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Tensor decomposition for painting analysis. 
Part 1: pigment characterization
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Abstract 

Photo-sensitive materials tend to change with exposure to light. Often, this change is visible when it affects the 
reflectance of the material in the visible range of the electromagnetic spectrum. In order to understand the photo-
degradation mechanisms and their impact on fugitive materials, high-end scientific analysis is required. In a two-part 
article, we present a multi-modal approach to model fading effects in the spectral, temporal (first part) and spatial 
dimensions (second part). Specifically, we collect data from the same artwork, namely “A Japanese Lantern” by Norwe-
gian artist, Oda Krohg, with two techniques, point-based microfading spectroscopy and hyperspectral imaging. In this 
first part, we focus on characterizing the pigments in the painting based on their spectral and fading characteristics. 
To begin with, using microfading data of a region in the painting, we analyze the color deterioration of the measured 
points. Then, we train a tensor decomposition model to reduce the measured materials to a spectral basis of unmixed 
pigments and, at the same time, to recover the fading rate of these endmembers (i.e. pure, unmixed chemical signals). 
Afterwards, we apply linear regression to predict the fading rate in the future. We validate the quality of these predic-
tions by spectrally comparing them with temporal observations not included in the training part. Furthermore, we 
statistically assess the goodness of our model in explaining new data, collected from another region of the painting. 
Finally, we propose a visual way to explore the artist’s palette, where potential matches between endmembers and 
reference spectral libraries can be evaluated based on three metrics at once.

Keywords Multivariate analysis, Microfading spectroscopy, Color photodegradation, Pastel painting, Bubble chart

Introduction
Light-sensitive pigments may irreversibly change the 
appearance of an artwork after exposure to light. For this 
reason, special research and efforts are dedicated to keep 
in control the exhibition conditions and choose the opti-
mal lighting policy. While traditionally, broad categories 
of materials were established depending on assumed light 
sensitivity, more recently microfading has come into use 
to make more individual assessments. In this way, less 

sensitive objects may be displayed for longer, while the 
most sensitive objects will be better protected.

Furthermore, the degradation of pigments might 
interfere with the accurate recognition of materials in 
paintings. This is because fading might cause the disap-
pearance or transformation of some highly sensitive ele-
ments in the materials. In such cases, state-of-the-art 
non-invasive optical techniques used for the task of pig-
ment identification, such as reflectance imaging spectros-
copy can be helpful to find residual pigments, by sensing 
their known responses to certain incident light [1]. Nev-
ertheless, knowledge of the pigments’ fading behaviour 
can contribute towards their recognition.

The sensitivity to light applies not only to pigments, 
but to all colorants, dyes included and other materi-
als, such as wood. This has a practical implication and 
general applicability in a wide range of fields beyond 
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cultural heritage, such as printing, automotive indus-
tries, fashion and textile, architecture, etc. Because 
photodegradation is such a widespread concern, it has 
even been approached by the computer graphics com-
munity in an attempt to synthesize the spectral aging 
effects of multi-layered surfaces [2].

In this first part of a two-series article, we are pro-
posing an approach based on microfading spectros-
copy, coupled with multivariate data analysis to model 
pigment fading effects along the spectral and temporal 
dimensions. We show the performance of our model on 
a pastel painting, where specific research questions are 
answered.

Related work
Spectroscopic analysis for pigment identification
Spectral response of a pigment to electromagnetic radi-
ation represents a distinctive signature. For this reason, 
the spectroscopic signal is often studied for pigment 
identification tasks. While it is fruitful to operate in 
the reflectance domain [3], some works in the literature 
point out that the absorption spectra [4, 5] or the first-
derivative of the reflectance might be more helpful for 
discriminating pigments with similar composition [6–
8]. Johnston and Feller [4] used the additive property of 
the constituents of a mixture in the absorption domain 
to subtract the absorption spectra of a pigment before 
and after aging. The difference absorption spectrum 
preserved the peaks characteristic of a certain red lake 
pigment that were attenuated in the individual absorp-
tions. Fonseca et  al. [7] designed a decision support 
system to distinguish between plant (madder root) and 
animal (cochineal insects) red lake pigments based on 
inflection points of the reflectance curve and its first-
order derivative. Recently, Gabrieli et al. [8] used deriv-
ative analysis to identify the palette of Rembrandt’s 
“Night Watch”.

Given a spectral library, i.e. a dataset of reference pig-
ments, it is possible to assess the similarity between a 
standard specimen of a pigment and the measurements 
in an artwork, by comparing their reflectances as vec-
tors in the spectral space. The spectral similarity can be 
computed for reflectance or its variants: absorption and 
first derivative [8]. While there are various distance met-
rics that can be used, with spectral angle mapper being 
the most common [8], there are works in the literature 
that argue for the higher performance of spectral correla-
tion mapper [9] and Kullback Leibler pseudo-divergence 
[10]. Nevertheless, to find good matches, it is important 
to design the spectral libraries in such a way that they 
resemble the target in terms of chemical composition, 
concentration and binding media [11].

Pigment unmixing
In the case of image spectroscopy also known as hyper-
spectral imaging, where the spectra is documented at 
every spatial location of an artwork, it becomes feasible 
to map the existence of a pigment in two dimensions 
by thresholding the spectral similarity between a refer-
ence material and the measured painting [8]. In addition, 
hyperspectral imaging also allows for pigment unmixing, 
where traces of an endmember and their abundance are 
found at every spatial location. The pigment identifica-
tion based on the spectral signal can be affected due to 
mixing mechanisms. Thus, it is a common practice to 
perform pigment unmixing before computing spectral 
similarities with a databases. Given a collection of meas-
urements, pigment unmixing finds a set of endmembers, 
and the abundance of all endmembers in each sample. An 
endmember is a pure pigment that forms the basis of a 
palette in a painting, implying that all the other signals 
in the painting can be represented as a mixture of the 
endmembers. Nonetheless, the task of finding the end-
members is not a trivial one because of the nature of mix-
ing mechanisms. There is a lot of literature for material 
unmixing in the remote sensing field, where hyperspec-
tral imagery is used as well [12–14]. However, the spatial 
resolution in remote sensing applications is lower than 
close-range imaging as is the case in the cultural herit-
age field. In the former case, optical mixing occurs, at the 
sensor level, where a pixel is formed by a linear combi-
nation of the radiances of endmembers. Hence, linear 
unmixing models work acceptably for the remote sens-
ing field [13] and examples of known linear unmixing 
methods are pixel purity index (PPI) [15], N-FINDR [16], 
vertex component analysis [17]. PPI is the default unmix-
ing method implemented in the Spectral Hourglass Wiz-
ard functionality of the ENVI software [18], which gave 
good results for painting analysis while complemented by 
experts’ input [8] or automated algorithms to find mean-
ingful spectral features in the endmembers’ reflectance 
[11].

