fish) while others 
appeared healthy and unaffected by the disease 
(blue-coloured). B) The daily count of dead fish 
across 12 replicate tanks per day during the 
outbreak. The arrow indicates the sampling nine 
days after the first signs of disease. C) Ten sick 
fish and ten healthy fish with distinct microbiotas 
were chosen for epigenetic profiling (microbiome 
profiles are adapted from Bozzi et al. 2021 [18]). 
Figure created with BioRender.com. (For inter
pretation of the references to colour in this figure 
legend, the reader is referred to the web version 
of this article.)   
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in healthy fish (Fig. 1C) [18]. We elected to benefit from these samples 
and prior results, to explore whether differences in the host epigenotype 
was in any way related to these differences. The distal part of the salmon 
intestine is particularly immunologically active and was the area 
investigated in Bozzi et al. 2021 [31]. Therefore, distal gut tissue sam
ples from the ten sick fish with the highest relative abundance of Alii
vibrio sp. and the ten healthy fish with the highest relative abundance of 
Mycoplasma sp. were chosen for Whole Genome Bisulfite Sequencing 
(WGBS). The 20 samples selected from this criterion showed no sys
tematic link between the disease status and replicate tank, as there were 
five occurrences of sick and healthy fish sampled from the same replicate 
tank (Fig. 1C, Table S1). 

2.2. DNA methylation sequencing 

Genomic DNA was extracted from the distal gut tissue of the 20 
samples (Fig. 1) that had been stored in RNAlater at − 20 ◦C since 
sampling. Each thawed sample was washed twice in 1 ml of PBS buffer 
before 20–25 mg was cut into small pieces using sterile scalpels. DNA 
was isolated with the DNeasy Blood & Tissue kit (Qiagen) using the 
protocol for animal tissues. After quantification of DNA concentration 
using a Qubit 3.0 (Thermo Fisher Scientific), extracted DNA was pro
vided to Novogene's commercial service for WGBS on the Illumina 
NovaSeq 6000 S4 platform for 150 bp paired-end sequencing aiming for 
60 GB sequencing per fish corresponding to a coverage of 20×. 

In addition to WGBS, we utilised Nanopore Cas9 Targeted 
Sequencing (nCATS) to validate methylation levels in ten regions each 
with a size of approximately 10,000 bp [32]. DNA was extracted with 
the Blood & Cell Culture DNA Midi Kit (Qiagen), specifically targeting 
high molecular weight DNA with the below modifications. The remnant 
tissue samples weighing 30–40 mg from two sick and two healthy 
samples were prepared using the washing protocol described earlier in 
this section. Washed tissue were added to 19 μl RNAase A (100 mg/ml), 
9.5 ml G2 buffer and 250 μl Proteinase K followed by overnight incu
bation at 50 ◦C. Samples were then extracted following the manufac
turer's protocol with the only exception being that the DNA was eluted in 
150 μl 1× TE buffer (pH 8.0, Invitrogen) after 2 h of incubation at 55 ◦C. 
Similarly, DNA concentration and purity were quantified, and the 
fragment length was examined using Genomic DNA Screen tape in 
TapeStation 2200 (Agilent). 

We used CHOPCHOP to locate potential target sites with the PAM 
motif NGG suitable for CRISPR-Cas9 cleavage around the ten regions 
[33]. For each region, two crRNAs were designed for the sense strand 
and two were designed for the antisense strand respectively upstream 
and downstream the target region. The 40 crRNAs specified in Table S2 
were designed based on the genomic location of the protospacer, the 
estimated efficiency of the crRNA, and the self-complementarity and 
were acquired from Integrated DNA Technology (IDT). Genomic DNA 
from the four samples were subsequently constructed to an nCATS li
brary using the Ligation sequencing gDNA - Cas9 enrichment (SQK- 
CS9109) sequencing kit and protocol (Oxford Nanopore Technologies) 
and third-party consumables including the 40 crRNAs (IDT). Each li
brary was sequenced on an individual minION flow cell (FLO-MIN106, 
Oxford Nanopore Technologies) and the sequencing reads were base- 
called and quality-filtered using Guppy v5.0.11 with default parame
ters [34]. 