When it comes to close-range reflectance image spec-
troscopy, intimate mixing and layered mixing effects are 
of higher concern. Intimate mixing refers to the het-
erogeneous chemical composition of a material, while 
layered mixing refers to the blended stacks of materi-
als, where due to translucency, the material in the back-
ground has a contribution to the surface material that is 
recorded at pixel level. In these cases, non-linear unmix-
ing models are more appropriate to find the  endmem-
bers. Kubelka-Munk [19] is an example of a non-linear 
model, that describes the physical interaction of turbid 
media and it characterizes a medium with two opti-
cal coefficients, absorption and scattering. Unmixing in 
the Kubelka-Munk space has proven especially effective 
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for the analysis of pigments [20–22]. While physically-
based models such as Kubelka-Munk are accurate and 
offer an analytical solution to the radiative transfer equa-
tion, several data-driven methods for non-linear unmix-
ing were shown to be successful  as well. For instance, 
Kleynhans et al. [23] trained a convolutional neural net-
work to associate 1D spectra of pigments to their labels, 
given a dataset of illuminated manuscripts, scanned 
with a hyperspectral camera and with known chemical 
composition.

A common pre-processing step in the pigment unmix-
ing pipeline is represented by dimensionality reduction 
[24], typically achieved by principal component analy-
sis, non-negative matrix factorization or clustering tech-
niques such as k-means and t-SNE [25]. In several studies, 
tensor decomposition [26], in particular Parallel Fac-
tor Analysis (PARAFAC) [27], also known as canonical 
decomposition [28], was employed to achieve dimension-
ality reduction, clustering and classification of hyper-
spectral images in a trilinear fashion without resorting to 
flattening to a 2D array [29, 30]. The main advantages of 
tensor  (i.e. multidimensional array) analysis over matrix 
processing consist in the preservation of data structure, 
the ability to retrieve latent variables in the multi-linear 
space and the uniqueness of the base factors [31]. Thus, 
operations in the tensor space have a wide applicability 
in signal processing [32] and computer vision tasks [31]. 
Moreover, tensor computation was often been coupled 
with the sparse representations in dictionary learning 
methods towards speech recognition [33] and spectral 
unmixing [34].

In the field of chemometrics, numerous articles stand 
as evidence for the capabilities of PARAFAC [27] to 
extract unique pure spectra in a completely unsupervised 
manner from multi-way data such as fluorescence spec-
troscopy [35, 36], chromatography [37], laser-induced 
breakdown spectroscopy [38] and nuclear magnetic res-
onance spectroscopy [39]. For example, PARAFAC was 
effective in extracting the emission and excitation func-
tions of the fluorophores and their concentration in a set 
of bispectral measurements of sugar samples [36].

Fading analysis of pigments
Beside their spectral reflectance, pigments are also char-
acterized by their lightfastness properties. The behav-
iour of pigments to light exposure is used to judge the 
quality of a pigment by artists, paint manufacturers and 
art historians alike [40]. So much so, that in compendi-
ums describing pigments [41–43], fugitivity to light is 
included to assess the permanence of a pigment. Start-
ing as early as the second half of the nineteenth century 
[44], art historians together with conservation scientists 
designed fading experiments in a controlled environment 

that surpassed visual observation, and quantified the 
light-induced degradation of pigments in the color [45] 
and spectral domain [4]. For instance, Saunders et  al. 
[45] prepared samples of organic pigments following 
historical recipes and aged them in an accelerated way 
by exposure to artificial daylight fluorescent lamps at an 
illuminance of 10,000 lux inside a chamber with constant 
temperature and relative humidity levels. They measured 
the samples colorimetrically in a gradual way, at every 
predefined interval of time during the fading procedure. 
The samples were exposed for 3000  h. The CIE �Eab 
color difference was computed to quantify the extent of 
the fading. In addition, the color change was compared 
to that of ISO blue wool (BW) standards 1–3 [46], that 
have increasing lightfastness. This controlled fading 
experiment showed that the most fugitive red lake is 
brasilwood lake followed by lac lake, cochineal, kermes 
madder and alizarin. Moreover, the authors discovered 
several important factors that impact the fading: the lake 
extraction method (raw, directly from insects as opposed 
to colored textile patches), lake precipitation methods 
(aluminum, aluminum with calcium carbonate and tin), 
pigment concentration, content of ultraviolet radiation in 
the light source.

Several studies investigate the relation between the 
photo-permanence of pigments and the spectral power 
distribution of the light source used in the fading pro-
cess. Earlier on, Saunders et  al. [45] showed that ultra-
violet radiation strongly accelerates the fading pattern of 
organic pigments. The same finding was later confirmed 
by Hattori et al. [47] who noticed that ultraviolet radia-
tion contributed to the fading of blue wool standards 
[46] with a higher share than visible light. As far as the 
visible range of the electromagnetic spectrum is con-
cerned, the fading seems to be positively impacted by 
the amount of overlap between the absorption of the 
pigment and the spectral distribution of incident light 
[48]. Saunders et al. [48] were among the first to model 
the light-induced color change of red lake pigments as a 
function of the incoming wavelength. They adjusted the 
fading experiment in [45] by coupling the light source 
with seven broad-band filters with peak transmittances 
sampled every 50 nm between 400 and 700 nm. Because 
red lakes absorb more in the lower wavelengths, their 
photo-degradation increases when exposed to light in 
the blue side of the spectrum. Lerwill et al. [49] reiterated 
a similar experiment, with an improved setup based on 
narrow-band filter for separating the incident light signal 
and examining more pigments. While they agreed to the 
conclusion of [48], i.e. damage increases with increas-
ing absorption, they found out that Prussian blue is an 
exception. In other words, Prussian blue is less affected 
by the light it absorbs and more by the light it reflects. 
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The impact of the light source spectrum in accelerated 
aging experiments was acknowledged as well by Pintus 
et al. [50]. In an attempt to characterize the formation of 
cadmium soaps in oil paints, they discovered that LED 
light impinged more aging effects than a halogen lamp 
and a natural light source.

It is important to make the distinction between fading 
and other related terms such as light bleaching and pho-
tobleaching. In art conservation and material research, 
the first term is commonly adopted to refer to the process 
of yellowness and stain removal and it has been encoun-
tered in applications on aged paper [51], film artifacts 
[52], textile [53] and teeth enamel [54]. The second term 
is typically used in biology to refer to the process by which 
fluorophores are removed from a molecule through light 
excitation [55]. While photobleaching may relate to the 
light-induced chemical alteration of a colorant that affects 
its color attributes, its meaning is mainly tailored to the 
loss of fluorescence. For this reason, in the current study, 
we use the term fading which covers the general alteration 
of a colorant with exposure to any type of light.

Microfading analysis
Microfading is a fading process performed at a smaller 
scale, that concentrates light over spots of submillimetric 
size, thus minimizing the extent of the damage. For this 
reason, it can be considered an almost non-destructive 
technique and can therefore be applied on real artworks. 
Whitmore et  al. [56] were the first to propose a micro-
fading protocol for measuring real art objects. The non-
invasiveness is ensured by terminating the procedure 
before a noticeable color difference or a maximum num-
ber of iterations is reached.