2.3. Data processing and filtering 

Methylation sequencing reads were quality filtered before attaining 
methylation information. The quality of the WGBS data was examined 
using fastQC v0.11.8 before and after removing adapters and low- 
quality reads with AdapterRemoval v2.2.4 [35,36]. Read pairs passing 
quality filtering were aligned to the Atlantic salmon reference genome 
ICSASG_v2 assembly version GCF_000233375.1 [37] using Bismark 
v0.22.1 [38]. Uniquely aligned reads were deduplicated and used for 

methylation calling with bismark methylation extractor. All reports 
were gathered using MultiQC v1.9 [39]. The output files from Bismark 
were imported into R v4.0.2 and analysed using MethylKit v1.18 
[40,41]. Only methylation calls from cytosines in CpG context with a 
coverage of minimum five reads in all samples were retained for 
downstream analysis. This is lower than the default setting of 10× in 
methylKit [39], however, ensuring a strand-specific coverage of 10×
across 20 samples with WGBS require an immense sequencing effort. 
Additionally, a genome-wide coverage as low as 5× has been proven 
efficient to detect differentially methylated regions in a downsampling 
experiment [42]. Furthermore, methylation calls from CpG sites 
sequenced at a depth above the 99.9% quantile were removed, as these 
likely represent low-complexity regions that attract low-complexity 
reads from multiple genomic regions. 

The Nanopore reads were aligned to the same version of the refer
ence genome using minimap2 v2.6 and the methylation levels in the 
targeted regions were called using Nanopolish v0.13.2 [43,44]. To 
ensure robustness while retaining as much information as possible, only 
methylation levels from individual CpG sites with a strand-specific 
coverage of at least 5× were used for analysis and comparison. For 
specific program settings please refer to https://github.com/SrenBlik 
dal/Tenacibaculosis. 

2.4. Analysis of general methylation patterns 

The genome-wide methylation levels were used to examine general 
methylation patterns and differences between sick and healthy fish. The 
mean methylation level around the 79,000 transcription start sites in the 
reference annotation file was found in 50 bp windows. We tested if the 
sick and healthy groups had different centroids or dispersions based on 
the methylation level of all retained sites, with a PERMANOVA test 
implemented in the R-package vegan v2.6–4 [45,46]. Similarly, a 
Principal Component Analysis (PCA) was performed based on the full 
dataset, and the quantile of sites with the highest variance in methyl
ation level was used for hierarchical clustering based on Euclidean 
distance using prcomp and methylKit [41,47]. The results of the ana
lyses were plotted using ggplot2 [48]. 

2.5. Differentially methylated cytosines and regions 

Significant Differentially Methylated Cytosines (DMCs) between sick 
and healthy fish were identified with methylKit's logistic regression, and 
adjusted for multiple testing [41,49]. To oblige the concern of test sta
tistic inflation, the inflation factor (lambda) was estimated using the R- 
package QCEWAS [50,51]. Differentially Methylated Regions (DMRs) i. 
e. small regions with several DMCs were identified using the R-package 
edmr v0.6.4.1 [52]. To identify DMRs, a predefined maximum distance 
of 150 bp between neighbouring CpG sites within a DMR was utilised 
instead of the 50 bp estimated by edmr, because 50 bp led to many short 
DMRs near one another. The candidate regions identified by edmr were 
filtered and only regions that contained at least 10 DMCs were defined as 
DMRs. 

2.6. Genomic location of DNA methylation differences 

To characterise the methylation differences relative to the genetic 
landscape, the reference genome was divided into genomic features, 
following the notation of Saito et al. 2020 with minor modifications 
[26]. The number of DMCs within each type of genomic feature was 
counted and compared to the distribution of all CpG sites covered in the 
analysis using odds ratio (OR) and a G-test using Genomic Ranges 
v1.48.0 and Desctools v0.99.47 [53,54]. We focused our functional 
genomic analysis on DMRs since they are indicated to have a stronger 
effect on gene expression than single DMCs and are less prone to false 
positive findings [55]. All genes and putative promoters determined as 
the upstream 6000 bp region of genes, that overlapped with DMRs were 
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extracted using the reference annotation file and custom-made bash 
scripts available on the project GitHub site. The list of candidate genes 
was checked for updates in gene names and gene symbols on the NCBI 
gene database [56] (accessed December 5th, 2022). When functional 
information was used from gene orthologs in distantly related species, 
the amino acid gene sequences were downloaded from NCBI and 
compared for sequence homology using EMBOSS needle on EMBL-EBI's 
online server [57]. 