In the recent years, thanks to the accessibility of port-
able microfadeometers (MFT) such as the one proposed 
by Lojewski [57], there has been an increased interest 
to analyse the light sensitivity of pigments directly on 
artworks. Chan et  al. [58] measured with the MFT the 
litographic print and the painted version (from 1910) of 
“The Scream”, both belonging to Munch museum. The 
most fugitive pigment in both artworks was revealed to 
be vermilion, with a light-sensitivity comparable to that 
of BW 1. The lightfastness analysis inspired the museum 
to design an intermittent display that lowers the display 
time for each artwork. Grimstad et  al. [59] microfaded 
27 paintings of Edvard Munch and similar to [58], they 
noticed that reds are the most sensitive colors, and all of 
these reds contain vermilion. Aambø et al. [60] gathered 
microfaded observations from 63 paper-based artworks 
in the Munch museum collection and discovered intri-
cate light-induced change mechanisms for pigments with 
apparently the same color and/or chemical composition. 
In one case, for two reproductions of a woodcut plate 

supposedly made of the same material, two samples that 
appeared to have the identically same green color showed 
a different fading pattern. This implies the use of two dif-
ferent pigments.

While the study of lightfastness in the color domain 
gives a first intuition on whether similar materials were 
used in a sample, it is the knowledge of the spectral com-
position that adds more precision. Even when a set of 
measurements share one pigment, the photo-degrada-
tion can have different dynamics because of the rest of 
the materials in the mixture. In [60], the red colors were 
found to be the most fugitive, approaching BW 1 fading 
rate, a finding similar to that of [58 and 59]. While ana-
lytical techniques discovered traces of vermilion in all 
the highly sensitive reds in [60], vermilion wasn’t the only 
pigment in the composition. In addition, other red colors 
were found to be more light resistant (BW 2–3 category), 
even though they contained vermilion as well. Moreover, 
other red points, with both similar pigments (vermilion) 
and similar color sensitivity, manifested a slightly differ-
ent change rate. In most of these studies, the microfading 
experiments are usually performed in the visible range of 
the spectrum, which better aligns with the current exhi-
bition conditions in museums and galleries [61].

Method
In many of the above mentioned related articles, the pig-
ment’s composition is sometimes known apriori, and the 
microfading analysis is mainly performed with the pur-
pose of implementing a more or less protective lighting 
policy for artworks displayed in museum exhibitions. To 
the best of our knowledge, there are no works that use 
the microfading analysis in the reverse way, i.e. to use the 
lightfastness behaviour aside from the spectroscopic fea-
tures for characterizing and identifying an unknown pig-
ment. In our work, we propose a linear unmixing method 
based on microfading single-point measurements, by 
modelling changes in the spectral domain and extract-
ing endmembers using multivariate algebra analysis. We 
represent the light-induced measurements as a 3D ten-
sor (samples*time step*spectra), where every sample is 
described by the spectral reflectance at different points in 
time during the photo-degradation process. With trilinear 
tensor decomposition, we are then able to recover chemi-
cally relevant endmembers that best explain the data, their 
concentration in every sample and the temporal change 
provoked by light exposure. While still a linear unmixing 
technique, by preserving the trilinear data structure, the 
tensor decomposition is able to recover more latent vari-
ables than a traditional bilinear setting [31].

Figure  1 shows an overview of our method. Given a 
set of spectral microfading measurements, we create a 
3D array, where the first dimension corresponds to the 
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number of observations, the second dimension corre-
sponds to temporal changes and the third to the spec-
tral reflectance. Then, we use PARAFAC in order to 
retrieve the loadings for each of the three dimensions, 
also called modes in our data representation. The PAR-
AFAC analysis gives the pure spectra underlying the 
sample, the concentration of all pure components for 
each sample, and the degradation rate of every princi-
pal component. Once we get the trained model, we can 
test whether it can explain new samples, unseen at the 
calibration stage, by keeping fixed the loadings corre-
sponding to the spectral composition and the alteration 
rate. Moreover, by using regression on the temporal 
change loadings, we can predict unmeasured future 
values.

Tensor decomposition with parallel factor analysis
PARAFAC is a tensor decomposition method that was 
initially proposed by Harshman [27] to increase inter-
pretability of multivariate data. PARAFAC can be consid-
ered as a generalization of the bilinear PCA method [36] 
in the sense that both methods assume the input data 
can be explained as a linear combination of basis factors. 
These factors are also called scores and loading vectors. 
However, one of the most important aspects is that PAR-
AFAC doesn’t require unfolding the data into bilinear 
form, thus maintaining the structure of the multivariate 
data. This way, there is a one-to-one mapping between 
the effects of a variable and a loading vectors, which is 
relevant for describing an underlying chemical or physi-
cal phenomena. Moreover, PCA doesn’t give an unique 

Fig. 1 The diagram of our method. The module 1 is the core model, where we extract the endmembers and their fading rate with three-way tensor 
decomposition from a collection of microfading observations. Using this trained model, we verify how well we can explain new microfaded data 
(2). Also, we apply regression on the fading rates and extrapolate the behaviour for future temporal modelling (3). Finally, we spectrally compare our 
endmembers with databases of pigments to identify the materials used in the painting (4).
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solution, because all rotations of the orthogonal load-
ing vectors can be good fits of the data. Thus, while PCA 
scores and loadings are still meaningful for deciphering 
the data, it is difficult to draw a direct association with 
pure chemical components. On the contrary, PARAFAC 
loadings have the property of being unique, where the 
unique loadings resemble loyally the actual pure spectra 
in a material [62]. At the same time, the scale of the load-
ing vectors resulting from tensor decomposition is uni-
dentifiable and has no immediate correspondence with 
units of measure unless a scaling factor to a ground-truth 
can be determined [62].

Let XM·K ·N be a 3D tensor, where M is the number of 
samples, K  the number of time steps and N  the number 
of spectral bands of the input microfading data. Then, 
using three-way decomposition, we can model this ten-
sor as the outer product of 3 factor matrices, A, B, C:

where F  is the user-defined number of components to 
split the tensor into. Using the Kathri-Rao product ⊙ , 
Eq. 1 can be re-written in the following flattened form:

where × denotes the conventional matrix multiplication. 
The flattened array can then be easily reshaped to the 
original size of the tensor.

The decomposition is solved with the alternating least 
squares algorithm [63] where the objective is to mini-
mize the squared residuals between the actual data and 
the model. If E is the tensor corresponding to the resid-
uals, defined by EM·K ·N = X − X̂ , then the loss func-
tion is min

A,B,C
E2 . Alternating least squares algorithm 

implies that the factors A,B,C will be conditionally 
estimated on each other. To determine A , B and C will 
be initialized and then, the minimization function will 
be solved for A given the B and C priors. Afterwards, 
the same operation is repeated to get B with the previ-
ously fitted A and initialized C . Subsequently, the opti-
mization function is run again for C with the already 
fitted A and B loadings. Finally, based on the values of 
the 3 factors obtained after the first iteration, the least-
square optimization is repeated in the same conditional 
fashion until convergence is reached, i.e. there is negli-
gible improvement in the newly fitted values with 
respect to the previous. While numerically there is no 
difference between scores and loadings, it is common 
practice to consider that the first factor, A refers to the 
scores of the model and B and C to the loadings. In this 
article, C represents the endmembers, A the concentra-
tion of each endmember f = {1 F} in all the input sam-
ples and B the fading rate for each endmember. 

(1)X̂M·K ·N = AM·F ⊗ BK ·F ⊗ CN ·F
,

(2)X̂M·KN = AM·F × (CN ·F ⊙ BK ·F )T ,

Moreover, because we are dealing with physical and 
chemical feasible data, the constraints of non-negativ-
ity for A and C are enforced during the decomposition 
process.

The choice of number of components F  is not trivial. 
Typically, if no previous knowledge is known about the 
tensor’s rank, then experiments are done starting from 
a very small number of components in increments of 1. 
For each trained model, residual analysis is performed 
and the chemical meaningfulness of the loadings is inter-
preted. The model that gives the most sensible fitting 
from a chemical point of view and has good residual met-
rics is then selected.

Testing the PARAFAC model for new data
It is possible to test new data based on a trained model. 
Let’s consider a test tensor XW ·K ·N

test with different size in 
the 1st dimension but identical size in the 2nd and 3rd 
dimensions with respect to the tensor used for train-
ing. Then we can fit the new data by keeping the B and 
C loadings fixed in Eq.  1 and solving only for the new 
concentration matrix AW ·F

test  . This makes sense under the 
assumption that the test data has similar chemical con-
tent as the data used for training.

Future modelling
The fading rate Rf  of each pure pigment is given by the 
loadings of the 2nd mode, B . Mathematically, it could be 
approximated by a line equation, implying that the reflec-
tance of a pure pigment changes linearly with time:

where k = {1 K } are the modelled time steps, a the slope 
and b the intercept of the line. Once the slope and inter-
cept are computed, we can replace k in Eq.  3 with val-
ues higher than K  and get the values of the change for 
future times. These new values can then be input in Eq. 2 
to predict the spectra of the original samples for future 
times other than those modelled. If there are samples in 
the original data, for which there are microfading spec-
tra recorded for more than K  time steps included in the 
training model, then the future modelling can be vali-
dated quantitatively. It is important to mention that the 
linear approximation in Eq.  3 is a simplification of the 
real change mechanisms and it assumes that the fad-
ing rate of each pigment evolves independently from 
that of other pigments. However, the fading rate Rf  was 
extracted as one of the factors from the tensor decompo-
sition method, which considers the tandem change of all 
the microfaded measured samples. Thus, it can be argued 

(3)Rf = ak + b,
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that the interaction between pigments is included to a 
certain extent in the fading rate curve.

Pigment identification
The endmembers extracted with our proposed method 
are described spectrally, which facilitates the compari-
son with reference datasets using established distances in 
the spectral domain towards pigment identification. We 
use spectral correlation and spectral angle as comparison 
metrics with databases of known pigments. Given two 
spectra s1, s2 , the spectral angle treats them as vectors 
and computes the angle between these two vectors as the 
inverse cosine function of their dot product:

A smaller angle indicates a smaller difference between 
the spectra. On the other hand, spectral correlation [64] 
computes the similarity of two spectra as the dot product 
of their mean-centered signals:

A higher correlation indicates higher resemblance of the 
two spectra.

Data collection and results
Case study: Oda Krohg’s painting “A Japanese Lantern”
In this article, we show the performance of our method 
on the pastel painting “A Japanese Lantern”, also known 
as “By the Christiania Fjord”. (see Fig.  2) created by the 
Norwegian painter Oda Krohg in 1886 and present in the 
collection of the National Museum of Norway (inven-
tory number NG.M.00879). The painting is made of pas-
tels applied on canvas and it is not very well documented 
from a scientific conservation point of view. Thus, the 
exact materials are unknown, and there is no record of 
the initial color appearance so as to make any immediate 
assumption about visible changes in the current version. 
This leads to the first research objective of our case study: 
to assess the light sensitivity of the painting materials. 
Typically, pastel sticks come in a wide range of hues and 
saturations [65] and are essentially composed of colored 
pigment powders in combination with white pigments, a 
white filler and binder [66]. To achieve a certain desired 
colour, pastel stick might contain a single pigment or a 
mixture [65]. While various binders can be used for 
the  preparation of pastels [66], art conservators assume 
that the ones in Oda Krohg’s painting are soft pastels 
and so, probably mixed with aqueous binder in rather 

(4)SA = cos−1

∑

s1s2
√

∑

s2
1

√

∑

s2
2

(5)SC =

∑

(s1 − s1)(s2 − s2)
√

∑

(s1 − s1)2
√

∑

(s2 − s2)2

small amount. In terms of artistic technique, soft pastel 
paintings are often built up in layers, which combined 
with the pluralistic composition of pastel sticks, results 
in complex pigment mixing mechanisms. Therefore, the 
second research question for the case study is: can we 
surpass these complex mixing mechanisms and extract 
the pure pigments used in the pastel painting?

In order to address these research questions, two areas 
of interest in the painting were selected by the museum 
conservator for the analysis: the central lantern and the 
lantern in the left upper edge. Stylistically, the latter is 
actually depicting the reflection of the central lantern 
on the window. In particular, the area along the left edge 
is of special interest because it has been partially cov-
ered by the rebate of the frame, which prevented part of 
the pigments in the left lantern being exposed to light. 
Therefore, we are investigating if our approach can 
detect similar materials in the two lanterns.

Microfading data collection
Specific locations on the central and left were faded 
using the microfadeometer provided by FotoNowy 
Institute [67]. The MFT illuminated spots of 0.5  mm 
diameter, with a white LED at an irradiance of 12.585 
MegaLux and a power of 3.44 mW, for a 0 ◦/45◦ 

Fig. 2 Oda Krohg’s painting “A Japanese Lantern”. Pastel on canvas 
(1886). Courtesy of photographers Børre Høstland/Lathion, Jacques, 
National Museum
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geometry, as shown in Fig. 3. The light source was apri-
ori calibrated by the manufacturers with a white stand-
ard card [68] and, as can be seen in the spectral power 
distribution in Fig. 4, it has a stronger emission in the 
middle and right parts of the electromagnetic spec-
trum. The measurement was stopped when the �E00 
color difference with respect to the original reached 2 
units or after 600  s. For this reason, the cardinality of 
the observations is uneven, depending on the sensitivity 
of the pigment: some are measured for 77 s, others for 
600, etc. The L*, a*, b* color coordinates are recorded 
for D65 standard illuminant and CIE 1931 2 ◦ observer 
after every fading iteration. Apart from the color 
change, the instrument records the spectral reflectance 
every 11th second with a spectral resolution of 2.5 nm 
in the 400–730 nm range. To reduce the noise, the 
spectral data was smoothed with a Savitzky-Golay filter 

[69] of order 2 and window size 17, and then further 
downsampled. In addition, the spectral range has been 
restricted to 440 and 680 nm due to the high noise in 
the data at both far ends of the measured spectrum.