3. Results 

3.1. WGBS data quality and summary statistics 

The accuracy and completeness of the epigenotypic data impact the 
quality of the downstream analysis. After the removal of adapters and 
reads with low-quality base calls, a mean (±SD) of 230 (±35) million 
WGBS read pairs with an average length of 149 bp remained per sample. 
A total of 65.85% (±2.67%) of these reads mapped uniquely to the 
salmon genome, and a mean (±SD) of 134 (±15) million reads remained 
per sample after deduplication. This corresponded to a mean (±SD) 
genome-wide coverage of 13.2× (±1.5). One healthy sample (D7, 
Table S1) was removed from subsequent analyses because of a low 
methylation level exclusively on reverse reads, which indicated a tech
nical issue in the preparation of that specific sample [36]. In total, 16.6 
million CpG sites met the coverage requirement in all remaining sam
ples, which represented 17% of all CpG sites in the salmon genome 
available for downstream analysis. 

3.2. Strong genome-wide DNA methylation associated with 
tenacibaculosis 

DNA methylation levels depended on the genomic context and dis
ease status. DNA was mainly methylated in the CpG nucleotide context, 
where the mean methylation level was 77.5%, as opposed to <1% in 
other sequence contexts. The methylation level was generally low near 

transcription start sites and increased gradually towards the genome- 
wide mean levels in both directions (Fig. 2A). The hierarchical clus
tering indicates six out of nine healthy samples clustering together and 
similarly, in the PCA the healthy and sick samples are separated along 
PC1 (Fig. 2B and Fig. 2C). Interestingly, both analyses indicate that the 
same three samples from healthy fish exhibit methylation patterns 
resembling that of sick fish (Fig. S3). Despite the three outlier samples, 
the sick and healthy groups showed differences in genome-wide 
methylation patterns, which was further supported by a significant 
PERMANOVA test (p-value<0.001). 

3.3. Tenacibaculosis is associated with genome-wide hypermethylation 

With observable differences across millions of sites, we targeted the 
sites with the largest methylation difference between the groups. Of the 
16.6 million sites tested, we identified 19,012 DMCs (FDR < 0.01), 
where 67% (12,692) of the DMCs were significantly more methylated in 
the sick fish (hypermethylated) and conversely 33% (6320) were 
significantly less methylated in sick fish (hypomethylated). A total of 
1337 DMCs were located within 89 DMRs which also showed a tendency 
towards hypermethylation as 54 were hypermethylated and 35 were 
hypomethylated in sick fish. The mean length of the DMRs was 784 bp, 
and the mean CpG methylation difference between the sick and healthy 
fish was 23% (Fig. 3, Table S5). Together, this indicated the DNA 
methylation differences in the gut tissue were unevenly distributed as 
7% of the DMCs were located in the 89 DMRs which in total covered 
<0.0025% of the genome. Additionally, both DMCs and DMRs were 
mainly hypermethylated in sick fish. 

3.4. Validation of DMR methylation level using Nanopore sequencing 

As experimental validation of the obtained methylation differences, 
ten regions containing eleven DMRs were sequenced to a mean coverage 
(±SD) of 4.7× (±4.0) in four samples using nCATS. The high standard 
deviation reflected a mean coverage of 1.3× in the two healthy samples 

Fig. 2. Genome-wide CpG methylation associated with tenacibaculosis; A) Mean methylation level of CpG sites in 50 bp windows located from 6000 bp upstream to 
4000 bp downstream of the 79,000 annotated transcription start sites. B) Unsupervised hierarchical clustering of samples based on the Euclidean distance of the DNA 
methylation level from the 25% of CpG sites with the highest variance. C) PCA of DNA methylation levels where individuals are plotted on the two first principal 
components and coloured by disease status. 
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and 8.2× in the two sick samples. Furthermore, the coverage varied 
among the regions, and consequently, we were only able to estimate the 
methylation level in respectively eight and seven DMRs in the two sick 
samples, D1 and D9 (Table 1). Despite the limited number of sites, the 
mean methylation levels were very consistent when comparing the 
mean of the two methods across DMRs. Further, a comparison of the 
methylation estimates between all the 391 sites with at least 5×
coverage in both methods revealed a Pearson correlation coefficient of 
0.91 (Fig. S4). Together demonstrating that the methylation estimates 
were robust, even when samples were extracted and sequenced with 
different methods. 

3.5. Methylation differences associated with specific genomic features and 
genes 

To explore the potential genetic consequence of the DNA methyl
ation differences, the salmon genome was divided into genomic features 
relative to annotated genes (Fig. 4A). The number of DMCs was enriched 
in specific genomic features, as significantly more (p-value <0.001) 

were located in distal promoters, medial promoters, and gene starts 
compared to the empirical distribution of all tested sites (Table 2). The 
DMRs were similarly connected to the genetic landscape, and 56 out of 
the 89 DMRs were found in putative promoter regions or within gene 
boundaries. Conversely, gene features of different genes can overlap, 
which means that one DMR can overlap several genes in our model. 
Therefore 68 different genes had putative promoter regions or gene 
boundaries overlapping DMRs (Fig. 4A, Fig. S5). 

3.6. Genes differentially methylated in sick fish with microbiota 
displacement 

Relating the differential methylation in the 68 genes to phenotypic 
consequences is not a simple task, which is further complicated by the 
fact that only a few genes in the salmon genome have completely known 
functions. The functional annotation of the salmon genome is constantly 
improving and as a direct consequence hereof, 16 of the 68 genes had 
HGNC-style gene symbols or aliases on NCBI database (Table 2), 
whereas the remaining had the less informative automatically generated 
gene names with the prefix LOC (Fig. S5) [58]. The functions of these 
genes suggest that blood-related functions may be differential epige
netically regulated in sick fish, as the distal promoter of the heme 
transporter solute carrier family 48 member 1a (slc48a1a) and the gene 
end of erythropoietin receptor (epor) were both hypermethylated 
(Fig. 4B). Additionally, hypomethylation of the distal and medial pro
moter of the appetite-regulating gene thyrotropin-releasing hormone 
(trh) could indicate an altered feeding behaviour in sick fish, which may 
affect the microbiota (Fig. 4B). The list also included genes with func
tions related to the environment in the gut potentially affecting the 
microbiota. The start of LOC106590732 with alias ramp1 was hyper
methylated and is suggested to encode an ortholog of the receptor 
activity-modifying protein 1 (ramp1), which in mice is involved in 
mucus secretion (Fig. 4B, Fig. S6) [59]. Similarly, the distal promoter of 
protein kinase C delta a (prkcda) was hypermethylated, and in mice, 
prkcd has been shown to be crucial for macrophage killing of bacteria 
(Fig. 4B, Fig. S6) [60]. 

Fig. 3. Significantly differentially methylated sites and regions associated with tenacibaculosis; Manhattan plot showing the -log10(p-value) of DMCs plotted against 
their position in the genome. Hypermethylated and hypomethylated DMCs are plotted respectively above and below the dotted red lines indicating a q-value of 0.01. 
DMCs located in DMRs are plotted in solid circles whereas all other DMCs are plotted as transparent circles. The inflation factor of raw p-values was 1.26. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Table 1 
Validation sequencing with nCATS; The number of sites in the DMR sequenced 
to at least 5× with both nCATS and WGBS (N). The mean of the methylation 
estimates with respectively WGBS and nCATS from sites within the DMR. The 
standard deviation of the difference in methylation calls between the methods 
for individual sites (SD). Only data from samples and DMRs with comparable 
sites are shown.  