As shown in Fig.  5, for the central lantern, 15 loca-
tions were microfaded that cover 5 apparent color groups 
(pink, green, red, pale blue/violet, orange). The mini-
mum common number of recorded spectral changes is 
8 (including the initial reflectance before fading), equiv-
alent to 77 s of light exposure. As far as the left lantern 
is concerned, 5 locations were selected for investigation, 
that correspond to red and dark pink colors. The dark 
pink points have been protected by the painting’s frame, 
which was removed during the microfading measure-
ments. Thus, one hypothesis that we try to verify with 
our model, is whether the dark pink and the red spots 
were initially applied from the same stroke, but they 
now differ in color because fading has occurred in areas 
unprotected by the frame.

Colorimetric analysis
Before diving into the tensor decomposition specifica-
tions and findings, we applied exploratory analysis tech-
niques to get a first-hand overview of the microfading 
data. The straightforward outcome from a microfading 
experiment is the color change of the samples as a func-
tion of time. This is a primary hint to the stability of the 
pigments. Figure 6 depicts the �E00 color difference for 
central lantern points measured with MFT and shows 
how the pink samples have the fastest change rate, while 
the green ones seems to be more stable.

Another immediate analysis from the microfading is to 
assess the color change for a*, b* coordinates, where a∗+ 
corresponds to the red quadrant in the CIE L*a*b* space, 
a∗− to green, b∗+ to yellow, and b∗− to blue. As shown in 7, 
the change occurs in the negative direction. This entails 
that all samples lose the yellow and red chromatic com-
ponents. It is interesting to note that Red 2 after fading 
has the same a*b* coordinates as Pink 5 before fading.

Specification of PARAFAC model fitting
The microfaded observations of the central lantern 
were structured into a 15*8*81 (samples * time steps * 
spectra) tensor. The three-way array was then decom-
posed using parallel factor analysis (PARAFAC) with 
the Matlab implementation of the N-Way toolbox 
[70]. In Additional file  1, we inserted a code snippet 
to exemplify basic operations. Setting the number of 
components in the PARAFAC analysis is not a trivial 
task. We adopted a trial-and-error approach starting 
from 5 components and stopping where the loadings 
of the endmember resembled impossible reflectances. 
Our rationale was rooted in the typical formulation 

Fig. 3 Microfading measurement setup. Light is incident on the 
surface at 0 ◦ and the colorimeter is collecting the signal at 45◦
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Fig. 4 Spectral power distribution of the white LED of the 
microfadeometer
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of pastels: they are manufactured as saturated color, 
where typically there would be a dominant pure pig-
ment combined with others in smaller quantities. Given 
that samples collected in the microfading experiment 
roughly represent 5 colour groups, we assumed there 
should be at least 5 pure pigments. Figure  8 depicts 
the endmembers extracted when fitting the model with 
5,  6 and 7 components. We can see that in the latter 
case, the spectra become noisier. Also, correlated spec-
tra seem to appear (orange and cyan curves) and the 
orange curve resembles a composite multi-lobe signal 
rather than a realistic reflectance. On the other hand, 
the 5 and 6-component case output smooth and simi-
lar reflectances. Nonetheless, the 6-component case 
introduces an additional component in the red end of 

the spectrum (cyan curve in Fig. 8b), which is a realistic 
reflectance resembling a typical red lake. As a matter of 
fact, in a later subsection 4.7, we will prove that indeed, 
this endmember has a high similarity with a crimson 
carmine lake, when comparing with a reference data-
base of pigments. Thus, we continued the analysis with 
the factors of the tensor decomposition model fitted for 
6 components. The model converged in 1099 iterations, 
retaining 99.99% variance in the data while achieving 
a sum-of-squared residuals of 0.0145. Moreover, the 
histogram of the residuals shows a bell-shaped curve 
around 0 (see Fig.  9), suggesting that the variance fol-
lows a normal distribution, which is a good quality 
indicator of the regression process.

Figure  10 plots the three modes of the resulting 
model: endmembers, fading rate of each endmember, 
and concentration of each endmember in the input 
samples in the central lantern collected with the micro-
fadeometer. In Additional file 1: Figure S1 displays the 
measured and modelled spectra for all the 15 samples, 
at time steps 1 and 8. The endmembers have the same 
color code in the three plots. One of the first comments 
that emerges is that the Pink 1–5 samples seem to be 
predominantly made of the endmember 2 (magenta 
curve), which also fades the most rapidly because it has 
the steepest descent in Fig.  10b. This is in conformity 
with the colorimetric analysis of the color degradation, 
where the Pink samples change most rapidly, reaching 2 
�E00 units before the other samples. Another interest-
ing outcome is given by the concentration of the end-
member in each sample. As the microfading experiment 

Fig. 5 Locations measured with the MFT for the left lantern and the central lantern. Courtesy of Børre Høstland, National Museum

Fig. 6 �E00 as a function of time for selected microfaded samples in 
the central lantern, representatives of each colour group
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Fig. 7 The chromatic changes of the microfaded samples in the central lantern. The black square marks the initial value, before fading, while the 
diamond marks the final value, after fading
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Fig. 8 Endmembers obtained when fitting the tensor decomposition model with 5 (a), 6 (b) and 7 (c) components. In the 7 component case, the 
some spectral curves are noisy (cyan and orange curves) and seems to have a mixed rather than pure chemical composition. While both 5 and 6 
component cases give smooth curves and similar members, it seems that the latter is able to extract a different pigment (cyan curve), that with the 
sudden growth close to 600nm, shows the characteristic of an organic red lake pigment
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proceeds, we can infer that the underneath pastel layers 
get revealed as the top layer fades. This effect should be 
stronger for the pigments that are more fugitive. How-
ever, given the composite nature of the pastel sticks, we 
should also take into account that dominant concentra-
tions in a sample hint to the multiple pigments present 
in a single pastel stick.

Future modelling
In the trained model, we included only a subset of the 
measured time steps, which is the minimum number 
of measurements common to all 15 samples. However, 
except Pink 1 sample, there are more measurements 
for the rest of the samples. Hence, another way to vali-
date the goodness of the model is to test how well the 
excluded measurements can be explained by the trained 
model. To this purpose, we need to extend the fad-
ing rates for future time steps. As explained in subsec-
tion  3.3, we generated the fading rate for more than 8 
time steps, by applying linear regression on the loadings 
in Fig. 10b. This gives as a slope and an intercept for the 
temporal change rate of each endmember, that we can 
use to further compute the fading rate for new time steps 
using Eq. 3. Table 1 summarizes the line equations for the 
fading rates of the 6 endmembers and Fig.  11 exempli-
fies the goodness of the linear fit to the changing trend of 
endmember 1.