Sample D1 (sick) D9 (sick) 

DMR N WGBS nCATS SD N WGBS nCATS SD 
DMR 10 15 0% 2% 7% 18 5% 8% 12% 
DMR 11 13 70% 67% 19% 6 61% 62% 9% 
DMR 15 9 6% 7% 12% 12 43% 52% 12% 
DMR 20 12 37% 36% 12% 13 37% 37% 12% 
DMR 56 7 73% 62% 36% 7 72% 72% 21% 
DMR 63 7 87% 76% 15% – – – – 
DMR 70 4 17% 22% 26% 4 5% 9% 11% 
DMR 71 5 0% 3% 7% 2 4% 0% 6%  
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4. Discussion 

This study finds profound DNA methylation differences in both in
dividual sites and larger regions in the distal gut tissue of Atlantic 
salmon associated with tenacibaculosis and microbiota displacement. 
While stress and disease-related epigenetic changes have previously 
been reported in Atlantic salmon, this study is the first to characterise 
differences in the intestinal tissue serving as a barrier between the host 
and its gut microbiota. 

4.1. Tenacibaculosis is linked to profound methylation differences in the 
gut 

The separation of sick and healthy fish by their genome-wide 
methylation patterns indicates that tenacibaculosis is strongly associ
ated with changes in the gut epigenotype. Overall >19,000 sites were 
significantly differentially methylated, and although an inflation factor 
of 1.26 indicates this number might be inflated, there was a consistent 
tendency towards hypermethylation in sick fish. Correspondingly, 
hypermethylation was also found to be the primary response to piscir
ickettsiosis in the liver and head kidney in Atlantic salmon, which could 
indicate hypermethylation and decreased gene expression is an energy- 
preserving systemic disease response [28]. 

Our analysis in section 3.2 indicated three samples classified as 

healthy and with a Mycoplasma-dominated microbiota but with epi
genotypes resembling sick fish. This observation is consistent with a 
model where the epigenotype responds to internal systemic disease 
symptoms before the development of external ulcers and gut microbiota 
displacement. Future studies with temporal sampling may elucidate if 
our hypothesised model of epigenetic changes affecting the microor
ganisms is more common than the alternative model of microbial 
modulation of the host epigenome [27,61]. However, with a single time 
point sample, we can only speculate on the sequence of events. Future 
studies with temporal sampling may also investigate the role of standing 
epigenetic variation on disease susceptibility. Regardless the limitations 
of our experimental design, the association between disease and the 
epigenotype is compelling and offers novel perspectives on using 
epigenetic biomarkers for diagnostic purposes. 

4.2. Methylation differences aggregate in specific regions 

The DMCs had a convincing non-random genomic distribution spe
cifically clustering in DMRs and around transcription start sites. 
Methylation levels in neighbouring CpG-sites often correlate, and 
although the reason is not fully understood, it adds more statistical and 
biological significance to DMRs than single DMCs [55]. The majority of 
the DMRs were found near or within genes, which is confounded by high 
CpG levels around transcription start sites [62]. However, the number of 

Fig. 4. DMRs associated with tenacibaculosis and microbiota displacement; A) The gene model used for defining genomic features, where the upstream sequence is 
divided into proximal promoter, medial promotor, and distal promoter being respectively the first 250 bp, the next 750 bp, and the following 5000 bp from the 
transcription start site. The genes were divided into gene start, gene end, and gene body being respectively the first 2500, the last 2500 bp, and the remaining part of 
a gene. For the non-overlapping model, conflicts were resolved using the hierarchy: Proximal promoter > Medial promoter > Distal promoter > Gene start > Gene 
end > Gene body > Intergenic regions. B) The mean methylation level of the N sites in five DMRs and their position relative to the specified genes. Individual samples 
are coloured based on the relative abundance of Mycoplasma sp. Created with BioRender.com. 

Table 2 
Genomic distribution of DMCs and DMRs; The number of DMCs located in each genomic feature in a non-overlapping gene model (Fig. 4). In parenthesis the odds ratio 
(OR) between the observed number of DMC and the expected number from the empirical distribution of all tested sites. The result of a g-test, testing if the OR is 
different from one, is indicated by (*) where (***) equals a p-value <0.001. The number of hypermethylated (↑) and hypomethylated (↓) DMRs located in each genomic 
feature in an overlapping model. Differentially methylated genes were the genes, including promoters overlapping DMRs with a gene symbol or alias in the NCBI 
database on December 5th, 2022. Different promoter types and Gene starts are concatenated in the last two rows, because many DMRs overlapped several of these 
features of the same genes.  

Genomic feature Distal 
promoter 

Medial 
promoter 

Proximal 
promoter 

Gene start Gene body Gene end Intergenic 

Number of DMCs (OR) 2807 (1.35) 
*** 

753 (1.93)*** 179 (1.03) 1314 (1.19) 
*** 

6545 (0.81)*** 676 (1.02) 6738 (0.94) 
*** 

Number of DMRs 34(23↑11↓) 19(11↑8↓) 9(5↑5↓) 33(18↑15↓) 
Differentially methylated 

genes 
slc48a1a (↑), prkcda (↑), trh (↓), acy1 (↑), brf1a (↓), cdc42se2 (↑), elp6 (↓), 
lin7b (↑), vbp1 (pfd3) (↓), LOC106581844 (rbm8a) (↓), gk5 (↑), 
LOC106590732 (ramp1) (↑). 

grm6a (↑), ncam1a 
(↑) 

epor (↑), LOC106579169 
(brsk1) (↑)   
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DMCs which is unaffected by this bias was also enriched around tran
scription start sites. Together it suggests that the methylation differences 
were predominantly found in the regions regulating gene expression 
[25,28]. 

The non-random distribution of methylation differences also em
phasises the potential of using targeted approaches such as nCATS to 
optimise the level of information obtained with a given sequencing 
effort. Here, the method was successfully used to validate the methyl
ation levels in specific DMRs in two samples. The two samples with 
insufficient coverage put forward inconsistency as a challenge in our 
validation. However, when sufficient coverage was obtained, the 
methylation level from the nCATS approach was highly similar to the 
WGBS methylation estimates, even though the nCATS data were based 
on independent DNA extractions and a limited number of sites. There
fore, we argue that nCATS could offer a useful approach for future 
studies aiming to validate significant differences in an independent set 
of samples without the need for comprehensive WGBS. Further, nCATS 
also offers information on hitherto understudied epigenetic modifica
tions such as 5-hydroxymethylcytosine and N-6 methyladenosine [63]. 

4.3. Differential regulation of epor and slc48a1a associated with 
tenacibaculosis ulcers 

We identified interesting links between the epigenotype, specific 
genes, and their functions related to the phenotype. We note that these 
are exploratory rather than conclusive and vulnerable to confirmation 
bias. However, the skewed nature of DNA methylation complicates 
quantitative analyses of these data, limiting us to a more qualitative 
interpretation of the results [64]. Hypermethylation of the gene end of 
epor encoding an erythropoietin receptor and the distal promoter of 
slc48a1a encoding a heme transporter could be connected to the ulcers 
of the sick fish. Both genes are associated with anaemia in fish, as epor 
has been found upregulated during acute anaemia in Atlantic salmon 
and the slc48a1a ortholog in zebrafish was found upregulated following 
hemolysis [65,66]. However, the fact that epor and slc48a1a were both 
hypermethylated and therefore putatively downregulated in sick fish 
contradicts our expectations, since the sick fish had ulcers and were 
exposed to anaemia. On the contrary, their functions may not be as 
relevant in the gut compared to other tissues closer to the ulcers. 

4.4. Indirect epigenome-microbiota interactions through altered feeding 
behaviour 

Feeding behaviour may also be altered in the sick fish as the putative 
appetite-controlling gene trh was hypomethylated. Sick fish in Bozzi 
et al. 2021 were significantly smaller in size than the healthy ones, 
which seems generic to most diseases [18]. Mechanistically it may be 
related to the regulation of anorexic and orexigenic genes as part of an 
inflammatory response [67]. In mammals, trh signalling has long been 
recognised to suppress feeding activity and to be a key regulator of 
brain-gut interactions, also expressed in peripheral tissues [68–70]. The 
role of trh in teleosts is however less understood, but it can be speculated 
that altered feeding behaviour has consequences for the gut microbiota 
[71]. 