Using these fits, we generate the fading rate for time 
steps higher than 8 with Eq. 3. Then, we input these new 
values in Eq.  2 to recover  the spectra of the samples. 
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Fig. 9 Histogram of the residuals for the PARAFAC model fitted with 
the microfaded observations in the central lantern
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Afterwards, we compare the simulated reflectances 
with the measured ones with the root mean square 
error metric (RMSE). The barplot in Fig.  12 shows 

RMSE values for all the simulated time steps available 
for every sample. To be noted that the reconstructions 
for the first 8 time steps are done with the fading rate 
of the trained model, not using the linear approxima-
tion in eq.  3. Overall, the RMSE values are very low, 
proving a good performance of our model in estimating 
the future reflectance of the samples. Nevertheless, it is 
clear from the plot that the error increases with higher 
values of the time steps. This suggests a lower accuracy 
of the line fitting in approximating the fading rate when 
the gap between the modelled and simulated time steps 
is too high, especially for orange samples. It seems that 
the linear regression is most robust for the green sam-
ples. Indeed, Fig.  13 shows the measured and recon-
structed spectra for Green 2 sample at time step 55 
(594 s), which are very similar in shape and only slightly 
vary in amplitude.

Even though the linear regression gives the lowest coef-
ficient of determination for endmember 4’s fading rate 
(see Table  1), the future simulation of the samples with 
a high concentration of endmember 4 (Violet 1, Violet 
2) is not severely affected as the corresponding RMSEs 
are among the lowest numbers. The visual analysis of 
the reconstructed reflectance of Violet 1 at time step 16 

Table 1 Slope, intercept and coefficient of determination for fitting the fading rate of the 6 endmembers to a line

1 2 3 4 5 6

Slope 0.0014 −0.0071 −0.0013 −0.0001 −0.0031 −0.0012

Intercept 0.3474 0.3850 0.3592 0.3539 0.3549 0.3589

R
2 99.26 % 97.17 % 88.90 % 24.91 % 96.06 % 93.98 %

1 2 3 4 5 6 7 8
0.348

0.35

0.352

0.354

0.356

0.358

0.36

Linear:  y = 0.001362*x + 0.3474
            R2 = 0.9926

endmember 1
   linear fit

Fig. 11 Linear regression fit for the fading rate of endmember 1. y
-axis represents the fading rate, while x-axis stands for the time step
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to reconstruct future reflectances with good quality. However, the 
higher the time step values, the larger the RMSE, showing a limitation 
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in Fig.  14 confirms the accuracy of the simulation with 
respect to the measurement. However, as previously 
mentioned, the reconstructions further deviate from the 
original for time step 32 (341 s), and especially time step 
55 (594  s). The deviation happens mostly in the region 
600–650 nm, which might also indicate unexplained vari-
ation of the tensor decomposition model in this spectral 
range. In future, other approaches to model the fading 
rate can be implemented towards improvement, such as 
spline interpolation or time-series models [71].

Model validation for the left lantern
In the previous sections we proved that our proposed 
tensor decomposition model is statistically valid and 
works fine for future modelling of the samples with 
the same chemical composition as those included in 
the training stage. Now, we’ll verify the performance of 
our model for unseen microfaded samples, taken from 
the left lantern in the pastel painting (see Fig.  5). It is 
assumed that the same materials were used to render the 
red and pink colors in the central and left lantern, since 
actually the left lantern depicts the reflection of the cen-
tral lantern. If so, then the trained model should be able 
to explain the variance in the left lantern data. To test this 
hypothesis, we arrange the 5 microfaded measurements 
into a three-way tensor, similar to the central lantern, 
which results into a 5*8*81 tensor. Then, we fitted a PAR-
AFAC model to this new data, by keeping fixed the load-
ings of the B (fading rate) and C (endmembers)  factors 
extracted with the previously trained model (for details, 
revise subsection  3.2). The model thus fitted achieved a 

sum of squared residuals of 0.0476. As a result, we obtain 
a new set of loadings, the A factor, (shown in Fig. 15) that 
gives the concentration of the already known endmem-
bers in the left lantern samples. All 5 samples have as 
major constituents endmember 1, 2 and 6, but in differ-
ent proportions. It appears that Red 1–3 samples in the 
left lantern are predominantly made of endmember 1, 
similar to the red samples from the central lantern. On 
the other hand, it seems that the two Dark Pink samples 
are richest in endmember 6. Additional file  1: Figure 
S2  displays the measured and modelled spectra at time 
steps 1 and 8, for the 5 samples in the left lantern.

To assess the quality of the reconstruction, we graphi-
cally analyze the residuals of the model fitted on the test 
data. Figure 16 shows the histogram of the residuals for 
each of the 5 samples, and the surface plots of the residu-
als distributed along the spectral and temporal dimen-
sions. We’d expect the histograms to have a Gaussian 
distribution and the surface plots to be as flat as possible. 
The histogram for Red 1–3 samples are centered around 
0 and fairly symmetric, even though they are slightly 
skewed towards the left. While the magnitude of the left-
side skewedness and asymmetry are more evident for 
the Dark Pink samples, the normal distribution pattern 
does not get disrupted to a far extent. At the same time, 
while the surface plots are not completely flat, show-
ing some variation that the model did not capture from 
the data, the magnitude of this unexplained structure is 
however of a very low order. Thus, the model has statisti-
cal relevance in explaining the left lantern samples, and 
we can conclude that the materials used in the central 
lantern are most likely the same as the ones in the left 
lantern.
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Another research question is whether the 5 samples on 
the left lantern correspond to the same materials, since 
in the painting it looks as if they were part of the same 
strokes. In this regard, it is noteworthy to mention that 
the resulting factor A loadings point to a sensible layering 
pattern of the pastels. Considering that the samples Dark 
Pink 1 and Dark Pink 2 were collected from an area in 
the painting that was covered by the frame, we know they 
were less exposed to less light than the rest of the left lan-
tern. Assuming that all the 5 samples represent the same 
material, the uneven exposure to light would explain 
the difference in the dominant pigment component. For 
instance, if the initial material was made of a layer of end-
member 1 covered by a layer of endmember 6, the fact 
that Red 1–3 samples were exposed to light for a consid-
erably higher extent, would explain why they have less 
concentration of endmember 6 as opposed to Dark Pink 
1 and Dark Pink 2. In addition, this theory can be cor-
roborated by a common artistic practice, namely that of 
covering a base red pigment (endmember 1) with a lake 
glaze (endmember 6) [45]. Even though this theory seems 
plausible, in order to fully validate it, we would need to 
complement our study with analytical data such as XRF, 
that would shed further light on the chemical composi-
tion of the pigments. We plan to pursue such an extended 
analysis in our future work.