4.5. Genes involved in host-microbiota interactions 

We examined gut tissue because it is the adjacent host tissue to the 
gut microbiota and differential epigenetically regulated genes therefore 
may affect the microbiota. However, only few genes are known to 
directly alter the microbiota composition by well-described mecha
nisms. One intensively studied gene in this context is prkcda whose 
promoter in our study was hypermethylated in the sick fish and asso
ciated with a reduction of Mycoplasma sp. and an increase in Aliivibrio sp. 
In a mice model, prkcd has been shown critical for immunity against 
various pathogens including Listeria monocytogenes and Mycobacterium 

tuberculosis [60,72]. The protective mechanism in mice occurs through 
macrophage killing and repression of prkcd leads to fewer macrophages 
and a higher load of pathogenic bacteria in a tuberculosis mice model 
[60]. In zebrafish, the function of macrophages is dependent on the irf8 
gene, and the lack of a functioning irf8 gene has a severe effect on the gut 
microbiota community [73,74]. Hence, the hypermethylation of the 
distal promoter of prkcda could suggest less macrophage activity in the 
gut of sick fish. This may explain the higher relative abundance of the 
potential pathogen Aliivibrio sp. as a consequence of less efficient 
macrophage-based control of the intestinal microbiota. 

We also identified hypermethylation at the very start of 
LOC106590732, a suggested ortholog of the mammalian ramp1 gene. In 
mice, ramp1 is involved in mucus secretion in intestinal goblet cells 
affecting the mucosal thickness, and disruption of ramp1 is linked to 
microbiota dysbiosis [59]. While the effect of hypermethylation of 
LOC106590732 could be a thinner mucus layer in sick fish and potential 
dysbiosis, the function of ramp1 in fish is less established. In addition to 
the mentioned genes, the 68 genes associated with DMRs also included 
transmembrane proteins, transcription factors, etc. that may be impor
tant for host-microbiota interactions but with functions yet to be 
described (Table 2, Table S5). 

4.6. Final remarks 

It is worth stressing that transcriptional regulation is controlled by a 
broad number of mechanisms not included in our analyses, and DNA 
methylation alone is insufficient to elucidate the full epigenome- 
transcriptome-proteome landscape. Technological and analytical 
development continues to actualise comprehensive epigenotyping of 
multiple markers in varying tissues at a large scale. In parallel, the 
resolution of the techniques moves from bulk-sample input towards 
single-cell sequencing, which allows for separating the bulk signal into 
each cell type's contribution [75]. Utilising these developments in an 
efficient manner remains a challenge but offers unprecedented oppor
tunities for analysing the full epigenome-transcriptome-proteome in the 
forthcoming years. 

Our results suggest differences in DNA methylation associated with 
tenacibaculosis in the distal gut tissue, which may give functional in
sights to understand the gut microbiota displacement seemingly con
nected to the disease. We highlighted genes in the gut that showed 
significant differential methylation and had functions linked to host- 
microbiota interactions. We acknowledge the importance of confirm
ing the biological significant association between specific genes and the 
microbiota. This can be done by using suitable data sets with DNA 
methylation and microbiota information for independent replication, or 
it could be done by also incorporating transcriptomic or proteomic data 
for a more mechanistic understanding. 

In the concrete system of salmon aquaculture, it is already well 
established that tenacibaculosis should be avoided, and neither the 
associated microbiota displacement nor epigenetic differences change 
this. However, our study does put forward the potential of using DNA 
methylation data for disease monitoring and in the future potentially 
also for microbiota manipulation [76]. This adds value to understanding 
interactions between the host epigenome and the microbiota and be
comes increasingly interesting as the epigenotype can be manipulated 
by environmental factors and may be passed down from generation to 
generation. 
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