Pigment identification
We compared the spectra of our endmembers with three 
reference datasets of known pigments using spectral 
angle and spectral correlation. The first dataset includes 
spectrophotometric measurements of 54 pigments 

combined with various binders: gum Arabic, gum Arabic 
measured with a reflection probe (that discards specu-
larities from the measurement), egg-tempera, acrylic 
and fresco [72]. From here on, this dataset will be called 
FORS-CHO. It is believed that the pastels used in the 
painting are soft, and most probably an aqueous binder 
was used in small quantities. For this reason, out of the 
binders in the FORS-CHO dataset, we chose the pig-
ments bound with gum Arabic (and measured with a 
reflection probe for higher precision), because this pig-
ment-binder combination is considered to be the most 
sensible with respect to the soft pastels in the painting. 
The second dataset consists of hyperspectral measure-
ments with the HySpex camera of a pigment panel, called 
ENST, that was prepared by National Gallery in London 
for the VASARI project [73]. It contains 64 unvarnished 
patches of historical pigments bound with egg-tempera 
and applied on a panel primed with gesso. Even though 
the binder is egg-tempera, which is not typically used 
for the preparation of soft pastels, we still used this data-
set as standard for comparison because it contains a 
higher variety of historical pigments than the first data-
set. Finally, the third reference collection is the only spec-
tral database of pastels applied on paper and measured 
with a spectrophotometer, and it is published by Centore 
[74]. While this database includes both modern brands 
(Blue Earth, Unison, Great American, Mount Vision) 
and historical pastel manufacturers (Girault, Sennelier, 
Schmincke), nowadays all the manufactures most prob-
ably use modern materials for the pastels’ preparation. 
Usually, these recipes are not revealed by the manufac-
turers so the chemical composition is unknown making it 
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difficult to interpret and validate the results in a pigment 
identification task. Nonetheless, we deemed it interesting 
to explore the resemblance with our endmembers espe-
cially because it  is a pastel-to-pastel comparison. To be 
noted that among the pastel manufacturers present in 
this dataset, Girault and Schmincke were already produc-
ing pastels when Oda Krohg painted “A Japanese Lan-
tern” in the late 19th century.

We have to keep in mind that the painting in our study 
has a more intricate formulation than the patches meas-
ured in the three spectral libraries. This is expected to 
negatively impact the quality of the spectral matches [11]. 
While for future work, we plan to collect a spectral ref-
erence dataset of a mockup that is carefully designed to 
mirror the materials and technique of the studied paint-
ing, we are still interested to see if the comparison with 
the currently available libraries leads to sensible matches.

The spectral sampling of the pigments in the reference 
databases varies with the measuring instruments, so they 
were interpolated to align to the sampling of the end-
members. After the interpolation, the spectral metrics 
in Eq.  4 and 5 were computed in a two-folded way: for 
the original reflectance vector and for the first derivative 
of the reflectance. The first derivative better captures the 
inflection points (minima and maxima) of the spectral 
reflectance curve. As a result, the spectral distance com-
parison will be more sensitive to big shifts in reflectance, 
which has more discriminative power than reflectance 
alone for pigment analysis, as proved in previous works 
[8]. In order to simultaneously visualize the similarity 
according to the reflectances, and both spectral metrics, 
we are visualizing the distances with a bubble chart in 
the following way. For each reference dataset, the low-
est 5 spectral angles with respect to the endmembers, are 
chosen for the reflectance and first derivative mode, giv-
ing a total pool of maximum 10 best matches. Then, we 
define a 2D coordinate system of the bubble chart with 
the spectral angle in the reflectance mode as the x−axis 
and the spectral angle in the derivative mode as the y−
axis. We plot each of the 10 best matches in this coor-
dinate system. It can happen that the first derivative and 
reflectance comparisons give overlapping matches. For 
this reason, we actually have less than 10 bubbles plotted 
for each pigment. Furthermore, the diameter of the bub-
bles is scaled with the spectral correlation value between 
of the endmembers with the reflectances in the refer-
ence datasets. We chose to vary the size of the bubbles 
with the diameter instead of the area because previous 
research [75] showed that the human visual system better 
appreciates changes in the diameter of a disk as opposed 
to its area.

Hence, in the bubble chart visualization, an ideal can-
didate would be represented by a big size bubble located 

in the bottom left corner of the chart, which translates 
to the following attributes: big correlation, low spectral 
angle for the reflectance, low spectral angle for the first 
derivative. Figure 17 displays the similarities of our end-
members (1–6) with the pigments in the ENST dataset, 
while Fig. 18 features the FORS-CHO dataset. It is easy 
to notice that overall, the spectral angles computed for 
the first derivative have a higher magnitude than those 
computed in the reflectance mode. This is because the 
first derivative is sensitive to any change of growth in 
the reflectance curve, and so it amplifies the noise of the 
initial signal. At the same time, the values of the spec-
tral metrics are lower for the comparison with the ENST 
library. This might be due to the use of historical reci-
pes in the manufacturing of the ENST target. At a quick 
perusal of the charts, we can see that there is a certain 
clustering of the endmembers, meaning that some end-
members have better matches than others. For instance, 
endmember 1 (red) has closer matches than endmember 
3 (orange) since the candidates for the former are located 
in the bottom left corner, while those of the latter are in 
the top right corner. For endmember 1, we can see that 
the reflectance comparison with ENST suggest the red 
lead pigment as the best match, because it’s situated in 
the left-most corner, while the first derivative spectral 
angle picks red ochre as having the lowest value in the 
y dimension. Interestingly, red lead is designated as the 
best candidate for endmember 1 by the FORS-CHO 
dataset as well, followed by vermilion and red ochre. 
Moreover, we can see that all candidates for the red 
endmember have bubbles of similar size, so in this case, 
spectral correlation does not bring clarification to distin-
guishing between candidates. ENST shows as secondary 
matches vermilion, cadmium red and rose madder, which 
are positioned very close to each other, with cadmium 
red being slightly better than the other two. Following 
the same reasoning, the most valid choices from ENST 
dataset for endmember 2 (pink) seem to be red lead and 
vermilion. Nonetheless, mercuric iodide arises as the best 
match according to the first derivative comparison, but it 
jumps more than 2 orders of magnitude along the x−axis. 
Out of the FORS-CHO pigments, red lead comes atop 
with the highest similarity.

It is interesting to note here several known aging attrib-
utes of the red lead pigment. It has been documented 
[41] that when exposed to sunlight, rain and carbon diox-
ide, red lead can cause the formation of lead carbonate, 
giving it a whiter, thus pinkish appearance. Hence, if we 
follow the theory that both endmembers are red lead, the 
difference in their spectra might be due to this aging phe-
nomena. On the contrary, if we were to judge by inflec-
tion peaks only, endmember 1 and 2 have maxima at 590 
nm and, respectively, 587 nm, which were associated to 
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vermilion in a previous multi-analytical study of pig-
ments [76]. In the same study, red lead was associated 
with a peak shifted towards 565 nm. However, we believe 
this might be to a great extent influenced by the media 
(the previous study was performed for an illuminated 
manuscript) and the binder. Actually, as we can see in 
Fig.  19, the reference vermilion has a peak at 600nm, 
while red lead reaches its maxima at 578 nm. At the same 
time, the peaks of endmembers 1 and 2 are approximately 
equally distant to the reference red lead and vermilion in 
the ENST dataset.

As far as endmember 3 is concerned, chrome yellow 
surfaces as the most reasonable option from the ENST 
dataset, while FORS-CHO leads to saffron and cobalt 
yellow as best compromise along the two dimensions. By 
studying the reflectance of endmember 3, we can actu-
ally see that it doesn’t have the characteristics of a pure 
orange, because the curve has a depression in the red 
region of the spectrum. This means that the color is shift-
ing to green, which is a well known aging behaviour of the 
chrome yellow pigment [41]. The shift to green of chrome 
yellow has been encountered in other paintings, such 
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as Van Gogh’s “Field with Irises”, as recorded by Geldof 
et al. [77]. Figure 20 displays the reflectance of the aged 
chrome yellow from Van Gogh’s painting together with 
the spectra of our endmember. While we can see that the 
two spectra are similar, it appears that in the case of our 
endmember, the aging is more advanced. However, we 
should keep in mind that it is possible for this accentu-
ated loss of the red color to be rooted in the limitations of 
our model in perfectly unmixing the components. None-
theless, chrome yellow classifies as a feasible option for 
endmember 3 and the shift to green would also explain 
why the spectral metrics give generally higher errors for 
this component.

Top choices for endmember 4 (blue) from ENST seem 
to be cerulean blue, manganese blue and ultramarine 
mixed with lead-white. At the same time, the most simi-
lar pigments from FORS-CHO are Egyptian blue, cobalt 
blue and ultramarine. Regarding endmember 5 (green), 
emerald green, synthetic malachite and Scheele’ s green 
are nominated as the most similar pigments among 
ENST group. On the other hand, cobalt green and mala-
chite are the most salient with respect to the FORS-CHO 
group. As for endmember (violet), it is obvious from the 
sudden and steep growth of the reflectance curve close 
to 600 nm that it is a red lake. Red lakes surface as good 
options from the bubble charts as well. However, a very 
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helpful tool in identifying the actual type of lake is the 
protocol proposed by Fonseca et al.[7]. According to this 
protocol, the presence of two minima between 450–600 
nm prove that it is a carmine lake. Moreover, the proxim-
ity of second minimum to 600 nm, as shown in Fig.  21 
gives additional information about the preparation of the 
carmine lake in that it was precipitated on aluminum.

Out of the comparison with the Centore dataset (See 
Fig. 22), we can see that historic pastel brands emerge 

among top 5 matches for the endmembers: Girault 36 
and Schmincke 042B for endmember 1; Girault 196 
and Sennelier 930 for endmember 2; Girault 195 for 
endmember 3; Sennelier 290 for endmember 4; Girault 
229 and Schmincke 076 H for endmember 5; and lastly 
Schmnicke 048B for endmember 6. While the chemical 
formulation of the pastels included in the Centore data-
base is unknown, it is still possible that historic manu-
facturers might have preserved a formula close to the 
traditional formulations.

With the bubble chart visualization approach, we aim 
to shortlist possible pigments and to alleviate the task 
of conservators of assessing the potential candidates  for 
identification. It is up to the conservator to give weights 
to the two spectral metrics (SA in reflectance or deriva-
tive mode, and SC in reflectance mode). We believe 
with this visualization, it is also easy to spot and discard 
anachronistic pigments (as long as there are no suspi-
cions of forgery), albeit high votes from the spectral met-
rics. For example, titanium yellow could be discarded as 
an option for endmember 3, because it is a pigment that 
was created more than 60 years after the painting was 
created. Nonetheless, pigment identification is a complex 
task, hence multiple data, visualizations and knowledge 
about the pigment aging behaviour should all be weighed 
by an expert. Also, for full validation, analytical data such 
as XRF should be added to the spectral analysis, which 
we plan to collect in the future.
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Discussion
To summarize our results, we showed how microfad-
ing spectrometry can be useful to the analysis of an art-
work beyond assessing pigments’ sensitivity to light and 
summarizing their color degradation. Namely, we use 
the microfading data to perform pigment unmixing and 
identification. Moreover, we model the photodegrada-
tion phenomena in a spectral not only color dimension, 
and for all wavelengths in one go as opposed to a tedi-
ous recovery of the fading rate for each wavelength taken 
separately. This is achieved with multivariate data tech-
niques, such as the tensor decomposition model that 

is the pillar of our work. This model is trained on the 
microfading data and decouples signals to get pure pig-
ments (endmembers) on a spectral basis, together with 
their fading rates. As a byproduct, we can solve the pig-
ment identification task by comparing the endmembers 
with reference spectral datasets of pigments.

While the results look promising, our approach is not 
without limitations. Above all, we lack ground-truth 
to fully validate our results. For the pigment identifica-
tion task, we plan to solve this in the future by collect-
ing XRF data of the painting. In addition, our method 
requires user input, as long as the number of components 
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(endmembers) is concerned. This is common to other tra-
ditional pigment unmixing methods, such as PPI. Indeed, 
with pigment unmixing being such a complex task, we 
believe that art conservators and art historians should 
remain in the loop and ascertain the chemical meaning-
fulness of the endmembers. Moreover, it is important to 
mention that the tensor decomposition is a linear unmix-
ing method that might not manage to capture all the 
non-linearities present in a pastel painting, where both 
intimate and layered mixing mechanisms exist. While the 
accuracy of tensor decomposition for spectral unmixing 
tasks is supported by previous findings in chemical [37] 
and computer vision [31] applications, in future, we plan 
to compare the performance of our approach with that of 
non-linear unmixing models. Finally, although we show 
results for a single case study, our method can be applied 
on any other type of colorant data (ink, dyes, etc.) and 
artworks given a set of overlapping microfading measure-
ments and we intend to test this on mockups and addi-
tional artworks.

Conclusion
In this article, we presented an approach to pigment 
characterization in a painting. Our method is based on a 
tensor decomposition model that, from a set of microfad-
ing measurements, disentangles in one shot, the reflec-
tances of pure pigments, their concentration and their 
fading rate as a function of time.

We statistically validate our model on the training data, 
as well as for unseen, test data. In addition, we compare 
the endmembers with reference datasets of pigments and 
we present our results with a bubble-chart visualization 
that is capable of combining the result of three spectral 
metrics. This way, we ease the decision of art conserva-
tors in shortlisting the best pigment matches.

In conclusion, we showed how microfading, which is 
traditionally used only for assessing sensitivity to light, 
can be useful as well for the task of pigment characteriza-
tion. In this context, it appears that parallel factor analy-
sis shows promising results for pigment unmixing.
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